

VisualAge PL/I IBM

Messages and Codes
Version 2.1

 GC26-9179-02

VisualAge PL/I IBM

Messages and Codes
Version 2.1

 GC26-9179-02

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page 219.

Second Edition (November 2002)

This edition applies to Version 2.1 of VisualAge PL/I Enterprise, part number 04L7217; and to any subsequent
releases until otherwise indicated in new editions or technical newsletters. Make sure you are using the correct edition
for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the address below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address your
comments to:

IBM Corporation, BWE/H3
P.O. Box 49023
San Jose, CA 95161-9023

 U.S.A.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

 International Business Machines Corporation 1998,2002. All rights reserved.

 Contents

Chapter 1. Understanding compiler and preprocessor messages 1
Format of messages . 1
Message inserts . 2
Contacting IBM for support . 2

Chapter 2. Compiler Informational Messages (1000-1076) 3

Chapter 3. Compiler Warning Messages (1078-1225) 6

Chapter 4. Compiler Error Messages (1226-1499) 20

Chapter 5. Compiler Severe Messages (1500-2500) 41

Chapter 6. CICS Preprocessor Messages (6000-6999) 89

Chapter 7. MACRO Preprocessor Messages (3000-3999) 93

Chapter 8. SQL Preprocessor Messages (7000-7999) 110

Chapter 9. Understanding run-time messages 113
Using run-time messages . 113
Format of run-time messages . 113
Message inserts . 114
Contacting IBM for support . 114

Chapter 10. Run-time messages . 115

Chapter 11. Condition codes . 173
Conditions 1 through 50 . 173
Condition codes 51 through 100 . 174
Condition codes 100 through 520 . 176
Condition codes 600 through 650 . 177
Condition codes 651 through 672 . 179
Condition codes 1002 through 1105 . 180
Condition codes 1500 through 1550 . 181
Condition codes 1551 through 1600 . 183
Condition codes 1601 through 1650 . 185
Condition codes 1651 through 1700 . 187
Condition codes 1701 through 1750 . 189
Condition codes 1751 through 1800 . 191
Condition codes 1801 through 1850 . 194
Condition codes 1851 through 1900 . 195
Condition codes 1901 through 1950 . 197
Condition codes 1951 through 2000 . 199
Condition codes 2002 through 2150 . 201

 Copyright IBM Corp. 1998 iii

Condition codes 2151 through 2200 . 202
Condition codes 2201 through 2250 . 204
Condition codes 2251 through 2300 . 205
Condition codes 2301 through 2350 . 207
Condition codes 2351 through 2400 . 209
Condition codes 2403 through 2450 . 211
Condition codes 2451 through 2500 . 212
Condition codes 2504 through 2999 . 214
Condition codes 3000 through 3900 . 215
Condition codes 3901 through 4000 . 216
Condition codes 4001 through 9999 . 217

Notices . 219
Programming interface information . 220
Trademarks . 221

Bibliography . 222
VisualAge PL/I publications . 222
DB2 Version 2 . 222
DATABASE 2 . 222
VisualAge CICS Enterprise Application Development 222

iv Messages and Codes (OS/2 and Windows)

Chapter 1. Understanding compiler and preprocessor messages

This section lists the compiler messages in numerical order. These messages are also
listed in numerical order in the output following the source program and in any other
listings produced by the compiler.

Format of messages
In your compilation output , each compiler message, with the exception of the code
generation messages in the range 5000-5999, starts with IBMnnnnI X where:

� IBM indicates that the message is a PL/I message

� nnnn is the number of the message

� the closing letter I indicates that no system operator action is required

� the X represents a severity code.

In this guide, messages are listed numerically. Each compiler message in this
section has the form IBMnnnnI X where X is the severity code.

Severity codes can be any of the following: I, W, E, S, or U.

These severity codes indicate the following. (Note that the return codes listed are the
highest return code generated.)

I An informational message (RC=0) indicates that the compiled program should
run correctly. The compiler might inform you of a possible inefficiency in your
code or some other condition of interest.

W A warning message (RC=4) warns you that a statement might be in error
(warning) even though it is syntactically valid. The compiled program should
run correctly, but might produce different results than expected or be
significantly inefficient.

E An error message (RC=8) describes a simple error fixed by the compiler. The
compiled program should run correctly, but might produce different results than
expected.

S A severe error message (RC=12) describes an error not fixed by the compiler.
If the program is compiled and an object module is produced, it should not be
used.

U An unrecoverable error message (RC=16) signifies an error that forces
termination of the compilation. An object module is not successfully created.

Compiler messages are printed in groups according to these severity levels and to the
component that produced them.

The code generation messages (those in the range 5000-5999) start with IBMnnnn
where:

� IBM indicates that the message is a PL/I message

 Copyright IBM Corp. 1998 1

� nnnn is the number of the message

The compiler FLAG option suppresses the listing of messages in the compiler listing.

 Message inserts
Many of the compiler messages contain message inserts indicating where the compiler
inserts information when it prints the message. These inserts are emphasized in the
messages in this section using italics.

Contacting IBM for support
If you contact IBM for programming support for a compiler error, it is useful to have a
listing of your source program available. To make the analysis of any potential problem
easier, it is best if that listing is created with the options: INSOURCE MACRO
OPTIONS SOURCE.

2 Messages and Codes (OS/2 and Windows)

IBM1018I I �IBM1051I I

Chapter 2. Compiler Informational Messages (1000-1076)

IBM1018I I option-name should be specified within
OPTIONS, but is accepted as is.

Explanation: This message is used in building the
options listing.

IBM1038I I note

Explanation: This message is used to report back end
informational messages.

IBM1039I I Variable variable name is implicitly
declared.

Explanation: All variables should be declared except
for contextual declarations of built-in functions,
SYSPRINT and SYSIN.

IBM1040I I note

Explanation: This message is used by %NOTE
statements with a return code of 0.

IBM1041I I Comment spans line-count lines.

Explanation: A comment ends on a different line than
it begins. This may indicate that an end-of-comment
delimiter is missing.

IBM1042I I String spans line-count lines.

Explanation: A string ends on a different line than it
begins. This may indicate that a closing quote is
missing.

IBM1043I I variable name is contextually declared as
attribute.

Explanation: There is no declare statement for the
named variable, but it has been given the indicated
attribute because of its usage. For instance, if the
variable is used as a locator, it will be given the
POINTER attribute.

IBM1044I I FIXED BINARY with precision 7 or less
is mapped to 1 byte.

Explanation: The OS/370 PL/I compiler would have
mapped this to 2 bytes.

IBM1045I I Code generated for the REFER object
reference name would be more efficient
if the REFER object had the attributes
REAL FIXED BIN(p,0).

Explanation: If the REFER object has any other
attributes, it will be converted to and from REAL FIXED
BIN(31,0) via library calls.

IBM1046I I UNSPEC applied to an array is handled
as a scalar reference.

Explanation: The OS/370 PL/I compiler would have
handled UNSPEC applied to an array as an array of
scalars.

IBM1047I I ORDER option may inhibit optimization.

Explanation: If the ORDER option applies to a block,
optimization is likely to be inhibited, especially if the
block contains ON-units that refer to variables declared
outside the ON-unit.

IBM1048I I GET/PUT DATA without a data-list
inhibits optimization.

Explanation: A GET DATA statement can alter almost
any variable, and a PUT DATA statement requires
almost all variables to be stored home anytime a PUT
DATA statement might be executed. Both of these
requirements inhibit optimization.

IBM1050I I INITIAL attribute for RESERVED STATIC
is ignored.

Explanation: The INITIAL attribute has been specified
for a variable with the attributes RESERVED STATIC.
Unless such a variable is listed in the EXPORTS clause
of a PACKAGE statement, the variable will not be
initialized.

IBM1051I I Argument to BUILTIN name built-in may
not be byte aligned.

Explanation: This message applies to the ADDR,
CURRENTSTORAGE/SIZE and STORAGE/SIZE built-in
functions. Applying any one of these built-in functions to
an unaligned bit variable may not produce the results
you expected.

 Copyright IBM Corp. 1998 3

IBM1052I I �IBM1067I I

IBM1052I I The NODESCRIPTOR attribute is
accepted even though some arguments
have * extents.

Explanation: When a string with * extent or an array
with * extents is passed, PL/I normally passes a
descriptor so that the called routine knows how big the
passed argument really is. The NODESCRIPTOR
attribute indicates that no descriptor should be passed;
this is invalid if the called routine is a PL/I procedure.

 dcl x entry(char(�), fixed bin(31))

 options(nodescriptor);

IBM1053I I Scaled FIXED operation evaluated as
FIXED DECIMAL.

Explanation: If one of the built-in functions ADD,
DIVIDE, MULTIPLY or SUBTRACT is invoked with
argument that have type FIXED, if either operand has a
non-zero scale factor, the result will have type FIXED
DEC.

IBM1058I I Conversion from source type to target
type will be done by library call.

Explanation: This message can be used to help find
code that may be very expensive if executed as part of a
loop or to find code involving conversions of unlike
types.

IBM1059I I SELECT statement contains no
OTHERWISE clause.

Explanation: The ERROR condition will be raised if no
WHEN clause is satisfied.

IBM1060I I Name resolution for identifier selected its
declaration in a structure, rather than its
non-member declaration in a parent
block.

Explanation: The PL/I language rules require this, but
it might be a little surprising. In the following code
fragment, for instance, the display statement would
display the value of x.y.

 a: proc;

 dcl y fixed bin init(3);

 call b;

 b: proc;

 dcl

 1 x,

 2 y fixed bin init(5),

 2 z fixed bin init(7);

 display(y);

 end;

 end a;

IBM1061I I Probable DATE calculation should be
examined for validity after the year 1999.

Explanation: Use of any of the constants 365, 1900 or
'19' may indicate a date calculation. If this is true, you
should examine the calculation to determine if it will be
valid after the year 1999.

IBM1062I I variable inferred to contain a two-digit
year.

Explanation: The indicated was inferred to contain a
two-digit year because, for example, it was assigned the
DATE built-in function.

IBM1063I I Code generated for DO group would be
more efficient if control variable were a
4-byte integer.

Explanation: The control variable in the DO loop is a
1-byte or 2-byte integer, and consequently, the code
generated for the loop will not be optimal.

IBM1064I I Use of OPT(2) forces TEST(BLOCK).

Explanation: Under OPT(2), any specification of TEST
hooks stronger than TEST(BLOCK) is not supported.

IBM1067I I UNTIL clause ignored.

Explanation: If a DO specification has no clause such
as TO, BY or REPEAT that could cause the loop to be
repeated, then the UNTIL clause will have no effect on
the loop and will be ignored.

4 Messages and Codes (OS/2 and Windows)

IBM1068I I �IBM1069I I

 do x = y until (z > ');

 ...

 end;

IBM1068I I Procedure has no RETURNS attribute,
but contains a RETURN statement. A
RETURNS attribute will be assumed.

Explanation: If a procedure contains a RETURN
statement, it should have the RETURNS attribute
specified on its PROCEDURE statement.

 a: proc;

 return(');

 end;

IBM1069I I The AUTOMATIC variables in a block
should not be used in the prologue of
that block.

Explanation: The AUTOMATIC variables in a block
may be used in the declare statements and the
executable statements of any contained block, but in the
block in which they are declared, they should be used
only in the executable statements.

 dcl x fixed bin(15) init(5);

 dcl y(x) fixed bin(15);

 Chapter 2. Compiler Informational Messages (1000-1076) 5

IBM1078I W �IBM1086I W

Chapter 3. Compiler Warning Messages (1078-1225)

IBM1078I W Statement may never be executed.

Explanation: This message warns that the compiler
has detected a statement that can never be run as the
flow of control must always pass it by.

IBM1079I W Too few arguments have been specified
for the ENTRY ENTRY name.

Explanation: The number of arguments should match
the number of parameters in the ENTRY declaration.

IBM1080I W The keyword label-name, which could
form a complete statement, is accepted
as a label name, but a colon may have
been used where a semicolon was
meant.

Explanation: A PL/I keyword which could form a
complete statement has been used as statement label.
This usage is accepted, but a colon may have been
used where a semicolon was intended.

 dcl a fixed bin(31) ext;

 if a = ' then

 put skip list('a = '')

 else:

 a = a + 1;

IBM1081I W keyword expression should be scalar.
Lower bounds assumed for any missing
subscripts.

Explanation: The expression in the named keyword
clause should be a scalar, but an array reference was
specified.

 dcl p pointer;

 dcl x based char(1');

 dcl a(1') area(1''');

 allocate x in(a) set(p);

IBM1082I W Argument number argument-number in
entry reference entry name is a scalar,
but its declare specifies a structure.

Explanation: A scalar may be passed as the argument
when a structure is expected, but this require building a
"dummy" structure and assigning the scalar to each field
in that structure.

 dcl e entry(1 2 fixed bin(31), 2 fixed bin(31));

 dcl i fixed bin(15);

 call e(i);

IBM1083I W Source in label assignment is inside a
DO-loop, and an illegal jump into the
loop may be attempted. Optimization
will also be very inhibited.

Explanation: GOTO statements may not jump into DO
loops, and the compiler will flag any GOTO whose target
is a label constant inside a (different) DO loop.
However, if a label inside a DO loop is assigned to a
label variable, then this kind of error may go undetected.

IBM1084I W Nonblanks after right margin are not
allowed under
RULES(NOLAXMARGINS).

Explanation: Under RULES(NOLAXMARGINS), there
should be nothing but blanks after the right margin.

IBM1085I W variable may be uninitialized when used.

Explanation: The indicated variable may be used
before it has been initialized.

IBM1086I W built-in function will be evaluated using
long rather than extended routines.

Explanation: The indicated built-in function has an
extended float argument, but since the corresponding
extended routine is not yet available, it will be evaluated
using the appropriate long routine.

6  Copyright IBM Corp. 1998

IBM1087I W �IBM1096I W

IBM1087I W FLOAT source is too big for its target.
An appropriate HUGE value of assumed
value is assumed.

Explanation: A value larger than HUGE(1s0) cannot
be assigned to a short float. Under hexadecimal float,
the value 3.141592E+40 could be assigned to a short
float, but under IEEE, the maximum value that a short
float can hold is about 3.40281E+38.

IBM1088I W FLOAT literal is too big for its implicit
precision. The E in the exponent will be
replaced by a D.

Explanation: The precision for a float literal is implied
by the number of digits in its mantissa. For instance
1e99 is implicitly FLOAT DECIMAL(1), but the value
1e99 is larger than the largest value a FLOAT
DECIMAL(1) can hold.

IBM1089I W Control variable in DO loop cannot
exceed TO value, and loop may be
infinite.

Explanation: If the TO value is equal to the maximum
value that a FIXED or PICTURE variable can hold, then
a loop dominated by that variable will run endlessly
unless exited inside the loop by a LEAVE or GOTO. For
example, in the first code fragment below, x can never
be bigger than 99, and the loop would be infinite. In the
second code fragment below, y can never be bigger
than 32767, and the loop would be infinite.

 dcl x pic'99';

 do x = 1 to 99;

 put skip list(x);

 end;

 dcl y fixed bin(15);

 do x = 1 to 32767;

 put skip list(x);

 end;

IBM1090I W Constant used as locator qualifier.

Explanation: An expression contains a reference to a
based variable with a constant value for its locator
qualifier. This may cause a protection exception on
some systems. It may also indicate that the variable was
declared as based on NULL or SYSNULL and that this
constant value is being used as its locator qualifier.

 dcl a fixed bin(31) based(null());

 a = ';

IBM1091I W FIXED BIN precision less than storage
allows.

Explanation: Except in unusual circumstances, the
precision in a FIXED BIN declaration should be 7, 15, 31
or 63 if SIGNED and one greater if UNSIGNED. This
message may indicate that a declare specified, for
example, FIXED BIN(8) when UNSIGNED FIXED BIN(8)
was meant.

IBM1092I W GOTO whose target is or may be in
another block severely limits
optimization.

Explanation: Try to change the code so that it sets
and tests a switch instead, or limit GOTOs to very small
modules that do not need optimization.

IBM1093I W PLIXOPT string is invalid. See related
runtime message message-number.

Explanation: The PLIXOPT string could not be parsed.
See the cited LE message for more detail.

IBM1094I W Element option in PLIXOPT is invalid.
See related runtime message
message-number.

Explanation: The PLIXOPT string contains an invalid
item. See the cited LE message for more detail.

IBM1095I W Element option in PLIXOPT has been
remapped to option. See related runtime
message message-number.

Explanation: The PLIXOPT string contains a run-time
option which is not supported by LE. See the cited LE
message for more detail.

IBM1096I W STAE and SPIE in PLIXOPT is not
supported. See related runtime
message message-number.

Explanation: The SPIE and STAE options have been
replaced by the TRAP option. TRAP(ON) is equivalent
to SPIE and STAE; TRAP(OFF) is equivalent to NOSPIE
and NOSTAE. The combination SPIE and NOSTAE and
the combination NOSPIE and STAE are no longer
supported. See the cited LE message for more detail.

 Chapter 3. Compiler Warning Messages (1078-1225) 7

IBM1097I W �IBM1103I W

IBM1097I W Scalar accepted as argument number
argument-number in ENTRY reference
ENTRY name although parameter
description specifies an array.

Explanation: Generally, scalars should not be passed
where arrays are expected, but in some situations, this
may be desired.

 dcl a entry((�) fixed bin) option(nodescriptor);

 call a(');

IBM1098I W Extraneous comma at end of statement
ignored.

Explanation: A comma was followed by a semicolon
rather than by a valid syntactical element (such as an
identifier). The comma will be ignored in order to make
the semicolon valid.

 dcl 1 a, 2 b fixed bin, 2 c fixed bin, ;

IBM1099I W FIXED DEC(source-precision, source-scale)
operand will be converted to FIXED
BIN(target-precision, target-scale).
Significant digits may be lost.

Explanation: Under RULES(IBM), when a comparison
or arithmetic operation has an operand that is FIXED
BIN and an operand that is FIXED DEC with a non-zero
scale factor, then the FIXED DEC operand will be
converted to FIXED BIN. Under RULES(ANS), when a
comparison or arithmetic operation has an operand that
is FIXED BIN and an operand that is FIXED DEC with a
zero scale factor, then the FIXED DEC operand will be
converted to FIXED BIN. In each case, significant digits
may be lost, and if there is a fractional part, it may not
be exactly represented as binary. For instance, under
RULES(IBM), the assignment statement below will cause
the target to have the value 29.19, and in the
comparison, C will be converted to FIXED BIN(31,10)
and significant digits will be lost (in fact, SIZE would be
raised, but since it is disabled, this program would be in
error).

 dcl a fixed dec('7,2) init(12.2);

 dcl b fixed bin(31,') init(17);

 dcl c fixed dec(15,3) init(2'97151);

 dcl d fixed bin(31,') init(');

 a = a + b;

 if c = d then;

IBM1100I W The attribute attribute-option is not valid
on BEGIN blocks and is ignored.

Explanation: An attribute (REDUCIBLE in the example
below) has been specified in the OPTIONS clause on a
BEGIN statement, but that attribute is not valid for
BEGIN blocks.

 begin options(reducible);

IBM1101I W option-name is not a known
PROCEDURE attribute and is ignored.

Explanation: An attribute (DATAONLY in the example
below) has been specified in the OPTIONS clause on a
PROCEDURE statement, but that attribute is not valid
for PROCEDUREs.

 a: proc options(dataonly);

IBM1102I W option-name is not a known BEGIN
attribute and is ignored.

Explanation: The indicated attribute is valid on
PROCEDURE statements, but not on BEGIN
statements.

 begin recursive;

IBM1103I W option-name is not a supported compiler
option and is ignored.

Explanation: The compiler option is not supported on
OS/2.

 �process map;

8 Messages and Codes (OS/2 and Windows)

IBM1104I W �IBM1114I W

IBM1104I W Suboptions of the compiler option
option-name are not supported and are
ignored.

Explanation: Suboptions of the compiler option are not
supported on OS/2.

 �process list(4);

IBM1105I W A suboption of the compiler option
option-name is too long. It is shortened
to number-of-letters characters.

Explanation: Various compiler options have limits on
the size of subfields. Refer to the Programming Guide
for the limits of specific compiler options.

 �process margini('+-');

IBM1106I W Condition prefixes on keyword
statements are ignored.

Explanation: Condition prefixes are not allowed on
DECLARE, DEFAULT, IF, ELSE, DO, END, SELECT,
WHEN or OTHERWISE statements.

 (nofofl): if (x+y) > ' then

IBM1107I W option-name is not a known ENTRY
statement attribute and is ignored.

Explanation: An attribute (DATAONLY in the example
below) has been specified in the OPTIONS clause on an
ENTRY statement, but that attribute is not valid for
ENTRY statements.

 a: entry options(dataonly);

IBM1108I W The character char specified in the option
option is already defined and may not
be redefined. The redefinition will be
ignored.

Explanation: A character specified in the OR, NOT or
NAMES compiler option is already defined in the PL/I
character set or by another compiler option.

 �process not('=');

 �process not('!') or('!');

IBM1109I W The second argument in the C-format
item will be ignored.

Explanation: If you wish to display the real and
imaginary parts of a complex number using different
formats, use the REAL and IMAG built-in functions and 2
format items.

 put edit (x) (c(e(1',6), e(1',6)));

IBM1110I W The %INCLUDE statement should be on
a line by itself. The source on the line
after the %INCLUDE statement is
ignored.

Explanation: Split the text into 2 lines.

 %include x; %include y;

IBM1111I W CHECK prefix is not supported and is
ignored.

Explanation: The CHECK prefix is not part of the SAA
PL/I language.

 (check): i = j + 1;

IBM1112I W condition-name condition is not
supported and is ignored.

Explanation: The CHECK and PENDING conditions
are not part of the SAA PL/I language.

 on check ...

IBM1113I W verb-name statement is not supported
and is ignored.

Explanation: The named statement, for example the
CHECK statement, is not part of the SAA PL/I language.

IBM1114I W Comparands are both constant.

Explanation: Both operands in a comparison are
constant, and consequently, the result of the comparison
is also a constant. If this comparison is the expression
in an IF clause, for example, this means that either the
THEN or ELSE clause will never be executed.

 Chapter 3. Compiler Warning Messages (1078-1225) 9

IBM1115I W �IBM1126I W

IBM1115I W INITIAL list contains count items, but the
array variable name contains only array
size. Excess is ignored.

Explanation: For an array, an INITIAL list should not
contain more values than the array has elements.

 dcl a init(1, 2), b(5) init((1') ');

IBM1116I W Comment spans more than one file.

Explanation: A comment ends in a different file than it
begins. This may indicate that an end-of-comment
statement is missing.

IBM1117I W String spans more than one file.

Explanation: A string ends in a different file than it
begins. This may indicate that a closing quote is
missing.

IBM1118I W Delimiter missing between nondelimiter
and nondelimiter. A blank is assumed.

Explanation: A delimiter (for example, a blank or a
comma) is required between all identifiers and constants.

 dcl 1 a, 2 b, 3c;

IBM1119I W Code generated for DO group would be
more efficient if control variable were
not an aggregate member.

Explanation: The control variable in the DO loop is a
member of an array, a structure or an union, and
consequently, the code generated for the loop will not be
optimal.

IBM1120I W Multiple closure of groups. END
statements will be inserted to close
intervening groups.

Explanation: Using one END statement to close more
than one group of statements is permitted, but it may
indicate a coding error.

IBM1121I W Missing character assumed.

Explanation: The indicated character is missing, and
there are no more characters in the source. The missing
character has been inserted by the parser in order to
correct your source.

IBM1122I W Missing character assumed before
character.

Explanation: The indicated character is missing and
has been inserted by the parser in order to correct your
source.

 display('Program starting' ;

IBM1123I W The ENVIRONMENT option option-name
has been specified without a suboption.
The option option-name is ignored.

Explanation: Certain ENVIRONMENT options, such as
RECSIZE, require suboptions.

 dcl f file env(recsize);

IBM1124I W A suboption has been specified for the
ENVIRONMENT option option-name. The
suboption will be ignored.

Explanation: Certain ENVIRONMENT options, such as
CONSECUTIVE, should be specified without any
suboptions.

 dcl f file env(consecutive(1));

IBM1125I W The ENVIRONMENT option option-name
has been specified more than once.

Explanation: ENVIRONMENT options should not be
repeated.

 dcl f file env(consecutive consecutive);

IBM1126I W The ENVIRONMENT option option-name
has an invalid suboption. The option
will be ignored.

Explanation: The suboption type is incorrect.

 dcl f file env(regional(5));

10 Messages and Codes (OS/2 and Windows)

IBM1127I W �IBM1135I W

IBM1127I W option-name is not a known
ENVIRONMENT option. It will be
ignored.

Explanation: There is no such supported
ENVIRONMENT option.

 dcl f file env(unknown);

IBM1128I W The ENVIRONMENT option option-name
conflicts with the LANGLVL compiler
option. The option will be ignored.

Explanation: The indicated option is valid only with
LANGLVL(OS).

 dcl f file env(fb);

IBM1129I W verb-name processor-name statement
ignored up to closing semicolon.

Explanation: An EXEC SQL or EXEC CICS statement
has been found in the source program. The compiler will
ignore these statements.

 exec sql ...;

IBM1130I W The external name identifier is too long.
It will be shortened to identifier.

Explanation: The maximum length of external names
is set by the EXTNAME suboption of the LIMITS
compiler option.

 dcl this_name_is_long static external pointer;

IBM1131I W An EXTERNAL name specification for
name has been specified on its
PROCEDURE statement and in the
EXPORTS clause of the PACKAGE
statement. The EXPORTS specification
will be used.

Explanation: The name specified in the EXTERNAL
attribute in the EXPORTS clause overrides the name
specified in the EXTERNAL attribute on the
PROCEDURE statement.

 a: package exports(b ext('_B'));

 b: proc ext('BB');

IBM1132I W An EXTERNAL name specification for
name has been specified in its
declaration and in the RESERVES
clause of the PACKAGE statement. The
RESERVES specification will be used.

Explanation: The name specified in the EXTERNAL
attribute in the RESERVES clause overrides the name
specified in the EXTERNAL attribute in the DECLARE
statement.

 a: package reserves(b ext('_B'));

 dcl b ext('BB') static ...

IBM1133I W The FORMAT CONSTANT array
label-name is not fully initialized.

Explanation: An element of a FORMAT CONSTANT
array has not been defined, for example, f(2) in the
example below.

 f(1): format(x(2), a);

 f(3): format(x(4), a);

IBM1134I W The LABEL CONSTANT array
label-reference is not fully initialized.

Explanation: The named variable defines a statement
label array, but not all the elements in that array are
labels for statements in the containing procedure.

 l(1): display(...);

 l(3): display(...);

IBM1135I W Logical operand is constant.

Explanation: An argument to one of the logical
operators (or, and or not) is a constant. The result of the
operation may also be a constant. If this operation is
the expression in an IF clause, for example, this means
that either the THEN or ELSE clause will never be
executed.

 Chapter 3. Compiler Warning Messages (1078-1225) 11

IBM1136I W �IBM1148I W

 if a | '1'b then

IBM1136I W Function invoked as a subroutine.

Explanation: A function, for example, a PROCEDURE
or ENTRY statement with the RETURNS attribute, has
been invoked in a CALL statement. The value that is
returned by the function will be discarded, but the
OPTIONAL attribute should be used to indicate that this
is valid.

IBM1137I W The attribute attribute is invalid in
GENERIC descriptions and will be
ignored.

Explanation: The named attribute is invalid in
GENERIC description lists.

 dcl g generic (f1 when(connected),

 f2 otherwise);

IBM1138I W Number of items in INITIAL list is count
for the array variable name which
contains array size elements.

Explanation: The array will be incompletely initialized.
This may be a programming error (in the example below,
4 should probably have been 6) and may cause
exceptions when the program is run.

 dcl a(8) fixed dec init(1, 2, (4) ');

IBM1139I W Syntax of the %CONTROL statement is
incorrect.

Explanation: The %CONTROL statement must be
followed by FORMAT or NOFORMAT option enclosed in
parentheses and then a semicolon.

IBM1140I W Syntax of the LANGLVL option in the
%OPTION statement is incorrect.

Explanation: The LANGLVL option in the %OPTION
statement must be specified as either LANGLVL(SAA) or
LANGLVL(SAA2).

IBM1141I W Syntax of the %NOPRINT statement is
incorrect.

Explanation: The %NOPRINT statement must be
followed, with optional intervening blanks, by a
semicolon.

IBM1142I W Syntax of the %PAGE statement is
incorrect.

Explanation: The %PAGE statement must be followed,
with optional intervening blanks, by a semicolon.

IBM1143I W Syntax of the %PRINT statement is
incorrect.

Explanation: The %PRINT statement must be
followed, with optional intervening blanks, by a
semicolon.

IBM1144I W Number of lines specified with %SKIP
must be between 0 and 999 inclusive.

Explanation: Skip amounts greater than 999 are not
supported.

 %skip(2''');

IBM1145I W Syntax of the %SKIP statement is
incorrect.

Explanation: The %SKIP statement must be followed
by a semicolon with optional intervening blanks and a
parenthesized integer.

IBM1146I W Syntax of the TEST option in the
%OPTION statement is incorrect.

Explanation: The TEST option in the %OPTION
statement must be specified without any suboptions.

IBM1147I W Syntax of the NOTEST option in the
%OPTION statement is incorrect.

Explanation: The NOTEST option in the %OPTION
statement must be specified without any suboptions.

IBM1148I W Syntax of the %PUSH statement is
incorrect.

Explanation: The %PUSH statement must be followed,
with optional intervening blanks, by a semicolon.

12 Messages and Codes (OS/2 and Windows)

IBM1149I W �IBM1163I W

IBM1149I W Syntax of the %POP statement is
incorrect.

Explanation: The %POP statement must be followed,
with optional intervening blanks, by a semicolon.

IBM1150I W Syntax of the %NOTE statement is
incorrect.

Explanation: The %NOTE statement must be followed
by, in parentheses, a note and an optional return code,
and then a semicolon.

IBM1151I W FIXED BINARY precision is reduced to
maximum value.

Explanation: The maximum FIXED BIN precision
depends on the LIMITS option.

IBM1152I W FIXED DECIMAL precision is reduced to
maximum value.

Explanation: The maximum FIXED DEC precision
depends on the LIMITS option.

IBM1153I W FLOAT BINARY precision is reduced to
maximum value.

Explanation: The maximum FLOAT BIN precision is 64
on Intel, 106 on AIX and 109 on 390 and z/OS.

IBM1154I W FLOAT DECIMAL precision is reduced to
maximum value.

Explanation: The maximum FLOAT DEC precision is
18 on Intel, 32 on AIX and 33 on 390 and z/OS.

IBM1155I W The aggregate aggregate-name contains
noncomputational values. Those values
will be ignored.

Explanation: Some members of an aggregate
referenced in an I/O statement are noncomputational.
The computational members will be correctly processed,
but the noncomputational ones will be ignored.

 dcl 1 x,

 2 y ptr,

 3 fixed bin(31);

 put skip list(x);

IBM1156I W Arguments to MAIN procedure are not
all POINTER.

Explanation: Under SYSTEM(CICS), SYSTEM(TSO)
and SYSTEM(IMS), the arguments to the MAIN
procedure should all have type POINTER.

IBM1157I W note

Explanation: This message is used by %NOTE
statements with a return code of 4.

IBM1158I W A option is missing in the specification
of the option option. One is assumed.

Explanation: A closing quote or parenthesis is missing
in the specification of a compiler option. A quoted string
must not cross line boundaries.

IBM1159I W The string option is not recognized as a
valid option keyword and is ignored.

Explanation: An invalid compiler option has been
specified.

IBM1160I W The third argument to the MARGINS
option is not supported.

Explanation: Printer control characters are not
supported on input source records.

IBM1161I W The suboption suboption is not valid for
the option compiler option.

Explanation: A suboption of a compiler option is
incorrect. The suboption may be unknown or outside
the allowable range.

 �process flag(q) margins(1''2);

IBM1162I W A required suboption is missing for the
suboption option.

Explanation: A required suboption of a compiler option
is missing.

 �process or;

IBM1163I W Required sub-fields are missing for the
option option. Default values are
assumed.

Explanation: Required suboptions of a compiler option
are missing.

 �process margins;

 Chapter 3. Compiler Warning Messages (1078-1225) 13

IBM1164I W �IBM1177I W

IBM1164I W option-name should be specified within
OPTIONS, but is accepted as is.

Explanation: The option, for example REORDER, is
accepted outside of the OPTIONS attribute, but it should
be specified within the OPTIONS attribute. This would
also conform to the ANSI standard.

IBM1165I W The OPTIONS option option-name has
been specified more than once.

Explanation: The only supported LINKAGE options are
OPTLINK and SYSTEM.

IBM1166I W option-name is not a known LINKAGE
suboption. The LINKAGE option will be
ignored.

Explanation: The only supported LINKAGE options are
OPTLINK and SYSTEM.

IBM1167I W Maximum number of %PUSH statements
exceeded. The control statement is
ignored.

Explanation: The maximum number of pending
%PUSH statements is 63.

IBM1168I W No %PUSH statements are in effect.
The %POP control statement is ignored.

Explanation: A %POP has been issued when no
%PUSH statement are pending.

IBM1169I W No precision was specified for the result
of the builtin name built-in. The
precision will be determined from the
argument.

Explanation: This message applies to the FIXED and
FLOAT built-in functions when only one argument is
given. The precision is not set to a default, but is
instead derived from the argument. For example, if x is
FLOAT BIN(21), FIXED(x) will return a FIXED BIN(21)
value.

IBM1170I W The OPTIONS attribute option-attribute is
not supported and is ignored.

Explanation: The indicated element of the OPTIONS
list is not supported.

 dcl a ext entry options(nomap);

IBM1171I W SELECT statement contains no WHEN
or OTHERWISE clauses.

Explanation: WHEN or OTHERWISE clauses are not
required on SELECT statements, but their absence may
indicate a coding error.

IBM1172I W A zero length string has been entered
for the option-name option. The option
is ignored.

Explanation: User-specified string has zero length.
This can occur when OR('') or OR('5') has been
specified on the command line. In the latter case, the
single '5' character has been interpreted as an escape.

IBM1173I W SELECT statement contains no WHEN
clauses.

Explanation: SELECT statements do not require
WHEN clauses, but their absence may indicate a coding
error.

IBM1174I W The reference in the from-into clause
clause may not be byte-aligned.

Explanation: The reference specified in the FROM or
INTO clause may not be byte-aligned. If the reference is
indeed not byte-aligned, unpredictable results may
occur.

IBM1175I W FIXED BINARY constant contains too
many digits. Excess nonsignificant
digits will be ignored.

Explanation: The maximum precision for FIXED
BINARY constants is specified by the FIXEDBIN
suboption of the LIMITS compiler option.

IBM1176I W FIXED DECIMAL constant contains too
many digits. Excess nonsignificant
digits will be ignored.

Explanation: The maximum precision for FIXED
DECIMAL constants is specified by the FIXEDDEC
suboption of the LIMITS compiler option.

IBM1177I W Mantissa in FLOAT BINARY constant
contains more digits than the
implementation maximum. Excess
nonsignificant digits will be ignored.

Explanation: Float binary constants are limited to 64
digits on Intel, 106 on AIX and 109 on 390 and z/OS.

14 Messages and Codes (OS/2 and Windows)

IBM1178I W �IBM1187I W

IBM1178I W Mantissa in FLOAT DECIMAL constant
contains more digits than the
implementation maximum. Excess
nonsignificant digits will be ignored.

Explanation: Float decimal constants are limited to 18
digits on Intel, 32 on AIX and 33 on 390 and z/OS.

IBM1179I W FLOAT literal is too big for its implicit
precision. An appropriate HUGE value
of assumed value is assumed.

Explanation: The precision for a float literal is implied
by the the number of digits in its mantissa. For instance
1e99 is implicitly FLOAT DECIMAL(1), but the value
1e99 is larger than the largest value a FLOAT
DECIMAL(1) can hold.

IBM1180I W Argument to BUILTIN name built-in is
not byte aligned.

Explanation: This message applies to the ADDR,
CURRENTSTORAGE/SIZE and STORAGE/SIZE built-in
functions. Applying any one of these built-in functions to
a variable that is not byte-aligned may not produce the
results you expect.

IBM1181I W A WHILE or UNTIL option at the end of a
series of DO specifications applies only
to the last specification.

Explanation: In the following code snippet, the WHILE
clause applies only to the last DO specification, that is
only when I = 5;

 do i = 1, 3, 5 while(j < 5);

IBM1182I W Invocation of a NONRECURSIVE
procedure from within that procedure is
invalid. RECURSIVE attribute is
assumed.

Explanation: A procedure contains code that will cause
it to be recursively invoked, but the procedure was not
declared with RECURSIVE attribute.

 a: proc(n);

 ...

 if n > ' then call a;

IBM1183I W condition-name condition is disabled.
Statement is ignored.

Explanation: The SIGNAL statement is ignored if the
condition it would raise is disabled. Some conditions, like
SIZE, are disabled by default.

 (nofofl): signal fixedoverflow;

IBM1184I W Source with length string-length in
INITIAL clause for variable name is
longer than target. Source will be
truncated.

Explanation: The string in the INITIAL clause ('TooBig'
in the example below) will be trimmed to fit (to 'TooB').

 dcl x char(4) static init('tooBig');

IBM1185I W Source in RETURN statement has length
greater than that in the corresponding
RETURNS attribute.

Explanation: The string in the RETURNS clause
('TooBig' in the example below) will be trimmed to fit (to
'TooB').

 x: proc returns(char(4));

 ...

 return('TooBig');

IBM1186I W Source in string assignment is longer
than target.

Explanation: The source in the assignment ('TooBig' in
the example below) will be trimmed to fit (to 'TooB').

 dcl x char(4);

 x = 'TooBig';

IBM1187I W Argument number argument-number in
entry reference entry name is longer
than the corresponding parameter.

Explanation: The source in the entry invocation
('TooBig' in the example below) will be trimmed to fit (to
'TooB').

 Chapter 3. Compiler Warning Messages (1078-1225) 15

IBM1188I W �IBM1198I W

 dcl x entry(char(4));

 call x('TooBig');

IBM1188I W Result of concatenating two strings is
too long.

Explanation: The length of the string produced by
concatenating two strings must not be greater than the
maximum allowed for the derived string type.

IBM1189I W NODESCRIPTOR attribute conflicts with
the NONCONNECTED attribute for the
parameter parameter name. CONNECTED
is assumed.

Explanation: If NODESCRIPTOR is specified (or
implied) for a procedure, aggregate parameters should
have the CONNECTED attribute. The CONNECTED
attribute can be explicitly coded, or it can be implied by
the DEFAULT(CONNECTED) compiler option.

IBM1190I W The OPTIONS option option-name
conflicts with the LANGLVL compiler
option. The option will be applied.

Explanation: The named option is not part of the PL/I
language definition as specified in the LANGLVL
compiler option.

IBM1191I W Result of FIXED BIN divide will not be
scaled.

Explanation: When dividing a FIXED BIN(p1,0) value
by a FIXED BIN(p2,0) value where 31 > p1, the result
will have the attributes FIXED BIN(p1,0). With ANSI 76,
it would have the attributes FIXED BIN(31,31-p1).

IBM1192I W WHEN clauses contain duplicate values.

Explanation: In a dominated SELECT statement, if a
WHEN clause has the same value as an earlier WHEN
clause, the code for the second WHEN clause will never
be executed. This message will be produced only if the
SELECT statement is otherwise suitable for
transformation into a branch table.

IBM1193I W statement count statements in block block
name. Optimization restricted.

Explanation: Optimization will be restricted for any
procedure or begin-block. that contains more
statements than specified in the MAXSTMT option. To
avoid this, the block could be split up into more
manageable parts.

IBM1194I W More than one argument to MAIN
procedure.

Explanation: A MAIN procedure should have at most
one argument, except under SYSTEM(CICS) and
SYSTEM(IMS).

IBM1195I W Argument to MAIN procedure is not
CHARACTER VARYING.

Explanation: The argument to the MAIN procedure
should be CHARACTER VARYING, except under
SYSTEM(CICS), SYSTEM(TSO) and SYSTEM(IMS).

IBM1196I W AREA initialized with EMPTY - INITIAL
attribute is ignored.

Explanation: Any INITIAL attribute specified for an
AREA variable is ignored. The variable will, instead, be
initialized with the EMPTY built-in function.

IBM1197I W file-name assumed as file condition
reference.

Explanation: All file conditions should be qualified with
a file reference, but ENDFILE and ENDPAGE are
accepted without a file reference. SYSIN and
SYSPRINT are then assumed, respectively.

IBM1198I W A null argument list is assumed for
variable name.

Explanation: An ENTRY reference is used where the
result of invoking that entry is probably meant to be
used.

 dcl e1 entry returns(ptr);

 dcl q ptr based;

 e1->q = null();

 dcl e2 entry returns(bit(1));

 if e2 then ...

16 Messages and Codes (OS/2 and Windows)

IBM1199I W �IBM1209I W

IBM1199I W Syntax of the %LINE directive is
incorrect.

Explanation: The %LINE directive must be followed,
with optional intervening blanks, by a parenthesis, a line
number, a comma, a file name and a closing
parenthesis.

 %line(19, test.pli);

IBM1200I W Use of DATE built-in function may cause
problems after the year 1999.

Explanation: The DATE built-in returns a two-digit
year. It might be better to use the DATETIME built-in
which returns a four-digit year.

IBM1201I W suboption conflicts with a previously
specified suboption for the option
compiler option.

Explanation: There is a conflict of suboptions for the
LANGLVL compiler option. The SAA2 and OS
suboptions are mutually exclusive.

 �process langlvl(saa2 os);

IBM1202I W Syntax of the %OPTION statement is
incorrect.

Explanation: The only option supported in the
%OPTION statement is the LANGLVL option.

IBM1203I W Argument to PLITEST built-in subroutine
is ignored.

Explanation: Change the invocation of PLITEST so
that no argument is passed.

IBM1204I W INTERNAL CONSTANT assumed for
initialized STATIC LABEL.

Explanation: LABEL variables require block activation
information, and hence they cannot be initialized at
compile-time. For a STATIC LABEL variable with the
INITIAL attribute, if the variable is a member of a
structure or an union, a severe message will be issued.
Otherwise, its attributes will be changed to INTERNAL
CONSTANT in order to eliminate the requirement for
block activation information. Such a variable must be
initialized with LABEL CONSTANTs from containing
blocks.

IBM1205I W Arguments of the NAMES compiler
option must be the same length.

Explanation: If two arguments of the NAMES option
are specified, they must be the same length. The
second argument is the uppercase value of the first. If a
character in the first string does not have an uppercase
value, use the character itself as the uppercase value.
For example:

 names('$!@' '$!@')

IBM1206I W BIT operators should be applied only to
BIT operands.

Explanation: In an expression of the form x & y, x | y,
or x ¬ y, x and y should both have BIT type.

IBM1207I W Operand to LENGTH built-in should
have string type.

Explanation: If the operand has a numeric type, the
result is the length that value would have after it was
converted to string. The length of a numeric type is
NOT the same as its storage requirement.

IBM1208I W INITIAL list for the array variable name
contains only one item.

Explanation: The array will be incompletely initialized.
An asterisk can be used as an initialization factor to
initialize all the elements with one value. In the example
below, a(1) is initialized with the value 13, while the
elements a(2) through a(8) are uninitialized. In contrast,
all the elements in b are initialized to 13.

 dcl a(8) fixed bin init(13);

 dcl b(8) fixed bin init((�) 13);

IBM1209I W INDEXED environment option for file file
name will be treated as
ORGANIZATION(INDEXED).

Explanation: Since ISAM is not being simulated on the
OS/2 platform, the file will be treated in a manner similar
to VSAM KSDS. The file specified in the first declaration
below would be handled in the same manner as the file
in the second declaration. Both are treated as
ORGANIZATION(INDEXED).

 dcl f1 file env(indexed);

 dcl f2 file env(organization(indexed));

 Chapter 3. Compiler Warning Messages (1078-1225) 17

IBM1210I W �IBM1218I W

IBM1210I W The field width specified in the keyword
-format item may be too small for
complete output of the data item.

Explanation: The format width is too small for output.
It may be valid if the format is being used for input.

IBM1211I W Source with length string-length is longer
than the target variable.

Explanation: The source in the assignment ('TooBig' in
the example below) will be trimmed to fit (to 'TooB'). If
the target is a pseudovariable, message 1186 is issued
instead.

 dcl x char(4);

 x = 'TooBig';

IBM1212I W The A format item requires an argument
when used in GET statement. An L
format item is assumed in its place.

Explanation: A width must be specified on A format
items when specified on a GET statement.

 get edit(name) (a);

IBM1213I W The procedure proc name is not
referenced.

Explanation: The named procedure is not external and
is never referenced in the compilation unit. This may
represent an error (if it was supposed to be called) or an
opportunity to eliminate some dead code.

IBM1214I W A dummy argument will be created for
argument number argument-number in
entry reference entry name.

Explanation: An argument passed BYADDR to an
entry does not match the corresponding parameter in the
entry description. The address of the argument will not
be passed to the entry. Instead, the argument will be
assigned to a temporary with attributes that do match
the parameter in the entry description, and the address
of that temporary will be passed to the entry. This
means that if the entry alters the value of this parameter,
the alteration will not be visible in the calling routine.

 dcl e entry(fixed bin(31));

 dcl i fixed bin(15);

 call e(i);

IBM1215I W The variable variable name is declared
without any data attributes.

Explanation: It will be given the default attributes, but
this may be because of an error in the declare. For
instance, in the following example, parentheses may be
missing

 dcl a, b fixed bin;

IBM1216I W The structure member variable name is
declared without any data attributes. A
level number may be incorrect.

Explanation: It will be given the default attributes, but
this may be because of an error in the declare. For
instance, in the following example, the level number on c
and d should probably be 3.

 dcl a, b fixed bin;

 1 a,

 2 b,

 2 c,

 2 d;

IBM1217I W An unnamed structure member is
declared without any data attributes. A
level number may be incorrect.

Explanation: It will be given the default attributes, but
this may be because of an error in the declare. For
instance, in the following example, the level number on c
and d should probably be 3.

 dcl a, b fixed bin;

 1 a,

 2 �,

 2 c,

 2 d;

IBM1218I W First argument to BUILTIN name built-in
should have string type.

Explanation: To eliminate this message, apply the
CHAR or BIT built-in function to the first argument.

 dcl i fixed bin;

 display(substr(i,4));

18 Messages and Codes (OS/2 and Windows)

IBM1219I W �IBM1225I W

IBM1219I W LEAVE will exit noniterative DO-group.

Explanation: This message is not produced if the
LEAVE statement specifies a label. In the following
loop, the LEAVE statement will cause only the
immediately enclosing DO-group to be exited; the loop
will not be exited.

 do i = 1 to n;

 if a(i) > ' then

 do;

 call f;

 leave;

 end;

 else;

 end;

IBM1220I W Result of comparison is always
constant.

Explanation: This message is produced when a
variable is compared to a constant equal to the largest
or smallest value that the variable could assume. In the
following loop, the variable x can never be greater than
99, and hence the implied comparison executed each
time through the loop will always result in a '1'b.

 do x pic'99';

 do x = 1 to 99;

 end;

IBM1221I W Statement uses count bytes for
temporaries.

Explanation: This message is produced if a statement
uses more bytes for temporaries than allowed by the
STORAGE compiler option.

IBM1222I W Comparison involving 2-digit year is
problematic.

Explanation: Comparisons involving data containing
2-digit year fields may cause problems if exactly one of
the years is later than 1999.

IBM1223I W Literal in comparison interpreted with
DATE attribute.

Explanation: In a comparison, if one comparand has
the DATE attribute, the other should also. If the non-date
is a literal with a value that is valid for the date pattern, it
will be viewed as if it had the same DATE attribute as
the date comparand. So, in the following code, '670101'
will be interpreted as if it had the DATE('YYMMDD')
attribute.

 dcl x char(6) date('YYMMDD');

 if x > '67'1'1' then ...

IBM1224I W DATE attribute ignored in comparison
with non-date literal.

Explanation: In a comparison, if one comparand has
the DATE attribute, the other should also. If the non-date
is a literal with a value that is not valid for the date
pattern, the DATE attribute will be ignored. So, in the
following code, the comparison will be evaluated as if x
did not have the DATE attribute.

 dcl x char(6) date('YYMMDD');

 if x > '' then ...

IBM1225I W DATE attribute ignored in conversion
from literal.

Explanation: If the target in an explicit or implicit
assignment has the DATE attribute, the source should
also. If it does not, the DATE attribute will be ignored.
So, in the following code, the assignment will be
performed as if x did not have the DATE attribute.

 dcl x char(6) date('YYMMDD');

 x = '';

 Chapter 3. Compiler Warning Messages (1078-1225) 19

IBM1226I E �IBM1233I E

Chapter 4. Compiler Error Messages (1226-1499)

IBM1226I E Area extent is reduced to maximum
value.

Explanation: The maximum size allowed for an AREA
variable is 16777216.

IBM1227I E keyword statement is not allowed where
an executable statement is required. A
null statement will be inserted before
the keyword statement.

Explanation: In certain contexts, for example after an
IF-THEN clause, only executable statements are
permitted. A DECLARE, DEFINE, DEFAULT or
FORMAT statement has been found in one of these
contexts. A null statement, (a statement consisting of
only a semicolon) will be inserted before the offending
statement.

IBM1228I E DEFAULT statement is not allowed
where an executable statement is
required. The DEFAULT statement will
be enrolled in the current block, and a
null statement will be inserted in its
place.

Explanation: In certain contexts, for example after an
IF-THEN clause, only executable statements are
permitted. A DEFAULT statement has been found in
one of these contexts. A null statement (a statement
consisting of only a semicolon) will be inserted in place
of the DEFAULT statement.

IBM1229I E FORMAT statement is not allowed where
an executable statement is required.
The FORMAT statement will be enrolled
in the current block, and a null
statement will be inserted in its place.

Explanation: In certain contexts, for example after an
IF-THEN clause, only executable statements are
permitted. A FORMAT statement has been found in one
of these contexts. A null statement (a statement
consisting of only a semicolon) will be inserted in place
of the FORMAT statement.

IBM1230I E Arguments have been specified for the
variable variable name, but it is not an
entry variable.

Explanation: Argument lists are valid only for ENTRY
references.

 dcl a(15) entry returns(fixed bin(31));

 i = a(3)(4);

IBM1231I E Arguments/subscripts have been
specified for the variable variable name,
but it is neither an entry nor an array
variable.

Explanation: Argument/subscript lists are valid only for
ENTRY and array references.

 dcl a fixed bin;

 i = a(3);

IBM1232I E Extraneous comma at end of statement
ignored.

Explanation: A comma was followed by a semicolon
rather than by a valid syntactical element (such as an
identifier). The comma will be ignored in order to make
the semicolon valid. Under RULES(LAXPUNC), a
message with the same text, but lesser severity would
be issued

 dcl 1 a, 2 b fixed bin, 2 c fixed bin, ;

IBM1233I E Missing character assumed.

Explanation: The indicated character is missing, and
there are no more characters in the source. The missing
character has been inserted by the parser in order to
correct your source. Under RULES(LAXPUNC), a
message with the same text, but lesser severity would
be issued

20  Copyright IBM Corp. 1998

IBM1234I E �IBM1245I E

IBM1234I E Missing character assumed before
character.

Explanation: The indicated character is missing and
has been inserted by the parser in order to correct your
source. Under RULES(LAXPUNC), a message with the
same text, but lesser severity would be issued

 display('Program starting' ;

IBM1235I E No data format item in format list.

Explanation: Data items cannot be transmitted unless
a data format item is given in the format list.

 put edit ((13')'-') (col(1));

IBM1236I E Subscripts on keyword labels are
ignored.

Explanation: A label specified on a PROCEDURE,
PACKAGE or ENTRY statement should have no
subscripts.

IBM1237I E EXTERNAL ENTRY attribute is assumed
for variable-name.

Explanation: An undeclared variable is used with an
arguments list. This should give it a contextual
declaration as BUILTIN, but its name is not that of a
built-in function.

IBM1238I E The second argument to the BUILTIN
name built-in is greater than the
precision of the result.

Explanation: The sift amount in ISLL is should not be
greater than the precision of the result.

 i = isll(n, 221);

IBM1239I E The attribute attribute is not supported
and is ignored.

Explanation: The named attribute is either not part of
the SAA PL/I language and is not supported on this
platform. The latter is true, for instance, for the
SEGMENTED attribute on Windows and AIX.

 dcl f file transient;

IBM1240I E The attribute attribute is invalid in a
RETURNS descriptor.

Explanation: The RETURNS descriptor may not
specify a structure, union or array.

 dcl a entry returns(1 union, 2 ptr, 2 ptr);

IBM1241I E Only '=' and '¬=' are allowed as
operators in comparisons involving
complex numbers.

Explanation: Equal and not equal are defined for
complex variables, but you have attempted to relate
them in some other way.

IBM1242I E Only '=' and '¬=' are allowed as
operators in comparisons involving
program control data.

Explanation: Other relationships between program
control data are not defined. Perhaps a variable was
misspelled.

IBM1243I E REGIONAL(integer specification (2 or 3))
ENVIRONMENT option is not supported.

Explanation: REGIONAL(2) and REGIONAL(3)
ENVIRONMENT options are syntax-checked during
compile-time but are not supported during run-time.

IBM1244I E The variable specified as the option
value in an ENVIRONMENT option must
be a STATIC scalar with the attributes
REAL FIXED BIN(31,0).

Explanation: This applies to the KEYLENGTH,
KEYLOC and RECSIZE suboptions.

IBM1245I E The variable specified as the option
value in an ENVIRONMENT option must
be a STATIC scalar with the attribute
CHARACTER.

Explanation: This applies to the PASSWORD
suboption.

 Chapter 4. Compiler Error Messages (1226-1499) 21

IBM1246I E �IBM1297I E

IBM1246I E Argument to BUILTIN name built-in
should be CONNECTED.

Explanation: This message applies, for example, to
the ADDR built-in function. The value returned by the
ADDR function is the address of the first byte of its
argument. If you use this pointer to refer to a based
variable, the variable may be mapped over storage
occupied by some other variable, rather than the storage
occupied by the argument.

IBM1248I E Argument to BUILTIN name built-in
should have arithmetic type.

Explanation: The argument to the named built-in
function should have arithmetic type. The required
implicit conversion will be performed, but this may
indicate a programming error.

IBM1249I E Argument to BUILTIN name built-in
should have CHARACTER type.

Explanation: The argument to the named built-in
function should have CHARACTER type. The required
implicit conversion will be performed, but this may
indicate a programming error.

IBM1272I E Second argument to BUILTIN name
built-in is negative. It will be changed to
0.

Explanation: The second argument to built-in functions
such as COPY and REPEAT must be nonnegative.

 x = copy(y, -1);

IBM1273I E Third argument to BUILTIN name built-in
is negative. It will be changed to 0.

Explanation: The third argument to built-in functions
such as COMPARE, PLIFILL, and PLIMOVE must be
nonnegative.

 call plimove(a, b, -1);

IBM1274I E RULES(NOLAXIF) requires BIT(1)
expressions in IF, WHILE, etc.

Explanation: Expressions in IF, WHILE, UNTIL and
undominated WHEN clauses should have the attributes
BIT(1) NONVARYING. If not, the expression should be
compared to an appropriate null value. This message
will not be issued if the RULES(LAXIF) option is
specified.

 dcl x bit(8) aligned;

 ...

 if x then ...

IBM1293I E WIDECHAR extent is reduced to
maximum value.

Explanation: The maximum length allowed for a
WIDECHAR variable is 16383.

IBM1294I E BIT extent is reduced to maximum value.

Explanation: The maximum length allowed for a BIT
variable is 32767.

IBM1295I E Sole bound specified is less than 1. An
upper bound of 1 is assumed.

Explanation: The default lower bound is 1, but the
upper bound must be greater than the lower bound.

 dcl x(-5) fixed bin;

IBM1296I E The BYADDR option conflicts with the
SYSTEM option.

Explanation: The arguments passed to the MAIN
procedure when SYSTEM(IMS) or SYSTEM(CICS) is in
effect should not have the BYADDR attribute.

 �process system(ims);

 a: proc(x);

 dcl x ptr byaddr;

IBM1297I E Source and target in BY NAME
assignment have no matching base
identifiers.

Explanation: In a BY NAME, the source and target
structures should have at least one matching base
element identifier.

22 Messages and Codes (OS/2 and Windows)

IBM1298I E �IBM1308I E

 dcl 1 a, 2 b, 2 c, 2 d;

 dcl 1 w, 2 x, 2 y, 2 z;

 a = w, by name;

IBM1298I E Characters in B3 literals must be 0-7.

Explanation: In a B3 literal, each character must be
either 0-7.

IBM1299I E CHARACTER extent is reduced to
maximum value.

Explanation: The maximum length allowed for a
CHARACTER variable is 32767.

IBM1300I E variable name is contextually declared as
attribute.

Explanation: This is an E-level message because
RULES(NOLAXDCL) has been specified.

IBM1301I E A DECIMAL exponent is required.

Explanation: An E in a FLOAT constant must be
followed by at least one decimal digit (optionally
preceded by a sign).

IBM1302I E The limit on the number of DEFAULT
predicates in a block has already been
reached. This and subsequent DEFAULT
predicates in this block will be ignored.

Explanation: Each block should contain no more than
31 DEFAULT predicates.

IBM1303I E A second argument to the BUILTIN name
built-in must be supplied for arrays with
more than one dimension. A value of 1
is assumed.

Explanation: The LBOUND, HBOUND, and
DIMENSION built-in functions require two arguments
when applied to arrays having more than one dimension.

 dcl a(5,1') fixed bin;

 do i = 1 to lbound(a);

IBM1304I E Second argument to BUILTIN name
built-in is not positive. A value of 1 is
assumed.

Explanation: The DIMENSION, HBOUND and
LBOUND built-in functions require that the second
argument be positive.

IBM1305I E Second argument to BUILTIN name
built-in is greater than the number of
dimensions for the first argument. A
value of dimension count is assumed.

Explanation: The second argument to the LBOUND,
HBOUND, and DIMENSION built-in functions must be no
greater than the number of dimensions of their array
arguments.

 dcl a(5,1') fixed bin;

 do i = 1 to lbound(a,3);

IBM1306I E Repeated declaration of identifier is
invalid and will be ignored.

Explanation: Level 1 variable names must not be
repeated in the same block.

 dcl a fixed bin, a float;

IBM1307I E Duplicate specification of arithmetic
precision. Subsequent specification
ignored.

Explanation: The precision attribute must be specified
only once in a declare.

 dcl a fixed(15) bin(31);

IBM1308I E Repeated declaration of identifier is
invalid. The name will be replaced by
an asterisk.

Explanation: The variable names at any given sublevel
within a structure or union must be unique.

 dcl 1 a, 2 b fixed, 2 b float;

 Chapter 4. Compiler Error Messages (1226-1499) 23

IBM1309I E �IBM1319I E

IBM1309I E Duplicate specification of attribute.
Subsequent specification ignored.

Explanation: Attributes like INITIAL must not be
repeated for an element of a DECLARE statement.

 dcl a fixed init(') bin init(2);

IBM1310I E The attribute character conflicts with
previous attributes and is ignored.

Explanation: Attributes must be consistent.

 dcl a fixed real float;

IBM1311I E EXTERNAL name contains no non-blank
characters and is ignored.

 dcl x external(' ');

Explanation: The external name should contain some
nonblank characters.

IBM1312I E WX literals should contain a multiple of
4 hex digits.

Explanation: WX literals must represent unicode
strings and hence must contain a multiple of 4 hex
digits.

 x = ''''wx;

IBM1314I E ELSE clause outside of an open
IF-THEN statement is ignored.

Explanation: ELSE clauses are valid immediately after
an IF-THEN statement.

 do; if a > b then; end; else a = ';

IBM1315I E END label matches a label on an open
group, but that group label is
subscripted.

Explanation: END statements for groups with a
subscripted label must have labels that are also
subscripted.

 a(1): do;

 ...

 end a;

IBM1316I E END label is not a label on any open
group.

Explanation: A Label on END statement must match a
LABEL on an open BEGIN, DO, PACKAGE,
PROCEDURE, or SELECT statement.

 a: do;

 ...

 end b;

IBM1317I E An END statement may be missing after
an OTHERWISE unit. One will be
inserted.

Explanation: After an OTHERWISE unit in a SELECT
statement, only an END statement is valid.

 select;

 when (...)

 do;

 end;

 otherwise

 do;

 end;

 display(....);

IBM1318I E The ENVIRONMENT option option-name
conflicts with preceding ENVIRONMENT
options. This option will be ignored.

Explanation: There was a conflict detected in the
ENVIRONMENT options specification. In the example
ENV(CONSECUTIVE INDEXED), the INDEXED option
conflicts with the CONSECUTIVE option.

IBM1319I E STRINGSIZE condition raised while
evaluating expression. Result is
truncated.

Explanation: During the conversion of a user
expression during the compilation, the target string was
found to be shorter than the source, thus causing the
STRINGSIZE condition to be raised.

24 Messages and Codes (OS/2 and Windows)

IBM1320I E �IBM1330I E

IBM1320I E STRINGRANGE condition raised while
evaluating expression. Arguments are
adjusted to fit.

Explanation: If all the arguments in a SUBSTR
reference are constants or restricted expressions, the
reference will be evaluated at compile- time and the
STRINGRANGE condition will occur if the arguments do
not comply with the rules described for the SUBSTR
built-in function.

 a = substr('abcdef', 5, 4);

IBM1321I E LEAVE/ITERATE label matches a label
on an open DO group, but that DO
group label is subscripted.

Explanation: LEAVE/ITERATE statements for groups
with a subscripted label must have labels that are also
subscripted.

 a(1): do;

 ...

 leave a;

IBM1322I E LEAVE/ITERATE label is not a label on
any open DO group in its containing
block.

Explanation: LEAVE/ITERATE must specify a label on
an open DO loop in the same block as the
LEAVE/ITERATE statement.

 a: do loop;

 begin;

 leave a;

IBM1323I E ITERATE/LEAVE statement is invalid
outside an open DO statement. The
statement will be ignored.

Explanation: ITERATE/LEAVE statements are valid
only inside DO groups.

 a: begin;

 ...

 leave a;

 ...

 end a;

IBM1324I E The name name occurs more than once
in the EXPORTS clause.

Explanation: Names in the EXPORTS clause of a
package statement must be unique.

 a: package exports(a1, a2, a1);

IBM1325I E The name name occurs in the EXPORTS
clause, but is not the name of any
level-1 procedure.

Explanation: Each name in the EXPORTS clause of a
package statement must be the name of some level-1
procedure in that package.

 a: package exports(a1, a2, a3);

IBM1326I E Variables declared without a name must
be structure members or followed by a
substructure list.

Explanation: An asterisk may be used only for
structure or union names, or for members of structures
or unions. An asterisk may not be used for a level-1
structure name that specifies the LIKE attribute.

 dcl � char(2') static init('who can use me');

IBM1327I E The CHARACTER VARYING parameter
to MAIN should be ASCII with the
attribute NATIVE.

Explanation: If the parameter is EBCDIC or has the
attribute NONNATIVE, unpredictable results can occur.

IBM1328I E The CHARACTER VARYING parameter
to MAIN should be EBCDIC with the
attribute BIGENDIAN.

Explanation: If the parameter is ASCII or has the
attribute LITTLEENDIAN, unpredictable results can
occur. This message applies only to SYSTEM(MVS)
etc.

IBM1330I E The I in an iSUB token must be bigger
than zero. A value of 1 is assumed.

Explanation: The I in an iSUB token must represent a
valid dimension number.

 dcl b(8) fixed bin def('sub,1);

 Chapter 4. Compiler Error Messages (1226-1499) 25

IBM1331I E �IBM1341I E

IBM1331I E The I in an iSUB token must have no
more than 2 digits. A value of 1 is
assumed.

Explanation: The I in an iSUB token must have only 1
or 2 digits.

 dcl b(8) fixed bin def(''1sub,1);

IBM1332I E The format-item format item requires an
argument when used in GET statement.
A value of 1 is assumed.

Explanation: A width must be specified on A, B, and G
format items when specified on a GET statement.

 get edit(name) (a);

IBM1333I E Non-asterisk array bounds are not
permitted in GENERIC descriptions.

Explanation: All array bounds in generic descriptions
must be asterisks.

 dcl x generic (e1 when((1') fixed), ...

IBM1334I E String lengths and area sizes are not
permitted in GENERIC descriptions.

Explanation: All string lengths and area sizes in
generic descriptions must be asterisks.

 dcl x generic (e1 when(char(1')), ...

IBM1335I E Entry description lists are not permitted
in GENERIC descriptions.

Explanation: Any ENTRY attribute in a generic
description list must not be qualified with an entry
description list.

 dcl x generic (e1 when(entry(ptr)), ...

IBM1336I E GRAPHIC extent is reduced to maximum
value.

Explanation: The maximum length allowed for a
GRAPHIC variable is 16383.

IBM1337I E GX literals should contain a multiple of
4 hex digits.

Explanation: GX literals must represent graphic strings
and hence must contain a multiple of 4 hex digits.

 x = ''''gx;

IBM1338I E Upper bound is less than lower bound.
Bounds will be reversed.

Explanation: A variable has been declared with an
upper bound that is less than its lower bound. The upper
and lower bounds will be swapped in order to correct
this. For example, DECLARE x(3:1) will be changed to
DECLARE x(1:3).

IBM1339I E Identifier is too long. It will be
collapsed to identifier.

Explanation: The maximum length of an identifier is
set by the NAME suboption of the LIMITS compiler
option.

IBM1340I E Argument number argument-number in
ENTRY reference ENTRY name contains
BIT data. NOMAP is assumed.

Explanation: An argument containing BIT data has
been found in a call to a COBOL routine. Mapping of
such structures between PL/I and COBOL is not
supported.

 dcl f ext entry options(cobol);

 dcl 1 a, 2 b bit(8), 2 c bit(8);

 call f(a);

IBM1341I E Argument number argument-number in
ENTRY reference ENTRY name is or
contains an UNION. NOMAP is
assumed.

Explanation: An argument containing UNION data has
been found in a call to a COBOL routine. Mapping of
such structures between PL/I and COBOL is not
supported.

26 Messages and Codes (OS/2 and Windows)

IBM1342I E �IBM1352I E

 dcl f ext entry options(cobol);

 dcl 1 a union, 2 b char(4), 2 c fixed bin(31);

 call f(a);

IBM1342I E Argument number argument-number in
ENTRY reference ENTRY name contains
non-constant extents. NOMAP is
assumed.

Explanation: An argument containing non-constant
extents has been found in a call to a COBOL routine.
Mapping of such structures between PL/I and COBOL is
not supported.

 dcl f ext entry options(cobol);

 dcl n static fixed bin init(17);

 dcl 1 a, 2 b char(n), 2 c fixed bin(31);

 call f(a);

IBM1343I E nomap-suboption is invalid as a
suboption of option.

Explanation: The suboption should be specified as
ARGn where "n" is an integer greater than 0.

 dcl f ext entry options(cobol nomap(arg'));

IBM1344I E NOMAP specifications are valid only for
ILC routines.

Explanation: NOMAP, NOMAPIN and NOMAPOUT
are valid only for COBOL, FORTRAN and ASM
Procedures and Entrys.

IBM1345I E Initial level number in a structure is not
1.

Explanation: The level-1 DECLARE statement may be
missing.

 dcl

 2 a,

 3 b,

 3 c,

IBM1346I E INIT expression should be enclosed in
parentheses.

Explanation: This is required to avoid ambiguities. For
example, it is unclear whether all of the elements should
be initialized with the value 4 or if the first element
should be initialized with the value 9.

 dcl a(5) fixed bin init((5)+4);

IBM1347I E B assumed to complete iSUB.

