How the Linkage Editor Works:
A Tutorial on Object/Load Modules,
Link Editors, Loaders, and
What They Do for (and to) You

SHARE 96 (Feb. 2001), Session 8169

John R. Ehrman
ehrman@us.ibom.com or ehrman@yvnet.ibm.com

IBM Silicon Valley (Santa Teresa) Laboratory
555 Bailey Avenue
San Jose, CA 95141

© IBM Corporation 1994, 2001

March 1, 2001

Table of Contents Contents-1

Introduction i e et e 1
TopIC OVeIVIEW . . . 2
What Happens to Your Program? e 3
Why is Linking Needed? 6
Putting the Pieces Back Together 7

Translator Output: Object Modulesc ittt enrnnns 9
Some IBM-Specific Definitions 10
Translator Output: The Object Module 11
Object Module External Symbol Dictionary (ESD) 12
Origins of External Symbol Dictionary ltems 13
Example of Object Module Elements: ESD 14
Object Module Machine-Language Text (TXT) 15
Object Module Relocation Dictionary (RLD) 16
Example of Object Module Elements: 17
Object Module Internal Symbol Dictionary (SYM) 18
Object Module End-of-Module (END) 19
Other Object Module Records (CMS) 20

Combining Object Modules with the Batch Loader 21
Combining Object Modules: a Simple Example 22
Combining Object Modules: First Object Module 23
Combining Object Modules: Second Object Module 24
Combining Object Modules: Batch Loader Actions 25
Combining Object Modules: Resulting Program 26

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Table of Contents Contents-2

Saving Linked Programs: Load Modules s, 27
What and Why are Load Modules? 28
What Is In a Load Module? 29
Schematic of a Block Format (“Normal”) Load Module 30
Linkage Editor Inputs and Outputs e, 31
Linkage Editor Processing 32
Gaps, Gas, and Initial Values e 33
Pseudo-Registers A4
Example of Pseudo-Register Use, 36
Differences in CM and PR Processing i, 37
Peculiarities of Load Modules 38

Overlay Modulescii ittt a s a e ta st asannnnnsns 39
Example of an Overlay Structure e, 40
Arranging an Overlay Structure 41
An QOverlay Structure In More Detail 42
Overlay Regions 43
Overlay Considerations e 44

Bringing Load Modules into Storage: Program Fetch 45
Program Fetch -- A Relocating Loader 46

Looking Backwardttt i i i et i 47
Some Historyo 48
Assumptions and Constraints on 1964 Designs 49
Limitations and Extensions 50

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Table of Contents Contents-3

What Are The Problems? Why Should We Care? 51
Looking Forwardttt 56
The DFSMS Binder and Program Loader 57
Load Modules: A “Refresher” View, 58
Program Objects 59
Generalized Object File Format 60
SUMMaAINY ...ttt ittt it ittt a s a s a s e E e 61
What We've DiSCUSSEd i e e 62
Glossary: Some General Definitions 63
ReferenCes 67

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Introduction

Note: This is not a tutorial on Link Editor usage!

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Topic Overview 2

- What happens to programs “on the way to execution”

- Why program linking is needed

- What assemblers and compilers produce: object modules
- What program linking does with object modules

- Saving the results of linking: load modules

- What happens when load modules are put into storage

- Why the Linkage Editor and Loader are the way they are

- The future: the good things the new Binder does for you

- Glossary and references

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

What Happens to Your Program? 3

1. The Beginner's View

The COMPUTER

My Program ——®| Something Magical Happens —»| My Output

2. The After-a-Little-Experience View

The COMPUTER

Something Very

A Source Language Peculiar and
Program » | Compiler |—®| Mysterious »| My Output
Happens Here

« We learn to distinguish between compile time and run time

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

What Happens to Your Program? ...

3. The After-Some-More-Experience View

Source
Program

Language Program
Compiler Linker Execu—
tion
Compile Link Run
Time Time Time

»| Output

« We learn to distinguish among compile, link, and run times

Linkage Editing, Loading, Object & Load Modules

© IBM Corporation 1994, 2001

What Happens to Your Program? ...

4. Our View

Source
Trans—
lator

Compile
Time

Program
Fetch

Program
Execution
and Output

Linkage 4 Load >
Editor Module
»-0bject l
Module
» | Batch Loader
Link Time

Run Time

« QOur focus will be almost entirely on the items in the “Link Time” box,

plus Program Fetch

« We will refer to some compile-time and run-time topics and issues

Linkage Editing, Loading, Object & Load Modules

© IBM Corporation 1994, 2001

Why is Linking Needed? 6

Anything that gets “big” or “complicated” is hard to manage

The world's oldest paradigm for handling big, complex problems:
— “Divide and Conquer”: break the problem into manageable pieces

— Many dignified names have been given to this: Analysis, Modular
Decomposition, Top-Down Analysis, Program Partitioning, Structured
Programming...

— As your mother told you,
“Don't try to eat that whole thing! Cut it into pieces first!”

Naturally leads to the question:
— How do | put the divided and conquered pieces back together again?
— “Synthesis” is the dignified name

— As your mother told you,
“If you took it apart, it's up to you to put it back together!”

Program linking and loading are fundamental to any system
— Linker capabilities (or shortcomings) have profound and widespread impacts

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Putting the Pieces Back Together

- Putting the pieces back together (“binding”) can occur at many times

Compile time: compile all needed items from source (early Algol, Pascal)

Link Edit (pre-execution) time: everything “bound” prior to execution
(“static binding”)

Program initiation time: everything “bound” at start of execution

Execution time: pieces “bound” only if required

- Choice of “binding time” implies trade-offs:

Earlier times: efficiency vs. inflexibility

Later times: efficiency, flexibility, modifiability vs. costs

“Efficiency” is measured in many dimensions...!

