The DFSMS/MVS Binder and lts
“Program Object” Format:
What The New Program Model
Will Mean to You

SHARE 96 (Feb. 2001), Session 8170

John R. Ehrman
ehrman@us.ibm.com or ehrman@vnet.ibm.com

IBM Silicon Valley (nee Santa Teresa) Laboratory
555 Bailey Avenue
San Jose, CA 95141
© IBM Corporation 1995, 2001

March 1, 2001

Table of Contents Contents-1

TopIC OVeIVIEW . . . 1
The Binder and Program Loader: Overviewot iiinrnnrnrennnnsns 2
Binder and Program Loader: History and Terminology 3
The DFSMS/MVS Binder and Program Loader 4
Program Management Data and Control Flow 5
Binder Features e 6
Program Loader Features 8
Program Object Format Is Not Externalized 9
A Brief Review of Old Object and Load Modules i iinrnnnn 10
Traditional Terminology 11
Translator Output: Object Modules 12
Object Module External Symbol Dictionary (ESD) 13
Old External Symbol Types and Ownership Hierarchy 14
Assembler Example of Object Module External Symbols 15
Load Modules: A “Refresher” View, 16
New Executable Structures: Program Objects i 17
New Terminology for Program Objects i 18
A Program Object: Some Basic Definitions 19
SECHONS . . . 20
ClaSSES . . o e e 21
Class Attributes e 22
Sketch of a Multi-Class Program Object 23
Benefits of Demand-Loaded (NOLOAD) Classes 24

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Table of Contents Contents-2

New External Symbol Types and Ownership Hierarchy 25
Compatibilityc0 it i e it e 26
Treatment of Old Object/Load Modules 27
Example of Object Mapping at Assembly Time 28
Program-Object Mapping of Object/Load Modules 29
Mixed-Mode Modules and RMODE(SPLIT) 30
Improved Binding Techniquescii ittt ernrnrnnnnsnns 31
Binding Attributes and Rules 32
Example of External Data MERGE Binding 33
Part Views and Merge Binding 35
Generalized Address Constants e 36
Binder Inputs and OQutputsttt tnrnrnennns 37
Module Data: Binder Input (Logical View), 38
Module Data: Binder Output (Logical View) 39
Module Data: PMLoader Input (Physical View) 40
The Generalized Object File Format it innnns 41
What Is @ “GOFF? .. 42
Generalized Object File Format Records 43
Structure of an Old-Format Object Module File 44
Structure of a GOFF File e 45
High Level Assembler GOFF-Support Options and Statements 46
High Level Assembler Support for Class Attributes 47

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Table of Contents Contents-3

High Level Assembler CATTR Usage i 49
Example: A Simple Two-Class Assembler Language Program 50
ESD From Simple Two-Class Assembly i 51
Dynamic Link Libraries (DLLS)ttt ittt an et nnsnsnnns 52
Dynamic Linking and Dynamic Link Libraries 53
Dynamic Linking: Preparation and Use 4
Dynamic Linking: Execution Time 55
Summary, Glossary, and References it nennnas 56
Comparing Old and New 57
UMMy . e 58
Glossary and Definitions e 59
ReferenCes 64

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Topic Overview 1

Note: This is NOT a tutorial on Binder usage!

1. The DFSMS/MVS Binder and Program Loader
- Replacing the Linkage Editor and Batch Loader

2. Review of old object and load modules

3. New executable-module structures: Program Objects
. All about Sections, Classes, Elements, and Parts
- How Program Objects are like and unlike Load Modules

Compatibility with old Object and Load Modules
New treatments of familiar binding techniques
The Generalized Object File Format

Dynamic Link Library support

©© N o o bk

Glossary and References

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

The Binder and Program
Loader: Overview

Some useful abbreviations...

PM Program Management

LM Load Module

PO Program Object

oM Object Module (Traditional Format)

GOFF Generalized Object File Format

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Binder and Program Loader: History and Terminology

PM1

PM1.1
PM2

PM3

PM3.1

DFSMS/MVS V1R1: “Modern” program management

- New Binder and Program Loader
. Support for PDSE libraries
- Linkage Editor compatibility support

DFSMS/MVS V1R2: Support for HFS

DFSMS/MVS V1R3:

. Enhanced PO structure

. Split-RMODE modules, distributed loading
. GOFF/ADATA support

- Fast-path data retrieval API

DFSMS/MVS V1R4: some items require OS/390 V2R4, LE 1.8

. Binder includes C/C++ Prelinker functions, new options, control
statements

. Support for DLLs (including HFS, Archive files)

. Dynamic Linklib and Dynamic LPA support for PDSEs

0S/390 V2 R10: XPLINK support
- Mangled/demangled names table, external-symbol and HFS-file attributes

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

The DFSMS/MVS Binder and Program Loader 4

- Totally new product and new technology

— Binder replaces Linkage Editor, Batch Loader;
Program Loader (PMLoader) extends and generalizes Program Fetch

— Requires OS/390 and DFSMS/MVS

- Answers a large set of customer requirements, including a vast array of
usability and performance problems

— Many new options, messages, added information, detailed diagnostics
— Almost all internal constraints and “Table Overflow” conditions eliminated

- Creates Program Objects (a new form of “executable”)
— Supports long names, multiple text classes, new adcon types, and much more!
— “Linear” format permits efficient “DIV” mapping directly to virtual storage

— Stored in PDSE's (which fix almost all PDS problems: space, integrity,
compression, performance, shareability, etc.), or in HFS

- Base for all future enhancements
— Linkage Editor and Batch Loader are “Functionally Stabilized”

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Program Management Data and Control Flow

Translator

0ld (oM)
Object File

-

:

Prelinker —»
I Ly
C/C++, XO0BJ
00 COBOL Object File ——»
New (GOFF) r——»
Translator Object File

- LMs reside only in PDSs; POs reside only in PDSEs or HFS files

Linkage
Editor

Program
Management
Binder

>

Batch Loader

!

