
Developing and Deploying an Application that Accesses MQSeries Message Queues Using
VisualAge Generator v4.5

Paul Hoffman, Sanjay Chandru, and Stephen Hancock

Introduction

This paper steps through the use of file level interface for accessing MQSeries message queues.
The paper shows how programs are written and systems assembled and deployed at a medium
level of detail. For the purposes of discussion, MQ programs described are VisualAge Generator
4.5 programs that access MQSeries message queues as files.

The MQ scenario described in this paper contains client programs on various platforms, two
server programs on two platforms, and a database program on one platform. Additionally, two
queues are set up, one on each server platform

From three to five operating systems are involved running on workstation and mainframe
hardware. The complexities of developing client and server programs on Windows 95,
Windows NT , and OS/390 platforms are handled by VisualAge Generator and MQSeries. A
developer writes the client and server programs in the VisualAge Generator RAD and generates
client and server programs.

The two queues described are designed to allow a server to receive messages on one queue and
put messages on the other. The two server programs, one on Windows NT and the other on
OS/390, can pass messages in this manner while each monitoring just one queue for incoming
messages. The queue to which the server program communicates could be running on the OS/390
operating system (a remote queue) although it is known by the Windows NT server program
(through a local definition).

Developing the MQ program

Define Target Queue and Queue Manager Objects
In our process of developing an MQ scenario, the first step we take is to define messages in
VisualAge Generator. We start by specifying the message format. To do this, we define a
message queue record. The record data item structure is the message format. We need to specify
the message queue name for this particular record, and we have two options to choose from. We
can either define a system resource name for the record in the resource association file, or code
the program to move the queue name to the EZEDEST special function word for the message
queue record. The format for the queue name in either case is queue-manager-name:queue-name.
The queue-manager-name: is optional. If we omit the queue manager name, the default queue
manager is used. If we do not specify a queue name for the record, the default queue name is the
file name defined in the message queue record properties.

PUT Messages onto a Queue
Once the system is in production, the generated server program on Windows NT receives
information from the client programs and puts messages onto a queue. Adding a message to the
queue involves using the ADD I/O option in a function with a message queue record as the
object. The process automatically connects to the queue manager if there is not an active
connection, opens the queue for output if it is not already open, and puts the message on the
queue. The server program puts messages by use of a generated MQPUT command. This
MQPUT command is equivalent to a manually constructed PUT command in a typical
MQSeries program. The MQPUT command results from the developer's use of the VisualAge
Generator ADD I/O option.

GET Messages from a Queue
Next, we develop our MQ scenario further to implement message retrieval. The generated
OS/390 server program gets the messages from the queue. Our MQ program receives messages
by getting them from an incoming message queue. Getting a message from the queue involves
using the SCAN I/O option in a function with the message queue record as the object. The
process automatically connects to the queue manager if there is not an active connection, opens
the queue for input if it is not already open, and gets the message from the queue. The server
program gets messages by use of a generated MQGET command. This MQGET command is
equivalent to a manually constructed GET command in a typical MQSeries program. The
MQGET command results from the developer's use of the VisualAge Generator SCAN I/O
option. The generated OS/390 server program passes data using SQL commands to a DB2
database also running on the OS/390 operating system. VisualAge Generator is well suited to
handle database transactions and SQL communications. Once operations involving the DB2
database are complete, any returning information is written into messages and put onto a queue
running on the Windows NT operating system (a remote queue) known by the OS/390 server
program (through a local definition). The Windows NT server gets the messages from the queue
and sends information to the appropriate client programs, completing the transaction cycle. We
need to address an intermediate level topic in our MQ scenario through message queue record
definition. First, we need to specify when the program should open an input queue for exclusive
use. We use the Open queue for exclusive use on input property of a message queue record to
cause the queue to be opened for exclusive use on record SCANs. If we do not check this
property in the VisualAge Generator Record Editor user interface, the queue is opened for shared
input. When a queue is opened for exclusive input, it is not available to other programs requiring
access to the queue object.