- Program re-composition requires additional information:

A way to name the pieces to be bound

A way for the pieces to refer to one another

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Putting the Pieces Back Together ... 8

« In this discussion:;

— Information to assist with “re-composition” (or “binding”)
— External names: used to name the pieces to be bound
— External names, address constants: how the pieces refer to one another

— N.B.: The two types of external names need not be the same!

— External names are the critical element in linking!

- Our concerns, and the program re-composition tools involved:
— Link-edit (pre-execution) time: Linkage Editor
— Program initiation time: Batch Loader

— Execution time: Operating System Program Fetch services

- Understanding the pieces, and how they were bound
— Link Editor and Batch Loader MAPs? AMBLIST?

— Binder is much more informative (more about this, later)

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Translator Output: Object
Modules

For the truly exciting details, see the References (slide 67):
— High Level Assembler for MVS & VM & VSE Programmer's Guide

— 0S/390 DFSMS Program Management

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Some IBM-Specific Definitions 10

- Control Section (or “Section” or CSECT, for short)

— A set of program elements bearing fixed positional relationships to one
another

— A unit whose addressing and/or placement relative to all other Control
Sections does not affect the program's run-time logic

— The basic unit of program linking
— Types: Ordinary (CSECT), Read-Only (RSECT), Common (COM)

- External Symbol (a “Public” symbol; internal symbols are “Private”)
— A name known at program linking time
— A symbol whose value is intentionally not resolved at translation time

. Address Constant (“Adcon”)

— A field within a Control Section into which an actual address (most of the
time!) will be placed during program relocation

- Pseudo-Register (or, External Dummy Section)
— PR names may be identical to other External Symbol names without conflict
— More about these, at slides 34 and 37

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Translator Output: The Object Module 11

- 80-character (card-image) records, with 3-character ID in columns 2-4

ESD

TXT

RLD

SYM

END

External Symbol Dictionary (symbols and their attributes)
Machine Language instructions and data (“Text”)
Relocation Dictionary (data about adddress constants)
Internal (“Private”) Symbols

End of Object Module, with IDR (ldentification Record) data

- One object module per Compilation Unit

- “Batch” translations may produce multiple object modules

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Object Module External Symbol Dictionary (ESD) 12

- Describes external symbols (1 to 3 16-byte items per record)

- Numbered sequentially within each object module, starting at 1
— The (16-bit) number is called the ESDID

- Four basic types of external symbol:

SD,CM

LD

ER,WX

PR

Section Definition: the name of a control section

— Data: name, ESDID, length, section-origin address, AMODE & RMODE

— Blank SD name sometimes called Private Code (PC)

— Common (CM), SD items handled differently (CM has length, no TXT)

Label Definition: the name of a position at a fixed offset

within a Control Section; typically, an Entry Point

— Data: name, address of the label, and ESDID of the section it's in
(LDs don't have a separate ESDID of their own)

External Reference: the name of a symbol defined

“elsewhere” to which this module wants to refer

— Data: name, ESDID

Pseudo Register: name of a Pseudo Register
(the Assembler calls it XD, External Dummy Section)
— Data: name, ESDID, PR length and alignment requirement

- ESD records must appear first in each object module

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Origins of External Symbol Dictionary ltems

13

- ESD items originate in various language constructs, such as:

ESD item Assembler | VS Fortran | OS PL/I COBOL C/370
SD Csect, Routine, Procedure | Outermost R/W data
Rsect Block Data | xtermalvars. it | program
CM Com Common External
static if no
INIT
ER Extrn, V-con | Call, Call, data Static Call Call, data
Common reference Literal uniess | reference
DYNAM option
LD Entry Entry Entry Entry Function
PR, XD DXD, Q-con File, Writable
+ Dsect Fetchable, static for RENT
Controlled (not in final LM)
WX Wxtrn Used, but not in

the language

Linkage Editing, Loading, Object & Load Modules

© IBM Corporation 1994, 2001

Example of Object Module Elements: ESD 14

- Sample Assembler Language program:

Source Program

AA CSect Control Section
* External symbols
Extrn X External reference
Entry E Entry—Point symbol
*
E DC A(X+44) Address constant
Internal [Conl DC Frit }-Text
Symbols QCon DC Q(D) Address constant
External — |D DXD A External Dummy (Pseudo—Register)
Symbol End

- Assembler's External Symbol Dictionary (ESD) listing
Symbol Type ID Addr Length LD ID Flags

AA SD 000001 000000 00000C 00 ...Control section

X ER 000002 ...Extrn

E LD 000000 000001 ...Entry (in Section AA: LD ID=1)
D XD 000003 000003 000004 .. .External Dummy

— Note: D's “address” field is an alignment mask (3 = fullword)

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Object Module Machine-Language Text (TXT) 15

- Contains machine language instructions and data

— Up to 56 bytes per record

. Data:
1. How many bytes of text data are in this record
2. ESDID of the control section it belongs in

3. Address within that control section where the text is to be placed

- Always a contiguous string of bytes
— Discontinuities in the “text” stream start a new TXT record

— Contents of gaps not specified

— Early days: storage not zeroed, so gaps might contain oddities

- Some codes (regrettably) depend on zero initial storage

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Object Module Relocation Dictionary (RLD) 16