!

T

Load Module
Library
(PDS)

Program
Object Libr.
(PDSE, HFS)

N

Program
Loader

‘L

Loaded
Module

|

Note: Arrowheads indicate direction of data flow.
<4—» means a component can be produced as output or read as input.

- Can mix OM and GOFF to produce PO or LM (LM restricts features)
— “Source» OM» LKED?» LM” equivalent to “Source®» GOFP Binder» LM”

. Can bind PO and LM to produce either (LM restricts features)

DFSMS/MVS Binder and Program Objects

© IBM Corporation 1995, 2001

Binder Features 6

External and module-alias names to 1024 bytes

— Character set X'41'-X'FE', plus SI/SO; optional case sensitivity

— Long names OK for autocall, control statements, APIs, all resolutions

POs support multiple text classes, total text length up to 1GB
— “Split-RMode” modules allow separation of code/data text blocks by RMode

— Uniform treatment of Associated Data (“ADATA”), other non-loaded classes

Supports new Generalized Object File Format, OM, and XOBJ
— GOFF: produced by C/C++ and High Level Assembler; defined by Binder
— OM: traditional Object Module

— XOBJ: produced by C/C++, OO-COBOL; extension of OM
— Binder converts XOBJ internally to GOFF format; output of bind must be a PO

Extended support for OS/390 Unix System Services

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Binder Features ... 7

Prelinker elimination enhances usability, efficiency

— Rebindable output: no need to relink from object

— Simpler service: can ship only the necessary object files

Integrated processing for specialized C/C++ features

— (C370LIB, HFS archive files for autocall resolution
— Prelinker control statements, renaming, new classes, mangled names, etc.

— LE runtime routines load (non-reentrant) Writable Static Area (WSA)

Dynamic Link Libraries (DLLs) (more at slides 52-55)

— New functions in Binder, Program Loader, LE, Contents Supervision

— Defer linking/loading to run-time decisions

Binder Interface Exit
— Allows modifying existing resolutions, renaming, forcing new autocall search

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Program Loader Features

POs mapped into virtual storage (except from HFS files)

Page-fault loading (“page mode”) or pre-loaded (“move mode”)
— Page mode (default):

— Mapped into virtual storage using Data In Virtual (DIV)

— Entire module mapped if shorter than 96K bytes,
or if bind option FETCHOPT=PRIME was specified

— Otherwise, segments (up to 64K each) mapped as referenced
— Move mode:

— Preloads and maps entire module in intermediate storage, then moves to
destination

— Accommodates directed loads, “packed” modules, overlay, V=R

Can load/delete “deferred-load” classes on request

POs (including DLLs and deferred-load classes) can be staged in LLA
PDSEs, POs, DLLs support and exploit “Dynamic LPA”

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Program Object Format Is Not Externalized 9

- Binder API eliminates need to understand Program Object format

— Allows format changes for new hardware and software technology
— Three different PO formats have already been used!

— Old PO formats loadable by current and future versions of PMLoader

— Future format enhancements will be transparent to users

- API supports input and retrieval of all PO data
— All PO data available (including user data, “ADATA”)
— “FastData” API for read-only access to PO data

- PM supports “transportable” format for Program Objects
— Recommend using IEBCOPY to move POs among MVS data sets!

— IEWTPORT service creates format resembling buffers of text, RLDs, IDRs,
CESDs, etc. accessed using the Binder Interface

— Output usable for reconstructing Program Objects

— Use is now deprecated

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

10

A Brief Review of Old Object
and Load Modules

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Traditional Terminology 11

Control Section (CSECT)
— The basic indivisible unit of linking and text manipulation

— A collection of program elements bearing fixed positional relationships to one
another; its addressing and/or placement relative to other Control Sections does
not affect the program's run-time logic

— Ordinary (CSECT) and Read-Only (RSECT) have machine language text;
Common (COM) and Dummy (DSECT) have no text

External Symbol (“public”; internal symbols are “private”)

— A name known at program linking time, whose value is intentionally not
resolved at translation time

PseudoRegister (or, External Dummy Section)

— A special type of external symbol whose value is resolved at link time to an
offset in an area (the “PRVector”) to be instantiated during execution

Address Constant (“Adcon”)

— A field within a Control Section into which a value (typically, an address) will
be placed during program binding, relocation, and/or loading

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Translator Output: Object Modules 12

Five types of (card-image) records:

ESD
TXT
RLD
SYM
END

External Symbol Dictionary (C/C++ generates a variant, XSD)
Machine Language instructions and data (“Text”)

Relocation Dictionary (for address constants)

Internal Symbols

End of Object Module, with IDR (ldentification Record) data

- At least one control section per object module

- “Batched” translations may produce multiple object modules

For the fascinating details, see:
High Level Assembler for MVS & VM & VSE Programmer's Guide, SC26-4941
05/390 DFSMS Program Management, SC27-0806

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Object Module External Symbol Dictionary (ESD) 13

- Describes four basic types of external symbols:

SD,CM Section Definition: the name of a control section
(Blank-named control section called “Private Code,” PC)

LD Label Definition: the name of a position at a fixed offset
within a Control Section; typically, an Entry Point

ER,WX External Reference: the name of a symbol defined
“elsewhere” to which this module wants to refer
(WX = “Weak External”; not a problem if it's unresolved)

PR PseudoRegister: the name of a PseudoRegister
(The Assembler calls it an “External Dummy Section,” XD)

PR names are in a separate “hame space” from all other
external symbols, and may match non-PR names without
conflict.