CLOSE Connections after Processing
Whether we are sending or receiving messages, we need to make sure our program closes the
queue when appropriate. Closing the queue involves using the CLOSE I/O option. We need to
close the queue when our program is switching between adding and scanning the same queue, or
if we code a long running program that does not need to keep the queue open. Our generated
server programs automatically close queues when the program ends or disconnects from the
queue manager.

Handle PUTs and GETs to Queues on Multiple Queue Managers
In order to enable the movement of messages, we need to address such issues as connecting to
the message queue manager, connecting to a different queue manager, or possibly disconnecting
from the message queue manager before the program ends. VisualAge Generator handles the
connection to the queue manager automatically on the first ADD or SCAN I/O option in our MQ
program, using the queue manager name specified in the system resource name associated with
the message queue record. If we do not specify a queue manager name, the default queue
manager defined for the production system will be used. In the sample application, this equates
to the default queue manager defined for the Windows NT or OS/390 server. VisualAge
Generator facilitates automatic disconnection from the queue manager when the program ends,
closing any open files and committing the current unit of work if it is still open. VisualAge
Generator handles this for us in the generated code. If the connection queue manager and the
queue manager to which the queue belongs are different, we code our MQ program to connect
before issuing the ADD or SCAN I/O option in the program. We can use the MQCONN
reusable part to connect to the appropriate queue manager. The ADD or SCAN I/O option will
use the current open connection instead of attempting to connect to the queue manager specified
in the system resource name. If our MQ program has already established a connection, the
program can access the queue object under a different queue manager by allowing the connected
queue manager to communicate with the other queue manger. MQSeries needs to be set up so
that each queue manager knows and is able to communicate with other queue managers in the
system. Alternatively, we can code an MQDISC call and an MQCONN call if we want to handle
the connection at a lower level. To handle the connection at a higher level, our MQ program can
include an ADD or SCAN I/O option with the new system resource name under which the queue
object exists. If we design a long running program and want to disconnect from the queue
manager before the program ends, we can use the MQCONN reusable part to do the initial
connection and the MQDISC part to disconnect after all queue access is complete.

Handle Errors
We need our MQ program to verify the movement of messages and validate the integrity of
messages. We can accomplish the verification and validation by checking the results of I/O
options. Since the function error routine is invoked if the result of any ADD, SCAN, or CLOSE
is not completely successful, we can check the results of an I/O option. We can test the record
file status values (EOF, ERR, HRD) to determine what kind of result occurred. We can also get
the completion code and reason code returned on the MQ API call in the EZERT2 and EZERT8
special function words. Soft errors (reason codes MQRC_NO_MSG_AVAILABLE or
MQRC_TRUNCATED_MSG_ACCEPTED) are always returned to the program. We code our
MQ program to set EZEFEC to 1 so that a ll other MQ errors are treated as hard (automatic
program termination) errors and are returned to the program.

Perform Transaction Control
To validate messages, we use the Include message in transaction property of a message queue
record, set in the VisualAge Generator Record Editor user interface, to include the messages in
the program’s unit of work. We code the program to call EZECOMIT or EZEROLLB to commit
or roll back the current unit of work. An implicit commit occurs if the program ends before a
commit or rollback is requested. Commits and rollbacks affect both input and output messages. If

an input message is rolled back, it goes back on the input queue. If an output message is rolled
back, it is not written to the output queue. If our sample application involved transaction
environments like CICS, IMS, and AS/400, message queue commits and rollbacks would be
coordinated with commits and rollbacks for other recoverable resources, like DB2 databases,
using a two-phase commit protocol. For other environments, the resources for different
managers are committed independently from one another.

The generated server programs can perform error handling and commit or rollback messages as
needed in the course of system operations.