- Packed stream of 4-byte or 8-byte RLD items

- Information about relocatable (and Q, CXD) address constants

— Where the constant is to be found
— What value should be in the constant (what it should point to)

- Each RLD item has 6 pieces of information:

1. R Pointer: ESDID of the name whose “target address” the adcon will contain
— l.e., what it points to; where to get the “relocation value”

2. P Pointer: ESDID of the section where the constant resides
— l.e., where to find the constant itself (but not what will be in it)

3. Address: the address or offset at which the constant resides within its section
(as specified by the P pointer); TXT may contain data to be added to the relocation
value

4. Length: the constant's length (in bytes)

5. Type: whether it's an A-type (data), V-type (branch, possibly indirect),
Q-type (PR offset), or CXD (PR “Cumulative Length”) (More on Q/CXD later...)

Warning!! A- and V-type constants can behave very differently! (More later...)
6. Direction: for A-type adcons, whether to add or subtract the relocation value

- Last three items are encoded in a single byte

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Example of Object Module Elements: 17

- Assembler program (same as on slide 14):

Source Program

AA CSect . Control Section
* - External symbols
Extrn X External reference
Entry E - Entry—Point symbol
*
E DC A(X+44) . Address constant
Internal [Conl DC Fri - Text
Symbols QCon DC Q(D) - Address constant
External — |D DXD A External Dummy (Pseudo—Register)
Symbol End

- Assembler's Relocation Dictionary listing (see ESD on slide 14)

Pos.ID Rel.ID Flags Address
000001 000002 0C 000000 ...A(X): X has R—ID=2, address 0 in section AA (P—ID=1)
000001 000003 2C 000008 ...Q(D): D has R-ID=3, address 8 in section AA (P—-ID=1)

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Object Module Internal Symbol Dictionary (SYM) 18

Contains internal symbols used by source translator

— Produced by Assembler, VS Fortran

SYM information is (sometimes) useful for debugging

— TSO TEST, some commercial debuggers

Ghastly bit-squeezing packed format (details are truly impressive)

— Maximum symbol length is 8 characters
— See HLASM Programmer's Guide (SC26-4941), Appendix C

Linkage Editor doesn't make SYM records convenient to use
— Copies SYM (and SD,CM info from ESD) records to front of load module

— No system facilities for retrieving them easily!

Recommend using High Level Assembler SYSADATA output instead

— More information, in a more usable and accessible format

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Object Module End-of-Module (END) 19

- Required; primary function is to signal the end of the object module

- Some additional (optional) information may be provided:

1. Requested (“nominated”) execution-time entry point
— By ESDID and address, or by external name

— These requests may be overridden by other factors or controls

2. Actual length of a Control Section whose length was not specified on its ESD
record

— This feature saves effort in some compilers

3. |dentification (IDR) data (0, 1, or 2 19-byte IDR items)
— Translator's product number, with version and modification level
— Date (YYDDD format) of the translation
— Use windowing for dates past year 2000 (YY < 65 means 20YY)

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Other Object Module Records (CMS) 20

- CMS LOAD has meager control-statement capabilities
— Only ENTRY and LIBRARY statements

- Obiject-like records can be used for some control functions

REP Replacement text: behaves like a TXT record, but hex values
are specified in EBCDIC for ease of preparation

— Also used by the VSE Linkage Editor

LDT Loader Terminate: last record of a group of object modules,
with optional indication of an entry address and SETSSI info

ICS Include Control Section: placed ahead of an object module to
override the original length of a named control section

SLC Set Location Counter: sets the (absolute virtual) load address at
which the following modules will start loading

SPB Set Page Boundary: sets the loader's location counter to the
next page boundary; may appear before/after any module

- See the CMS LOAD command description for further details

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

21

Combining Object Modules with
the Batch Loader

- A simple example of initiation-time linking
lllustrates the basic principles involved in linking

— Applicable to CMS, also

- The Batch Loader can do a lot more than this example shows

— A one-pass processor, with address “fixups”

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

22

Combining Object Modules: a Simple Example

- Suppose a program consists of two source modules:

Loc
000

200
204
208

260

Module 1

MAIN

ZDATA

COMMON /WORK/ ...

CALL SUB

Addr (SUB)
Addr (WORK)
Addr (ZDATA)

ENTRY ZDATA

Loc
000

700
704

Module 2

SUB
COMMON /WORK/ ...
EXTERNAL ZDATA
Addr (WORK)
Addr (ZDATA)

(For this example, values
are given in decimal)

— Program MAIN contains a ZDATA entry point, and refers to the COMMON
area named WORK

— Subprogram SUB refers to the external name ZDATA, and to the COMMON
area named WORK

- Translation produces two object modules

Linkage Editing, Loading, Object & Load Modules

© IBM Corporation 1994, 2001

Combining Object Modules: First Object Module 23

- The object module for Module 1 would look roughly like this:

ESD SD ID=1 MAIN Addr=000 Len=300 SD for CSECT MAIN, ESDID=1, Len=300

ESD CM ID=2 WORK Addr=000 Len=600 CM for COMMON WORK, ESDID=2, Len=600
ESD LD ID=1 ZDATA Addr=260 LD for Entry ZDATA, ESDID=1, Addr=260
ESD ER ID=3 SUB ER for reference to SUB, ESDID=3