- Two external symbol scopes: library (SD, LD, ER); module (PR, WX)

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Old External Symbol Types and Ownership Hierarchy 14

- Four external symbol types:

SD Section Definition: owns LDs Old External Name
Ownership Hierarchy

LD Label Definition: entry point
within an SD
SD| |ER| |PR
ER External Reference |
PR/XD Pseudo-Register/External 1
Dummy: this section's view of LD

(contribution to) the PRV

- Lack of ownership of ER and PR items can
cause problems when relinking

- We will contrast this with the new (at slide
25)

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Assembler Example of Object Module External Symbols

15

- A program with each
symbol type:

Sect A

A Entry

MyCom

My XD

Sect B

Start 0

DC 5D'0.1'
Entry A Entry
DC Q(My XD)

Extrn External
Wxtrn Weak Ext

com

DS 12D

DXD 3D
CSect

DC 7D'1.0°"
CSect ,

DC A(MyCom)
End Sect A

(SD)

(LD)

(ER)
(WX)
(CM)

(XD)

(SD)

(PC)

- External Symbol Dictionary:

Symbol Type

SECTA SD
A ENTRY LD
EXTERNAL ER
WEAK EXT WX
MYCOM M
MY XD XD
SECT B SD

PC

Id

00000001

00000002
00000003
00000004
00000005
00000006
00000007

Address Length LD ID

00000000 0000002C

00000028 00000001

00000000 00000060
00000007 00000018
00000030 00000038
00000068 00000004

— A ENTRY is in SECT A (LD ID = 1), at
offset X'28'

Private Code has blank section name

DFSMS/MVS Binder and Program Objects

© IBM Corporation 1995, 2001

Load Modules: A “Refresher” View

16

. Load modules have a one-dimensional “block format” structure:

44— Loaded Text —»

CSECT
AA

CSECT
BB

CSECT
CC

- All loaded text has a single set of attributes

4— Unavailable Data —»

SYM
Data

IDR
Data

RLD
Data

ESD
Data

— One RMODE, one AMODE; entire module is RW or R/O (“RENT”)

— All text is loaded relative to a single relocation base address

— Effectively, a single-component module

. Other module data not accessible via “normal” services

DFSMS/MVS Binder and Program Objects

© IBM Corporation 1995, 2001

17

New Executable Structures:
Program Objects

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

New Terminology for Program Objects 18

Some new terms are introduced, some old terms are used differently
— No “Control Sections” in a PO (CSECTs are mapped to elements)
Section: a “handle” (neither a CSECT name nor an external name)

— Used in control statements to manage Binder actions

Class. attributes are important; name is rarely referenced

Element. indivisible unit of text (analogous to an OM CSECT)

Part. Commons and PseudoRegisters (and initializing text)

— Translator-defined Part Views (PVs) are bound into
Program Object Part Definitions

Five ESD symbol types: SD, ED, PV (or PR), LD, ER (see slide 25)

— Compared to OM's four: SD different; ED new; PR generalized; LD, ER same
(see slide 14)

— Four external symbol scopes: section, module, library, import-export

Two binding attributes and binding methods: CAT and MRG
— Linkage Editor used both, but less rigorously (details at slide 32)

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

A Program Object: Some Basic Definitions 19

- Most easily visualized as a two-dimensional structure:
Class X Class Y Class Z

Section A | Element | Element | Element

Section B | Element | Element | Element

- One dimension is determined by a section name
— Analogous to OM Control Section name (but not the same!)
- Second dimension is determined by a class name
— Analogous to a loadable module's name (but not the same!)
— Attributes (e.g. RMODE) assigned to each class (see slide 22)
- The unit defined by a section name and a class name is an element
— Viewable as the “intersection” of a section and a class

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Sections 20

A section is the program unit manipulated (replaced, deleted, ordered, or
aligned) by user control statements during binding

— Operations on a section apply to all elements within the section
— Including rejection!

Each section may supply contributions to one or more classes
— According to their desired binding and loading characteristics
— Assembler Language example (slide 50) illustrates this

Section names must be unique within a Program Object
— As for Load Modules

— Note: Section names are not external names or implied labels
— Not used to resolve external references
— Label Definitions (LDs) within elements are used to identify positions in text

Binder-created sections “own” module-level data
— E.g. class maps, SYM data, module-level ADATA, Part Views
— User code should avoid section names starting with IEWB..!

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Classes 21

- Each class has uniform loading/binding characteristics and behavior
— All section contributions to each class are bound together in a segment

— More than one class may have identical attributes (e.g., RMODE(31))

— Binder may put classes with identical attributes into one segment
(class offsets may be different from segment offsets)

- Class loading characteristics determine the load-time placement of the
segments in virtual storage
— Loadable segments are loaded as separately relocated non-contiguous entities
— Not all segments are normally loadable (e.g. IDR)

— POs may have multiple class segments (each analogous to a Load Module!)