Explanation: There is no language element of the form
1su.

 dcl a(1') def b(1su, 1sub);

IBM1348I E Digit in BINARY constant is not zero or
one.

Explanation: In a BINARY constant, each digit must be
a zero or one.

IBM1349I E Characters in BIT literals must be 0 or 1.

Explanation: In a BIT literal, each character must be
either zero or one.

IBM1350I E Character with decimal value n does not
belong to the PL/I character set. It will
be ignored.

Explanation: The indicated character is not part of the
PL/I character set. This can occur if a program
containing NOT or OR symbols is ported from another
machine and those symbols are translated to a character
that is not part of the PL/I character set. Using the NOT
and OR compiler options can help avoid this problem.

IBM1351I E Characters in hex literals must be 0-9 or
A-F.

Explanation: In a hex literal, each character must be
either 0-9 or A-F.

IBM1352I E The statement element character is
invalid. The statement will be ignored.

Explanation: The statement entered could not be
parsed because the specified element is invalid.

 Chapter 4. Compiler Error Messages (1226-1499) 27

IBM1353I E �IBM1363I E

IBM1353I E Use of underscore as initial character in
an identifier accepted although invalid
under LANGLVL(SAA).

Explanation: Under LANGLVL(SAA), identifiers must
start with an alphabetic character or with one of the
extralingual characters. They may not start with an
underscore. Under LANGLVL(SAA2), identifiers may
start with an underscore, although names starting with
_IBM are reserved for use by IBM.

IBM1354I E Multiple argument lists are valid only
with the last identifier in a reference.

Explanation: A reference of the form x(1)(2).y.z is
invalid.

IBM1355I E Empty argument lists are valid only with
the last identifier in a reference.

Explanation: A reference of the form x().y.z is invalid.

IBM1356I E Character with decimal value n does not
belong to the PL/I character set. It is
assumed to be an OR symbol.

Explanation: The indicated character is not part of the
PL/I character set, but was immediately followed by the
same character. This can occur if a program containing
an OR symbol is ported from another machine and this
symbol is translated to a character that is not part of the
PL/I character set. Using the OR compiler option can
help avoid this problem.

IBM1357I E Character with decimal value n does not
belong to the PL/I character set. It is
assumed to be a NOT symbol.

Explanation: The indicated character is not part of the
PL/I character set, but was immediately followed by an
=, < or > symbol. This can occur if a program
containing a NOT symbol is ported from another
machine and this symbol is translated to a character that
is not part of the PL/I character set. Using the NOT
compiler option can help avoid this problem.

IBM1358I E The scale factor specified in BUILTIN
name built-in with a floating-point
argument must be positive. It will be
changed to 1.

Explanation: This applies to the ROUND built-in
function. The non-positive value will be changed to 1.

 dcl x float bin(53);

 x = round(x, -1);

IBM1359I E Names in RANGE(identifier : identifier)
are not in ascending order. Order is
reversed.

Explanation: The names must be in ascending order.

 default range(h : a) fixed bin;

IBM1360I E The name identifier has already been
defined as a FORMAT constant.

Explanation: The name of a FORMAT constant cannot
be used as the name of a LABEL constant as well.

 f(1): format(a, x(2), a);

 f(2): ;

IBM1361I E The name identifier has already been
defined as a LABEL constant.

Explanation: The name of a LABEL constant cannot
be also used as the name of a FORMAT constant.

 f(1): ;

 f(2): format(a, x(2), a);

IBM1362I E The label label-name has already been
declared. The explicit declaration of the
label will not be accepted.

Explanation: Declarations for label constant arrays are
not permitted.

 dcl a(1') label variable;

 a(1): ...

 a(2): ...

IBM1363I E Structure level greater than 255
specified. It will be replaced by 255.

Explanation: The maximum structure level supported
is 255.

28 Messages and Codes (OS/2 and Windows)

IBM1364I E �IBM1372I E

 dcl

 1 a,

 256 b,

 2 c,

IBM1364I E Elements with level numbers greater
than 1 follow an element without a level
number. A level number of 1 is
assumed.

Explanation: A structure level is probably missing.

 dcl

 a,

 2 b,

 2 c,

IBM1365I E Statement type resolution requires too
many lexical units to be examined. The
statement will be ignored.

Explanation: To determine if a statement is an
assignment or another PL/I statement, many elements of
the statement may need to be examined. If too many
have to be examined, the compiler will flag the
statement as in error. For instance, the following
statement could be a DECLARE until the equal sign is
encountered by the lexer.

 dcl (a, b, c) = d;

IBM1366I E Level number following LIKE
specification is greater than than the
level number for the LIKE specification.
LIKE attribute will be ignored.

Explanation: LIKE cannot be specified on a parent
structure or union.

 dcl

 1 a like x,

 2 b,

 2 c,

IBM1367I E Statements inside a SELECT must be
preceded by a WHEN or an OTHERWISE
clause.

Explanation: A WHEN or OTHERWISE may be
missing.

 select;

 i = i + 1;

 when (a > ')

 ...

IBM1368I E The attribute character is invalid if it is
not followed by an element with a
greater logical level.

Explanation: The named attribute is valid only on
parent structures.

 dcl

 1 a,

 2 b union,

 2 c1 fixed bin(31),

 2 c2 float bin(21),

 ...

IBM1369I E MAIN has already been specified in the
PACKAGE.

Explanation: OPTIONS(MAIN) may be specified for
only one PROCEDURE in a PACKAGE. All but the first
specification will be ignored.

IBM1370I E Extent expression is negative. It will be
replaced by the constant 1.

Explanation: Extents must be positive.

 dcl x char(-1');

IBM1371I E Structure element identifier is not dot
qualified.

Explanation: Under the option RULES(NOLAXQUAL),
all structure elements should be qualified with the name
of at least one of their parents.

IBM1372I E EXTERNAL specified on internal entry
point.

Explanation: The EXTERNAL attribute is valid only on
external procedures and entrys: for example, in a
non-package, only on the outermost procedure and entry
statements contained in it, and in a package, only on the
procedures and entrys listed in the EXPORTS clause of
the PACKAGE statement.

 Chapter 4. Compiler Error Messages (1226-1499) 29

IBM1373I E �IBM1380I E

 a: proc;

 b: proc ext('_B');

IBM1373I E Variable variable name is implicitly
declared.

Explanation: Under the RULES(NOLAXDCL) option,
all variables must be declared except for contextual
declarations of built-in functions, SYSPRINT and SYSIN.

IBM1374I E Contextual attributes conflicting with
PARAMETER will not be applied to
variable name.

Explanation: Only those contextual attributes that can
be applied to a parameter will be applied. For example,
CONSTANT and EXTERNAL, which apply to contextual
file declarations, will not be applied to file parameters.

 a: proc(f);

 open file(f);

IBM1375I E The DEFINED variable variable name
does not fit into its base variable.

Explanation: The number of bits, characters or
graphics needed for a DEFINED variable must be no
more than in the base variable.

 dcl a char(1');

 dcl b char(5) defined (a) pos(8);

IBM1376I E Factoring of level numbers into
declaration lists containing level
numbers is invalid. The level numbers
in the declaration list will be ignored.

Explanation: Only attributes can be factored into
declaration lists.

 dcl 1 a, 2 (b, 3 c, 3 d) fixed;

IBM1377I E A scale factor has been specified as an
argument to the BUILTIN name built-in,
but the result of that function has type
FLOAT. The scale factor will be
ignored.

Explanation: Scale factors are valid only for FIXED
values.

 x = binary(1e',4,2);

IBM1378I E An arguments list or subscripts list has
been provided for a GENERIC entry
reference. It will be ignored.

Explanation: GENERIC entry references are not
allowed to contain an arguments or subscripts list.

 dcl t generic(sub1(1') when((�)),

 sub2 when((�,�)));

IBM1379I E Locator qualifier for GENERIC reference
is ignored.

Explanation: GENERIC references cannot be
locator-qualified.

 dcl x generic (...);

 call p->x;

IBM1380I E Target structure in assignment contains
no elements with the ASSIGNABLE
attribute. No assignments will be
generated.

Explanation: In an assignment to a structure, some
element of the structure must have the assignable
attribute.

 dcl

 1 a based,

 2 nonasgn fixed bin,

 2 nonasgn fixed bin;

 p->a = ';

30 Messages and Codes (OS/2 and Windows)

IBM1381I E �IBM1393I E

IBM1381I E DEFINED base for a BIT structure
should be aligned.

Explanation: If a BIT structure (or union) is defined on
a variable that is not aligned on a byte boundary,
unpredictable results may occur. This is especially true
if a substructure of the DEFINED variable is passed to
another routine.

IBM1382I E INITIAL attribute is invalid for STATIC
FORMAT variables. Storage class is
changed to AUTOMATIC.

Explanation: FORMAT variables require block
activation information; they cannot be initialized at
compile-time. If the variable were a member of a
structure, the storage class would not be changed to
AUTOMATIC, and a severe message would be issued
instead.

IBM1383I E Labels on keyword statements are
invalid and ignored.

Explanation: Labels are not permitted on DECLARE,
DEFAULT, and DEFINE statements or on WHEN and
OTHERWISE clauses.

IBM1384I E message

Explanation: This message is used to report back end
error messages.

IBM1385I E Invalid DEFINED - string overlay
defining attempted.

Explanation: The base variable in the DEFINED
attribute must consist of UNALIGNED, NONVARYING
string variables of the same string type as the DEFINED
variable.

IBM1386I E DEFINED base for a BIT variable should
not be subscripted.

Explanation: When one bit variable is defined on a
second (the base), the base may be an array, but it
must not be subscripted.

 dcl a(2') bit(8) unaligned;

 dcl b bit(8) defined(a(3));

IBM1387I E The NODESCRIPTOR attribute is invalid
when any parameters have * extents.

Explanation: A parameter can have * extents only if a
descriptor is also passed.

 a: proc(x) options(nodescriptor);

 dcl x char(�);

IBM1388I E The NODESCRIPTOR attribute is invalid
when any parameters have the
NONCONNECTED attribute.

Explanation: A parameter can have the
NONCONNECTED attribute only if a descriptor is also
passed.

 a: proc(x) options(nodescriptor);

 dcl x(2') fixed bin nonconnected;

IBM1389I E The identifier identifier is not the name of
a built-in function. The BUILTIN
attribute will be ignored.

Explanation: The BUILTIN attribute can be applied
only to identifiers that are the names of built-in functions
or subroutines.

IBM1390I E note

Explanation: This message is used by %NOTE
statements with a return code of 8.

IBM1391I E End-of-source has been encountered
after an unmatched comment marker.

Explanation: An end-of-comment marker is probably
missing.

IBM1392I E End-of-source has been encountered
after an unmatched quote.

Explanation: A closing quote is probably missing.

IBM1393I E Item in OPTIONS list conflicts with other
attributes in the declaration.
option-name is ignored.

Explanation: The indicated element of the options list
is invalid.

 Chapter 4. Compiler Error Messages (1226-1499) 31

IBM1394I E �IBM1403I E

 dcl a file options(assembler);

IBM1394I E Item in OPTIONS list is invalid for
BEGIN blocks. option-name is ignored.

Explanation: The indicated element of the options list
is invalid for BEGIN blocks (although it may be valid for
PROCEDUREs).

 begin options(assembler);

IBM1395I E Item in OPTIONS list is invalid for
PACKAGEs. option-name is ignored.

Explanation: The indicated element of the options list
is invalid for PACKAGEs (although it may be valid for
PROCEDUREs).

 a: package exports(�) options(assembler);

IBM1396I E Item in OPTIONS list is invalid for
PROCEDUREs. option-name is ignored.

Explanation: The indicated element of the options list
is invalid for PROCEDUREs (although it may be valid for
ENTRYs).

 a: procedure options(inter);

IBM1397I E Item in OPTIONS list is invalid for
nested PROCEDUREs. option-name is
ignored.

Explanation: The indicated element of the options list
is invalid for nested PROCEDURESs (although it may be
valid for PROCEDUREs).

 a: proc;

 b: proc options(main);

IBM1398I E Invalid item in OPTIONS list.
option-name is ignored.

Explanation: The indicated element of the options list
is not a supported option in any statement or
declaration.

 a: proc options(unknown);

IBM1399I E Item in OPTIONS list is invalid for
ENTRY statements. option-name is
ignored.

Explanation: The indicated element of the options list
is invalid for ENTRY statements (although it may be
valid for PROCEDUREs).

 a: entry options(chargraphic);

IBM1400I E Item in OPTIONS list conflicts with
preceding items. option-name is
ignored.

Explanation: The elements of the options list must be
consistent, unlike in the example where BYVALUE and
BYADDR conflict.

 a: proc options(byvalue byaddr);

IBM1401I E Parameter attributes have been
specified for a variable that is not a
parameter. The parameter attributes are
ignored.

Explanation: Parameter attributes, such as BYVALUE
or CONNECTED, may be specified only for parameters.

 a: proc;

 dcl x byvalue ptr;

IBM1402I E Constant in POSITION attribute is less
than 1.

Explanation: The POSITION attribute must specify a
positive value.

 dcl a def b pos(-1');

IBM1403I E The end of the source was reached
before the logical end of the program.
Null statements and END statements will
be inserted as necessary to complete
the program.

Explanation: The source should contain END
statements for all PACKAGEs, PROCEDUREs, BEGIN
blocks, DO groups, and SELECT statements, as well as
statements for all IF-THEN and ELSE clauses.

32 Messages and Codes (OS/2 and Windows)

IBM1404I E �IBM1416I E

IBM1404I E The procedure name proc-name has
already been declared. The explicit
declaration of the procedure name will
not be accepted.

Explanation: Declarations for internal procedures are
not permitted.

 a: proc;

 dcl b entry options(byvalue);

 b: proc;

IBM1405I E Only one description is allowed in a
returns descriptor.

Explanation: A function can return only one value.

 dcl b entry returns(ptr, ptr);

IBM1406I E The product of the repetition factor
repetition-factor and the length of the
constant string to which it is applied is
greater than the maximum length
allowed for a constant. The repetition
factor will be ignored.

Explanation: The string represented by a repetition
factor applied to another string must conform to the
same limits imposed on strings without repetition factors.

 a = (32767) 'abc';

IBM1407I E Scale factor is bigger than 127. It will
be replaced by 127.

Explanation: Scale factors must lie between -128 and
127 inclusive.

IBM1408I E Scale factor is less than -128. It will be
replaced by -128.

Explanation: Scale factors must lie between -128 and
127 inclusive.

IBM1409I E A SELECT statement may be missing.
A SELECT statement, without an
expression, will be inserted.

Explanation: A WHEN or OTHERWISE clause has
been found outside of a SELECT statement.

IBM1410I E Semicolon inserted after ELSE keyword.

Explanation: An END statement enclosing a statement
such as DO or SELECT has been found before the
statement required after ELSE.

 do;

 if a > b then

 ...

 else

 end;

IBM1411I E Semicolon inserted after ON clause.

Explanation: An END statement enclosing a statement
such as DO or SELECT has been found before the
statement required after ON condition.

 do;

 ...

 on zdiv

 end;

IBM1412I E Semicolon inserted after OTHERWISE
keyword.

Explanation: An END statement may be misplaced or
a semicolon may be missing.

IBM1413I E Semicolon inserted after THEN keyword.

Explanation: An END statement may be misplaced or
a semicolon may be missing.

IBM1414I E Semicolon inserted after WHEN clause.

Explanation: An END statement may be misplaced or
a semicolon may be missing.

IBM1415I E Source file does not end with the logical
end of the program.

Explanation: The source file contains statements after
the END statement that closed the first PACKAGE or
PROCEDURE. These statements will be ignored, but
their presence may indicate a programming error.

IBM1416I E Subscripts have been specified for the
variable variable name, but it is not an
array variable.

Explanation: Subscripts can be specified only for
elements of an array.

 Chapter 4. Compiler Error Messages (1226-1499) 33

IBM1417I E �IBM1432I E

IBM1417I E Second argument in SUBSTR reference
is less than 1. It will be replaced by 1.

Explanation: Otherwise the STRINGRANGE condition
would be raised.

IBM1418I E Second argument in SUBSTR reference
is too big. It will be trimmed to fit.

Explanation: Otherwise the STRINGRANGE condition
would be raised.

IBM1419I E Third argument in SUBSTR reference is
less than 0. It will be replaced by 0.

Explanation: Otherwise the STRINGRANGE condition
would be raised.

IBM1420I E The factor in K/M constant is too large
and is replaced by maximum factor.

Explanation: The maximum K constant is 2097151K,
and the maximum M constant is 2047M.

IBM1421I E More than 15 dimensions have been
specified. Excess will be ignored.

Explanation: The maximum number of dimensions
allowed for a variable, including all inherited dimensions,
is 15.

IBM1422I E Maximum of 500 LIKE attributes per
block exceeded.

Explanation: A block should contain no more than 500
LIKE references. Under LANGLVL(SAA2), there is no
limit.

IBM1423I E UNALIGNED attribute conflicts with
AREA attribute.

Explanation: All AREA variables must be ALIGNED.

IBM1424I E End of comment marker found when
there are no open comments. Marker
will be ignored.

Explanation: An */ was found when there was no open
comment.

IBM1425I E There is no compiler directive directive.
Input up to the next semicolon will be
ignored.

Explanation: See the Language Reference Manual for
the list of supported compiler directives.

IBM1426I E Structure level of 0 replaced by 1.

Explanation: Structure level numbers must be positive.

IBM1427I E Numeric precision of 0 replaced by 1.

Explanation: Numeric precisions must be positive.

IBM1428I E X literals should contain a multiple of 2
hex digits.

Explanation: An X literal may not contain an odd
number of digits.

IBM1429I E INITIAL attribute for REFER object
variable name is invalid.

Explanation: In DCL 1 a BASED, 2 b FIXED BIN
INIT(3), 2 c(n REFER(b)), the initial clause for 'b' is
invalid and will be ignored.

IBM1430I E UNSIGNED attribute for type type type
type name conflicts with negative
INITIAL values and is ignored.

Explanation: If an ORDINAL type is declared with the
UNSIGNED attribute, any INITIAL values specified must
be nonnegative.

IBM1431I E PRECISION specified for type type type
type name is too small to cover its
INITIAL values and is adjusted to fit.

Explanation: An ORDINAL type must have a precision
larger enough to cover the range of values defined for it.

 define ordinal

 colors

 (red init('),

 orange init(256)

 yellow init(512)) unsigned prec(8);

IBM1432I E The type type type type name is already
defined. The redefinition is ignored.

Explanation: An ORDINAL type may be defined only
once in any block.

34 Messages and Codes (OS/2 and Windows)

IBM1433I E �IBM1442I E

IBM1433I E The name name occurs more than once
in the RESERVES clause.

Explanation: Names in the RESERVES clause of a
package statement must be unique.

 a: package reserves(a1, a2, a1);

IBM1434I E The name name occurs in the
RESERVES clause, but is not the name
of any level-1 STATIC EXTERNAL
variable.

Explanation: Each name in the RESERVES clause of
a package statement must be the name of some level-1
static external variable in that package.

 a: package reserves(a1, a2, a3);

IBM1435I E A precision value less than 1 has been
specified as an argument to the BUILTIN
name built-in. It will be replaced by 1.

Explanation: Precision values must be positive.

 f = float(i, -2);

IBM1436I E The scale factor specified as an
argument to the BUILTIN name built-in is
out of the valid range. It will be
replaced by the nearest valid value.

Explanation: Scale factors must be between -128 and
127 inclusive.

 f = fixed(i, 15, 13');

IBM1437I E The second argument to the BUILTIN
name built-in is greater than the
maximum FIXED BINARY precision. It
will be replaced by the maximum value.

Explanation: The maximum FIXED BINARY precision
allowed depends on the FIXEDBIN suboption of the
LIMITS option.

 i = signed(n, 63);

IBM1438I E Excess arguments for ENTRY ENTRY
name ignored.

Explanation: More arguments were specified in an
ENTRY reference than were defined as parameters in
that ENTRY's declaration.

 dcl e entry(fixed bin);

 call e(1, 2);

IBM1439I E Excess arguments for BUILTIN name
built-in ignored.

Explanation: More arguments were specified for the
indicated built-in function than are supported by that
built-in function.

 i = acos(j, k);

IBM1441I E ENTRY/RETURNS description lists for
comparands do not match.

Explanation: In a comparison of two ENTRY variables
or constants, the ENTRY and RETURNS description lists
should match. The linkages must also match.

 dcl e1 entry(fixed), e2 entry(float);

 if e1 = e2 then

IBM1442I E The ENTRY/RETURNS description lists
in the ENTRY to be assigned to target
variable do not match those of the target
variable.

Explanation: In an assignment of an ENTRY variable
or constant, the ENTRY and RETURNS description lists
for the source should match those of the target. The
linkages must also match.

 dcl e1 variable entry(fixed), e2 entry(float);

 e1 = e2;

 Chapter 4. Compiler Error Messages (1226-1499) 35

IBM1443I E �IBM1452I E

IBM1443I E An ENTRY/RETURNS description list in
an ENTRY in the INITIAL list for target
variable do not match those of the target
variable.

Explanation: When initializing an ENTRY variable or
constant, the ENTRY and RETURNS description lists for
the source should match those of the target. The
linkages must also match.

 dcl e1 variable entry(fixed);

 dcl e2 variable entry(float) init(e1);

IBM1444I E The ENTRY/RETURNS description lists
in the RETURN statement do not match
those in the corresponding RETURNS
attribute

Explanation: When a function returns an ENTRY
variable or constant, the ENTRY and RETURNS
description lists in the returned ENTRY reference should
match those in the containing procedure's RETURNS
option. The linkages must also match.

 a: proc returns(entry(float));

 dcl e1 entry(fixed);

 return(e1);

IBM1445I E The ENTRY/RETURNS description lists
for argument number argument-number
in entry reference entry name do not
match those in the corresponding
parameter.

Explanation: This message also occurs if the linkages
do not match.

 dcl a entry(entry(float));

 dcl e1 entry(fixed);

 call a(e1);

IBM1446I E Third argument in SUBSTR reference is
too big. It will be trimmed to fit.

Explanation: Otherwise the STRINGRANGE condition
would be raised.

IBM1447I E Literals with an X prefix are valid only in
EXEC SQL statements.

Explanation: In PL/I statements, hex literals should be
specified with an X suffix.

IBM1448I E Use of nonconstant extents in BASED
variables without REFER accepted
although invalid under LANGLVL(SAA).

Explanation: In the SAA level-1 language definition,
extents in BASED variables must all be constant except
where the REFER option is used. The following would
be invalid

 dcl x based char(n);

IBM1449I E Use of type function accepted although
invalid under LANGLVL(SAA).

Explanation: Type functions are not part of the SAA
level-1 language.

IBM1450I E keyword keyword accepted although
invalid under LANGLVL(SAA).

Explanation: The indicated keyword (UNSIGNED in
the example below) is not defined in the SAA level-1
language.

 dcl x fixed bin unsigned;

IBM1451I E Use of S, D and Q constants accepted
although invalid under LANGLVL(SAA).

Explanation: The definition of the SAA level-1
language does not include S, D, and Q floating-point
constants.

IBM1452I E Use of underscores in constants
accepted although invalid under
LANGLVL(SAA).

Explanation: The definition of the SAA level-1
language does not permit using underscores in numeric
and hex constants.

36 Messages and Codes (OS/2 and Windows)

IBM1453I E �IBM1462I E

IBM1453I E Use of asterisks for names in declares
accepted although invalid under
LANGLVL(SAA).

Explanation: The definition of the SAA level-1
language does not permit using asterisks for structure
element names.

IBM1454I E Use of XN and XU constants accepted
although invalid under LANGLVL(SAA).

Explanation: The definition of the SAA level-1
language does not include XN and XU constants.

IBM1455I E Use of arguments with BUILTIN name
built-in accepted although invalid under
LANGLVL(SAA).

Explanation: Under LANGLVL(SAA), the DATETIME
built-in function cannot have any arguments.

 s = datetime('DDMMYYYY');

IBM1456I E Use of 3 arguments with BUILTIN name
built-in accepted although invalid under
LANGLVL(SAA).

Explanation: Under LANGLVL(SAA), the VERIFY and
INDEX built-in functions are supposed to have exactly 2
arguments.

 i = verify(s, j, k);

IBM1457I E Use of 1 argument with BUILTIN name
built-in accepted although invalid under
LANGLVL(SAA).

Explanation: Under LANGLVL(SAA), the DIM,
LBOUND and HBOUND built-in functions are supposed
to have 2 arguments.

 i = dim(a);

IBM1458I E GOTO is not allowed under
RULES(NOGOTO).

Explanation: Under RULES(NOGOTO), there should
be no GOTO statements in your source program.

IBM1459I E Uninitialized AUTOMATIC variables in a
block should not be used in the
prologue of that block.

Explanation: The AUTOMATIC variables in a block
may be used in the declare statements and the
executable statements of any contained block, but in the
block in which they are declared, they should be used
only in the executable statements.

 dcl x fixed bin(15) automatic;

 dcl y(x) fixed bin(15) automatic;

IBM1460I E Under RULES(ANS), nonzero scale
factors are not permitted in declarations
of FIXED BIN. Declared scale factor will
be ignored.

Explanation: RULES(IBM) allows scaled FIXED BIN,
but RULES(ANS) supports it only for FIXED DECIMAL.
RULES(ANS) will ignore the scale factors in the
following declares

 dcl x fixed bin(31,16);

 dcl y entry(fixed bin(31,16));

IBM1461I E Under RULES(ANS), nonzero scale
factors are not permitted when the
result of BUILTIN name has the
attributes FIXED BIN. Specified scale
factor will be ignored.

Explanation: RULES(IBM) allows scaled FIXED BIN,
but RULES(ANS) supports it only for FIXED DECIMAL.
RULES(ANS) will ignore the scale factors in the
following built-ins

 dcl (x,y) fixed bin(15,');

 put list(add(x,y,31,2));

 put list(bin(x,31,2));

 put list(prec(x,31,2));

IBM1462I E Expression in comparison interpreted
with DATE attribute.

Explanation: In a comparison, if one comparand has
the DATE attribute, the other should also. If the non-date
is an expression that could have a value that is valid for
the date pattern, it will be viewed as if it had the same
DATE attribute as the date comparand.

 Chapter 4. Compiler Error Messages (1226-1499) 37

IBM1463I E �IBM1472I E

IBM1463I E Operand with DATE attribute is invalid
except in compare or assign. DATE
attribute will be ignored.

Explanation: Comparisons are the only infix operations
where operands with the DATE attribute may be used. If
they are used in any other operation, the DATE attribute
will be ignored. So, in the following code, the addition
will be flagged and the DATE attribute ignored.

 dcl x char(5) date('YYDDD');

 put list(x + 1);

IBM1464I E DATE attribute ignored in comparison
with non-date expression.

Explanation: In a comparison, if one comparand has
the DATE attribute, the other should also. If the non-date
is an expression that could not have a value that is not
valid for the date pattern, the DATE attribute will be
ignored.

IBM1465I E Source in assignment has the DATE
attribute, but target variable does not.
The DATE attribute will be ignored.

Explanation: If the target in an assignment has the
DATE attribute, the source should also. If the target is a
pseudovariable, message 1466 is issued instead.

 dcl x char(6);

 x = date();

IBM1466I E Source in assignment has the DATE
attribute, but target does not. The DATE
attribute will be ignored.

Explanation: If the source in an assignment has the
DATE attribute, the target should also.

IBM1467I E Source in INITIAL clause for variable
name has the DATE attribute but the
target does not. The DATE attribute will
be ignored.

Explanation: If an INITIAL expression has the DATE
attribute, the target should also.

IBM1468I E Argument number argument-number in
entry reference entry name has the DATE
attribute but the corresponding
parameter does not. The DATE attribute
will be ignored.

Explanation: The argument and parameter should
match, unlike in the example below

 dcl x entry(char(6));

 call x(date());

IBM1469I E Source in RETURN statement has the
DATE attribute, but the corresponding
RETURNS option does not. The DATE
attribute will be ignored.

Explanation: The attributes of the RETURNed
expression and in the RETURNS option should match,
unlike in the example below

 x: proc returns(char(6));

 ...

 return(date());

IBM1470I E An ID option must be specified for the
INCLUDE preprocessor.

Explanation: No other options are valid for the
INCLUDE preprocessor.

IBM1471I E The ID option specified for the INCLUDE
preprocessor is invalid.

Explanation: The INCLUDE preprocessor ID option
must have one suboption consisting of a string
specifying the INCLUDE directive.

IBM1472I E A closing right parenthesis is missing
from the ID option specified for the
INCLUDE preprocessor.

Explanation: The suboption specified for the INCLUDE
preprocessor ID option must be closed with a right
parenthesis.

38 Messages and Codes (OS/2 and Windows)

IBM1473I E �IBM1483I E

IBM1473I E The syntax of the preprocessor
INCLUDE directive is incorrect.

Explanation: A statement that starts with the
preprocessor INCLUDE directive specified in that
preprocessor's ID option must be followed by a name
and, optionally, a semicolon.

IBM1474I E Source in assignment does not have the
DATE attribute, but target variable does.
The DATE attribute will be ignored.

Explanation: If the target in an assignment has the
DATE attribute, the source should also. If the target is a
pseudovariable, message 1475 is issued instead.

 dcl x char(6) date('YYMMDD');

 x = '';

IBM1475I E Target in assignment has the DATE
attribute, but source does not. The
DATE attribute will be ignored.

Explanation: If the target in an assignment has the
DATE attribute, the source should also.

IBM1476I E Source in INITIAL clause for variable
name does not have the DATE attribute
but the target does. The DATE attribute
will be ignored.

Explanation: If a variable has the DATE attribute, then
any INITIAL value for it should also.

IBM1477I E Argument number argument-number in
entry reference entry name does not
have the DATE attribute but the
corresponding parameter does. The
DATE attribute will be ignored.

Explanation: The argument and parameter should
match, unlike in the example below

 dcl x entry(char(6) date('YYMMDD'));

 call x('');

IBM1478I E Source in RETURN statement does not
have the DATE attribute, but the
corresponding RETURNS option does.
The DATE attribute will be ignored.

Explanation: The attributes of the RETURNed
expression and in the RETURNS option should match,
unlike in the example below

 x: proc returns(char(6) date('YYMMDD'));

 ...

 return('');

IBM1480I E Multiple closure of groups is not
allowed under RULES(NOMULTICLOSE).

Explanation: Under RULES(NOMULTICLOSE), there
should be no multiple closure of groups in your source
program.

IBM1481I E BYNAME assignment statements are not
allowed under RULES(NOBYNAME).

Explanation: Under RULES(NOBYNAME), there
should be no BYNAME assignment statements in your
source program.

IBM1482I E The variable variable name is declared
without any data attributes.

Explanation: It will be given the default attributes, but
this may be because of an error in the declare. For
instance, in the following example, parentheses may be
missing. Under RULES(LAXDCL), this is a W-level
mssage.

 dcl a, b fixed bin;

IBM1483I E The structure member variable name is
declared without any data attributes. A
level number may be incorrect.

Explanation: It will be given the default attributes, but
this may be because of an error in the declare. For
instance, in the following example, the level number on c
and d should probably be 3. Under RULES(LAXDCL),
this is a W-level mssage.

 Chapter 4. Compiler Error Messages (1226-1499) 39

IBM1484I E �IBM1484I E

 dcl a, b fixed bin;

 1 a,

 2 b,

 2 c,

 2 d;

IBM1484I E An unnamed structure member is
declared without any data attributes. A
level number may be incorrect.

Explanation: It will be given the default attributes, but
this may be because of an error in the declare. For
instance, in the following example, the level number on c
and d should probably be 3. Under RULES(LAXDCL),
this is a W-level message.

 dcl a, b fixed bin;

 1 a,

 2 �,

 2 c,

 2 d;

40 Messages and Codes (OS/2 and Windows)

IBM1500I S �IBM1509I S

Chapter 5. Compiler Severe Messages (1500-2500)

IBM1500I S Argument number argument-number in
ENTRY reference ENTRY name has type
source type, which is invalid for a
parameter with type target type.

Explanation: An argument must have a type that can
be converted to the corresponding parameter's type.

IBM1501I S Argument number argument-number in
ENTRY reference ENTRY name has a
different strong type than the
corresponding parameter.

Explanation: If a parameter is strongly typed, any
argument passed to it must have the same type.

IBM1502I S Argument number argument-number in
ENTRY reference ENTRY name has type
source type, which is invalid for a
parameter with type target type. If the
ENTRY should be invoked, an argument
list must be provided.

Explanation: An argument must have a type that can
be converted to the corresponding parameter's type.

IBM1503I S Argument number argument-number in
ENTRY reference ENTRY name has type
source type, which is invalid for a
parameter with type LIMITED ENTRY.

Explanation: Only an EXTERNAL ENTRY
CONSTANT, an ENTRY CONSTANT representing a
non-nested PROCEDURE, or an ENTRY VARIABLE
with the LIMITED attribute can be passed to a LIMITED
ENTRY parameter.

IBM1504I S Argument number argument-number in
ENTRY reference ENTRY name has type
POINTER , which is invalid for an
OFFSET parameter without an AREA
qualifier.

Explanation: POINTER expressions can be converted
to OFFSET only if the OFFSET is declared with an
AREA qualifier.

IBM1505I S Argument number argument-number in
ENTRY reference ENTRY name has type
POINTER , which is invalid for a
POINTER parameter since the OFFSET
argument is not an OFFSET variable
declared with an AREA qualifier.

Explanation: OFFSET variables can be converted to
POINTER only if the OFFSET is declared with an AREA
qualifier.

IBM1506I S Argument number argument-number in
ENTRY reference ENTRY name has a
different ORDINAL type than the
corresponding parameter.

Explanation: ORDINALs cannot be passed to other
ORDINALs having different ORDINAL types.

IBM1507I S Arrays of label constants may not be
passed as arguments.

Explanation: The array can be assigned to an array of
LABEL variables, and that array can be passed.

 lx(1): ... ;

 lx(2): ... ;

 call x(lx);

IBM1508I S Too few arguments have been specified
for the ENTRY ENTRY name.

Explanation: The number of arguments must match
the number of parameters in the ENTRY declaration.

IBM1509I S Argument to variable name
pseudovariable must be ASSIGNABLE.

Explanation: The target in an assignment through a
pseudovariable must not have the NONASSIGNABLE
attribute.

 dcl a static nonasgn char(7) init('example');

 unspec(a) = ''b;

 Copyright IBM Corp. 1998 41

IBM1510I S �IBM1518I S

IBM1510I S First argument to variable name
pseudovariable must be ASSIGNABLE.

Explanation: The target in an assignment through a
pseudovariable must not have the NONASSIGNABLE
attribute.

 dcl a static nonasgn char(7) init('example');

 substr(a,1,2) = 'tr';

IBM1511I S Argument number argument-number in
ENTRY reference ENTRY name is an
aggregate, but the parameter
description specifies a scalar.

Explanation: Scalars cannot be converted to
aggregates.

 dcl a entry(fixed bin), b(1') fixed bin;

 call a(b);

IBM1512I S Argument number argument-number in
ENTRY reference ENTRY name is a
scalar, but the parameter description
specifies an aggregate to which it
cannot be passed.

Explanation: Dummy aggregate arguments are not
supported except when passing a non-AREA scalar to a
non-CONTROLLED array of scalars, and the array must
have no bounds specified as *. The scalar can be
assigned to an aggregate, and that aggregate can be
passed.

 dcl a entry(1, 2 fixed bin, 2 fixed bin);

 call a(');

IBM1513I S Argument number argument-number in
ENTRY reference ENTRY name is an
aggregate that does not exactly match
the corresponding parameter
description.

Explanation: Dummy aggregate arguments are not
supported. If an entry description describes an
aggregate parameter, then any argument passed must
match that parameter's description.

IBM1514I S Argument number argument-number in
ENTRY reference ENTRY name is an
aggregate with more members than its
corresponding parameter description.

Explanation: Dummy aggregate arguments are not
supported. If an entry description describes an
aggregate parameter, then any argument passed must
match that parameter's description.

IBM1515I S Argument number argument-number in
ENTRY reference ENTRY name is an
aggregate with fewer members than its
corresponding parameter description.

Explanation: Dummy aggregate arguments are not
supported. If an entry description describes an
aggregate parameter, then any argument passed must
match that parameter's description.

IBM1516I S The number of dimensions in the
subelements of argument number
argument-number in ENTRY reference
ENTRY name and in its corresponding
parameter description do not match.

Explanation: Dummy aggregate arguments are not
supported. If an entry description describes an
aggregate parameter, then any argument passed must
match that parameter's description.

IBM1517I S The upper and lower bounds in the
subelements of argument number
argument-number in ENTRY reference
ENTRY name and in its corresponding
parameter description do not match.

Explanation: Dummy aggregate arguments are not
supported. If an entry description describes an
aggregate parameter, then any argument passed must
match that parameter's description.

IBM1518I S The number of dimensions for argument
number argument-number in ENTRY
reference ENTRY name and in its
corresponding parameter description do
not match.

Explanation: Array arguments and parameters must
have the same number of dimensions.

 dcl a entry((�,�) fixed bin), b (1') fixed bin;

 call a(b);

42 Messages and Codes (OS/2 and Windows)

IBM1519I S �IBM1532I S

IBM1519I S The upper and lower bounds for
argument number argument-number in
ENTRY reference ENTRY name and in its
corresponding parameter description do
not match.

Explanation: Array arguments and parameters must
have the same lower and upper bounds.

 dcl a entry((':1') fixed bin), b (1') fixed bin;

 call a(b);

IBM1520I S Charset 48 is not supported.

Explanation: Charset 48 is no longer supported. The
source code must be converted to charset 60.

IBM1521I S Not enough virtual memory is available
to continue the compile.

Explanation: The compilation requires more virtual
memory than is available. It may help to specify one or
more of the following compiler options: SIZE(MIN),
NOXREF, NOATTRIBUTES, and/or NOAGGREGATE

IBM1522I S variable cannot be SET unless an IN
clause is specified.

Explanation: If an offset variable is declared without an
AREA reference, it cannot be set in an ALLOCATE or
LOCATE statement unless an IN clause names an
AREA reference.

IBM1523I S Argument to BUILTIN name built-in must
be an AREA reference.

Explanation: The built-in function AVAILABLEAREA is
defined only for AREAs.

IBM1524I S BUILTIN name (x) is undefined if ABS(x)
> 1.

Explanation: An expression contains the built-in
function ASIN or ACOS applied to a restricted
expression that evaluated to a number outside the
domain of that function.

IBM1525I S ATANH(x) is undefined if x is REAL and
ABS(x) >= 1.

Explanation: An expression contains the built-in
function ATANH applied to a restricted expression that
evaluated to a number outside the domain of that
function.

IBM1526I S Argument to BUILTIN name must have
derived mode REAL.

Explanation: An expression contains the named
built-in function with an argument having mode
COMPLEX.

IBM1527I S First argument to BUILTIN name built-in
must have locator type.

Explanation: An expression contains the named
built-in function with its first argument having neither type
POINTER nor OFFSET.

IBM1528I S First argument to BUILTIN name built-in
must have derived mode REAL.

Explanation: An expression contains the named
built-in function with its first argument having mode
COMPLEX. This message applies, for example, to the
ATAN and ATAND built-in functions when two
arguments are given.

IBM1530I S Second argument to BUILTIN name
built-in must have derived mode REAL.

Explanation: An expression contains the named
built-in function, with its second argument having mode
COMPLEX. This message applies, for example, to the
ATAN and ATAND built-in functions when two
arguments are given.

IBM1531I S BUILTIN name argument has invalid
type.

Explanation: An expression contains the reference
BINARYVALUE(x) where x has a type other than
POINTER, OFFSET or ORDINAL.

IBM1532I S E35 sort exit routines must use a 32-bit
linkage.

Explanation: Any other linkage is invalid.

 Chapter 5. Compiler Severe Messages (1500-2500) 43

IBM1533I S �IBM1546I S

IBM1533I S BUILTIN name argument must have
computational type.

Explanation: An expression contains the named
built-in function with an argument that has neither string
nor numeric type.

IBM1534I S BUILTIN name result would be too long.

Explanation: The result of the REPEAT or COPY
built-in function must not be longer than the maximum
allowed for the base string type.

IBM1535I S BUILTIN name argument must have type
REAL FLOAT.

Explanation: An expression contains the named
built-in function with an argument having type other than
REAL FLOAT. This message applies, for instance, to
the floating-point inquiry built-in functions such as HUGE
and RADIX, and to the floating-point manipulation built-in
functions such as EXPONENT and SUCC.

IBM1536I S BUILTIN name argument must be a
reference.

Explanation: An expression contains the named
built-in function with an argument that is not a reference.

IBM1537I S BUILTIN name argument must be an
array expression.

Explanation: An expression contains the named
built-in function with an argument that is not an array
expression. This message applies, for example, to the
built-in functions ALL, ANY, SUM and PROD.

IBM1538I S BUILTIN name argument must be a FILE
reference.

Explanation: An expression contains the named
built-in function with an argument that is not a FILE.
This message applies, for example, to the I/O built-in
functions such as LINENO and PAGENO.

IBM1539I S * is invalid as a BUILTIN function
argument.

Explanation: A value must be specified as an
argument to a BUILTIN function unless the argument is
optional.

 dcl a float;

 a = sqrt(�);

IBM1540I S Argument number argument number to
BUILTIN name built-in must have derived
mode REAL.

Explanation: An expression contains the named
built-in function with the specified argument having mode
COMPLEX. This message applies to the MAX and MIN
built-in functions.

IBM1541I S Argument number argument number to
BUILTIN name built-in must have
computational type.

Explanation: An expression contains the named
built-in function with the specified argument having
noncomputational type. This message applies to the
MAX and MIN built-in functions.

IBM1542I S First argument to BUILTIN name built-in
must have computational type.

Explanation: An expression contains the named
built-in function with a first argument that has neither
string nor numeric type.

IBM1543I S Argument to BUILTIN name built-in must
have type CHARACTER(1)
NONVARYING.

Explanation: This applies to the RANK built-in function.

IBM1545I S First argument to BUILTIN name built-in
must be an array.

Explanation: An expression contains the named
built-in function with a first argument that is not an array.
This message applies, for instance, to the DIMENSION,
HBOUND, and LBOUND built-in functions.

IBM1546I S Second argument to BUILTIN name
built-in must have type CHARACTER(1)
NONVARYING.

Explanation: This applies to the PLIFILL built-in
subroutine.

44 Messages and Codes (OS/2 and Windows)

IBM1547I S �IBM1559I S

IBM1547I S Second argument to BUILTIN name
built-in must have computational type.

Explanation: An expression contains the named
built-in function with a second argument that has neither
string nor numeric type.

IBM1548I S BUILTIN function may not be used inside
a BEGIN block.

Explanation: The PLISTSIZE built-in functions may be
used only in procedures.

IBM1549I S BUILTIN function may be used only in
procedures with LINKAGE(SYSTEM).

Explanation: The PLISTSIZE built-in function may not
be used in procedures with any of the linkages
OPTLINK, PASCAL, etc..

IBM1550I S Argument to the BUILTIN name
pseudovariable must be an EVENT
variable.

Explanation: This message applies to the
COMPLETION and STATUS pseudovariables.

IBM1551I S Argument to the BUILTIN name
pseudovariable must be a TASK
variable.

Explanation: This message applies to the PRIORITY
pseudovariable.

IBM1552I S Third argument to BUILTIN name built-in
must have computational type.

Explanation: An expression contains the named
built-in function with a third argument that has neither
string nor numeric type. This message applies, for
example, to the SUBSTR and CENTER built-in
functions.

IBM1554I S Argument to BUILTIN name built-in must
be either a NONVARYING BIT array
reference or else an array expression
with known length.

Explanation: The ALL and ANY built-in functions are
restricted to two types of array expressions: an array
expression that is a NONVARYING BIT array reference
or an array expression that has known length. The first
five examples below meet these restrictions, but the
remaining examples do not.

 dcl a(1') bit(16) varying;

 dcl b(1') bit(16);

 if all(b) then ...

 if any(a ¬= ''b) then ...

 if all(a = b & a) then ...

 if any(''b ¬= b) then ...

 if all(a = ''b | b = ''b) then ...

 if any(a) then ...

 if all(substr(b,1,n)) then ...

IBM1555I S Second argument to BUILTIN name
built-in must have computational type.

Explanation: An expression contains the named
built-in function with a second argument that has neither
string nor numeric type.

IBM1556I S Third argument to BUILTIN name built-in
would force STRINGRANGE.

Explanation: If a third argument is given for one of the
built-in functions INDEX, SEARCH or VERIFYR, it must
be positive. For SEARCHR and VERIFYR, it must be
nonnegative.

IBM1557I S Second argument to BUILTIN name
built-in must be positive.

Explanation: The second argument for the built-in
functions CENTER, LEFT and RIGHT must not be zero
or negative.

IBM1558I S Argument to VALID built-in must have
the attributes FIXED DECIMAL or
PICTURE.

Explanation: The argument to the VALID built-in
function must have exactly the indicated attributes. It is
not sufficient that it can be converted to these attributes.

IBM1559I S SQRT(x) is undefined if x is REAL and x
< 0.

Explanation: An expression contains the BUILTIN
function SQRT applied to a restricted expression that
evaluated to a number outside the domain of that
function.

 Chapter 5. Compiler Severe Messages (1500-2500) 45

IBM1560I S �IBM1577I S

IBM1560I S BUILTIN function (x) is undefined if x is
REAL and x <= 0.

Explanation: An expression contains the named
built-in function applied to a restricted expression that
evaluated to a number outside the domain of that
function. This message applies, for instance, to the
LOG, LOG2, and LOG10 built-in functions.

IBM1561I S RULES(ANS) does not allow ROUND to
be applied to FIXED BIN.

Explanation: RULES(ANS) dose not permit non-zero
scale factors with FIXED BIN, and hence it does not
allow ROUND to be applied to FIXED BIN (or BIT)
arguments.

IBM1562I S Argument to BUILTIN name built-in has
invalid type.

Explanation: The argument to the HANDLE built-in
must be a structure type, and conversely the argument
to the TYPE built-in must be a handle.

IBM1563I S Second argument to BUILTIN name
built-in must be nonnegative.

Explanation: The second argument for the built-in
functions CHARACTER, BIT, and GRAPHIC must be
zero or greater.

IBM1564I S Too few arguments have been specified
for the BUILTIN name built-in.

Explanation: Supply the minimum number of
arguments required.

IBM1566I S BUILTIN name (x) is undefined for x
outside the supported domain.

Explanation: An expression contains the named
built-in function applied to a restricted expression that
evaluated to a number outside the supported domain of
that function.

IBM1568I S BUILTIN function (x,y) is undefined if x=0
and y=0.

Explanation: An expression contains the built-in
function ATAN or ATAND applied to a restricted
expression that evaluated to a number outside the
domain of that function.

IBM1569I S BUILTIN name argument must be a
CONNECTED reference.

Explanation: The argument to the named built-in
function must be a reference (for example, not an
expression or a literal), and that reference must be
CONNECTED.

IBM1570I S BUILTIN name argument must be a
reference to a level 1 CONTROLLED
variable.

Explanation: The ALLOCATION built-in function
cannot be used with structure members or with
non-CONTROLLED variables.

IBM1571I S BUILTIN name argument must be a
reference to a level 1 BYADDR
parameter.

Explanation: The OMITTED built-in function cannot be
used with BYVALUE parameters, structure members, or
non-parameters.

IBM1573I S The use of * as an argument is
permitted only for parameters declared
with the OPTIONAL attribute.

Explanation: Add the OPTIONAL attribute to the entry
declaration or replace the * by an actual argument.

IBM1575I S Second argument to BUILTIN name
built-in must have type POINTER or
OFFSET.

Explanation: The second argument to built-in functions
such as PLIMOVE and COMPARE must be a locator.

IBM1576I S Third argument to BUILTIN name built-in
must have type CHARACTER(1)
NONVARYING.

Explanation: This applies to the HEXIMAGE built-in
subroutine.

IBM1577I S First argument to BUILTIN name built-in
must have type POINTER.

Explanation: This applies to the OFFSET built-in
function.

46 Messages and Codes (OS/2 and Windows)

IBM1578I S �IBM1590I S

IBM1578I S First argument to BUILTIN name built-in
must have type OFFSET.

Explanation: This applies to the POINTER built-in
function.

IBM1579I S Second argument to BUILTIN name
built-in must have type AREA.

Explanation: This applies to the OFFSET and
POINTER built-in functions.

IBM1580I S First argument to BUILTIN name built-in
is an OFFSET value.

Explanation: If the first argument to built-in functions
such as PLIMOVE and COMPARE has the attribute
OFFSET, it must be an OFFSET reference not an
OFFSET value.

IBM1581I S First argument to BUILTIN name built-in
is an OFFSET variable declared without
an AREA qualifier.

Explanation: If the first argument to built-in functions
such as PLIMOVE and COMPARE is an OFFSET
variable, that OFFSET variable must be declared with an
AREA qualifier so that the offset can be converted to an
address.

IBM1582I S Second argument to BUILTIN name
built-in is an OFFSET value.

Explanation: If the second argument to built-in
functions such as PLIMOVE and COMPARE has the
attribute OFFSET, it must be an OFFSET reference not
an OFFSET value.

IBM1583I S Second argument to BUILTIN name
built-in is an OFFSET variable declared
without an AREA qualifier.

Explanation: If the second argument to built-in
functions such as PLIMOVE and COMPARE is an
OFFSET variable, that OFFSET variable must be
declared with an AREA qualifier so that the offset can be
converted to an address.

IBM1584I S Second argument to BUILTIN name
built-in must have type OFFSET.

Explanation: This applies to the OFFSETDIFF built-in
function.

IBM1585I S Second argument to BUILTIN name
built-in must have type POINTER.

Explanation: This applies to the POINTERDIFF built-in
function.

IBM1586I S Argument to STRING built-in
function/pseudovariable must be
CONNECTED.

Explanation: The STRING built-in function and
pseudovariable cannot be applied to discontiguous array
cross-sections or to array parameters not declared with
the CONNECTED attribute.

IBM1587I S Argument number argument number to
BUILTIN name built-in must have the
ENTRY attribute.

Explanation: Any other argument type is invalid. This
message applies to the PLISRTx built-in functions.

IBM1588I S First argument to BUILTIN name built-in
must have type GRAPHIC. xpl.This
applies to the CHARGRAPHIC built-in
function. For instance, in the following
example, g should be declared as
graphic, not as char.

 dcl c char(1');

 dcl g char(5);

 c = charg(g);

Explanation:

IBM1589I S BUILTIN name argument must not have
any subscripts.

Explanation: The LOCATION and BITLOCATION
built-in functions cannot be applied to subscripted
references.

IBM1590I S Argument to STRING built-in
function/pseudovariable must not be a
UNION and must not contain a UNION.

Explanation: The STRING built-in function and
pseudovariable cannot be applied to UNIONs or to
structures containing UNIONs.

 Chapter 5. Compiler Severe Messages (1500-2500) 47

IBM1591I S �IBM1604I S

IBM1591I S All members of an argument to the
STRING built-in function/pseudovariable
must have the UNALIGNED attribute.

Explanation: The STRING built-in function and
pseudovariable cannot be applied to structures or arrays
containing elements with the ALIGNED attribute.

IBM1592I S All members of an argument to the
STRING built-in function/pseudovariable
must have the NONVARYING attribute.

Explanation: The STRING built-in function and
pseudovariable cannot be applied to structures or arrays
containing VARYING strings.

IBM1593I S All members of an argument to the
STRING built-in function/pseudovariable
must have string type.

Explanation: The STRING built-in function and
pseudovariable cannot be applied to structures or arrays
containing noncomputational types or arithmetic types
other than pictures.

IBM1594I S All members of an argument to the
STRING built-in function/pseudovariable
must have the same string type.

Explanation: The STRING built-in function and
pseudovariable cannot be applied to structures or arrays
containing different string types, for example, BIT and
CHARACTER strings.

IBM1595I S First argument to BUILTIN name built-in
must have type REAL FLOAT.

Explanation: This applies to the floating-point inquiry
and manipulation built-in functions such as HUGE and
EXPONENT.

IBM1596I S Second argument to BUILTIN name
built-in must have type CHARACTER.

Explanation: This applies to the EDIT built-in function.

IBM1597I S BUILTIN name argument must have type
TASK.

Explanation: This applies to the PRIORITY built-in
function.

IBM1598I S BUILTIN name argument must have type
EVENT.

Explanation: This applies to the COMPLETION and
STATUS built-in functions.

IBM1599I S The BUILTIN function variable name may
not be used as a pseudovariable.

Explanation: The named built-in function is not a
pseudovariable and may not be used as one.

IBM1600I S Source to BUILTIN name pseudovariable
must be scalar.

Explanation: It is invalid to assign an array, structure,
or union to one of the built-in functions ONCHAR,
ONSOURCE, or ONGSOURCE.

IBM1601I S The identifier identifier is not the name of
a built-in function. Any use of it is
unsupported.

Explanation: The BUILTIN attribute can be applied
only to identifiers that are the names of built-in functions
or subroutines.

IBM1602I S Fourth argument to BUILTIN name
built-in must have the attributes REAL
FIXED BIN(31,0).

Explanation: This applies to the PLISRTx built-in
functions. For instance, in the following example, rc
should be declared as fixed bin(31), not fixed bin(15).

 dcl rc fixed bin(15);

 call plisrta('SORT FIELDS=(1,8',CH,A) ',

 'RECORD TYPE=F,LENGTH=(8') ',

 256''',

 rc);

IBM1603I S BUILTIN name argument must not have
the CONSTANT attribute.

Explanation: This applies to the ADDR and similar
built-in functions. It is invalid, for instance, to apply the
ADDR built-in function to a label constant.

IBM1604I S BUILTIN function argument must be
nonnegative.

Explanation: The argument for the built-in functions
LOW and HIGH must be zero or greater.

48 Messages and Codes (OS/2 and Windows)

IBM1605I S �IBM1618I S

IBM1605I S Argument to ENTRYADDR built-in must
be an ENTRY variable or an EXTERNAL
ENTRY constant.

Explanation: The ENTRYADDR built-in function cannot
be applied to non-ENTRYs or to INTERNAL ENTRY
constants.

IBM1606I S Argument to variable name
pseudovariable must be a reference.

Explanation: Pseudovariables cannot be applied to
expressions.

 unspec(12) = ''''b4;

IBM1607I S First argument to variable name
pseudovariable must be a reference.

Explanation: The SUBSTR pseudovariable cannot be
applied to expressions.

 substr('nope', 1, 1) = 'd';

IBM1608I S Argument to variable name
pseudovariable must be a scalar.

Explanation: The compiler does not support the
named pseudovariable applied to arrays, structures, or
unions.

IBM1609I S First argument to variable name
pseudovariable must be a scalar.

Explanation: The compiler does not support the
named pseudovariable applied to arrays, structures, or
unions.

IBM1610I S Argument to variable name
pseudovariable must be COMPLEX.

Explanation: The REAL and IMAG pseudovariable can
be applied only to COMPLEX arithmetic variables.

IBM1611I S First argument to SUBSTR
pseudovariable must have string type.

Explanation: The SUBSTR pseudovariable cannot be
applied to numeric variables or to noncomputational
values.

IBM1612I S Argument to the ENTRYADDR
pseudovariable must be an ENTRY
variable.

Explanation: The ENTRYADDR pseudovariable can be
applied only to ENTRY variables.

IBM1613I S Argument to BUILTIN name built-in has
attributes that conflict with file attribute.

Explanation: The indicated built-in function cannot be
applied to file constants with attributes that conflict with
the indicated attribute.

IBM1614I S Argument to BUILTIN name built-in has
attributes that conflict with STREAM.

Explanation: The indicated built-in function cannot be
applied to non-STREAM files.

IBM1615I S Argument to BUILTIN name built-in has
attributes that conflict with PRINT.

Explanation: The indicated built-in function cannot be
applied to non-PRINT files.

IBM1616I S Attributes and ENVIRONMENT options
for file file name conflict.

Explanation: Specified file attributes and
ENVIRONMENT options on a declaration statement are
in conflict. The following DECLARE statement is an
example of this type of conflict:

 dcl file f1 direct env(consecutive);

IBM1617I S DIRECT attribute for file file name needs
ENVIRONMENT option specification of
INDEXED, REGIONAL, RELATIVE, or
VSAM.

Explanation: Use of the DIRECT file attribute needs an
ENVIRONMENT option specification of INDEXED,
REGIONAL, RELATIVE, or VSAM.

 dcl file f1 direct env(relative);

IBM1618I S Syntax of the %INCLUDE statement is
incorrect.

Explanation: %INCLUDE must be followed by a name
and either a semicolon or else a second name in
parenthesis and then a semicolon.

 Chapter 5. Compiler Severe Messages (1500-2500) 49

IBM1619I S �IBM1633I S

IBM1619I S File specification after %INCLUDE is too
long.

Explanation: The maximum length of the file
specification is 8 characters.

IBM1620I S File specification missing after
%INCLUDE.

Explanation: %INCLUDE must be followed by a file
name, not just a semicolon.

IBM1621I S NODESCRIPTOR attribute is invalid if
any parameters have bit alignment.

Explanation: If a parameter is an unaligned bit string
or an array or structure consisting entirely of unaligned
bit strings, then OPTIONS(NODESCRIPTOR) must not
be specified or implied.

IBM1622I S The number of elements and dimension
specifications in an aggregate must not
exceed 8000.

Explanation: Aggregates with more than 8000
elements and dimension specifications would require
descriptors that would require too much storage.

IBM1623I S The dot-qualified reference reference
name is unknown.

Explanation: The named reference is not a member of
any structure or union declared in the block in which it is
referenced or declared in any block containing that
block.

IBM1625I S Extent must be a scalar.

Explanation: An expression specifying an array bound,
a string length or an AREA size must not be a reference
to an array, a structure, or a union.

IBM1626I S Extent must have computational type.

Explanation: An expression specifying an array bound,
a string length, or an AREA size must have numeric or
string type.

IBM1627I S Subscript expressions must be scalars.

Explanation: An expression used as a subscript must
not be an array, structure, or union reference.

IBM1628I S Index number index number into the
array variable name must have
computational type.

Explanation: Only expressions having numeric or
string type may be used as subscripts.

IBM1629I S Extents for STATIC variable are not
constant.

Explanation: Array bounds, string lengths, and AREA
sizes in STATIC variables must evaluate at compile-time
to constants.

IBM1630I S Number of dimensions in arrays do not
match.

Explanation: In the assignment of one array to
another, the two arrays must have the same number of
dimensions.

IBM1631I S Upper and lower bounds in arrays do
not match.

Explanation: In the assignment of one array to
another, the two arrays must have the same lower and
upper bound in each dimension.

IBM1632I S Index number index number into the
variable variable name is less than the
lower bound for that dimension.

Explanation: Executing such a program would most
likely cause a protection exception.

 dcl a(5:1') fixed bin(31);

 a(1) = ';

IBM1633I S Index number index number into the
variable variable name is greater than the
upper bound for that dimension.

Explanation: Executing such a program would most
likely cause a protection exception.

 dcl a(5:1') fixed bin(31);

 a(2') = ';

50 Messages and Codes (OS/2 and Windows)

IBM1634I S �IBM1642I S

IBM1634I S Number of dimensions in subelements
of structures do not match.

Explanation: In structure assignments and structure
expressions, all subelements that are arrays must have
the same number of dimensions.

 dcl

 1 a,

 2 b(8) fixed bin,

 2 c char(1');

 dcl

 1 x,

 2 y(8,9) fixed bin,

 2 z char(1');

 a = x;

IBM1635I S Upper and lower bounds in subelements
of structures do not match.

Explanation: In structure assignments and structure
expressions, all subelements that are arrays must have
the same bounds.

 dcl

 1 a,

 2 b(8) fixed bin,

 2 c char(1');

 dcl

 1 x,

 2 y(9) fixed bin,

 2 z char(1');

 a = x;

IBM1636I S Substructuring in subelements of
structures do not match.

Explanation: In structure assignments and structure
expressions, if any element of one structure is itself a
structure, then the corresponding element in all the other
structures must also be a similar structure.

IBM1637I S Number of subelements in structures do
not match.

Explanation: In structure assignments and structure
expressions, all structures must have the same number
of elements.

IBM1638I S Structures and unions are not permitted
in GENERIC descriptions.

Explanation: Only scalars and arrays of scalars are
permitted in GENERIC descriptions.

IBM1639I S The aggregate aggregate-name contains
only noncomputational values. The
aggregate will be ignored.

Explanation: Aggregates containing no strings or
arithmetic variables cannot be used in PUT or GET
statements.

IBM1640I S The aggregate aggregate-name contains
one or more unions and cannot be used
in stream I/O.

Explanation: Aggregates containing one or more
UNION statements cannot be used in PUT or GET
statements.

IBM1641I S References to slices of the array of
structures structure-name are not
permitted.

Explanation: An array of structures must be referenced
in its entirety or element by element.

 dcl

 1 a(8,9),

 2 b fixed bin,

 2 c char(1');

 a(2,�) = ';

IBM1642I S References to slices of the array of
unions union-name are not permitted.

Explanation: An array of unions must be referenced in
its entirety or element by element.

 dcl

 1 a(8,9) union,

 2 b fixed bin,

 2 c char(1');

 a(2,�) = ';

 Chapter 5. Compiler Severe Messages (1500-2500) 51

IBM1643I S �IBM1651I S

IBM1643I S Each dimension of an array must
contain no more than 2147483647
elements.

Explanation: It must be possible to compute the value
of the DIMENSION built-in function for an array. In
DECLARE x(x:y), (y-x+1) must be less than 214748648.

IBM1644I S Aggregate contains more than 15 logical
levels.

Explanation: The maximum physical level allowed is
255, but the maximum logical level is 15.

IBM1645I S Data aggregate exceeds the maximum
length.

Explanation: Aggregates containing unaligned bits
must be less than 2**28 bytes in size while all other
aggregates must be less than 2**31.

IBM1646I S SIZE would be raised in assigning TO
value to control variable.

Explanation: If the TO value is bigger than the
maximum value that a FIXED or PICTURE variable can
hold, then a loop dominated by that variable would
cause SIZE to be raised. For example, in the first code
fragment below, x can not be assigned a value bigger
than 99. In the second code fragment below, y can not
be assigned a value bigger than 32767.

 dcl x pic'99';

 do x = 1 to 1'';

 put skip list(x);

 end;

 dcl y fixed bin(15);

 do y = 1 to 32768;

 put skip list(y);

 end;

IBM1647I S Too few subscripts specified for the
variable variable name.

Explanation: The number of subscripts given for a
variable must match that variable's number of
dimensions

IBM1648I S Too many subscripts specified for the
variable variable name.

Explanation: The number of subscripts given for a
variable must match that variable's number of
dimensions

IBM1649I S The number of inherited dimensions
plus the number of member dimensions
exceeds 15.

Explanation: Arrays with more than 15 dimensions are
not supported.

 dcl

 1 dim7(2,3,4,5,6,7,8),

 2 dim7more(2,3,4,5,6,7,8)

 3 dim2many(2,3) fixed bin,

 3 � fixed bin,

 2 � char(1');

IBM1650I S The LIKE reference is neither a structure
nor a union.

Explanation: The LIKE reference cannot be a scalar or
an array of scalars.

 dcl

 a fixed bin,

 1 b like a;

IBM1651I S The LIKE reference is ambiguous.

Explanation: The LIKE reference needs enough
qualification to be unique.

 dcl

 1 x like b,

 1 a,

 2 b,

 3 c,

 3 d,

 2 e,

 3 f,

 3 g,

 1 h,

 2 b,

 3 j,

 3 k;

52 Messages and Codes (OS/2 and Windows)

IBM1652I S �IBM1660I S

IBM1652I S Neither the LIKE reference nor any of its
substructures can be declared with the
LIKE attribute.

Explanation: LIKE from LIKE is not supported.

 dcl

 1 a,

 2 b1 like c,

 2 b2 like c,

 1 c,

 2 d fixed bin,

 2 e fixed bin;

 dcl

 1 x like a;

IBM1653I S The LIKE reference must not be a
member of a structure or union declared
with the LIKE attribute.

Explanation: LIKE from LIKE is not supported.

 dcl

 1 a,

 2 b1 like c,

 2 b2 like c,

 1 c,

 2 d fixed bin,

 2 e fixed bin;

 dcl

 1 x like a.b1;

IBM1654I S The LIKE reference is unknown.

Explanation: The LIKE reference must be known in the
block containing the LIKE attribute specification.

IBM1655I S Only CONTROLLED variables can be
passed to CONTROLLED parameters.

Explanation: If a parameter is declared as controlled,
non-controlled variables and expressions with operators
cannot be passed to it.

 dcl c char(2');

 call a(c);

 a: proc(b);

 dcl b controlled char(�);

IBM1656I S A CONTROLLED variable passed to a
CONTROLLED parameter must have the
same attributes as that parameter.

Explanation: Differences in any arithmetic attributes
are not permitted. The following example will emit this
message.

 dcl x fixed bin(15) controlled;

 call a(x);

 a: proc(b);

 dcl b controlled fixed bin(31);

IBM1657I S A subscript has been specified for the
non-array variable variable name.

Explanation: Subscripts are permitted only in array
element references.

IBM1658I S Argument number argument-number in
ENTRY reference ENTRY name is an
array expression requiring a temporary
array with strings of unknown length.

Explanation: Temporary arrays of strings are
supported only if the string length is known.

 dcl a entry, (b(1'),c(1')) char(2') var;

 call a(b || c);

IBM1659I S After LIKE expansion, aggregate would
contain more than 15 logical levels.

Explanation: The total number of logical levels after
LIKE expansion must not exceed 15.

IBM1660I S The size (record-size) of the record
conflicts with the RECSIZE (recsize)
specified in the ENVIRONMENT
attribute.

Explanation: Execution of the statement would raise
the RECORD condition.

 dcl datei file record output

 env(fb recsize (8') total) ;

 dcl satzaus char (1'');

 write file(datei) from(satzaus);

 Chapter 5. Compiler Severe Messages (1500-2500) 53

IBM1661I S �IBM1676I S

IBM1661I S Aggregates cannot be assigned to
scalars.

Explanation: Only scalars can be assigned to scalars.

IBM1662I S Unsupported use of union or structure
containing a union.

Explanation: Unions and structures containing unions
may not be used in expressions except when used as
an argument to a built-in function such as ADDR or
UNSPEC.

IBM1663I S Unsupported or invalid use of structure
expression.

Explanation: Structure expressions may not, for
instance, be assigned to arrays of scalars.

IBM1664I S Array expressions cannot be assigned
to non-arrays.

Explanation: Array expressions may not, for instance,
be assigned to structures or scalars.

IBM1665I S E15 sort exit routines must have the
RETURNS attribute.

Explanation: An E15 sort exit have the RETURNS
attribute since it will be invoked as a function by the sort
library routine.

IBM1666I S E15 sort exit routines must return a
CHARACTER string.

Explanation: An E15 sort exit may return a
NONVARYING, VARYING or VARYINGZ CHARACTER
string, but it must be a character string..

IBM1667I S Target in assignment is
NONASSIGNABLE.

Explanation: The target in an assignment statement
must not have the NONASSIGNABLE attribute.

IBM1668I S Target in assignment is a function
reference.

Explanation: The target of an assignment statement
must be an array, structure, union or scalar reference.
Function references are not permitted as target of
assignments.

IBM1669I S Target in assignment is a UNION.

Explanation: Assignments to UNIONs are not
supported.

IBM1671I S The source in a structure assignment
must be a scalar expression or a
matching structure.

Explanation: The source in a structure assignment
cannot be an array of scalars or a structure that does
not match the target.