TXT ID=1 Addr=000 'abcdefghijk! Text for MAIN, address 000

TXT ID=1 ... etc. Text for MAIN

TXT ID=1 Addr=100 'mnopgrstuvw’ Text for MAIN, address 100

TXT ID=1 Addr=208 00000260 Text has offset in MAIN for internal adcon
TXT ID=1 Addr=260 101234567890 Text for MAIN, address 260

TXT ID=1 ... etc. Text for MAIN

RLD PID=1 RID=3 Addr=200 Len=4 Type=V Dir=+ RLD item for Addr (SUB)

RLD PID=1 RID=2 Addr=204 Len=4 Type=A Dir=+ RLD item for Addr (WORK)

RLD PID=1 RID=1 Addr=208 Len=4 Type=A Dir=+ RLD item for Addr (ZDATA)

END Entry=MAIN End of module, nominated entryname=MAIN

- ESD records define two control sections (MAIN and WORK), one entry
(ZDATA), and one external reference (SUB)

- RLD contains information about three address constants
— TXT for Addr(ZDATA) contains offset (00000260) from MAIN

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Combining Object Modules: Second Object Module

24

- The object module for Module 2 would look roughly like this:

TXT
TXT
TXT
TXT
RLD
RLD
END

ESD SD ID=1 SUB Addr=000 Len=800
ESD CM ID=2 WORK Addr=000 Len=400
ESD ER ID=3 ZDATA

ID=1 Addr=040 'qweruiopasd'
ID=1 ... etc.
ID=1 Addr=180 '7klzxcvbnm'
ID=1 ... etc.

PID=1 RID=2 Addr=700 Len=4 Type=A Dir=+
PID=1 RID=3 Addr=704 Len=4 Type=A Dir=+

SD for CSECT SUB, ESDID=1, Len=800
CM for COMMON WORK, ESDID=2, Len=400
ER for reference to ZDATA, ESDID=3

Text for SUB, address 040
Text for SUB

Text for SUB, address 180
Text for SUB

RLD item for Addr (WORK)
RLD item for Addr (ZDATA)
End of module

- ESD records define two control sections (SUB and WORK) and one
external reference (ZDATA)

- RLD contains information about two address constants

Linkage Editing, Loading, Object & Load Modules

© IBM Corporation 1994, 2001

Combining Object Modules: Batch Loader Actions 25
« The Batch Loader
1. Builds a single (“Composite”) ESD to map
entire program
— Merges ESD information from the object _
modules; library is searched for » Composite ESD
unresolved ERs (but not WXs)
— Renumbers ESDIDs, assigns adjusted Name |Type|ESDID |Addr |Length
address values to all symbols (let initial
program load address be 123500) MAIN) SD | 0L 11235001 300
ZDATA | LD | 01 [123760
2. Places text from SDs into storage at SUB SD | 02 [123800| 800
designated addresses WORK | CM | 03 |124600| 600
3. Determines length of COMMON (retains (end) 125200
longest length), allocates storage for it
4. Relocates address constants by adding/ entry 01 1123500

subtracting relocation value to A-con P-field
contents; storing it in V-cons

5. Sets entry point address and enters loaded
program

« The linked program is not saved

(For this example, values are

given in decimal)

Linkage Editing, Loading, Object & Load Modules

© IBM Corporation 1994, 2001

Combining Object Modules: Resulting Program 26

- The resulting program, loaded into storage for execution:

123500 (MAIN) 123800 (SUB) 124600 (WORK) 125200
(end)
abcdefghijk. .. —»|...text... —»| length=600
...more text... gweruiopasd...
...more text... Lootext.oL
mnopgrstuvw. . . cootext..
jklzxcvbnm. ..
Lootext.oL
A(SUB) {00123800
A (WORK) 00124600 a
A(ZDATA) |00123760
Adcons 1, 00124600 A (WORK)
' 4—{00123760 A (ZDATA)
L(ZDATA)

01234567890. .. Adcons

. Storage was allocated for three control sections (two SD, one CM)
- Address constants were resolved to designated addresses
- Loader enters program at entry point MAIN (123500)

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

27

Saving Linked Programs:
Load Modules

- Same linking process as in previous example, except:

Assumed “load address” for load modules is zero
Program (CESD, text, RLD, other info) written to DASD
Unresolved ERs OK if NCAL specified

Final relocation will be done by Program Fetch (slide 46)

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

What and Why are Load Modules? 28

- Basic executable unit for MVS-like systems
— The world's longest-surviving form of “executable binary!”
- Designed (a long time ago) for
1. Loading into storage with minimal overhead
— Binary (zero-origin) program image, requiring only relocation
2. Editing

— Retains enough information to permit
— Replacement of any component
— Restructuring of the entire module

— Renaming of (almost!) any element
— Unless you tell the Linkage Editor not to keep it! (NE option)
3. Minimal run-time storage requirements
— Only “necessary” items are in storage

— Complex overlay structures are supported

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

What Is In a Load Module? 29

- Load module's structure very similar to object module's
— Simplifies processing of each

- Basic contents (analogous to object module records)

CESD Composite External Symbol Dictionary
Text Machine language instructions and data
RLD Relocation Dictionary
SYM Object-module records copied directly into load modules
IDR |dentification records (from object modules, Linkage Editor,
user, and ZAP)
EOM End of module (a flag field on a CTL record)
- Additional items having no object-module analogs
CTL Control records, for reading and relocating text records

And, for modules in overlay format:

SEGTAB Segment table

ENTAB Entry table

EOS End of Segment (a flag field on a CTL record)

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Schematic of a Block Format (“Normal”) Load Module