- Class names (max. 14 characters) are purely mnemonic, and are
rarely externalized
— Naming conventions required for class sharing, and to avoid class-name
collisions among independent compilation units
— Names of the form letter symbol are reserved!
— Example: names like C_xxx reserved to compilers, B _xxx to Binder
- B_MAP describes names and contents of each class
- B _ESD contains external names
- B IMPEXP contains imported/exported external names (for DLL support)

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Class Attributes 22

- Separate attributes may be assigned to each class, such as:
— RMODE: indicates placement in virtual storage of a loaded segment
— Loadability

— LOAD: The class is brought into memory when the program is initially loaded
- Same as Load Module's usual behavior
— NOLOAD: The class is not loaded with the program; may not contain adcons
- Non-text classes are always NOLOAD; application loads via Binder API
— DEFERRED LOAD: The class is prepared for loading, instantiated when requested

« Useful for byte-stream data such as pre-initialized private writable static data
areas in shared (re-entrant) programs

— Text type: Byte-stream (machine language) or Record-like (IDR, ADATA)

. Other attributes are accepted by the Binder for future use:

— Read-only/Read-write; Movable/Nonmovable; Shareable/Nonshareable

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

23

Sketch of a Multi-Class Program Object

44— Default-Loaded ——»

4 Deferred-Load » <«—— Demand-Loaded —»

4— Classes > 4— Classes —» <4—— Classes —»
Classes—» |TEXT24R |TEXT24W |TEXT31R |TEXT31W |etc. Writable| etc. SYM |IDR |ADATA |etc.
(R/0) [(R/W) |(R/O) [(R/W) |etc. Static etc. Data |Data |Records |etc.
AA element
Sections| BB |element |element |element
CC |element element
l

- New concept: separately relocatable classes of module data

— All elements in each class have identical behavioral attributes (e.g., RMODE)

— Each loaded class segment has its own relocation origin

— Effectively, a multi-component (multi-LM?) module! (compare slide 16)

- Demand-loaded (NOLOAD) classes accessible via Binder services

- Deferred-load classes require special Program Loader interface

DFSMS/MVS Binder and Program Objects

© IBM Corporation 1995, 2001

Benefits of Demand-Loaded (NOLOAD) Classes 24

- Integrated support for any type of program-related data
— IDR data, translator's “Associated Data” (ADATA), user data

- PO keeps module-related and user data together in one place
— Source statements (possibly encoded), source-file information, etc.
— Internal symbols, debugging breakpoint tables, NLS messages, etc.

— User information, history data, documentation, instructions, etc.

- Application requests data via Binder's “FASTDATA” API

— Delivers what was “Unavailable Data” in Load Modules

- Allows problem determination and debugging “in place”

— Helps tools locate bugs when and where they happen

- Reduces need for complex configuration management tools

— Module-specific items (source, object, listings, executables) need not be
tracked separately

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

New External Symbol Types and Ownership Hierarchy

25

- Five external symbol types:

SD
ED

LD

PV

ER

Section Definition; owns other types

Element Definition: defines the class to

which this element (and its text, parts,
and/or labels) belongs; owned by an SD

Label Definition: entry point within an
element; owned by an ED; only in a CAT
class

Part View: this section's view of
(contribution to) a part within a class;
owned by an ED; only in a MRG class

External Reference: owned by an SD

. Strict ownership rules prevent orphaned symbols
(OBJ has orphans; see slide 14)

New External Name

Ownership Hierarchy

SD

:

ER

ED

LD

(CAT)

PV

(MRG)

DFSMS/MVS Binder and Program Objects

© IBM Corporation 1995, 2001

26

Compatibility

DFSMS/MVS Binder and Program Objects

© IBM Corporation 1995, 2001

Treatment of Old Object/Load Modules 27

- All functionality of old OM/LM behavior is retained
. Old code is mapped by the Binder as follows:

oM Binder's Mapping

SD SD; create ED for class B TEXT and LD at element's origin for section name

LD LD

ER, WX | ER

CM SD with “common” flag; create ED for class B_TEXT and LD at element's origin for
section name

PC Binder assigns unique numeric names (displayed as PRIVnnnnn)

PR, XD PV; create ED for class B_PRV

TXT Text records

RLD RLD records

END END; deferred length (if any) placed on a new record type

SYM ED for class B_SYM

- Assembler supports similar mappings when GOFF option is specified...

DFSMS/MVS Binder and Program Objects

© IBM Corporation 1995, 2001

Example of Object Mapping at Assembly Time 28
. Sample program: . OM ESD (HLASM OBJECT option)
Symbol Type 1Id Address Length LD ID
SECT A SD 00000001 00000000 0000002C
Sect A Start 0 (SD) MYCOM CM 00000002 00000000 00000060
DC 5D'0.1! MY XD XD 00000003 00000007 00000018
DC Q(My XD) SECT B SD 00000004 00000030 00000038
B DATA LD 00000030 00000004
MyCom COM CM .
yeom M . % . GOFF ESD (HLASM GOFF option)
Symbol Type 1Id Address Length LD ID
My XD DXD 3D (XD) SECT A SD 00000001
B PRV ED 00000002 00000001
Sect B CSect , (SD) B TEXT ED 00000003 00000000 0000002C 00000001
" Entry B Data (LD) SECT A LD 88888884 00000000 00000003
=i MYCOM SD 5
B Data DC 7D'1.0 B PRV ED 00000006 00000005
B TEXT ED 00000007 00000000 00000060 00000005
End Sect A MYCOM CM 00000008 00000000 00000007
MY XD XD 00000009 00000007 00000018
SECT B SD 0000000A
B PRV ED 00000008 0000000A
B TEXT ED 0000000C 00000030 00000038 0000000A
SECT B LD 0000000D 00000030 0000000C
B DATA LD 0000000E 00000030 0000000C

DFSMS/MVS Binder and Program Objects

© IBM Corporation 1995, 2001

Program-Object Mapping of Object/Load Modules 29

 Old modules are mapped into POs (if SYSLMOD is a PDSE):

Classes B TEXT B PRV B ESD B RLD B IDRL B IDRU B IDRZ B IDRB

|

Sections

|

Loaded < Non—Loaded Classes >
Class Segment

. B TEXT “Loaded Class” behaves like traditional LM's text (see slide 16)