IBM1672I S In multiple BY NAME assignments, if
one target is an array of structures, then
all must be.

Explanation: A BY NAME assignment may have not
have a mixture of array and non-array targets.

 dcl 1 a, 2 a1 fixed bin, 2 a2 fixed bin;

 dcl 1 b(3), 2 a1 fixed bin, 2 a2 fixed bin;

 dcl 1 c, 2 a1 fixed bin, 2 a2 fixed bin;

 a,b = c, by name;

IBM1673I S The target in a compound concatenate
and assign must be a VARYING or
VARYINGZ string.

Explanation: Only the simple assignment operator can
be used to assign to a NONVARYING string.

IBM1674I S Target in assignment contains UNIONs.

Explanation: The target in an assignment must not
contain any UNIONs.

IBM1675I S FROMALIEN option cannot be used with
MAIN.

Explanation: These two options are mutually exclusive.

IBM1676I S Source in assignment to LIMITED
ENTRY must be either a non-nested
ENTRY constant or another LIMITED
ENTRY.

Explanation: ENTRY constants representing nested
procedures and ENTRY variables not declared with the
LIMITED attribute cannot be assigned to variables with
the attributes LIMITED ENTRY.

54 Messages and Codes (OS/2 and Windows)

IBM1677I S �IBM1687I S

IBM1677I S Assignment of ENTRY to target type is
invalid. If the ENTRY should be
invoked, an argument list must be
provided.

Explanation: An ENTRY constant or variable without
an argument list will not be invoked and hence can be
assigned only to an ENTRY variable.

IBM1678I S Assignment of source type to target type
is invalid.

Explanation: The target attributes conflict with the
source attributes.

IBM1679I S Assignment of POINTER to OFFSET is
invalid unless the OFFSET is declared
with an AREA qualifier.

Explanation: POINTER expressions can be converted
to OFFSET only if the OFFSET is declared with an
AREA qualifier.

IBM1680I S Assignment of OFFSET to POINTER is
invalid unless the OFFSET is declared
with an AREA qualifier.

Explanation: OFFSET variables can be converted to
POINTER only if the OFFSET is declared with an AREA
qualifier.

IBM1681I S The number of preprocessor
invocations specified exceeds the
maximum number (25) allowed.

Explanation: A maximum of 25 preprocessor
invocations can be specified in the PP option or in
combination with the MACRO option.

IBM1682I S The target in a BY NAME assignment
must be a structure.

Explanation: The target in a BY NAME assignment
cannot be an array or a scalar.

IBM1683I S Set of matching names in the expansion
of BY NAME assignment must contain
either all structures or no structures.

Explanation: For instance, in the assignment, x = y, by
name, if both x and y immediately contain a member z,
then either both x.z and y.z are structures or neither x.z
and y.z is a structure.

IBM1684I S Number of dimensions in the BY NAME
corresponding elements variable name
and variable name do not match.

Explanation: In a BY NAME assignment, arrays with
matching names must have the same number of
dimensions.

 dcl

 1 a,

 2 b(4,5) bin(31,'),

 2 c bin(31,');

 dcl

 1 x,

 2 b(4) bin(31,'),

 2 c bin(31,');

 a = x, by name;

IBM1685I S Upper and lower bounds in BY NAME
corresponding elements variable name
and variable name do not match.

Explanation: In a BY NAME assignment, arrays with
matching names must have the same lower and upper
bounds.

 dcl

 1 a,

 2 b(1:5) bin(31,'),

 2 c bin(31,');

 dcl

 1 x,

 2 b(':4) bin(31,'),

 2 c bin(31,');

 a = x, by name;

IBM1686I S BY NAME assignment contains UNIONs.

Explanation: The target structure in a BY NAME
assignment must not contain any UNIONs even if no
names in those UNIONs match names in the source.
The source expression also must contain any unions or
structures containing unions.

IBM1687I S reserved name cannot be declared with
OPTIONS other than ASM.

Explanation: If the DLI compiler option is specified,
PLITDLI cannot be declared with any OPTIONS other
than OPTIONS(ASM).

 Chapter 5. Compiler Severe Messages (1500-2500) 55

IBM1688I S �IBM1700I S

IBM1688I S reserved name cannot be declared with
an entry description list.

Explanation: If the DLI compiler option is specified,
PLITDLI cannot be declared with an entry description
list.

IBM1689I S reserved name cannot be declared as a
function.

Explanation: If the DLI compiler option is specified,
PLITDLI cannot be declared as a function.

IBM1690I S OPTIONS(language-name) is not
supported for functions.

Explanation: Functions, i.e. entrys declared with the
RETURNS attribute, cannot be declared with
OPTIONS(ASM) or OPTIONS(COBOL).

IBM1691I S Extents in ENTRY descriptors must be
asterisks or restricted expressions with
computational type.

Explanation: In ENTRY descriptors, each array bound,
string length and AREA size must be specified either
with an asterisk or with a restricted expression that has
computational type.

IBM1692I S An ENTRY invoked as a function must
have the RETURNS attribute.

Explanation: There is no default RETURNS attribute.

 dcl e entry;

 a = e();

IBM1693I S call-option option repeated in CALL
statement.

Explanation: The TASK, EVENT and PRIORITY
options may be specified only once in any CALL
statement.

IBM1694I S Reference in CALL statement must not
be a built-in function.

Explanation: CALL x is invalid unless x is a built-in
subroutine, an ENTRY constant, or an ENTRY variable.
Built-in functions are not built-in references. For
example, "Call SQRT(x)" is invalid.

IBM1695I S Reference in CALL statement must
either be a built-in subroutine or have
type ENTRY.

Explanation: CALL x is invalid unless x is a built-in
subroutine, an ENTRY constant, or an ENTRY variable.

IBM1696I S RETURN statement without an
expression is invalid inside a
subprocedure that specified the
RETURNS attribute.

Explanation: All RETURN statements inside functions
must specify a value to be returned.

 a: proc returns(fixed bin);

 return;

IBM1697I S RETURN statement is invalid inside a
PROCEDURE that did not specify the
RETURNS attribute.

Explanation: A statement of the form RETURN(x) is
valid inside only PROCEDUREs that are defined with a
RETURNS attribute.

IBM1698I S RETURN statement with an expression
is invalid inside a BEGIN in a
PROCEDURE that does not have the
RETURNS(BYADDR) attribute.

Explanation: A statement of the form RETURN(x) is
valid inside a BEGIN block only if the PROCEDURE
enclosing that BEGIN block has the
RETURNS(BYADDR) attribute explicitly or by default.

IBM1699I S Argument number argument-number in
ENTRY reference ENTRY name is an
aggregate. This conflicts with the
BYVALUE option.

Explanation: Arrays, structures, and unions cannot be
passed BYVALUE.

IBM1700I S Argument number argument-number in
ENTRY reference ENTRY name is an
AREA reference with unknown size.
This conflicts with the BYVALUE option.

Explanation: Only AREA variables with constant size
can be passed BYVALUE.

56 Messages and Codes (OS/2 and Windows)

IBM1701I S �IBM1709I S

IBM1701I S Argument number argument-number in
ENTRY reference ENTRY name is a
string with unknown size. This conflicts
with the BYVALUE option.

Explanation: Only strings with constant size can be
passed BYVALUE.

IBM1702I S The attribute keyword attribute is invalid
as a RETURNS subattribute.

Explanation: Structures and union may not be
returned.

IBM1703I S Reference in CALL statement must not
be an aggregate reference.

Explanation: CALL references must be scalars.

 dcl ea(1') entry;

 call ea;

IBM1704I S Too many argument lists have been
specified for the variable variable name.

Explanation: A function can have only one argument
list unless it returns an ENTRY, in which case it can
have only two argument lists unless the returned ENTRY
returns an ENTRY, and so on.

IBM1705I S RETURN expression with attribute
source type is invalid for RETURNS
options specifying the attribute target
type.

Explanation: The RETURN expression must have a
type that can be converted to the type indicated in the
RETURNS option.

 a: proc returns(pointer)

 return(');

 end;

IBM1706I S RETURN expression with attribute
source type is invalid for RETURNS
options specifying the attribute target
type. If the ENTRY should be invoked,
an argument list must be provided.

Explanation: The RETURN expression must have a
type that can be converted to the type indicated in the
RETURNS option.

 a: proc returns(pointer)

 dcl f entry returns(pointer);

 return(f);

 end;

IBM1707I S RETURN expression with attribute
source type is invalid for RETURNS
options specifying the attribute LIMITED
ENTRY.

Explanation: Only an EXTERNAL ENTRY
CONSTANT, an ENTRY CONSTANT representing a
non-nested PROCEDURE, or an ENTRY VARIABLE
with the LIMITED attribute can be specified as the
RETURNS expression in a function that returns a
LIMITED ENTRY.

IBM1708I S RETURN expression with attribute
POINTER is invalid for RETURNS
options specifying the attribute OFFSET
since the OFFSET attribute is not
declared with an AREA qualifier.

Explanation: POINTER expressions can be converted
to OFFSET only if the offset is declared with an AREA
qualifier.

IBM1709I S RETURN expression with attribute
OFFSET is invalid for RETURNS options
specifying the attribute POINTER since
the OFFSET expression is not an
OFFSET variable declared with an AREA
qualifier.

Explanation: OFFSET variables can be converted to
POINTER only if the OFFSET is declared with an AREA
qualifier.

 Chapter 5. Compiler Severe Messages (1500-2500) 57

IBM1710I S �IBM1722I S

IBM1710I S ORDINAL type in RETURN expression
and RETURNS option must match.

Explanation: In a function that returns an ordinal, the
ORDINAL type in any RETURN expression must be the
same as returned by the function.

 a: proc returns(ordinal color);

 dcl i ordinal intensity;

 return(i);

 end;

IBM1711I S Expression in RETURN statement must
be scalar.

Explanation: The expression in a RETURN statement
must not be an array, a structure, or an union.

IBM1712I S External name specification must be a
non-null string.

Explanation: EXTERNAL('') is invalid.

IBM1713I S Function function name contains no
RETURN statement.

Explanation: Functions must contain at least one
RETURN statement.

IBM1714I S Extents in RETURNS descriptors must
be constants.

Explanation: In RETURNS descriptors, each array
bound, string length, and AREA size must be specified
with a restricted expression that has computational type.
Unlike ENTRY descriptors, asterisks are not permitted.

IBM1715I S Exit from an ON-unit via RETURN is
invalid.

Explanation: RETURN statements are not permitted in
an ON-unit or any of its contained BEGIN blocks unless
the contained block is also contained in a procedure
defined in the ON-unit.

IBM1716I S FORMAT expression must be a scalar
value.

Explanation: Expressions in FORMAT lists, including
SKIP clauses, must represent scalar values.

IBM1717I S FORMAT expression must have
computational type.

Explanation: Expressions in FORMAT lists, including
SKIP clauses, must have computational type so that the
expression can be converted to FIXED BIN(31).

IBM1718I S source type is invalid as a boolean
expression.

Explanation: The expression in an IF, WHILE, UNTIL,
SELECT, or WHEN clause must have computational
type so that it can be converted to BIT(1).

IBM1719I S ENTRY is invalid as a boolean
expression. If an ENTRY should be
invoked, an argument list must be
provided.

Explanation: The expression in an IF, WHILE, UNTIL,
SELECT, or WHEN clause must have computational
type so that it can be converted to BIT(1). An ENTRY
cannot be used as a boolean expression. If the ENTRY
is a function which should be invoked, an argument list,
even if it consists only of a left and right parenthesis,
must be provided.

IBM1720I S Expression for calculating size of
variable with adjustable extents is too
complicated. Variable may be defined in
terms of itself.

Explanation: An expression used in calculating the
size of a variable must not depend on any values that
the variable may have because those values do not exist
until storage can be allocated for the variable.

IBM1721I S Expression contains too many nested
subexpressions.

Explanation: The compiler's space for evaluating
expressions has been exhausted. Rewrite the
expression in terms of simpler expressions.

IBM1722I S The number of error messages allowed
by the MAXMSG option has been
exceeded.

Explanation: Compilation will terminate when the
number of messages has exceeded the limit set in the
MAXMSG compiler option.

58 Messages and Codes (OS/2 and Windows)

IBM1723I S �IBM1735I S

IBM1723I S Result of concatenating two literals is
too long.

Explanation: The length of the string literal produced
by concatenating two string literals must not be greater
than the maximum allowed for a literal with the derived
string type.

IBM1724I S Addition of source type and target type is
invalid.

Explanation: One of the operands in an addition must
be computational and the other must be either
computational or a locator.

IBM1725I S Addition of source type and target type is
invalid. If an ENTRY should be invoked,
an argument list must be provided.

Explanation: An ENTRY cannot be used as an
arithmetic operand. If the ENTRY is a function which
should be invoked, an argument list, even if it consists
only of a left and right parenthesis, must be provided.

IBM1726I S Subtraction of target type from source
type is invalid.

Explanation: The first operand in a subtraction must
be computational or a locator. The second operand can
be a locator only if the first is a locator. Otherwise, the
second operand must be computational.

IBM1727I S Subtraction of target type from source
type is invalid. If an ENTRY should be
invoked, an argument list must be
provided.

Explanation: An ENTRY cannot be used as an
arithmetic operand. If the ENTRY is a function which
should be invoked, an argument list, even if it consists
only of a left and right parenthesis, must be provided.

IBM1728I S Multiplication of source type by target
type is invalid.

Explanation: Both operands in a multiplication must be
computational.

IBM1729I S Multiplication of source type by target
type is invalid. If an ENTRY should be
invoked, an argument list must be
provided.

Explanation: An ENTRY cannot be used as an
arithmetic operand. If the ENTRY is a function which
should be invoked, an argument list, even if it consists
only of a left and right parenthesis, must be provided.

IBM1730I S Division of source type by target type is
invalid.

Explanation: Both operands in a division must be
computational.

IBM1731I S Division of source type by target type is
invalid. If an ENTRY should be invoked,
an argument list must be provided.

Explanation: An ENTRY cannot be used as an
arithmetic operand. If the ENTRY is a function which
should be invoked, an argument list, even if it consists
only of a left and right parenthesis, must be provided.

IBM1732I S Unsupported use of aggregate
expression.

Explanation: Aggregate expressions are supported
only as the source in an assignment statement and, with
some limitations, as an argument to the ANY or ALL
built-in functions.

IBM1733I S Concatenate operands must have
computational type.

Explanation: Only expressions having string or
numeric type may be concatenated.

IBM1734I S Operand in a prefix expression is not
computational.

Explanation: The prefix operators (plus, minus, and
logical not) may be applied only to expressions having
string or numeric type.

IBM1735I S AREA variables may not be compared.

Explanation: No relational operations are defined for
AREA variables.

 Chapter 5. Compiler Severe Messages (1500-2500) 59

IBM1736I S �IBM1747I S

IBM1736I S Comparison of source type to target type
is invalid.

Explanation: Computational types can be compared
only with other computational types, and
non-computational types can be compared only with like
non-computational types.

IBM1737I S Comparison of ENTRY to target type is
invalid. If the ENTRY should be
invoked, an argument list must be
provided.

Explanation: ENTRYs can be compared only with
other ENTRYs. If the ENTRY is a function which should
be invoked, an argument list, even if it consists only of a
left and right parenthesis, must be provided.

IBM1738I S Comparison of source type to ENTRY is
invalid. If the ENTRY should be
invoked, an argument list must be
provided.

Explanation: ENTRYs can be compared only with
other ENTRYs. If the ENTRY is a function which should
be invoked, an argument list, even if it consists only of a
left and right parenthesis, must be provided.

IBM1739I S TASK variables may not be compared.

Explanation: No relational operations are defined for
TASK variables.

IBM1740I S Comparison of an OFFSET to a
POINTER is invalid since the OFFSET
comparand is not an OFFSET variable
declared with an AREA qualifier.

Explanation: An OFFSET can be compared with a
POINTER as long as the OFFSET can be converted to a
POINTER. This requires that the OFFSET is declared
with an AREA qualifier.

IBM1741I S Operands in comparison have differing
strong types.

Explanation: Comparisons of strongly-typed variables
are invalid unless both have the same type.

 dcl hp handle point;

 dcl hr handle rectangle;

 if hp = hr then

 ...

IBM1742I S Compared ORDINALs must have the
same ORDINAL type.

Explanation: ORDINALs cannot be compared with
other ORDINALs having a different ORDINAL type.

IBM1743I S Source and target in assignment have
differing strong types.

Explanation: Assignments of strongly-typed variables
are invalid unless both have the same type.

IBM1744I S Conversion of ORDINALs is invalid
unless both have the same ORDINAL
type.

Explanation: ORDINALs cannot be assigned to other
ORDINALs having different ORDINAL type.

IBM1745I S In a function that returns a strong type,
the type in any RETURN expression
must be the same as that returned by
the function.

Explanation: For instance, in a function that returns a
typed structure, any RETURN expression must have the
same structure type.

IBM1746I S VALUE and STATIC INITIAL expressions
must be constant.

Explanation: These expressions must be reducible to
a constant at compile-time.

 dcl a fixed bin static nonassignable init(');

 dcl m fixed bin value(a);

 dcl n fixed bin static init(a);

IBM1747I S Function cannot be used before the
function's descriptor list has been
scanned.

Explanation: This is a compiler restriction. Reorder the
declarations and blocks in your program. For example,
the following declarations should be in reverse order.

 dcl a char(csize(x, y));

 dcl csize entry(char(2), fixed bin)

 returns(fixed bin);

60 Messages and Codes (OS/2 and Windows)

IBM1748I S �IBM1758I S

IBM1748I S Extents of automatic variables must not
depend on the extents of automatic
variables declared later in the same
block.

Explanation: Reorder the declarations in your program.
For example, the following declarations should be in
reverse order.

 dcl a char(length(b)) auto;

 dcl b char(1') auto;

IBM1749I S VALUE and INITIAL expressions must
be scalars.

Explanation: Aggregate expressions are not valid as
INITIAL and VALUE expressions.

IBM1750I S INITIAL attribute is invalid for the
STATIC LABEL variable variable-name
since it has the MEMBER attribute.

Explanation: LABEL variables require block activation
information; they cannot be initialized at compile-time. If
the variable were not a member of a structure, the
storage class would be changed to AUTOMATIC and an
E-level message would be issued instead.

IBM1751I S INITIAL attribute is valid for the STATIC
ENTRY variable variable-name only if it
has the LIMITED attribute.

Explanation: ENTRY variables that don't have the
LIMITED attribute require block activation information,
and hence they cannot be initialized at compile-time.

IBM1753I S INITIAL attribute is invalid for the
STATIC FORMAT variable variable-name.

Explanation: FORMAT variables require block
activation information, and hence they cannot be
initialized at compile-time. If the variable were not a
member of a structure, the storage class would be
changed to AUTOMATIC and an error message would
be issued instead.

IBM1754I S An asterisk iteration factor can be
applied only to the last expression in
the INITIAL item list for variable-name.

Explanation: Since an asterisk iteration factor
completes the initialization of a variable, it cannot be
followed by more initial values.

 dcl a(1') fixed bin init(1, 2, (�) ', 8);

IBM1755I S An asterisk iteration factor cannot be
used in the nested INITIAL item list for
variable-name.

Explanation: An asterisk iteration can be used only in
a non-nested INITIAL item list. The following example is
invalid.

 dcl a(2') fixed bin init((2) (1, (�) 2));

IBM1756I S The scalar variable variable-name has an
INITIAL list with more than one item.

Explanation: Only arrays can have an INITIAL list with
more than one element.

 dcl a fixed bin init(1, 2);

IBM1757I S LABEL constant in STATIC INITIAL for
the variable variable-name must be in the
same block as the LABEL being
initialized.

Explanation: Change the storage class to
AUTOMATIC.

 lx:;

 subproc: proc;

 dcl la static label init(lx);

 end;

IBM1758I S Only one element in the STATIC UNION
variable-name may have the INITIAL
attribute.

Explanation: If more than one element in a STATIC
UNION had an INITIAL value, it would not be clear
which should take precedence.

 dcl

 1 a union static,

 2 b fixed bin(31) init(17),

 2 c fixed bin(15) init(19);

 Chapter 5. Compiler Severe Messages (1500-2500) 61

IBM1759I S �IBM1768I S

IBM1759I S Non-null INITIAL values are not
supported for the STATIC
NONCONNECTED array variable-name
since it has the attributes UNALIGNED
BIT.

Explanation: The only supported INITIAL values for a
STATIC UNALIGNED BIT variable with inherited
dimensions are bit strings equal to ''b.

 dcl

 1 a(1',2) static,

 2 b1 bit(1) init((2') '1'b),

 2 b2 bit(1) init((2') '''b);

IBM1760I S LABEL constant in the STATIC INITIAL
list for variable-name must not be an
element of a LABEL CONSTANT array.

Explanation: Replace the subscripted LABEL with an
unsubscripted one or change the storage class to
AUTOMATIC.

 lx(1):;

 lx(2):;

 dcl la(2) static label init(lx(2), lx(1));

IBM1761I S ENTRY reference in INITIAL clause for
the STATIC ENTRY variable
variable-name must not be FETCHABLE.

Explanation: The variable y in DCL x ENTRY LIMITED
INIT(y) must not be FETCHABLE; y must not be used in
a FETCH or RELEASE statement, and y must not have
the OPTIONS(FETCHABLE) attribute.

IBM1762I S INITIAL iteration factor must have
computational type.

Explanation: Iteration factors in INITIAL lists must
have numeric or string types.

IBM1763I S INITIAL iteration factor must be a scalar.

Explanation: An iteration factor in an INITIAL list must
not be an array, structure, or union.

IBM1764I S The BYVALUE attribute is invalid for
strings of nonconstant length.

Explanation: Strings with nonconstant length must be
passed and received by address.

 a: proc(x);

 dcl x char(�) byvalue;

IBM1765I S Length of string with the VALUE
attribute must be a constant or an
asterisk.

Explanation: Named strings must have a constant
length or a length determined from their VALUE.

 dcl a fixed bin automatic;

 dcl s char(a) value('variable length');

IBM1766I S VALUE for variable-name must be
evaluated before its first use.

Explanation: Named constants must be evaluated
before they are used. Reorder the declarations so that
each named constant is declared before its first use.

 dcl a char(n) static init('tooSoon');

 dcl n fixed bin value(7);

IBM1767I S Control variable in DO statement must
not be a named constant.

Explanation: Named constants may not be used as
control variables in DO loops.

 dcl n fixed bin value(7);

 do n = 1 to 5;

IBM1768I S Control variable in DO statement must
have VARIABLE attribute.

Explanation: Constants may not be used as control
variables in DO loops.

 dcl ex external entry, (ev1, ev2) entry;

 do ex = ev1, ev2;

62 Messages and Codes (OS/2 and Windows)

IBM1769I S �IBM1781I S

IBM1769I S Control variable has type POINTER, but
TO expression does not.

Explanation: If the control variable in a DO loop has
POINTER type, the TO expression must have POINTER
type. Implicit conversion from OFFSET to POINTER is
not supported in this context.

IBM1770I S Control variable in loop with TO clause
must have computational or locator
type.

Explanation: In a DO loop with a TO clause, the
control variable must have a type that allows a
comparison of less than and greater than. This is
possible only for computational and locator types.

IBM1771I S The variable name BUILTIN function may
be used as a pseudovariable in a
DO-loop only if the length of the
pseudovariable reference is known at
compile time.

Explanation: SUBSTR and UNSPEC may be used as
pseudovariables in DO-loops only if their derived length
is known at compile time.

IBM1772I S Source in DO loop initialization must be
scalar.

Explanation: In a DO loop of the form DO a = b TO c,
b must be a scalar.

IBM1773I S Control variable in DO statement must
be a scalar.

Explanation: In a DO loop of the form DO x = .., x
must be a scalar.

IBM1774I S Compiler restriction: control variable in
DO statement must not be a BASED or
CONTROLLED string or area that has
non-constant extent.

Explanation: In a DO loop of the form DO x = .., if x is
a string or an area, then it must have constant size or
must be static, automatic, or defined.

IBM1775I S BY expression must have computational
type.

Explanation: The expression in the BY clause of a DO
loop must have a string or numeric type. It cannot have
a locator type because it must be comparable to zero.

IBM1776I S BY expression must not be COMPLEX.

Explanation: The expression in the BY clause of a DO
loop must be REAL.

 dcl z cplx float;

 do jx = 1 to 1' by z;

IBM1777I S TO expression must not be COMPLEX.

Explanation: The expression in the TO clause of a DO
loop must be REAL

 dcl z cplx float;

 do jx = 1 to z;

IBM1778I S Control variable in loop with TO clause
must not be COMPLEX.

Explanation: In a DO loop with a TO clause, the
control variable must have a type that allows a
comparison of less than and greater than. This is
possible for numeric types only if the numeric type is
REAL.

IBM1779I S TO expression must have computational
type.

Explanation: The expression in the TO clause of a DO
loop must have a string or numeric type.

IBM1780I S SIGNAL ANYCONDITION is invalid.

Explanation: ON ANYCONDITION may be used to
trap conditions not otherwise trapped, but
ANYCONDITION may not be signalled.

IBM1781I S And, or and exclusive-or of source type
and target type is invalid.

Explanation: Bitwise operands must have a
computational type.

 Chapter 5. Compiler Severe Messages (1500-2500) 63

IBM1782I S �IBM1796I S

IBM1782I S And, or and exclusive-or of source type
and target type is invalid. If an ENTRY
should be invoked, an argument list
must be provided.

Explanation: An ENTRY cannot be used as a bitwise
operand. If the ENTRY is a function which should be
invoked, an argument list, even if it consists only of a left
and right parenthesis, must be provided.

IBM1783I S BASED variable without an implicit
qualifier must be explicitly qualified.

Explanation: A variable declared as BASED instead of
as BASED(reference) must always be explicitly
qualified. This is necessary even when the variable is an
argument to built-in functions such as STORAGE.

IBM1784I S The ENTRY variable-name may not be
used as a locator qualifier since it does
not have the RETURNS attribute.

Explanation: Functions, but not subprocedures, can be
used as locator qualifiers (and then only if they return a
locator).

IBM1785I S The variable variable-name is used as a
locator qualifier, but it is not a scalar.

Explanation: Only scalars can be used as locator
qualifiers.

IBM1786I S BUILTIN name built-in may not be used
as a locator qualifier.

Explanation: The named built-in function cannot be
used as a locator qualifier since it does not return a
POINTER.

IBM1787I S The ENTRY variable-name may not be
used as a locator qualifier.

Explanation: x(...)->y is invalid unless x returns a
POINTER or an OFFSET declared with a qualifying
AREA.

IBM1789I S The qualifier variable-name does not
have locator type.

Explanation: Only POINTERs and OFFSETs declared
with a qualifying AREA can be used as locator qualifiers.

IBM1790I S Locator qualification is invalid for
variable-name.

Explanation: Locator qualification is valid only for
BASED variables.

IBM1791I S The locator qualified reference reference
name is ambiguous.

Explanation: All references must be unambiguous.

IBM1792I S The locator qualified reference reference
name is unknown.

Explanation: Locator qualified references must be
explicitly declared. BASED variables may not be
implicitly declared.

IBM1793I S The variable name BUILTIN function may
not be used as a pseudovariable in a
DO-loop.

Explanation: Only IMAG, REAL, SUBSTR and
UNSPEC may be used as pseudovariables in DO loops.

IBM1794I S Too many implicit locators are needed
to resolve the qualification for a
variable. Variable may be based on
itself.

Explanation: An implicitly qualified variable must
require no more than 15 qualifiers to be completely
qualified. If it requires more, this may indicate its
qualifiers are too interdependent.

 dcl a pointer based(b);

 dcl b pointer based(a);

 a = null();

IBM1795I S The OFFSET variable variable-name may
not be used as a locator qualifier since
it was not declared with an AREA
specification.

Explanation: An OFFSET variable can be used as a
locator qualifier only if it can be converted to a pointer
value. This requires that the offset be declared with an
AREA qualification.

IBM1796I S Qualifier must be a scalar.

Explanation: Arrays, structures, and unions may not
be used as locator qualifiers.

64 Messages and Codes (OS/2 and Windows)

IBM1797I S �IBM1810I S

IBM1797I S BASED variables may not contain
extents with nonconstant values if other
extents use the REFER option.

Explanation: The REFER option cannot be used in a
BASED variable which also has an extent that is set by
a non-constant expression.

IBM1798I S Invalid scale factor in PICTURE
specification.

Explanation: The picture character F specifies a
picture scaling factor for fixed-point decimal numbers.
The number of digits following the V picture character,
minus the integer specified with F, must be between
-128 and 127.

IBM1799I S Invalid characters in PICTURE
specification.

Explanation: The picture specification can contain only
A X 9 for the Character Data, and only 9 V Z * , . / B S
+ - $ CR DB Y K E F < > for the Numeric Data. The
characters between the insertion characters < > are not
affected by this rule.

IBM1800I S Invalid characters in the F scaling
factor.

Explanation: The picture character F specifies a
picture scaling factor for fixed-point decimal numbers.
The format is F(n) where n can be any signed integer
between -128 and 127 inclusively.

IBM1801I S A character PICTURE string may have
only A, X, or 9.

Explanation: The picture specification can contain only
A, X, or 9 for the character data. Other characters are
not permitted.

IBM1802I S Invalid precision in PICTURE fixed
decimal precision.

Explanation: The number of digits for the precision
field within a numeric data picture specification must be
between one and the maximum allowed by the
LIMITS(FIXEDDEC) option.

IBM1803I S Too many T, I, or R appear in the
PICTURE specification.

Explanation: T, I, or R are the overpunched characters
in the picture specification. Only one overpunched
character can appear in the specification for a fixed point
number. A floating-point specification can contain two
(One in the mantissa field and one in the exponent field).

IBM1804I S PICTURE specifications in C-format
items must be arithmetic.

Explanation: Character PICTURE specifications are
not permitted in C-format items.

IBM1805I S Precision in numeric PICTURE must
NOT be less than 1.

Explanation: The precision field within a numeric data
picture specification must contain at least one digit.

IBM1806I S The precision in FIXED DECIMAL
PICTURE is too big.

Explanation: The precision in the fixed decimal picture
specification must not exceed that specified in the
LIMITS compiler option.

IBM1807I S Precision in FLOAT DECIMAL PICTURE
is too big.

Explanation: The precision in the float decimal picture
specification is limited by the hardware to 18 digits.

IBM1808I S PICTURE string is empty.

Explanation: Null picture strings (''P) are invalid.

IBM1809I S Exponent in FLOAT PICTURE is too
long. Exponent will be truncated to fit.

Explanation: The number of digits in the exponent of
the float decimal picture specification is limited to 4.

IBM1810I S Exponent in FLOAT PICTURE has no
digits.

Explanation: The exponent in the float decimal picture
specification is missing. It must be entered even if it is
zero.

 Chapter 5. Compiler Severe Messages (1500-2500) 65

IBM1811I S �IBM1824I S

IBM1811I S Exponent in PICTURE specification
cannot contain V.

Explanation: V specifies an implicit decimal point.
Therefore, it is not permitted in the exponent field.

IBM1812I S FLOAT PICTURE cannot contain CR, DB
or F.

Explanation: Credit (CR), debit (DB), and scale factor
(F) are only allowed in the FIXED picture specification.

IBM1813I S PICTURE specification is too long.
Excess characters are truncated on the
right.

Explanation: The compiler restrictions on the length of
the picture specification are:

 fixed decimal: 254

 float decimal: 253

 character data: 511

IBM1814I S PICTURE string has an invalid floating
insertion character string.

Explanation: The floating insertion string is delimited
by < >. Floating is done by the > character. The string
can contain any character with one exception: the
delimiters themselves. In order to include the characters
< and > in the floating insertion string, these angle
brackets must be used in an escaped format. << must
be used to specify the character <, and <> must be used
to specify the character >. So, for example,
<aaa<<bbb<>ccc> denotes the insertion string
aaa<bbb>ccc.

IBM1816I S keyword item variable name is not
computational.

Explanation: The expression must be arithmetic or
string.

 dcl x label variable;

 put list(x);

IBM1817I S The KEYTO reference must be of type
CHARACTER or GRAPHIC.

Explanation: The KEYTO reference should have the
data type character or graphic. The reference can also
be a variable with a non-numeric picture string
specification.

IBM1818I S I/O-option conflicts with previous options
on the I/O-stmt statement.

Explanation: An option on the I/O statement conflicts
with prior options.

 open file(f1) input output;

 read file(f) into(x) set(p);

IBM1819I S The I/O-option option is multiply
specified on the I/O-stmt statement.

Explanation: Each option may be specified only once.

 read file(f1) ignore(1) ignore(2);

IBM1820I S Mandatory I/O-option option not
specified on the I/O-stmt statement.

Explanation: A required statement element has not
been specified.

 open output;

 write file(x);

IBM1821I S Reference for from-into-option is an
invalid element or aggregate type.

Explanation: An invalid scalar or aggregate reference
has been specified for the FROM or INTO clause in a
record I/O statement. The example below will cause this
message to be issued.

 dcl f1 file;

 read file(f1) into(f1);

IBM1822I S The keyword-type expression must be
computational.

Explanation: The expression in a KEY or KEYFROM
record I/O statement option must be computational data.

IBM1823I S SET reference must have locator type.

Explanation: In the SET clause of an ALLOCATE or
LOCATE statement, the reference must have the type
POINTER or OFFSET.

IBM1824I S keyword expression must be scalar.

Explanation: The expression in the named keyword
clause must be scalar. This keyword clause could be an
IF, UNTIL, WHILE, WHEN, KEY, KEYFROM or KEYTO
clause.

 dcl f1 file;

 dcl x char(1');

 dcl z(1') char(1');

 read file(f1) into(x) key(z);

66 Messages and Codes (OS/2 and Windows)

IBM1825I S �IBM1835I S

IBM1825I S The reference in the keyword clause
cannot be a built-in function reference.

Explanation: The references for the KEYTO, FROM,
INTO, and SET record I/O options cannot be built-in
functions. The example below will cause this message
to be issued.

 dcl f1 file;

 dcl x char(1');

 read file(f1) into(hex(x));

IBM1826I S The reference in the keyword clause
cannot be a function invocation.

Explanation: The references for the KEYTO, FROM,
INTO, and SET record I/O options cannot be entry.

IBM1827I S The reference in the keyword clause
must have CHARACTER type.

Explanation: The specified reference is invalid. It must
be of type character. The example below will cause this
message to be issued.

 dcl p pointer;

 display ('what is your name?') reply(p);

IBM1828I S The reference in the keyword clause
must be a scalar variable.

Explanation: The specified reference is invalid. It must
be a scalar. The example below will cause this
message to be issued.

 dcl z(1') char(1');

 display ('what is your name?') reply(z);

IBM1829I S The attributes of the argument in the
clause clause conflict with its usage.

Explanation: The declared attributes conflict with their
use in the statement.

 dcl f file stream;

 read file(f) into(x);

IBM1830I S keyword expression is not
computational.

Explanation: The expression must be arithmetic or
string.

 dcl p pointer;

 put list(ptradd(p,2));

IBM1831I S The LOCATE reference variable-name is
not implicitly qualified and is invalid
without a SET clause.

Explanation: Provide a SET clause in the LOCATE
statement.

 dcl f file;

 dcl x char(1') based;

 locate x file(f1);

IBM1832I S SET reference must have POINTER type.

Explanation: The reference in the SET clause of a
FETCH statement must have the POINTER type.
OFFSET types are not supported in this context.

IBM1833I S The aggregate reference in the from-into
clause clause must be CONNECTED.

Explanation: The specified reference in the FROM or
INTO record I/O option is invalid. The reference must
be connected. The example below will cause this
message to be issued.

 dcl f1 file;

 dcl 1 a(3),

 2 b(4) char(4),

 2 c(4) char(4);

 read file(f1) into(b);

IBM1834I S The expression in IGNORE must be
computational.

Explanation: The specified expression in the IGNORE
option of the READ statement must be computational.
The example below will cause this message to be
issued.

 dcl a area;

 read file(f1) ignore(a);

IBM1835I S The LOCATE reference variable-name is
not a level-1 BASED variable.

Explanation: The LOCATE reference may not be a
structure member and must have the storage attribute
BASED.

 Chapter 5. Compiler Severe Messages (1500-2500) 67

IBM1836I S �IBM1850I S

IBM1836I S INITIAL attribute is invalid for
structures.

Explanation: The INITIAL attribute is valid only for
scalars and arrays of scalars.

IBM1837I S The reference in the keyword clause
cannot be a named constant.

Explanation: The specified reference is invalid. It
cannot be a named constant. The example below will
cause this message to be issued.

 dcl f1 file;

 dcl x char(2);

 dcl val fixed bin(15) value(4);

 read file(f1) into(x) keyto(val);

IBM1838I S The attributes of argument-number
conflict with its usage in data directed
I/O.

Explanation: Only AUTOMATIC, CONTROLLED,
PARAMETER, STATIC and and implicitly qualified
BASED variables are supported in data directed I/O.

 dcl q based;

 put data(q);

IBM1839I S DATA-directed I/O does not support
references with locators.

Explanation: Use a temporary or use LIST- or EDIT
directed I/O.

IBM1840I S Subscripted references are not allowed
in GET DATA.

Explanation: Use a temporary or use GET LIST or
GET EDIT.

IBM1841I S The first argument in the keyword
-format item is invalid.

Explanation: The format argument is outside the valid
range.

 put edit('hi') (a(-1));

IBM1842I S The field width specified in the keyword
-format item is too small for complete
input or output of the data item.

Explanation: The width specified is too small for
complete processing.

 put edit(1'19') (f(3));

IBM1843I S The fractional digits specified in the
keyword -format item is invalid.

Explanation: The fractional number of digits must be
less than or equal to the field width and non-negative.

IBM1844I S The argument in the R-format item is
not a format constant or format variable.

Explanation: The argument to the R-format item must
be either a format constant or a format variable.

IBM1845I S The significant digits specified in
E-format item is invalid.

Explanation: The number of significant digits must be
greater than or equal to the number of fractional digits,
less than or equal to the field width and non-negative.

IBM1846I S The format-item format item is invalid
with GET/PUT STRING.

Explanation: G, L, PAGE, LINE, SKIP, and COLUMN
format items may not be used in GET/PUT EDIT
statements using the STRING option.

IBM1847I S GOTO target is inside a (different) DO
loop.

Explanation: The target of a GOTO cannot be inside a
DO loop unless the GOTO itself is in the same DO loop.

IBM1848I S The INCLUDE file for include-stmt-arg
could not be found.

Explanation: The INCLUDE file could not be found or
opened.

IBM1849I S Under CMPAT(V1), bounds must not be
greater than 32767.

Explanation: Under CMPAT(V1), bounds must be
between -32768 and 32767 inclusive. To use bounds
outside this range, specify a different CMPAT option.

IBM1850I S Under CMPAT(V1), bounds must not be
less than -32768.

Explanation: Under CMPAT(V1), bounds must be
between -32768 and 32767 inclusive. To use bounds
outside this range, specify a different CMPAT option.

68 Messages and Codes (OS/2 and Windows)

IBM1851I S �IBM1866I S

IBM1851I S The INCLUDE file include-file-name could
not be opened.

Explanation: An unexpected error occurred while trying
to open an include source file.

IBM1852I S The preprocessor preprocessor is not
known to the compiler.

Explanation: A preprocessor specified in the PP
compiler option is unknown.

IBM1853I S Variable in statement statement must be
a FETCHABLE entry constant.

Explanation: The argument in the FETCH and
RELEASE statements must be a FETCHABLE entry
constant.

IBM1854I S Fetch of the PP name preprocessor
failed with ONCODE= oncode.

Explanation: The compiler attempted to load the
module specified in the PP-DEF installation option for
the preprocessor.

IBM1855I S Preprocessor PP name terminated
abnormally with ONCODE= oncode-value.

Explanation: A terminating error was detected in a
preprocessor invoked by the compiler.

IBM1856I S Fetch of the user exit initialization
routine failed with ONCODE= oncode.

Explanation: The compiler was unable to load the user
exit.

IBM1857I S User exit routine terminated abnormally
with ONCODE= oncode-value.

Explanation: The compiler detected a terminating error
in the user exit.

IBM1858I S Compile aborted by user exit.

Explanation: The user exit aborted the compile by
setting the return code to 16.

IBM1859I S The first statement must be a
PROCEDURE or PACKAGE statement.

Explanation: All other statements must be enclosed in
a PACKAGE or PROCEDURE statement.

IBM1860I S PACKAGE statement must be the first
statement in the program.

Explanation: PACKAGE statements cannot follow any
other statements in the program.

IBM1861I S All statements other than DECLARE,
DEFAULT and PROCEDURE statements
must be contained inside a
PROCEDURE.

Explanation: This message can occur, for instance, if
the first PROCEDURE statement is invalid or if a
PROCEDURE contains too many END statements.

IBM1862I S Statements are nested too deep.

Explanation: The nesting of PROCEDURE, DO,
SELECT and similar statements is greater than that
supported by the compiler. Rewrite the program so that
it is less complicated.

IBM1863I S Variables declared in a PACKAGE
outside of any PROCEDURE must have
the storage class STATIC, BASED or
CONTROLLED or must be DEFINED on
STATIC.

Explanation: AUTOMATIC variables must be declared
inside a PROCEDURE, and DEFINED variables
declared outside a PROCEDURE must be defined on
STATIC.

IBM1864I S The function name built-in is not
supported.

Explanation: Support for the indicated built-in function
has been discontinued.

IBM1865I S The only BASED variables are
supported in data-directed i/o are those
that have constant extents and that are
implicitly qualified by simple variables.

Explanation: The variable implicitly qualifying the
BASED variable must be a scalar that is not part of an
array, structure or union, and it must be a
non-segmented POINTER with either the AUTOMATIC
or STATIC storage attribute.

IBM1866I S The keyword statement is not supported.

Explanation: Support for the indicated statement has
been discontinued.

 Chapter 5. Compiler Severe Messages (1500-2500) 69

IBM1867I S �IBM1883I S

IBM1867I S The pseudovariable variable name is not
supported.

Explanation: Support for the indicated pseudovariable
has been discontinued.

IBM1868I S Invalid use of iSUB.

Explanation: iSUB references are permitted only in
DEFINED clauses.

IBM1869I S ALLOCATE with attribute lists is not
supported.

Explanation: For example, neither of the following are
supported.

 allocate x(5);

 allocate y char(1');

IBM1870I S ON statement cannot specify both
SYSTEM and an ON-unit.

Explanation: If the SYSTEM action is specified in an
ON statement, an ON-unit may not be specified as well.

 on error system stop;

IBM1871I S The reference in the CONDITION
condition must have type CONDITION.

Explanation: x in CONDITION(x) refers to a variable
that does not have the type CONDITION.

IBM1872I S The reference in the condition-name
condition must have type FILE.

Explanation: The reference in the named FILE
condition does not have the type FILE.

IBM1873I S Nesting of DO statements exceeds the
maximum.

Explanation: DO statements can be nested only 50
deep. Simplify the program.

IBM1874I S Nesting of IF statements exceeds the
maximum.

Explanation: IF statements can be nested only 50
deep. Simplify the program.

IBM1875I S Nesting of SELECT statements exceeds
the maximum.

Explanation: SELECT statements can be nested only
50 deep. Simplify the program.

IBM1876I S Nesting of blocks exceeds the
maximum.

Explanation: Blocks may be nested only 30 deep.

IBM1878I S The reference in the EVENT clause must
have type EVENT.

Explanation: A reference of any other type is invalid
and is invalid.

IBM1879I S The reference in the TASK clause must
have type TASK.

Explanation: A reference of any other type is invalid
and is invalid.

IBM1880I S Reference must have FILE type.

Explanation: A file variable or constant is required.

 dcl x format variable;

 open file(x);

IBM1881I S The reference reference name is
ambiguous.

Explanation: Enough qualification must be provided to
make any reference unique.

IBM1882I S The ALLOCATE reference variable-name
is not a level-1 BASED or CONTROLLED
variable.

Explanation: References in ALLOCATE statements
must be level-1 variable names, and those variables
must have the BASED or CONTROLLED attributes.

IBM1883I S The ALLOCATE reference variable-name
is not implicitly qualified and is invalid
without a SET clause.

Explanation: Provide a SET clause in the ALLOCATE
statement.

 dcl a based;

 allocate a;

70 Messages and Codes (OS/2 and Windows)

IBM1884I S �IBM1894I S

IBM1884I S The reference variable-name in the
GENERIC attribute list is not a scalar
ENTRY reference.

Explanation: A reference of any other type is invalid.

IBM1885I S IN option reference must have AREA
type.

Explanation: A reference of any other type is invalid.

IBM1886I S The REFER object name reference name
is ambiguous.

Explanation: Provide enough qualification to make the
name unique.

 dcl

 1 a based,

 2 b1,

 3 c bit(8) aligned,

 3 d char(1'),

 2 b2,

 3 c bit(8) aligned,

 3 d char(1'),

 2 e(n refer(c)) char(1');

IBM1887I S The REFER object reference name must
be an element of the same structure
where it is used, and must precede its
first usage in that structure.

Explanation: The named REFER object cannot be
declared in another structure or in the same structure,
but after its first usage.

IBM1888I S The REFER object reference name must
have computational type.

Explanation: It must be possible to convert the REFER
object safely to and from REAL FIXED BIN(31,0).

 dcl

 1 a based,

 2 b,

 3 c pointer,

 3 d char(1'),

 2 e(n refer(c)) char(1');

IBM1889I S The REFER object reference name must
be a scalar.

Explanation: The REFER object may not have any
dimensions in its declaration and neither may any of its
parents.

 dcl

 1 a based,

 2 b(8),

 3 c fixed bin,

 3 d char(1'),

 2 e(n refer(c)) char(1');

IBM1890I S The REFER object reference name must
precede the first level-2 element
containing a REFER.

Explanation: Reorder the elements in the declaration
so that all REFER objects precede the first level-2
element containing a REFER.

 dcl

 1 a based,

 2 b fixed bin,

 2 c char(n refer(b)),

 2 d fixed bin,

 2 e char(n refer(d));

IBM1891I S REFER is not allowed on non-BASED
variables.

Explanation: REFER can be used only in declarations
of BASED variables.

IBM1892I S The REFER object reference name must
have constant length.

Explanation: If a REFER object is a string, it must
have constant length.

IBM1893I S REFER is allowed only on members of
structures and unions.

Explanation: REFER cannot be used only in
declarations of scalars or arrays of scalars.

IBM1894I S FREE references must not be
subscripted.

Explanation: In the statement FREE x, x must not
have any subscripts or arguments.

 Chapter 5. Compiler Severe Messages (1500-2500) 71

IBM1895I S �IBM1907I S

IBM1895I S Operations involving
OPTIONS(language-name) routines are
not supported if the DIRECTED option
applies.

Explanation: If the DIRECTED(ASM) option is used,
comparisons and assignments are not supported for
ENTRYs declared with OPTIONS(ASM). Similarly, if the
DIRECTED(COBOL) option is used, comparisons and
assignments are not supported for ENTRYs declared
with OPTIONS(COBOL).

IBM1896I S OPTIONS(language-name) is not
supported for ENTRY VARIABLEs if the
DIRECTED option applies.

Explanation: If the DIRECTED(ASM) option is used,
ENTRY VARIABLES may not be declared with
OPTIONS(ASM). Similarly, if the DIRECTED(COBOL)
option is used, ENTRY VARIABLES may not be
declared with OPTIONS(COBOL).

IBM1897I S Simple defining is supported only for
scalars, for structures with constant
extents matching those in the base
variable, and for arrays of such scalars
and structures as long as the array is
not based on a controlled variable.

Explanation: If simple defining is not intended, specify
POSITION(1) to force string defining.

IBM1898I S The base reference in the DEFINED
attribute cannot be a built-in or type
function.

Explanation: You can define a variable only another
user variable.

IBM1899I S The base variable in the DEFINED
attribute cannot be BASED, DEFINED or
CONSTANT.

Explanation: Convert the DEFINED and base variables
into a UNION.

IBM1900I S Extents for DEFINED bit structures must
be constant.

Explanation: All bounds and string lengths for
DEFINED structures and unions consisting of bit strings
must be constant.

IBM1901I S POSITION attribute is invalid without the
DEFINED attribute.

Explanation: The POSITION attribute has no meaning
without DEFINED attribute.

IBM1902I S The expression in the POSITION
attribute must have computational type.

Explanation: The POSITION expression must have a
numeric or string type.

IBM1903I S The expression in the POSITION
attribute for bit string-overlay defining
must be an integer constant.

Explanation: The compiler must be able to evaluate
the expression to an integer constant when it scans the
POSITION attribute.

IBM1904I S Variable following the free clause clause
must be level-1 and either BASED or
CONTROLLED.

Explanation: A variable that is either based or
controlled should immediately follow the FREE keyword.

IBM1905I S IN or SET option option invalid after the
CONTROLLED variable in the
ALLOCATE or FREE clause clause.

Explanation: An invalid option immediately follows a
controlled variable in an ALLOCATE or FREE statement.

IBM1906I S The reference qualifying an OFFSET
attribute must be a scalar AREA
reference.

Explanation: Using the specified AREA reference to
qualify an OFFSET variable is invalid. The reference
must be scalar. The following example will issue this
message.

 dcl a(1') area;

 dcl o offset(a);

IBM1907I S Extents for CONTROLLED variables
cannot be specified using asterisks or
REFER.

Explanation: The extent specified for the controlled
variable is invalid. The following example will emit this
message.

 dcl c(�) char(1') controlled;

72 Messages and Codes (OS/2 and Windows)

IBM1908I S �IBM1921I S

IBM1908I S Extents for attribute variables cannot be
specified using asterisks or REFER.

Explanation: Extents for AUTOMATIC and DEFINED
variables must be specified by expressions.

IBM1909I S The attribute attribute conflicts with the
attribute attribute.

Explanation: The named attributes, for example
PARAMETER and INITIAL, are mutually exclusive.

IBM1910I S The attributes given in the declaration
for identifier conflict with its use as a
parameter.

Explanation: Parameters can have no storage
attributes other than CONTROLLED. Parameters also
cannot have any of the attributes BUILTIN, CONDITION,
CONSTANT, EXTERNAL, and GENERIC.

IBM1911I S Repeated specifications of the
unsubscripted statement label character
are in error.

Explanation: All statement labels in any block must be
unique.

IBM1912I S Indices specified for the LABEL
character have already been specified.

Explanation: All statement labels in any block must be
unique.

IBM1913I S ON-units may not be labeled. All such
labels will be ignored.

Explanation: A BEGIN block or a statement associated
with an ON clause may not have a label.

IBM1914I S GOTO target must be a LABEL
reference.

Explanation: x in GOTO x must have type LABEL. x
must not have type FORMAT.

IBM1915I S GOTO target must be a scalar.

Explanation: x in GOTO x must not be an array.

IBM1916I S The procedure proc-name has already
been defined.

Explanation: Sister procedures must have different
names.

 a: proc;

 b: proc;

 end;

 b: proc;

 end;

 end;

IBM1917I S Program contains no valid source lines.

Explanation: The source contains either no statements
or all statements that it contains are invalid.

IBM1918I S All the names in the ORDINAL
ordinal-name have been previously
declared.

Explanation: None of the names in an ORDINAL
should have been declared elsewhere. If they are,
perhaps the ORDINAL definition has been accidentally
repeated.

IBM1919I S The EXTERNAL name string is specified
for the differing internal names name
and name.

Explanation: Each EXTERNAL name must have only
one INTERNAL name. So, for example, the following
declares would be illegal since the external name Z is
specified for two different internal names: X and Y.

 dcl X fixed bin(31) ext('Z');

 dcl Y fixed bin(31) ext('Z');

IBM1920I S FIXED BINARY constant contains too
many digits.

Explanation: The maximum precision of FIXED
BINARY constants is set by the FIXEDBIN suboption of
the LIMITS compiler option.

IBM1921I S FIXED DECIMAL constant contains too
many significant digits.

Explanation: The maximum precision of FIXED
DECIMAL constants is set by the FIXEDDEC suboption
of the LIMITS compiler option.

 Chapter 5. Compiler Severe Messages (1500-2500) 73

IBM1922I S �IBM1936I S

IBM1922I S Exponent in FLOAT BINARY constant
contains more digits than the
implementation maximum.

Explanation: The exponent in a FLOAT BINARY
constant may contain no more than 5 digits.

IBM1923I S Mantissa in FLOAT BINARY constant
contains more significant digits than the
implementation maximum.

Explanation: The mantissa in a FLOAT BINARY
constant may contain no more than 64 digits.

IBM1924I S Exponent in FLOAT DECIMAL constant
contains more digits than the
implementation maximum.

Explanation: The exponent in a FLOAT BINARY
constant may contain no more than 4 digits.

IBM1925I S Mantissa in FLOAT DECIMAL constant
contains more significant digits than the
implementation maximum.

Explanation: The mantissa in a FLOAT BINARY
constant may contain no more than 18 digits.

IBM1926I S Constants must not exceed 8192 bytes.

Explanation: The number of bytes used to represent a
constant in your program must not exceed 8192. This
limit holds even for bit strings where the internal
representation will consume only one-eighth the number
of bytes as the external representation does.

IBM1927I S SIZE condition raised by attempt to
convert source-value to target-attributes

Explanation: The source value is not in the domain of
the target.

 dcl x fixed bin(15);

 x = 1729'';

IBM1928I S ERROR raised while building CEEUOPT
from PLIXOPT.

Explanation: The ERROR condition was while the
compiler was trying to build CEEUOPT from PLIXOPT.
There may an error in the LE APIs used by the compiler.
Contact IBM service.

IBM1929I S Unable to open file file-name in routine
proc-name (line-number).

Explanation: The compiler was unable to open the
named temporary file used to communicate with the
code generation module. Check the value of the TMP
environment variable.

IBM1930I S Unable to write to file file-name . Disk
may be full.

Explanation: The compiler was unable to write to a
temporary file used to communicate with the code
generation module. The disk to which the TMP
environment variable points may be full.

IBM1932I S Unable to close file file-name in routine
proc-name (line-number).

Explanation: The compiler was unable to close the
named temporary file used to communicate with the
code generation module. Check the value of the TMP
environment variable.

IBM1933I S Unable to open temporary files because
the path and filename are too long.

Explanation: Shorten the name of the source file or
the directory specified by the TMP variable.

IBM1934I S If a parameter is a structure with
nonconstant extents, only matching
structures are supported as arguments.

Explanation: Assign the structure to a temporary and
pass the temporary, or omit the parameter description in
the entry declaration.

IBM1935I S Structure expressions as arguments are
not supported for undescribed
parameters.

Explanation: Assign the structure to a temporary and
pass the temporary, or describe the parameter in the
entry declaration.

IBM1936I S Invocation of compiler backend ended
abnormally.

Explanation: The back end of the compiler either could
not be found or else it detected an error from which it
could not recover. The latter problem can sometimes
occur if your disk is short of free space. Otherwise,
report the problem to IBM.

74 Messages and Codes (OS/2 and Windows)

IBM1937I S �IBM1951I S

IBM1937I S Extents for parameters must be
asterisks or restricted expressions with
computational type.

Explanation: For parameters, each array bound, string
length and AREA size must be specified either with an
asterisk or with a restricted expression that has
computational type.

IBM1938I S Message file file name not found.

Explanation: The message must be in the current
directory or in one of the directories specified in the
DPATH environment variable.

IBM1939I S Exponentiation operands must have
computational type.

Explanation: The operands in an exponentiation must
have numeric or string type.

IBM1940I S note

Explanation: This message is used by %NOTE
statements with a return code of 12.

IBM1941I U note

Explanation: This message is used by %NOTE
statements with a return code of 16.

IBM1942I S The scale factor specified in BUILTIN
name built-in must be a restricted
expression with integer type.

Explanation: This applies to all the precision-handling
built-in functions.

IBM1943I S The number of error messages allowed
by the FLAG option has been exceeded.

Explanation: Compilation will terminate when the
number of messages has exceeded the limit set in the
FLAG compiler option.

IBM1944I S The precision specified in BUILTIN name
built-in must be a restricted expression
with integer type.

Explanation: This applies to all the precision-handling
built-in functions.

IBM1945I S Extents for BASED variable may not
contain asterisks.

Explanation: Extents in BASED variables must be
either constants or specified with the REFER option.

IBM1946I S Reference must be an AREA variable.

Explanation: The specified reference is invalid. An
AREA variable is needed.

IBM1947I S The reference to the GENERIC variable
GENERIC variable name cannot be
resolved.

Explanation: The argument list in a GENERIC
reference must match one of the generic descriptors in
one of that GENERIC's WHEN clauses. If an
OTHERWISE clause was specified, the argument list
must have the same number of elements as the
OTHERWISE entry reference.

IBM1948I S condition-name condition with ONCODE=
oncode-value raised while evaluating
restricted expression.

Explanation: Compile-time evaluation of a restricted
expression raised a condition.

 display(1/');

IBM1949I S Parameter name identifier appears more
than once in parameter list.

Explanation: Each identifier in a parameter list must be
unique.

 a: proc(b, c, b);

IBM1951I S storage class variables must be named.

Explanation: Variables with the CONTROLLED
attribute must be named, and a variable with the
EXTERNAL attribute may not have an * instead of a
name unless a name is given with the EXTERNAL
attribute itself.

 Chapter 5. Compiler Severe Messages (1500-2500) 75

IBM1952I S �IBM1965I S

IBM1952I S INITIAL CALL cannot be used to
initialize STATIC data.

Explanation: An INITIAL CALL must be evaluated at
run-time; it can be used to initialize only non-STATIC
data.

IBM1953I S The attributes of the EXTERNAL variable
variable name do not match those in its
previous declaration.

Explanation: EXTERNAL variables can be declared in
more than one procedure in a compilation unit, but the
attributes in those declarations must match.

IBM1954I S The base reference in the DEFINED
attribute must be CONNECTED.

Explanation: Variables cannot be DEFINED on
NONCONNECTED references.

IBM1955I S Repeated declarations of the EXTERNAL
attribute variable name are not supported.

Explanation: EXTERNAL FILE constants and
CONDITIONs may be declared only once in a
compilation unit. Remove all but the outermost declare.

IBM1956I S ITERATE is valid only for iterative
DO-groups.

Explanation: ITERATE is not valid inside type-I do
groups.

IBM1957I S The WAIT event number specification
must be computational.

Explanation: The expression representing the number
of items to wait for in a WAIT statement is invalid. The
expression must be of computational type. The following
example will issue this message.

 dcl e event;

 dcl p pointer:

 wait (e) (p);

IBM1958I S References in the WAIT statement must
be of type EVENT.

Explanation: The event reference in the WAIT
statement is invalid. It must be of type EVENT. The
following example will issue this message.

 dcl e entry;

 wait (e);

IBM1959I S Invalid aggregate expression specified
in WAIT statement.

Explanation: References in WAIT statements can be
scalars. The only valid aggregate reference is a simple
array of events. Structures, unions, and arrays of
structures or unions would be flagged as as errors.

IBM1960I S type type type type name is not defined.

Explanation: If ORDINAL x is used in a declaration, x
must be a defined ORDINAL type.

IBM1961I S INITIAL values for type type type type
name must be in increasing order.

Explanation: Any values specified in INITIAL clauses
in an ORDINAL definition must be in strictly increasing
order.

IBM1962I S INITIAL values for type type type type
name must be less than 2G.

Explanation: ORDINAL values must fit in the range of
a FIXED BIN(31) variable.

IBM1963I S BUILTIN name argument must have
ORDINAL type.

Explanation: An expression contains the named
built-in function with an argument that is not an
ORDINAL. This message applies, for example, to the
ORDINALNAME, ORDINALPRED and ORDINALSUCC
built-in functions.

IBM1964I S The attributes derived from the
PROCEDURE statement for the ENTRY
constant variable name do not match
those in its explicit declaration.

Explanation: A label on a PROCEDURE statement
constitutes a declaration for an ENTRY constant with
that name. That name also appears in a DECLARE
statement, but the attributes in those two declarations do
not match.

IBM1965I S There is more than one element named
reference name in the class structure
name.

Explanation: All references must be unambiguous.

76 Messages and Codes (OS/2 and Windows)

IBM1966I S �IBM1989I S

IBM1966I S There is no element named reference
name in the class structure name.

Explanation: HANDLE qualified references must be
explicitly declared.

IBM1967I S The ENTRY variable-name may not be
used as a handle since it does not have
the RETURNS attribute.

Explanation: Functions, but not subprocedures, can be
used as handles (and then only if they return a handle).

IBM1968I S The ENTRY variable-name may not be
used as a handle.

Explanation: x(...)=>y is invalid unless x returns a
HANDLE.

IBM1969I S The variable variable-name is used as a
handle, but it is not a scalar.

Explanation: Only scalars can be used as handles.

IBM1970I S BUILTIN name built-in may not be used
as a handle.

Explanation: The named built-in function cannot be
used as a handle.

IBM1971I S The GENERIC variable variable-name
may not be used as a handle.

Explanation: GENERIC references may not be used
as handles.

IBM1972I S variable-name may not be used as a
handle.

Explanation: x=>y is invalid unless x has the HANDLE
attribute

IBM1976I S DBCS characters are allowed only in G
and M constants.

Explanation: Hex strings (strings ending in one of the
suffixes X, BX, B4, GX or XN), bit strings, (strings
ending in the suffix B), and character strings not ending
in the suffix M must contain only SBCS characters.

IBM1977I S SBCS characters are not allowed in G
constants.

Explanation: Mixed SBCS and DBCS is allowed only
in M constants.

IBM1978I S Invalid use of SBCS encoded as DBCS.

Explanation: Outside of comments, SBCS can be
encoded as DBCS only as part of an identifier.

IBM1981I S BUILTIN function may not be used
outside a procedure.

Explanation: The named built-in function may be used
only inside procedures.

IBM1984I S File filename could not be opened.

Explanation: The named source file could not be
opened. Make sure that the file is named correctly, that
it exists and that it is readable.

IBM1985I S File filename could not be found.

Explanation: The file does not exist in the current
directory, in the path specified by the appropriate
environment variable. Check to see that the file name
was entered correctly.

IBM1986I S The path for file filename could not be
found.

Explanation: The path does not exist for the drive
specified, or the path was entered incorrectly.

IBM1987I S File filename could not be opened
because there are too
 many files currently opened.

Explanation: The maximum number of open files has
been reached. End another program and retry the
command.

IBM1988I S File filename could not be opened due to
an access violation.

Explanation: Either the file is in use or you tried to
open a file for which you do not have sufficient privilege.

IBM1989I S File name or extension for filename is
too long.

Explanation: The length of the file name or extension
is greater than the maximum allowed.

 Chapter 5. Compiler Severe Messages (1500-2500) 77

IBM1990I S �IBM2004I S

IBM1990I S File name filename has invalid format.

Explanation: Apart from Open Edition, file names
should not contain quotes. Under Open Edition, if the
file name does contain quotes, it should specify a PDS
member.

IBM1991I S The load of the SQL preprocessor failed
with ONCODE= oncode. DB2/2 must be
properly installed before the SQL
preprocessor can be loaded.

Explanation: The compiler attempted to load the SQL
preprocessor but was unable to do so. Check that DB2/2
is properly installed.

IBM1992I S A file name must be specified.

Explanation: The command syntax is:

PLI {d:}{path}filename{.ext} {(options}

IBM1993I S Compilation terminated by ATTENTION
condition.

Explanation: If you hit CTL-BRK during the
compilation, the compilation will stop.

IBM1994I S Internal compiler error: storage header
has been overwritten

Explanation: This message indicates that there is an
error in the front end of the compiler. Please report the
problem to IBM.

IBM1995I S Internal compiler error: storage tail has
been overwritten.

Explanation: This message indicates that there is an
error in the front end of the compiler. Please report the
problem to IBM.

IBM1996I S Internal compiler error: free amount free
request size does not match allocated
size allocated size.

Explanation: This message indicates that there is an
error in the front end of the compiler. Please report the
problem to IBM.

IBM1997I S Internal compiler error: no WHEN
clause satisfied within module name

Explanation: This message indicates that there is an
error in the front end of the compiler. Please report the
problem to IBM.

IBM1998I S Internal compiler error: protection
exception in module name

Explanation: This message indicates that there is an
error in the front end of the compiler. Please report the
problem to IBM.

IBM1999I S note

Explanation: This message indicates that there is an
error in the back end of the compiler. Please report the
problem to IBM.

IBM2001I S A LICENSE REQUEST WAS DENIED
FOR PL/I, PID 5655-B22. THE REQUEST
ENDED WITH STATUS CODE STATUS
CODE AND RETURN CODE RETURN
CODE. THE COMPILATION WILL BE
TERMINATED.

Explanation: IBM License Manager is installed on your
system, but the request to verify that you have a license
to use the PL/I compiler has failed.

IBM2002I S Close of file filename failed. There may
be a space problem.

Explanation: An error has occurred while attempting to
close a file.

IBM2003I S Write to file filename failed. There may
be a space problem.

Explanation: An error has occurred while attempting to
write to a file.

IBM2004I S ATTACH reference must be declared
with either a null argument list or with
an argument list specifying only one
argument.

Explanation: If the ATTACH reference is declared
without an argument list, change the declare to specify a
null argument list by adding a pair of parentheses.

78 Messages and Codes (OS/2 and Windows)

IBM2005I S �IBM2020I S

IBM2005I S ATTACH reference must be an ENTRY
reference.

Explanation: GENERIC references and built-in
subroutines may not be attached.

IBM2006I S ATTACH reference cannot be a function
reference.

Explanation: An ATTACH reference must not have the
RETURNS attribute, even if the value returned is an
ENTRY.

IBM2007I S ATTACH reference must have linkage
SYSTEM.

Explanation: Unless the default linkage is overridden,
OPTIONS(LINKAGE(SYSTEM)) must be specified on
the declare for the ATTACH reference.

IBM2008I S ATTACH reference cannot be
FETCHABLE.

Explanation: An ATTACH reference may not be used
in a FETCH or RELEASE statement.

IBM2009I S ATTACH reference cannot be a nested
procedure.

Explanation: An ATTACH reference must be a level-1
procedure, although it does need to be external.

IBM2010I S ATTACH reference, if an ENTRY
variable, must be a LIMITED ENTRY.

Explanation: Specify the LIMITED attribute in the
declare for the ENTRY VARIABLE.

IBM2011I S ATTACH reference, if it has an
argument, must declare that argument
as POINTER BYVALUE.

Explanation: No other argument types are support in
ATTACH statements.

IBM2012I S The attribute keyword attribute is invalid
in an ALIAS descriptor.

Explanation: Like RETURNS descriptors, the attributes
STRUCTURE, UNION and DIMENSION are not
permitted. Hence, the following are invalid:

 define alias array (1') fixed bin;

 define alias point 1, 2 fixed bin, 2 fixed bin;

IBM2013I S Only one description is allowed in an
ALIAS definition.

Explanation: The syntax allows the name in an alias
definition to be followed by a description list, but that
description list must consist of exactly one description.
The following is invalid:

 define alias x fixed bin, float bin;

IBM2014I S Extents in type descriptors must be
constant.

Explanation: In ALIAS and STRUCTURE descriptors,
each string length and AREA size must be specified with
a restricted expression. Like RETURNS descriptors,
asterisks and non-constant expressions are not
permitted.

IBM2015I S VALUE attribute conflicts with data type.

Explanation: The VALUE attribute is allowed only with
computational data types as well as pointer, offset,
handle and ordinal.

IBM2016I S VALUE and INITIAL attributes are not
allowed with typed structures.

Explanation: The VALUE attribute is valid only on
scalars, and the INITIAL attribute is not allowed on typed
structures.

IBM2017I S INITIAL TO is valid only for
non-SEGMENTED POINTER.