Utilize Variable Length Records
We need to code our MQ program to handle variable length messages. We do this by specifying
either a record length item or an occurrences item in the message record properties. The record
length item contains the length of the message in bytes. The maximum message length is the
length of the message record definition. For ADD I/O options, we code our MQ program to set
the item to the desired length before the ADD I/O option is executed. For SCAN I/O options, we
code the program to set the item value to the length of the message that is read from the queue. If
the message is longer than the record length, the message is truncated. The occurrences item
represents the number of valid array entries in the last top level data item in the record structure.
The value can range from 0 to the occurs value defined for the last item. The occurrences item
must be an item in the message record. The record length item does not have to be defined
within the message record. For ADD I/O options, we can code the program to set the occurrences
item to the desired number of occurrences before the ADD I/O option is executed. The program
calculates the length of the message as the length of the record preceding the last item plus the
value of the occurrences item times the length of one occurrence of the array.

Access Advanced MQSeries Options
There are two advanced topics left to address in developing the MQ program, using other MQ
API options and specifying different MQ options for different MQ records. The MQ Series API
Programmer’s Reference describes many other options for processing messages besides the
options covered by ADD, SCAN, and CLOSE I/O options. These other options are controlled
through the setting of options parameters and control blocks passed on the MQOPEN, MQGET,
and MQPUT APIs. We can also define advanced options as properties of message queue records.
The program would then build the control block and parameters based on these properties. We
can code our MQ program to set values in these control blocks to control functions beyond those
described above by specifying the names of the MQ options records that we want to override in
the advanced options record list in the message queue record properties. The records we specify
are automatically included in our program. We can code the program to set options in the records
before issuing the ADD or SCAN for the associated message queue record. VisualAge Generator
provides working storage records in the MQ reusable parts for MQ control block definitions. The
working storage records are MQOD - MQ Object Descriptor, MQOO - MQOPEN options
parameter, MQMD - MQ Message Descriptor, MQGMO - MQ Get Message Options, and
MQPMO - MQ Put Message Options. If we want our MQ program to specify more than one
copy of an options record for use with different message queue records in the same program, we
can define new records as alternate specifications of the options records. Alternate specification

is defined in a property of the new record and specifies the same data item definition as the
record named in the property.

Triggering and MQSeries
MQSeries triggering capabilities allow programs to be started when a message is put on a
particular queue during a specified length of time. If a server, such as the OS/390 in the example
above, uses triggering, system resources can be saved by starting the server program only when
the Windows NT server program puts a message on its outbound queue.

Deploying the MQ program

There are run-time considerations for our MQ program that we need to address. An important
aspect of this being deployment of the program in specific run-time environments, which may
involve

� Converting data formats
� Using resource associations
� Using linkage tables for MQSeries run-time library selection

Deploying the program in specific run-time environments
The first consideration we need to address for deploying our MQ program involves deployment
in specific run-time environments. To handle specific run-time environment considerations, we
can use a resource association file to specify a default queue name and conversion table for a
message queue record in a specific environment. We use a linkage table to specify which
MQSeries library (client or server, threaded or unthreaded) we want to use in the specific
environment.
Data Format Conversions
To handle data format conversion, we specify a conversion table name in the resource association
file entry for the message queue record. We need to do this if we code our MQ program to send
and receiving messages between systems that use different code pages for character data or
different numeric data formats. We need to specify the conversion table when generating either
the client program or the server program, but not both. In our sample application, we specify the
appropriate conversion table (ELACNENU for English) in the resource association file when
generating the MQ program. The messages added to the outbound queue are translated from
Windows NT to OS/390 format and messages from the inbound queue are converted back from
OS/390 format to Windows NT format. No conversion is necessary for the server program
running on OS/390 since the messages are already in OS/390 format on the queue.
Use of Resource Associations
We use resource associations to specify queue name and data format conversion. Since File name
is a required property in a message record definition, resource associations are specified by file
name and not by record name. If we define message queue records with the same file name, they
share the same resource associations. We use a resource association for the VisualAge Generator
Test Facility just like we use a resource association for any other specific environment. To add a
resource association entry for test facility, we type the file name in the Logical name field, select
Message Queue as the Organization, and type the queue manager/queue name in the Physical
Name field. We format the queue manager name and queue name in the resource association just
like we would if we were moving the queue name to EZEDEST,