- B ESD is like LM CESD; B RLD is like LM Control/RLD records

— B IDRx classes hold IDR data from Language translators (L), User (U),
SuperZap (Z), and Binder (B)

IEBCOPY of PDS to PDSE invokes the Binder to do the conversions

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Mixed-Mode Modules and RMODE(SPLIT) 30

- Link Editor: linking modules with mixed RMODEs forces the LM to most
restrictive value
— Only way to split a program into RMODE(24) and RMODE(31) parts:
— Link them separately; execute one part, which loads the other

— No external-symbol references between the two modules
(LOAD/LINK only know entry point name and address of loaded module)

- Binder: RMODE(SPLIT) option creates a PO with two text classes

— Affects only class B TEXT:

— RMODE(24) CSECTs (from class B TEXT) moved to TEXT 24 class,
RMODE(31) CSECTs (from class B TEXT) moved to TEXT 31 class

— TEXT 24 class loaded below 16M, TEXT 31 class loaded above 16M

— Supports full capabilities of inter-module external symbol references
— As if entire program was linked as a single LM in “most restrictive” style!

— Internal symbol inter-class references usable (see example at slide 50)

— Simple solution to LM's AMODE/RMODE complexities
— User code must handle addressing-mode switching, of course!

— Without RMODE(SPLIT) option, B TEXT is bound as with LMs
. Recommendation; let the Binder determine RMODEs

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

31

Improved Binding Techniques

- Link Editor binding algorithms
— Retained
— Generalized

— Treated more rigorously

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Binding Attributes and Rules 32

Classes have one of two binding attributes:

1. Catenate (CAT)

Section contributions (elements) are aligned and catenated end-to-end
— The familiar manner of text binding
. Ordering determined in the normal manner

Note: Only the first element with a given section and class name is retained,;
others are rejected (same as LKED's CSECT rejection)

2. Merge (MRG)
. A generalization of LKED/LDR binding of CM, PR items

Section contributions are named Part Views (PVs)

— Each section supplies its own view of any number of shareable external data
items

- Views are “overlaid” in Merge binding (they map the same storage)
— Part Views are bound into Part Definitions (PDs) (see examples on slides 34-35)
— Part Definitions subsequently bound into segments by catenation
Parts are accessible to any section referencing the part

Note: All Part Views are retained, whether or not identically named

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Example of External Data MERGE Binding 33

Programs PROGA and PROGB are bound to form PROGAB:

— In addition to the C_MYCODE and C_MYDATA classes, the two programs have each
defined external data items in class C_EXTDATA:

— PROGA has defined four external data objects, W, X, Y and Z.

SYMBOL DEFINED LENGTH
W 100
X 80
Y 300
Z 150

— PROGB has defined three external data items, W, X and Y.

SYMBOL DEFINED LENGTH
W 100
X 88
Y 200

— If initial text was provided for W, X, Y, or Z, it would be saved in class B_PARTINIT to
enable correct re-binding

In the next figure, only compiler-defined text/ESD classes are shown

— The resultant ESD for PROGAB is a combination of the two input ESD items
(and has been omitted to improve readability)

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

s109[qO welboid pue Jepulg SAIN/SINSHA

1002 ‘G661 uolielodiod NG| ©

PROGA

C_MYCODE

PROGB

C_MYDATA

C _EXTDATA

W

L=100

Z

L=150

..100 bytes..
..data text..

B ESD

SD
ED
ED
ED
PV
PV
PV
PV

PROGA
C_MYCODE
C_MYDATA
C _EXTDATA
W,L=100
X,L=80
Y,L=300
Z,L=150

C_MYCODE

PROGAB

C_MYDATA

C EXTDATA

Y L=200

..150 bytes..
..data text..

B ESD

SD PROGB

ED C_MYCODE
ED C_MYDATA
ED C_EXTDATA
PV W,L=100
PV X,L=88

PV ¥,L=200

C_MYCODE

PROGA

PROGB

C_MYDATA

PROGA

PROGB

C EXTDATA

W L=100

X L=88

Y L=300

Z L=150

" Bulpuig 39Y3N eleq leussix3 jo sjdwex3

ve

35

Part Views and Merge Binding

Before Binding:

Class ABCD
Part Views
A B C D
Sect. |L=40 L=600|L=12
X |A=3 A=3 A=0
Sect. |L=26 ([L=395 L=4
Y A=2 A=0 A=2
Sect. |L=80 L=100|L=5
Z |A=3 A=2 A=0
After Binding:
Class Segment ABCD
Part Definitions
A B C D
Sect. |L=80 |L=395(L=600|L=12
X'03' |A=3 |A=0 |A=3 |A=2

Note: alignment boundary = 2A

PVs are “merged” by name, to determine
maximum length and strictest alignment

— Creates a Part Definition for each part name

(PD is owned by a “module-level” section)

— Parts may be ordered by priority

PDs are then catenated within the class (in some
order) to form the class's segment

Initializing text (if any) assigned to each PD

In this example (assuming catenation in A-B-C-D

order), Class ABCD has

— Alignment = 3 (doubleword)
— Length = 80+395(+5)+600+12 = 1092
(the +5 aligns Part C's boundary)

PVs kept, so that all PDs can be re-created on

re-bind

DFSMS/MVS Binder and Program Objects

© IBM Corporation 1995, 2001

Generalized Address Constants

36

Length of any class or part

— Implemented in Assembler Language as J-type address constant

— Generalization of “Cumulative External Dummy” (CXD, length of PRV)

Offset of a part or label within its class

— Generalization of Assembler's Q-type address constant

Binder/Loader “Token”