Explanation: INITIAL TO is not valid for SEGMENTED
POINTERs. It is also invalid for non-POINTERs since
they cannot be assigned addresses.

IBM2018I S INITIAL TO is supported only for STATIC
variables.

Explanation: INITIAL TO is not supported for variables
belonging to any storage class other than STATIC.

IBM2020I S There is more than one element named
reference name in the typed structure
structure name.

Explanation: All references must be unambiguous.

 Chapter 5. Compiler Severe Messages (1500-2500) 79

IBM2021I S �IBM2033I S

IBM2021I S There is no element named reference
name in the structure structure name.

Explanation: All structure references must be explicitly
declared.

IBM2022I S The ENTRY variable-name may not be
used as a typed structure qualifier since
it does not have the RETURNS attribute.

Explanation: Functions, but not subprocedures, can be
used as typed structure qualifiers (and then only if they
return a typed structure).

IBM2023I S The ENTRY variable-name may not be
used as a typed structure qualifier.

Explanation: x(...)=>y is invalid unless x returns a
typed structure.

IBM2024I S The array variable variable-name may be
used as a typed structure qualifier only
if it is completely subscripted before its
dot qualification.

Explanation: For instance, if x is an array of structure t
with member m, x.m(2) is invalid. However, x(2).m is
valid.

IBM2025I S BUILTIN name built-in may not be used
as a typed structure qualifier.

Explanation: The named built-in function cannot be
used as a typed structure qualifier.

IBM2026I S The GENERIC variable variable-name
may not be used as a typed structure
qualifier.

Explanation: GENERIC references may not be used
as typed structure qualifiers.

IBM2027I S variable-name may not be used as a
structure qualifier.

Explanation: x.y is invalid unless x is a structure, a
union or a function returning a typed structure.

IBM2028I S TYPEs must be defined before their use.

Explanation: The DEFINE STRUCTURE or DEFINE
ALIAS statement for a type x must precede any of use
of x as attribute type. The following two statements
should be in the opposite order.

 dcl x type point;

 define structure

 1 point

 2 x fixed bin(31),

 2 y fixed bin(31);

IBM2029I S DEFINE STRUCTURE must specify a
structure or union type.

Explanation: A DEFINE STRUCTURE statement must
specify a structure or union type with level numbers.

 define structure int fixed bin;

IBM2030I S INITIAL attribute is invalid in structure
definitions.

Explanation: Defined structure types must be initialized
via assignments.

IBM2031I S Storage attributes are invalid in
structure definition.

Explanation: Storage attributes, such as AUTOMATIC
and BYADDR, must be specified with variables declared
with structure type.

IBM2032I S DEFINE STRUCTURE may not specify
an array of structures.

Explanation: The level 1 name in a structure definition
may not have the DIMENSION attribute.

IBM2033I S Only one description is allowed in a
structure definition.

Explanation: The syntax allows the name in a
structure definition to be followed by a description list,
but that description list must consist of exactly one
structure description. The following is invalid:

 define structure

 1 point

 2 x fixed bin(31),

 2 y fixed bin(31),

 1 rectangle

 2 upper_left type point,

 2 lower_right type point;

80 Messages and Codes (OS/2 and Windows)

IBM2034I S �IBM2047I S

IBM2034I S The argument to the type function type
function must be an ordinal type name.

Explanation: The argument to the type functions
FIRST and LAST must be a type name, and that type
must be an ordinal type.

IBM2035I S The argument to the type function type
function must be a structure type name.

Explanation: The argument to the type function NEW
must be a type name, and that type must be a structure
type.

IBM2036I S The second argument to the type
function type function must have locator
type.

Explanation: The second argument to the BIND type
function must be a pointer or offset value that is to be
converted to a handle to the structure type named as the
first argument.

IBM2037I S The first argument to the type function
type function must be a structure type
name.

Explanation: The first argument to the type functions
BIND must be a type name, and that type must be a
structure type.

IBM2038I S BUILTIN name argument must have
HANDLE type.

Explanation: An expression contains the named
built-in function with an argument that is not a HANDLE.

IBM2039I S Argument to variable name
pseudovariable must be a HANDLE.

Explanation: The TYPE pseudovariable can be applied
only to HANDLEs.

IBM2040I S The argument to the type function type
function must be a defined type.

Explanation: The first argument to the type function
SIZE must be the name of a defined type.

IBM2041I S The first argument to the type function
type function must be a defined type.

Explanation: The first argument to the type function
CAST must be the name of a defined type.

IBM2042I S The second argument to the type
function type function must be a scalar.

Explanation: The second argument to the type function
CAST must be a scalar.

IBM2043I S The second argument to the type
function type function must have the
same size as the first argument.

Explanation: The second argument to the type function
CAST must have the same size as the size of the type
that is the first argument.

IBM2044I S The get storage function to BUILTIN
name must be a LIMITED ENTRY with
LINKAGE(OPTLINK) and an appropriate
entry description list.

Explanation: The function should be declared as

dcl get entry(pointer byvalue,

fixed bin(31) byaddr,

fixed bin(31) byaddr)

returns(pointer);

IBM2045I S The free storage function to BUILTIN
name must be a LIMITED ENTRY with
LINKAGE(OPTLINK) and an appropriate
entry description list.

Explanation: The function should be declared as

dcl free entry(pointer byvalue,

pointer byvalue,

fixed bin(31) byvalue);

IBM2046I S Descriptors must not be needed for any
parameter to an ENTRY with a variable
number of arguments.

Explanation: If an entry has a variable number of
arguments, i.e. its last parameter has the LIST attribute,
OPTIONS(NODESCRIPTOR) must be specified (and
valid) if any of the required parameters could have a
descriptor.

IBM2047I S The VARGLIST built-in function may be
used only inside procedures whose last
parameter had the LIST attribute.

Explanation: The VARGLIST built-in function obtains
the address of the variable argument list passed to
procedures whose last parameter had the LIST attribute.
It may not be used in subprocedures of such routines or
in procedures having either no parameters or having no
parameter declared with the LIST attribute.

 Chapter 5. Compiler Severe Messages (1500-2500) 81

IBM2048I S �IBM2060I S

IBM2048I S The LIST attribute may be specified only
on non-nested procedures, external
entry constants, and limited entry
variables.

Explanation: The LIST attribute causes a variable
argument list to be built, and such argument lists are
permitted neither with nested procedures nor with entry
variables declared without the LIMITED attribute.

IBM2049I S The LIST attribute may be specified only
on the last element of an entry
description list.

Explanation: The LIST attribute indicates that zero or
more parameters may be specified after it, but those
parameters may not be described.

IBM2050I S Descriptors are supported for Fortran
only for scalar character strings.

Explanation: If OPTIONS(FORTRAN DESCRIPTOR)
applies, all parameters other than character strings must
have constant extents.

IBM2051I S Descriptors are not supported for
Fortran for routines defined by or
containing ENTRY statements.

Explanation: If OPTIONS(FORTRAN DESCRIPTOR)
applies to an ENTRY statement or to a procedure
containing an ENTRY statement, all parameters must
have constant extents.

IBM2052I S A function defined by a PROCEDURE
containing ENTRY statements must
return aggregate values BYADDR.

Explanation: Either BYADDR must be specified in the
RETURNS option of the PROCEDURE statement, or the
RETURNS(BYADDR) suboption of the DEFAULT
statement must be in effect.

IBM2053I S A function defined by an ENTRY
statement must return aggregate values
BYADDR.

Explanation: Either BYADDR must be specified in the
RETURNS option of the ENTRY statement, or the
RETURNS(BYADDR) suboption of the DEFAULT
statement must be in effect.

IBM2054I S A PROCEDURE containing ENTRY
statements must receive all non-pointer
parameters BYADDR.

Explanation: Either BYADDR must be specified in the
declares for the parameters, or the BYADDR suboption
of the DEFAULT statement must be in effect.

IBM2055I S An ENTRY statement must receive all
parameters BYADDR.

Explanation: Either BYADDR must be specified in the
declares for the parameters, or the BYADDR suboption
of the DEFAULT statement must be in effect.

IBM2056I S ENTRY statement is not allowed in DO
loops.

Explanation: ENTRY statements are allowed in
non-iterative DO groups, but not in iterative DO loops.

IBM2057I S RETURN statement is invalid inside a
BEGIN in a PROCEDURE that contains
ENTRY statements.

Explanation: A RETURN statement is valid inside a
BEGIN block only if the PROCEDURE enclosing that
BEGIN block contains no ENTRY statements.

IBM2058I S In a PROCEDURE without the RETURNS
option, any ENTRY statement must use
BYADDR for its RETURNS value.

Explanation: Either BYADDR must be specified in the
RETURNS option of the ENTRY statement, or the
RETURNS(BYADDR) suboption of the DEFAULT
statement must be in effect.

IBM2059I S OPTIONS(FORTRAN) is invalid if any
parameters are UNALIGNED BIT.

Explanation: Only ALIGNED BIT strings with constant
length are valid with OPTIONS(FORTRAN).

IBM2060I S Attributes may not be specified in
ALLOCATEs of BASED variables.

Explanation: Attributes may be specified only in
ALLOCATEs of CONTROLLED variables.

82 Messages and Codes (OS/2 and Windows)

IBM2061I S �IBM2083I S

IBM2061I S Attributes specified for variable-name in
ALLOCATE statement do match those in
its declaration.

Explanation: An attribute, such as CHARACTER, may
be specified in an ALLOCATE statement only if it is also
specified in the declaration of the variable to be
allocated.

IBM2062I S Structuring specified in ALLOCATE of
variable-name does match that in its
declaration.

Explanation: In an ALLOCATE statement for a
structure, all the levels specified in its declaration must
be specified, and no new levels may be specified.

IBM2063I S Specification of extent for variable-name
in ALLOCATE statement is invalid since
it was declared with a constant extent.

Explanation: An attribute, such as CHARACTER, may
be specified in an ALLOCATE statement only if it is also
specified in the declaration of the variable to be
allocated with either an asterisk or a non-constant
expression.

IBM2064I S The extent specified for the lower bound
for dimension dimension-value of
variable-name in ALLOCATE statement is
invalid since that variable was declared
with a different constant extent.

Explanation: If a bound for a CONTROLLED variable
is declared as a constant, then it must be specified as
the same constant value in any ALLOCATE statement
for that variable.

IBM2065I S The extent specified for the upper
bound for dimension dimension-value of
variable-name in ALLOCATE statement is
invalid since that variable was declared
with a different constant extent.

Explanation: If a bound for a CONTROLLED variable
is declared as a constant, then it must be specified as
the same constant value in any ALLOCATE statement
for that variable.

IBM2075I S ENTRY types and arguments in type
function must be LIMITED.

Explanation: A ENTRY type or argument used with the
type function CAST must have the attribute LIMITED.

IBM2076I S FLOAT types and arguments in type
function must be NATIVE REAL.

Explanation: A FLOAT type or argument used with the
type function CAST must have the attributes NATIVE
REAL.

IBM2077I S FIXED BIN types and arguments in type
function must be REAL with scale factor
zero.

Explanation: A FIXED BIN type or argument used with
the type function CAST must have the attributes REAL
PRECISION(p,0).

IBM2078I S Types with the attributes attributes are
not supported as the target of the type
function function.

Explanation: The first argument to the type function
CAST must be a type with one of the following sets of
attributes: REAL FIXED BIN(p,0) or NATIVE REAL
FLOAT.

IBM2079I S Arguments with the attributes attributes
are not supported as the source in the
type function function.

Explanation: The second argument to the type function
CAST must have one of the following sets of attributes:
REAL FIXED BIN(p,0) or NATIVE REAL FLOAT.

IBM2080I S DATE pattern is invalid.

Explanation: See the Language Reference Manual for
a list of the supported DATE patterns.

IBM2081I S DATE attribute is valid only with
NONVARYING CHARACTER, FIXED
DECIMAL and arithmetic PICTURE.

Explanation: The DATE attribute cannot be used on
any other than the named types.

IBM2082I S DATE attribute conflicts with non-zero
scale factor.

Explanation: The DATE attribute can be used on a
numeric only if it has a scale factor of zero.

IBM2083I S DATE attribute conflicts with COMPLEX
attribute.

Explanation: The DATE attribute can be used on a
numeric only if it is REAL.

 Chapter 5. Compiler Severe Messages (1500-2500) 83

IBM2084I S �IBM2101I S

IBM2084I S DATE attribute conflicts with PICTURE
string containing characters other than
9.

Explanation: The DATE attribute can be used on a
PICTURE only if the PICTURE consists entirely of 9's.

IBM2085I S Length of DATE pattern and base
precision do not match.

Explanation: The DATE attribute can be used on a
numeric only if its precision equals the length of the
DATE pattern.

IBM2086I S Length of DATE pattern and base length
do not match.

Explanation: The DATE attribute can be used on a
string only if its length equals the length of the DATE
pattern.

IBM2087I S DATE attribute conflicts with adjustable
length.

Explanation: The DATE attribute can be used on a
string only if the string is declared with a constant length.

IBM2088I S Response file is too large. Excess will
be ignored.

Explanation: The options string built from the response
file must be less than 32767 characters long.

IBM2089I S Line in response file is longer than 100
characters. That line and rest of file will
be ignored.

Explanation: All lines in any response file must contain
no more than 100 characters.

IBM2090I S The keyword statement cannot be used
under SYSTEM(CICS).

Explanation: The named statement cannot be used
under CICS.

IBM2091I S DISPLAY with REPLY cannot be used
under SYSTEM(CICS).

Explanation: DISPLAY with REPLY cannot be used
under CICS.

IBM2092I S The BUILTIN name built-in function
cannot be used under SYSTEM(CICS).

Explanation: The named built-in function cannot be
used under CICS.

IBM2093I S The keyword statement cannot be used
under SYSTEM(CICS) except with
SYSPRINT.

Explanation: The named I/O statement cannot be used
under CICS unless the file used in the statement is
SYSPRINT.

IBM2094I S Source in CAST to FLOAT must be
FLOAT, FIXED or ORDINAL.

Explanation: The source in a CAST to a FLOAT must
be FLOAT, FIXED or ORDINAL.

IBM2095I S Target in CAST from FLOAT must be
FLOAT, FIXED BIN or ORDINAL.

Explanation: The target in a CAST from a FLOAT
must be FLOAT, FIXED BIN or ORDINAL.

IBM2096I S Target in CAST from FIXED DEC must
be FLOAT, FIXED BIN or ORDINAL.

Explanation: The target in a CAST from a FIXED DEC
must be FLOAT, FIXED BIN or ORDINAL.

IBM2097I S FIXED DEC types and arguments in type
function must be REAL with
non-negative scale factor.

Explanation: A FIXED DEC type or argument used
with the type function CAST must have the attributes
REAL PRECISION(p,q) with p >= q and q >= 0.

IBM2098I S Source in CAST to FIXED DEC must be
FLOAT, FIXED or ORDINAL.

Explanation: The source in a CAST to a FIXED DEC
must be FLOAT, FIXED or ORDINAL.

IBM2100I S The ORDINAL types do not match.

Explanation: This message is issued in explanation of
the message immediately preceding it in the listing.

IBM2101I S The HANDLE types do not match.

Explanation: This message is issued in explanation of
the message immediately preceding it in the listing.

84 Messages and Codes (OS/2 and Windows)

IBM2102I S �IBM2130I S

IBM2102I S The STRUCTURE types do not match.

Explanation: This message is issued in explanation of
the message immediately preceding it in the listing.

IBM2103I S Alignment does not match.

Explanation: This message is issued in explanation of
the message immediately preceding it in the listing.

IBM2104I S Number and attributes of structure
members do not match.

Explanation: This message is issued in explanation of
the message immediately preceding it in the listing.

IBM2105I S Number of dimensions do not match.

Explanation: This message is issued in explanation of
the message immediately preceding it in the listing.

IBM2106I S Lower bounds do not match.

Explanation: This message is issued in explanation of
the message immediately preceding it in the listing.

IBM2107I S Upper bounds do not match.

Explanation: This message is issued in explanation of
the message immediately preceding it in the listing.

IBM2108I S RETURNS attributes do not match.

Explanation: This message is issued in explanation of
the message immediately preceding it in the listing.

IBM2109I S BYVALUE/BYADDR attributes in
RETURNS do not match.

Explanation: This message is issued in explanation of
the message immediately preceding it in the listing.

IBM2110I S LINKAGE values do not match.

Explanation: This message is issued in explanation of
the message immediately preceding it in the listing.

IBM2111I S OPTIONS values do not match.

Explanation: This message is issued in explanation of
the message immediately preceding it in the listing.

IBM2112I S Parameter counts do not match.

Explanation: This message is issued in explanation of
the message immediately preceding it in the listing.

IBM2113I S BYVALUE/BYADDR attributes in
parameter parameter-number do not
match.

Explanation: This message is issued in explanation of
the message immediately preceding it in the listing.

IBM2114I S Number of dimensions for parameter
parameter-number do not match.

Explanation: This message is issued in explanation of
the message immediately preceding it in the listing.

IBM2115I S Lower bounds for parameter
parameter-number do not match.

Explanation: This message is issued in explanation of
the message immediately preceding it in the listing.

IBM2116I S Upper bounds for parameter
parameter-number do not match.

Explanation: This message is issued in explanation of
the message immediately preceding it in the listing.

IBM2117I S Alignment of parameter
parameter-number does not match.

Explanation: This message is issued in explanation of
the message immediately preceding it in the listing.

IBM2118I S Number and attributes of structure
members in parameter parameter-number
do not match.

Explanation: This message is issued in explanation of
the message immediately preceding it in the listing.

IBM2119I S Attributes of parameter
parameter-number do not match.

Explanation: This message is issued in explanation of
the message immediately preceding it in the listing.

IBM2130I S iSUB defining is not valid with the
POSITION attribute.

Explanation: The POSITION attribute can be used
only with string overlay defining.

 Chapter 5. Compiler Severe Messages (1500-2500) 85

IBM2131I S �IBM2142I S

 dcl b(4) char(2) pos(2) def(a(1sub,1sub));

IBM2131I S In iSUB defining, the base and DEFINED
variables must match.

Explanation: The defined and base arrays in iSUB
defining must have identical attributes apart from the
dimension attribute.

 dcl a(4) fixed bin(31);

 dcl b(4) fixed bin(15) def(a(1sub,1sub));

IBM2132I S The i in an iSUB reference must not
exceed the dimensionality of the
DEFINED variable.

Explanation: The i in an iSUB reference must refer to
a subscript of the DEFINED variable and hence must not
be greater than the number of dimensions for that
variable.

 dcl a(4,4) fixed bin(31);

 dcl b(4) fixed bin(15) def(a(1sub,2sub));

IBM2133I S An iSUB variable cannot be defined on a
cross-section of its base.

Explanation: In an iSUB variable, no asterisks may
appear in the specification of the base array.

 dcl a(4,4) fixed bin(31);

 dcl b(4) fixed bin(15) def(a(1sub,�));

IBM2134I S iSUB defining is supported only for
arrays of scalars.

Explanation: iSUB defining is not supported for
structures and unions.

IBM2135I S DFT(DESCLIST) conflicts with CMPAT(
cmpat-suboption).

Explanation: If CMPAT(V1) or CMPAT(V2) is
specified, then DFT(DESCLOCATOR) must be in effect
(as it is by default on 390).

IBM2136I S The number of indices specified for the
LABEL identifier does not match the
number previously specified.

Explanation: The number of indices given for an
element of a label constant array must not vary.

 a(1,1):

 a(1,2):

 a(3):

IBM2137I S Indices have been specified for the
LABEL identifier when it was previously
specified without indices.

Explanation: A label constant cannot be subscripted if
its first use contains no subscripts.

 a:

 a(3):

IBM2138I S Indices have not been specified for the
LABEL identifier when it was previously
specified with indices.

Explanation: A label constant must be subscripted if its
first use contains subscripts.

 a(3):

 a:

IBM2141I S First argument to the BUILTIN name
built-in must be a structure.

Explanation: The first argument to the named built-in
subroutine must be a structure supplying the event
handlers for the SAX parser.

IBM2142I S Event structure argument to the BUILTIN
name built-in has too few elements.

Explanation: The first argument to the named built-in
subroutine must be a structure supplying the event
handlers for the SAX parser, and that structure must
exactly the right number of members. See the
Language Reference Manual for more details.

86 Messages and Codes (OS/2 and Windows)

IBM2143I S �IBM2152I S

IBM2143I S Event structure argument to the BUILTIN
name built-in has too many elements.

Explanation: The first argument to the named built-in
subroutine must be a structure supplying the event
handlers for the SAX parser, and that structure must
exactly the right number of members. See the
Language Reference Manual for more details.

IBM2144I S Member member-number in the event
structure argument to the BUILTIN name
built-in is not a scalar.

Explanation: The first argument to the named built-in
subroutine must be a structure supplying the event
handlers for the SAX parser, and each element of that
structure must be a scalar. See the Language
Reference Manual for more details.

IBM2145I S Member member-number in the event
structure argument to the BUILTIN name
built-in must be a LIMITED ENTRY.

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must be
a LIMITED ENTRY. See the Language Reference
Manual for more details.

IBM2146I S Member member-number in the event
structure argument to the BUILTIN name
built-in must return BYVALUE a NATIVE
FIXED BIN(31).

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must be
a function returning BYVALUE a NATIVE FIXED
BIN(31). See the Language Reference Manual for more
details.

IBM2147I S Member member-number in the event
structure argument to the BUILTIN name
built-in must have a non-empty entry
description list.

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
have a non-empty entry description list. See the
Language Reference Manual for more details.

IBM2148I S Member member-number in the event
structure argument to the BUILTIN name
built-in has a parameter count of
specified-parm-count when the correct
parameter count is required-parm-count .

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
have the correct number of parameters. See the
Language Reference Manual for more details.

IBM2149I S Member member-number in the event
structure argument to the BUILTIN name
built-in must have a BYVALUE POINTER
as its first parameter.

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
have a BYVALUE POINTER as its first parameter. See
the Language Reference Manual for more details.

IBM2150I S Member member-number in the event
structure argument to the BUILTIN name
built-in must have a BYVALUE POINTER
as its second parameter.

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
have a BYVALUE POINTER as its second parameter.
See the Language Reference Manual for more details.

IBM2151I S Member member-number in the event
structure argument to the BUILTIN name
built-in must have a BYVALUE NATIVE
FIXED BIN(31) as its third parameter.

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
have a BYVALUE NATIVE FIXED BIN(31) as its third
parameter. See the Language Reference Manual for
more details.

IBM2152I S Member member-number in the event
structure argument to the BUILTIN name
built-in must have a BYVALUE POINTER
as its fourth parameter.

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
have a BYVALUE POINTER as its fourth parameter.
See the Language Reference Manual for more details.

 Chapter 5. Compiler Severe Messages (1500-2500) 87

IBM2153I S �IBM2159I S

IBM2153I S Member member-number in the event
structure argument to the BUILTIN name
built-in must have a BYVALUE NATIVE
FIXED BIN(31) as its fifth parameter.

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
have a BYVALUE NATIVE FIXED BIN(31) as its fifth
parameter. See the Language Reference Manual for
more details.

IBM2154I S Member member-number in the event
structure argument to the BUILTIN name
built-in must have a BYVALUE POINTER
as its second parameter.

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
have a BYVALUE POINTER as its second parameter.
See the Language Reference Manual for more details.

IBM2155I S Member member-number in the event
structure argument to the BUILTIN name
built-in must have a BYVALUE NATIVE
FIXED BIN(31) as its fourth parameter.

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
have a BYVALUE NATIVE FIXED BIN(31) as its fourth
parameter. See the Language Reference Manual for
more details.

IBM2156I S Member member-number in the event
structure argument to the BUILTIN name
built-in must have a BYVALUE NATIVE
FIXED BIN(31) as its second parameter.

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
have a BYVALUE NATIVE FIXED BIN(31) as its second
parameter. See the Language Reference Manual for
more details.

IBM2157I S Member member-number in the event
structure argument to the BUILTIN name
built-in must have a BYVALUE CHAR(1)
or BYVALUE WCHAR(1) as its second
parameter.

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
have a BYVALUE CHAR (or BYVALUE WIDECHAR) of
length one as its second parameter. See the Language
Reference Manual for more details.

IBM2158I S Member member-number in the event
structure argument to the BUILTIN name
built-in has the wrong linkage.

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
have the PL/I default linkage. See the Language
Reference Manual for more details.

IBM2159I S Member member-number in the event
structure argument to the BUILTIN name
built-in must have the NODESCRIPTOR
option.

Explanation: The indicated element of the structure
supplying the event handlers for the SAX parser must
have the NODESCRIPTOR option. See the Language
Reference Manual for more details.

88 Messages and Codes (OS/2 and Windows)

IBM6001I E �IBM6018I E

Chapter 6. CICS Preprocessor Messages (6000-6999)

IBM6001I E Unrecognizable text text-value ignored.

Explanation: Text contains character(s) or token(s)
that are invalid.

IBM6002I E Invalid command command-name..

Explanation: Command is an invalid CICS command.

IBM6003I E Unsupported command command_name
ignored.

Explanation: Command is a valid CICS command;
nevertheless, it is not implemented. Please check
documentation of restrictions for this release of CICS.

IBM6004I E Command command-name requires at
least 1 keyword.

Explanation: At least 1 keyword is required with this
command. Please check the CICS documentation for
requirements.

IBM6005I E Too many keywords for command
command-name..

Explanation: The syntax for this command requires
fewer keywords. Please check CICS documentation.

IBM6006I E Invalid keyword keyword-name specified.

Explanation: An invalid keyword was found. Please
check for spelling mistakes.

IBM6007I E Keyword keyword-name is ignored.

Explanation: The keyword used is not appropriate in
this context and thus is ignored.

IBM6008I E Unsupported keyword keyword-name
specified.

Explanation: Please check CICS documentation for
restrictions in this release.

IBM6009I E Required keyword keyword-name
missing.

Explanation: The required keyword for this command
is missing. Please check your CICS documentation for
command requirements.

IBM6010I E Duplicate keyword keyword-name
specified.

Explanation: Duplicate keyword is found. Please
delete redundant keyword.

IBM6011I E Mutually exclusive keywords specified:
keyword-name-list..

Explanation: These keywords cannot be specified at
the same time. Please check your CICS documentation
for command requirements.

IBM6012I E Keyword keyword-name-1 invalid without
keyword keyword-name-2..

Explanation: First keyword is not recognized because
the second keyword was omitted. Please check your
CICS documentation for command requirements.

IBM6013I E Keyword keyword-name-1 required with
keyword keyword-name-2..

Explanation: A second keyword is required when the
first keyword is used. Please check your CICS
documentation for command requirements.

IBM6014I E Keyword keyword-name does not take an
argument.

Explanation: A value was provided but the keyword is
required to have no argument.

IBM6015I E Keyword keyword-name requires an
argument.

Explanation: This keyword requires that a value be
explicitly assigned.

IBM6017I E Illegal value value-text for keyword
keyword-name specified.

Explanation: The text given in the value contains
invalid characters or tokens.

IBM6018I E MAP(literal) or FROM or MAPONLY
required.

Explanation: Please provide one of the keywords
listed.

 Copyright IBM Corp. 1998 89

IBM6019I E �IBM6980I U

IBM6019I E CSA non-portable.

Explanation: Do not use CSA if you desire portability
of your code.

IBM6020I E Argument for keyword keyword-name
should be area-accepted value.

Explanation: The value provided must be an
area-accepted value.

IBM6021I E Argument for keyword keyword-name
must be data area.

Explanation: The associated value for the keyword
must be a data area.

IBM6022I E Argument for keyword keyword-name
must be pointer reference.

Explanation: The associated value for the keyword
must be a pointer reference.

IBM6023I E Argument for keyword keyword-name
must be statement label.

Explanation: The associated value for the keyword
must be a label.

IBM6024I E Argument for keyword keyword-name
has wrong data type.

Explanation: The associated value for the keyword has
the wrong data type.

IBM6025I U CICS BE detected internal error:
error-identifier.
 Please contact software-provider for
service.

Explanation: The CICS back end detected a
catastrophic condition and forced termination. Please
contact the software provider of your CICS package for
service.

IBM6026I E Keyword keyword-name context is
invalid.

Explanation: This keyword has no meaning in its
present context.

IBM6027I E Argument for keyword keyword-name
must be a string literal.

Explanation: The associated value for this keyword
must be a string literal.

IBM6028I E At least one of the following keywords
is required: keyword-name-list..

Explanation: One of the keywords listed in the
message is required as part of the syntax.

IBM6029I E The following argument has no
keyword: value-text..

Explanation: This value is not associated with any
keyword. Please provide an associated keyword.

IBM6030I E EXEC command-name command not
translated.

Explanation: This EXEC command is unsupported and
not processed by the CICS preprocessor.

IBM6977I U CICS requires outermost block to be a
PROCEDURE-block.

Explanation: CICS requires outermost block to be a
PROCEDURE-block.

IBM6978I U CICS statement is too long.

Explanation: CICS statement is too long. Please
check that you have provided a semicolon to terminate it
properly.

IBM6979I U Read error occurred during CICS
processing.

Explanation: A read did not complete properly. Your
file may be locked by another process.

IBM6980I U Write error occurred during CICS
processing.

Explanation: A write did not complete properly. Your
disk may be full.

90 Messages and Codes (OS/2 and Windows)

IBM6981I E �IBM6992I U

IBM6981I E Multiple closure of groups. CICS
requires explicit closure of each group.

Explanation: CICS detected that there is not a balance
between the number of END statements and statements
which begin blocks (i.e. DO, BEGIN, PROCEDURE,
SELECT). CICS requires that each END close exactly
one block. There are fewer END's than what is needed.
Please insert END at appropriate placed to fulfull this
requirement.

IBM6982I E Preprocessor CICS detected PL/I syntax
error. A pli-statement-name statement
assumed.

Explanation: CICS detected a PL/I syntax error. To
continue its scan it has assumed the statement was
intended as the type reported in the message. If a
mismatch of PL/I blocks are detected later, possibly the
assumption made by the preprocessor is incorrect.

IBM6983I E Source file does not end with the logical
end of the program.

Explanation: Lexical items other than comments or
blank lines were discovered after the logical end of the
program. Possibly too many END statements were
provided. Possibly a syntax error in any of the following
statement types has caused this error as a side effect:
SELECT, DO, BEGIN, PROCEDURE, PACKAGE.

IBM6984I S Preprocessor CICS terminated with
condition-name condition.

Explanation: The CICS front end detected a
catastrophic condition and forced termination. Please
contact the software provider of your PL/I compiler for
service.

IBM6985I E Preprocessor CICS detected
condition-name condition. Unexpected
results might occur.

Explanation: The CICS front-end detected an
unexpected condition, but recovered. Unexpected
results might occur. Please carefully check the results
and contact the software provider of your PL/I compiler
for service.

IBM6986I S An end-of-file occurs before termination
of a comment. CICS processing may be
terminated.

Explanation: An end-of-file was encountered before
the termination of a comment.

IBM6987I S No procedure statement found.
Procedure statement is required by the
CICS preprocessor.

Explanation: No PL/I procedure statement was
encountered. At least one is required.

IBM6988I S Cannot fetch the DLL file dll-name. CICS
may not be installed (or installed
improperly).

Explanation: The CICS product has not been installed
or the PL/I compiler cannot find the software. Please
check your LIBPATH and your set of environment
variables to see if they are consistent with the CICS
installation settings for PL/I.

IBM6989I S End-of-file appears in a string constant,
possibly because of unbalanced quotes.

Explanation: End-of-file was encountered while
searching for a terminating quotation mark.

IBM6990I E Suboption list or item is too long. It is
truncated to: truncated-suboption-list..

Explanation: Suboption list is too long and it is
truncated. Make sure that the truncated suboption list is
appropriate.

IBM6991I S End of file detected. CICS statement is
incomplete.

Explanation: End-of-file was detected while searching
for the end of a CICS statement. This could be caused
by a missing semicolon at the end of a CICS statement.

IBM6992I U No memory available for use by the CICS
preprocessor.

Explanation: The CICS preprocessor requested
memory, but no memory was available. Upgrading your
hardware or increasing swap-space may solve the
problem.

 Chapter 6. CICS Preprocessor Messages (6000-6999) 91

IBM6993I E �IBM6999I U

IBM6993I E Syntax error detected in CICS options at
option-token-name..

Explanation: Syntax error detected in CICS options
list. Please refer to the PL/I Programming Guide for
syntax information.

IBM6994I E The maximum number of CICS
key-value pairs (maximum-limit-of-pairs)
is exceeded. Later pairs ignored.

Explanation: The number of CICS key-value pairs has
exceeded the maximum allowed by the preprocessor.

IBM6995I I No CICS statements were encountered.

Explanation: No CICS statements were encountered.
No CICS processing was performed.

IBM6997I E Syntax error detected in the CICS
command.

Explanation: There is a syntax error detected in the
CICS command.

IBM6999I U - 0 text.

Explanation: Invalid CICS statement. See CICS/6000
Messages and Codes manual for details.

92 Messages and Codes (OS/2 and Windows)

IBM3000I �IBM3260W

Chapter 7. MACRO Preprocessor Messages (3000-3999)

IBM3000I note

Explanation: This message is used by %NOTE
statements with a return code of 0.

IBM3020I Comment spans line-count lines.

Explanation: A comment ends on a different line than
it begins. This may indicate that an end-of-comment
delimiter is missing.

IBM3021I String spans line-count lines.

Explanation: A string ends on a different line than it
begins. This may indicate that a closing quote is
missing.

IBM3250W note

Explanation: This message is used by %NOTE
statements with a return code of 4.

IBM3251W identifier is multiply defined, but with
different attributes. The declaration is
ignored.

Explanation: Attributes and declares must be
consistent.

 %a: proc;

 %end;

 %dcl a;

IBM3252W The attribute character conflicts with
previous attributes and is ignored.

Explanation: Attributes must be consistent.

 dcl a fixed char;

IBM3253W Comment spans more than one file.

Explanation: A comment ends in a different file than it
begins. This may indicate that an end-of-comment
statement is missing.

IBM3254W String spans more than one file.

Explanation: A string ends in a different file than it
begins. This may indicate that a closing quote is
missing.

IBM3255W Delimiter missing between nondelimiter
and nondelimiter. A blank is assumed.

Explanation: A delimiter (for example, a blank or a
comma) is required between all identifiers and constants.

 dcl 1 a, 2 b, 3c;

IBM3256W Multiple closure of groups. END
statements will be inserted to close
intervening groups.

Explanation: Using one END statement to close more
than one group of statements is permitted, but it may
indicate a coding error.

IBM3257W Missing character assumed.

Explanation: The indicated character is missing, and
there are no more characters in the source. The missing
character has been inserted by the parser in order to
correct your source.

IBM3258W Missing character assumed before
character.

Explanation: The indicated character is missing and
has been inserted by the parser in order to correct your
source.

 %dcl jump fixed;

 %skip

 %jump = 2;

IBM3260W Syntax of the %CONTROL statement is
incorrect.

Explanation: The %CONTROL statement must be
followed by FORMAT or NOFORMAT option enclosed in
parentheses and then a semicolon.

 Copyright IBM Corp. 1998 93

IBM3265W �IBM3299W

IBM3265W Number of lines specified with %SKIP
must be between 0 and 999 inclusive.

Explanation: Skip amounts greater than 999 are not
supported.

 %skip(2''');

IBM3281W SELECT statement contains no WHEN
or OTHERWISE clauses.

Explanation: WHEN or OTHERWISE clauses are not
required on SELECT statements, but their absence may
indicate a coding error.

IBM3283W SELECT statement contains no WHEN
clauses.

Explanation: SELECT statements do not require
WHEN clauses, but their absence may indicate a coding
error.

IBM3285W FIXED BINARY constant contains too
many digits. Excess nonsignificant
digits will be ignored.

Explanation: A FIXED BINARY constant must contain
31 or fewer digits.

IBM3286W FIXED DECIMAL constant contains too
many digits. Excess nonsignificant
digits will be ignored.

Explanation: The maximum precision for FIXED
DECIMAL constants is specified by the FIXEDDEC
suboption of the LIMITS compiler option.

IBM3287W Mantissa in FLOAT BINARY constant
contains more digits than the
implementation maximum. Excess
nonsignificant digits will be ignored.

Explanation: Float binary constants are limited to 64
digits.

IBM3288W Mantissa in FLOAT DECIMAL constant
contains more digits than the
implementation maximum. Excess
nonsignificant digits will be ignored.

Explanation: Float decimal constants are limited to 18
digits.

IBM3289W FLOAT literal is too big for its implicit
precision. An appropriate HUGE value
is assumed.

Explanation: The precision for a float literal is implied
by the the number of digits in its mantissa. For instance
1e99 is implicitly FLOAT DECIMAL(1), but the value
1e99 is larger than the largest value a FLOAT
DECIMAL(1) can hold.

IBM3291W The OPTIONS option option-name
conflicts with the LANGLVL compiler
option. The option will be applied.

Explanation: The named option is not part of the PL/I
language definition as specified in the LANGLVL
compiler option.

IBM3292W suboption is not a valid suboption for
option.

Explanation: The specified suboption is not one of the
supported suboptions of the named option.

 �process pp(macro('fixed(long)'));

IBM3293W A required suboption is missing for the
suboption option.

Explanation: The named option requires a suboption.

 �process pp(macro('fixed'));

IBM3294W A closing parenthesis is missing in the
specification of the option option. One
is assumed.

Explanation: A closing parenthesis is missing in the
specification of the named option.

 �process pp(macro('fixed(bin'));

IBM3295W option is not a supported option.

Explanation: The named option is not, in fact, an
option.

 �process pp(macro('float'));

IBM3299W Syntax of the %LINE directive is
incorrect.

Explanation: The %LINE directive must be followed,
with optional intervening blanks, by a parenthesis, a line
number, a comma, a file name and a closing
parenthesis.

94 Messages and Codes (OS/2 and Windows)

IBM3300W �IBM3321W

 %line(19, test.pli);

IBM3300W identifier has not been declared.
CHARACTER attribute assumed.

Explanation: All variables should be declared.

IBM3300W Operand to LENGTH built-in should
have string type.

Explanation: If the operand has a numeric type, the
result is the length that value would have after it was
converted to string. The length of a numeric type is
NOT the same as its storage requirement.

IBM3310W First argument to BUILTIN name built-in
should have string type.

Explanation: To eliminate this message, apply the
CHAR or BIT built-in function to the first argument.

 dcl i fixed bin;

 display(substr(i,4));

IBM3311W Argument number to the BUILTIN name
built-in function is missing. A null value
will be passed for the missing
argument.

Explanation: An argument to the function reference is
missing. A null string or zero will be passed, as
appropriate, for the missing argument.

 %dcl a fixed;

 %a = max(n,);

IBM3311W LEAVE will exit noniterative DO-group.

Explanation: This message is not produced if the
LEAVE statement specifies a label. In the following
loop, the LEAVE statement will cause only the
immediately enclosing DO-group to be exited; the loop
will not be exited.

 do i = 1 to n;

 if a(i) > ' then

 do;

 call f;

 leave;

 end;

 else;

 end;

IBM3312W Result of comparison is always
constant.

Explanation: This message is produced when a
variable is compared to a constant equal to the largest
or smallest value that the variable could assume. In the
following loop, the variable x can never be greater than
99, and hence the implied comparison executed each
time through the loop will always result in a '1'b.

 do x pic'99';

 do x = 1 to 99;

 end;

IBM3320W RETURNS attribute in ENTRY declare
ignored.

Explanation: ENTRY declares should not specify a
RETURNS attribute. In the example below, the "returns(
char)" should be omitted.

 %dcl a entry returns(char);

IBM3321W RETURNS option assumed to enclose
attribute in PROCEDURE statement.

Explanation: In a PROCEDURE statement, any
RETURNS attribute should be enclosed in parentheses
following the RETURNS keyword. In the example
below, the "char" attribute should be specified as
"returns(char)".

 %a: proc char ;

 return('1729');

 %end;

 Chapter 7. MACRO Preprocessor Messages (3000-3999) 95

IBM3322W �IBM3519E

IBM3322W Argument list for PROCEDURE identifier
is missing. It will be invoked without
any arguments.

Explanation: References in open code to
PROCEDUREs that have parameters should always
include at least an empty argument list. For example,
the "display(a)" below should be "display(a())".

 %a: proc(x) char ;

 dcl x char;

 return('1729');

 %end;

 %act a;

 display(a);

IBM3323W Too few arguments for PROCEDURE
identifier. Null values will be passed for
the missing arguments.

Explanation: There are too few arguments for the
specified procedure. Null strings or zeros will be
passed, as appropriate, for the missing arguments.

 %a: proc(x) char ;

 dcl x char;

 return('1729');

 %end;

 %act a;

 display(a());

IBM3324W Too many arguments for PROCEDURE
identifier. Excess ignored.

Explanation: There are too many arguments for the
specified procedure. The excess arguments will be
ignored.

 %a: proc(x) char ;

 dcl x char;

 return('1729');

 %end;

 %act a;

 display(a(1,2));

IBM3500E note

Explanation: This message is used by %NOTE
statements with a return code of 8.

IBM3510E keyword statement is not allowed where
an executable statement is required. A
null statement will be inserted before
the keyword statement.

Explanation: In certain contexts, for example after an
IF-THEN clause, only executable statements are
permitted. A DECLARE, DEFINE, DEFAULT or
FORMAT statement has been found in one of these
contexts. A null statement, (a statement consisting of
only a semicolon) will be inserted before the offending
statement.

IBM3511E COUNTER value would exceed 99999. It
will be reset to 0.

Explanation: The COUNTER built-in function should
not be invoked more than 99999 times.

IBM3512E Multiple closure of groups is not
allowed under RULES(NOMULTICLOSE).

Explanation: Under RULES(NOMULTICLOSE), there
should be no multiple closure of groups in your source
program.

IBM3514E Second argument to BUILTIN name
built-in is negative. It will be changed to
0.

Explanation: The second argument to built-in functions
such as COPY and REPEAT must be nonnegative.

 x = copy(y, -1);

IBM3517E Sole bound specified for dimension
dimension number of array variable name
is less than 1. An upper bound of 1 is
assumed.

Explanation: The default lower bound is 1, but the
upper bound must be greater than the lower bound.

 dcl x(-5) fixed bin;

IBM3519E Characters in B3 literals must be 0-7.

Explanation: In a B3 literal, each character must be
either 0-7.

96 Messages and Codes (OS/2 and Windows)

IBM3522E �IBM3537E

IBM3522E A DECIMAL exponent is required.

Explanation: An E in a FLOAT constant must be
followed by at least one decimal digit (optionally
preceded by a sign).

IBM3523E A second argument to the BUILTIN name
built-in must be supplied for arrays with
more than one dimension. A value of 1
is assumed.

Explanation: The LBOUND, HBOUND, and
DIMENSION built-in functions require two arguments
when applied to arrays having more than one dimension.

 dcl a(5,1') fixed bin;

 do i = 1 to lbound(a);

IBM3524E Second argument to BUILTIN name
built-in is not positive. A value of 1 is
assumed.

Explanation: The DIMENSION, HBOUND and
LBOUND built-in functions require that the second
argument be positive.

IBM3525E Second argument to BUILTIN name
built-in is greater than the number of
dimensions for the first argument. A
value of dimension count is assumed.

Explanation: The second argument to the LBOUND,
HBOUND, and DIMENSION built-in functions must be no
greater than the number of dimensions of their array
arguments.

 dcl a(5,1') fixed bin;

 do i = 1 to lbound(a,3);

IBM3526E Repeated declaration of identifier is
invalid and will be ignored.

Explanation: Level 1 variable names must not be
repeated in the same block.

 dcl a char, a fixed;

IBM3527E Missing THEN assumed.

Explanation: THEN keyword must be part of any IF
statement.

IBM3530E identifier is an array. ACTIVATE and
DEACTIVATE are invalid for arrays.

Explanation: Only scalars may be activated.

IBM3531E identifier is a statement label. ACTIVATE
and DEACTIVATE are invalid for labels.

Explanation: Labels may not be activated.

IBM3533E THEN clause outside of an open IF
statement is ignored.

Explanation: THEN clauses are valid only immediately
after an IF <expression>.

 %if a > b; %then;

IBM3534E ELSE clause outside of an open
IF-THEN statement is ignored.

Explanation: ELSE clauses are valid only immediately
after an IF-THEN statement.

 do; if a > b then; end; else a = ';

IBM3536E END label is not a label on any open
group.

Explanation: A Label on END statement must match a
LABEL on an open DO, PROCEDURE, or SELECT
statement.

 a: do;

 ...

 end b;

IBM3537E An END statement may be missing after
an OTHERWISE unit. One will be
inserted.

Explanation: After an OTHERWISE unit in a SELECT
statement, only an END statement is valid.

 Chapter 7. MACRO Preprocessor Messages (3000-3999) 97

IBM3538E �IBM3548E

 select;

 when (...)

 do;

 end;

 otherwise

 do;

 end;

 display(....);

IBM3538E %END statement found without any
open %PROCEDURE, %DO or %SELECT
statements. It will be ignored.

Explanation: Any %END statement should be part of a
%PROCEDURE-%END, %DO-%END or
%SELECT-%END group.

IBM3539E STRINGSIZE condition raised while
evaluating expression. Result is
truncated.

Explanation: During the conversion of a user
expression during the compilation, the target string was
found to be shorter than the source, thus causing the
STRINGSIZE condition to be raised.

IBM3540E STRINGRANGE condition raised while
evaluating expression. Arguments are
adjusted to fit.

Explanation: If all the arguments in a SUBSTR
reference are constants or restricted expressions, the
reference will be evaluated at compile- time and the
STRINGRANGE condition will occur if the arguments do
not comply with the rules described for the SUBSTR
built-in function.

 a = substr('abcdef', 5, 4);

IBM3542E LEAVE/ITERATE label is not a label on
any open DO group.

Explanation: LEAVE/ITERATE must specify a label on
an open DO loop.

 %a: do jx = 1 to 1729;

 %leave b;

 %end;

IBM3543E ITERATE/LEAVE statement is invalid
outside an open DO statement. The
statement will be ignored.

Explanation: ITERATE/LEAVE statements are valid
only inside DO groups.

 %a: do jx = 1 to 1729;

 %end;

 %leave a;

IBM3544E GX literals should contain a multiple of
4 hex digits.

Explanation: GX literals must represent graphic strings
and hence must contain a multiple of 4 hex digits.

 x = ''''gx;

IBM3545E Upper bound for dimension dimension
number of array variable name is less
than lower bound. Bounds will be
reversed.

Explanation: A variable has been declared with an
upper bound that is less than its lower bound. The upper
and lower bounds will be swapped in order to correct
this. For example, DECLARE x(3:1) will be changed to
DECLARE x(1:3).

IBM3546E Identifier is too long. It will be
collapsed to identifier.

Explanation: All identifiers must be contained in 31
bytes or less. PL/I DBCS identifiers must have 14 or
fewer DBCS characters.

IBM3547E B assumed to complete iSUB.

Explanation: There is no language element of the form
1su.

 dcl a(1') def b(1su, 1sub);

IBM3548E Digit in BINARY constant is not zero or
one.

Explanation: In a BINARY constant, each digit must be
a zero or one.

98 Messages and Codes (OS/2 and Windows)

IBM3549E �IBM3570E

IBM3549E Characters in BIT literals must be 0 or 1.

Explanation: In a BIT literal, each character must be
either zero or one.

IBM3550E Character with decimal value n does not
belong to the PL/I character set. It will
be ignored.

Explanation: The indicated character is not part of the
PL/I character set. This can occur if a program
containing NOT or OR symbols is ported from another
machine and those symbols are translated to a character
that is not part of the PL/I character set. Using the NOT
and OR compiler options can help avoid this problem.

IBM3551E Characters in hex literals must be 0-9 or
A-F.

Explanation: In a hex literal, each character must be
either 0-9 or A-F.

IBM3552E The statement element character is
invalid. The statement will be ignored.

Explanation: The statement entered could not be
parsed because the specified element is invalid.

IBM3553E Use of underscore as initial character in
an identifier accepted although invalid
under LANGLVL(SAA).

Explanation: Under LANGLVL(SAA), identifiers must
start with an alphabetic character or with one of the
extralingual characters. They may not start with an
underscore. Under LANGLVL(SAA2), identifiers may
start with an underscore, although names starting with
_IBM are reserved for use by IBM.

IBM3556E Character with decimal value n does not
belong to the PL/I character set. It is
assumed to be an OR symbol.

Explanation: The indicated character is not part of the
PL/I character set, but was immediately followed by the
same character. This can occur if a program containing
an OR symbol is ported from another machine and this
symbol is translated to a character that is not part of the
PL/I character set. Using the OR compiler option can
help avoid this problem.

IBM3557E Character with decimal value n does not
belong to the PL/I character set. It is
assumed to be a NOT symbol.

Explanation: The indicated character is not part of the
PL/I character set, but was immediately followed by an
=, < or > symbol. This can occur if a program
containing a NOT symbol is ported from another
machine and this symbol is translated to a character that
is not part of the PL/I character set. Using the NOT
compiler option can help avoid this problem.

IBM3565E Statement type resolution requires too
many lexical units to be examined. The
statement will be ignored.

Explanation: To determine if a statement is an
assignment or another PL/I statement, many elements of
the statement may need to be examined. If too many
have to be examined, the compiler will flag the
statement as in error. For instance, the following
statement could be a DECLARE until the equal sign is
encountered by the lexer.

 dcl (a, b, c) = d;

IBM3567E Statements inside a SELECT must be
preceded by a WHEN or an OTHERWISE
clause.

Explanation: A WHEN or OTHERWISE may be
missing.

 select;

 i = i + 1;

 when (a > ')

 ...

IBM3570E Extent expression is negative. It will be
replaced by the constant 1.

Explanation: Extents must be positive.

 dcl x char(-1');

 Chapter 7. MACRO Preprocessor Messages (3000-3999) 99

IBM3580E �IBM3604E

IBM3580E Parameter keyword may not be set more
than once. First setting is assumed.

Explanation: In a statement-form procedure invocation,
each parameter may be specified only once. Any
subsequent specifications will be ignored. In the
example code, 17 would be returned for both invocations
of P.

 %p: proc(a) stmt returns(char);

 dcl a char;

 return(a);

 %end;

 %act p;

 display(p a(17) a(29););

 display(p(17) a(29););

IBM3581E Unknown keyword in statement-form
procedure invocation. keyword and any
argument are ignored.

Explanation: In a statement-form procedure invocation,
any keyword specified must be the name of a parameter
for that procedure.

 %p: proc(a) stmt returns(char);

 dcl a char;

 return(a);

 %end;

 %act p;

 display(p a(17) b(29););

IBM3582E Parameter identifier is not declared.

Explanation: Each parameter in a procedure should be
declared.

 %a: proc(b, c);

 dcl b fixed;

 %end;

IBM3583E Labels on keyword statements are
invalid and ignored.

Explanation: Labels are not permitted on DECLARE
statements or on WHEN and OTHERWISE clauses.

IBM3589E The identifier identifier is not the name of
a built-in function. The BUILTIN
attribute will be ignored.

Explanation: The BUILTIN attribute can be applied
only to identifiers that are the names of built-in functions
or subroutines.

IBM3590E The attribute keyword is not supported
and will be ignored.

Explanation: The named attribute is not supported by
the macro facility.

 %dcl a char external;

IBM3591E Right parenthesis will be assumed at
end of argument list.

Explanation: A right parenthesis is probably missing.
If this occurs in the source, all the characters after the
unmatched left parenthesis in the source will be
interpreted as parameters to the function. If this occurs
in a replacement string, all the characters after the
unmatched left parenthesis in the string will be
interpreted as parameters to the function.

IBM3603E The end of the source was reached
before the logical end of the program.
Null statements and END statements will
be inserted as necessary to complete
the program.

Explanation: The source should contain END
statements for all PROCEDUREs, DO groups, and
SELECT statements, as well as statements for all
IF-THEN and ELSE clauses.

IBM3604E The procedure name proc-name has
already been declared. The explicit
declaration of the procedure name will
not be accepted.

Explanation: Declarations for internal procedures are
not permitted.

 a: proc;

 dcl b entry options(byvalue);

 b: proc;

100 Messages and Codes (OS/2 and Windows)

IBM3609E �IBM3626E

IBM3609E A SELECT statement may be missing.
A SELECT statement, without an
expression, will be inserted.

Explanation: A WHEN or OTHERWISE clause has
been found outside of a SELECT statement.

IBM3610E Semicolon inserted after ELSE keyword.

Explanation: An END statement enclosing a statement
such as DO or SELECT has been found before the
statement required after ELSE.

 do;

 if a > b then

 ...

 else

 end;

IBM3612E Semicolon inserted after OTHERWISE
keyword.

Explanation: An END statement may be misplaced or
a semicolon may be missing.

IBM3613E Semicolon inserted after THEN keyword.

Explanation: An END statement may be misplaced or
a semicolon may be missing.

IBM3614E Semicolon inserted after WHEN clause.

Explanation: An END statement may be misplaced or
a semicolon may be missing.

IBM3615E Source file does not end with the logical
end of the program.

Explanation: The source file contains statements after
the END statement that closed the first PACKAGE or
PROCEDURE. These statements will be ignored, but
their presence may indicate a programming error.

IBM3616E Subscripts have been specified for the
variable variable name, but it is not an
array variable.

Explanation: Subscripts can be specified only for
elements of an array.

IBM3617E Second argument in SUBSTR reference
is less than 1. It will be replaced by 1.

Explanation: Otherwise the STRINGRANGE condition
would be raised.

IBM3618E Second argument in SUBSTR reference
is too big. It will be trimmed to fit.

Explanation: Otherwise the STRINGRANGE condition
would be raised.

IBM3619E Third argument in SUBSTR reference is
less than 0. It will be replaced by 0.

Explanation: Otherwise the STRINGRANGE condition
would be raised.

IBM3620E Third argument in SUBSTR reference is
too big. It will be trimmed to fit.

Explanation: Otherwise the STRINGRANGE condition
would be raised.

IBM3621E More than 15 dimensions have been
specified. Excess will be ignored.

Explanation: The maximum number of dimensions
allowed for a variable, including all inherited dimensions,
is 15.

IBM3624E End-of-comment marker found when
there are no open comments. Marker
will be ignored.

Explanation: An */ was found when there was no open
comment.

IBM3625E There is no compiler directive directive.
Input up to the next semicolon will be
ignored.

Explanation: See the Language Reference Manual for
the list of supported compiler directives.

IBM3626E Listing control statement must start with
a percent symbol.

Explanation: A listing control statement, even when in
a preprocessor procedure, must be preceded by a "%".

 %a: proc;

 skip;

 %end;

 Chapter 7. MACRO Preprocessor Messages (3000-3999) 101

IBM3628E �IBM3761S

IBM3628E X literals should contain a multiple of 2
hex digits.

Explanation: An X literal may not contain an odd
number of digits.

IBM3638E Excess arguments for ENTRY ENTRY
name ignored.

Explanation: More arguments were specified in an
ENTRY reference than were defined as parameters in
that ENTRY's declaration.

 dcl e entry(fixed bin);

 call e(1, 2);

IBM3639E Excess arguments for BUILTIN name
built-in ignored.

Explanation: More arguments were specified for the
indicated built-in function than are supported by that
built-in function.

 i = acos(j, k);

IBM3650E keyword keyword accepted although
invalid under LANGLVL(SAA).

Explanation: The indicated keyword (UNSIGNED in
the example below) is not defined in the SAA level-1
language.

 dcl x fixed bin unsigned;

IBM3651E Use of S, D and Q constants accepted
although invalid under LANGLVL(SAA).

Explanation: The definition of the SAA level-1
language does not include S, D, and Q floating-point
constants.

IBM3652E Use of underscores in constants
accepted although invalid under
LANGLVL(SAA).

Explanation: The definition of the SAA level-1
language does not permit using underscores in numeric
and hex constants.

IBM3653E Use of asterisks for names in declares
accepted although invalid under
LANGLVL(SAA).

Explanation: The definition of the SAA level-1
language does not permit using asterisks for structure
element names.

IBM3654E Use of XN constants accepted although
invalid under LANGLVL(SAA).

Explanation: The definition of the SAA level-1
language does not include XN constants.

IBM3656E Use of 3 arguments with BUILTIN name
built-in accepted although invalid under
LANGLVL(SAA).

Explanation: Under LANGLVL(SAA), the VERIFY and
INDEX built-in functions are supposed to have exactly 2
arguments.

 i = verify(s, j, k);

IBM3657E Use of 1 argument with BUILTIN name
built-in accepted although invalid under
LANGLVL(SAA).

Explanation: Under LANGLVL(SAA), the DIM,
LBOUND and HBOUND built-in functions are supposed
to have 2 arguments.

 i = dim(a);

IBM3750S note

Explanation: This message is used by %NOTE
statements with a return code of 12.

IBM3760S Too few arguments have been specified
for the ENTRY ENTRY name.

Explanation: The number of arguments must match
the number of parameters in the ENTRY declaration.

IBM3761S Procedures may not be nested.

Explanation: Macro procedures may not be nested.

102 Messages and Codes (OS/2 and Windows)

IBM3762S �IBM3789S

IBM3762S No percent statements are allowed
inside procedures.

Explanation: Inside a procedure, statements should
not begin with a percent. The %DCL in the example
below should be just DCL.

 %a: proc(x) returns(char);

 %dcl x char;

 return('<' || x || '>');

 %end;

IBM3763S Not enough virtual memory is available
to continue the compile.

Explanation: The compilation requires more virtual
memory than is available. It may help to specify one or
more of the following compiler options: SIZE(MIN),
NOXREF, NOATTRIBUTES, and/or NOAGGREGATE

IBM3764S BUILTIN name argument must be a
parameter.

Explanation: An expression contains the named
built-in function with an argument that is not a
parameter.

IBM3765S BUILTIN name argument must be a
reference.

Explanation: An expression contains the named
built-in function with an argument that is not a reference.

IBM3768S The use of asterisks as subscripts is
not permitted in the macro facility.

Explanation: In the macro facility, all subscripts must
be scalar expressions.

IBM3769S Argument to BUILTIN name built-in must
have type CHARACTER(1)
NONVARYING.

Explanation: This applies to the RANK built-in function.

IBM3770S First argument to BUILTIN name built-in
must be an array.

Explanation: An expression contains the named
built-in function with a first argument that is not an array.
This message applies, for instance, to the DIMENSION,
HBOUND, and LBOUND built-in functions.

IBM3772S Third argument to BUILTIN name built-in
would force STRINGRANGE.

Explanation: If a third argument is given for one of the
built-in functions INDEX or VERIFY, it must be positive.

IBM3773S Second argument to BUILTIN name
built-in must be nonnegative.

Explanation: The second argument for the built-in
functions CHARACTER, BIT, and GRAPHIC must be
zero or greater.

IBM3774S Too few arguments have been specified
for the BUILTIN name built-in.

Explanation: Supply the minimum number of
arguments required.

IBM3778S Syntax of the %INCLUDE statement is
incorrect.

Explanation: %INCLUDE must be followed by a name
and either a semicolon or else a second name in
parenthesis and then a semicolon.

IBM3779S File specification after %INCLUDE is too
long.

Explanation: The maximum length of the file
specification is 8 characters.

IBM3780S File specification missing after
%INCLUDE.

Explanation: %INCLUDE must be followed by a file
name, not just a semicolon.

IBM3781S Procedures may have no more than 63
parameters.

Explanation: The excess parameters will be removed
from the proc statement.

IBM3789S Index number index number into the
variable variable name is less than the
lower bound for that dimension.

Explanation: Executing such a statement would most
likely cause a protection exception.

 %dcl a(5:1') fixed;

 %a(1) = ';

 Chapter 7. MACRO Preprocessor Messages (3000-3999) 103

IBM3790S �IBM3804S

IBM3790S Index number index number into the
variable variable name is greater than the
upper bound for that dimension.

Explanation: Executing such a statement would most
likely cause a protection exception.

 %dcl a(5:1') fixed;

 %a(2') = ';

IBM3791S Each dimension of an array must
contain no more than 2147483647
elements.

Explanation: It must be possible to compute the value
of the DIMENSION built-in function for an array. In
DECLARE x(x:y), (y-x+1) must be less than 214748648.

IBM3792S Array variable name has too many
elements. Bounds set to 1.

Explanation: Arrays are limited to 2**20 elements.

IBM3793S Too few subscripts specified for the
variable variable name.

Explanation: The number of subscripts given for a
variable must match that variable's number of
dimensions

IBM3794S Too many subscripts specified for the
variable variable name.

Explanation: The number of subscripts given for a
variable must match that variable's number of
dimensions

IBM3796S Array expressions cannot be assigned
to non-arrays, and if any target in a
multiple assignment is an array, then all
the targets must arrays.

Explanation: Array expressions may not, for instance,
be assigned to structures or scalars.

IBM3797S RETURN statement without an
expression is invalid inside a
PROCEDURE that specified the
RETURNS attribute.

Explanation: All RETURN statements inside functions
must specify a value to be returned.

 %a: proc returns(fixed);

 return;

 %end;

IBM3798S RETURN statement with an expression
is invalid inside a PROCEDURE that did
not specify the RETURNS attribute.

Explanation: A statement of the form RETURN(x) is
valid inside only PROCEDUREs that are defined with a
RETURNS attribute.

 %a: proc;

 return('this is invalid');

 %end;

IBM3800S Function function name contains no
RETURN statement.

Explanation: Functions must contain at least one
RETURN statement.

IBM3801S Target in assignment is invalid.

Explanation: The target in an assignment must be
character or fixed element reference. Pseudovariables
are not supported.

IBM3802S Statement labels may not be used in
expressions.

Explanation: Statement labels may be used only in
GOTO, LEAVE and ITERATE statements.

IBM3803S Target in concatenate-equals
assignment must have type char.

Explanation: Compound concatenate assignments with
fixed targets are not supported.

 %dcl a fixed;

 %a = ''';

 %a ||= '1';

IBM3804S Target in arithmetic-equals assignment
must have type fixed.

Explanation: Compound arithmetic assignments with
character targets are not supported.

104 Messages and Codes (OS/2 and Windows)

IBM3811S �IBM3854S

 %dcl a char;

 %a = ''';

 %a += '1';

IBM3811S Expression contains too many nested
subexpressions.

Explanation: The compiler's space for evaluating
expressions has been exhausted. Rewrite the
expression in terms of simpler expressions.

IBM3812S Result of concatenating a string of
length string length to a string of length
string length would produce a string that
is too long.

Explanation: The result of a concatenation must not
have a length greater than the maximum allowed for a
string.

IBM3813S Result of BUILTIN name applied repetition
value times to a string of length string
length would produce a string that is too
long.

Explanation: The result of COPY and REPEAT must
not have a length greater than the maximum allowed for
a string.

IBM3814S Unsupported use of aggregate
expression.

Explanation: The only valid aggregate expression is
the use of an array name as the first argument to the
HBOUND or LBOUND built-in functions.

IBM3815S Operand in bit operation must have
length less than 32768.

Explanation: Bit operations are limited to strings of
length 32767 or less.

IBM3816S Second and third arguments to the
TRANSLATE built-in function must have
length less than 32768.

Explanation: The TRANSLATE built-in function is not
supported if the second or third argument is longer than
32767 characters.

IBM3817S Result of BUILTIN name would exceed
maximum string length.

Explanation: The result of a COMMENT or QUOTE
built-in function must be a string that would have length
greater than the supported maximum.

IBM3837S GOTO target is inside a (different) DO
loop.

Explanation: The target of a GOTO cannot be inside a
DO loop unless the GOTO itself is in the same DO loop.

IBM3841S The INCLUDE file include-file-name could
not be opened.

Explanation: The INCLUDE file could not be found, or
if found, it could not be opened.

IBM3842S Statements are nested too deep.

Explanation: The nesting of PROCEDURE, DO,
SELECT and similar statements is greater than that
supported by the compiler. Rewrite the program so that
it is less complicated.

IBM3844S The function name built-in is not
supported.

Explanation: Support for the indicated built-in function
has been discontinued.

IBM3846S The keyword statement is not supported.

Explanation: Support for the indicated statement has
been discontinued.

IBM3848S Use of iSUB is not supported.

Explanation: iSUB is only supported in syntax
checking.

IBM3853S Nesting of DO statements exceeds the
maximum.

Explanation: DO statements can be nested only 50
deep. Simplify the program.

IBM3854S Nesting of IF statements exceeds the
maximum.

Explanation: IF statements can be nested only 50
deep. Simplify the program.

 Chapter 7. MACRO Preprocessor Messages (3000-3999) 105

IBM3855S �IBM3921S

IBM3855S Nesting of SELECT statements exceeds
the maximum.

Explanation: SELECT statements can be nested only
50 deep. Simplify the program.

IBM3856S Nesting of blocks exceeds the
maximum.

Explanation: Blocks may be nested only 30 deep.

IBM3870S The FETCH of the CICS backend failed.

Explanation: Check that the CICS modules are
accessible, otherwise report this error to IBM.

IBM3871S The CICS backend reported an internal
error while attempting to perform its
initialization.

Explanation: Report this error to IBM.

IBM3872S The CICS backend reported an internal
error while attempting to parse its
options.

Explanation: Report this error to IBM.

IBM3873S The CICS backend reported an internal
error while attempting to build and emit
the local declares.

Explanation: Report this error to IBM.

IBM3874S The CICS backend reported an internal
error while attempting to translate an
EXEC statement.

Explanation: Report this error to IBM.

IBM3875S The CICS backend reported an internal
error while attempting to translate a
CICS macro (such as DFHVALUE).

Explanation: Report this error to IBM.

IBM3876S The CICS backend reported an internal
error while attempting to perform its
termination.

Explanation: Report this error to IBM.

IBM3909S The attribute attribute conflicts with the
attribute attribute.

Explanation: The named attributes, for example
PARAMETER and INITIAL, are mutually exclusive.

IBM3911S The statement label character has
already been declared.

Explanation: All statement labels in any block must be
unique.

IBM3914S GOTO target must be a LABEL
reference.

Explanation: x in GOTO x must have type LABEL. x
must not have type FORMAT.

IBM3915S GOTO target must be a scalar.

Explanation: x in GOTO x must not be an array.

IBM3916S The procedure proc-name has already
been defined.

Explanation: Sister procedures must have different
names.

 % b: proc;

 % end;

 % b: proc;

 % end;

IBM3917S Program contains no valid source lines.

Explanation: The source contains either no statements
or all statements that it contains are invalid.

IBM3920S FIXED BINARY constant contains too
many digits.

Explanation: A FIXED BINARY constant must contain
31 or fewer digits.

IBM3921S FIXED DECIMAL constant contains too
many significant digits.

Explanation: The maximum precision of FIXED
DECIMAL constants is set by the FIXEDDEC suboption
of the LIMITS compiler option.

106 Messages and Codes (OS/2 and Windows)

IBM3922S �IBM3956S

IBM3922S Exponent in FLOAT BINARY constant
contains more digits than the
implementation maximum.

Explanation: The exponent in a FLOAT BINARY
constant may contain no more than 5 digits.

IBM3923S Mantissa in FLOAT BINARY constant
contains more significant digits than the
implementation maximum.

Explanation: The mantissa in a FLOAT BINARY
constant may contain no more than 64 digits.

IBM3924S Exponent in FLOAT DECIMAL constant
contains more digits than the
implementation maximum.

Explanation: The exponent in a FLOAT BINARY
constant may contain no more than 4 digits.

IBM3925S Mantissa in FLOAT DECIMAL constant
contains more significant digits than the
implementation maximum.

Explanation: The mantissa in a FLOAT BINARY
constant may contain no more than 18 digits.

IBM3926S Constants must not exceed 30720 bytes.

Explanation: The number of bytes used to represent a
constant in your program must not exceed 30720. This
limit holds even for bit strings where the internal
representation will consume only one-eighth the number
of bytes as the external representation does.