30

- Basic format is called “record format,” “block format” or “block loaded”

SYM

CESD

IDR

CTL

*—p
Text

CTL/RLD

Text

EOM/RLD

Only if TEST option, and SYM info is present in inputs
(May also contain some ESD data)

Omitted if NE option

Info about first text record
First text record, placed at module load address

Relocate first text record, and read second text record
at specified offset from module load address

Last text record

Relocate last text record, signal end of module

* Location of first text record kept in PDS directory
(essentially, a copy of info from the first control record)

Linkage Editing, Loading, Object & Load Modules

© IBM Corporation 1994, 2001

Linkage Editor Inputs and Outputs 31

. Inputs
— Object modules
— Load modules

— Control statements to direct the Linkage Editor

— Where to get additional inputs:
INCLUDE, LIBRARY

— What to do with all the pieces:
REPLACE, CHANGE, INSERT, ORDER, PAGE, OVERLAY, EXPAND

— How to describe and name the output module:
ENTRY, NAME, SETSSI, IDENTIFY, SETCODE, MODE, ALIAS

- Outputs
— Load module(s)
— Listing, terminal messages

- Processing: two passes over inputs (described on slide 32)
— Very much like an assembler!

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Linkage Editor Processing 32

- Pass 1
— Read all inputs (explicitly or implicitly designated)

— If not NCAL, unresolved ERs cause library search
— WX never causes library search; resolved only if symbol is already present

— Build symbol table (CESD) by merging ESD/CESD items from all inputs

— Determine lengths, orderings, offsets, etc.

— First SD wins, longest CM wins, all nonzero-length PC items kept, etc.
— CMs matching an SD become that SD

- Intermediate processing
— Resolve interdependences (CMs mapped at end to save DASD space)

— Assign addresses relative to zero module origin, relocate adcons
— CMs assigned at end; don't have to be written out (no text)

— Assign module's entry point (complex rules)
— Write module MAP (and XREF, if entire module is in storage)

« Pass?2

— Write out all the pieces in the correct order, with relocation data
— If NE (not editable) option: no CESD, IDR, or SYM

— STOW directory entry (or entries, if ALIASes)
— Write XREF (if module didn't fit in storage)

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Gaps, Gas, and Initial Values 33

- Gap: any area of load module text not specified by inputs
— Explicit request (such as assembler's DS statement)
— Areas skipped for alignment (within sections, ends of sections)
— Uninitialized COMMON areas

- Qas: Link Editor may write short text-record blocks
— Large gaps: Link Editor writes out the preceding text record
— Only one partial CSECT allowed per block
— Also depends on space left on track (impenetrable algorithm decides)

- Initial values: what eventually appears in the gaps?

— Small gaps: depends on what is in the Link Editor's text buffers

— For early releases, it could be anything (buffers weren't cleared)
- Now cleared to zeros

— Binder's FILL option lets you specify a value
- Can help debug unitinialized-variable problems

— Large gaps: depends on what's in storage during module Fetch
- Advice: never depend on anything you didn't initialize

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Pseudo-Registers 34

- Allow sharing by name of dynamically managed external objects defined
In separately translated re-entrant programs

— Originally required by PL/I for files, areas, controlled variables, etc.

- PRs have their own “name space”
— Separate from all other external symbols

— PR names may be identical to other types of ESD name without collision

- PR items refer to offsets in a “link-time Dummy Control Section”
— Hence the Assembler's name, “External Dummy” (XD)

— The dummy section is also called the “Pseudo-Register Vector”
(PL/I's PRV allowed up to 1024 more 32-bit “registers”)

— A template; a data-structure mapping created at link time

— Example on slide 36

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Pseudo-Registers ... 35

- PR's are resolved somewhat like commons,
but no storage is allocated at link time

If multiple definitions, longest length and strictest alignment win

Accumulated length/alignment of PRV items then determine offsets associated
with each PR name

Offset value placed in Q-type address constants referencing PR name

Total size of the “link-time DSECT” (up to 2GB) is placed in “CXD” adcon
items

- PR and CXD resolution is completed at link time

- Runtime code must acquire a storage area of the CXD size

- Runtime references access fields at desired offsets into the acquired area

Q-con contents provide displacements

- The following example illustrates this process

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Example of Pseudo-Register Use 36

Declare XD/PR for “FILE1CB” in each referencing program
FILEICB DXD A Will hold addr(File 1's Control Block)

Link with other modules; Link Editor creates “virtual” PRV

————————— I <4— Offset of FILEICB's PR is placed in Q(FILEICB)

¢ 4 PRV Length is placed in CXD

Main program acquires storage for real PRV

L 0,PRVLen Get length of PRV
GetMain R,LV=(0) Get storage
LR 11,1 Carry PRV address in R1l

PRVLen CXD Link Editor inserts total length of PRV

Modules reference PRV's FILE1CB field using offsets in Q-type adcons

L 2,=Q(FILEICB) Get PRV offset of FILE1CB pointer
AR 2,11 Storage address of FILEICB pointer
L 1,0(,2) Pointer to FILEICB now in Rl

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Differences in CM and PR Processing

37

- COMMONSs and Pseudo-Registers have similarities and differences

COMMONSs Pseudo-Registers
Bind-time Space allocated in the | No space allocated; a mapping of all
behavior load module PR items into a virtual PRV
Storage Static: part of the load | Dynamic: at run time
Allocation module
Initialization | None (unless an SD) Run-time code's responsibility
Copies One per load module One PRV per module instantiation
External One per common, one | One per PR; no conflict with non-PR
names per load module names
Internal As many as you want | None (unless you map the PR's inner
names structure with a DSECT)
References | Direct, with adcons One level of indirection via Q-con

offsets and the base reg anchoring
the allocated storage

Linkage Editing, Loading, Object & Load Modules

© IBM Corporation 1994, 2001

Peculiarities of Load Modules 38

- SYM and IDR put at front of module, to simplify Link Editor logic
- CESD is at front of module, to simplify re-processing of load modules

- PDS directory info allows Program Fetch to skip this stuff
— First text record's length and disk location; storage needed; attributes; etc.