— Used for requesting PMLoader virtualization of DEFERRED LOAD classes

— Controllable by compiler, via RLD entry

High order V-con bit (HOB) can be set according to AMODE of target

— Controllable by bind-time “HOBSET” option, for V-cons only

DFSMS/MVS Binder and Program Objects

© IBM Corporation 1995, 2001

37

Binder Inputs and Outputs

- Some pictorial views of binding and loading

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Module Data: Binder Input (Logical View) 38

Key:
nember name Yodule PO structure as seen by the translator
and Binder user:

- Section roughly equivalent to a
“compilation unit”

K | J

ey:) . .

section name | J — Consists of elements in various
Section classes
| - MRG classes are constructed from

| JJ Part Views
Key:
class name Element

Binder Qutput view is more complex!

|
Key: I J
part name J

(MRG classes only) Part View

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Module Data: Binder Output (Logical View) 39

Text classes are bound into
Binder—Owned User—Defined Segments

Classes Classes

- . A segment may contain multiple

Binder— - — . \ .
Owned clagses if they have identical
Sections - — attributes

User— o Binder retains extra

Defined “module-level” data for
Sections - —

__ re-bindability

_ - Part Views and initializing text
: . control information (e.g. B_ESD)
IDR data, module map, etc.

_ in reserved section names like

< User's View of PO » . X'00000001" for B_ C|3.SSGS,
s View of PO — orphaned ER/PR items
- X'00000003' for PVs, linkage
descriptors, initializing data
|[EWBLIT for LE support
IEWBCIE for DLL support

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Module Data: PMLoader Input (Physical View) 40

Key:
member/alias name

Key:
class name
(= Segment ID)

Module

Loadable
Segments

PO structure seen by PMLoader:

PO consists of one or more class
segments, some of which are
“loadable”

PMLoader loads and relocates
segments

— Each segment is like a LM:
relocated with its own origin
address

— Distributed or scatter loading

Library member names (entry
points and aliases) must be in
same “primary” class segment as
the module entry point

DFSMS/MVS Binder and Program Objects

© IBM Corporation 1995, 2001

a4

The Generalized Object File
Format

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

What Is a “GOFF”? 42

- Generalized Object File Format

- Complete replacement for old Object Module
— Generated by High Level Assembler for most architected functions

— C/C++ implementation in OS/390 V2R10

- Supports needs of languages, PO structure, Binder
— long external names
— 32-bit length and offset fields (vs. 24 in OM)
— multiple text classes
— up to 1 million (or more) ESDIDs
— user and associated data (ADATA) in object stream

— ...and many other forms of attributes and descriptive data

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Generalized Object File Format Records 43

. Six record types (similar to the five OM types)
1. Module Header (new): CCSID, translator product identification, etc.
2. External Symbol Dictionary: long names, rich set of types and attributes

3. Text: object code, IDR (OM: only on END), ADATA (OM: only in text or a side
file)

4. Relocation Dictionary: relocation information
5. Deferred Element Length (new): formerly on OM END record

6. End: with optional Entry-Point nomination
- Open-ended, flexible architecture; allows growth and expansion

- Documented in O5/390 DFSMS Program Management, SC27-0806

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Structure of an Old-Format Object Module File 44

- Object modules describe a one-dimensional structure:

Object Module Object Module produced by translator
Control Sectionms... Object Module has one or more control sections
Machine language text Control section may have text, adcons

Address constants

Label Definitions Control section may have Label Definitions
External Symbol References... Object Module may have ER items
PseudoRegister items... Object Module may have PR items
Relocation data... Object Module may have RLD data
END record End of Module, entry point nomination, IDR data

- Contrast with GOFF structure (slide 45)

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Structure of a GOFF File

45

- GOFF files: linearized two-dimensional structure; classes in any order

Object File HDR record

Sections...

CAT Classes...

Element

Label Definitioms...

Text, Adcons

MRG Classes...

Element

Part Views...

Initializing Text

External Symbol References...

Deferred Element Length...

Relocation data...

END record

Object File produced by translator

Object File has one or more sections
Section may have CAT classes

Section provides one element per class
Element may have label definitions
Element may have text, address constants
Section may have MRG classes

Section provides one element per class
Element has one or more Part Views (no LDs)
Part View may have initializing text
Section may have external references
Section may have deferred element lengths
Section may have RLD data

End of Module, may have entry point nomination

DFSMS/MVS Binder and Program Objects

© IBM Corporation 1995, 2001

High Level Assembler GOFF-Support Options and Statements 46

- GOFF option creates a GOFF file

— Existing, unmodified code will go into special “compatibility” classes
— B TEXT for text, B PRV for pseudo-registers (see slides 27-28)

— Requires LIST(133) option for wide listing format
. Section names specified with START, CSECT, RSECT

- CATTR statement defines class name, specifies Class ATTRibutes:
classname CATTR attribute[,attribute]...

classname
a valid PO class name; it must follow the rules for naming external
symbols, except that:

— class names are restricted to a maximum of 14 characters
— all class names of the form letter_symbol are reserved for IBM-defined purposes

attribute
binder attributes to be assigned to the class

- XATTR statement declares additional external-symbol attributes

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

High Level Assembler Support for Class Attributes 47

- Attributes currently supported by the Binder:

ALIGN(n) Aligns class elements on a 2" boundary (0 < n< 12)
Currently: for text, 3, 11, or 12; for PVs, 0-3

MERGE The class has the merge binding attribute
(default = CAT)

NOLOAD The class is not loaded when the PO is brought into
storage (default = LOAD)