IBM3927S Numeric constants must be real,
unscaled and fixed.

Explanation: Any complex, scaled or floating point
constant will be converted to an integer value.

 %a = 3.1415;

IBM3928S Only B, BX and X string suffixes are
supported.

Explanation: G, GX, M, A and E string suffixes are not
supported.

 %a = '31'e;

IBM3930S Invalid syntax in statement-form of
procedure invocation. Text up to next
semicolon will be ignored.

Explanation: In the invocation of a statement-form
procedure, all characters that are not part of comments
or key names should be enclosed in parentheses
following one of the keys. For example, the "+" in the
display statement below should not be present.

 %a: proc(x) stmt returns(char);

 dcl x char;

 return(1729);

 %end;

 %act a;

 display(a + x(5););

IBM3943S The number of error messages allowed
by the FLAG option has been exceeded.

Explanation: Compilation will terminate when the
number of messages has exceeded the limit set in the
FLAG compiler option.

IBM3948S condition-name condition with ONCODE=
oncode-value raised while evaluating
expression.

Explanation: Evaluation of an expression raised the
named condition.

 %a = a / ';

IBM3949S Parameter name identifier appears more
than once in parameter list.

Explanation: Each identifier in a parameter list must be
unique.

 a: proc(b, c, b);

IBM3956S ITERATE is valid only for iterative
DO-groups.

Explanation: ITERATE is not valid inside type-I do
groups.

 Chapter 7. MACRO Preprocessor Messages (3000-3999) 107

IBM3957S �IBM3975S

IBM3957S RETURN statement outside of a
PROCEDURE is invalid.

Explanation: RETURN statements are valid only inside
procedures.

IBM3958S INCLUDE statement inside of a
PROCEDURE is invalid.

Explanation: INCLUDE statements are permitted only
outside any preprocessor procedures.

 %a: proc;

 include sample;

 %end;

IBM3959S Length of parameter exceeds 32767
bytes.

Explanation: Parameters to macro procedures must be
no longer than 32767 bytes.

IBM3960S End-of-source has been encountered
after an unmatched comment marker.

Explanation: An end-of-comment marker is probably
missing.

IBM3961S End-of-source has been encountered
after an unmatched quote.

Explanation: A closing quote is probably missing.

IBM3962S Replacement value contains no
end-of-comment delimiter. A comment
delimiter will be assumed at the end of
the replacement value.

Explanation: An end-of-comment marker is probably
missing.

IBM3963S Replacement value contains no
end-of-string delimiter. A string
delimiter will be assumed at the end of
the replacement value.

Explanation: A closing quote is probably missing.

IBM3964S ANSWER statement outside of a
PROCEDURE is invalid.

Explanation: ANSWER statements are valid only
inside procedures.

IBM3965S ANSWER statement inside of a
PROCEDURE with RETURNS is invalid.

Explanation: ANSWER statements are not valid inside
functions.

 %a: proc returns(char);

 answer('this is invalid');

 return('this is ok however');

 %end;

 %b: proc;

 answer('this is valid');

 %end;

IBM3966S Source has caused too many rescans.

Explanation: A rescan of a replacement string or a
rescan of a string returned by a preprocessor has
caused further replacement leading to another rescan
etc., and the maximum depth of rescanning was
exceeded.

For instance, the following macro, which is meant to
count the number of dcl statements in a compilation,
would produce this message. If the %ACTIVATE
statement specified NORESCAN, it would work correctly.

 %dcl dcl_Count fixed;

 %dcl_Count = ';

 %dcl: proc returns(char);

 dcl_count = dcl_count + 1;

 return('dcl');

 %end;

 %activate dcl;

IBM3974S Every shift-in character after the left
margin of a source line must have a
matching shift-out character before the
right margin of the same line.

Explanation: DBCS shift codes must be paired.

IBM3975S Every shift-in character within a string
generated for rescan must have a
matching shift-out character within that
same string.

Explanation: DBCS shift codes must be paired.

108 Messages and Codes (OS/2 and Windows)

IBM3976S �IBM3999U

IBM3976S DBCS characters are allowed only in G
and M constants.

Explanation: Hex strings (strings ending in one of the
suffixes X, BX, B4, GX or XN), bit strings, (strings
ending in the suffix B), and character strings not ending
in the suffix M must contain only SBCS characters.

IBM3977S SBCS characters are not allowed in G
constants.

Explanation: Mixed SBCS and DBCS is allowed only
in M constants.

IBM3978S Invalid use of SBCS encoded as DBCS.

Explanation: Outside of comments, SBCS can be
encoded as DBCS only as part of an identifier.

IBM3980S Recursion of procedures is not allowed.

Explanation: A procedure must not invoke itself
directly or indirectly.

IBM3981S BUILTIN function may not be used
outside a procedure.

Explanation: The named built-in function may be used
only inside procedures.

IBM3982S Procedure procedure-name is undefined
and cannot be invoked.

Explanation: A procedure must be defined (correctly)
before it can be invoked.

IBM3983S Premature end-of-source in scan.

Explanation: The source ended during a scan when a
right parenthesis or semicolon was required.

 %a: proc() stmt returns(char);

 return('1729');

 %end;

 %dcl a entry;

 a /� and no more source follows �/

IBM3984S File filename could not be opened.

Explanation: The named source file could not be
opened. Make sure that the file is named correctly, that
it exists and that it is readable.

IBM3997S Internal preprocessor error: no WHEN
clause satisfied within module name

Explanation: This message indicates that there is an
error in the macro preprocessor. Please report the
problem to IBM.

IBM3998S Internal preprocessor error: protection
exception in module name

Explanation: This message indicates that there is an
error in the front end of the compiler. Please report the
problem to IBM.

IBM3999U note

Explanation: This message is used by %NOTE
statements with a return code of 16.

 Chapter 7. MACRO Preprocessor Messages (3000-3999) 109

IBM7021I E �IBM7046I U

Chapter 8. SQL Preprocessor Messages (7000-7999)

IBM7021I E No PROCEDURE or PACKAGE
statements were found.

Explanation: The SQL preprocessor expects to find
either a PROCEDURE statement or a PACKAGE
statement in the program.

IBM7022I W No SQL statements were found in the
program.

Explanation: The source program contains no SQL
statements.

IBM7028I E Reference var-name is ambiguous.

Explanation: All references must be unambiguous.

IBM7029I E Host structure var-name contains a
non-scalar member.

Explanation: A host structure must contain only scalar
members.

IBM7030I E The indicator variable var-name is not
declared as a scalar.

Explanation: An indicator variable must be declared as
FIXED BIN(15).

IBM7032I I SQL comment is used.

Explanation: The characters after the two hyphens (--)
toward the end of the line are treated as comments.

IBM7034I W Host variables can not be arrays.

Explanation: Arrays as host variables are not allowed.

IBM7035I E Host variable var-name does not have a
valid host data type.

Explanation: Invalid host data type used for host
variable.

IBM7036I E Host structure member var-name does
not have a valid host data type.

Explanation: Invalid host data type used for host
structure member.

IBM7037I I DECLARE TABLE statement is ignored.

Explanation: The DECLARE TABLE statement is
treated as a documentation only statement. It is ignored
and does not have any effect on the program.

IBM7038I I DECLARE STATEMENT statement is
ignored.

Explanation: The DECLARE STATEMENT statement
is treated as a documentation only statement. It is
ignored and does not have any effect on the program.

IBM7040I I sql-message

Explanation: An SQL informational message has been
returned.

IBM7041I W sql-message

Explanation: An SQL warning message has been
returned.

IBM7042I E sql-message

Explanation: An SQL error message has been
returned.

IBM7043I S sql-message

Explanation: An SQL severe error message has been
returned.

IBM7044I U sql-message

Explanation:

IBM7045I U Fatal SQL Error var-name was returned
from the Database.

Explanation: A fatal database error occurred. Check
to see that the database is installed correctly.

IBM7046I U Fatal Error - PL/I User DB2 Logon Exit
failed to load.

Explanation: A fatal SQL Preprocessor occurred.
Check that the file IBMSUDB2.DLL is present.

110  Copyright IBM Corp. 1998

IBM7047I U �IBM7064I E

IBM7047I U Fatal Error - PL/I User DB2 Logon Exit
caused an error.

Explanation: A fatal SQL Preprocessor occurred.
Contact the provider of IBMSUDB2.DLL.

IBM7050I U SQL Preprocessor Internal Error
error_number
 occurred.

Explanation: The SQL Preprocessor detects an error
in its own code.

IBM7053I E The string beginning with var-name does
not have an ending string delimiter.

Explanation: Examine the statement for missing end
delimiters for the indicated string. The statement cannot
be processed.

IBM7054I E The comment is not terminated.

Explanation: The comment is not terminated properly.
The statement cannot be processed.

IBM7055I E File . var-name could
not be opened.

Explanation: The file "<filename>" was requested but
could not be opened. The source program could not be
processed.

IBM7056I E A memory allocation error has occurred.

Explanation: During processing, there was not enough
memory to continue processing.

IBM7057I W Precompilation has completed with
var-name errors and var-name warnings.

Explanation: The precompilation has completed with
the stated number of errors and warnings.

IBM7058I E The statement is too long or too
complex.

Explanation: The statement could not be processed
because it exceeds a system limit for either length or
complexity. The statement cannot be processed.

IBM7059I E An unexpected token var-name was
found following var-name . Expected
tokens may include: var-name .

Explanation: The syntax error in the SQL statement
was detected at the specified token following the text
"<text>". The "<text>" field indicates the characters of
the SQL statement that preceded the token that is not
valid. The statement cannot be processed.

IBM7060I E The name var-name is too long. The
maximum length is var-name .

Explanation: The name returned as "<name>" is too
long. The maximum length permitted for names of that
type is indicated by "<length>". The statement cannot
be processed.

IBM7061I E The host variable var-name is undefined.

Explanation: The host variable "<name>" is not
declared any DECLARE SECTION. The statement
cannot be processed.

IBM7062I W The host variable var-name is already
defined.

Explanation: The host variable "<name>" has already
been declared in a DECLARE SECTION. The statement
cannot be processed.

IBM7063I E The limit on the number of host
variables has been reached.

Explanation: The limit on the number of host variables
is dependent on how many will fit in the HOST_VARS
column of SYSPLAN. This limit has been reached. The
source program could not be processed.

IBM7064I E The host variable var-name is incorrectly
declared.

Explanation: The host variable "<name>" is not
declared correctly. Some possible reasons may be that
the type specified is not one that is supported, that the
length specification is 0, negative, or too large, that an
initiliazer is used, or that an incorrect syntax is specified.
The variable remains undefined. The source program
could not be processed.

 Chapter 8. SQL Preprocessor Messages (7000-7999) 111

IBM7065I E �IBM7070I E

IBM7065I E No END DECLARE SECTION was found
after a BEGIN DECLARE SECTION.

Explanation: The end of input was reached during
processing of a DECLARE SECTION. The source
program could not be processed.

IBM7066I E The "SQLAINIT" function has not been
called.

Explanation: Precompiler Services must be initialized
before the requested function call can be processed.
The source program could not be processed.

IBM7067I E Unable to use file var-name .

Explanation: While reading or writing file "<name>", an
error was encountered. The source program could not
be processed.

IBM7068I E The load of the DB2 Precompiler
Services module (DSNHPSRV) failed.

Explanation: An error was encountered while trying to
load the DB2 Precompiler Services module
(DSNHPSRV). Check that the dataset concatenation in
your job is correct. The source program could not be
processed.

IBM7069I E The DBRM Library was not found.

Explanation: An error was encountered while trying to
locate the DBRM library. Check that there is a
DBRMLIB DD card included in your job. The source
program could not be processed.

IBM7070I E The FLOAT option is inconsistent.

Explanation: The PL/I Compiler option
DEFAULT(IEEE|HEXADEC) does not match the PL/I
SQL Preprocessor option FLOAT(IEEE|S390). Make
sure they are consistent and resubmit your job. The
source program could not be processed.

112 Messages and Codes (OS/2 and Windows)

Chapter 9. Understanding run-time messages

During the execution of an application, various conditions can occur. This section lists
all the run-time messages that can be issued when a condition is raised and explains
how to use these messages.

Using run-time messages
One of the first steps in correcting problems that occur during the execution of your
application is to look up each run-time message for possible causes and solutions. By
default, messages are displayed on your workstation screen but you can pipe them to a
file for later reference.

Format of run-time messages
Each run-time message has the form IBMnnnnX.

The first three letters are the IBM message prefix, nnnn is the message number, and X
is the severity code for the message.

The severity code indicates the severity of the condition. In general, if more than one
run-time message is issued, the first noninformational message indicates the problem.
The severity code is one of the following: I, W, E, S, or U. Table 1 lists all the severity
codes, severity values, and condition information.

In addition to the prefixed message number, run-time messages also contain an oncode
and descriptive text. The message number identifies the error and references
additional condition and programmer response information.

Table 1. Run-time message severity codes, severity values, and condition information

Severity code Severity value Condition information

I 0 Informational message

W 1 Warning - possible error detected

E 2 Error detected

S 3 Severe error detected

U 4 Unrecoverable error detected

 Copyright IBM Corp. 1998 113

Here is an example of a run-time message: IBM'534I ONCODE=8'94 A protection

exception occurred. The example contains the following information:

Message prefix IBM
Message number 0534
Severity code I
Oncode 8094
Message text A protection exception occurred

Many of the oncodes are listed in Chapter 11, “Condition codes” on page 173.

 Message inserts
Many of the run-time messages contain message inserts indicating where the run-time
library routine inserts information when it prints the message. These inserts are
emphasized in the messages in this section using italics.

Contacting IBM for support
If you contact IBM for programming support for a run-time error, it is useful to have a
listing of your output available.

114 Messages and Codes (OS/2 and Windows)

IBM0020I �IBM0024I

 Chapter 10. Run-time messages

IBM0020I ONCODE= oncode-value The
CONVERSION condition was raised by a
SIGNAL statement.

Explanation: The program contained a SIGNAL
statement to raise the CONVERSION condition for which
there was no associated ON-unit. The ONCODE
associated with this message is 600.

Programmer Response: Either remove the SIGNAL
statement or include an ON-unit for the CONVERSION
condition in the program.

System Action: The ERROR condition is raised.

IBM0021I ONCODE= oncode-value The
CONVERSION condition was raised
because of unknown source attributes
on input.

Explanation: The CONVERSION condition was raised
within a GET LIST or GET DATA statement with the
FILE option. The attributes of the source data could not
be determined.

Example:

DCL (A,B) CHAR(14);

GET LIST(A,B);

where the input stream contained 'PIG'C, 'DOG'. The
condition will be raised when the first item is
encountered. The value for ONSOURCE would be
“'PIG'C,” and the value of ONCHAR would be: “C.” The
ONCODE associated with this message is 601.

Programmer Response: Include a suitable ON-unit in
the program to monitor errors in the input data revealed
by the CONVERSION condition. Use the ONSOURCE
and ONCHAR built-in functions to identify the error and
the ONSOURCE and ONCHAR pseudovariables to
assign a valid value so the program can continue
processing. Also, check the input data for correctness
before rerunning the program.

System Action: The ERROR condition is raised.

IBM0022I ONCODE= oncode-value The
CONVERSION condition was raised
because of unknown source attributes
on input after the TRANSMIT condition
was detected.

Explanation: The CONVERSION condition was raised
after an error caused the TRANSMIT condition to be
raised. For an example of the conversion error, refer to
the explanation given for message IBM0021. The
ONCODE associated with this message is 602.

Programmer Response: Correct the transmit error. If
the conversion error recurs after correcting the transmit
error, refer to the steps for conversion errors in message
IBM0021.

System Action: The ERROR condition is raised.

IBM0023I ONCODE= oncode-value The
CONVERSION condition was raised
because of unknown source attributes.

Explanation: The CONVERSION condition was raised
within a GET LIST STRING or GET DATA STRING
statement. For an example of the conversion error, refer
to the explanation for message IBM0021.

Programmer Response: Follow the steps given for
conversion errors in message IBM0021.

System Action: The ERROR condition is raised.

IBM0024I ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
using F-format on input.

Explanation: An invalid character was detected in an
F-format input field. The ONCODEs associated with this
message are:

603 GET STRING statement

604 GET FILE statement

Programmer Response: Include a suitable ON-unit in
the program to monitor errors in the input data that are
revealed by the CONVERSION condition. Use the
ONSOURCE and ONCHAR built-in functions to identify
the error and the ONSOURCE and ONCHAR
pseudovariables to assign a valid numeric value so the

 Copyright IBM Corp. 1998 115

IBM0025I �IBM0031I

program can continue processing. Also, ensure all input
is in the correct format before running the program.

System Action: The ERROR condition is raised.

IBM0025I ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
using F-format on input after the
TRANSMIT condition was detected.

Explanation: An invalid character was detected in an
F-format input field. A transmission error also occurred
and may be the cause of the conversion error. The
ONCODE associated with this message is 605.

Programmer Response: Correct the transmit error. If
the conversion error recurs after correcting the transmit
error, refer to the steps given for message IBM0024.

System Action: The ERROR condition is raised.

IBM0027I ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
using E-format on input.

Explanation: An invalid character was detected in an
E-format input field. The ONCODEs associated with this
message are:

606 GET STRING statement

607 GET FILE statement

Programmer Response: Refer to the steps for
conversion errors in message IBM0024. Use the
ONSOURCE and ONCHAR built-in functions to identify
the error, and the ONSOURCE and ONCHAR
pseudovariables to assign a valid value so the program
can continue processing.

System Action: The ERROR condition is raised.

IBM0028I ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
using E-format on input after the
TRANSMIT condition was detected.

Explanation: An invalid character was detected in an
E-format input field. A transmission error also occurred
and may be the cause of the conversion error. The
ONCODE associated with this message is 608.

Programmer Response: Correct the transmission
error. If the conversion error recurs after correcting the
transmission error, refer to the steps for message
IBM0024.

System Action: The ERROR condition is raised.

IBM0029I ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
using B-format on input.

Explanation: An invalid character was detected in a
B-format input field. The ONCODEs associated with this
message are:

609 GET STRING statement

610 GET FILE statement

Programmer Response: Include a suitable ON-unit in
the program to monitor errors in the input data that are
revealed by the CONVERSION condition. Use the
ONSOURCE and ONCHAR built-in functions to identify
the error and the ONSOURCE and ONCHAR
pseudovariables to assign a valid bit character so the
program can continue processing. Also, ensure all input
is in the correct format before running the program.

System Action: The ERROR condition is raised.

IBM0031I ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
using B-format on input after the
TRANSMIT condition was detected.

Explanation: An invalid character was detected in a
B-format input field. A transmission error also occurred
and may be the cause of the conversion error. The
ONCODE associated with this message is 611.

Programmer Response: Correct the transmission
error. If the conversion error recurs after correcting the
transmission error, refer to the steps for message
IBM0029.

System Action: The ERROR condition is raised.

116 Messages and Codes (OS/2 and Windows)

IBM0032I �IBM0035I

IBM0032I ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
when converting from character to
arithmetic.

Explanation: An invalid character was detected in a
character string that was being converted to an
arithmetic data type. The ONCODE associated with this
message is 612.

Programmer Response: If the error is in the
conversion of a PL/I source program constant or in the
conversion of a character string created while the
program is running, correct the source program.
Recompile and rerun the program. Use the
ONSOURCE and ONCHAR built-in functions to identify
the error, and the ONSOURCE and ONCHAR
pseudovariables to assign a valid value so the program
can continue processing.

System Action: The ERROR condition is raised.

IBM0033I ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
when converting from character to
arithmetic on input or output.

Explanation: A character which is invalid for
conversion to an arithmetic form was detected in one of
the following:

� An arithmetic constant in a list-directed or
data-directed item.

� A character constant being converted to an
arithmetic form in a list-directed or data-directed
item.

� An A-format input field being converted to an
arithmetic form.

The ONCODE associated with this message is 613.

Programmer Response: Refer to the steps for
message IBM0024.

System Action: The ERROR condition is raised.

IBM0034I ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
when converting from character on
input after the TRANSMIT condition was
detected.

Explanation: A character which is invalid for
conversion to an arithmetic form was detected in one of
the following:

� An arithmetic constant in a list-directed or
data-directed input item.

� A character constant being converted to an
arithmetic form in a list-directed or data directed
input item.

� An A-format input field being converted to an
arithmetic form.

A transmission error also occurred and may be the
cause of the conversion error. The ONCODE
associated with this message is 614.

Programmer Response: Correct the transmission
error. If the conversion error recurs after correcting the
transmission error, refer to the steps for message
IBM0024.

System Action: The ERROR condition is raised.

IBM0035I ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
when converting from character to bit.

Explanation: An invalid character was detected in a
character string that was being converted to a bit string.
The ONCODE associated with this message is 615.

Programmer Response: If the error is in the
conversion of a PL/I source program constant or in the
conversion of a character string created while the
program is running, correct the source program.
Recompile and rerun the program. Use the
ONSOURCE and ONCHAR built-in functions to identify
the error, and the ONSOURCE and ONCHAR
pseudovariables to assign a valid value so the program
can continue processing.

System Action: The ERROR condition is raised.

 Chapter 10. Run-time messages 117

IBM0036I �IBM0040I

IBM0036I ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
when converting from character to bit
on input or output.

Explanation: A character other than 0 or 1 appeared in
one of the following:

� A bit constant in a list-directed or data-directed item.

� A character constant being converted to bit form in
a list-directed or data-directed item.

� An A-format input field being converted to bit form.

� A B-format input field (excluding any leading or
trailing blanks).

The ONCODE associated with this message is 616.

Programmer Response: Refer to the steps for
message IBM0035.

System Action: The ERROR condition is raised.

IBM0037I ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
when converting from character to bit
on input after the TRANSMIT condition
was detected.

Explanation: A character other than 0 or 1 appeared in
one of the following:

� A bit constant in a list-directed or data-directed input
item.

� A character constant being converted to bit form in
a list-directed or data-directed input item.

� An A-format input field being converted to bit form.

� A B-format input field (excluding any leading or
trailing blanks).

A transmission error also occurred and may have
caused the conversion error. The ONCODE associated
with this message is 617.

Programmer Response: Correct the transmission
error. If the conversion error recurs after correcting the
transmission error, refer to the steps for message
IBM0024.

System Action: The ERROR condition is raised.

IBM0038I ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
when converting to a PICTURE
character string.

Explanation: A character that did not match the picture
specification was detected in a conversion to a
PICTURE character string. The ONCODE associated
with this message is 618.

Programmer Response: Ensure the character string to
be converted to a PICTURE character string matches
the picture string specification. If necessary, use the
ONSOURCE and ONCHAR built-in functions to identify
the error, and the ONSOURCE and ONCHAR
pseudovariables to replace an erroneous character with
a valid conversion character.

System Action: The ERROR condition is raised.

IBM0039I ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
when converting to a PICTURE
character string on input or output.

Explanation: A character that did not match the picture
specification was detected in a STREAM-oriented item
that required conversion to a PICTURE character string.
The ONCODE associated with this message is 619.

Programmer Response: Either ensure all input data to
the program is in the correct format or refer to the steps
for message IBM0038. These steps ensure the program
has adequate error recovery facilities to process any
invalid data found in its input and continue processing.

System Action: The ERROR condition is raised.

IBM0040I ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
when converting to a PICTURE
character string on input after the
TRANSMIT condition was detected.

Explanation: A character that did not match the picture
specification was detected in a stream-oriented input
item that required conversion to a PICTURE character
string. A transmission error also occurred and may be
the source of the conversion error. The ONCODE
associated with this message is 620.

Programmer Response: Correct the transmission
error. If the conversion error recurs after correcting the

118 Messages and Codes (OS/2 and Windows)

IBM0042I �IBM0047I

transmission error, refer to the steps for message
IBM0039.

System Action: The ERROR condition is raised.

IBM0042I ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
when converting from PICTURE format
on input.

Explanation: An edit-directed PICTURE format input
item contained a character that did not match the picture
specification. The ONCODEs associated with this
message are:

621 GET STRING statement

622 GET FILE statement

Programmer Response: Either ensure all input data to
the program is in the correct format before running the
program or use the program to check the data. If
necessary, use the ONSOURCE and ONCHAR built-in
functions to y identify the error, and the
ONSOURCE and ONCHAR pseudovariables to replace
an erroneous character with a character valid for
conversion.

System Action: The ERROR condition is raised.

IBM0043I ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
when converting from PICTURE format
on input after the TRANSMIT condition
was detected.

Explanation: An invalid character was detected in a
PICTURE format input field. A transmission error also
occurred and may be the cause of converison error.
The ONCODE associated with this message is 623.

Programmer Response: If the conversion error recurs
after correcting the transmission error, refer to the steps
for message IBM0042.

System Action: The ERROR condition is raised.

IBM0045I ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
when converting from PICTURE format
on input.

Explanation: An invalid character was detected in a
PICTURE format input item. The ONCODE associated
with this message is 625.

Programmer Response: Either ensure all input data to
the program is in the correct format before running the
program or use the program to check the data. If
necessary, use the ONSOURCE and ONCHAR built-in
functions to identify the error, and the ONSOURCE and
ONCHAR pseudovariables to replace an erroneous
character with a valid conversion character.

System Action: The ERROR condition is raised.

IBM0046I ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion error occurred
when converting from PICTURE format
on input after the TRANSMIT condition
was detected.

Explanation: An invalid character was detected in a
PICTURE format input item. A transmission error also
occurred and may be the cause of the conversion error.
The ONCODE associated with this message is 626.

Programmer Response: Correct the transmission
error. If the conversion error recurs after correcting the
transmission error, refer to the steps for message
IBM0045.

System Action: The ERROR condition is raised.

IBM0047I ONCODE= oncode-value The
CONVERSION condition was raised
because a graphic or mixed character
string was encountered in a non-graphic
environment.

Explanation: A graphic ('G') or mixed ('M') string
was used as a data value in the expression for the
STRING option of a GET statement. The ONCODE
associated with this message is 627.

Programmer Response: Modify the program to
remove the graphic or mixed string from the expression.

System Action: The ERROR condition is raised.

 Chapter 10. Run-time messages 119

IBM0048I �IBM0055I

IBM0048I ONCODE= oncode-value The
CONVERSION condition was raised
because a graphic or mixed character
string was encountered in a non-graphic
environment on input.

Explanation: A graphic ('G') or mixed ('M') string
was detected in an input file that was not declared with
the GRAPHIC option in the ENVIRONMENT attribute.
The ONCODE associated with this message is 628.

Programmer Response: Specify the GRAPHIC option
for a file that contains graphic or mixed character strings.

System Action: The ERROR condition is raised.

IBM0049I ONCODE= oncode-value The
CONVERSION condition was raised
because a graphic or mixed character
string was encountered in a non-graphic
environment on input after the
TRANSMIT condition was detected.

Explanation: The CONVERSION condition was raised
after an error caused the TRANSMIT condition to be
raised. For an example of the conversion error, see the
explanation given for message IBM0048. The ONCODE
associated with this message is 629.

Programmer Response: If the conversion error recurs
after eliminating the transmission error, take the steps
given for message IBM0048.

System Action: The ERROR condition is raised.

IBM0053I ONCODE= oncode-value The
CONVERSION condition was raised
because an invalid character was
detected in an X, BX, or GX string
constant.

Explanation: A character other than a hexadecimal
character was detected. Only hexadecimal characters
(0-9,a-f,A-F) are allowed in X, BX and GX string
constants. The ONCODE associated with this message
is 633.

Programmer Response: Include a suitable ON-unit in
the program to monitor errors in the input data that are
revealed by the CONVERSION condition. Use the
ONSOURCE and ONCHAR built-in functions to identify

the error, and the ONSOURCE and ONCHAR
pseudovariables to assign a valid hexadecimal character
so the program can continue processing. Also, ensure
all input is in the correct format before executing the
program.

System Action: The ERROR condition is raised.

IBM0054I ONCODE= oncode-value The
CONVERSION condition was raised
because an invalid character was
detected in an X, BX, or GX string
constant on input.

Explanation: A character other than a hexadecimal
character was detected. Only hexadecimal characters
(0-9,a-f,A-F) are allowed in X, BX and GX string
constants. The ONCODE associated with this message
is 634.

Programmer Response: Include a suitable ON-unit in
the program to monitor errors in the input data that are
revealed by the CONVERSION condition. Use the
ONSOURCE and ONCHAR built-in functions to identify
the error, and the ONSOURCE and ONCHAR
pseudovariables to assign a valid hexadecimal character
so the program can continue processing. Also, ensure
all input is in the correct format before executing the
program.

System Action: The ERROR condition is raised.

IBM0055I ONCODE=0635 The CONVERSION
condition was raised because an invalid
character was detected in an X, BX, or
GX string constant on input after the
TRANSMIT condition was detected.

Explanation: A character other than a hexadecimal
character was detected. Only hexadecimal characters
(0-9,a-f,A-F) are allowed in X, BX, and GX string
constants. A transmission error also occurred and may
be the source of the conversion error.

Programmer Response: Correct the transmission
error. If the conversion error recurs after correcting the
transmission error, refer to the steps for message
IBM0054.

System Action: The ERROR condition is raised.

120 Messages and Codes (OS/2 and Windows)

IBM0060I �IBM0101I

IBM0060I ONCODE= oncode-value The
CONVERSION condition was raised
because there was no SBCS equivalent
in the GRAPHIC conversion to
character.

Explanation: This condition is raised during an attempt
to convert a GRAPHIC string, containing ASCII DBCS
characters, that represents a character value. The string
contained a DBCS character for which there is no
equivalent SBCS character. The ONCODE associated
with this message is 667.

Programmer Response: Modify your program to
ensure such strings contain only valid ASCII DBCS
characters. Use the ONSOURCE pseudovariable to
assign a valid GRAPHIC string to the ONSOURCE
built-in function to allow the conversion to be retried.

System Action: The ERROR condition is raised.

IBM0061I ONCODE= oncode-value The
CONVERSION condition was raised
because there was no SBCS equivalent
in the GRAPHIC conversion to character
on input.

Explanation: This condition is raised during an attempt
to convert a GRAPHIC string in an input file, containing
ASCII DBCS characters, that represents a character
value. The string contained a DBCS character for which
there is no equivalent SBCS character. The ONCODE
associated with this message is 668.

Programmer Response: Modify your program to
ensure such strings contain only valid ASCII DBCS
characters. Use the ONSOURCE pseudovariable to
assign a valid GRAPHIC string to the ONSOURCE
built-in function to allow the conversion to be retried.

System Action: The ERROR condition is raised.

IBM0062I ONCODE= oncode-value The
CONVERSION condition was raised
because there was no SBCS equivalent
in the GRAPHIC conversion to character
on input after the TRANSMIT condition
was detected.

Explanation: The CONVERSION condition was raised
after an error caused the TRANSMIT condition to be
raised. For an example of the conversion error, see the
explanation given for message IBM0061. The ONCODE
associated with this message is 669.

Programmer Response: If the conversion error recurs
after eliminating the transmission error, take the steps
given for message IBM0061.

System Action: The ERROR condition is raised.

IBM0092I PL/I PLIDUMP was called with the
Traceback (T) option.

Explanation: PLIDUMP was called with the T option.

Programmer Response: No programmer response is
necessary.

System Action: No system action is performed.

IBM0100I ONCODE= oncode-value The NAME
condition was raised by a SIGNAL
statement (FILE= or ONFILE=

file-name).

Explanation: The program contained a SIGNAL
statement to raise the NAME condition for which there
was no associated ON-unit. The ONCODE associated
with this message is 10.

Programmer Response: Either remove the SIGNAL
statement or include an ON-unit for the NAME condition
in the program.

System Action: Execution continues with the next
sequential statement.

IBM0101I ONCODE= oncode-value The NAME
condition was raised because an invalid
element-variable in a STREAM item was
encountered during a GET FILE DATA
statement (FILE= or ONFILE= file-name).

Explanation: One of the following conditions was
detected:

� An identifier in the input stream had no counterpart
in the data list of the GET statement, or the GET
statement had no data list and an unknown identifier
was encountered in the stream.

� Invalid blank characters were found within an
identifier in the input stream.

� The name field or part of a qualified name was
omitted.

� There were more than 256 characters in a
fully-qualified name.

 Chapter 10. Run-time messages 121

IBM0120I �IBM0122I

� Blanks were found within an array subscript other
than between the optional sign and the decimal
digits.

� An array subscript was missing or indicated too
many dimensions.

� A value in a subscript was not a decimal digit.

� The subscript was beyond the declared range of
subscripts for a particular array.

� The left-parenthesis was missing after the name of
an array.

� A character other than “=” or a blank was found
after a right-parenthesis that delimits an array
subscript in the input stream.

� The end-of-file or a nonblank delimiter was found
before “=” in an item in the input stream.

Programmer Response: Use the DATAFIELD built-in
function in a NAME ON-unit to obtain the invalid data
item.

System Action: The incorrect data field is ignored and
execution of the GET statement continues.

IBM0120I ONCODE= oncode-value The RECORD
condition was raised by a SIGNAL
statement (FILE= or ONFILE= file-name).

Explanation: The program contained a SIGNAL
statement to raise the RECORD condition for which
there was on associated ON-unit.

Programmer Response: Supply an ON-unit for the
RECORD condition or remove the SIGNAL statement.

System Action: The ERROR condition is raised.

IBM0121I ONCODE= oncode-value The RECORD
condition was raised because the length
of the record variable was less than the
record length (FILE= or ONFILE=
file-name).

Explanation: This message was produced for records
that were longer than the associated PL/I variable.

� For a READ statement, the record was truncated to
the length of the variable in the INTO option.

� For a LOCATE statement (F-format records only), a
buffer was not allocated.

� For a WRITE statement (F-format records only), the
record was transmitted with the appropriate number

of padding bytes added to equal the length of the
record on the data set. The contents of the padding
bytes were undefined.

� For a REWRITE statement, the record was replaced
by the shorter record with the appropriate number of
padding bytes added to equal the length of the
record on the data set. The contents of the padding
bytes were undefined.

Programmer Response: Either supply an ON-unit for
the RECORD condition so the program can continue
running or modify the program to make the length of the
record variable the same as the length of the records on
the data set. Refer to the language reference manual
for this compiler for details of how such records are
handled when the RECORD condition is raised.

System Action: The ERROR condition is raised.

IBM0122I ONCODE= oncode-value The RECORD
condition was raised because the length
of the record variable was greater than
the record length (FILE= or ONFILE=
file-name).

Explanation: This message was produced for records
that were shorter than the associated PL/I variable.

� For the READ statement using F-format records and
a fixed-length variable in the INTO option, the
excess bytes in the variable were undefined.

� For a LOCATE statement, where the maximum
length of the records was than the length of the PL/I
variable, the buffer was not allocated.

� For a WRITE statement, the variable in the FROM
option was longer than the maximum length of the
records and was truncated to the maximum record
length.

� For a REWRITE statement, the variable in the
FROM option was longer than the record it was to
replace and was truncated to the length of this
record.

Programmer Response: Either supply an ON-unit for
the RECORD condition so the program can continue
running or modify the program to make the length of the
record variable the same as the length of the records on
the data set. Refer to the language reference manual
for this compiler for details of how such records are
handled when the RECORD condition is raised.

System Action: The ERROR condition is raised.

122 Messages and Codes (OS/2 and Windows)

IBM0123I �IBM0142I

IBM0123I ONCODE= oncode-value The RECORD
condition was raised because the
WRITE or LOCATE variable had a zero
length (FILE= or ONFILE= file-name).

Explanation: A WRITE or REWRITE statement
attempted to transmit a record variable of zero length, or
a LOCATE statement attempted to obtain buffer space
for a zero length record variable.

Programmer Response: Ensure the varying-length
string used as a record variable is not a null string when
the WRITE, REWRITE, or LOCATE statement is run.

System Action: The ERROR condition is raised.

IBM0125I ONCODE= oncode-value The RECORD
condition was raised because the
WRITE or LOCATE area was too short to
contain the embedded string (FILE= or
ONFILE= file-name).

Explanation: A record variable was too short to contain
the data set embedded key. Either a WRITE or
REWRITE statement attempted to transmit the record
variable or a LOCATE statement attempted to allocate
buffer space for the record variable. For a WRITE or
REWRITE statement, no transmission takes place. For
a LOCATE statement, a buffer is not allocated.

Programmer Response: Ensure the record variable is
long enough to contain the data set embedded key and
the key is valid.

System Action: The ERROR condition is raised.

IBM0140I ONCODE= oncode-value The TRANSMIT
condition was raised by a SIGNAL
statement (FILE= or ONFILE= file-name).

Explanation: The program contained a SIGNAL
statement to raise the TRANSMIT condition for which
there was no associated ON-unit. The ONCODE
associated with this message is 40.

Programmer Response: Either remove the SIGNAL
statement or include an ON-unit for the TRANSMIT
condition in the program.

System Action: The ERROR condition is raised.

IBM0141I ONCODE= oncode-value The TRANSMIT
condition was raised because of an
uncorrectable error in output (FILE= or
ONFILE= file-name).

Explanation: Data management routines detected an
uncorrectable error while transmitting output data
between main storage and an external storage device.
The condition was raised on the completion of a WRITE,
REWRITE, or LOCATE statement. For BUFFERED
files, this condition can be raised only after executing
several I/O statements following the processing of an
OUTPUT file. The output file can not be associated with
a unit record device. Processing of an UPDATE file can
continue. For INDEXED data sets, the condition can
occur while searching through the indices or tracing an
overflow record. The ONCODEs associated with this
message are:

� 41 output data set
� 42 input data set

Programmer Response: If the error recurs, obtain a
dump of the input/output buffer areas by using PLIDUMP
in a TRANSMIT ON-unit. Refer to the Programming
Guide for details of PLIDUMP. The resultant output,
together with all relevant listings and data sets, should
be preserved for later study by IBM.

System Action: The ERROR condition is raised.

IBM0142I ONCODE= oncode-value The TRANSMIT
condition was raised because of an
uncorrectable error in input (FILE= or
ONFILE= file-name).

Explanation: Data management routines detected an
uncorrectable error while transmitting input data between
main storage and an external storage device. If the
block contains VS-format records, the error is raised
once only for the block. Otherwise, the condition is
raised on the completion of a READ or REWRITE
statement for each record in the block that contains the
error and for every item transmitted by GET statements
from a block that contains the error. The contents of the
record or data item are undefined. However, processing
of subsequent records in the input file can be continued.
For INDEXED data sets, the condition can be raised
while searching the indices or tracing an overflow record.
The ONCODE associated with this message is 42.

Programmer Response: If the error recurs, obtain a
dump of the input/output buffers by using PLIDUMP in a
TRANSMIT ON-unit. Refer to the Programming Guide
for details of PLIDUMP. Save the PLIDUMP output and
all relevant listings and data sets for later study by IBM.

 Chapter 10. Run-time messages 123

IBM0146I �IBM0162I

System Action: The ERROR condition is raised.

IBM0146I ONCODE= oncode-value The TRANSMIT
condition was raised because of a write
error in the sequence set (FILE= or
ONFILE= file-name).

Explanation: Data management detected a physical
error while attempting to write on the sequence set of a
VSAM KSDS. The condition is raised on the completion
of a WRITE, REWRITE, LOCATE, or DELETE
statement. No further processing of an OUTPUT file can
occur. Processing of an UPDATE file can continue.
The ONCODE associated with this message is 45.

Programmer Response: Check the DASD on which
the data set is being written for error. Also, consult with
the system programmer.

System Action: The ERROR condition is raised.

IBM0147I ONCODE= oncode-value The TRANSMIT
condition was raised because of a read
error in the sequence set (FILE= or
ONFILE= file-name).

Explanation: Data management detected a physical
error while attempting to read from the sequence set of
a VSAM KSDS. The condition is raised on the
completion of a READ, WRITE, REWRITE, LOCATE, or
DELETE statement. No further processing of an
OUTPUT file can occur. Processing of an UPDATE file
can continue. If the error occurs on a READ statement,
no data is transferred to the record variable. For
sequential access, data set positioning can be lost,
causing a subsequent READ without KEY to raise
ERROR. Refer to message IBM0831 for sequential
access errors. The ONCODE associated with this
message is 46.

Programmer Response: Check the DASD on which
the data set resides for error. Also, consult with the
system programmer.

System Action: The ERROR condition is raised.

IBM0160I ONCODE= oncode-value The KEY
condition was raised by a SIGNAL
statement (FILE= or ONFILE= file-name).

Explanation: The program contained a SIGNAL
statement to raise the KEY condition for which there was
no associated ON-unit. The ONCODE associated with
this message is 50.

Programmer Response: Either remove the SIGNAL
statement or include an ON-unit for the KEY condition in
the program.

System Action: The ERROR condition is raised.

IBM0161I ONCODE= oncode-value The KEY
condition was raised because the
specified key could not be found (FILE=
or ONFILE= file-name).

Explanation: A READ, REWRITE, or DELETE
statement specified a recorded key which could not be
found on the data set. In the case of an INDEXED data
set, the key in error was either higher than the highest
level index or the record was not in the prime area or
the overflow areas of the data set. In the case of a
DIRECT file associated with a data set with REGIONAL
organization, the key in error was not in the specified
region or within the search limit defined by the LIMCT
subparameter of the DCB parameter. The ONCODE
associated with this message is 51.

Programmer Response: Determine why the key was
incorrect and modify the program or the data set to
correct the error. Use of the ONKEY built-in function in
a KEY ON-unit will aid in determining the value of the
erroneous key.

System Action: The ERROR condition is raised.

IBM0162I ONCODE= oncode-value The KEY
condition was raised because the
specified key was already in use in data
set (FILE= or ONFILE= file-name).

Explanation: In the case of data set with INDEXED
organization, an attempt was made to transmit a keyed
record to a data set that already held a record with the
same key. In the case of a data set with REGIONAL(1)
organization that was being created sequentially, an
attempt was made to transmit a record to a region that
already contained a record. The ONCODE associated
with this message is 52.

Programmer Response: Either check the validity of
the data that is being processed before running the

124 Messages and Codes (OS/2 and Windows)

IBM0163I �IBM0167I

program or use the program to check the data. Use of
the ONKEY built-in function in a KEY ON-unit can aid in
identifying an erroneous key, correcting it, and allowing
processing to continue normally.

System Action: The ERROR condition is raised.

IBM0163I ONCODE= oncode-value The KEY
condition was raised because the
specified key was less than the value of
the previous key (FILE= or ONFILE=
file-name).

Explanation: A key with a value that was less than the
value of the preceding key was detected during the
creation or extension of an INDEXED or REGIONAL
SEQUENTIAL data set. The ONCODE associated with
this message is 53

Programmer Response: Ensure the records written
onto an INDEXED or REGIONAL data set that is being
created or extended are in the correct ascending key
sequence order. Also, use a KEY ON-unit to comment
on the error and, where possible, allow processing to
continue normally.

System Action: The ERROR condition is raised.

IBM0164I ONCODE= oncode-value The KEY
condition was raised because the
specified key could not be converted to
valid data (FILE= or ONFILE= file-name).

Explanation: A WRITE, READ, REWRITE, DELETE,
or LOCATE statement for a REGIONAL data set
specified a key with an invalid character string value.
Invalid values consist entirely of blanks, contain
characters other than 0-9, or have a blank as part of the
region number. The ONCODE associated with this
message is 54.

Programmer Response: Ensure the key is in the
correct format. If necessary, use the ONKEY built-in
function in a KEY ON-unit to identify the erroneous key.
The ON-unit can be used to report any such errors and
allow processing to continue. Records associated with
the erroneous keys can be transmitted in a subsequent
run if the keys have been corrected.

System Action: The ERROR condition is raised.

IBM0165I ONCODE= oncode-value The KEY
condition was raised because the
specified key was invalid (FILE= or
ONFILE= file-name).

Explanation: For an INDEXED data set, either the
KEY or the KEYFROM expression was a null string or
an attempt was made to rewrite a record with the
embedded key of the replacement record not equal to
the record to be overwritten. For a REGIONAL data set,
the key specified was a null string or a string
commencing with '11111111'B. The ONCODE
associated with this message is 55.

Programmer Response: Refer to the steps for
message IBM0165.

System Action: The ERROR condition is raised.

IBM0166I ONCODE= oncode-value The KEY
condition was raised because the key
specified a position outside the data set
(FILE= or ONFILE= file-name).

Explanation: A WRITE, READ, REWRITE, or DELETE
statement specified a key whose relative record or track
value exceeded the number of records or tracks
respectively for the data set. The ONCODE associated
with this message is 56.

Programmer Response: Refer to the steps for
message IBM0164.

System Action: The ERROR condition is raised.

IBM0167I ONCODE= oncode-value The KEY
condition was raised because space
was not available to add a keyed record
(FILE= or ONFILE= file-name).

Explanation: For a SEQUENTIAL file associated with
an INDEXED data set, an attempt was made to write or
locate a record during the creation or extension of such
a data set when the space allocated to the data set was
full. For a DIRECT file associated with an INDEXED
data set, space in overflow areas was unable to accept
the overflow record. This was caused by the insertion of
a new record by a WRITE statement. For a DIRECT file
associated with a REGIONAL data set, space was
unavailable to add the record in the specified limit of
search as specified in the LIMCT subparameter of the
DCB parameter. Note that the data set is not
necessarily full. The ONCODE associated with this
message is 57.

 Chapter 10. Run-time messages 125

IBM0180I �IBM0201I

Programmer Response: Use the ONKEY built-in
function to identify the key value that caused the error.
If the key is in error, correct it and continue the job from
the point reached when the error occurred. If the key is
correct, organize the data set so the rejected record can
be accessed.

System Action: The ERROR condition is raised.

IBM0180I ONCODE= oncode-value The ENDFILE
condition was raised by a SIGNAL
statement (FILE= or ONFILE= file-name).

Explanation: The program contained a SIGNAL
statement to raise the ENDFILE condition for which
there was no associated ON-unit. The ONCODE
associated with this message is 70.

Programmer Response: Either remove the SIGNAL
statement or include an ON-unit for the ENDFILE
condition in the program.

System Action: The ERROR condition is raised.

IBM0181I ONCODE= oncode-value The ENDFILE
condition was raised (FILE= or ONFILE=
file-name).

Explanation: The end of an input file was detected.
The ONCODE associated with this message is 70.

Programmer Response: Include an ON-unit for the
ENDFILE condition for each input file in the program to
handle the end-of-file processing.

System Action: The ERROR condition is raised.

IBM0182I ONCODE= oncode-value The ENDFILE
condition was raised because an
end-of-file was previously encountered
in STREAM input (FILE= or ONFILE=
file-name).

Explanation: The ENDFILE condition was raised when
the end-of-file mark was encountered, but an attempt
was made to read beyond the end of the file. Either an
ENDFILE ON-unit was run and an attempt was made to
read the file or the end-of-file mark was encountered
between items in the data list of the current GET
statement. The ONCODE associated with this message
is 70.

Programmer Response: If the program contains an
ENDFILE ON-unit, ensure the program does not attempt
to read the file after the ENDFILE condition is raised. If

the error occurred while a GET statement with two or
more items in the data list is running, ensure the GET
statement can complete by providing sufficient data
items before the end-of-file mark is encountered.

System Action: The ERROR condition is raised.

IBM0190I The ENDPAGE condition was raised by
a SIGNAL statement.

Explanation: The program contained a SIGNAL
statement to raise the ENDPAGE condition. The
message for this condition is never issued by PL/I.

Programmer Response: None.

System Action: None.

IBM0191I The ENDPAGE condition was raised.

Explanation: A PUT statement resulted in an attempt
to start a new line beyond the limit specified for the
current page. The message for this condition is never
issued by PL/I.

Programmer Response: None.

System Action: None.

IBM0200I ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
by a SIGNAL statement (FILE= or
ONFILE= file-name).

Explanation: The program contained a SIGNAL
statement to raise the UNDEFINEDFILE condition for
which there was no associated ON-unit. The ONCODE
associated with this message is 80.

Programmer Response: Either remove the SIGNAL
statement or include an ON-unit for the
UNDEFINEDFILE condition in the program.

System Action: The ERROR condition is raised.

IBM0201I ONCODE=0081 The UNDEFINEDFILE
condition was raised because of
conflicting DECLARE and OPEN
attributes (FILE= or ONFILE= file-name).

Explanation: An attribute in an OPEN statement
conflicted with an attribute in a DECLARE statement.
The attributes may have been written explicitly or implied
by other attributes. For example, DIRECT implies
KEYED. Also, some RECORD input/output statements

126 Messages and Codes (OS/2 and Windows)

IBM0202I �IBM0204I

imply file attributes in an implicit OPEN statement. For
example, LOCATE implies RECORD OUTPUT
BUFFERED SEQUENTIAL. Refer to Table 2 on
page 127 for a list of conflicting attributes.

The ONCODE associated with this message is 81.

Programmer Response: Ensure the attributes
specified on the DECLARE statement are compatible
with the attributes specified on the OPEN statement.

System Action: The ERROR condition is raised.

IBM0202I ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the device type conflicted with
file attributes (FILE= or ONFILE=
file-name).

Explanation: A conflict between the device type and
the file attributes was detected. For example, a file with
the UPDATE attribute cannot be associated with a paper
tape reader, a printer, or a magnetic-tape device. The
ONCODE associated with this message is 82.

Programmer Response: Ensure the device type and
the file attributes are compatible.

System Action: The ERROR condition is raised.

IBM0203I ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the RECSIZE was not specified
(FILE= or ONFILE= file-name).

Explanation: The RECSIZE for an output file was not
specified. For an output file, the RECSIZE must be
specified in either the ENVIRONMENT attribute or in the
DCB parameter of the DD statement. The ONCODE
associated with this message is 83.

Programmer Response: For output files, ensure the
RECSIZE is specified. For input files, ensure the
RECSIZE is valid.

System Action: The ERROR condition is raised.

IBM0204I ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because a DD statement was not used
in (FILE= or ONFILE= file-name).

Explanation: The job stream for a file did not contain a
DD statement. The job stream must contain a DD
statement with a ddname that is either a fff (if the TITLE
option is not specified) or the name provided by the
TITLE option. The ONCODE associated with this
message is 84.

Programmer Response: Specify a DD statement to
associate the file with a physical data set.

System Action: The ERROR condition is raised.

Table 2. Conflicting Attributes

Attribute Conflicting Attributes

BACKWARDS STREAM, OUTPUT/UPDATE, DIRECT,
KEYED, EXCLUSIVE, PRINT,
TRANSIENT

BUFFERED STREAM, UNBUFFERED, PRINT

DIRECT STREAM, SEQUENTIAL,
BACKWARDS, PRINT, TRANSIENT

EXCLUSIVE STREAM, INPUT/OUTPUT,
SEQUENTIAL, BACKWARDS, PRINT,
TRANSIENT

INPUT OUTPUT/UPDATE, EXCLUSIVE, PRINT

KEYED STREAM, BACKWARDS, PRINT

OUTPUT INPUT/UPDATE, EXCLUSIVE,
BACKWARDS

PRINT RECORD, INPUT/UPDATE,
DIRECT/SEQUENTIAL,
BUFFERED/UNBUFFERED, KEYED,
EXCLUSIVE, BACKWARDS,
TRANSIENT

RECORD STREAM, PRINT

SEQUENTIAL STREAM, DIRECT, EXCLUSIVE,
PRINT, TRANSIENT

STREAM RECORD, UPDATE,
DIRECT/SEQUENTIAL,
BUFFERED/UNBUFFERED, KEYED,
EXCLUSIVE, BACKWARDS,
TRANSIENT

TRANSIENT STREAM, UPDATE,
DIRECT/SEQUENTIAL, EXCLUSIVE,
BACKWARDS, PRINT

UNBUFFERED STREAM, BUFFERED, PRINT

UPDATE STREAM, INPUT/OUTPUT,
BACKWARDS, PRINT, TRANSIENT

 Chapter 10. Run-time messages 127

IBM0205I �IBM0208I

IBM0205I ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because of an I/O error - the regional
data set could not be formatted (FILE=
or ONFILE= file-name).

Explanation: An I/O error prevented the data set from
being formatted correctly. When a REGIONAL data set
is opened for direct output, data management routines
format the data set into specified regions by writing
dummy or control records into the data set.

Example:

TF: PROC;

OPEN FILE(F) DIRECT OUTPUT;

END;

The ONCODE associated with this message is 85.

Programmer Response: If the problem recurs, have
the direct access device or storage medium checked by
a customer engineer.

System Action: The ERROR condition is raised.

IBM0206I ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because a LINESIZE or PAGESIZE
argument was outside the defined limits
(FILE= or ONFILE= file-name).

Explanation: The implementation-defined maximum or
minimum for the LINESIZE option of the
ENVIRONMENT attribute was exceeded. For LINESIZE,
the maximum value allowed is 32,000; the minumum
value allowed is 10. For PAGESIZE, the maximum
value allowed is 32,000; the minimum value allowed is 1.
The ONCODE associated with this message is 86.

Programmer Response: Ensure the argument to the
LINESIZE option is within the prescribed limits. If the
argument is a variable, verify it is a FIXED BINARY
(31,0) STATIC variable that was correctly initialized
before the file was opened.

System Action: The ERROR condition is raised.

IBM0207I ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the key length was not
specified (FILE= or ONFILE= file-name).

Explanation: A key length was not specified in either
the ENVIRONMENT attribute or the DCB parameter of
the associated DD statement.

Programmer Response: Specify the key length and
rerun the program.

System Action: The ERROR condition is raised.

IBM0208I ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the wrong BLOCKSIZE or
record length was specified (FILE= or
ONFILE= file-name).

Explanation: One of the following conditions was
detected:

1. Block size was less than record length.

2. For FB-format records, block size was not a multiple
of record length.

3. For VS-format and VBS-format consecutive files:

� LRECL=X was specified but RECSIZE was not
specified or was invalid in the ENVIRONMENT
attribute.

� The file was opened for update with a specified
logical record size exceeding 32,756.

4. For VS-format REGIONAL(3) files, logical record
size was greater than block size minus four.

5. FUNC=EO was specified with a record length not
equal to 80 or FUNC=CO was specified with a
record size not equal to 160.

6. Column binary was specified with a record length
not equal to 160 on an output file.

7. FUNC=I (punch interpret) was specified with a
record length not equal to 80 (or 81 if control
characters are in use).

The ONCODE associated with this message is 87.

Programmer Response: The seven numbered
responses below apply to the correspondingly numbered
explanations above:

1. Check the block size and record length specified in
the BLKSIZE and RECSIZE options of the
ENVIRONMENT attribute. If LINESIZE was
specified, ensure it is compatible with BLKSIZE.

128 Messages and Codes (OS/2 and Windows)

IBM0209I �IBM0213I

2. If the argument of either option is a variable, ensure
it is FIXED BINARY(31,0) STATIC and has been
initialized.

3. For VS-format and VBS-format consecutive files:

a. Specify a record size in the ENVIRONMENT
attribute, or correct its value.

b. Specify a record size less than 32,757.

4. Specify a record size less than or equal to the block
size minus four.

5. If FUNC=EO is specified, ensure the record length
is 80. If FUNC=CO is specified, ensure the record
length is 160.

6. Ensure the record length is 160 when column binary
is specified.

7. If FUNC=I is specified, ensure the record length is
80.

System Action: The ERROR condition is raised.

IBM0209I ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because of conflicting attributes and file
organization specifications (FILE= or
ONFILE= file-name).

Explanation: The file organization conflicted with one
or more explicit or implicit file attributes. Refer to
Table 3 for a list of possible conflicts.

The ONCODE associated with this message is 82.

Programmer Response: Ensure the file attributes are
compatible with the file organization.

System Action: The ERROR condition is raised.

IBM0212I ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the KEYLENGTH was negative
or greater than 255 (FILE= or ONFILE=
file-name).

Explanation: The KEYLENGTH option of the
ENVIRONMENT attribute for this file had an invalid key
length greater than 255 or less than zero.

Programmer Response: Check the argument of the
KEYLENGTH option to ensure it is either a constant or a
variable with the attributes FIXED BINARY (31,0)
STATIC and value between zero and 255 when the file
is opened. If the argument is a variable, ensure it is
correctly initialized.

System Action: The ERROR condition is raised.

IBM0213I ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because an invalid KEYLOC value was
detected (FILE= or ONFILE= file-name).

Explanation: One of the following conditions was
detected:

1. The offset of the key within a record was invalid.
The sum of the KEYLOC value and the key length
was greater than the record length.

2. For blocked ISAM files, either KEYLOC was not
specified or KEYLOC(0) was specified. Both are
invalid.

Programmer Response: The two numbered responses
below apply to the numbered explanations above.

1. Check the value of the argument to the KEYLOC
option. If the argument is a variable, check that it is
FIXED BINARY (31,0) STATIC and that it has been
correctly initialized.

2. Specify a KEYLOC value that is greater than zero.

System Action: The ERROR condition is raised.

Table 3. File Organization and Conflicting Attributes

Organization Conflicting Attributes

CONSECUTIVE DIRECT, EXCLUSIVE, KEYED,
TRANSIENT

INDEXED STREAM, TRANSIENT, DIRECT
OUTPUT, OUTPUT without KEYED

REGIONAL STREAM, TRANSIENT, OUTPUT
without KEYED

TP Non-TRANSIENT

VSAM STREAM, TRANSIENT, BACKWARDS,
DIRECT OUTPUT, OUTPUT without
KEYED(KSDS), KEYED(ESDS),
DIRECT(ESDS), REUSE for other than
OUTPUT file, DIRECT with
NON-UNIQUE INDEXES

None KEYED, TRANSIENT

 Chapter 10. Run-time messages 129

IBM0214I �IBM0243I

IBM0214I ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because of conflicting or invalid
environment options (FILE= or ONFILE=
file-name).

Explanation: There were conflicting environment
options.

Programmer Response: Ensure all environment
options for the file are compatible. If there are invalid
environment options specified, remove or correct correct
them.

System Action: The ERROR condition is raised.

IBM0225I ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the value of the ENV option
conflicted with the actual data set value
(FILE= or ONFILE= file-name).

Explanation: For VSAM data sets, the values of
KEYLOC, KEYLENGTH, and RECSIZE are specified
when the data set is defined. If values are specified on
any file declarations, they must match the defined
values. The ONCODE associated with this message is
91.

Programmer Response: Ensure the values of
KEYLOC, KEYLENGTH and RECSIZE specified in the
program match the defined values.

System Action: The ERROR condition is raised.

IBM0232I ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the requested data set was not
available (FILE= or ONFILE= file-name).

Explanation: The data set to be accessed was already
being used by another program and could not be
shared. Refer to the Programming Guide for further
information.

Programmer Response: Refer to the Programming
Guide for more information on sharing data sets.

System Action: The ERROR condition is raised.

IBM0236I ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the operating system was
unable to OPEN the file Subcode1= sc1
Subcode2= sc2 (FILE= or ONFILE=
file-name).

Explanation: The operating system or access method
encountered an error during the open process.
Subcode1 indicates why the file could not be opened.
Subcode2, if not zero, indicates the return code (in
hexadecimal) given by the operating system or access
method. Subcode2 information is mainly used by IBM
support when diagnosing problems. The meaning of the
Subcode1 values are as follows:

� 50 - A non-existent ISAM file is being opened for
input.

� 51 - An unexpected error occurred when opening an
ISAM file. Subcode2 gives the return code from
ISAM.

� 52, 53 - An unexpected error occurred when
opening a native or REGIONAL(1) file.

� 54 - A non-existent BTRIEVE file is being opened
for input.

� 55 - An unexpected error occurred when opening a
BTRIEVE file. Subcode2 gives the return code from
BTRIEVE.

� 56 - An unexpected error occurred when opening a
DDM file.

� 57,58 - An unexpected error occurred when opening
a DDM sequential, DDM relative or DDM indexed
file. Subcode2 gives the return code from DDM.

The ONCODE associated with this message is 93.

Programmer Response: For Subcodes 50 and 54,
ensure the input file exists. For all the other subcodes,
call IBM Support for assistance.

System Action: The ERROR condition is raised.

IBM0243I ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because an attempt to position the file
at the last record failed (FILE= or
ONFILE= file-name).

Explanation: When the ENVIRONMENT option BKWD
is used on file opening, the file must be positioned at the
last record. If an attempt to position the last record fails,
the file is closed and the UNDEFINEDFILE condition is
raised with this message.

130 Messages and Codes (OS/2 and Windows)

IBM0260I �IBM0265I

Programmer Response: Check with the system
operator or the system programmer.

System Action: The ERROR condition is raised.

IBM0260I ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because of an incorrect environment
variable (FILE= or ONFILE= file_name).

Explanation: The DD environment variable defining
charactericstics of the data set either was entered
incorrectly or contained an invalid option. The ONCODE
associated with this message is 96.

Programmer Response: Re-issue the SET DD
command on OS/2 or export DD on AIX and rerun your
program.

System Action: The ERROR condition is raised.

IBM0265I ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the file could not be opened
Subcode1= sc1 Subcode2= sc2 (FILE= or
ONFILE= file_name).

Explanation: The file could not be opened. Subcode1
indicates why the file could not be opened and
Subcode2, if not zero, indicates the return code (in
hexadecimal) given by the operating system or DDM.
Subcode2 information is mainly used by IBM support
when diagnosing problems. The meaning of the
Subcode1 values are as follows:

� 1, 2 - no RECCOUNT or RECSIZE values were
given via the ENVIRONMENT option or the set DD
or export DD enviornment variable. variable.

� 3 - A positioning error occurred for a sequential
output file.

� 4 - TYPE(FIXED) was specified for a native file,
but the file size was not a multiple of RECSIZE.

� 5, 13 - A positioning error occurred for a regional(1)
file.

� 6 to 12 - A positioning error occurred for an output
file.

� 21 to 23 - AMTHD(DDM) was specified on the DD
environment variable but the DDM loadable

component (DUBRUN and DUBLDM on OS/2, or
PLI_DDM on AIX) could not be found or could not
be accessed on the system.

� 24 - Incorrect extended attribute existed on a DDM
file.

� 25 - The ORGANIZATION option of the
ENVIRONMENT attribute conflicted with the type of
data set (DDM or native).

� 26 - Conflicts exist with the way the file is being
used.

� 27 - A composite key was detected with a
keyed-opening. Composite keys are acceptable
only for non-keyed openings.

� 28 to 30 - A new DDM file could not be created.

� 31 - A positioning error occurred for a DDM file.

� 35 - AMTHD(BTRIEVE) was specified on the DD
environment variable but the BTRIEVE loadable
component (BTRCALLS) could not be found or
could not be accessed on the system.

� 36 - Unexpected error occurred when opening a
BTRIEVE file.

� 37 - A new BTRIEVE file could not be created.

� 38 - A positioning error occurred for a BTRIEVE file.

� 40 - AMTHD(ISAM) was specified on the DD
environment variable but the ISAM
non-multithreading loadable components(IBMOS20F
and IBMOS20G on OS/2, or IBMWS20F and
IBMWS20G on Windows) or the ISAM mulithreading
loadable components(IBMOM20F and IBMOM20G
on OS/2, or IBMWM20F and IBMWM20G on
Windows) could not be found or could not be
accessed on the system.

� 41 - Unexpected error occurred when opening an
ISAM file.

� 42 - A new ISAM file could not be created.

� 43 - A positioning error occurred for an ISAM file.

The ONCODE associated with this message is 99.

Programmer Response: Issue the command DD:fn
environment variable and use the information to correct
the program.

System Action: The ERROR condition is raised.

 Chapter 10. Run-time messages 131

IBM0269I �IBM0291I

IBM0269I ONCODE= oncode-value The
UNDEFINEDFILE condition was raised
because the file function conflicted with
the DDM data set definition (FILE= or
ONFILE= file_name).

Explanation: A conflict existed between the I/O
functions intended for the file and the functions allowed
on the data set. One of the following was detected
when attempting to open a file to be accessed by the
DDM access method:

� The file was being opened for INPUT but the data
set was not get capable.

� The file was being opened for UPDATE, but the
data set was not insert capable, get capable, modify
capable, or delete capable.

� The file was being opened for OUTPUT, but the
data set was not insert capable.

Programmer Response: Ensure the correct data set is
being referenced and the data set is re-created with an
appropriate set of capabilities.

System Action: The ERROR condition is raised.

IBM0280I ONCODE= oncode-value The ERROR
condition was raised by a SIGNAL
statement.

Explanation: The program contained a SIGNAL
statement to raise the ERROR condition for which there
was no associated ON-unit.

Programmer Response: Either remove the SIGNAL
statement or include an ON-unit for the ERROR
condition in the program.

System Action: The application is terminated.

IBM0281I A prior condition was promoted to the
ERROR condition.

Explanation: This condition was raised by PL/I
because the implicit action occurred for a PL/I condition
that includes raising the ERROR condition as part of its
implicit action. The message for this condition is never
issued, but it can appear in a dump. Note that the
message for the prior condition was issued.

Programmer Response: Investigate the prior condition
that led to the ERROR condition. Remove the cause of

that condition, or include an ON-unit for that condition or
an ON-unit for the ERROR condition.

System Action: The application is terminated.

IBM0290I ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion from PICTURE
format contained an invalid character.

Explanation: An invalid character was detected in a
picture string that was being converted to an arithmetic
data type.

Programmer Response: If the error is in the
conversion of a PL/I source program constant or in the
conversion of a picture character string while the
program is running, correct the source program,
recompile it, and rerun the program.

System Action: The ERROR condition is raised.

IBM0291I ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion from PICTURE
format contained an invalid character on
input or output.

Explanation: A picture character which was invalid for
conversion to an arithmetic form was detected in one of
the following:

� An arithmetic constant in a list-directed or
data-directed item

� A picture character constant being converted to an
arithmetic form in a list-directed or data-directed
item

� A PICTURE format input field being converted to an
arithmetic form

Programmer Response: Include a suitable ON-unit in
the program to monitor errors in the input data that are
revealed by the CONVERSION condition. Use the
ONSOURCE and ONCHAR built-in functions to identify
the error, and the ONSOURCE and ONCHAR
pseudovariables to assign a valid numeric value so the
program can continue running normally. Otherwise,
ensure all input is in the correct format before running
the program.

System Action: The ERROR condition is raised.

132 Messages and Codes (OS/2 and Windows)

IBM0292I �IBM0330I

IBM0292I ONCODE= oncode-value The
CONVERSION condition was raised
because a conversion from PICTURE
format contained an invalid character on
input after the TRANSMIT condition was
detected.

Explanation: A picture character which was invalid for
conversion to an arithmetic form was detected in one of
the following:

� An arithmetic constant in a list-directed or
data-directed input item

� A picture character constant being converted to an
arithmetic form in a list-directed or data-directed
input item

� A PICTURE format input field being converted to an
arithmetic form

A transmission error also occurred and may have
caused the conversion error.

Programmer Response: Correct the transmission
error.

Programmer Response: If the conversion error recurs
after the transmission error is corrected, refer to the
steps for message IBM0291.

System Action: The ERROR condition is raised.

IBM0300I ONCODE=0320 The ZERODIVIDE
condition was raised by a SIGNAL
statement.

Explanation: The program contained a SIGNAL
statement to raise the ZERODIVIDE condition for which
there was no associated ON-unit.

Programmer Response: Either remove the SIGNAL
statement or include an ON-unit for the ZERODIVIDE
condition in the program.

System Action: The ERROR condition is raised.

IBM0301I ONCODE= oncode-value The
ZERODIVIDE condition was raised.

Explanation: The program attempted to execute a
statement in which a value of zero was used as the
divisor in a division operation. Also, an overflow may
have occurred during a convert to binary operation.

Programmer Response: Either check the data that
could produce a zero divisor (if doing a convert to binary

operation, check for overflow) before running the
program or include an ON-unit for the ZERODIVIDE
condition in the program.

System Action: The ERROR condition is raised.