- Small record lengths

— SYM < 244; CESD < 248; IDR, CTL, RLD < 256; Text < track length
(Can force text records to be much shorter than a track)

- If first “real” text is not at relative zero, write a 1-byte record at zero!

- “Directory name space” (PDS directory names) unrelated to external
(CESD) names (which may be unrelated to internal names, too!)

— Can assign member and alias names unrelated to CESD names

— Object module item named AA, renamed to BB in load module, PDS member is
CC

— TSS Linkage Editor didn't allow this confusion

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

39

Overlay Modules

- Overlays are more complex than block-format modules
— Different parts of a module may share the same storage (at different times!)

— Require special Linkage Editor considerations

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Example of an Overlay Structure

40

- Suppose MAIN calls SUBA and
SUBB

— Neither SUB calls the other

- In block format, they would
appear in storage as

MAIN
CALL SUBA
CALL SUBB

SUBA
Do SUBA stuff
Return

SUBB
Do SUBB stuff
Return

- SUBA and SUBB might be
overlaid, like this:

MAIN
CALL SUBA
CALL SUBB
SUBA SUBB
Do SUBA stuff Do SUBB stuff
Return Return

. SUBA and SUBB share the

same storage

- The overlay supervisor must
(help) make this work!

Linkage Editing, Loading, Object & Load Modules

© IBM Corporation 1994, 2001

a4

Arranging an Overlay Structure

 Determine how modules can
share storage

- Draw an “overlay tree” of the
structure

— Root (low address) at top

— Control statements describe
desired structure

— In this example, three overlay
nodes: A, B, C

- Root segment is always
present

— Contains entry point,
autocalled sections, Segment
Table (SEGTAB tells what
segments are in storage)

SEGTAB

Entry—»| MAIN
Point

AUTO1
AUTO2

4— Overlay A ——»

Root
Seg—
ment

SUBA

SUBB

SUBJ

<4— Qverlay C —»

<4— Overlay B —»

SUBR SUBS

SUBV

SUBT

SUBW

Linkage Editing, Loading, Object & Load Modules

© IBM Corporation 1994, 2001

An Overlay Structure In More Detail

42

Root

SEGTAB

SUBS SUBR

Segment
MAIN
V(suBa) | (1)
V(SUBB)
—>»| ENTAB1 | Entry Table (ENTAB)
A(SUBA)
A(SUBB) (3)
— svc 1
SUBA SUBB
V(SuBs) | (1)
V(SUBR)
V(SUBJ) | (2) —|V(SUBV) | (1)
[V (SUBW)
SUBJ |€¢—
—>» |ENTAB3 | Entry
—> |ENTAB2 | Entry A(SUBV) | Table
A(SUBT) | Table [___-A(SUBW) (3)
A(SUBR) svc -_1
A(SUBS)
[_-svc SUBV SUBW

WORK

A (WORK)
i] (4)

V(SUBJ) — (2)

V(SUBT)
»| SUBT] (2)

Each segment with subsidiary segments is
suffixed with an Entry Table to assist
loading of the “lower” segments

— SVCs call Overlay Supervisor
V-type adcons may resolve to an ENTAB,
not to the named symbol!

— V-cons for SUBs in lower segments
resolve to ENTAB (1)

— V-con for call in same or higher segment
resolves directly (2)

A-cons always resolve directly

— In ENTAB, resolve directly to SUBs (3)
— To sections in same segment (4)
— Block format may work, but not overlay!

Segment reload resets local datal!

Linkage Editing, Loading, Object & Load Modules

© IBM Corporation 1994, 2001

Overlay Regions 43

) Region 1
« Overlays can be arranged in
independent groups: REGIONs SEGTAB
Root
— Allows greater freedom in Entry—»| MAIN Seq—
: Point ment
structuring programs]
AUTO1
- Each region can be an overlay AUTO2
Structure! 4—Overlay A ——»
— Four regions allowed SUBA SUBB
- A form of dynamic loading i — Overlay ¢ —»
‘e . <4— Overlay B —»
— Specific routines loaded as SUBV SUBH
needed SUBR SUBS
— No displacement of other o
segments |
Region 2

- Example with two regions:

<4— Overlay W(REGION) —»

SUBL SUB3

SUB2

<— Overlay Y —»

<4— Overlay X —»

SUB6 SUB7

SUB4 SUBS

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

44

Overlay Considerations

Pro:

Faster initiation: only part of the program need be loaded to start
Economical storage use: only load what's needed, when it's needed
Modules can handle more than 16M of text

Can always re-link to block format if there's enough storage
— But: Behavior may be different, due to loss of re-initializations!