DEFLOAD Requests deferred loading of the class

RMODE(24) The class has residence mode 24

RMODE(37) The class has residence mode 31

RMODE(ANY) The class may be placed in any addressable storage;
equivalent to RMODE(31)

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

High Level Assembler Support for Class Attributes ... 48

- Attributes currently accepted (but not supported) by the Binder:
MOVABLE The class is reenterable, and can be moved
(It is adcon-free, and can be mapped to different virtual
addresses in different address spaces)
EXECUTABLE, NOTEXECUTABLE (or null)
The class can/cannot be branched to or executed;
null operand means “unspecified”
READONLY The class may be storage-protected
REFR The class is marked refreshable

RENT The class is marked reenterable

REUS, NOTREUS The class is marked reusable or not

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

High Level Assembler CATTR Usage 49

- CATTR must be preceded by START, CSECT, or RSECT

— A section name must be defined first

— Unlike OM, no blank section is initiated

— Text following CATTR belongs to the element defined by the section and class
names

. If several CATTR instructions have the same class name:
— the first occurrence establishes the class and its attributes

— the rest indicate the continuation of the class, and may not specify attributes
- Default attributes for CATTR (if none are specified) are:

ALIGN(3),NOTREUS, RMODE (24)

— Same as the assembler's OM defaults

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

s109[qO welboid pue Jepulg SAIN/SINSHA

1002 ‘G661 uolielodiod NG| ©

- The module defines one section (Sect 3), two
classes (Code24, Code3l):

Sect A CSect , Start of section 'Sect A'

Code24 CAttr RMode(24),Executable Define 'Code24' Class
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk*k** Portion loaded below 16MB

Entry Start Declare name of entry point
Start AMode 24 Entry point has AMODE (24)

Using *,15 Establish addressability
Start Save (14,12),,* Save registers

- — = ...set up save areas, etc.

LR 12,15 R12 is base register

Drop 15 Drop old base

Using Start,12 Establish addressability

- — = Finish init'z'n code

L 15,=A(X'80000000'+MainCode) Point to Code3l

BASSM 14,15 Call MainCode

LtOrg RMode (24) literal pool
D31Addr DC A(Data3l) Addr (data above 16M)
Data24 DC ces ...data below 16M...

Code3l CAttr RMode(31),Executable Define 'Code3l' Class
kkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkk** Portion loaded above 16MB

Using *,15 Establish base regs etc.
MainCode Save (14,12),,* 'MainCode' is INTERNAL!
D24Addr DC A(Data24) Addr (data below 16M)
Data3l DC cos ...data above 16M...

End Start Nominate 'Start' entry

Note inter-element references using internal symbols!

Note AMODE for entry-point name: LD items have AMODEs, sections don't
(classes have RMODESs)

— Not all LDs in a section have one AMODE!

9|dwex3

weiboid abenbue] Jojquiassy sse|d-om] ajdwis v

05

ESD From Simple Two-Class Assembly 51

- The assembled example creates the following ESD listing:

External Symbol Dictionary

Symbol Type 1Id Address Length LD ID Flags (Annotations)

SECT A 8D 00000001 (Section definition)

B TEXT ED 00000002 00000000 00000000 00000001 00 (Default class; length=0)
SECT A LD 00000003 00000000 00000002 00 (Label for section)

CODE24 ED 00000004 00000000 00000074 00000001 (User class)

START LD 00000005 00000000 00000004 01 (Label in CODE24; AMODE (24))
CODE31 ED 00000006 00000078 00000012 00000001 (User class)

- Section SECT A (SD) “owns” elements (ED) in three classes:

B TEXT “owns” the label (LD) for SECT A

— created by HLASM because it doesn't know if other classes will be
defined

CODE24 “owns” the label (LD) for START
CODE31 has no externally visible labels
« LD ID column shows “Owning ID”

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

92

Dynamic Link Libraries (DLLs)

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Dynamic Linking and Dynamic Link Libraries 93

- Dynamic linking: binding of external names at execution time

— DLLs provide one form of dynamic linking; LE is required

- DLL creator identifies names of functions and variables to be exported
— Makes them available in a “side file” for runtime binding to other applications
— Compiler indicates “import-export” status in object file

- DLL-using application identifies functions and variables to be imported
— User must specify compiler DLL option and Binder controls statement

- Binder also provides the IMPORT control statement
IMPORT CODE |DATA,dll name,identifier

— Compilers and HLASM XATTR statement declare EXPORT status

- Binder creates side file, import-export tables and linkage descriptors
— DYNAM(DLL) option required for DLL creator and user

- LE runtime support routines load and link specified names

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Dynamic Linking: Preparation and Use

54

- Example using C/C++: create a DLL, then the application

DLL
Build

Appli—
cation
Build

DYNAM (DLL) option

DLL —»| C/C++ —»| XOBJ, —¥»| Binder —»| Program
Source Compiler GOFF Object
Defines Specify ESD recs Creates DLL
exported DLL and describe DLL and
functions, EXPORTALL exported sidefile
variables options fns/vars
Binder—created
IMPORT side file of
Statements | IMPORT statements
l (Exported names)
Applic. —¥»| C/C++ —»| XOBJ, —»| Binder —»| Program
Source Compiler GOFF Object
References Specify ESD recs Combines Contains
imported DLL option describe sidefiles import—export
functions, imported of IMPORT tables,
variables fns/vars statements linkage
descriptors

DFSMS/MVS Binder and Program Objects

© IBM Corporation 1995, 2001

Dynamic Linking: Execution Time 95

- Example: Application A imports names from DLL D:

(4)
Application A > DLL D
(1)
————»| LE Runtime DLL —T (2)
Support routines (3)
L
PM Loader