IBM0320I ONCODE= oncode-value The
UNDERFLOW condition was raised by a
SIGNAL statement.

Explanation: The program contained a SIGNAL
statement to raise the UNDERFLOW condition for which
there was no associated ON-unit. The ONCODE
associated with this message is 330.

Programmer Response: Either remove the SIGNAL
statement or include an ON-unit for the UNDERFLOW
condition in the program.

System Action: Execution continues with the next
sequential statement.

IBM0321I ONCODE= oncode-value The
UNDERFLOW condition was raised.

Explanation: The magnitude of a floating-point number
was smaller than the allowed minimum.

Programmer Response: Either modify the program so
that the magnitude of the floating-point number is higher
than the minimum allowed, or include an ON-unit for the
UNDERFLOW condition in the program.

System Action: Execution continues from the point at
which the condition was raised.

IBM0330I The ATTENTION condition was raised
by a SIGNAL statement.

Explanation: The program contained a SIGNAL
statement to raise the ATTENTION condition. The
message for this condition is never issued by PL/I.

Programmer Response: None.

System Action: None.

 Chapter 10. Run-time messages 133

IBM0340I �IBM0366I

IBM0340I ONCODE= oncode-value The SIZE
condition was raised by a SIGNAL
statement.

Explanation: The program contained a SIGNAL
statement to raise the SIZE condition for which there
was no associated ON-unit. The ONCODE associated
with this message is 340.

Programmer Response: Either remove the SIGNAL
statement or include an ON-unit for the SIZE condition in
the program.

System Action: The ERROR condition is raised.

IBM0341I ONCODE= oncode-value The SIZE
condition was raised in an I/O
statement.

Explanation: The high-order (leftmost) significant
binary or decimal digits were lost in an input/output
operation where the size of the value being transmitted
exceeded the declared (or default) size of the data item.
The ONCODE associated with this message is 341.

Programmer Response: Either modify the program so
that the data item is large enough for the value being
transmitted or include an ON-unit for the SIZE condition
in the program.

System Action: The ERROR condition is raised.

IBM0342I ONCODE= oncode-value The SIZE
condition was raised.

Explanation: The high-order (leftmost) significant
binary or decimal digits were lost in an assignment to a
variable or temporary variable where the size of the
value being assigned exceeded the declared (or default)
size of the data item. The ONCODE associated with
this message is 341.

Programmer Response: Either modify the program so
that the data item is large enough for the value being
assigned to it or include an ON-unit for the SIZE
condition to allow processing to continue when the SIZE
condition is raised.

System Action: The ERROR condition is raised.

IBM0360I ONCODE= oncode-value The
STRINGRANGE condition was raised by
a SIGNAL statement.

Explanation: The program contained a SIGNAL
statement to raise the STRINGRANGE condition for
which there was no associated ON-unit. The ONCODE
associated with this message is 341.

Programmer Response: Either remove the SIGNAL
statement or include an ON-unit for the STRINGRANGE
condition in the program.

System Action: Execution continues with the next
sequential statement.

IBM0361I ONCODE= oncode-value The
STRINGRANGE condition was raised.

Explanation: In the expression SUBSTR(S,I,J), the
substring was not contained within the string S.

Programmer Response: Modify the source program
so that this condition does not occur.

System Action: Execution continues with a revised
SUBSTR reference. Refer to the PL/I Language
Reference for details regarding the value of the revised
SUBSTR reference.

IBM0365I The FINISH condition was raised by a
SIGNAL statement.

Explanation: The program contained a SIGNAL
statement to raise the FINISH condition. The message
for this condition is never issued by PL/I.

Programmer Response: None.

System Action: None.

IBM0366I The FINISH condition was raised during
a STOP statement.

Explanation: The program contained a STOP
statement which caused the FINISH condition to be
raised. The message for this condition is never issued
by PL/I.

Programmer Response: None.

System Action: None.

134 Messages and Codes (OS/2 and Windows)

IBM0367I �IBM0400I

IBM0367I The FINISH condition was raised during
an EXIT statement.

Explanation: The program contained an EXIT
statement which caused the FINISH condition to be
raised. The message for this condition is never issued
by PL/I.

Programmer Response: None.

System Action: None.

IBM0368I The FINISH condition was raised due to
a RETURN or END statement in the main
procedure.

Explanation: The program completed normally, and as
a result the FINISH condition was raised. The message
for this condition is never issued by PL/I.

Programmer Response: None.

System Action: None.

IBM0369I The FINISH condition was raised after
the ERROR condition.

Explanation: The FINISH condition was raised as the
normal return action or implicit action for the ERROR
condition. The message for this condition is never
issued by PL/I.

Programmer Response: None.

System Action: None.

IBM0380I ONCODE= oncode-value The AREA
condition was raised by a SIGNAL
statement.

Explanation: The program contained a SIGNAL
statement to raise the AREA condition for which there
was no associated ON-unit. The ONCODE associated
with this message is 362.

Programmer Response: Either remove the SIGNAL
statement or include an ON-unit for the AREA condition
in the program.

System Action: The ERROR condition is raised.

IBM0381I ONCODE= oncode-value The AREA
condition was raised because the target
area was too small for the AREA
assignment.

Explanation: In an assignment of an area variable, the
current extent of the area on the right-hand side of the
assignment statement was greater than the size of the
area to which it was to be assigned. The ONCODE
associated with this message is 361.

Programmer Response: Modify the program to correct
the above condition.

System Action: The ERROR condition is raised.

IBM0382I ONCODE= oncode-value The AREA
condition was raised because there was
insufficient contiguous space in the
area for allocation.

Explanation: Insufficient space was available in the
specified area for the allocation. The ONCODE
associated with this message is 360.

Programmer Response: Provide an ON-unit to allow
the allocation to be tried again. If necessary, change the
value of the pointer qualifying the reference to the
inadequate area so that it points to another area in
which the allocation can be tried again.

System Action: The ERROR condition is raised.

IBM0400I ONCODE= oncode-value The CONDITION
condition was raised by a SIGNAL
statement and the condition
condition-name was signaled.

Explanation: The program contained a SIGNAL
statement to raise the CONDITION condition for which
there was no associated ON-unit. The ONCODE
associated with this message is 500.

Programmer Response: Either remove the SIGNAL
statement or include an ON-unit for the CONDITION
condition in the program.

System Action: Execution continues with the
statement following the SIGNAL statement.

 Chapter 10. Run-time messages 135

IBM0420I �IBM0450I

IBM0420I ONCODE= oncode-value The
SUBSCRIPTRANGE condition was
raised by a SIGNAL statement.

Explanation: The program contained a SIGNAL
statement to raise the SUBSCRIPTRANGE condition for
which there was no associated ON-unit. The ONCODE
associated with this message is 520.

Programmer Response: Either remove the SIGNAL
statement or include an ON-unit for the
SUBSCRIPTRANGE condition in the program.

System Action: The ERROR condition is raised.

IBM0421I ONCODE= oncode-value The
SUBSCRIPTRANGE condition was
raised.

Explanation: An array subscript exceeded the declared
bound for the array.

Programmer Response: In order to ensure that the
program can continue processing after encountering a
subscript range error, include an ON-unit for this
condition which runs a GOTO statement to the
appropriate place in the program. Also, recompile the
program. Normal return from a SUBSCRIPTRANGE
ON-unit will produce this message and raise the error
condition. Note that array handling operations are made
slower when SUBSCRIPTRANGE is enabled.

System Action: The ERROR condition is raised.

IBM0440I ONCODE= oncode-value The
STRINGSIZE condition was raised by a
SIGNAL statement.

Explanation: The program contained a SIGNAL
statement to raise the STRINGSIZE condition for which
there was no associated ON-unit. The ONCODE
associated with this message is 150.

Programmer Response: Either remove the SIGNAL
statement or include an ON-unit for the STRINGSIZE
condition in the program.

System Action: Execution continues with the next
sequential statement.

IBM0441I ONCODE= oncode-value The
STRINGSIZE condition was raised.

Explanation: A string was assigned to a shorter string,
causing right-hand characters or bits in the source string
to be truncated.

Programmer Response: Determine whether or not
truncation of the right-hand characters or bits in the
source string is correct. Use an ON-unit to record the
relevant data or modify the program as required. Note
that string-handling operations are made slower when
STRINGSIZE is enabled.

System Action: Execution continues from the point at
which the condition was raised.

IBM0442I ONCODE=0151 The STRINGSIZE
condition was raised during a mixed
character string assignment.

Explanation: This condition was raised by one of the
CHAR, GRAPHIC, or MPSTR built-in functions. The
target was not long enough to contain the result. This
target can be the actual target or a temporary target
created by the compiler. This condition might have
occurred due to a mixed character assignment with
STRINGSIZE enabled and CHARGRAPHIC in effect for
the procedure or block. In this case, a MPSTR call is
generated.

Programmer Response: Determine whether or not
truncation of right-hand characters in the result is
correct. Use an ON-unit to record the relevant data or
modify the program as required.

System Action: Execution continues from the point at
which the condition was raised.

IBM0450I ONCODE= oncode-value The STORAGE
condition was raised by a SIGNAL
statement.

Explanation: The program contained a SIGNAL
statement to raise the STORAGE condition for which
there was no associated ON-unit.

Programmer Response: Either remove the SIGNAL
statement or include an ON-unit for the STORAGE
condition in the program.

System Action: The ERROR condition is raised.

136 Messages and Codes (OS/2 and Windows)

IBM0451I �IBM0472I

IBM0451I ONCODE= oncode-value The STORAGE
condition was raised.

Explanation: There was insufficient storage available
to satisfy a request for additional storage. For a storage
allocation for a BASED variable, the variable was not
allocated and its associated pointer will be undefined.
For a storage allocation for a CONTROLLED variable,
the controlled variable's generation was not allocated. A
reference to the controlled variable will result in the
access of a previous generation of the controlled
variable(if any).

Programmer Response: Attempt to free the allocated
storage through a FREE statement or within an ON-unit,
or provide necessary steps in the ON-unit to terminate
the program without losing pertinent information.

System Action: The ERROR condition is raised.

IBM0460I ONCODE= oncode-value The OVERFLOW
condition was raised by a SIGNAL
statement.

Explanation: The program contained a SIGNAL
statement to raise the OVERFLOW condition for which
there was no associated ON-unit. The ONCODE
associated with this message is 300.

Programmer Response: Either remove the SIGNAL
statement or include an ON-unit for the OVERFLOW
condition in the program.

System Action: The ERROR condition is raised.

IBM0461I ONCODE= oncode-value The OVERFLOW
condition was raised.

Explanation: The magnitude of a floating-point number
exceeded the allowed maximum.

Programmer Response: Modify the program to ensure
that the condition does not recur, or provide an ON-unit
to handle the condition.

System Action: The ERROR condition is raised.

IBM0470I ONCODE= oncode-value The INVALIDOP
condition was raised by a SIGNAL
statement.

Explanation: The program contained a SIGNAL
statement to raise the INVALIDOP condition for which
there was no associated ON-unit.

Programmer Response: Either remove the SIGNAL
statement or include an ON-unit for the INVALIDOP
condition in the program.

System Action: The ERROR condition is raised.

IBM0472I ONCODE= oncode-value The INVALIDOP
condition was raised.

Explanation: One of the following types of floating
point processor exceptions occurred:

� Invalid floating point operation exceptions, including
the following:

– Subtraction of two infinities
– Multiplication of infinity by 0
– Division of two infinities
– Division of zero by zero

� Floating point processor stack overflow exception
� Floating point processor stack underflow exception
� Denormalized operand exception

 � Precision exception
� Other nonspecific floating point processor

exceptions

Continuing execution after an INVALIDOP condition, with
or without an INVALIDOP ON-unit, can result in further
conditions being raised and termination of the program.
Generally, the program should be fixed to prevent
INVALIDOP conditions from occurring because the
occurrence of the INVALIDOP condition indicates the
program has fatal or near-fatal errors.

Programmer Response: Either check the data or
sequence of floating point instructions which could cause
the INVALIDOP condition before running the program or
insert an INVALIDOP ON-unit to handle the condition
whenever it arises.

System Action: The ERROR condition is raised.

 Chapter 10. Run-time messages 137

IBM0480I �IBM0506I

IBM0480I ONCODE= oncode-value The
FIXEDOVERFLOW condition was raised
by a SIGNAL statement.

Explanation: The program contained a SIGNAL
statement to raise the FIXEDOVERFLOW condition for
which there was no associated ON-unit. The ONCODE
associated with this message is 310.

Programmer Response: Either remove the SIGNAL
statement or include an ON-unit for the
FIXEDOVERFLOW condition in the program.

System Action: The ERROR condition is raised.

IBM0482I ONCODE= oncode-value The
FIXEDOVERFLOW condition was raised.

Explanation: The FIXEDOVERFLOW condition
occurred because the length of the result of a fixed-point
arithmetic operation exceeded the allowed maximum (up
to 31 for decimal values by using compiler option
FIXEDDEC(31) and 31 for binary values).

Programmer Response: Modify the program to ensure
that the condition does not recur, or provide an ON-unit
to handle the condition.

System Action: The ERROR condition is raised.

IBM0501I ONCODE= oncode-value Greenwich
Mean Time was not available for the
RANDOM built-in function.

Explanation: Greenwich Mean Time was not set on
the system. The ONCODE associated with this
message is 2101.

Programmer Response: Greenwich Mean Time needs
to be set on the system. Use the OS/2 API
DosSetDateTime service to set the time. Refer to the
OS/2 Control Programming Reference for details.

System Action: The ERROR condition is raised.

IBM0502I ONCODE= oncode-value An invalid seed
value was detected in the RANDOM
built-in function.

Explanation: The input seed value was not within the
valid range of 0 to 2,147,483,646. The random number
was set to -1. The ONCODE associated with this
message is 2102.

Programmer Response: Correct the seed value to be
within the supported range.

System Action: The ERROR condition is raised.

IBM0503I ONCODE= oncode-value Local time was
unavailable.

Explanation: The system clock was not set. The
ONCODE associated with this message is 2103.

Programmer Response: Set the system clock using
the appropriate OS/2 commands or use a program that
uses the OS/2 API DosSetDateTime service. Refer to
the OS/2 Control Programming Reference for details.

System Action: The ERROR condition is raised.

IBM0504I ONCODE= oncode-value The value of Y
in SECSTODATE(X,Y), DAYS(X,Y),
DAYSTODATE(X,Y), or DATETIME(Y)
contained an invalid PICTURE string
specification.

Explanation: The character string representing the
desired format for the output datetime stamp contained
an invalid picture string. The ONCODE associated with
this message is 2104.

Programmer Response: Correct the format.

System Action: The ERROR condition is raised.

IBM0505I ONCODE= oncode-value X in DAYS(X,(Y))
contained an invalid day value.

Explanation: The supplied value for the day parameter
was not within the valid range of 15 October 1582 to 31
December 9999. The ONCODE associated with this
message is 2105.

Programmer Response: Correct the value for the day
parameter to be within the supported range.

System Action: The ERROR condition is raised.

IBM0506I ONCODE= oncode-value X in DAYS(X,(Y))
contained an invalid month value.

Explanation: The supplied value for the month
parameter was not within the valid range of October
1582 to December 9999. The ONCODE associated with
this message is 2106.

Programmer Response: Correct the value for the
month parameter to be within the supported range.

System Action: The ERROR condition is raised.

138 Messages and Codes (OS/2 and Windows)

IBM0507I �IBM0513I

IBM0507I ONCODE= oncode-value X in DAYS(X,(Y))
contained an invalid year value.

Explanation: The supplied value for the year
parameter was not within the valid range of 1582 to
9999. The ONCODE associated with this message is
2107.

Programmer Response: Correct the value for the year
parameter to be within the supported range.

System Action: The ERROR condition is raised.

IBM0508I ONCODE= oncode-value X in
DAYSTODATE(X,(Y)) was outside the
supported range.

Explanation: X represents the number of days since
15 October 1582. The valid range is from 1 to
3,074,324. The ONCODE associated with this message
is 2108.

Programmer Response: Correct the value for X to be
within the supported range.

System Action: The ERROR condition is raised.

IBM0509I ONCODE= oncode-value X in
SECSTODATE(X,(Y)) was outside the
supported range.

Explanation: X represents the number of seconds
elapsed since 00:00:00 on 14 October 1582, with
00:00:00.000 15 October 1582 being the first supported
date/time, and 23:59:59.999 31 December 99 99 being
the last supported date/time. The valid range is from
86,400 to 265,621,679,999.999. The ONCODE
associated with this message is 2109.

Programmer Response: Correct the value for X to be
within the supported range.

System Action: The ERROR condition is raised.

IBM0510I ONCODE= oncode-value X in
DAYSTODATE(X,Y) could not be
converted to a valid Era.

Explanation: The picture string indicated that X was to
be converted to a Japanese or Republic of China Era,
but X was outside the range of supported Eras. The
ONCODE associated with this message is 2110.

Programmer Response: Ensure X contains a valid
Lilian day number within the range of supported Eras.

System Action: The ERROR condition is raised.

IBM0511I ONCODE= oncode-value The offset from
Greenwich Mean Time to local time was
unavailable.

Explanation: The difference between the current local
time and the Greenwich Mean Time was not available
from the system. The ONCODE associated with this
message is 2111.

Programmer Response: Ensure that both the
Greenwich Mean Time and the local time are set on the
system. Use the OS/2 API DosSetDateTime service to
set the time. Refer to the OS/2 Control Programming
Reference for details.

System Action: The ERROR condition is raised.

IBM0512I ONCODE= oncode-value X in SECS(X,Y)
or DAYS(X,Y) was outside the supported
range.

Explanation: The input date supplied was earlier than
15 October 1582 or later than 31 December 9999. The
ONCODE associated with this message is 2112.

Programmer Response: Correct the input date to be
within the supported range.

System Action: The ERROR condition is raised.

IBM0513I ONCODE= oncode-value X in SECS(X,Y)
contained an invalid seconds value.

Explanation: The supplied value for the seconds
parameter was not within the valid range of 0 to 59. The
ONCODE associated with this message is 2113.

Programmer Response: Correct the value for the
seconds parameter to be within the supported range.

System Action: The ERROR condition is raised.

 Chapter 10. Run-time messages 139

IBM0514I �IBM0521I

IBM0514I ONCODE= oncode-value X in SECS(X,Y)
contained an invalid minutes value.

Explanation: The supplied value for the minutes
parameter was not within the valid range of 0 to 59. The
ONCODE associated with this message is 2114.

Programmer Response: Correct the value for the
minutes parameter to be within the supported range.

System Action: The ERROR condition is raised.

IBM0515I ONCODE= oncode-value X in SECS(X,Y)
contained an invalid hour value.

Explanation: The valid range for the hour parameter is
0 to 23. If the "AP" field is present, the valid range is 0
to 12. The ONCODE associated with this message is
2115.

Programmer Response: Correct the value for the hour
parameter to be within the supported range.

System Action: The ERROR condition is raised.

IBM0516I ONCODE= oncode-value X in DAYS(X,Y)
did not match the picture specification.

Explanation: The value of X did not match the format
described by the picture specification. For example,
non-numeric characters appear where only numeric
characters are expected. The ONCODE associated with
this message is 2116.

Programmer Response: Verify the format of the input
data matches the picture string specification.

System Action: The ERROR condition is raised.

IBM0517I ONCODE= oncode-value X in SECS(X,Y)
did not match the picture specification.

Explanation: The value of X did not match the format
described by the picture specification. For example,
non-numeric characters appear where only numeric
characters are expected. The ONCODE associated with
this message is 2117.

Programmer Response: Verify the format of the input
data matches the picture string specification.

System Action: The ERROR condition is raised.

IBM0518I ONCODE= oncode-value The date string
returned by DAYSTODATE(X,Y) was
truncated.

Explanation: The output string was not large enough
to contain the formatted date value. The ONCODE
associated with this message is 2118.

Programmer Response: Ensure the output string is
large enough to contain the entire formatted date.

System Action: The ERROR condition is raised.

IBM0519I ONCODE= oncode-value The timestamp
string returned by DATETIME(X) or
SECSTODATE(X,Y) was truncated.

Explanation: The output string was not large enough
to contain the formatted date value. The ONCODE
associated with this message is 2119.

Programmer Response: Ensure the output string is
large enough to contain the entire formatted date.

System Action: The ERROR condition is raised.

IBM0520I ONCODE= oncode-value X in
SECSTODATE(X,Y) or DATETIME(X)
contained an invalid number-of-seconds
value.

Explanation: The picture string indicated that X was to
be converted to a Japanese or Republic of China Era,
but X lies outside the range of supported Eras. The
ONCODE associated with this message is 2120.

Programmer Response: Ensure X contains a valid
number-of-seconds value within the range of supported
Eras.

System Action: The ERROR condition is raised.

IBM0521I ONCODE= oncode-value Insufficient data
was passed to the DAYS or SECS
built-in function.

Explanation: The picture string passed to the DAYS or
SECS built-in function did not contain enough
information. The minimum information required is either
month, day, and year, or year and Julian day. The
ONCODE associated with this message is 2121.

Programmer Response: Ensure the input data
contains, as a minimum, the year, month, and day, or
the year and Julian day.

140 Messages and Codes (OS/2 and Windows)

IBM0522I �IBM0542I

System Action: The ERROR condition is raised.

IBM0522I ONCODE= oncode-value X in SECS(X,Y)
or DAYS(X,Y) contained an invalid Era
name.

Explanation: X did not contain a supported Japanese
or Republic of China Era name. The ONCODE
associated with this message is 2122.

Programmer Response: Ensure X is a valid DBCS
string.

System Action: The ERROR condition is raised.

IBM0531I ONCODE= oncode-value An operation
exception occurred.

Explanation: A programmer-related hardware error
was detected. This could happen if the program was
compiled with the options SYSTEM(486) or
SYSTEM(PENTIUM) and run on a 386 machine. The
ONCODE associated with this message is 8091.

Programmer Response: When using the compiler
options SYSTEM(486) or SYSTEM(PENTIUM), ensure
the machine on which the program is being run is at
least a 486 machine.

System Action: The ERROR condition is raised.

IBM0534I ONCODE= oncode-value A protection
exception occurred.

Explanation: A programmer-related hardware error
was detected. The ONCODE associated with this
message is 8094.

Programmer Response: Refer to the Programming
Guide for more information in resolving this type of error.

System Action: The ERROR condition is raised.

IBM0537I ONCODE= oncode-value A data
exception occurred.

Explanation: A programmer-related hardware error
was detected. The ONCODE associated with this
message is 8097.

Programmer Response: Refer to the Programming
Guide for more information in resolving this type of error.

System Action: The ERROR condition is raised.

IBM0541I ONCODE= oncode-value X in ASIN(X) or
ACOS(X) was invalid.

Explanation: One of the following conditions was
detected:

� ABS(X) was greater than one.
� X was not a valid IEEE number.

The ONCODEs associated with this message are:

� For real short floating-point arguments:

1518 Argument greater than one

1751 Argument not valid IEEE number

� For real long floating-point arguments:

1519 Argument greater than one

1752 Argument not valid IEEE number

� For real extended floating-point arguments:

1520 Argument greater than one

1753 Argument not valid IEEE number

Programmer Response: Ensure X is a real expression
where ABS(X) is less than or equal to one.

System Action: The ERROR condition is raised.

IBM0542I ONCODE= oncode-value X in ATAN(X) or
ATAND(X) was invalid.

Explanation: One of the following conditions was
detected:

� The real and imaginary parts of X were equal to
(0,+1i) or (0,-1i).

� X was not equal to (plus infinity,0i) or (minus
infinity,0i). These are the only valid cases where
infinity is allowed.

� X was not a valid IEEE number.

The ONCODEs associated with this message are:

� For real short floating-point arguments:

1829 Argument not valid IEEE number

� For complex short floating-point arguments:

1558 Argument equal to (0,+1i) or (0,-1i)

1817 Argument not equal to (plus infinity,0i)
or (minus infinity,0i)

1820 Real part of argument not valid IEEE
number

 Chapter 10. Run-time messages 141

IBM0543I �IBM0543I

1823 Imaginary part of argument not valid
IEEE number

1826 Both parts of complex argument not
valid IEEE numbers

� For real long floating-point arguments:

1830 Argument not valid IEEE number

� For complex long floating-point arguments:

1559 Argument equal to (0,+1i) or (0,-1i)

1818 Argument not equal to (plus infinity,0i)
or (minus infinity,0i)

1821 Real part of argument not valid IEEE
number

1824 Imaginary part of argument not valid
IEEE number

1827 Both parts of complex argument not
valid IEEE numbers

� For real extended floating-point arguments:

1831 Argument not valid IEEE number

� For complex extended floating-point arguments:

1564 Argument equal to (0,+1i) or (0,-1i)
1819 Argument not equal to (plus infinity,0i)

or (minus infinity,0i)
1822 Real part of argument not valid IEEE

number
1825 Imaginary part of argument not valid

IEEE number
1828 Both parts of complex argument not

valid IEEE numbers

Programmer Response: If X is complex, ensure X is
not equal to +1i or -1i.

System Action: The ERROR condition is raised.

IBM0543I ONCODE= oncode-value X in ATANH(X)
was invalid.

Explanation: One of the following conditions occurred:

� ABS(X) was greater than one.
� X was not a valid IEEE number.
� The value plus or minus infinity was specified as

part of X.

The ONCODEs associated with this message are:

� For real short floating-point arguments:

1514 Argument greater than one

1978 Argument not valid IEEE number

� For complex short floating-point arguments:

1966 Argument included plus or minus infinity

1969 Real part of argument not valid IEEE
number

1972 Imaginary part of argument not valid
IEEE number

1975 Both parts of complex argument not
valid IEEE numbers

� For real long floating-point arguments:

1515 Argument greater than one

1979 Argument not valid IEEE number

� For complex long floating-point arguments:

1967 Argument included plus or minus infinity

1970 Real part of argument not valid IEEE
number

1973 Imaginary part of argument not valid
IEEE number

1976 Both parts of complex argument not
valid IEEE numbers

� For real extended floating-point arguments:

1516 Argument greater than one

1980 Argument not valid IEEE number

� For complex extended floating-point arguments:

1968 Argument included plus or minus infinity

1971 Real part of argument not valid IEEE
number

1974 Imaginary part of argument not valid
IEEE number

1977 Both parts of complex argument not
valid IEEE numbers

Programmer Response: If X is real, ensure ABS(X) is
less than one. If X is complex, ensure X is not equal to
+1i or -1i.

System Action: The ERROR condition is raised.

142 Messages and Codes (OS/2 and Windows)

IBM0544I �IBM0544I

IBM0544I ONCODE= oncode-value X in SIN(X),
COS(X), SIND(X) or COSD(X) was
invalid.

Explanation: One of the following conditions occurred:

� ABS(X) was greater than or equal to K, where
K=2**63 for short and long floating-point values, and
K=2**64 for extended floating-point values.

� The absolute value of the real part of X was greater
than or equal to K, where K=2**63 for complex short
and long floating-point values, and K=2**64 for
complex extended floating-point values.

� X was plus or minus infinity.

� The value plus or minus infinity was specified as
part of X.

� An overflow occurred because the absolute value of
the imaginary part of X was greater than K, where K
is as follows:

– 89.76 for complex short floating-point
arguments

– 710.82 for complex long floating-point
arguments

– 11357.56 for complex extended floating-point
arguments

� An overflow occurred because the absolute value of
the imaginary part of X was greater than I but less
than J, and the absolute value of the real part was
out of range. The values for I and J are as follows:

– I = 89.41 and J = 89.76 for complex short
floating-point arguments

– I = 710.47 and J = 710.82 for complex long
floating-point arguments

– I = 11357.21 and J = 11357.56 for complex
extended floating-point arguments

� X was not a valid IEEE number.

The ONCODEs associated with this message are:

� For real short floating-point arguments:

1506 Argument greater than or equal to limit

1801 Argument not valid IEEE number

2425 Argument equal to plus or minus limit

� For complex short floating-point arguments:

1529 Absolute value of the real part of
argument greater than or equal to limit

1871 (A,Bi) = (plus or minus infinity,plus or
minus infinity)

1874 Real part of argument not valid IEEE
number

1877 Imaginary part of argument not valid
IEEE number

1880 Both parts of argument not valid IEEE
numbers

2422 Calculated result overflowed output field

� For real long floating-point arguments:

1507 Argument greater than or equal to limit

1802 Argument not valid IEEE number

2426 Argument equal to plus or minus limit

� For complex long floating-point arguments:

1530 Absolute value of the real part of
argument greater than or equal to limit

1872 (A,Bi) = (plus or minus infinity,plus or
minus infinity)

1875 Real part of argument not valid IEEE
number

1878 Imaginary part of argument not valid
IEEE number

1881 Both parts of argument not valid IEEE
numbers

2423 Calculated result overflowed output field

� For real extended floating-point arguments:

1517 Argument greater than or equal to limit

1803 Argument not valid IEEE number

� For complex extended floating-point arguments:

1531 Absolute value of the real part of
argument greater than or equal to limit

1800 Both parts of argument not valid IEEE
numbers

1873 (A,Bi) = (plus or minus infinity,plus or
minus infinity)

1876 Real part of argument not valid IEEE
number

1879 Imaginary part of argument not valid
IEEE number

2424 Calculated result overflowed output field

Programmer Response: Ensure X is valid.

System Action: The ERROR condition is raised.

 Chapter 10. Run-time messages 143

IBM0545I �IBM0545I

IBM0545I ONCODE= oncode-value X in SINH(X) or
COSH(X) was invalid.

Explanation: One of the following conditions occurred:

� The absolute value of the imaginary part of X was
greater than or equal to K, where K=2**63 for
complex short and long floating-point values, and
K=2**64 for complex extended floating-point values.

� ABS(X) was greater than 89.41 for X represented as
a short floating-point value.

� ABS(X) was greater than or equal to K, where
K=710.47 for long floating-point values and
K=11357.22 for extended floating-point values.

� X was not equal to (plus infinity,0i) or (minus
infinity,0i). These are the only valid cases where
infinity is allowed.

� An overflow occurred because the absolute value of
the real part of X was greater than K, where K is as
follows:

– 89.76 for complex short floating-point
arguments

– 710.82 for complex long floating-point
arguments

– 11357.56 for complex extended floating-point
arguments

� An overflow occurred because the absolute value of
the real part of X was greater than I but less than J
and the absolute value of the imaginary part was
out of range. The values for I and J are as follows:

– I = 89.41 and J = 89.76 for complex short
floating-point arguments

– I = 710.47 and J = 710.82 for complex long
floating-point arguments

– I = 11357.21 and J = 11357.56 for complex
extended floating-point arguments

� X was not a valid IEEE number.

The ONCODEs associated with this message are:

� For real short floating-point arguments:

1523 Absolute value of argument greater than
limit

1929 Argument not valid IEEE number

� For complex short floating-point arguments:

1914 Absolute value of the imaginary part of
argument greater than or equal to limit

1917 (A,Bi) ¬= (plus or minus infinity,0i)

1920 Real part of argument not valid IEEE
number

1923 Imaginary part of argument not valid
IEEE number

1926 Both parts of argument not valid IEEE
numbers

2416 Calculated result overflowed output field

� For real long floating-point arguments:

1524 Absolute value of argument greater than
or equal to limit

1930 Argument not valid IEEE number

� For complex long floating-point arguments:

1915 Absolute value of the imaginary part of
argument greater than or equal to limit

1918 (A,Bi) ¬= (plus or minus infinity,0i)

1921 Real part of argument not valid IEEE
number

1924 Imaginary part of argument not valid
IEEE number

1927 Both parts of argument not valid IEEE
numbers

2417 calculated result overflowed output field

� For real extended floating-point arguments:

1525 Absolute value of argument greater than
or equal to limit

1931 Argument not valid IEEE number

� For complex extended floating-point arguments:

1916 Absolute value of the imaginary part of
argument greater than or equal to limit

1919 (A,Bi) ¬= (plus or minus infinity,0i)

1922 Real part of argument not valid IEEE
number

1925 Imaginary part of argument not valid
IEEE number

1928 Both parts of argument not valid IEEE
numbers

2418 Calculated result overflowed output field

Programmer Response: Ensure X is valid.

System Action: The ERROR condition is raised.

144 Messages and Codes (OS/2 and Windows)

IBM0546I �IBM0547I

IBM0546I ONCODE= oncode-value X in COTAN(X)
or COTAND(X) was invalid.

Explanation: One of the following conditions occurred:

� ABS(X) was greater than or equal K, where K=2**63
for short and long floating-point values, and K=2**64
for extended floating-point values.

� For real short and long floating point arguments, X
was equal to plus or minus zero, or plus or minus
infinity.

� For real extended floating point arguments, X was
equal to plus or minus zero.

� An overflow occurred because ABS(X) was less
than K, where K is as follows:

– 2.939E-39 for short floating-point arguments

– 5.563E-309 for complex long floating-point
arguments

– 8.405E-4933 for complex extended
floating-point arguments

� X was not a valid IEEE number.

The ONCODEs associated with this message are:

� For real short floating-point arguments:

1526 Absolute value of argument greater than
or equal to limit

1850 Argument not valid IEEE number

2419 Calculated result overflowed output field

2429 Argument equal to plus or minus limit

� For real long floating-point arguments:

1527 Absolute value of argument greater than
or equal to limit

1851 Argument not valid IEEE number

2420 Calculated result overflowed output field

2430 Argument equal to plus or minus limit

� For real extended floating-point arguments:

1528 Absolute value of argument greater than
or equal to limit

1852 Argument not valid IEEE number

2421 Calculated result overflowed output field

2431 Argument equal to plus or minus limit

Programmer Response: Ensure X is valid.

System Action: The ERROR condition is raised.

IBM0547I ONCODE= oncode-value X in TAN(X) or
TAND(X) was invalid.

Explanation: One of the following conditions occurred:

� ABS(X) was greater than or equal K, where K=2**63
for short and long floating-point values, and K=2**64
for extended floating-point values.

� The absolute value of the real part of X was greater
than or equal to K, where K=2**63 for complex short
and long floating-point values, and K=2**64 for
complex extended floating-point values.

� X was plus or minus infinity.

� The value plus or minus infinity was specified as
part of X.

� X was not a valid IEEE number.

The ONCODEs associated with this message are:

� For real short floating-point arguments:

1508 Absolute value of argument greater than
or equal to limit

1868 Argument not valid IEEE number

2427 Argument equal to plus or minus infinity

� For complex short floating-point arguments:

1853 Absolute value of the real part of
argument greater than or equal to limit

1856 (A,Bi) = (plus or minus infinity,plus or
minus infinity)

1859 Real part of argument not valid IEEE
number

1862 Imaginary part of argument not valid
IEEE number

1865 Both parts of argument not valid IEEE
numbers

� For real long floating-point arguments:

1509 Absolute value of argument greater than
or equal to limit

1869 Argument not valid IEEE number

2428 Argument equal to plus or minus infinity

� For complex long floating-point arguments:

1854 Absolute value of the real part of
argument greater than or equal to limit

1857 (A,Bi) = (plus or minus infinity,plus or
minus infinity)

 Chapter 10. Run-time messages 145

IBM0548I �IBM0548I

1860 Real part of argument not valid IEEE
number

1863 Imaginary part of argument not valid
IEEE number

1866 Both parts of argument not valid IEEE
numbers

� For real extended floating-point arguments:

1522 Absolute value of argument greater than
or equal to limit

1870 Argument not valid IEEE number

� For complex extended floating-point arguments:

1855 Absolute value of the real part of
argument greater than or equal to limit

1858 (A,Bi) = (plus or minus infinity,plus or
minus infinity)

1861 Real part of argument not valid IEEE
number

1864 Imaginary part of argument not valid
IEEE number

1867 Both parts of argument not valid IEEE
numbers

Programmer Response: Ensure X is valid.

System Action: The ERROR condition is raised.

IBM0548I ONCODE= oncode-value X in TANH(X)
was invalid.

Explanation: One of the following conditions occurred:

� The absolute value of the imaginary part of X was
greater than or equal to K, where K=2**63 for
complex short and long floating-point values, and
K=2**64 for complex extended floating-point values.

� X was not equal to (plus infinity,0i) or (minus
infinity,0i). These are the only valid cases where
infinity is allowed.

� X was not a valid IEEE number.

� An overflow occurred because the absolute value of
the real part of X was greater than 11357.56.

� An overflow occurred because the absolute value of
the real part of X was greater than 11357.21 but
less than 11357.56, and the absolute value of the
imaginary part was out of range.

The ONCODEs associated with this message are:

� For real short floating-point arguments:

1911 Argument not valid IEEE number

� For complex short floating-point arguments:

1574 Absolute value of the imaginary part of
argument greater than or equal to limit

1902 Real part of argument not valid IEEE
number

1905 Imaginary part of argument not valid
IEEE number

1908 Both parts of argument not valid IEEE
numbers

1981 (A,Bi) ¬= (plus or minus infinity,0i)

� For real long floating-point arguments:

1912 Argument not valid IEEE number

� For complex long floating-point arguments:

1575 Absolute value of the imaginary part of
argument greater than or equal to limit

1900 A,Bi) ¬= (plus or minus infinity,0i)

1903 Real part of argument not valid IEEE
number

1906 Imaginary part of argument not valid
IEEE number

1909 Both parts of argument not valid IEEE
numbers

� For real extended floating-point arguments:

1913 Argument not valid IEEE number

� For complex extended floating-point arguments:

1576 Absolute value of the imaginary part of
argument greater than or equal to limit

1804 Calculated result overflowed the output
field

1901 (A,Bi) ¬= (plus or minus infinity,0i)

1904 Real part of argument not valid IEEE
number

1907 Imaginary part of argument not valid
IEEE number

1910 Both parts of argument not valid IEEE
numbers

Programmer Response: Ensure X is valid.

System Action: The ERROR condition is raised.

146 Messages and Codes (OS/2 and Windows)

IBM0549I �IBM0550I

IBM0549I ONCODE= oncode-value X in ERF(X) was
invalid.

Explanation: X was not a valid IEEE number.

The ONCODEs associated with this message are:

2177 Real short floating-point arguments

2178 Real long floating-point arguments

2179 Real extended floating-point arguments

Programmer Response: Ensure X is valid.

System Action: The ERROR condition is raised.

IBM0550I ONCODE= oncode-value X in EXP(X) was
invalid.

Explanation: One of the following conditions occurred:

� X was less than K, where K is as follows:

– -87.33 for short floating-point arguments

– -708.39 for long floating-point arguments

– -11355.13 for extended floating-point
arguments

� The absolute value of the imaginary part of X was
greater than or equal to K, where K=2**63 for
complex short and long floating-point values, and
K=2**64 for complex extended floating-point values.

� X was not equal to (plus infinity,0i) or (minus
infinity,0i). These are the only valid cases where
infinity is allowed.

� An overflow occurred because the real part of X
was greater than K, where K is as follows:

– 89.06 for complex short floating-point
arguments

– 710.12 for complex long floating-point
arguments

– 11356.87 for complex extended floating-point
arguments

� An overflow occurred because the real part of X
was greater than I but less than J, and the
imaginary part was out of range. The values for I
and J are as follows:

– I = 88.73 and J = 89.06 for complex short
floating-point arguments

– I = 709.79 and J = 710.12 for complex long
floating-point arguments

– I = 11357.53 and J = 11356.87 for complex
extended floating-point arguments

� X was greater than or equal to K, where K is as
follows:

– 88.73 for short floating-point arguments

 – 709.79 for long floating-point arguments

 – 11356.53 for extended floating-point
arguments

� X was not a valid IEEE number.

The ONCODEs associated with this message are:

� For real short floating-point arguments:

1565 Argument less than limit

1611 Argument greater than or equal to limit

1614 Argument not valid IEEE number

� For complex short floating-point arguments:

1568 Absolute value of the imaginary part of
argument greater than or equal to limit

1602 Real part of argument not valid IEEE
number

1605 Imaginary part of argument not valid
IEEE number

1608 Both parts of argument not valid IEEE
numbers

1681 (A,Bi) ¬= (plus or minus infinity,0i)

2407 Calculated result overflowed output field

� For real long floating-point arguments:

1566 Argument less than limit

1612 Argument greater than or equal to limit

1615 Argument not valid IEEE number

� For complex long floating-point arguments:

1569 Absolute value of the imaginary part of
argument greater than or equal to limit

1600 (A,Bi) ¬= (plus or minus infinity,0i)

1603 Real part of argument not valid IEEE
number

1606 Imaginary part of argument not valid
IEEE number

1609 Both parts of argument not valid IEEE
numbers

2408 Calculated result overflowed output field

� For real extended floating-point arguments:

1567 Argument less than limit

 Chapter 10. Run-time messages 147

IBM0551I �IBM0552I

1613 Argument greater than or equal to limit

1616 Argument not valid IEEE number

� For complex extended floating-point arguments:

1570 Absolute value of the imaginary part of
argument greater than or equal to limit

1601 (A,Bi) ¬= (plus or minus infinity,0i)

1604 Real part of argument not valid IEEE
number

1607 Imaginary part of argument not valid
IEEE number

1610 Both parts of argument not valid IEEE
numbers

2409 Calculated result overflowed output field

Programmer Response: Ensure X is valid.

System Action: The ERROR condition is raised.

IBM0551I ONCODE= oncode-value X in GAMMA(X)
or LOGGAMMA(X) was invalid.

Explanation: One of the following conditions occurred:

� X was greater than K, where K is as follows:

– for the built-in function GAMMA:

– 35.04 for short floating-point arguments

 – 171.62 for long floating-point arguments

 – 1755.54 for extended floating-point
arguments

– for the built-in function LOGGAMMA:

– 4.085E+36 for short floating-point arguments

 – 2.559E+305 for long floating-point arguments

 – 1.048E+4928 for extended floating-point
arguments

� For GAMMA(X), X was less than or equal to minus
zero.

� For GAMMA(X), X was equal to plus or minus zero.

� For LOGGAMMA(X), X was less than zero.

� X was not a valid IEEE number.

� For GAMMA(X), the calculated result was greater in
magnitude than the largest finite number
representable in the result data type.

The ONCODEs associated with this message are:

� For real short floating-point arguments:

1571 Argument greater than limit

2165 Argument less than or equal to zero

2168 Argument not valid IEEE number

� For real long floating-point arguments:

1572 Argument greater than limit

2166 Argument less than or equal to zero

2169 Argument not valid IEEE number

� For real extended floating-point arguments:

1573 Argument greater than limit

2164 Argument less than zero

2167 Argument equal to plus or minus zero

2170 Argument not valid IEEE number

2403 Argument less than or equal to minus
zero

2404 Argument equal to zero

Programmer Response: If X is numeric, ensure X is
greater than zero.

System Action: The ERROR condition is raised.

IBM0552I ONCODE= oncode-value X in LOG(X),
LOG10(X) or LOG2(X) was invalid.

Explanation: One of the following conditions occurred:

� X was less than or equal to zero.

� X was plus or minus zero.

� For complex arguments of the LOG built-in function,
X was not equal to (plus infinity,0i). This is the only
case where infinity is allowed.

� X was not a valid IEEE number.

� A floating point division by zero occurred because X
was equal to (0,0i).

The ONCODEs associated with this message are:

� For real short floating-point arguments:

1504 Argument less than zero

1577 Argument equal to plus or minus zero

1629 Argument not valid IEEE number

� For complex short floating-point arguments:

1617 (A,Bi) ¬= (plus infinity,0i)

1620 Real part of argument not valid IEEE
number

148 Messages and Codes (OS/2 and Windows)

IBM0553I �IBM0554I

1623 Imaginary part of argument not valid
IEEE number

1626 Both parts of argument not valid IEEE
numbers

2413 X equal to (0,0i)

� For real long floating-point arguments:

1505 Argument less than zero

1578 Argument equal to plus or minus zero

1630 Argument not valid IEEE number

� For complex long floating-point arguments:

1618 (A,Bi) ¬= (plus infinity,0i)

1621 Real part of argument not valid IEEE
number

1624 Imaginary part of argument not valid
IEEE number

1627 Both parts of argument not valid IEEE
numbers

2414 X equal to (0,0i)

� For real extended floating-point arguments:

1503 Argument less than or equal to zero

1579 Argument equal to plus zero

1631 Argument not valid IEEE number

� For complex extended floating-point arguments:

1619 (A,Bi) ¬= (plus infinity,0i)

1622 Real part of argument not valid IEEE
number

1625 Imaginary part of argument not valid
IEEE number

1628 Both parts of argument not valid IEEE
numbers

2415 X equal to (0,0i)

Programmer Response: If X is real, ensure X is
greater than zero. If X is complex, ensure X is not equal
to 0 + 0i.

System Action: The ERROR condition is raised.

IBM0553I ONCODE= oncode-value X in ERFC(X)
was invalid.

Explanation: One of the following conditions occurred:

� X was not a valid IEEE number.

� X was greater than K, where K is as follows:

– 9.19 for short floating-point arguments
 – 26.54 for long floating-point arguments
 – 106.53 for extended floating-point arguments

The ONCODEs associated with this message are:

� For real short floating-point arguments:

2171 Argument greater than limit

2174 Argument not valid IEEE number

� For real long floating-point arguments:

2172 Argument greater than limit

2175 Argument not valid IEEE number

� For real extended floating-point arguments:

2173 Argument greater than limit

2176 Argument not valid IEEE number

Programmer Response: Ensure X is greater than
zero.

System Action: The ERROR condition is raised.

IBM0554I ONCODE= oncode-value X in SQRT(X)
was invalid.

Explanation: One of the following conditions occurred:

� X was less than zero.
� X was not equal to (plus infinity,0i). This is the only

case where infinity is allowed.
� X was equal to minus zero.
� X was not a valid IEEE number.

The ONCODEs associated with this message are:

� For real short floating-point arguments:

1500 Argument less than zero

1960 Argument equal to limit

1963 Argument not valid IEEE number

� For complex short floating-point arguments:

1951 Real part of argument not valid IEEE
number

1954 Imaginary part of argument not valid
IEEE number

 Chapter 10. Run-time messages 149

IBM0555I �IBM0590I

1957 Both parts of argument not valid IEEE
numbers

2180 (A,Bi) ¬= (plus infinity,0i)

� For real long floating-point arguments:

1501 Argument less than zero

1961 Argument equal to limit

1964 Argument not valid IEEE number

� For complex long floating-point arguments:

1952 Real part of argument not valid IEEE
number

1955 Imaginary part of argument not valid
IEEE number

1958 Both parts of argument not valid IEEE
numbers

2181 (A,Bi) ¬= (plus infinity,0i)

� For real extended floating-point arguments:

1502 Argument less than zero

1962 Argument equal to limit

1965 Argument not valid IEEE number

� For complex extended floating-point arguments:

1950 (A,Bi) ¬= (plus infinity,0i)

1953 Real part of argument not valid IEEE
number

1956 Imaginary part of argument not valid
IEEE number

1959 Both parts of argument not valid IEEE
numbers

Programmer Response: Ensure X is greater than
zero.

System Action: The ERROR condition is raised.

IBM0555I ONCODE= oncode-value X in ABS(X) was
invalid.

Explanation: One of the following conditions occurred:

� The calculated result was greater in magnitude than
the largest finite number representable in the result
data type.

� X was equal to -2**31 for X with integer type.

� X was not a valid IEEE number.

The ONCODEs associated with this message are:

� For integer arguments:

2160 Argument equal to limit

� For real short floating-point arguments:

2161 Argument not valid IEEE number

� For complex short floating-point arguments:

2151 Real part of argument not valid IEEE
number

2154 Imaginary part of argument not valid
IEEE number

2157 Both parts of argument not valid IEEE
numbers

� For real long floating-point arguments:

2162 Argument not valid IEEE number

� For complex long floating-point arguments:

2152 Real part of argument not valid IEEE
number

2155 Imaginary part of argument not valid
IEEE number

2158 Both parts of argument not valid IEEE
numbers

� For real extended floating-point arguments:

2163 Argument not valid IEEE number

� For complex extended floating-point arguments:

2153 Real part of argument not valid IEEE
number

2156 Imaginary part of argument not valid
IEEE number

2159 Both parts of argument not valid IEEE
numbers

Programmer Response: Ensure X is valid.

System Action: The ERROR condition is raised.

IBM0590I ONCODE= oncode-value The fetchable
procedure could not be found.

Explanation: The libraries available when the program
was run did not contain a member with a name or alias
matching that used in the FETCH statement. The
ONCODE associated with this message is 9250.

Programmer Response: Ensure that the load module
that is to be fetched is accessible at run-time, and that it
is stored with the same name or alias used in the
FETCH statement.

System Action: The ERROR condition is raised.

150 Messages and Codes (OS/2 and Windows)

IBM0591I �IBM0611I

IBM0591I ONCODE= oncode-value There was a
permanent I/O error while fetching a
procedure.

Explanation: A permanent I/O error occurred while
trying to load the module named in the FETCH
statement. The ONCODE associated with this message
is 9251.

Programmer Response: Ensure that the required load
module is incorporated into the appropriate library with
proper dataset/file attributes and rerun the job. If the
problem recurs, inform your installation system
programmer.

System Action: The ERROR condition is raised.

IBM0596I ONCODE= oncode-value The fetchable
procedure could not be released.

Explanation: Either the routine was not previously
fetched, or the fetched part containing the routine was
no longer in use but could not be released. The
ONCODE associated with this message is 9256.

Programmer Response: Ensure the name used in the
RELEASE statement is correct, and that the routine has
been previously fetched. Also, ensure the fetched part
containing the routine to be released is accessible at
run-time.

System Action: The ERROR condition is raised.

IBM0600I ONCODE= oncode-value An E-format
specification contained incorrect values
in fields W, D, and S.

Explanation: An edit-directed input/output operation for
an E-format item was specified incorrectly. The
ONCODE associated with this message is 3000.

Programmer Response: Correct the E-format item
according to the language rules.

System Action: The ERROR condition is raised.

IBM0601I ONCODE= oncode-value The value of a
W field in an F-format specification was
too small.

Explanation: An edit-directed input/output operation for
an F-format item was specified with a W-specification
that was too small to allow room for the decimal-point
when the number of fractional digits was specified as
zero. The ONCODE associated with this message is
3001.

Programmer Response: Correct the F-format item
according to the language rules.

System Action: The ERROR condition is raised.

IBM0604I ONCODE= oncode-value An invalid
assignment was made to a picture
character string.

Explanation: An attempt was made to assign an
invalid data item to a picture string. A data item which is
not a character string could not be assigned to a picture
character string because it did not match the declared
characteristics of the picture target variable. The
ONCODE associated with this message is 3006.

Programmer Response: Alter the characteristics either
of the source variable or of the target variable so the
data item assignment is possible.

System Action: The ERROR condition is raised.

IBM0611I ONCODE= oncode-value The F-factor in
the PICTURE specification was outside
the range of -128 to 127.

Explanation: The picture character F specifies a
picture scaling factor for fixed-point decimal numbers.
The number of digits following the V picture character
minus the integer specified with F was required to be
between -128 and 127.

Programmer Response: Correct the integer specified
with the picture scaling factor F.

System Action: The ERROR condition is raised.

 Chapter 10. Run-time messages 151

IBM0612I �IBM0619I

IBM0612I ONCODE= oncode-value The PICTURE
specification contained an invalid
character.

Explanation: The PICTURE specification can contain
only A X 9 for character data and only 9 V Z * , . / B S +
- $ CR DB Y K E F < > for numeric data. The
characters between the insertion characters < > are not
affected by this rule.

Programmer Response: Ensure the PICTURE
specification contains valid data.

System Action: The ERROR condition is raised.

IBM0613I ONCODE= oncode-value An invalid
character(s) appeared in the F scaling
factor.

Explanation: The picture character F specifies a
picture scaling factor for fixed-point decimal numbers.
The format is F(#) where # can be any signed integer
between -128 and 127 inclusively.

Programmer Response: Ensure the value specified for
the scaling factor is a valid fixed-point decimal number
that is within the supported range.

System Action: The ERROR condition is raised.

IBM0614I ONCODE= oncode-value An invalid
character PICTURE specification was
used.

Explanation: The PICTURE specification can contain
only A X 9 for character data. Other characters are not
permitted.

Programmer Response: Ensure the PICTURE
specification contains valid data.

System Action: The ERROR condition is raised.

IBM0615I ONCODE= oncode-value An invalid
precision value was specified. The
length was corrected automatically.

Explanation: The number of digits for the precision
field within a numeric data PICTURE specification must
be between one and fifteen digits. The invalid precision
specification is corrected automatically.

Programmer Response: Ensure the value specified for
the precision is within the supported range.

System Action: The ERROR condition is raised.

IBM0616I ONCODE= oncode-value The characters
T, I or R appeared too often in the
PICTURE specification.

Explanation: T, I, R are the overpunch characters in a
PICTURE specification. Only one overpunch character
can appear in the specification for a fixed point number.
A floating-point specification can contain two overpunch
characters: one in the mantissa field and one in the
exponent field.

Programmer Response: Ensure the above restrictions
are followed.

System Action: The ERROR condition is raised.

IBM0617I ONCODE= oncode-value The precision in
the numeric PICTURE specification was
less than 1.

Explanation: The number of digits for the precision
field within a numeric data PICTURE specification must
be between one and fifteen digits.

Programmer Response: Check the precision and
modify the program accordingly.

System Action: The ERROR condition is raised.

IBM0618I ONCODE= oncode-value The precision in
the fixed decimal PICTURE specification
exceeded the limit.

Explanation: The precision in the fixed decimal
PICTURE specification must not exceed the specified
value in the LIMITS compiler option. The default
maximum is 15.

Programmer Response: Use the LIMITS compiler
option to specify a maximum value of 29 or 31.

System Action: The ERROR condition is raised.

IBM0619I ONCODE= oncode-value The value
specified for the precision in the float
decimal PICTURE specification
exceeded the limit.

Explanation: The precision in the float decimal
PICTURE specification is limited by the hardware to 18
digits.

Programmer Response: Check and correct the
precision.

152 Messages and Codes (OS/2 and Windows)

IBM0620I �IBM0626I

System Action: The ERROR condition is raised.

IBM0620I ONCODE= oncode-value The PICTURE
specification did not contain picture
characters for character or numeric
data.

Explanation: The PICTURE specification must contain
picture characters for either character or numeric data.

Programmer Response: Check the PICTURE
specification string.

System Action: The ERROR condition is raised.

IBM0621I ONCODE= oncode-value The exponent in
the float PICTURE specification
exceeded the 4-digit limit.

Explanation: The number of digits in the exponent of
the float decimal PICTURE specification is limited to 4
digits.

Programmer Response: Ensure that the exponent
does not exceed 4 digits.

System Action: The ERROR condition is raised.

IBM0622I ONCODE= oncode-value The exponent in
the float PICTURE specification was
missing.

Explanation: The exponent in the float decimal
PICTURE specification was missing. A value must be
entered, even if it is zero.

Programmer Response: Enter the missing exponent
value.

System Action: The ERROR condition is raised.

IBM0623I ONCODE= oncode-value The exponent in
the PICTURE specification contained a V
character.

Explanation: The character V was specified in the
PICTURE specification. The character V specifies an
implicit decimal point and is not permitted in the
exponent field.

Programmer Response: Remove the character V from
the exponent field.

System Action: The ERROR condition is raised.

IBM0624I ONCODE= oncode-value The float
PICTURE specification contained invalid
characters CR, DB or F.

Explanation: The float PICTURE specification
contained invalid characters CR, DB or F. Credit (CR),
Debit (DB), and Scale Factor (F) are only allowed in the
fixed PICTURE specification.

Programmer Response: Remove the invalid
characters from the float PICTURE specification.

System Action: The ERROR condition is raised.

IBM0625I ONCODE= oncode-value The PICTURE
specification exceeded the limit.
Excessive characters were truncated on
the right.

Explanation: The compiler restricts the length of the
PICTURE specification to:

 � Fixed Decimal: 254
 � Float Decimal: 253
� Character Data: 511

Programmer Response: Correct the PICTURE
specification length.

System Action: The ERROR condition is raised.

IBM0626I ONCODE= oncode-value The PICTURE
specification contained an invalid
delimiter.

Explanation: The floating insertion string is delimited
by < > characters. The string can contain any character
with the exception of the delimiters themselves. In order
to include the characters < and > in the floating insertion
string, angle brackets must be used in an "escaped"
format. << denotes character < in the floating insertion
string. <> denotes character > in the floating insertion
string. The leading < and ending > characters are
delimiters.

Example:

<aaa<<bbb<>ccc> denotes the FIS aaa<bbb>ccc

Programmer Response: Correct the floating insertion
string.

System Action: The ERROR condition is raised.

 Chapter 10. Run-time messages 153

IBM0634I �IBM0681I

IBM0634I ONCODE= oncode-value An invalid
graphic variable assignment was
attempted.

Explanation: A graphic (DBCS) target of length greater
than 16,383 was encountered. This target could have
been an actual target or a temporary target created by
the program. This condition was raised by the
GRAPHIC built-in function. The maximum length of a
graphic (DBCS) string is 16,383 characters (32,766
bytes).

Programmer Response: Ensure that graphic (DBCS)
strings are less than the maximum allowed length of
16,383.

System Action: The ERROR condition is raised.

IBM0636I ONCODE= oncode-value An invalid
number of digits was used in a X or GX
constant.

Explanation: X constants must be specified in pairs.
GX constants must be specified in groups of four. The
ONCODE associated with this message is 3015.

Programmer Response: Change the STREAM input
data so that all X constants are specified in pairs and all
GX constants are specified in groups of four.

System Action: The ERROR condition is raised.

IBM0648I ONCODE=3797 The assignment of a
graphic character string caused an
error.

Explanation: STREAM I/O issued this message
because LIST, DATA, or EDIT input/output was
attempted for a graphic (DBCS) string, and the
corresponding source or target string or file did not have
the necessary graphic attribute. This error could also be
issued when a null graphic constant appears as an
element in the data list of a PUT for LIST or EDIT. Null
graphic constants are restricted as elements in the data
list of a PUT for LIST or EDIT. The ONCODE
associated with this message is 3797.

Programmer Response: Ensure the source or target
string in the data list is a valid graphic (DBCS) string that
has been declared with the GRAPHIC attribute. If a null
graphic constant caused the error, remove the null
graphic constant from the data list of the PUT statement.

System Action: The ERROR condition is raised.

IBM0650I ONCODE=3799 The source was not
modified in the CONVERSION ON-unit.
Retry was not attempted.

Explanation: The CONVERSION condition was raised
by the presence of an invalid character in the string to
be converted. The character was not corrected in an
ON-unit using the ONCHAR or ONSOURCE
pseudovariable. The ONCODE associated with this
message is 3799.

Programmer Response: Use either the ONCHAR or
the ONSOURCE pseudovariable in the CONVERSION
ON-unit to assign a valid character to replace the invalid
character in the source string.

System Action: The ERROR condition is raised.

IBM0680I ONCODE= oncode-value X in CEIL(X) or
FLOOR(X) was invalid.

Explanation: One of the following conditions occurred:

� X was plus or minus infinity.
� X was not a valid IEEE number.

The ONCODEs associated with this message are:

� For real short floating-point arguments:

2352 Argument equal to plus or minus limit

2355 Argument not valid IEEE number

� For real long floating-point arguments:

2353 Argument equal to plus or minus limit

2356 Argument not valid IEEE number

� For real extended floating-point arguments:

2354 Argument equal to plus or minus limit

2357 Argument not valid IEEE number

Programmer Response: Ensure X is valid.

System Action: The ERROR condition is raised.

IBM0681I ONCODE= oncode-value X or Y in
MOD(X,Y) was invalid.

Explanation: One of the following conditions occurred:

� Y was equal to zero.
� X was plus or minus infinity.
� Y was plus or minus zero.
� X, or Y, or both were not valid IEEE numbers.

The ONCODEs associated with this message are:

154 Messages and Codes (OS/2 and Windows)

IBM0682I �IBM0682I

� For integer arguments:

2150 Second argument equal to zero

� For real short floating-point arguments:

2220 First argument was plus or minus
infinity, or second argument was plus or
minus zero.

2223 First argument not valid IEEE number

2226 Second argument not valid IEEE
number

2229 Both arguments not valid IEEE numbers

� For real long floating-point arguments:

2221 First argument was plus or minus
infinity, or second argument was plus or
minus zero.

2224 First argument not valid IEEE number

2227 Second argument not valid IEEE
number

2230 Both arguments not valid IEEE numbers

� For real extended floating-point arguments:

2222 First argument was plus or minus
infinity, or second argument was plus or
minus zero.

2225 First argument not valid IEEE number

2228 Second argument not valid IEEE
number

2231 Both arguments not valid IEEE numbers

Programmer Response: Ensure X and Y are valid.

System Action: The ERROR condition is raised.

IBM0682I ONCODE= oncode-value X in
EXPONENT(X) was invalid.

Explanation: One of the following conditions occurred:

� For X**Y where X and Y are integers, X was equal
to zero and Y was less than or equal to zero.

� For X**Y where X is a real value and Y is an
integer, X was equal to zero and Y was less than or
equal to zero.

� For X**Y where X and Y are integers, X was not
equal to plus or minus one and Y was less than
zero.

� For X**Y where X is a real value and Y is either a
real value or an integer, X was equal to plus or
minus infinity and Y was equal to plus or minus
zero.

� For X**Y where X and Y are real values, X was
equal to plus or minus infinity and Y was equal to a
value that could not be accurately represented as a
32-bit integer.

� For X**Y where X and Y are real values, X was
equal to positive one and Y was equal to plus or
minus infinity.

� For X**Y where X and Y are complex values, X was
(0,0i) and Y was less than or equal to zero.

� For X**Y where X is a complex value and Y is an
integer, the value plus or minus infinity was
incorrectly specified as an argument.

� For X**Y where X and Y are complex values, X
exceeded the limit K, where K=2**63 for complex
short and long arguments, and K=2**55 for complex
extended arguments.

� For X**Y where X and Y are complex values, the
value plus or minus infinity was incorrectly specified
as an argument.

� For X**Y where X and Y are complex values, X was
equal to (0,0i).

� For X**Y where X and Y are real values, X was
equal to zero and Y was not an integer-float greater
than zero.

� For X**Y where X and Y are real values, X was less
than zero and Y was not an integer-float.

� X, or Y, or both were not valid IEEE numbers.

� X was not a valid IEEE number.

The ONCODEs associated with this message are:

� For integer base and integer exponent

1673 X equal to zero and Y less than or
equal to zero

1674 X not equal to plus or minus one and Y
less than zero

� For real short floating-point base with integer
exponent

1550 X equal to zero and Y less than or
equal to zero

1675 X equal to plus or minus infinity and Y
equal to plus or minus zero

1678 First argument not valid IEEE number

 Chapter 10. Run-time messages 155

IBM0682I �IBM0682I

� For real long floating-point base with integer
exponent

1551 X equal to zero and Y less than or
equal to zero

1676 X equal to plus or minus infinity and Y
equal to plus or minus zero

1679 First argument not valid IEEE number

� For real extended floating-point base with integer
exponent

1560 X equal to zero and Y less than or
equal to zero

1677 X equal to plus or minus infinity and Y
equal to plus or minus zero

1680 First argument not valid IEEE number

� For complex short floating-point base with integer
exponent

1554 X equal to (0,0i) and Y less than or
equal to zero

1661 Plus or minus infinity specified as an
argument

1664 Real part of complex argument not valid
IEEE number

1667 Imaginary part of complex argument not
valid IEEE number

1670 Both arguments of complex argument
not valid IEEE numbers

� For complex long floating-point base with integer
exponent

1555 X equal to (0,0i) and Y less than or
equal to zero

1662 Plus or minus infinity specified as an
argument

1665 Real part of complex argument not valid
IEEE number

1668 Imaginary part of complex argument not
valid IEEE number

1671 Both arguments of complex argument
not valid IEEE numbers

� For complex extended floating-point base with
integer exponent

1562 X equal to (0,0i) and Y less than or
equal to zero

1663 Plus or minus infinity specified as an
argument

1666 Real part of complex argument not valid
IEEE number

1669 Imaginary part of complex argument not
valid IEEE number

1672 Both arguments of complex argument
not valid IEEE numbers

� For real short floating-point base with real short
floating-point exponent

1552 X equal to zero and Y not a positive
integer-float, or X less than zero and Y
not an integer-float

1652 First argument not valid IEEE number

1655 Second argument not valid IEEE
number

1658 Both arguments not valid IEEE numbers

1723 X equal to plus or minus infinity and Y
equal to invalid 32-bit integer

1726 X equal to positive one and Y equal to
plus or minus infinity

1729 X equal to (0,0i) and Y less than or
equal to zero

1731 X equal to plus or minus infinity and Y
equal to plus or minus zero

� For real long floating-point base with real long
floating-point exponent

1553 X equal to zero and Y not a positive
integer-float, or X less than zero and Y
not an integer-float

1650 X equal to plus or minus infinity and Y
equal to plus or minus zero

1653 First argument not valid IEEE number

1656 Second argument not valid IEEE
number

1659 Both arguments not valid IEEE numbers

1724 X equal to plus or minus infinity and Y
equal to invalid 32-bit integer

1727 X equal to positive one and Y equal to
plus or minus infinity

1730 X equal to (0,0i) and Y less than or
equal to zero

� For real extended floating-point base with real
extended floating-point exponent

156 Messages and Codes (OS/2 and Windows)

IBM0682I �IBM0682I

1561 X equal to zero and Y not a positive
integer-float, or X less than zero and Y
not an integer-float

1651 Equal to plus or minus infinity and Y
equal to plus or minus zero

1654 First argument not valid IEEE number

1657 Second argument not valid IEEE
number

1660 Both arguments not valid IEEE numbers

1725 X equal to plus or minus infinity and Y
equal to invalid 32-bit integer

1728 X equal to positive one and Y equal to
plus or minus infinity

� For complex short floating-point base with complex
short floating-point exponent

1556 Argument equal to (0,0i)

1702 Real part of first complex argument and
imaginary part of second complex
argument not valid IEEE numbers

1705 Imaginary part of first complex
argument and real part of second
complex argument not valid IEEE
numbers

1708 Real part of first complex argument was
the only valid IEEE number

1711 Imaginary part of first complex
argument was the only valid IEEE
number

1714 Real part of second complex argument
was the only valid IEEE number

1717 Imaginary part of second complex
argument was the only valid IEEE
number

1720 Both parts of both complex arguments
not valid IEEE numbers

1754 Argument exceeded limit

1757 Plus or minus infinity specified as
argument

1760 Real part of first complex argument not
valid IEEE number

1763 Real part of second complex argument
not valid IEEE number

1766 Imaginary part of first complex
argument not a valid IEEE number

1769 Imaginary part of second complex
argument not a valid IEEE number

1772 Both parts of first complex argument not
valid IEEE numbers

1775 Both parts of second complex argument
not valid IEEE numbers

1778 Real parts of both complex arguments
not valid IEEE numbers

1781 Imaginary parts of both complex
arguments not valid IEEE numbers

� For complex long floating-point base with complex
long floating-point exponent

1557 Argument equal to (0,0i)

1700 Imaginary parts of both complex
arguments not valid IEEE numbers

1703 Real part of first complex argument and
imaginary part of second complex
argument not valid IEEE numbers

1706 Imaginary part of first complex
argument and real part of second
complex argument not valid IEEE
numbers

1709 Real part of first complex argument was
the only valid IEEE number

1712 Imaginary part of first complex
argument was the only valid IEEE
number

1715 Real part of second complex argument
was the only valid IEEE number

1718 Imaginary part of second complex
argument was the only valid IEEE
number

1721 Both parts of both complex arguments
not valid IEEE numbers

1755 Argument exceeded limit

1758 Plus or minus infinity specified as
argument

1761 Real part of first complex argument not
valid IEEE number

1764 Real part of second complex argument
not valid IEEE number

1767 Imaginary part of first complex
argument not a valid IEEE number

1770 Imaginary part of second complex
argument not a valid IEEE number

 Chapter 10. Run-time messages 157

IBM0683I �IBM0683I

1773 Both parts of first complex argument not
valid IEEE numbers

1776 Both parts of second complex argument
not valid IEEE numbers

1779 Real parts of both complex arguments
not valid IEEE numbers

� For complex extended floating-point base with
complex extended floating-point exponent

1563 Argument equal to (0,0i)

1701 Imaginary parts of both complex
arguments not valid IEEE numbers

1704 Real part of first complex argument and
imaginary part of second complex
argument not valid IEEE numbers

1707 Imaginary part of first complex
argument and real part of second
complex argument not valid IEEE
numbers

1710 Real part of first complex argument was
the only valid IEEE number

1713 Imaginary part of first complex
argument was the only valid IEEE
number

1716 Real part of second complex argument
was the only valid IEEE number

1719 Imaginary part of second complex
argument was the only valid IEEE
number

1722 Both parts of both complex arguments
not valid IEEE numbers

1756 Argument exceeded limit

1759 Plus or minus infinity specified as
argument

1762 Real part of first complex argument not
valid IEEE number

1765 Real part of second complex argument
not valid IEEE number

1768 Imaginary part of first complex
argument not a valid IEEE number

1771 Imaginary part of second complex
argument not a valid IEEE number

1774 Both parts of first complex argument not
valid IEEE numbers

1777 Both parts of second complex argument
not valid IEEE numbers

1780 Real parts of both complex arguments
not valid IEEE numbers

Programmer Response: Ensure X is a valid
floating-point number.