Con:

AMODE, RMODE must be 24
Programs are not re-enterable, cannot be shared

More complex to specify; greater care needed in coding certain items:

1. Local data may or may not “persist” across calls
2. External data sharing protocols may be more complicated
3. V-type adcon references may be indirect! (A-type is always “direct”)

Additional overhead in calls to segments needing to be loaded
Calls among certain modules may be forbidden (or wrong)

Linkage Editing, Loading, Object & Load Modules

© IBM Corporation 1994, 2001

45

Bringing Load Modules into
Storage: Program Fetch

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Program Fetch -- A Relocating Loader 46

Used for all module loading from disk (LOAD, LINK, XCTL, ...)
— Except during IPL...

Skip over everything preceding the first control record

— SYM, IDR, CESD (PDS directory info makes the skipping simple)
— Therefore, no linking! (CESD info has been ignored)

Control records tell length and relative address of following text record
— May also contain RLD information for preceding text block

AV-cons relocated using only address information in RLD,
and only by adding the module's load address

— R and P pointers ignored
— Q-cons and CXD were completed at linkage-edit time

Note: two stages of relocation are involved:
1. Linkage Editor relocates addresses relative to zero module origin
2. Program Fetch relocates addresses relative to module's “load address”

Overlay Supervisor
— SEGTAB and ENTABs manage segment traffic; Program Fetch loads segments

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

47

Looking Backward

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Some History 48

- Linkage Editor
— Wiritten in 1964-65 by small team in IBM Poughkeepsie

— Coding standards and techniques were still being developed...

— Program Fetch, Overlay Supervisor done at the same time
— PDS's, BLDL, STOW, etc. added to OS in response to LKED needs

— Initial release ran in 18KB (core was expensive; 32KB machines were big!)

- OS Batch Loader
— Appeared much later (about 1969) with OS/360 Release 17

- Very advanced technology for that time
— Very rich functionality

— No built-in programming model (like past systems)

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Assumptions and Constraints on 1964 Designs 49

- Early-binding philosophy: systems are expensive, people are cheap
— Programs run for long periods between needed changes
— Therefore: recompile “deltas” and re-link them into the application module
- Re-linking is much cheaper than re-building modules “from scratch”
— Therefore: keep enough info within the module to make editing possible

- DASD is slow, and central storage is precious and expensive
— Therefore: short records are a good thing
— Therefore: packing module pieces tightly is a good thing
— Therefore: overlay structures are a very good thing
. 24-bit (vs. 15) addresses and lengths are adequate for a very long time
— Therefore: Everything must be smaller than 16MB
— Therefore: AMODE and RMODE were “patched in”

— Therefore: no “scatter loading” by RMODE; entry points don't have own
AMODE

- 8-character (vs. 6) upper-case EBCDIC names are adequate for a very
long time

- Central storage is real (not virtual)
— No page-outs of relocated pages

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Limitations and Extensions 50

- Many current limitations that products must cope with:

— Short names, 16MB size, mono-modal modules, rigid formats, inadequate ESD
types, no room for descriptive data, internal table limits, strange loopholes, ...

- Some products invent “private” object formats, overload ESD names
— Feed translator output through a “pre-linker” ahead of the Linkage Editor

Private Pre— Normal Link Normal
Compiler »| Object | Linker »| Object —»| Editor [¥| Load
Module Module Module

Additional Linking Step

— Updates may force complete re-link from private object modules
— May have to “play games” to fool some existing tools (e.g. CMS TXTLIB)

- S0, we must consider new formats for translator outputs
— Many languages need more function: C, Ada, Fortran-90, anything O-O

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

What Are The Problems? Why Should We Care? 51

Every host program begins as an (unexecutable) object module

— Must be transformed to an executable
(MVS: load module; CMS: module; VSE: phase)

OMs, LMs, LKED are at the heart of our business
— Problems are pervasive, and affect everyone

— Functional limitations also limit how we think about programs

Some problems are generic, some are particular to each record type

General problems:
— Fixed format of records and fields
— 16MB size/length limits due to 24-bit length and address fields

— Inefficient use of file space

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

What Are The Problems? Why Should We Care? ... 52

. ESD records:

Long names are impossible to accommodate (without loophole games)
16 MB size/length limit on everything

Inadequate range of ESD types

Mono-modal modules and entry points
— Entry points in a CSECT can't have different AMODESs

No properties information

— Is it really RENT? Movable? REFR? REUS? Read-Only? Is it R/O data (constants)?
Pure code? Code and R/W data?

No way to specify section alignment
CM/PR “ownership” very muddled, sometimes unknown
No data can be specified for CM items (must “merge” with an SD)

No attributes of modules or entries
— Code? Data? (Should A or V point to this?)

No way to provide descriptive data

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

What Are The Problems? Why Should We Care? ...

33

« TXT records:

Maximum of 70% utilization

No way to specify text attributes
— Is it code or data? Is it R/O? RW? X/O?
— Do pieces have different RMODES?

Can't specify initializations for holes/gaps
Can't request data encoding or compression

- RLD records:

A-type and V-type adcons occasionally (mis-)used as equivalent

No checking is done between pointer/pointee
Cannot specify addressing modes for pointers

Cannot assign attributes for references
— E.g. this is a pointer to data; to code; etc.

No “extended attributes” to allow interface-conformance checking

Linkage Editing, Loading, Object & Load Modules

© IBM Corporation 1994, 2001

What Are The Problems? Why Should We Care? ... 54

- SYM records:
— Painfully complex, hard-to-use data formats
— Symbolic names are truncated to 8 characters
— No XREF and reference information is provided

— No tie-backs from code and symbols to source statements
— No source statements are retained, either!
— Writing listing-scanners is not a very good approach...