(1) First reference to an imported name passes control to LE
(2) LE DLL-support routines invoke PMLoader to load the DLL

(3) Linkage to DLL name is completed:

— LE uses import-export table to update descriptors for code/data items
— Different “linkages” are used for code (functions) and data (variables)

(4) Subsequent application references go directly to the requested
(imported) name in the DLL

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

96

Summary, Glossary, and
References

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Comparing Old and New

o7

Old (Load Modules)

New (Program Obijects)

Components Link Editor, Program Fetch, | Binder, Program Loader
Batch Loader

Library PDS PDS, PDSE, HFS

Executables One-dimensional; single Two-dimensional; multiple
RMODE segments and RMODEs

Size limit 16MB 1GB

Symbols 8 characters 1024 characters

Symbol types | SD, LD, ER, PR Same, plus ED

Module info IDR only; no system support | Any data; Binder API

DLL support Prelinker required Integrated

Extensibility Not possible Open-ended architecture

DFSMS/MVS Binder and Program Objects

© IBM Corporation 1995, 2001

Summary 58

- New technology for MVS “executables”
— Efficient storage and loading
— Flexible program segmentation

— Generalized mechanisms for inter-component references

. Satisfies many requirements from customers, languages, operating
systems and hardware

- Retained (but non-obtrusive) information about programs
- Defined Application Programming Interfaces to all functions/data

- Open-ended designs for all items
— Easy to generalize, enhance and improve

— Enables Program Management evolution to meet future requirements

- For You: Much more flexibility in creating program structures

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Glossary and Definitions 99

ADATA Associated Data: program data stored in a PO which is not
required for binding, loading, or execution.

API Application Programming Interface
CAT CATenate: a binding method whereby section elements within a
CCSID Coded Character Set ID: identifies a character set used in an

assembly or compilation.

class A cross-section of Program Object data with uniform format,
content, function, and behavioral attributes.

Common A CSECT having length and alignment attributes (but no text) for
which space is reserved in the Program QObject (see Part View)

compilation unit
A “fresh start” of a translator's symbol tables. There may be
more than one compilation unit per source input file.

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Glossary and Definitions ... 60

deferred load
A class attribute requesting the PMLoader prepare the class
(a Prototype Section, or “PSect”) for rapid loading on request
during execution. (Usually, for non-shared classes.)

distributed loading
See “scatter loading”

element The unit of module data uniquely identified by a class name and
a section name.

external data
Module data accessible by multiple sections, each defining its
own view as a Part View.

GOFF Generalized Object File Format, a new and extensible object file
supporting Binder and PMLoader features.

linear format
The format of a PO, “loaded” by DIV mapping.

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Glossary and Definitions ... 61

loadable A class attribute indicating that the class is to be loaded with the
module.

load module (LM)
The original form of MVS executable, stored in record format.

MRG MeRGe: a binding method whereby identically named Part Views
within a class are overlaid (“merged”) before catenation.

noload A class attribute indicating that the class may be “demand
loaded” by the application.

Part View (PV), PseudoRegister (PR), External Dummy (XD)
A named subdivision of a MRG class having length and
alignment attributes for which space is not reserved in the LM or
PO (see Common); used to describe a pseudoregister or external
data item. Resolved to an offset within the class segment.

PM1 The Binder, Loader and related program management services
available in DFSMS/MVS V1R1.0 and V1R2.0. Emulates Linkage
Editor/Loader function; simple PO structure.

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Glossary and Definitions ... 62

PM2 Extensions to the program management services delivered with
DFSMS/MVS V1R3.0. Significant modifications and
enhancements to PM1 PO structure.

PM3 Extensions to the program management services which became

available with DFSMS/MVS V1R4.0. Significant modifications and
enhancements to PO structure and function.

PM3.1 In OS/390 V2R10; XPLINK support

program object
The new form of MVS executable, stored in linear format.

record format
The format of a LM, loaded by Program Fetch I/O operations.

relocation The load-time conversion of address constants from module or
class displacements to virtual addresses.

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

Glossary and Definitions ... 63

scatter loading
The loading of module text into non-contiguous areas of virtual
storage according to class attributes stored with the module.
Also referred to as distributed loading.

section (1) A cross-section of Program Object data stored under a single
name. A section consists of elements belonging to one or more
classes. (2) A generic term for control section, dummy section,
common section, etc.; a collection of items that must be bound
or relocated as an indivisible unit.

segment The aggregate of all section contributions to a single class,
stored in consecutive locations on DASD and (optionally) loaded
as a single entity into virtual storage. Each segment has its own
relocation base address.

text (1) The class(es) of module data containing the executable
instructions and data. (2) A class attribute indicating that
locations within the class may contain and/or be the target of
address constants.

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001

References 64

1. OS/390 DFSMS Program Management (SC27-0806)
2. DFSMS/MVS V1R3.0 Presentation Guide (GG24-4391), chapter 6

3. “Linkers and Loaders,” by Leon Presser and John R. White, ACM
Computing Surveys, Vol. 4 No. 3, Sept. 1972, pp. 149-167.

4. Linkage Editor and Loader User's Guide
5. Linkage Editor, Loader Program Logic manuals

These publications describe the Assembler Language elements that create
inputs to the Linkage Editor, Loader, and Binder.

6. High Level Assembler for MVS & VM & VSE Language Reference
(SC26-4940)

7. High Level Assembler for MVS & VM & VSE Programmer's Guide
(SC26-4941)

DFSMS/MVS Binder and Program Objects © IBM Corporation 1995, 2001
GOFFTK Rev. 28 Nov 00, 1540 Fmt. 28 Nov 00, 1551