System Action: The ERROR condition is raised.

IBM0683I ONCODE= oncode-value X or Y in
ATAN(X,Y) or ATAND(X,Y) was invalid.

Explanation: One of the following conditions occurred:

� X and Y were invalid.
� X, or Y, or both were not valid IEEE numbers.

The ONCODEs associated with this message are:

� For real short floating-point arguments:

1510 Both arguments were invalid

1808 First argument not valid IEEE number

1811 Second argument not valid IEEE
number

1814 Both arguments not valid IEEE numbers

� For real long floating-point arguments:

1511 Both arguments were invalid

1809 First argument not valid IEEE number

1812 Second argument not valid IEEE
number

1815 Both arguments not valid IEEE numbers

� For real extended floating-point arguments:

1521 Both arguments were invalid

1810 First argument not valid IEEE number

1813 Second argument not valid IEEE
number

1816 Both arguments not valid IEEE numbers

Programmer Response: Ensure X and Y are both real
values and that Y is not equal to zero.

System Action: The ERROR condition is raised.

158 Messages and Codes (OS/2 and Windows)

IBM0684I �IBM0686I

IBM0684I ONCODE= oncode-value X in SCALE(X,n)
was invalid.

Explanation: One of the following conditions occurred:

� The calculated result was greater in magnitude than
the largest finite number representable in the result
data type.

� X was not a valid IEEE number.

The ONCODEs associated with this message are:

� For real short floating-point arguments:

1750 First argument not valid IEEE number

2410 Calculated result overflowed output field

� For real long floating-point arguments:

2350 First argument not valid IEEE number

2411 Calculated result overflowed output field

� For real extended floating-point arguments:

2351 First argument not valid IEEE number

2412 Calculated result overflowed output field

Programmer Response: Ensure X has type real float,
and n has computational type and should have type real
fixed with scale factor zero.

System Action: The ERROR condition is raised.

IBM0685I ONCODE= oncode-value X in TRUNC(X)
was invalid.

Explanation: One of the following conditions occurred:

� X was plus or minus infinity.
� X was not a valid IEEE number.

The ONCODEs associated with this message are:

� For real short floating-point arguments:

2214 Argument equal to plus or minus infinity

2217 Argument not valid IEEE number

� For real long floating-point arguments:

2215 Argument equal to plus or minus infinity

2218 Argument not valid IEEE number

� For real extended floating-point arguments:

2216 Argument equal to plus or minus infinity

2219 Argument not valid IEEE number

Programmer Response: Ensure X is valid.

System Action: The ERROR condition is raised.

IBM0686I ONCODE= oncode-value An error
occurred during multiplication involving
complex floating-point numbers.

Explanation: One of the following conditions occurred:

� The value of the complex arguments were equal to
(plus infinity,0i) and (0,0i), or (minus infinity,0i) and
(0,0i).

� The value plus or minus infinity was incorrectly
specified as an argument.

� An invalid IEEE number was detected.

The ONCODEs associated with this message are:

� For complex short floating-point arguments:

2202 Imaginary part of first complex
argument was the only valid IEEE
number

2205 Real part of second complex argument
was the only valid IEEE number

2208 Imaginary part of second complex
argument was the only valid IEEE
number

2211 Both parts of both complex arguments
not valid IEEE numbers

2251 Real part of first complex argument not
valid IEEE number

2254 Real part of second complex argument
not valid IEEE number

2257 Imaginary part of first complex
argument not a valid IEEE number

2260 Imaginary part of second complex
argument not a valid IEEE number

2263 Both parts of first complex argument not
valid IEEE numbers

2266 Both parts of second complex argument
not valid IEEE numbers

2269 Real parts of both complex arguments
not valid IEEE numbers

2272 Imaginary parts of both complex
arguments not valid IEEE numbers

2275 Real part of first complex argument and
imaginary part of second complex
argument not valid IEEE numbers

 Chapter 10. Run-time messages 159

IBM0686I �IBM0686I

2278 Imaginary part of first complex
argument and real part of second
complex argument not valid IEEE
numbers

2281 Real part of first complex argument was
the only valid IEEE number

2327 Complex arguments equal to limits

2330 Plus or minus infinity specified as an
argument

� For complex long floating-point arguments:

2200 Real part of first complex argument was
the only valid IEEE number

2203 Imaginary part of first complex
argument was the only valid IEEE
number

2206 Real part of second complex argument
was the only valid IEEE number

2209 Imaginary part of second complex
argument was the only valid IEEE
number

2212 Both parts of both complex arguments
not valid IEEE numbers

2252 Real part of first complex argument not
valid IEEE number

2255 Real part of second complex argument
not valid IEEE number

2258 Imaginary part of first complex
argument not a valid IEEE number

2261 Imaginary part of second complex
argument not a valid IEEE number

2264 Both parts of first complex argument not
valid IEEE numbers

2267 Both parts of second complex argument
not valid IEEE numbers

2270 Real parts of both complex arguments
not valid IEEE numbers

2273 Imaginary parts of both complex
arguments not valid IEEE numbers

2276 Real part of first complex argument and
imaginary part of second complex
argument not valid IEEE numbers

2279 Imaginary part of first complex
argument and real part of second
complex argument not valid IEEE
numbers

2328 Complex arguments equal to limits

2331 Plus or minus infinity specified as an
argument

� For complex extended floating-point arguments:

2201 Real part of first complex argument was
the only valid IEEE number

2204 Imaginary part of first complex
argument was the only valid IEEE
number

2207 Real part of second complex argument
was the only valid IEEE number

2210 Imaginary part of second complex
argument was the only valid IEEE
number

2213 Both parts of both complex arguments
not valid IEEE numbers

2250 Plus or minus infinity specified as an
argument

2253 Real part of first complex argument not
valid IEEE number

2256 Real part of second complex argument
not valid IEEE number

2259 Imaginary part of first complex
argument not a valid IEEE number

2262 Imaginary part of second complex
argument not a valid IEEE number

2265 Both parts of first complex argument not
valid IEEE numbers

2268 Both parts of second complex argument
not valid IEEE numbers

2271 Real parts of both complex arguments
not valid IEEE numbers

2274 Imaginary parts of both complex
arguments not valid IEEE numbers

2277 Real part of first complex argument and
imaginary part of second complex
argument not valid IEEE numbers

2280 Imaginary part of first complex
argument and real part of second
complex argument not valid IEEE
numbers

2329 Complex arguments equal to limits

Programmer Response: Ensure the operands are
valid.

160 Messages and Codes (OS/2 and Windows)

IBM0687I �IBM0687I

System Action: The ERROR condition is raised.

IBM0687I ONCODE= oncode-value An error
occurred during division involving
complex floating-point numbers.

Explanation: One of the following conditions occurred:

� The value of the complex arguments were equal to
(limit1,limit2) and (limit3,limit4), where the values are
as follows:

– limit1 = plus or minus infinity, or plus or minus
zero

– limit2 = zero
– limit3 = plus or minus infinity, or plus or minus

zero
– limit4 = zero

� The value plus or minus infinity was incorrectly
specified as an argument.

� An invalid IEEE number was detected.

The ONCODEs associated with this message are:

� For complex short floating-point arguments:

2300 Real parts of both complex arguments
not valid IEEE numbers

2303 Imaginary parts of both complex
arguments not valid IEEE numbers

2306 Real part of first complex argument and
imaginary part of second complex
argument not valid IEEE numbers

2309 Imaginary part of first complex
argument and real part of second
complex argument not valid IEEE
numbers

2312 Real part of first complex argument was
the only valid IEEE number

2315 Imaginary part of first complex
argument was the only valid IEEE
number

2318 Real part of second complex argument
was the only valid IEEE number

2321 Imaginary part of second complex
argument was the only valid IEEE
number

2324 Both parts of both complex arguments
not valid IEEE numbers

2358 Complex arguments equal to limits

2361 Plus or minus infinity specified as an
argument

2364 Real part of first complex argument not
valid IEEE number

2367 Real part of second complex argument
not valid IEEE number

2370 Imaginary part of first complex
argument not a valid IEEE number

2373 Imaginary part of second complex
argument not a valid IEEE number

2376 Both parts of first complex argument not
valid IEEE numbers

2379 Both parts of second complex argument
not valid IEEE numbers

� For complex long floating-point arguments:

2301 Real parts of both complex arguments
not valid IEEE numbers

2304 Imaginary parts of both complex
arguments not valid IEEE numbers

2307 Real part of first complex argument and
imaginary part of second complex
argument not valid IEEE numbers

2310 Imaginary part of first complex
argument and real part of second
complex argument not valid IEEE
numbers

2313 Real part of first complex argument was
the only valid IEEE number

2316 Imaginary part of first complex
argument was the only valid IEEE
number

2319 Real part of second complex argument
was the only valid IEEE

2322 Imaginary part of second complex
argument was the only valid IEEE
number

2325 Both parts of both complex arguments
not valid IEEE numbers numbers

2359 Complex arguments equal to limits

2362 Plus or minus infinity specified as an
argument

2365 Real part of first complex argument not
valid IEEE number

2368 Real part of second complex argument
not valid IEEE number

 Chapter 10. Run-time messages 161

IBM0700I �IBM0701I

2371 Imaginary part of first complex
argument not a valid IEEE number

2374 Imaginary part of second complex
argument not a valid IEEE number

2377 Both parts of first complex argument not
valid IEEE numbers

2380 Both parts of second complex argument
not valid IEEE numbers

� For complex extended floating-point arguments:

2302 Real parts of both complex arguments
not valid IEEE numbers

2305 Imaginary parts of both complex
arguments not valid IEEE numbers

2308 Real part of first complex argument and
imaginary part of second complex
argument not valid IEEE numbers

2311 Imaginary part of first complex
argument and real part of second
complex argument not valid IEEE
numbers

2314 Real part of first complex argument was
the only valid IEEE number

2317 Imaginary part of first complex
argument was the only valid IEEE
number

2320 Real part of second complex argument
was the only valid IEEE number

2323 Imaginary part of second complex
argument was the only valid IEEE
number

2326 Both parts of both complex arguments
not valid IEEE numbers

2360 Complex arguments equal to limits

2363 Plus or minus infinity specified as an
argument

2366 Real part of first complex argument not
valid IEEE number

2369 Real part of second complex argument
not valid IEEE number

2372 Imaginary part of first complex
argument not a valid IEEE number

2375 Imaginary part of second complex
argument not a valid IEEE number

2378 Both parts of first complex argument not
valid IEEE numbers

2381 Both parts of second complex argument
not valid IEEE numbers

Programmer Response: Ensure the operands are
valid.

System Action: The ERROR condition is raised.

IBM0700I ONCODE= oncode-value An attempt to
assign data to an unallocated
CONTROLLED variable occurred during
GET DATA for file file-name.

Explanation: A CONTROLLED variable in the stream
was accessed by a GET FILE DATA statement, but
there was no current allocation for the variable.

Example:

DCL X CONTROLLED FIXED BIN;

GET DATA(X);

(Input stream contains

X=5,.....)

The ONCODE associated with this message is 4001.

Programmer Response: Either remove the data item
from the input stream or insert an ALLOCATE statement
for the variable before the GET FILE DATA statement.

System Action: The ERROR condition is raised.

IBM0701I ONCODE= oncode-value An attempt to
assign data to an unallocated
CONTROLLED variable occurred on a
GET DATA statement.

Explanation: A CONTROLLED variable in the stream
was accessed by a GET FILE DATA statement, but
there was no current allocation for the variable.

Example:

DCL STR CHAR(4) INIT('X=5'),

X CONTROLLED FIXED BIN;

GET STRING(STR) DATA(X);

The ONCODE associated with this message is 4001.

Programmer Response: Either remove the data item
from the string or insert an ALLOCATE statement for the
variable before the GET STRING DATA statement.

System Action: The ERROR condition is raised.

162 Messages and Codes (OS/2 and Windows)

IBM0702I �IBM0752I

IBM0702I ONCODE= oncode-value An attempt to
output an unallocated CONTROLLED
variable occurred on a PUT DATA
statement.

Explanation: A CONTROLLED variable was being
output to a file by a PUT FILE DATA statement, but
there was no current allocation for the variable. The
ONCODE associated with this message is 4002.

Programmer Response: Insert an ALLOCATE
statement for the variable before the PUT FILE DATA
statement.

System Action: The ERROR condition is raised.

IBM0703I ONCODE= oncode-value An attempt to
assign from an unallocated
CONTROLLED variable occurred on a
PUT DATA statement with the STRING
option.

Explanation: A CONTROLLED variable was being
accessed by a PUT STRING DATA statement, but there
was no current allocation for the variable. The
ONCODE associated with this message is 4003.

Programmer Response: Ensure the CONTROLLED
variable is allocated and initialized before the PUT DATA
statement.

System Action: The ERROR condition is raised.

IBM0750I ONCODE= oncode-value A GOTO to an
invalid block was attempted.

Explanation: A GOTO statement that transfers control
to a label variable was invalid. The possible causes are:

� The generation of the block that was active when
the label variable was assigned was no longer
active when the GOTO statement was run.

� The label variable was uninitialized.

� The element of the label array, to which control is to
be transferred, does not exist in the program.

� An attempt has been made to transfer control to a
block that is not within the scope of this task.

Example:

DCL L LABEL;

BEGIN;

A: L = A;

END;

GOTO L;

The ONCODE associated with this message is 9002.

Programmer Response: Modify the program so that
the GOTO statement transfers control to a label in an
active block.

System Action: The ERROR condition is raised.

IBM0751I ONCODE= oncode-value A GOTO was
attempted to an element of a label
constant array, but the subscripts for
the element were not those of any label
in that array.

Explanation: The subscripts of an element in a GOTO
statement must match the label in the specified array.
For example, this error occurs in the following code if n
is 1, 3, 5 or 7.

dcl n fixed bin;

...

goto x(n);

...

x('): ...

...

x(2): ...

...

x(4): ...

...

x(6): ...

...

x(8): ...

Note: This error will not occur if n is less than the lower
bound for x or greater than the upper bound.

Programmer Response: Correct your program.

System Action: The ERROR condition is raised.

IBM0752I ONCODE= oncode-value A RETURN
without an expression was attempted
from a procedure that had been entered
at an ENTRY that specified the
RETURNS attribute.

Explanation: A procedure can contain ENTRYs some
of which have the RETURNS attribute and some of
which do not, but if it is entered at an ENTRY that has
the RETURNS attribute, it must be exited with a
RETURN statement that specifies a return value.

Programmer Response: Correct your program.

System Action: The ERROR condition is raised.

 Chapter 10. Run-time messages 163

IBM0753I �IBM0805I

IBM0753I ONCODE= oncode-value A RETURN with
an expression was attempted from a
procedure that had been entered at an
ENTRY that did not specify the
RETURNS attribute.

Explanation: A procedure can contain ENTRYs some
of which have the RETURNS attribute and some of
which do not, but if it is entered at an ENTRY that does
not have the RETURNS attribute, it must be exited with
a RETURN statement that does not specify a return
value.

Programmer Response: Correct your program.

System Action: The ERROR condition is raised.

IBM0780I ONCODE= oncode-value No WHEN
clauses were satisfied and no
OTHERWISE clause was available.

Explanation: No WHEN clauses of a SELECT
statement were selected and no OTHERWISE clause
was present. The ONCODE associated with this
message is 3.

Programmer Response: Add an OTHERWISE clause
to the SELECT group.

System Action: The ERROR condition is raised.

IBM0802I ONCODE= oncode-value The GET/PUT
STRING exceeded the source string
size.

Explanation: For input, a GET statement attempted to
access data that exceeded the length of the source
string. For output, a PUT statement attempted to assign
data that exceeded the target string. The ONCODE
associated with this message is 1002.

Programmer Response: For input, either extend the
length attribute of the source string or correct the data
so that the length does not exceed the declared length
of the source string. For output, either extend the length
attribute of the target string or correct the data so that
the length does not exceed the declared length of the
target string.

System Action: The ERROR condition is raised.

IBM0803I ONCODE= oncode-value A prior
condition on file file-name prevented
further output.

Explanation: A PL/I WRITE, LOCATE, or PUT
statement was issued for a file to which a previous
attempt to transmit a record caused the TRANSMIT
condition to be raised immediately. If the EVENT option
was specified to be stacked until the event was waited
on, the data set was not a unit-record device and no
further processing of the file was possible. The
ONCODE associated with this message is 1003.

Programmer Response: Correct the error that caused
the TRANSMIT condition to be raised and rerun the
program.

System Action: The ERROR condition is raised.

IBM0804I ONCODE= oncode-value The PRINT
option/format item was used with
non-PRINT file file-name.

Explanation: An attempt was made to use one of the
options PAGE or LINE for a file that was not a print file.
The ONCODE associated with this message is 1004.

Programmer Response: Either remove the PRINT
option/format item from the non-print file or specify the
PRINT option for the print file.

System Action: The ERROR condition is raised.

IBM0805I ONCODE= oncode-value A DISPLAY with
REPLY option had a zero-length string.

Explanation: The current length of the character string
to be displayed or the maximum length of the character
string to which the reply was assigned was zero. The
ONCODE associated with this message is 1005.

Programmer Response: Change length of the
character string to be displayed or to which the reply is
to be assigned to greater than zero.

System Action: The ERROR condition is raised.

164 Messages and Codes (OS/2 and Windows)

IBM0807I �IBM0809I

IBM0807I ONCODE= oncode-value The REWRITE
or DELETE on file file-name occurred
without a preceding READ SET or READ
INTO statement.

Explanation: A REWRITE or DELETE statement
without the KEY option was run. The last input/output
operation on the file was not a READ statement with the
SET or INTO option or was a READ statement with the
IGNORE option. The ONCODE associated with this
message is 1007.

Programmer Response: Modify the program so that
the REWRITE or DELETE statement is either preceded
by a READ statement or, in the case of a REWRITE
statement, replaced by a WRITE statement, according to
the requirements of the program. A preceding READ
statement with the IGNORE option will also cause the
message to be issued.

System Action: The ERROR condition is raised.

IBM0808I ONCODE= oncode-value An invalid
element was present in the string for a
GET STRING DATA statement.

Explanation: The identifier in the string named in the
STRING option of a GET STRING DATA statement did
not match the identifier in the data specification. Note
that the DATAFIELD built-in function does not return a
value in this case. The ONCODE associated with this
message is 1008.

Programmer Response: Modify the program so that
the string contains the identifier in the data specification.

System Action: The ERROR condition is raised.

IBM0809I ONCODE= oncode-value An invalid file
operation was attempted on file
file-name.

Explanation: An attempt was made to perform an
invalid operation on a file. For example, it is not
possible to run a REWRITE statement on a STREAM
file, read an output file, or write an input file. Refer to
Table 4 for a list of operations and conflicting file
organizations.

The ONCODE associated with this message is 1009.

Programmer Response: Ensure the file declaration
and the input/output statements for the named file are
compatible.

System Action: The ERROR condition is raised.

Table 4. Operations and Conflicting File Organizations

Statment/Option File Organization

Any stream I/O
statement

RECORD

READ OUTPUT

READ SET UNBUFFERED

READ EVENT BUFFERED

READ KEY REGIONAL SEQUENTIAL or
CONSECUTIVE

READ IGNORE DIRECT

READ NOLOCK SEQUENTIAL or INPUT

WRITE INPUT SEQUENTIAL UPDATE,
INDEXED DIRECT NOWRITE,
REGIONAL (not KEYED)

WRITE EVENT BUFFERED

REWRITE INPUT or OUTPUT

REWRITE (without
FROM)

UNBUFFERED or DIRECT

REWRITE KEY SEQUENTIAL

REWRITE EVENT BUFFERED

LOCATE INPUT or UPDATE, UNBUFFERED,
DIRECT

LOCATE
KEYFROM

INDEXED or REGIONAL (without
KEYED)

DELETE INPUT or OUTPUT, CONSECUTIVE,
REGIONAL SEQUENTIAL, RKP=0
(blocked records), OPTCD=L not
specified

DELETE KEY SEQUENTIAL

UNLOCK INPUT or OUTPUT, SEQUENTIAL

GET OUTPUT

PUT INPUT

Table 4. Operations and Conflicting File Organizations

Statment/Option File Organization

Any record I/O
statement

STREAM

 Chapter 10. Run-time messages 165

IBM0810I �IBM0822I

IBM0810I ONCODE= oncode-value A built-in
function or pseudovariable referenced
unopened file file_name.

Explanation: An I/O built-in function or pseudovariable
referenced a file that was not opened or referenced a file
with an attribute that contradicted the function or
pseudovariable. The functions/pseudovariables are :

� PAGENO - file not open or does not have the
PRINT attribute

� SAMEKEY - file does not have the RECORD
attribute

� ENDFILE - file not open
� FILEDDTEST - file not open or file attribute does

not apply to the file
� FILEDDINT - file not open or file attribute does not

apply to the file
� FILEDDWORD - file not open or file attribute does

not apply to the file

Programmer Response: Correct your program to use
the built-in function or pseudovariable correctly.

System Action: The ERROR condition is raised.

IBM0811I ONCODE= oncode-value An I/O error
occurred. The cause could not be
determined due to insufficient data.

Explanation: The data management routines detected
an error during an input/output operation. The cause of
the error could not be determined. The ONCODE
associated with this message is 1011.

Programmer Response: Refer to the Programming
Guide for help in problem determination.

System Action: The ERROR condition is raised.

IBM0812I ONCODE= oncode-value A READ SET or
READ INTO statement did not precede a
REWRITE request.

Explanation: A REWRITE statement with the INTO or
SET option ran without a preceding READ statement.
The ONCODE associated with this message is 1012.

Programmer Response: Modify the program so that
the REWRITE statement is either preceded by a READ
statement or replaced by a WRITE statement.

System Action: The ERROR condition is raised.

IBM0816I ONCODE= oncode-value The implicit
OPEN was unsuccessful for file
file-name.

Explanation: An error occurred during the implicit
opening of a file. The UNDEFINEDFILE condition was
raised and a normal return was made from the
associated ON-unit, but the file was still unopened. The
ONCODE associated with this message is 1016.

Programmer Response: Ensure that the file has been
completely and correctly declared and that the
input/output statement that implicitly opens the file is not
in conflict with the file declaration.

System Action: The ERROR condition is raised.

IBM0818I ONCODE= oncode-value An unexpected
end of file/string was detected in the
STREAM input.

Explanation: The end of the file was detected before
the completion of a GET FILE statement. The ONCODE
associated with this message is 1018.

Programmer Response: For edit-directed input,
ensure that the last item of data in the stream has the
same number of characters as specified in the
associated format item. If the error occurs while an
X-format is running, ensure that the same number of
characters to be skipped are present before the last data
item in the stream. For list-directed and data-directed
input, ensure the last item of data in the data set that
precedes the end-of-file character is terminated by a
quote character for a string or a 'B' character for a
bit-string.

System Action: The ERROR condition is raised.

IBM0822I ONCODE= oncode-value Insufficient
space was available for a record in the
sequential output data set.

Explanation: The space allocated for the sequential
output data set was full. The ONCODE associated with
this message is 1040.

Programmer Response: Increase the size of the
dataset, or check the logic of the application for possible
looping.

System Action: The ERROR condition is raised.

166 Messages and Codes (OS/2 and Windows)

IBM0823I �IBM0841I

IBM0823I ONCODE= oncode-value An invalid
control format item was detected during
a GET/PUT STRING.

Explanation: An invalid control format item (PAGE,
LINE, SKIP, or COL) was detected in a remote format
list for a GET or PUT STRING statement.

Example:

DCL(A,B) CHAR(1'),

C CHAR(8');

F: FORMAT(A(1'), SKIP,A(1'));

A='FRED'; B='HARRY';

PUT STRING(C) EDIT(A,B) (R(F));

The ONCODE associated with this message is 1004.

Programmer Response: Modify the source program
so that GET or PUT STRING statements do not use the
control format items PAGE, LINE, SKIP or COL.

System Action: The ERROR condition is raised.

IBM0831I ONCODE= oncode-value A position was
not established for a sequential READ
statement.

Explanation: A READ statement without the KEY
option was attempted on a VSAM data set. This
occurred after sequential positioning was lost as the
result of a previous error during sequential processing
(for example, read error on index set or failure to
position to next highest key after a “key not found”
condition). The ONCODE associated with this message
is 1026.

Programmer Response: Use the KEYTO option of the
READ statement to obtain the keys of records read.
Use this information to reposition a file for subsequent
retrieval when positioning is lost.

System Action: The ERROR condition is raised.

IBM0832I ONCODE= oncode-value Insufficient
space was available for keyed file
file-name.

Explanation: No more space on the disk. The
ONCODE associated with this message is 1022.

Programmer Response: Discard unneeded files to
free up more space, or check the program for possible
looping.

System Action: The ERROR condition is raised.

IBM0835I ONCODE= oncode-value An attempt to
position the file for a sequential READ
failed.

Explanation: An attempt to reposition the next highest
key for subsequent sequential retrieval on a VSAM
KSDS, after the 'key not found' condition, failed. If file
processing continued, the next I/O statement should
have a positioning KEY option. (See message
IBM0831). The ONCODE associated with this message
is 1029.

Programmer Response: Use the KEYTO option of the
READ statement to obtain the keys of the records read.
Use this information to reposition the file for a
subsequent retrieval.

System Action: The ERROR condition is raised.

IBM0840I ONCODE= oncode-value An invalid
sequential WRITE was attempted.

Explanation: A WRITE statement on a file associated
with a Relative Record Data Set (RRDS) did not specify
a relative record number. This resulted in an attempt to
write in a slot already containing a record. The
ONCODE associated with this message is 1031.

Programmer Response: Modify the WRITE statement
to include a relative record number (or key) by specifying
the KEYFROM option. If a relative record number is
used, ensure the record number is valid. For error
diagnosis, the KEYTO option can be used to obtain the
number of the key for each record written if previous
sequential WRITE statements did not have the
KEYFROM option specified.

System Action: The ERROR condition is raised.

IBM0841I ONCODE= oncode-value A data set, open
for output, used all available space.

Explanation: No more space on the disk. The
ONCODE associated with this message is 1040.

Programmer Response: Increase the size of the data
set or check the logic of the program for possible
looping.

System Action: The ERROR condition is raised.

 Chapter 10. Run-time messages 167

IBM0842I �IBM0885I

IBM0842I ONCODE= oncode-value An attempt was
made to write a record containing a
record delimiter.

Explanation: An attempt was made to write a record
containing a record delimiter (line feed character or
carriage control and line feed character combination) to
a native data set with the type(lf) or type(crlf) option
applied.

Programmer Response: Either change your program
to let PL/I write the delimiter or use the type(fixed)
option.

System Action: The record is not transmitted to the
data set.

IBM0843I ONCODE= oncode-value A record in the
data set was not properly delimited.

Explanation: While reading a native data set with
TYPE(CRLF) applied, a record delimiter (carriage control
and line feed character combination) was not found
before the number of bytes specified by RECSIZE were
read.

Programmer Response: Increase the value of
RECSIZE appropriately and re-run your program.

System Action: The record is not assigned to the
record variable.

IBM0855I ONCODE=3809 The length of a data
aggregate exceeded the maximum limit.

Explanation: The length of the structure to be mapped
was greater than the allowable limit. Structures that do
not contain any unaligned bit elements have a maximum
size of 2**31-1 bytes. Structures with one or more
unaligned bit elements have a maximum size of 2**28-1
bytes.

Programmer Response: Reduce the size of the
structure to less than the maximum allowed. If a
variable is used to specify the dimension or length of an
element, ensure the variable is correctly initialized before
the storage is allocated to the aggregate.

System Action: The ERROR condition is raised.

IBM0882I ONCODE= oncode-value The string
RECORD TYPE was missing in the
second argument of the call PLISRTx
statement.

Explanation: The RECORD TYPE string must be given
in the RECORD statement for calls to PLISRTx. It is
used to specify the type of records in the file.

Programmer Response: Ensure the RECORD TYPE
is coded correctly in the RECORD statement and rerun
the application.

System Action: The ERROR condition is raised.

IBM0883I ONCODE= oncode-value Incorrect record
type was specified in the second
argument of the call PLISRTx statement.

Explanation: The RECORD TYPE in the RECORD
statement of PLISRTx takes F for fixed length and V for
varying length EBCDIC. Characters other than F and V
are invalid.

Programmer Response: Code the correct record type
in the RECORD statement and rerun the application.

System Action: The ERROR condition is raised.

IBM0884I ONCODE= oncode-value The LENGTH=
was not specified in the second
argument of the call PLISRTx statement.

Explanation: The LENGTH specifier must be given for
calls to PLISRTB, and PLISRTD. Use this specifier to
indicate the length of the record to be sorted.

Programmer Response: Ensure the LENGTH specifier
is coded in the RECORD statement and rerun the
application.

System Action: The ERROR condition is raised.

IBM0885I ONCODE= oncode-value The length
specified in the LENGTH= parameter in
the second argument of the call
PLISRTx statement was not numeric.

Explanation: The length coded for LENGTH= in the
RECORD statement of the PLISRTx call must be
numerical.

Programmer Response: Ensure numerical data is
coded for LENGTH= in the RECORD statement and
rerun the application.

168 Messages and Codes (OS/2 and Windows)

IBM0886I �IBM0897I

System Action: The ERROR condition is raised.

IBM0886I ONCODE= oncode-value Incorrect return
code rc received from user's E15 or E35
handling routine.

Explanation: The allowed return code from the E15
input handling routine are 8, 12, and 16. The allowed
return code from the E35 output handling routine are 4
and 16.

Programmer Response: Ensure the return code
returned by the PLIRETC built-in function is correct and
rerun the application.

System Action: The ERROR condition is raised.

IBM0887I ONCODE= oncode-value dfsort failed
with a return code of rc

Explanation: The sort program returns an unsuccessful
return code. For the explanation of the return code,
refer to the message in the JES log.

Programmer Response: Correct the program based
on the information from the return code and the
message and rerun the application.

System Action: The ERROR condition is raised.

IBM0888I ONCODE= oncode-value PLISRTx not
supported in environments other than
ADMVS.

Explanation: The PL/I program calling the PLISRTx
function must have the ADMVS running.

Programmer Response: Take out the PLISRTx call
and rerun the application.

System Action: The ERROR condition is raised.

IBM0889I ONCODE= oncode-value Fetch of
SMARTSort failed.

System Action: The ERROR condition is raised.

IBM0890I ONCODE= oncode-value DD for sort
input data set is missing or invalid.

System Action: The ERROR condition is raised.

IBM0891I ONCODE= oncode-value DD for sort
output data set is missing or invalid.

System Action: The ERROR condition is raised.

IBM0892I ONCODE= oncode-value DD for sort data
set must specify a LENGTH or LRECL.

System Action: The ERROR condition is raised.

IBM0893I ONCODE= oncode-value DD for sort data
set must specify a TYPE.

System Action: The ERROR condition is raised.

IBM0894I ONCODE= oncode-value The string
SORT FIELDS was missing in the first
argument of the call PLISRTx statement.

Explanation: The SORT FIELDS string must be given
in the SORT statement for calls to PLISRTx. It is used
to specify what fields determine the sort.

Programmer Response: Ensure the SORT FIELDS is
coded correctly in the SORT statement and rerun the
application.

System Action: The ERROR condition is raised.

IBM0895I ONCODE= oncode-value SORT FIELDS
specifies too many sort fields.

System Action: The ERROR condition is raised.

IBM0896I ONCODE= oncode-value SORT FIELDS
contains invalid start and/or length
fields.

System Action: The ERROR condition is raised.

IBM0897I ONCODE= oncode-value The SORT
FIELDS specifies an invalid form.

System Action: The ERROR condition is raised.

 Chapter 10. Run-time messages 169

IBM0898I �IBM0931S

IBM0898I ONCODE= oncode-value The SORT
FIELDS specifies an invalid sequence.

System Action: The ERROR condition is raised.

IBM0913I ONCODE= oncode-value An error
occurred on a FREE statement.

Explanation: PL/I storage management detected an
error during the processing of either a FREE statement
or the PLIFREE built-in function.

Programmer Response: Ensure the variable specified
on the FREE statement is a controlled variable that has
been allocated. Another suggestion is to acquire a
storage report to check on the program's use of storage.
A PLIDUMP should be obtained for later study by IBM.

System Action: The ERROR condition is raised.

IBM0914I ONCODE= oncode-value An abnormal
termination has occurred in a linked PL/I
program while running a CICS
transaction.

Explanation: An PL/I program called through EXEC
LINK or EXEC XCTL terminated abnormally.

Programmer Response: Examine the linked PL/I
program unit and correct the error that caused error.

System Action: The ERROR condition is raised.

IBM0915I ONCODE= oncode-value An internal error
occurred in PL/I library.

Explanation: An error occurred within the PL/I library.
The ONCODE associated with this message is 1104.

Programmer Response: A PLIDUMP should be
obtained for later study by IBM.

System Action: The ERROR condition is raised.

IBM0916I ONCODE= oncode-value An object
window was unable to be created.

Explanation: The Presentation Manager returned an
error when an attempt was made to create an object
window during the execution of a DISPLAY statement or
I/O to a Presentation Manager Terminal (PMT).

Programmer Response: The problem may be that too
many windows have been created. Reduce the number
of windows and re-run your program.

System Action: The ERROR condition is raised.

IBM0917I ONCODE= oncode-value An internal error
occurred in PL/I storage management.

Explanation: There was insufficient space available to
satisfy a storage allocation request within PL/I storage
management. The ONCODE associated with this
message is 1106.

Programmer Response: Acquire a storage report to
check on the program's use of storage. A PLIDUMP
should be obtained for later study by IBM.

System Action: The ERROR condition is raised.

IBM0924I Closing a file in the ON-unit caused
errors in this statement.

Explanation: An ON-unit for an I/O condition was
entered, and the file associated with the ON-unit was
closed in the ON-unit. A GOTO statement should have
been used to exit from the ON-unit. The result of a
normal return from an ON-unit is undefined.

Programmer Response: Use a GOTO statement to
exit from the ON-unit, or close the file outside of the
ON-unit.

System Action: No system action is performed.

IBM0930S Too few parameters were passed to
PLITDLI.

Explanation: At a minimum, arguments passed to
PLITDLI must include a parameter count and function
code.

System Action: The ERROR condition is raised.

Programmer Response: Enusre that the parameters
passed to PLITDLI are correct.

IBM0931S Too many parameters were passed to
PLITDLI.

Explanation: The parameter count passed to PLITDLI
exceeds the maximum number of parameters allowed.

System Action: The ERROR condition is raised.

Programmer Response: Ensure the the parameters
passed to PLITDLI are correct.

170 Messages and Codes (OS/2 and Windows)

IBM0932S �IBM0950S

IBM0932S The PLITDLI routine detected a problem
with the function code parameter.

Explanation: The call to PLITDLI did not contain a
function code as the second parameter.

System Action: The ERROR condition is raised.

Programmer Response: Ensure that the correct
parameters were passed to the PLITDLI routine.

IBM0933S The PLITDLI routine detected a problem
with the PSB name parameter.

Explanation: PSB name was not provided when
attempting to schedule the PSB.

System Action: The ERROR condition is raised.

Programmer Response: Ensure that the correct
parameters were passed to the PLITDLI routine.

IBM0934S The PLITDLI routine detected a problem
with the UIB pointer parameter.

Explanation: UIB pointer was not provided when
attempting to schedule the PSB.

System Action: The ERROR condition is raised.

Programmer Response: Ensure that the correct
parameters were passed to the PLITDLI routine.

IBM0935S An invalid SYSSERVE value was passed
to PLITDLI on a PCB call

Explanation: The SYSSERVE value that was provided
on the call to PLITDLI was not valid.

System Action: The ERROR condition is raised.

Programmer Response: Ensure that the call to
PLITDLI passes a valid SYSSERVE value.

IBM0936S PLITDLI could not locate the Remote
DL/I initialization entry.

Explanation: The Remote DL/I initialization entry was
not found.

System Action: The ERROR condition is raised.

Programmer Response: Ensure that the Remote DL/I
component is installed correctly.

IBM0937S PLITDLI could not initialize the Remote
DL/I support.

Explanation: The Remote DL/I initialization entry point
was found, but an attempt to initialize the Remote DL/I
support failed.

System Action: The ERROR condition is raised.

Programmer Response: Ensure that the Remote DL/I
component is installed correctly.

IBM0938S PLITDLI detected an error with the
Remote DL/I service.

Explanation: The Remote DL/I component detected an
error on a DL/I call.

System Action: The ERROR condition is raised.

Programmer Response: Ensure that the correct
parameters were passed to the PLITDLI routine.

IBM0939S PLITDLI internal error processing the
IMS function code.

Explanation: Internal error encountered.

System Action: The ERROR condition is raised.

Programmer Response: Ensure that the function code
passed to the PLITDLI routine is valid.

IBM0950S ONCODE= oncode-value A system error
occurred in PL/I multithreading support
for the WAIT statement.

Explanation: An uninitialized task variable may have
been specified in the THREAD option. Another reason
why an error may have occurred in WAIT is that the
operating system may have run out of resources to
satisfy the request or may have timed out.

Programmer Response: Ensure that the tasking
variable has been initialized to a valid value. The
ATTACH statement with the THREAD option must be
used to give a tasking variable a starting value. Ensure
that there are enough resources for the operating
system to acquire.

System Action: The ERROR condition is raised.

 Chapter 10. Run-time messages 171

IBM0951S �IBM3000S

IBM0951S ONCODE= oncode-value A system error
occurred in PL/I multithreading support
for the DETACH statement.

Explanation: An uninitialized task variable may have
been specified in the THREAD option.

Programmer Response: Ensure that the tasking
variable has been initialized to a valid value. The
ATTACH statement with the THREAD option must be
used to give a tasking variable a starting value.

System Action: The ERROR condition is raised.

IBM0952S ONCODE= oncode-value A system error
occurred in PL/I multithreading support
for the ATTACH statement.

Explanation: The operating system may have run out
of resources (not enough memory, too many handles) to
satisfy the request.

Programmer Response: Ensure that there are enough
resources for the operating system to acquire.

System Action: The ERROR condition is raised.

IBM0953S ONCODE= oncode-value A system error
occurred in PL/I multithreading support
for the STOP statement.

Explanation: An uninitialized task variable may have
been specified in the THREAD option.

System Action: The ERROR condition is raised.

Programmer Response: Ensure that the tasking
variable has been initialized to a valid value. The

ATTACH statement with the THREAD option must be
used to give a tasking variable a starting value.

IBM0954S Nested condition limit has been
exceeded.

Explanation: Too many conditions have been raised
while processing other conditions.

System Action: The application is terminated.

Programmer Response: The most common cause of
this message is when the ERROR condition is raised
from within and ERROR on-unit and the ERROR on-unit
does not use ON ERROR SYSTEM to specify implicit
action be taken for nested ERROR conditions.

IBM3000S Not enough application stack to
complete processing.

Explanation: The application has tried to use more
stack storage than is available.

System Action: The application is terminated.

Programmer Response: Try linking your application
with more stack, or specifying a larger stack for your
threads.

172 Messages and Codes (OS/2 and Windows)

Condition codes

 Chapter 11. Condition codes

Condition codes listed in this section reflect an aggregate of condition codes generated
by all implementations. Some might not be generated for a particular platform.

The following is a summary of all condition codes in numerical sequence.

Conditions 1 through 50
3 This condition is raised if, in a SELECT group, no WHEN clause is selected

and no OTHERWISE clause is present.

4 SIGNAL FINISH, or STOP statement executed.

9 SIGNAL ERROR statement executed.

10 SIGNAL NAME statement executed.

20 SIGNAL RECORD statement executed.

21 Record variable smaller than record size. Either:

� The record is larger than the variable in a READ INTO statement; the
remainder of the record is lost.

� The record length specified for a file with fixed-length records is larger
than the variable in a WRITE, REWRITE, or LOCATE statement; the
remainder of the record is undefined. If the variable is a varying-length
string, RECORD is not raised if the SCALARVARYING option is applied to
the file.

22 Record variable larger than record size. Either:

� The record length specified for a file with fixed-length records is smaller
than the variable in a READ INTO statement; the remainder of the variable
is undefined. If the variable is a varying-length string, RECORD is not
raised if the SCALARVARYING option is applied to the file.

� The maximum record length is smaller than the variable in a WRITE,
REWRITE, or LOCATE statement. For WRITE or REWRITE, the
remainder of the variable is lost; for LOCATE, the variable is not
transmitted.

� The variable in a WRITE or REWRITE statement indicates a zero length;
no transmission occurs. If the variable is a varying-length string,
RECORD is not raised if the SCALARVARYING option is applied to the
file.

23 Record variable length is either zero or too short to contain the embedded key.

The variable in a WRITE or REWRITE statement is too short to contain the
data set embedded key; no transmission occurs. (This case currently applies
only to indexed key-sequenced data sets.)

 Copyright IBM Corp. 1998 173

Condition codes

24 Zero length record was read from a REGIONAL data set.

40 SIGNAL TRANSMIT statement executed.

41 Uncorrectable transmission error in output data set.

42 Uncorrectable transmission error in input data set.

43 Uncorrectable transmission error on output to index set.

44 Uncorrectable transmission error on input from index set.

45 Uncorrectable transmission error on output to indexed consecutive data set.

46 Uncorrectable transmission error on input from consecutive data set.

50 SIGNAL KEY statement executed.

Condition codes 51 through 100
51 Key specified cannot be found.

52 Attempt to add keyed record that has same key as a record already present in
data set; or, in a REGIONAL(1) data set, attempt to write into a region already
containing a record.

53 Value of expression specified in KEYFROM option during sequential creation
of INDEXED or REGIONAL data set is less than value of previously specified
key or region number.

54 Key conversion error, possibly due to region number not being numeric
character.

55 Key specification is null string or begins (8)'1'B or a change of embedded key
has occurred on a sequential REWRITE[FROM] for an INDEXED or
key-sequenced data set.

56 Attempt to access a record using a key that is outside the data set limits.

57 No space available to add a keyed record on INDEXED insert.

58 Key of record to be added lies outside the range(s) specified for the data set.

70 SIGNAL ENDFILE statement executed.

80 SIGNAL UNDEFINEDFILE statement executed.

81 Conflict in file attributes exists at open time between attributes in DECLARE
statement and those in explicit or implicit OPEN statement.

82 Conflict between file attributes and physical organization of data set (for
example, between file organization and device type), or indexed data set has
not been loaded.

83 After merging ENVIRONMENT options with DD statement and data set label,
data set specification is incomplete; for example, block size or record format
has not been specified.

84 No DD statement associating file with a data set.

174 Messages and Codes (OS/2 and Windows)

Condition codes

85 During initialization of a DIRECT OUTPUT file associated with a REGIONAL
data set, an input/output error occurred.

86 LINESIZE greater than implementation-defined maximum, or invalid value in an
ENVIRONMENT option.

87 After merging ENVIRONMENT options with DD statement and data set label,
conflicts exist in data set specification; the value of LRECL, BLKSIZE or
RECSIZE are incompatible with one another or the DCB FUNCTION specified.

88 After merging ENVIRONMENT options with DD statement and data set label,
conflicts exist in data set specification; the resulting combination of
MODE/FUNCTION and record format are invalid.

89 Password invalid or not specified.

90 SIGNAL ENDPAGE statement executed.

91 ENVIRONMENT option invalid for file accessing indexed data set.

92 The requested data set was not available.

93 Error detected by the operating system while opening a data set.

94 REUSE specified for a nonreusable data set.

95 Alternate index specified for an index data set is empty.

96 Incorrect environment variable.

99 File cannot be opened.

Subcode Meaning

1 or 2 The extended attributes (EAs) for an existing REGIONAL(1) file
could not be located and no RECCOUNT or RECSIZE values
were given via the ENVIRONMENT or SET DD option.

3 A positioning error occurred for a sequential output file.

4 TYPE (FIXED) was specified for a native file, but the file size
was not a multiple of RECSIZE.

5 or 13 A positioning error occurred for a REGIONAL(1) file.

6–12 A positioning error occurred for an output file.

21–23 AMTHD(DDM) was specified on the SET DD statement for a
file, but the DDM DLLs (DUBRUN and DUBLDM) could not be
found or accessed.

24 Incorrect extended attribute on a DDM file.

25 The ORGANIZATION option of the ENVIRONMENT attribute
conflicts with the type of data set (DDM or native).

26 Conflicts exist with how the file is being used.

27 A composite key was detected with a keyed-opening.

28—30 A new DDM file could not be created.

 Chapter 11. Condition codes 175

Condition codes

31 A positioning error occurred for a DDM file.

62 Query for file information failed for a VSAM file under MVS
batch.

63 A non-VSAM file is being opened as a VSAM file under MVS
batch.

64 A VSAM file is being opened with an invalid type (that is, the file
is not a KSDS, ESDS or RRDS file).

65 A VSAM file is being opened in a non-MVS batch environment.
VSAM files are supported only under MVS batch.

67 A VSAM file is being opened as a non-VSAM file under MVS
batch.

68 An invalid VSAM file is being opened.

69 Query for file information failed for a native file under MVS
batch.

70 Positioning for a VSAM file failed.

Condition codes 100 through 520
150 SIGNAL STRINGSIZE statement executed or STRINGSIZE condition occurred.

151 Truncation occurred during assignment of a mixed character string.

290 SIGNAL INVALIDOP statement was executed or INVALIDOP exception
occurred.

300 SIGNAL OVERFLOW statement executed or OVERFLOW condition occurred.

310 SIGNAL FIXEDOVERFLOW statement executed or FIXEDOVERFLOW
condition occurred.

320 SIGNAL ZERODIVIDE statement executed or ZERODIVIDE condition
occurred.

330 SIGNAL UNDERFLOW statement executed or UNDERFLOW condition
occurred.

340 SIGNAL SIZE statement executed; or high-order nonzero digits have been lost
in an assignment to a variable or temporary, or significant digits have been lost
in an input/output operation.

341 High order nonzero digits have been lost in an input/output operation.

350 SIGNAL STRINGRANGE statement executed or STRINGRANGE condition
occurred.

360 Attempt to allocate a based variable within an area that contains insufficient
free storage for allocation to be made.

361 Insufficient space in target area for assignment of source area.

362 SIGNAL AREA statement executed.

176 Messages and Codes (OS/2 and Windows)

Condition codes

400 SIGNAL ATTENTION statement executed.

450 SIGNAL STORAGE statement executed.

451 ALLOCATE statement or ALLOCATE built-in function failed; insufficient storage
to satisfy request.

500 SIGNAL CONDITION (name) statement executed.

520 SIGNAL SUBSCRIPTRANGE statement executed, or subscript has been
evaluated and found to lie outside its specified bounds.

Condition codes 600 through 650
600 SIGNAL CONVERSION statement executed.

601 Invalid conversion attempted during input/output of a character string.

603 Error during processing of an F-format item for a GET STRING statement.

604 Error during processing of an F-format item for a GET FILE statement.

605 Error during processing of an F-format item for a GET FILE statement following
a TRANSMIT condition.

606 Error during processing of an E-format item for a GET STRING statement.

607 Error during processing of an E-format item for a GET FILE statement.

608 Error during processing of an E-format item for a GET FILE statement
following a TRANSMIT condition.

609 Error during processing of a B-format item for a GET STRING statement.

610 Error during processing of a B-format item for a GET FILE statement.

611 Error during processing of a B-format item for a GET FILE statement following
TRANSMIT condition.

612 Error during character value to arithmetic conversion.

613 Error during character value to arithmetic conversion for a GET or PUT FILE
statement.

614 Error during character value to arithmetic conversion for a GET or PUT FILE
statement following a TRANSMIT condition.

615 Error during character value to bit value conversion.

616 Error during character value to bit value conversion for a GET or PUT FILE
statement.

617 Error during character value to bit value conversion for a GET or PUT FILE
statement following a TRANSMIT condition.

618 Error during character value to picture conversion.

619 Error during character value to picture conversion for a GET or PUT FILE
statement.

 Chapter 11. Condition codes 177

Condition codes

620 Error during character value to picture conversion for a GET or PUT FILE
statement following a TRANSMIT condition.

621 Error in decimal P-format item for a GET STRING statement.

622 Error in decimal P-format input for a GET FILE statement.

623 Error in decimal P-format input for a GET FILE statement following a
TRANSMIT condition.

624 Error in character P-format input for a GET FILE statement.

625 Error exists in character P-format input for a GET FILE statement.

626 Error exists in character P-format input for a GET FILE statement following a
TRANSMIT condition.

627 A graphic or mixed character string encountered in a nongraphic environment.

628 A graphic or mixed character string encountered in a nongraphic environment
on input.

629 A graphic or mixed character string encountered in a nongraphic environment
on input after TRANSMIT was detected.

633 An invalid character detected in a X, BX, or GX string constant.

634 An invalid character detected in a X, BX, or GX string constant on input.

635 An invalid character detected in a X, BX, or GX string constant on input after
TRANSMIT was detected.

640 Conversion from picture contained an invalid character.

641 Conversion from picture contained an invalid character on input or output.

642 Conversion from picture contained an invalid character on input after
TRANSMIT was detected.

643 Error during processing of a graphic F-format item for a GET STRING
statement.

644 Error during processing of a graphic F-format item for a GET FILE statement.

645 Error during processing of a graphic F-format item for a GET FILE statement
following a TRANSMIT condition.

646 Error during processing of a graphic E-format item for a GET STRING
statement.

647 Error during processing of a graphic E-format item for a GET FILE statement.

648 Error during processing of a graphic E-format item for a GET FILE statement
following a TRANSMIT condition.

649 Error during processing of a graphic B-format item for a GET STRING
statement.

650 Error during processing of a graphic B-format item for a GET FILE statement.

178 Messages and Codes (OS/2 and Windows)

Condition codes

Condition codes 651 through 672
651 Error during processing of a graphic B-format item for a GET FILE statement

following TRANSMIT condition.

652 Error during graphic character value to arithmetic conversion.

653 Error during graphic character value to arithmetic conversion for a GET or PUT
FILE statement.

654 Error during graphic character value to arithmetic conversion for a GET or PUT
FILE statement following a TRANSMIT condition.

655 Error during graphic character value to bit value conversion.

656 Error during graphic character value to bit value conversion for a GET or PUT
FILE statement.

657 Error during graphic character value to bit value conversion for a GET or PUT
FILE statement following a TRANSMIT condition.

658 Error during graphic character value to picture conversion.

659 Error during graphic character value to picture conversion for a GET or PUT
FILE statement.

660 Error during graphic character value to picture conversion for a GET or PUT
FILE statement following a TRANSMIT condition.

661 Error in decimal graphic P-format item for a GET STRING statement.

662 Error in decimal graphic P-format input for a GET FILE statement.

663 Error in decimal graphic P-format input for a GET FILE statement following a
TRANSMIT condition.

664 Error in character graphic P-format input for a GET FILE statement.

665 Error exists in character graphic P-format input for a GET FILE statement.

666 Error exists in character graphic P-format input for a GET FILE statement
following a TRANSMIT condition.

667 No SBCS equivalent in the GRAPHIC conversion to character.

668 No SBCS equivalent in the GRAPHIC conversion to character on input.

669 No SBCS equivalent in the GRAPHIC conversion to character on input
following a TRANSMIT condition.

670 Unknown source attributes.

671 Unknown source attributes on input.

672 Unknown source attributes on input following a TRANSMIT condition.

673 Error during WIDECHAR value to character conversion.

674 Error during WIDECHAR value to character conversion for a GET or PUT FILE
statement.

 Chapter 11. Condition codes 179

Condition codes

675 Error during WIDECHAR value to character conversion for a GET or PUT FILE
statement following a TRANSMIT condition.

676 Error during WIDECHAR value to arithmetic conversion.

677 Error during WIDECHAR value to arithmetic conversion for a GET or PUT FILE
statement.

678 Error during WIDECHAR value to arithmetic conversion for a GET or PUT FILE
statement following a TRANSMIT condition.

679 Error during WIDECHAR value to bit value conversion.

680 Error during WIDECHAR value to bit value conversion for a GET or PUT FILE
statement.

681 Error during WIDECHAR value to bit value conversion for a GET or PUT FILE
statement following a TRANSMIT condition.

682 Error during WIDECHAR value to picture conversion.

683 Error during WIDECHAR value to picture conversion for a GET or PUT FILE
statement.

684 Error during WIDECHAR value to picture conversion for a GET or PUT FILE
statement following a TRANSMIT condition.

Condition codes 1002 through 1105
1002 GET or PUT STRING specifies data exceeding size of string.

1003 Further output prevented by TRANSMIT or KEY conditions previously raised
for the data set.

1004 Attempt to use PAGE, LINE, or SKIP <= 0 for nonprintable file.

1005 In a DISPLAY(expression) REPLY (character-reference) statement, expression
or character-reference is zero length.

1007 A REWRITE or a DELETE statement not preceded by a READ.

1008 Unrecognized field preceding the assignment symbol in a string specified in a
GET STRING DATA statement.

1009 An input/output statement specifies an operation or an option which conflicts
with the file attributes.

1010 A built-in function or pseudovariable referenced an unopened file.

1011 Data management detected an input/output error but is unable to provide any
information about its cause.

1013 Previous input operation incomplete; REWRITE or DELETE statement
specifies data which has been previously read in by a READ statement with an
EVENT option, and no corresponding WAIT has been executed.

1014 Attempt to initiate further input/output operation when number of incomplete
operations equals number specified by ENVIRONMENT option NCP(n) or by
default.

180 Messages and Codes (OS/2 and Windows)

Condition codes

1015 Event variable specified for an input/output operation when already in use.

1016 After UNDEFINEDFILE condition raised as a result of an unsuccessful attempt
to implicitly open a file, the file was found unopened on normal return from the
ON-unit.

1018 End of file or string encountered in data before end of data-list or in
edit-directed transmission format list.

1019 Attempt to close file not opened in current process.

1020 Further input/output attempted before WAIT statement executed to ensure
completion of previous READ.

1021 Attempt to access a record locked by another file in this process.

1022 Unable to extend indexed data set.

1023 Exclusive file closed while records still locked in a subtask

1024 Incorrect sequence of I/O operations on device-associated file.

1025 Insufficient virtual storage available to complete request.

1026 No position established in index data set.

1027 Record control interval already held in exclusive control.

1028 Requested record lies on an unmounted volume.

1029 Attempt to reposition in index data set failed.

1030 An error occurred during index upgrade on a index data set.

1031 Invalid sequential write attempted on index data set.

1040 A data set open for output used all available space.

1041 An attempt was made to write a record containing a record delimiter.

1042 Record in data set is not properly delimited.

1102 An error occurred in storage management. Storage to be freed was pointed to
by an invalid address.

1104 An internal error occurred in the library.

1105 Unable to create an object window.

Condition codes 1500 through 1550
1500 Computational error; short floating-point argument of SQRT built-in function is

less than zero.

1501 Computational error; long floating-point argument of SQRT built-in function is
less than zero.

1502 Computational error; extended floating-point argument of SQRT built-in function
is less than zero.

 Chapter 11. Condition codes 181

Condition codes

1503 Computational error in LOG, LOG2, or LOG10 built-in function; extended
floating-point argument is less than zero.

1504 Computational error in LOG, LOG2, or LOG10 built-in function; short
floating-point argument is less than zero.

1505 Computational error in LOG, LOG2 or LOG10 built-in function; long
floating-point argument is less than zero.

1506 Computational error in SIN, COS, SIND, or COSD built-in function; absolute
value of short floating-point argument exceeds (2**63) (SIN and COS) or
(2**63)*180 (SIND and COSD).

1507 Computational error in SIN, COS, SIND, or COSD built-in function; absolute
value of long floating-point argument exceeds (2**63) (SIN and COS) or
(2**63)*180 (SIND and COSD).

1508 Computational error; absolute value of short floating-point argument of TAN or
TAND built-in function is greater than or equal to (2**63).

1509 Computational error; absolute value of long floating-point argument of TAN or
TAND built-in function exceeds, respectively, (2**63) or (2**63)*180.

1510 Computational error; short floating-point arguments of ATAN or ATAND built-in
function both invalid.

1511 Computational error; long floating-point arguments of ATAN or ATAND built-in
function both invalid.

1514 Computational error; absolute value of short floating-point argument of ATANH
built-in function >1.

1515 Computational error; absolute value of long floating-point argument of ATANH
built-in function >1.

1516 Computational error; absolute value of extended floating-point argument of
ATANH built-in function >1.

1517 Computational error in SIN, COS, SIND, or COSD built-in function; argument of
extended floating-point argument exceeds (2**64).

1518 Computational error; absolute value of short floating-point argument of ASIN or
ACOS built-in function exceeds 1.

1519 Computational error; absolute value of long floating-point argument of ASIN or
ACOS built-in function exceeds 1.

1520 Computational error; absolute value of extended floating-point argument of
ASIN, ACOS built-in function exceeds 1.

1521 Computational error; extended floating-point arguments of ATAN or ATAND
built-in function both invalid.

1522 Computational error; absolute value of extended floating-point argument of
TAN or TAND built-in function >= (2**64) or (2**64)*180, respectively.

1523 Computational error; absolute value of real short floating-point argument of
SINH or COSH built-in function greater than 89.41.

182 Messages and Codes (OS/2 and Windows)

Condition codes

1524 Absolute value of real long floating-point argument of SINH or COSH argument
greater than or equal to 710.47.

1525 Absolute value of real extended floating-point argument of SINH or COSH
greater than or equal to 11357.22.

1526 Computational error; absolute value of real short floating-point argument of
COTAN or COTAND greater than or equal to (2**63).

1527 Computational error; absolute value of real long floating-point argument of
COTAN or COTAND greater than or equal to (2**63).

1528 Computational error; absolute value of real extended floating-point argument of
COTAN or COTAND greater than or equal to (2**64).

1529 Computational error in SIN, COS, SIND, or COSD built-in function; absolute
value of the real part of complex short floating-point argument greater than or
equal to (2**63)

1530 Computational error in SIN, COS, SIND, or COSD built-in function; absolute
value of the real part of complex long floating-point argument greater than or
equal to (2**63).

1531 Computational error in SIN, COS, SIND, or COSD built-in function; absolute
value of the real part of complex extended floating-point argument greater than
or equal to (2**64).

1550 Computational error; during exponentiation, real short floating-point base is
zero and integer exponent is not positive.

Condition codes 1551 through 1600
1551 Computational error; during exponentiation, real long floating-point base is zero

and integer exponent is not positive.

1552 Computational error; during exponentiation, real short floating-point base is
zero and the floating-point or noninteger exponent is not positive.

1553 Computational error; during exponentiation, real long floating-point base is zero
and the floating-point or noninteger exponent is not positive.

1554 Computational error; during exponentiation, complex short floating-point base is
zero and integer exponent is not positive.

1555 Computational error; during exponentiation, complex long floating-point base is
zero and integer exponent is not positive.

1556 Computational error; during exponentiation, complex short floating-point base is
zero and floating-point or noninteger exponent is not positive and real.

1557 Computational error; during exponentiation, complex long floating-point base is
zero and floating-point or noninteger exponent is not positive and real.

1558 Computational error; complex short floating-point argument of ATAN or ATAND
built-in function has value, respectively, of ±1I or ±1.

 Chapter 11. Condition codes 183

Condition codes

1559 Computational error; complex long floating-point argument of ATAN or ATAND
built-in function has value, respectively, of ±1I or ±1.

1560 Computational error; during exponentiation, real extended floating-point base is
zero and integer exponent not positive.

1561 Computational error; during exponentiation, real extended floating-point base is
zero and floating-point or noninteger exponent is not positive.

1562 Computational error; during exponentiation, complex extended floating-point
base is zero and integer exponent is not positive.

1563 Computational error; complex extended floating-point base is zero and
floating-point or nonintegral exponent is not positive.

1564 Computational error; complex extended floating-point argument of ATAN or
ATAND built-in function has value, respectively, of ±1I or ±1.

1565 Computational error; real short floating-point argument of EXP built-in function
was less than −87.33.

1566 Computational error; real long floating-point argument of EXP built-in function
was less than −708.39.

1567 Computational error; real extended floating-point argument of EXP built-in
function was less than −11355.13.

1568 Computational error EXP built-in function; absolute value of the imaginary part
of the complex short floating-point argument is greater than or equal to (2**63).

1569 Computational error EXP built-in function; absolute value of the imaginary part
of the complex long floating-point argument is greater than or equal to (2**63).

1570 Computational error EXP built-in function; absolute value of the imaginary part
of the complex extended floating-point argument is greater than or equal to
(2**64).

1571 Computational error GAMMA or LOGGAMMA built-in function; real short
floating point argument is greater than 35.04 (GAMMA) or 4.085E+36
(LOGGAMMA).

1572 Computational error GAMMA or LOGGAMMA built-in function; real long floating
point argument is greater than 171.62 (GAMMA) or 2.559E+305
(LOGGAMMA).

1573 Computational error GAMMA or LOGGAMMA built-in function; real extended
floating point argument is greater than 1755.54 (GAMMA) or 1.048E+4928
(LOGGAMMA).

1574 Computational error TANH built-in function; absolute value of the imaginary
part of the complex short floating-point argument is greater than or equal to
(2**63).

1575 Computational error TANH built-in function; absolute value of the imaginary
part of the complex long floating-point argument is greater than or equal to
(2**63).

184 Messages and Codes (OS/2 and Windows)

Condition codes

1576 Computational error TANH built-in function; absolute value of the imaginary
part of the complex extended floating-point argument is greater than or equal
to (2**64).

1577 Computational error in LOG, LOG2, or LOG10 built-in function; real short
floating-point argument equal to plus or minus zero.

1578 Computational error in LOG, LOG2, or LOG10 built-in function; real long
floating-point argument equal to plus or minus zero.

1579 Computational error in LOG, LOG2, or LOG10 built-in function; real extended
floating-point argument equal to plus zero.

1600 Computational error in EXP built-in function; for complex long floating-point
arguments, the real argument was not plus or minus infinity, and the imaginary
argument was not zero.

Condition codes 1601 through 1650
1601 Computational error in EXP built-in function; for complex extended

floating-point arguments, the real argument was not plus or minus infinity, and
the imaginary argument was not zero.

1602 Computational error; real part of the complex short floating-point argument for
the EXP built-in function was not a valid IEEE number.

1603 Computational error; real part of the complex long floating-point argument for
the EXP built-in function was not a valid IEEE number.

1604 Computational error; real part of the complex extended floating-point argument
for the EXP built-in function was not a valid IEEE number.

1605 Computational error; imaginary part of the complex short floating-point
argument for the EXP built-in function was not a valid IEEE number.

1606 Computational error; imaginary part of the complex long floating-point
argument for the EXP built-in function was not a valid IEEE number.

1607 Computational error; imaginary part of the complex extended floating-point
argument for the EXP built-in function was not a valid IEEE number.

1608 Computational error; both parts of the complex short floating-point argument for
the EXP built-in function were not valid IEEE numbers.

1609 Computational error; both parts of the complex long floating-point argument for
the EXP built-in function were not valid IEEE numbers.

1610 Computational error; both parts of the complex extended floating-point
argument for the EXP built-in function were not valid IEEE numbers.

1611 Computational error; real short floating-point argument for EXP built-in function
greater than or equal to 88.73.

1612 Computational error; real long floating-point argument for EXP built-in function
greater than or equal to 709.79.

 Chapter 11. Condition codes 185

Condition codes

1613 Computational error; real extended floating-point argument for EXP built-in
function greater than or equal to 11356.53.

1614 Computational error; real short floating-point argument for EXP built-in function
is not a valid IEEE number.

1615 Computational error; real long floating-point argument for EXP built-in function
is not a valid IEEE number.

1616 Computational error; real extended floating-point argument for EXP built-in
function is not a valid IEEE number.

1617 Computational error in LOG built-in function; for complex short floating-point
arguments, the real argument was not plus or minus infinity, and the imaginary
argument was not zero.

1618 Computational error in LOG built-in function; for complex long floating-point
arguments, the real argument was not plus or minus infinity, and the imaginary
argument was not zero.

1619 Computational error in LOG, LOG2, or LOG10 built-in function; for complex
extended floating-point arguments, the real argument was not plus or minus
infinity, and the imaginary argument was not zero.

1620 Computational error in LOG, LOG2, or LOG10 built-in function; real part of
complex short floating-point argument was not a valid IEEE number.

1621 Computational error in LOG, LOG2, or LOG10 built-in function; real part of
complex long floating-point argument was not a valid IEEE number.

1622 Computational error in LOG, LOG2, or LOG10 built-in function; real part of
complex extended floating-point argument was not a valid IEEE number.

1623 Computational error in LOG, LOG2, or LOG10 built-in function; imaginary part
of complex short floating-point argument was not a valid IEEE number.

1624 Computational error in LOG, LOG2, or LOG10 built-in function; imaginary part
of complex long floating-point argument was not a valid IEEE number.

1625 Computational error in LOG, LOG2, or LOG10 built-in function; imaginary part
of complex extended floating-point argument was not a valid IEEE number.

1626 Computational error in LOG, LOG2, or LOG10 built-in function; both parts of
complex short floating-point argument were not valid IEEE numbers.

1627 Computational error in LOG, LOG2, or LOG10 built-in function; both parts of
complex long floating-point argument were not valid IEEE numbers.

1628 Computational error in LOG, LOG2, or LOG10 built-in function; both parts of
complex extended floating-point argument were not valid IEEE numbers.

1629 Computational error in LOG, LOG2, or LOG10 built-in function; real short
floating-point argument is not a valid IEEE number.

1630 Computational error in LOG, LOG2, or LOG10 built-in function; real long
floating-point argument is not a valid IEEE number.

186 Messages and Codes (OS/2 and Windows)

Condition codes

1631 Computational error in LOG, LOG2, or LOG10 built-in function; real extended
floating-point argument is not a valid IEEE number.

1650 Computational error; during exponentiation, real long floating-point base is plus
or minus infinity, and real long floating-point exponent is zero.

Condition codes 1651 through 1700
1651 Computational error; during exponentiation, real extended floating-point base is

plus or minus infinity, and real extended floating-point exponent is zero.

1652 Computational error; during exponentiation for a real short floating-point base
with a real short floating-point exponent, the first argument was not a valid
IEEE number.

1653 Computational error; during exponentiation for a real long floating-point base
with a real long floating-point exponent, the first argument was not a valid IEEE
number.

1654 Computational error; during exponentiation for a real extended floating-point
base with a real extended floating-point exponent, the first argument was not a
valid IEEE number.