queue_manager_name:queue_name. The queue manager name specified here is the queue
manager associated with the queue. If we want data format conversion performed when messages
are added to the queue or read from the queue, and we do in our sample application, we need to
type the conversion table name in the Conversion Table field. When we add a resource
association entry for a message queue record to a resource association part for generation and run
time, we specify the entry as follows:

ASSOCIATE FILE=filename /FILETYPE=MQ
 /SYSNAME=queue_manager_name:queue_name
 /CONTABLE=conversion_table_name
 /SYSTEM=target_system

We can omit CONTABLE if we do not want data format conversion performed for the message.
We can also omit SYSTEM if we want the entry to apply to any system. We need to specify the
resource association part when running C++ programs generated for non-CICS environments.
For all other environments, we specify the resource association part at generation using the
/RESOURCE generation option.
Use of Linkage Tables
In workstation environments (NT, OS/2, AIX, Solaris, and HP), MQSeries provides different
runtime libraries for MQ programs depending on whether the program is running on the same
system as the message queue manager or whether the program is running as an MQ client
communicating with a manager on a server system. On AIX and HP systems, different libraries
are provided for threaded and non-threaded environments as well. We use a VisualAge Generator
linkage table part to indicate which runtime library we want to use. The MQ reusable parts
shipped with VisualAge Generator include sample linkage tables for all supported environments.
We can use these parts directly, or copy the entries in the parts to our own linkage table, if we
need to specify entries for other program calls. If we test or run our MQ program with an MQ
manager, non-threaded library, we specify the linkage table part as a test or generation option. If
we test or run our MQ program with an MQ client or threaded library, we must also move the
part to a file and set the CSOLINKTBL environment variable to the file name. If we generate our
MQ program in JavaTM, it requires a special format for the linkage table entry. The entry should
look like the following:

:calllink applname=elaq* library=mq_wrapper_dll_name linktype=csocall
 parmform=commptr remotecomtype=direct remoteapptype=nonvg
 contable=java_conversion_table_name

where the mq_wrapper_dll is the wrapper dll name for our runtime environment, and the
java_conversion_table_name is the Java conversion table correct for our language and the system
on which the program is running.

Summary

Developing an MQ application with VisualAge Generator 4.5 is simple and efficient. MQ
support utilizes existing I/O options, error handling, and transaction control. This virtually

eliminates the need for existing customers to learn complicated new concepts to effectively
deploy MQSeries applications on their systems. A concerted attempt has been made to explain an
actual deployment scenario in detail. This paper also illustrates the ease of deployment in several
different platforms, which effectively exploits the middleware paradigm of MQSeries.

Information and Reference

For general information on MQSeries and VisualAge Generator:
Http://www-4.ibm.com/software/ts/mqseries/
Http://www-4.ibm.com/software/ad/visgen/
Http://www.redbooks.ibm.com/; MQSeries Primer, REDP0021

For specific information on implementing MQSeries programs in VisualAge Generator, refer to
Chapter 4, Developing MQSeries Application Systems pp.77-pp.107 in the
VisualAge Generator Version 4.5 User's Guide.

Trademarks

IBM is a trademark of International Business Machines Corp.
MQSeries, DB2, OS/390 and VisualAge AIX, OS/2 are registered trademarks of IBM
corporation in the US and other countries
Windows NT, Windows are registered trademarks of Microsoft Corporation in the US and
other countries
Java is a registered trademark of Sun Microsystems Inc.

Produced 3-2001