1655 Computational error; during exponentiation for a real short floating-point base
with a real short floating-point exponent, the second argument was not a valid
IEEE number.

1656 Computational error; during exponentiation for a real long floating-point base
with a real long floating-point exponent, the second argument was not a valid
IEEE number.

1657 Computational error; during exponentiation for a real extended floating-point
base with a real extended floating-point exponent, the second argument was
not a valid IEEE number.

1658 Computational error; during exponentiation for a real short floating-point base
with a real short floating-point exponent, both arguments were not valid IEEE
numbers.

1659 Computational error; during exponentiation for a real long floating-point base
with a real long floating-point exponent both arguments were not valid IEEE
numbers.

1660 Computational error; during exponentiation for a real extended floating-point
base with a real extended floating-point exponent, both arguments were not
valid IEEE numbers.

1661 Computational error; during exponentiation for complex short floating-point
base with integer value exponent, an argument plus or minus infinity is
specified.

1662 Computational error; during exponentiation for complex long floating-point base
with integer value exponent, an argument plus or minus infinity is specified.

 Chapter 11. Condition codes 187

Condition codes

1663 Computational error; during exponentiation for complex extended floating-point
base with integer value exponent, an argument plus or minus infinity is
specified.

1664 Computational error; during exponentiation for complex short floating-point
base with integer value exponent, the real part of the complex argument is not
a valid IEEE number.

1665 Computational error; during exponentiation for complex long floating-point base
with integer value exponent, the real part of the complex argument is not a
valid IEEE number.

1666 Computational error; during exponentiation for complex extended floating-point
base with integer value exponent, the real part of the complex argument is not
a valid IEEE number.

1667 Computational error; during exponentiation for complex short floating-point
base with integer value exponent, the imaginary part of the complex argument
is not a valid IEEE number.

1668 Computational error; during exponentiation for complex long floating-point base
with integer value exponent, the imaginary part of the complex argument is not
a valid IEEE number.

1669 Computational error; during exponentiation for complex extended floating-point
base with integer value exponent, the imaginary part of the complex argument
is not a valid IEEE number.

1670 Computational error; during exponentiation for complex short floating-point
base with integer value exponent, both parts of the complex argument are not
valid IEEE numbers.

1671 Computational error; during exponentiation for complex long floating-point base
with integer value exponent, both parts of the complex argument are not valid
IEEE numbers.

1672 Computational error; during exponentiation for complex extended floating-point
base with integer value exponent, both parts of the complex argument are not
valid IEEE numbers.

1673 Computational error; during exponentiation, integer base is zero and integer
exponent is not positive.

1674 Computational error; during exponentiation, integer base is not plus or minus 1
and integer exponent is not positive.

1675 Computational error; during exponentiation, real short floating-point base was
plus or minus infinity and integer exponent is equal to plus or minus zero.

1676 Computational error; during exponentiation, real long floating-point base was
plus or minus infinity and integer exponent is equal to plus or minus zero.

1677 Computational error; during exponentiation, real extended floating-point base
was plus or minus infinity and integer exponent is equal to plus or minus zero.

188 Messages and Codes (OS/2 and Windows)

Condition codes

1678 Computational error; during exponentiation for a real short floating-point base
with an integer exponent, the first argument was not a valid IEEE number.

1679 Computational error; during exponentiation for a real long floating-point base
with an integer exponent, the first argument was not a valid IEEE number.

1680 Computational error; during exponentiation for a real extended floating-point
base with an integer exponent, the first argument was not a valid IEEE
number.

1681 Computational error in the EXP built-in function; for complex short floating-point
arguments, the real argument was not plus or minus infinity, and the imaginary
argument was not zero.

1700 Computational error; during exponentiation for a complex long floating-point
base with a complex long floating-point exponent, imaginary parts of both
complex arguments are not valid IEEE numbers.

Condition codes 1701 through 1750
1701 Computational error; during exponentiation for a complex extended

floating-point base with a complex extended floating-point exponent, imaginary
parts of both complex arguments are not valid IEEE numbers.

1702 Computational error; during exponentiation for a complex short floating-point
base with a complex short floating-point exponent, real part of first complex
argument and imaginary part of second complex argument are not valid IEEE
numbers.

1703 Computational error; during exponentiation for a complex long floating-point
base with a complex long floating-point exponent, real part of first complex
argument and imaginary part of second complex argument are not valid IEEE
numbers.

1704 Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent, real part
of first complex argument and imaginary part of second complex argument are
not valid IEEE numbers.

1705 Computational error; during exponentiation for a complex short floating-point
base with a complex short floating-point exponent, imaginary part of first
complex argument and real part of second complex argument are not valid
IEEE numbers.

1706 Computational error; during exponentiation for a complex long floating-point
base with a complex long floating-point exponent, imaginary part of first
complex argument and real part of second complex argument are not valid
IEEE numbers.

1707 Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent, imaginary
part of first complex argument and real part of second complex argument are
not valid IEEE numbers.

 Chapter 11. Condition codes 189

Condition codes

1708 Computational error; during exponentiation for a complex short floating-point
base with a complex short floating-point exponent, real part of first complex
argument was the only valid IEEE number.

1709 Computational error; during exponentiation for a complex long floating-point
base with a complex long floating-point exponent, real part of first complex
argument was the only valid IEEE number.

1710 Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent, real part
of first complex argument was the only valid IEEE number.

1711 Computational error; during exponentiation for a complex short floating-point
base with a complex short floating-point exponent, imaginary part of first
complex argument was the only valid IEEE number.

1712 Computational error; during exponentiation for a complex long floating-point
base with a complex long floating-point exponent, imaginary part of first
complex argument was the only valid IEEE number.

1713 Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent, imaginary
part of first complex argument was the only valid IEEE number.

1714 Computational error; during exponentiation for a complex short floating-point
base with a complex short floating-point exponent, real part of second complex
argument was the only valid IEEE number.

1715 Computational error; during exponentiation for a complex long floating-point
base with a complex long floating-point exponent, real part of second complex
argument was the only valid IEEE number.

1716 Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent, real part
of second complex argument was the only valid IEEE number.

1717 Computational error; during exponentiation for a complex short floating-point
base with a complex short floating-point exponent, imaginary part of second
complex argument was the only valid IEEE number.

1718 Computational error; during exponentiation for a complex long floating-point
base with a complex long floating-point exponent, imaginary part of second
complex argument was the only valid IEEE number.

1719 Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent, imaginary
part of second complex argument was the only valid IEEE number.

1720 Computational error; during exponentiation for a complex short floating-point
base with a complex short floating-point exponent, both parts of both complex
arguments were not valid IEEE numbers.

1721 Computational error; during exponentiation for a complex long floating-point
base with a complex long floating-point exponent, both parts of both complex
arguments were not valid IEEE numbers.

190 Messages and Codes (OS/2 and Windows)

Condition codes

1722 Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent, both parts
of both complex arguments were not valid IEEE numbers.

1723 Computational error; during exponentiation, real short floating-point base plus
or minus infinity and real short floating-point exponent is an invalid 32-bit
integer.

1724 Computational error; during exponentiation, real long floating-point base is plus
or minus infinity and real long floating-point exponent is an invalid 32-bit
integer.

1725 Computational error; during exponentiation, real extended floating-point base
plus or minus infinity and real extended floating-point exponent is an invalid
32-bit integer.

1726 Computational error; during exponentiation, real short floating-point base plus 1
and real short floating-point exponent is plus or minus infinity.

1727 Computational error; during exponentiation, real long floating-point base is +1
and real long floating-point exponent is plus or minus infinity.

1728 Computational error; during exponentiation, real extended floating-point base is
+1 and real extended floating-point exponent is plus or minus infinity.

1729 Computational error; during exponentiation, real short floating-point base is
zero and real short floating-point exponent is not positive or zero.

1730 Computational error; during exponentiation, real long floating-point base is zero
and real long floating-point exponent is not positive or zero.

1731 Computational error; during exponentiation, real short floating-point base plus
or minus infinity and real short floating-point exponent is zero.

1750 Computational error; the first real short floating-point argument for SCALE was
not a valid IEEE number.

Condition codes 1751 through 1800
1751 Computational error; the real short floating-point argument for ASIN(X) or

ACOS(X) was not a valid IEEE number.

1752 Computational error; the real long floating-point argument for ASIN(X) or
ACOS(X) was not a valid IEEE number.

1753 Computational error; the real extended floating-point argument for ASIN(X) or
ACOS(X) was not a valid IEEE number.

1754 Computational error; during exponentiation for a complex short floating-point
base with a complex short floating-point exponent, an argument exceeded the
limit.

1755 Computational error; during exponentiation for a complex long floating-point
base with a complex long floating-point exponent, an argument exceeded the
limit.

 Chapter 11. Condition codes 191

Condition codes

1756 Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent, an
argument exceeded the limit.

1757 Computational error; during exponentiation for a complex short floating-point
base with a complex short floating-point exponent, plus or minus infinity was
specified as an argument.

1758 Computational error; during exponentiation for a complex long floating-point
base with a complex long floating-point exponent, plus or minus infinity was
specified as an argument.

1759 Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent, plus or
minus infinity was specified as an argument.

1760 Computational error; during exponentiation for a complex short floating-point
base with a complex short floating-point exponent, the real part of the first
complex argument is not a valid IEEE number.

1761 Computational error; during exponentiation for a complex long floating-point
base with a complex long floating-point exponent, the real part of the first
complex argument is not a valid IEEE number.

1762 Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent, the real
part of the first complex argument is not a valid IEEE number.

1763 Computational error; during exponentiation for a complex short floating-point
base with a complex short floating-point exponent, the real part of the second
complex argument is not a valid IEEE number.

1764 Computational error; during exponentiation for a complex long floating-point
base with a complex long floating-point exponent, the real part of the second
complex argument is not a valid IEEE number.

1765 Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent, the real
part of the second complex argument is not a valid IEEE number.

1766 Computational error; during exponentiation for a complex short floating-point
base with a complex short floating-point exponent, the imaginary part of the
first complex argument is not a valid IEEE number.

1767 Computational error; during exponentiation for a complex long floating-point
base with a complex long floating-point exponent, the imaginary part of the first
complex argument is not a valid IEEE number.

1768 Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent, the
imaginary part of the first complex argument is not a valid IEEE number.

1769 Computational error; during exponentiation for a complex short floating-point
base with a complex short floating-point exponent, the imaginary part of the
second complex argument is not a valid IEEE number.

192 Messages and Codes (OS/2 and Windows)

Condition codes

1770 Computational error; during exponentiation for a complex long floating-point
base with a complex long floating-point exponent, the imaginary part of the
second complex argument is not a valid IEEE number.

1771 Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent, the
imaginary part of the second complex argument is not a valid IEEE number.

1772 Computational error; during exponentiation for a complex short floating-point
base with a complex short floating-point exponent, both parts of the first
complex argument are not valid IEEE numbers.

1773 Computational error; during exponentiation for a complex long floating-point
base with a complex long floating-point exponent, both parts of the first
complex argument are not valid IEEE numbers.

1774 Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent, both parts
of the first complex argument are not valid IEEE numbers.

1775 Computational error; during exponentiation for a complex short floating-point
base with a complex short floating-point exponent, both parts of the second
complex argument are not valid IEEE numbers.

1776 Computational error; during exponentiation for a complex long floating-point
base with a complex long floating-point exponent, both parts of the second
complex argument are not valid IEEE numbers.

1777 Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent, both parts
of the second complex argument are not valid IEEE numbers.

1778 Computational error; during exponentiation for a complex short floating-point
base with a complex short floating-point exponent, real parts of both complex
arguments are not valid IEEE numbers.

1779 Computational error; during exponentiation for a complex long floating-point
base with a complex long floating-point exponent, real parts of both complex
arguments are not valid IEEE numbers.

1780 Computational error; during exponentiation for a complex extended
floating-point base with a complex extended floating-point exponent, real parts
of both complex arguments are not valid IEEE numbers.

1781 Computational error; during exponentiation for a complex short floating-point
base with a complex short floating-point exponent, imaginary parts of both
complex arguments are not valid IEEE numbers.

1800 Computational error in SIN, COS, SIND, or COSD built-in function; for complex
extended floating-point argument both parts of the argument are not valid IEEE
numbers.

 Chapter 11. Condition codes 193

Condition codes

Condition codes 1801 through 1850
1801 Computational error in SIN, COS, SIND, or COSD built-in function; absolute

value of real short floating-point argument is not a valid IEEE number.

1802 Computational error in SIN, COS, SIND, or COSD built-in function; absolute
value of real long floating-point argument is not a valid IEEE number.

1803 Computational error in SIN, COS, SIND, or COSD built-in function; absolute
value of real extended floating-point argument is not a valid IEEE number.

1804 The calculated result of real extended floating-point arguments for TANH
overflowed the output field.

1808 Computational error; for real short floating-point arguments of ATAN or ATAND
built-in function, the first argument was not a valid IEEE number.

1809 Computational error; for real long floating-point arguments of ATAN or ATAND
built-in function, the first argument was not a valid IEEE number.

1810 Computational error; for real extended floating-point argument of ATAN or
ATAND built-in function, the first argument was not a valid IEEE number.

1811 Computational error; for real short floating-point arguments of ATAN or ATAND
built-in function, the second argument was not a valid IEEE number.

1812 Computational error; for real long floating-point arguments of ATAN or ATAND
built-in function, the second argument was not a valid IEEE number.

1813 Computational error; for real extended floating-point argument of ATAN or
ATAND built-in function, the second argument was not a valid IEEE number.

1814 Computational error; both real short floating-point arguments of ATAN or
ATAND built-in function were not valid IEEE numbers.

1815 Computational error; both real long floating-point arguments of ATAN or
ATAND built-in function were not valid IEEE numbers.

1816 Computational error; both real extended floating-point arguments of ATAN or
ATAND built-in function were not valid IEEE numbers.

1817 Computational error; complex short floating-point argument of ATAN or ATAND
built-in function does not have value of (plus infinity, 0i) or (minus infinity, 0i).

1818 Computational error; complex long floating-point argument of ATAN or ATAND
built-in function does not have value of (plus infinity, 0i) or (minus infinity, 0i).

1819 Computational error; complex extended floating-point argument of ATAN or
ATAND built-in function does not have value of (plus infinity, 0i) or (minus
infinity, 0i).

1820 Computational error; real part of complex short floating-point argument of
ATAN or ATAND built-in function is not a valid IEEE number.

1821 Computational error; real part of complex long floating-point argument of ATAN
or ATAND built-in function is not a valid IEEE number.

194 Messages and Codes (OS/2 and Windows)

Condition codes

1822 Computational error; real part of complex extended floating-point argument of
ATAN or ATAND built-in function is not a valid IEEE number.

1823 Computational error; imaginary part of complex short floating-point argument of
ATAN or ATAND built-in function is not a valid IEEE number.

1824 Computational error; imaginary part of complex long floating-point argument of
ATAN or ATAND built-in function is not a valid IEEE number.

1825 Computational error; imaginary part of complex extended floating-point
argument of ATAN or ATAND built-in function is not a valid IEEE number.

1826 Computational error; both parts of complex short floating-point argument of
ATAN or ATAND built-in function were not valid IEEE numbers.

1827 Computational error; both parts of complex long floating-point argument of
ATAN or ATAND built-in function were not valid IEEE numbers.

1828 Computational error; both parts of complex extended floating-point argument of
ATAN or ATAND built-in function were not valid IEEE numbers.

1829 Computational error; the real short floating-point argument of ATAN(X) or
ATAND(X) built-in function was not a valid IEEE number.

1830 Computational error; the real long floating-point argument of ATAN(X) or
ATAND(X) built-in function was not a valid IEEE number.

1831 Computational error; the real extended floating-point argument of ATAN(X) or
ATAND(X) built-in function was not a valid IEEE number.

1850 Computational error; real short floating-point argument of COTAN or COTAND
was not a valid IEEE number.

Condition codes 1851 through 1900
1851 Computational error; real long floating-point argument of COTAN or COTAND

was not a valid IEEE number.

1852 Computational error; real extended floating-point argument of COTAN or
COTAND was not a valid IEEE number.

1853 Computational error in TAN or TAND; for complex short floating-point
argument, absolute value of the real part of argument greater than or equal to
(2**63).

1854 Computational error in TAN or TAND; for complex long floating-point argument,
absolute value of the real part of argument greater than or equal to (2**63).

1855 Computational error in TAN or TAND; for complex extended floating-point
argument, absolute value of the real part of argument greater than or equal to
(2**64).

1856 Computational error in TAN or TAND; for complex short floating-point argument
both parts of the argument were plus or minus infinity.

1857 Computational error in TAN or TAND; for complex long floating-point argument
both parts of the argument were plus or minus infinity.

 Chapter 11. Condition codes 195

Condition codes

1858 Computational error in TAN or TAND; for complex extended floating-point
argument both parts of the argument were plus or minus infinity.

1859 Computational error in TAN or TAND; for complex short floating-point argument
real part of argument not a valid IEEE number.

1860 Computational error in TAN or TAND; for complex long floating-point argument
real part of argument not a valid IEEE number.

1861 Computational error in TAN or TAND; for complex extended floating-point
argument real part of argument not a valid IEEE number.

1862 Computational error in TAN or TAND; for complex short floating-point argument
imaginary part of argument not a valid IEEE number.

1863 Computational error in TAN or TAND; for complex long floating-point argument
imaginary part of argument not a valid IEEE number.

1864 Computational error in TAN or TAND; for complex extended floating-point
argument imaginary part of argument not a valid IEEE number.

1865 Computational error in TAN or TAND; for complex short floating-point argument
both parts of the argument were not valid IEEE numbers.

1866 Computational error in TAN or TAND; for complex long floating-point argument
both parts of the argument were not valid IEEE numbers.

1867 Computational error in TAN or TAND; for complex extended floating-point
argument both parts of the argument were not valid IEEE numbers.

1868 Computational error in TAN or TAND; real short floating-point argument not a
valid IEEE number.

1869 Computational error in TAN or TAND; real long floating-point argument not a
valid IEEE number.

1870 Computational error in TAN or TAND; real extended floating-point argument
not a valid IEEE number.

1871 Computational error in SIN, COS, SIND, or COSD built-in function; for complex
short floating-point argument both parts of the argument were plus or minus
infinity.

1872 Computational error in SIN, COS, SIND, or COSD built-in function; for complex
long floating-point argument both parts of the argument were plus or minus
infinity.

1873 Computational error in SIN, COS, SIND, or COSD built-in function; for complex
extended floating-point argument both parts of the argument were plus or
minus infinity.

1874 Computational error in SIN, COS, SIND, or COSD built-in function; for complex
short floating-point argument the real part of the argument was not a valid
IEEE number.

1875 Computational error in SIN, COS, SIND, or COSD built-in function; for complex
long floating-point argument the real part of the argument was not a valid IEEE
number.

196 Messages and Codes (OS/2 and Windows)

Condition codes

1876 Computational error in SIN, COS, SIND, or COSD built-in function; for complex
extended floating-point argument the real part of the argument was not a valid
IEEE number.

1877 Computational error in SIN, COS, SIND, or COSD built-in function; for complex
short floating-point argument the imaginary part of the argument was not a
valid IEEE number.

1878 Computational error in SIN, COS, SIND, or COSD built-in function; for complex
long floating-point argument the imaginary part of the argument was not a valid
IEEE number.

1879 Computational error in SIN, COS, SIND, or COSD built-in function; for complex
extended floating-point argument the imaginary part of the argument was not a
valid IEEE number.

1880 Computational error in SIN, COS, SIND, or COSD built-in function; for complex
short floating-point argument both parts of the argument were not valid IEEE
numbers.

1881 Computational error in SIN, COS, SIND, or COSD built-in function; for complex
long floating-point argument both parts of the argument were not valid IEEE
numbers.

1900 Computational error in TANH; for complex long floating-point argument the real
part of the argument was not equal to plus or minus infinity, and the imaginary
part of the argument was not zero.

Condition codes 1901 through 1950
1901 Computational error in TANH; for complex extended floating-point argument

the real part of the argument was not equal to plus or minus infinity, and the
imaginary part of the argument was not zero.

1902 Computational error in TANH; for complex short floating-point argument real
part of argument not a valid IEEE number.

1903 Computational error in TANH; for complex long floating-point argument real
part of argument not a valid IEEE number.

1904 Computational error in TANH; for complex extended floating-point argument
real part of argument not a valid IEEE number.

1905 Computational error in TANH; for complex short floating-point argument the
imaginary part of the argument was not a valid IEEE number.

1906 Computational error in TANH; for complex long floating-point argument the
imaginary part of the argument was not a valid IEEE number.

1907 Computational error in TANH; for complex extended floating-point argument
the imaginary part of the argument was not a valid IEEE number.

1908 Computational error in TANH; for complex short floating-point argument both
parts of the argument were not valid IEEE numbers.

 Chapter 11. Condition codes 197

Condition codes

1909 Computational error in TANH; for complex long floating-point argument both
parts of the argument were not valid IEEE numbers.

1910 Computational error in TANH; for complex extended floating-point argument
both parts of the argument were not valid IEEE numbers.

1911 Computational error; real short floating-point argument of TANH built-in
function not a valid IEEE number.

1912 Computational error; real long floating-point argument of TANH built-in function
not a valid IEEE number.

1913 Computational error; real extended floating-point argument of TANH built-in
function not a valid IEEE number.

1914 Computational error; absolute value of imaginary part of complex short
floating-point argument of SINH or COSH built-in function was greater than or
equal to (2**63).

1915 Computational error; absolute value of the imaginary part of complex long
floating-point argument of SINH or COSH built-in function was greater than or
equal to (2**63).

1916 Computational error; absolute value of the imaginary part of complex extended
floating-point argument of SINH or COSH built-in function was greater than or
equal to (2**64).

1917 Computational error; for complex short floating-point argument of SINH or
COSH built-in function real argument was not plus or minus infinity and
imaginary argument was not zero.

1918 Computational error; for complex long floating-point argument of SINH or
COSH built-in function real argument was not plus or minus infinity and
imaginary argument was not zero.

1919 Computational error; for complex extended floating-point argument of SINH or
COSH built-in function real argument was not plus or minus infinity and
imaginary argument was not zero.

1920 Computational error; for complex short floating-point argument of SINH or
COSH built-in function real part of argument not valid IEEE number.

1921 Computational error; for complex long floating-point argument of SINH or
COSH built-in function real part of argument not valid IEEE number.

1922 Computational error; for complex extended floating-point argument of SINH or
COSH built-in function real part of argument not valid IEEE number.

1923 Computational error; for complex short floating-point argument of SINH or
COSH built-in function imaginary part of argument not valid IEEE number.

1924 Computational error; for complex long floating-point argument of SINH or
COSH built-in function imaginary part of argument not valid IEEE number.

1925 Computational error; for complex extended floating-point argument of SINH or
COSH built-in function imaginary part of argument not valid IEEE number.

198 Messages and Codes (OS/2 and Windows)

Condition codes

1926 Computational error; for complex short floating-point argument of SINH or
COSH built-in function both parts of argument not valid IEEE numbers.

1927 Computational error; for complex long floating-point argument of SINH or
COSH built-in function both parts of argument not valid IEEE numbers.

1928 Computational error; for complex extended floating-point argument of SINH or
COSH built-in function both parts of argument not valid IEEE numbers.

1929 Computational error; real short floating-point argument of SINH or COSH
built-in function was not a valid IEEE number.

1930 Computational error; real long floating-point argument of SINH or COSH built-in
function was not a valid IEEE number.

1931 Computational error; real extended floating-point argument of SINH or COSH
built-in function was not a valid IEEE number.

1950 Computational error in SQRT; for complex extended floating-point argument
real part was not equal to plus or minus infinity, and imaginary part was not
equal to zero.

Condition codes 1951 through 2000
1951 Computational error in SQRT; real part of complex short floating-point

argument was not a valid IEEE number.

1952 Computational error in SQRT; real part of complex long floating-point argument
was not a valid IEEE number.

1953 Computational error in SQRT; real part of complex extended floating-point
argument was not a valid IEEE number.

1954 Computational error in SQRT; imaginary part of complex short floating-point
argument was not a valid IEEE number.

1955 Computational error in SQRT; imaginary part of complex long floating-point
argument was not a valid IEEE number.

1956 Computational error in SQRT; imaginary part of complex extended
floating-point argument was not a valid IEEE number.

1957 Computational error in SQRT; both parts of complex short floating-point
argument were not valid IEEE numbers.

1958 Computational error in SQRT; both parts of complex long floating-point
argument were not valid IEEE numbers.

1959 Computational error in SQRT; both parts of complex extended floating-point
argument were not valid IEEE numbers.

1960 Computational error in SQRT; real short floating-point argument is equal to
minus zero.

1961 Computational error in SQRT; real long floating-point argument is equal to
minus zero.

 Chapter 11. Condition codes 199

Condition codes

1962 Computational error in SQRT; real extended floating-point argument is equal to
minus zero.

1963 Computational error in SQRT; real short floating-point argument was not a
valid IEEE number.

1964 Computational error in SQRT; real long floating-point argument was not a valid
IEEE number.

1965 Computational error in SQRT; real extended floating-point argument was not a
valid IEEE number.

1966 Computational error; complex short floating-point argument of ATANH included
plus or minus infinity.

1967 Computational error; complex long floating-point argument of ATANH included
plus or minus infinity.

1968 Computational error; complex extended floating-point argument of ATANH
included plus or minus infinity.

1969 Computational error; real part of complex short floating-point argument of
ATANH was not a valid IEEE number.

1970 Computational error; real part of complex long floating-point argument of
ATANH was not a valid IEEE number.

1971 Computational error; real part of complex extended floating-point argument of
ATANH was not a valid IEEE number.

1972 Computational error; imaginary part of complex short floating-point argument of
ATANH was not a valid IEEE number.

1973 Computational error; imaginary part of complex long floating-point argument of
ATANH was not a valid IEEE number.

1974 Computational error; imaginary part of complex extended floating-point
argument of ATANH was not a valid IEEE number.

1975 Computational error; both parts of complex short floating-point argument of
ATANH were not valid IEEE numbers.

1976 Computational error; both parts of complex long floating-point argument of
ATANH were not valid IEEE numbers.

1977 Computational error; both parts of complex extended floating-point argument of
ATANH were not valid IEEE numbers.

1978 Computational error; floating-point argument of ATANH was not a valid IEEE
number.

1979 Computational error; long floating-point argument of ATANH was not a valid
IEEE number.

1980 Computational error; extended floating-point argument of ATANH was not a
valid IEEE number.

200 Messages and Codes (OS/2 and Windows)

Condition codes

1981 Computational error in TANH; for complex short floating-point argument the
real part of the argument was not equal to plus or minus infinity, and the
imaginary part of the argument was not zero.

Condition codes 2002 through 2150
2002 WAIT statement cannot be executed because of restricted system facility.

2101 Greenwich mean time was not available for the RANDOM built-in function.

2102 An invalid seed value was detected in the RANDOM built-in function. The
random number was set to -1.

2103 Local time was unavailable.

2104 The value of y in the SECSTODATE, DAYS, DAYSTODATE, or DATETIME
built-in function contained an invalid picture string specification.

2105 The value of x in the DAYS built-in function contained an invalid day value; the
valid range is 15 October 1582 to 31 December 9999.

2106 The value of x in the DAYS built-in function contained an invalid month value;
the valid range is October 1582 to December 9999.

2107 The value of x in the DAYS built-in function contained an invalid year value;
the valid range is 1582 to 9999.

2108 The value of x in the DAYSTODATE built-in function was outside the
supported range; the valid range is from 1 to 3,074,324.

2109 The value of x in the SECSTODATE built-in function was outside the
supported range; the valid range is from 86,400 to 265,621,679,999.999.

2110 The value of x in the DAYSTODATE built-in function could not be converted to
a valid Japanese or Republic of China Era.

2111 The difference between the current local time and the Greenwich Mean Time
was unavailable.

2112 The value of x in the SECS or DAYS built-in function was outside the
supported range; the valid range is from 15 October 1582 to 31 December
9999.

2113 The value of x in the SECS built-in function contained an invalid seconds
value; the valid range is from 0 to 59.

2114 The value of x in the SECS built-in function contained an invalid minutes value;
the valid range is from 0 to 59.

2115 The value of x in the SECS built-in function contained an invalid hour value;
the valid range is from 0 to 23 or from 0 to 12 (if the AP field is present).

2116 The value of x in the DAYS built-in function did not match the given picture
specification.

2117 The value of x in the SECS built-in function did not match the given picture
specification.

 Chapter 11. Condition codes 201

Condition codes

2118 The date string returned by the DAYSTODATE built-in function was truncated.

2119 The timestamp returned by the DATETIME or SECSTODATE built-in function
was truncated.

2120 The value of x in the SECSTODATE or DATETIME built-in function contained
an invalid value for the number of seconds with the range of supported
Japanese or Republic of China Eras.

2121 Insufficient data was passed to the DAYS or SECS built-in function; the picture
string did not contain enough information.

2122 The value of x in the SECS or DAYS built-in function contained an invalid Era
name.

2150 Computational error; in MOD(x,y) built-in function the second argument was
equal to zero.

Condition codes 2151 through 2200
2151 Computational error in ABS built-in function; real part of complex short

floating-point argument was not a valid IEEE number.

2152 Computational error in ABS built-in function; real part of complex long
floating-point argument was not a valid IEEE number.

2153 Computational error in ABS built-in function; real part of complex extended
floating-point argument was not a valid IEEE number.

2154 Computational error in ABS built-in function; imaginary part of complex short
floating-point argument was not a valid IEEE number.

2155 Computational error in ABS built-in function; imaginary part of complex long
floating-point argument was not a valid IEEE number.

2156 Computational error in ABS built-in function; imaginary part of complex
extended floating-point argument was not a valid IEEE number.

2157 Computational error in ABS built-in function; both parts of complex short
floating-point argument were not valid IEEE numbers.

2158 Computational error in ABS built-in function; both parts of complex long
floating-point argument were not valid IEEE numbers.

2159 Computational error in ABS built-in function; both parts of complex extended
floating-point argument were not valid IEEE numbers.

2160 Computational error in ABS built-in function; integer argument is equal to
(−2**31).

2161 Computational error in ABS built-in function; real short floating-point argument
was not a valid IEEE number.

2162 Computational error in ABS built-in function; real long floating-point argument
was not a valid IEEE number.

202 Messages and Codes (OS/2 and Windows)

Condition codes

2163 Computational error in ABS built-in function; real extended floating-point
argument was not a valid IEEE number.

2164 Computational error GAMMA or LOGGAMMA built-in function; real extended
floating point argument is less than zero.

2165 Computational error GAMMA or LOGGAMMA built-in function; real short
floating point argument is less than or equal to zero.

2166 Computational error GAMMA or LOGGAMMA built-in function; real long floating
point argument is less than or equal to zero.

2167 Computational error GAMMA or LOGGAMMA built-in function; real extended
floating point argument is equal to zero.

2168 Computational error GAMMA or LOGGAMMA built-in function; real short
floating point argument is not a valid IEEE number.

2169 Computational error GAMMA or LOGGAMMA built-in function; real long floating
point argument is not a valid IEEE number.

2170 Computational error GAMMA or LOGGAMMA built-in function; real extended
floating point argument is not a valid IEEE number.

2171 Computational error in ERFC built-in function; real short floating-point argument
was greater than 9.19.

2172 Computational error in ERFC built-in function; real long floating-point argument
was greater than 26.54.

2173 Computational error in ERFC built-in function; real extended floating-point
argument was greater than 106.53.

2174 Computational error in ERFC built-in function; real short floating-point argument
was not a valid IEEE number.

2175 Computational error in ERFC built-in function; real long floating-point argument
was not a valid IEEE number.

2176 Computational error in ERFC built-in function; real extended floating-point
argument was not a valid IEEE number.

2177 Real short floating-point argument in ERF was not a valid IEEE number.

2178 Real long floating-point argument in ERF was not a valid IEEE number.

2179 Real extended floating-point argument in ERF was not a valid IEEE number.

2180 Computational error in SQRT; for complex short floating-point argument, real
part was not equal to plus or minus infinity, and imaginary part was not equal
to zero.

2181 Computational error in SQRT; for complex long floating-point argument, real
part was not equal to plus or minus infinity, and imaginary part was not equal
to zero.

2200 Computational error; during multiplication real part of first complex long
floating-point argument was the only valid IEEE number.

 Chapter 11. Condition codes 203

Condition codes

Condition codes 2201 through 2250
2201 Computational error; during multiplication real part of first complex extended

floating-point argument was the only valid IEEE number.

2202 Computational error; during multiplication the imaginary part of the first
complex short floating-point argument was the only valid IEEE number.

2203 Computational error; during multiplication the imaginary part of the first
complex long floating-point argument was the only valid IEEE number.

2204 Computational error; during multiplication the imaginary part of the first
complex extended floating-point argument was the only valid IEEE number.

2205 Computational error; during multiplication the real part of the second complex
short floating-point argument was the only valid IEEE number.

2206 Computational error; during multiplication the real part of the second complex
long floating-point argument was the only valid IEEE number.

2207 Computational error; during multiplication the real part of the second complex
extended floating-point argument was the only valid IEEE number.

2208 Computational error; during multiplication the imaginary part of the second
complex short floating-point argument was the only valid IEEE number.

2209 Computational error; during multiplication the imaginary part of the second
complex long floating-point argument was the only valid IEEE number.

2210 Computational error; during multiplication the imaginary part of the second
complex extended floating-point argument was the only valid IEEE number.

2211 Computational error; during multiplication both parts of both complex short
floating-point arguments were not valid IEEE numbers.

2212 Computational error; during multiplication both parts of both complex long
floating-point arguments were not valid IEEE numbers.

2213 Computational error; during multiplication both parts of both complex extended
floating-point arguments were not valid IEEE numbers.

2214 The real short floating-point argument for TRUNC was plus or minus infinity.

2215 The real long floating-point argument for TRUNC was plus or minus infinity.

2216 The real extended floating-point argument for TRUNC was plus or minus
infinity.

2217 The real short floating-point argument for TRUNC was not a valid IEEE
number.

2218 The real long floating-point argument for TRUNC was not a valid IEEE number.

2219 The real extended floating-point argument for TRUNC was not a valid IEEE
number.

2220 Computational error; in MOD(x,y) built-in function real short floating-point
arguments, the first argument was plus or minus infinity, or the second
argument was plus or minus zero.

204 Messages and Codes (OS/2 and Windows)

Condition codes

2221 Computational error; in MOD(x,y) built-in function real long floating-point
arguments, the first argument was plus or minus infinity, or the second
argument was plus or minus zero.

2222 Computational error; in MOD(x,y) built-in function real extended floating-point
arguments, the first argument was plus or minus infinity, or the second
argument was plus or minus zero.

2223 Computational error; in MOD(x,y) built-in function real short floating-point
arguments, the first argument was not a valid IEEE number.

2224 Computational error; in MOD(x,y) built-in function real long floating-point
arguments, the first argument was not a valid IEEE number.

2225 Computational error; in MOD(x,y) built-in function real extended floating-point
arguments, the first argument was not a valid IEEE number.

2226 Computational error; in MOD(x,y) built-in function real short floating-point
arguments, the second argument was not a valid IEEE number.

2227 Computational error; in MOD(x,y) built-in function real long floating-point
arguments, the second argument was not a valid IEEE number.

2228 Computational error; in MOD(x,y) built-in function real extended floating-point
arguments, the second argument was not a valid IEEE number.

2229 Computational error; in MOD(x,y) built-in function real short floating-point
arguments, both arguments were not valid IEEE numbers.

2230 Computational error; in MOD(x,y) built-in function real long floating-point
arguments, both arguments were not valid IEEE numbers.

2231 Computational error; in MOD(x,y) built-in function real extended floating-point
arguments, both arguments were not valid IEEE numbers.

2250 Computational error; during multiplication for complex extended floating-point
arguments plus or minus infinity was specified.

Condition codes 2251 through 2300
2251 Computational error; during multiplication the real part of the first complex short

floating-point argument was not a valid IEEE number.

2252 Computational error; during multiplication the real part of the first complex long
floating-point argument was not a valid IEEE number.

2253 Computational error; during multiplication the real part of the first complex
extended floating-point argument was not a valid IEEE number.

2254 Computational error; during multiplication the real part of the second complex
short floating-point argument was not a valid IEEE number.

2255 Computational error; during multiplication the real part of the second complex
long floating-point argument was not a valid IEEE number.

2256 Computational error; during multiplication the real part of the second complex
extended floating-point argument was not a valid IEEE number.

 Chapter 11. Condition codes 205

Condition codes

2257 Computational error; during multiplication the imaginary part of the first
complex short floating-point argument was not a valid IEEE number.

2258 Computational error; during multiplication the imaginary part of the first
complex long floating-point argument was not a valid IEEE number.

2259 Computational error; during multiplication the imaginary part of the first
complex extended floating-point argument was not a valid IEEE number.

2260 Computational error; during multiplication the imaginary part of the second
complex short floating-point argument was not a valid IEEE number.

2261 Computational error; during multiplication the imaginary part of the second
complex long floating-point argument was not a valid IEEE number.

2262 Computational error; during multiplication the imaginary part of the second
complex extended floating-point argument was not a valid IEEE number.

2263 Computational error; during multiplication both parts of first complex short
floating-point arguments were not valid IEEE numbers.

2264 Computational error; during multiplication both parts of first complex long
floating-point arguments were not valid IEEE numbers.

2265 Computational error; during multiplication both parts of first complex extended
floating-point arguments were not valid IEEE numbers.

2266 Computational error; during multiplication both parts of second complex short
floating-point arguments were not valid IEEE numbers.

2267 Computational error; during multiplication both parts of second complex long
floating-point arguments were not valid IEEE numbers.

2268 Computational error; during multiplication both parts of second complex
extended floating-point arguments were not valid IEEE numbers.

2269 Computational error; during multiplication real parts of both complex short
floating-point arguments were not valid IEEE numbers.

2270 Computational error; during multiplication real parts of both complex long
floating-point arguments were not valid IEEE numbers.

2271 Computational error; during multiplication real parts of both complex extended
floating-point arguments were not valid IEEE numbers.

2272 Computational error; during multiplication imaginary parts of both complex
short floating-point arguments were not valid IEEE numbers.

2273 Computational error; during multiplication imaginary parts of both complex long
floating-point arguments were not valid IEEE numbers.

2274 Computational error; during multiplication imaginary parts of both complex
extended floating-point arguments were not valid IEEE numbers.

2275 Computational error; during multiplication real part of first complex short
floating-point argument and imaginary part of second complex short
floating-point argument were not valid IEEE numbers.

206 Messages and Codes (OS/2 and Windows)

Condition codes

2276 Computational error; during multiplication real part of first complex long
floating-point argument and imaginary part of second complex long
floating-point argument were not valid IEEE numbers.

2277 Computational error; during multiplication real part of first complex extended
floating-point argument and imaginary part of second complex extended
floating-point argument were not valid IEEE numbers.

2278 Computational error; during multiplication imaginary part of first complex short
floating-point argument and real part of second complex short floating-point
argument were not valid IEEE numbers.

2279 Computational error; during multiplication imaginary part of first complex long
floating-point argument and real part of second complex long floating-point
argument were not valid IEEE numbers.

2280 Computational error; during multiplication imaginary part of first complex
extended floating-point argument and real part of second complex extended
floating-point argument were not valid IEEE numbers.

2281 Computational error; during multiplication real part of first complex short
floating-point argument was the only valid IEEE number.

2300 Computational error; during division real parts of both complex short
floating-point arguments were not valid IEEE numbers.

Condition codes 2301 through 2350
2301 Computational error; during division real parts of both complex long

floating-point arguments were not valid IEEE numbers.

2302 Computational error; during division real parts of both complex extended
floating-point arguments were not valid IEEE numbers.

2303 Computational error; during division imaginary parts of both complex short
floating-point arguments were not valid IEEE numbers.

2304 Computational error; during division imaginary parts of both complex long
floating-point arguments were not valid IEEE numbers.

2305 Computational error; during division imaginary parts of both complex extended
floating-point arguments were not valid IEEE numbers.

2306 Computational error; during division real part of first complex short
floating-point argument and imaginary part of second complex short
floating-point argument were not valid IEEE numbers.

2307 Computational error; during division real part of first complex long floating-point
argument and imaginary part of second complex long floating-point argument
were not valid IEEE numbers.

2308 Computational error; during division real part of first complex extended
floating-point argument and imaginary part of second complex extended
floating-point argument were not valid IEEE numbers.

 Chapter 11. Condition codes 207

Condition codes

2309 Computational error; during division imaginary part of first complex short
floating-point argument and real part of second complex short floating-point
argument were not valid IEEE numbers.

2310 Computational error; during division imaginary part of first complex long
floating-point argument and real part of second complex long floating-point
argument were not valid IEEE numbers.

2311 Computational error; during division imaginary part of first complex extended
floating-point argument and real part of second complex extended floating-point
argument were not valid IEEE numbers.

2312 Computational error; during division real part of first complex short
floating-point argument was the only valid IEEE number.

2313 Computational error; during division real part of first complex long floating-point
argument was the only valid IEEE number.

2314 Computational error; during division real part of first complex extended
floating-point argument was the only valid IEEE number.

2315 Computational error; during division imaginary part of first complex short
floating-point argument was the only valid IEEE number.

2316 Computational error; during division imaginary part of first complex long
floating-point argument was the only valid IEEE number.

2317 Computational error; during division imaginary part of first complex extended
floating-point argument was the only valid IEEE number.

2318 Computational error; during division real part of second complex short
floating-point argument was the only valid IEEE number.

2319 Computational error; during division real part of second complex long
floating-point argument was the only valid IEEE number.

2320 Computational error; during division real part of second complex extended
floating-point argument was the only valid IEEE number.

2321 Computational error; during division imaginary part of second complex short
floating-point argument was the only valid IEEE number.

2322 Computational error; during division imaginary part of second complex long
floating-point argument was the only valid IEEE number.

2323 Computational error; during division imaginary part of second complex
extended floating-point argument was the only valid IEEE number.

2324 Computational error; during division both parts of both complex short
floating-point argument were not valid IEEE numbers.

2325 Computational error; during division both parts of both complex long
floating-point argument were not valid IEEE numbers.

2326 Computational error; during division both parts of both complex extended
floating-point argument were not valid IEEE numbers.

208 Messages and Codes (OS/2 and Windows)

Condition codes

2327 Computational error; during multiplication complex short floating-point
arguments equal to the limits.

2328 Computational error; during multiplication complex long floating-point
arguments equal to the limits.

2329 Computational error; during multiplication complex extended floating-point
arguments equal to the limits.

2330 Computational error; during multiplication for complex short floating-point
arguments plus or minus infinity was specified.

2331 Computational error; during multiplication for complex long floating-point
arguments plus or minus infinity was specified.

2350 Computational error; the first real long floating-point argument for SCALE was
not a valid IEEE number.

Condition codes 2351 through 2400
2351 Computational error; the first real extended floating-point argument for SCALE

was not a valid IEEE number.

2352 X in CEIL(X) or FLOOR(X) was invalid for a real short floating-point argument
because the argument was plus or minus infinity.

2353 X in CEIL(X) or FLOOR(X) was invalid for a real long floating-point argument
because the argument was plus or minus infinity.

2354 X in CEIL(X) or FLOOR(X) was invalid for a real extended floating-point
argument because the argument was plus or minus infinity.

2355 X in CEIL(X) or FLOOR(X) was invalid for a real short floating-point argument
because the argument was not a valid IEEE number.

2356 X in CEIL(X) or FLOOR(X) was invalid for a real long floating-point argument
because the argument was not a valid IEEE number.

2357 X in CEIL(X) or FLOOR(X) was invalid for a real extended floating-point
argument because the argument was not a valid IEEE number.

2358 Computational error; during division complex short floating-point arguments
equal to the limits.

2359 Computational error; during division complex long floating-point arguments
equal to the limits.

2360 Computational error; during division complex extended floating-point arguments
equal to the limits.

2361 Computational error; during division for complex short floating-point arguments
plus or minus infinity was specified.

2362 Computational error; during division for complex long floating-point arguments
plus or minus infinity was specified.

 Chapter 11. Condition codes 209

Condition codes

2363 Computational error; during division for complex extended floating-point
arguments plus or minus infinity was specified.

2364 Computational error; during division real part of first complex short
floating-point argument was not a valid IEEE number.

2365 Computational error; during division real part of first complex long floating-point
argument was not a valid IEEE number.

2366 Computational error; during division real part of first complex extended
floating-point argument was not a valid IEEE number.

2367 Computational error; during division real part of second complex short
floating-point argument was not a valid IEEE number.

2368 Computational error; during division real part of second complex long
floating-point argument was not a valid IEEE number.

2369 Computational error; during division real part of second complex extended
floating-point argument was not a valid IEEE number.

2370 Computational error; during division imaginary part of first complex short
floating-point argument was not a valid IEEE number.

2371 Computational error; during division imaginary part of first complex long
floating-point argument was not a valid IEEE number.

2372 Computational error; during division imaginary part of first complex extended
floating-point argument was not a valid IEEE number.

2373 Computational error; during division imaginary part of second complex short
floating-point argument was not a valid IEEE number.

2374 Computational error; during division imaginary part of second complex long
floating-point argument was not a valid IEEE number.

2375 Computational error; during division imaginary part of second complex
extended floating-point argument was not a valid IEEE number.

2376 Computational error; during division both parts of first complex short
floating-point argument were not valid IEEE numbers.

2377 Computational error; during division both parts of first complex long
floating-point argument were not valid IEEE numbers.

2378 Computational error; during division both parts of first complex extended
floating-point argument were not valid IEEE numbers.

2379 Computational error; during division both parts of second complex short
floating-point argument were not valid IEEE numbers.

2380 Computational error; during division both parts of second complex long
floating-point argument were not valid IEEE numbers.

2381 Computational error; during division both parts of second complex extended
floating-point argument were not valid IEEE numbers.

210 Messages and Codes (OS/2 and Windows)

Condition codes

Condition codes 2403 through 2450
2403 Computational error; real extended floating point argument of GAMMA or

LOGGAMMA built-in function was less than or equal to minus zero.

2404 Computational error; real extended floating point argument of GAMMA or
LOGGAMMA built-in function was equal to zero.

2407 The calculated result of real short floating-point arguments for EXP overflowed
the output field.

2408 The calculated result of real long floating-point arguments for EXP overflowed
the output field.

2409 The calculated result of real extended floating-point arguments for EXP
overflowed the output field.

2410 The calculated result of real short floating-point arguments for SCALE
overflowed the output field.

2411 The calculated result of real long floating-point arguments for SCALE
overflowed the output field.

2412 The calculated result of real extended floating-point arguments for SCALE
overflowed the output field.

2413 Computational error; complex short floating-point argument in LOG, LOG2, or
LOG10 built-in function was zero.

2414 Computational error; complex long floating-point argument in LOG, LOG2, or
LOG10 built-in function was zero.

2415 Computational error; complex extended floating-point argument in LOG, LOG2,
or LOG10 built-in function was zero.

2416 The calculated result of real short floating-point arguments for SINH or COSH
calculated result overflowed output field.

2417 The calculated result of real long floating-point arguments for SINH or COSH
calculated result overflowed output field.

2418 The calculated result of real extended floating-point arguments for SINH or
COSH calculated result overflowed output field.

2419 The calculated result of real short floating-point arguments for COTAN or
COTAND calculated result overflowed output field.

2420 The calculated result of real long floating-point arguments for COTAN or
COTAND calculated result overflowed output field.

2421 The calculated result of real extended floating-point arguments for COTAN or
COTAND calculated result overflowed output field.

2422 Computational error in SIN, COS, SIND, or COSD built-in function; for complex
short floating-point argument the calculated result overflowed output field.

2423 Computational error in SIN, COS, SIND, or COSD built-in function; for complex
long floating-point argument the calculated result overflowed output field.

 Chapter 11. Condition codes 211

Condition codes

2424 Computational error in SIN, COS, SIND, or COSD built-in function; for complex
extended floating-point argument the calculated result overflowed output field.

2425 Computational error in SIN, COS, SIND, or COSD built-in function; real short
floating-point argument is equal to plus or minus infinity.

2426 Computational error in SIN, COS, SIND, or COSD built-in function; real long
floating-point argument is equal to plus or minus infinity.

2427 Computational error in TAN or TAND built-in function; real short floating-point
argument equal to plus or minus infinity.

2428 Computational error in TAN or TAND built-in function; real long floating-point
argument equal to plus or minus infinity.

2429 Computational error in COTAN or COTAND built-in function; real short
floating-point argument is equal to plus or minus zero, or plus or minus infinity.

2430 Computational error in COTAN or COTAND built-in function; real long
floating-point argument is equal to plus or minus zero, or plus or minus infinity.

2431 Computational error in COTAN or COTAND built-in function; real extended
floating-point argument is equal to plus or minus zero.

2450 Computational error in EXPONENT built-in function; for complex long
floating-point base with integer exponent, the calculated result was infinity.

Condition codes 2451 through 2500
2451 Computational error in EXPONENT built-in function; for complex extended

floating-point base with integer exponent, the calculated result was infinity.

2452 Computational error in EXP built-in function; for complex short floating-point
argument, the calculated result was infinity.

2453 Computational error in EXP built-in function; for complex long floating-point
argument, the calculated result was infinity.

2454 Computational error in EXP built-in function; for complex extended
floating-point argument, the calculated result was infinity.

2455 Computational error during division; for complex short floating-point argument,
the calculated result was infinity.

2456 Computational error during division; for complex long floating-point argument,
the calculated result was infinity.

2457 Computational error during division; for complex extended floating-point
argument, the calculated result was infinity.

2458 Computational error in SQRT built-in function; for real short floating-point
arguments, the ONCODE value was infinity.

2459 Computational error in SQRT built-in function; for real long floating-point
arguments, the ONCODE value was infinity.

212 Messages and Codes (OS/2 and Windows)

Condition codes

2460 Computational error in SQRT built-in function; for real extended floating-point
arguments, the ONCODE value was infinity.

2461 Computational error in LOG built-in function; for real short floating-point
arguments, the calculated result was infinity.

2462 Computational error in LOG built-in function; for real long floating-point
arguments, the calculated result was infinity.

2463 Computational error in LOG built-in function; for real extended floating-point
arguments, the calculated result was infinity.

2464 Computational error in ATANH built-in function; for real short floating-point
arguments, calculated result was infinity.

2465 Computational error in ATANH built-in function; for real long floating-point
arguments, the calculated result was infinity.

2466 Computational error in ATANH built-in function; for real extended floating-point
arguments, the calculated result was infinity.

2467 Computational error in SINH or COSH built-in function; for real short
floating-point arguments, the calculated result was infinity.

2468 Computational error in SINH or COSH built-in function; for real long
floating-point arguments, the calculated result was infinity.

2469 Computational error in SINH or COSH built-in function; for real extended
floating-point arguments, the calculated result was infinity.

2470 Computational error in GAMMA or LOGGAMMA built-in function; for real short
floating-point argument, the calculated result was infinity.

2471 Computational error in GAMMA or LOGGAMMA built-in function; for real long
floating-point argument, the calculated result was infinity.

2472 Computational error in GAMMA or LOGGAMMA built-in function; for real
extended floating-point argument, the calculated result was infinity.

2473 Computational error in EXPONENT built-in function; for real short floating-point
base with real short floating-point exponent, the calculated result was infinity.

2474 Computational error in EXPONENT built-in function; for real long floating-point
base with real long floating-point exponent, the calculated result was infinity.

2475 Computational error in EXPONENT built-in function; for real extended
floating-point base with real extended floating-point exponent, the calculated
result was infinity.

2476 Computational error in EXPONENT built-in function; for real short floating-point
base with integer exponent, the calculated result was infinity.

2477 Computational error in EXPONENT built-in function; for real long floating-point
base with integer exponent, the calculated result was infinity.

2478 Computational error in EXPONENT built-in function; for real extended
floating-point base with integer exponent, the calculated result was infinity.

 Chapter 11. Condition codes 213

Condition codes

2479 Computational error in EXP built-in function; for real short floating-point
argument, the calculated result was infinity.

2480 Computational error in EXP built-in function; for real long floating-point
argument, the calculated result was infinity.

2481 Computational error in EXP built-in function; for real extended floating-point
argument, the calculated result was infinity.

Condition codes 2504 through 2999
2504 Computational error in ABS built-in function; for real short floating-point

arguments, the calculated result was infinity.

2505 Computational error in ABS built-in function; for real long floating-point
arguments, the calculated result was infinity.

2506 Computational error in ABS built-in function; for real extended floating-point
arguments, the calculated result was infinity.

2507 Computational error in ABS built-in function; for complex short floating-point
arguments, the calculated result was infinity.

2508 Computational error in ABS built-in function; for complex long floating-point
arguments, the calculated result was infinity.

2509 Computational error in ABS built-in function; for complex extended
floating-point arguments, the calculated result was infinity.

2510 Computational error in SCALE built-in function; for real short floating-point
arguments, the calculated result was infinity.

2511 Computational error in SCALE built-in function; for real long floating-point
arguments, the calculated result was infinity.

2512 Computational error in SCALE built-in function; for real extended floating-point
arguments, the calculated result was infinity.

2513 Computational error in SQRT built-in function; for complex short floating-point
arguments, the calculated result was infinity.

2514 Computational error in SQRT built-in function; for complex long floating-point
arguments, the calculated result was infinity.

2515 Computational error in SQRT built-in function; for complex extended
floating-point arguments, the calculated result was infinity.

2516 Computational error during multiplication; for complex short floating-point
argument, the calculated result was infinity.

2517 Computational error during multiplication; for complex long floating-point
argument, the calculated result was infinity.

2518 Computational error during multiplication; for complex extended floating-point
argument, the calculated result was infinity.

214 Messages and Codes (OS/2 and Windows)

Condition codes

2519 Computational error in LOG built-in function; for complex short floating-point
arguments, the calculated result was infinity.

2520 Computational error in LOG built-in function; for complex long floating-point
arguments, the calculated result was infinity.

2521 Computational error in LOG built-in function; for complex extended
floating-point arguments, the calculated result was infinity.

2522 Computational error in ATANH built-in function; for complex short floating-point
arguments, the calculated result was infinity.

2523 Computational error in ATANH built-in function; for complex long floating-point
arguments, the calculated result was infinity.

2524 Computational error in ATANH built-in function; for complex extended
floating-point arguments, the calculated result was infinity.

2525 Computational error in SINH or COSH built-in function; for complex short
floating-point arguments, the calculated result was infinity.

2526 Computational error in SINH or COSH built-in function; for complex long
floating-point arguments, the calculated result was infinity.

2527 Computational error in SINH or COSH built-in function; for complex extended
floating-point arguments, the calculated result was infinity.

2528 Computational error in EXPONENT built-in function; for complex short
floating-point base with complex short floating-point exponent, the calculated
result was infinity.

2529 Computational error in EXPONENT built-in function; for complex long
floating-point base with complex long floating-point exponent, the calculated
result was infinity.

2530 Computational error in EXPONENT built-in function; for complex extended
floating-point base with complex extended floating-point exponent, the
calculated result was infinity.

2531 Computational error in EXPONENT built-in function; for complex short
floating-point base with integer exponent, the calculated resu lt was infinity.

Condition codes 3000 through 3900
3000 Field width, number of fractional digits, and number of significant digits (w, d,

and s) specified for E-format item in edit-directed input/output statement do not
allow transmission without loss of significant digits or sign.

3006 Picture description of target does not match non-character-string source.

3011 MPSTR built-in function contains an invalid character (or a null function string,
or only blanks) in the expression that specifies processing rules. (Only V, v, S,
s, and blank are valid characters.)

3013 An assignment attempted to a graphic target with a length greater than 16,383
characters (32,766 bytes).

 Chapter 11. Condition codes 215

Condition codes

3014 A graphic or mixed string did not conform to the continuation rules.

3015 A X or GX constant has an invalid number of digits.

3016 Improper use of graphic data in stream I/O. Graphic data can only be used as
part of a variable name or string.

3500 Error detected by the operating system while processing WAIT statement.

3501 Error detected by the operating system while processing DETACH statement.

3502 Error detected by the operating system while processing ATTACH statement.

3503 Error detected by the operating system while processing STOP statement.

3797 Attempt to convert to or from graphic data.

3798 ONCHAR, ONSOURCE, or ONGSOURCE pseudovariable used out of context.

3799 The source was not modified in the CONVERSION ON-unit. Retry was not
attempted. An ON-unit was entered as a result of the CONVERSION condition
being raised by an invalid character in the string being converted. The
character was not corrected in an ON-unit using the ONSOURCE,
ONGSOURCE, or ONCHAR pseudovariables.

3800 Length of data aggregate exceeds system limit of 2**24 bytes.

3808 Aggregate cannot be mapped in COBOL or FORTRAN.

3809 A data aggregate exceeded the maximum length.

3810 An array has an extent that exceeds the allowable maximum.

Condition codes 3901 through 4000
3901 Attempt to invoke process using a process variable that is already associated

with an active process.

3904 Event variable referenced as argument to COMPLETION pseudovariable while
already in use for a DISPLAY statement.

3906 Assignment to an event variable that is already active.

3907 Attempt to associate an event variable that is already associated with an active
process.

3909 Attempt to create a subtask (using CALL statement) when insufficient main
storage available.

3910 Attempt to attach a process (using CALL statement) when number of active
processes was already at limit defined by ISASIZE parameter of EXEC
statement.

3911 WAIT statement in ON-unit references an event variable already being waited
for in process from which ON-unit was entered.

3912 Attempt to execute CALL with TASK option in block invoked while executing
PUT FILE(SYSPRINT) statement.

216 Messages and Codes (OS/2 and Windows)

Condition codes

3913 CALL statement with TASK option specifies an unknown entry point.

3914 Attempt to call FORTRAN or COBOL routines in two processes
simultaneously.

3915 Attempt to call a process when the multitasking library was not selected in the
link-edit step.

3920 An out-of-storage abend occurred.

Condition codes 4001 through 9999
4001 Attempt to assign data to an unallocated CONTROLLED variable occurred on

a GET DATA statement.

4002 Attempt to output an unallocated CONTROLLED variable occurred on a PUT
DATA statement.

4003 Attempt to assign from an unallocated CONTROLLED variable occurred on a
PUT DATA statement with the STRING option.

8091 Operation exception.

8092 Privileged operation exception.

8093 EXECUTE exception.

8094 Protection exception.

8095 Addressing exception.

8096 Specification exception.

8097 Data exception.

8098 Insufficient stack storage

9002 Attempt to execute GO TO statement referencing label in an inactive block.

9003 Attempt to execute a GO TO statement to a nonexistent label constant.

9050 Program terminated by an abend.

9051 An error occured in CICS. It is highly likely that parameters, particularly
pointers, specified on the EXEC CICS command do not point at storage owned
by the PL/I program. The ERROR on-unit is not given control. When the
TEST run-time option is in effect, PLITEST allows the user to examine
variables, etc. but the execution cannot be continued.

9200 Program check in SORT/MERGE program.

9201 SORT not supported in CMS.

9202 RECORD TYPE string missing in the PLISRTx call.

9203 Incorrect record type specified in the PLISRTx call.

9204 LENGTH= missing from RECORD TYPE string specification in the PLISRTB or
PLISRTD call.

 Chapter 11. Condition codes 217

9205 Length specified in the LENGTH= parameter of the PLISRTx call is not
numeric.

9206 Incorrect return code received from E15 or E35 data-handling routine.

9207 DFSORT failed with the return code displayed in the message.

9208 PLISRTx invoked in an environment other than ADMVS.

9249 Routine cannot be released.

9250 Procedure to be fetched cannot be found.

9251 Permanent transmission error when fetching a procedure.

9252 FETCH/RELEASE not supported in CMS.

9253 PLITEST unavailable.

9999 A failure occurred in invocation of an LE service.

218 Messages and Codes (OS/2 and Windows)

 Notices

This information was developed for products and
services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this
document in other countries. Consult your local IBM
representative for information on the products and
services currently available in your area. Any reference
to an IBM product, program, or service is not intended to
state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent
product, program, or service that does not infringe any
IBM intellectual property right may be used instead.
However, it is the user's responsibility to evaluate and
verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications
covering subject matter described in this document. The
furnishing of this document does not give you any
license to these patents. You can send license inquiries,
in writing, to:

IBM Director of Licensing
 IBM Corporation

North Castle Drive
 Armonk, NY 10504-1785
 U.S.A.

For license inquiries regarding double-byte (DBCS)
information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing,
to:

IBM World Trade Asia Corporation
 Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United
Kingdom or any other country where such provisions are
inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION "AS
IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied

warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or
typographical errors. Changes are periodically made to
the information herein; these changes will be
incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at
any time without notice.

Licensees of this program who wish to have information
about it for the purpose of enabling: (i) the exchange of
information between independently created programs
and other programs (including this one) and (ii) the
mutual use of the information which has been
exchanged, should contact:

 IBM Corporation
 J74/G4

555 Bailey Avenue
San Jose, CA 95141-1099

 U.S.A.

Such information may be available, subject to
appropriate terms and conditions, including in some
cases, payment of a fee.

The licensed program described in this information and
all licensed material available for it are provided by IBM
under terms of the IBM Customer Agreement, IBM
International Program License Agreement, or any
equivalent agreement between us.

COPYRIGHT LICENSE:

This information contains sample application programs in
source language, which illustrates programming
techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application
programs conforming to the application programming
interface for the operating platform for which the sample
programs are written. These examples have not been
thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or
function of these programs.

If you are viewing this information softcopy, the
photographs and color illustrations might not appear.

 Copyright IBM Corp. 1998 219

Programming interface information

This publication documents intended Programming
Interfaces that allow the customer to write programs to
obtain the services of IBM PL/I for MVS & VM.

Macros for customer use: IBM PL/I for
MVS & VM provides no macros that allow a customer
installation to write programs that use the services of
IBM PL/I for MVS & VM.

Attention: Do not use as programming interfaces any
IBM PL/I for MVS & VM macros.

220 Messages and Codes (OS/2 and Windows)

 Trademarks

The following terms are trademarks of the IBM
Corporation in the United States or other countries or
both:

Windows is a trademark of Microsoft Corporation in the
United States and/or other countries.

UNIX is a registered trademark in the United States
and/or other countries licensed exclusively through
X/Open Company Limited.

AIX
CICS
CICS/ESA
DFSMS/MVS
DFSORT
IBM

IMS
IMS/ESA
Language Environment
OS/2
OS/390
Proprinter
VisualAge

 Notices 221

 Bibliography

VisualAge PL/I publications
Fact Sheet, GC26-9470
Programming Guide, SC26-9473
Language Reference, SC26-9476
Messages and Codes, SC26-9478
Diagnosis Guide, SC26-9475
Compiler and Run-Time Migration Guide,
SC26-9474
Installation and Customization, GC26-9472
Building Graphical User Interfaces on OS/2,
GC26-9180-01

DB2 Version 2
Information and Concepts Guide, S20H-4664

Administration Guide, S20H-4580

Database System Monitor Guide and Reference,
S20H-4871

Command Reference, S20H-4645

API Reference, S20H-4984

SQL Reference, S20H-4665

Application Programming Guide, S20H-4643

Call Level Interface Guide and Reference,
S20H-4644

Messages Reference, S20H-4808

Problem Determination Guide, S20H-4779

DDCS User's Guide, S20H-4793

DRDA Connectivity Guide, SC26-4783

 DATABASE 2
Application Programming and SQL Guide,
SC26-4377

SQL Reference, SC26-4380

VisualAge CICS Enterprise Application
Development
 Installation, GC34-5356

 Customization, SC34-5357

 Operation, SC34-5358

Reference Summary, SX33-6109

 Intercommunication, SC34-5359

Problem Determination, GC34-5360

 Performance, SC34-5363

Application Programming, SC34-5361

222  Copyright IBM Corp. 1998

We'd Like to Hear from You

VisualAge PL/I
Messages and Codes
Version 2.1

Publication No. GC26-9179-02

Please use one of the following ways to send us your comments about this book:

� Mail—Use the Readers' Comments form on the next page. If you are sending the form from a
country other than the United States, give it to your local IBM branch office or IBM
representative for mailing.

� Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
800-426-7773.

� Electronic mail—Use one of the following network IDs:

Internet: COMMENTS@VNET.IBM.COM

Be sure to include the following with your comments:

– Title and publication number of this book
– Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the information is
presented. To request additional publications, or to comment on other IBM information or the
function of IBM products, please give your comments to your IBM representative or to your IBM
authorized remarketer.

IBM may use or distribute your comments without obligation.

 Readers' Comments

VisualAge PL/I
Messages and Codes
Version 2.1

Publication No. GC26-9179-02

How satisfied are you with the information in this book?

May we contact you to discuss your comments? Yes No

Would you like to receive our response by E-Mail?

Your E-mail address

Name Address

Company or Organization

Phone No.

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically accurate � � � � �
Complete � � � � �
Easy to find � � � � �
Easy to understand � � � � �
Well organized � � � � �
Applicable to your tasks � � � � �
Grammatically correct and
consistent � � � � �
Graphically well designed � � � � �
Overall satisfaction � � � � �

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
GC26-9179-02 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department HHX/H1
San Jose, CA 95141-1099

Fold and Tape Please do not staple Fold and Tape

GC26-9179-02

IBM

Program Number: 5639-D65

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

Enterprise PL/I for z/OS and OS/390 Library

SC27-1456 Licensed Program Specifications
SC27-1457 Programming Guide
GC27-1458 Compiler and Run-Time Migration Guide
GC27-1459 Diagnosis Guide
SC27-1460 Language Reference
SC27-1461 Compile-Time Messages and Codes

GC26-9179-'2

Spine information:

IBM VisualAge PL/I Messages and Codes Version 2.1

	Contents
	Chapter 1. Understanding compiler and preprocessor messages
	Format of messages
	Message inserts
	Contacting IBM for support

	Chapter 2. Compiler Informational Messages (1000-1076)
	Chapter 3. Compiler Warning Messages (1078-1225)
	Chapter 4. Compiler Error Messages (1226-1499)
	Chapter 5. Compiler Severe Messages (1500-2500)
	Chapter 6. CICS Preprocessor Messages (6000-6999)
	Chapter 7. MACRO Preprocessor Messages (3000-3999)
	Chapter 8. SQL Preprocessor Messages (7000-7999)
	Chapter 9. Understanding run-time messages
	Using run-time messages
	Format of run-time messages
	Message inserts
	Contacting IBM for support

	Chapter 10. Run-time messages
	Chapter 11. Condition codes
	Conditions 1 through 50
	Condition codes 51 through 100
	Condition codes 100 through 520
	Condition codes 600 through 650
	Condition codes 651 through 672
	Condition codes 1002 through 1105
	Condition codes 1500 through 1550
	Condition codes 1551 through 1600
	Condition codes 1601 through 1650
	Condition codes 1651 through 1700
	Condition codes 1701 through 1750
	Condition codes 1751 through 1800
	Condition codes 1801 through 1850
	Condition codes 1851 through 1900
	Condition codes 1901 through 1950
	Condition codes 1951 through 2000
	Condition codes 2002 through 2150
	Condition codes 2151 through 2200
	Condition codes 2201 through 2250
	Condition codes 2251 through 2300
	Condition codes 2301 through 2350
	Condition codes 2351 through 2400
	Condition codes 2403 through 2450
	Condition codes 2451 through 2500
	Condition codes 2504 through 2999
	Condition codes 3000 through 3900
	Condition codes 3901 through 4000
	Condition codes 4001 through 9999

	Notices
	Programming interface information
	Macros for customer use

	Trademarks

	Bibliography
	VisualAge PL/I publications
	DB2 Version 2
	DATABASE 2
	VisualAge CICS Enterprise Application Development