— SYM difficulties typically force users to choose beween
— Putting symbols in TXT (giving bloated code)
— Omitting symbols (giving harder debugging)

— Basically, Assembler only...

- END records:

— No way to specify entry point's AMODE

— Cannot specify more than one deferred length

— No provision for richer (and more useful) IDR data

— Overloaded with too many miscellanous items

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

What Are The Problems? Why Should We Care? ... 95

- And then there are Load Modules:
— Inherit all the shortcomings of object modules
— Short names, single modes, 16 MB limits, etc.

— And add some new ones, t00...
— Peculiar module structures, inefficient record sizes

— When re-linking, some items are “sticky”
. PCs with code, CM lengths, PR length/alignment, SYM, IDR, ...

. SYM records accumulate

— System can't LOAD SYM, IDR data even if you want to!

— Internal structures “exposed,” impossible to change
- It's amazing that all this has worked (somehow) for so long a time!

- Linkage Editor is quirky, far too forgiving of errors, full of loopholes

— Lots of “hand-crafted” bypasses (each detour is someone else's roadblock)

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

96

Looking Forward

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

The DFSMS Binder and Program Loader 57

Totally new product and new technology

— Binder replaces Linkage Editor, Batch Loader;
Program Loader replaces Program Fetch

— Upward compatible with previous products: support all functions/formats
— Many new and enhanced capabilities

— Answers a very large set of customer requirements

Fixes a vast array of usability and performance problems

— Many new messages, added information, and detailed diagnostics

— Almost all internal constraints removed

Supports Program Objects (a new form of load module “executable”)
— Enhances performance, flexibility, integrity

— Internal structure not externalized; data-access interfaces provided

— Stored in PDSE's, which fix almost all PDS problems (space, integrity,
compression, performance, sharability, etc.)

Supports a new Generalized Object File Format
Base for all enhancements

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Load Modules: A “Refresher” View

28

Loaded Text

CSECT XX

CSECT YY

CSECT ZZ

Other Data

SYM Data

IDR Data

ESD Data

RLD Data

- All of the “default-loaded” text has a single set of attributes
— RMODE, AMODE, RENT or REUS, etc.

— Effectively, a single-component module

- Other (not-loaded) module data not accessible via “normal” services

Linkage Editing, Loading, Object & Load Modules

© IBM Corporation 1994, 2001

39

Program Obijects

Classes—p

44— Default-Loaded ———» <«4— Demand-Loaded —»

44— (Classes

4— (Classes ——»

R/0
TEXT24

R/W
TEXT24

R/0
TEXT31

R/W
TEXT31

etc.
etc.

SYM
Data

IDR
Data

ADATA
Records

etc.
etc.

Sections

|

AA

BB

CC

— Effectively, a multi-component module!

Each class is analogous to a Load Module

Each section contributes to one or more classes

Other (not-loaded) module data accessible via Binder services

Key new concept: independently-loaded classes of module data
— All data in each class has identical attributes (e.g., RMODE)

Linkage Editing, Loading, Object & Load Modules

© IBM Corporation 1994, 2001

Generalized Object File Format 60

- Complete replacement for old Object Module

— Supported in High Level Assembler, C/C++
- Variable-length or FB80 records
- Record types similar to OM types

— Module Header (new)

— External Symbol Definition: long names, richer set of types and attributes
— Text: object code, other module-specific information (e.g., IDR)

— Relocation Directory: relocation and other link-time actions

— Deferred Section Length (formerly on OM END record)

— End and Requested Entry

. Supports needs of “modern” languages

- Open-ended, flexible architecture

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

61

Summary

Linkage Editing, Loading, Object & Load Modules

© IBM Corporation 1994, 2001

What We've Discussed 62

- Why program linking is a Good Thing
- What is in object modules, and where they come from

. How inter-module references are resolved to form an executable
program

- What is in load modules, and how they are built by the Linkage Editor
- How load modules are loaded into storage and relocated
- Some history

- Where this technology is going

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Glossary: Some General Definitions 63

Note: many of these terms are used quite flexibly in this industry...

- Load, loading
— Place a module into central storage
- Link, linking
— Resolve symbolic (external) names into offsets or addresses
— Combine multiple (input) name spaces into a single (output) name space

— Sometimes called “binding” (but that term is much more general)

- Absolute loader
— Places a module into storage at a fixed address, without relocating anything

— Example: CMS's “traditional” non-relocatable MODULEs

- Relocate, relocation

— Assign actual-storage or module-origin-relative addresses to address constants

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Glossary: Some General Definitions ... 64

Relocating loader

— Places modules into storage and updates (relocates) addresses to their actual
“final” value

— Example: Program Fetch, CMS Loader

Linker, Linkage Editor, Binder
— Creates linked relocatable modules for later loading
— Example: Linkage Editor, DFSMS Binder

Linking loader

— Places modules into storage with linking immediately prior to program
execution

— Example: MVS Batch Loader, CMS's LOAD ... (START...

Dynamic loading
— Place modules into storage (with relocation) during program execution

— Examples: portions of modules loaded by overlay, or modules loaded via
LOAD, LINK, XCTL, ATTACH

Dynamic linking
— Place modules into storage with linking during program execution
— Example: TSS

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Glossary: Some General Definitions ... 65

- Overlay

— A program structure allowing storage to be shared by different non-interacting
parts of the program

- Overlay segment

— The smallest separately loadable part of an overlay program, always loaded at
the same offset from the module origin

- Root segment

— The lowest-addressed segment of an overlay program, always present during
execution

- Entry table

— A special section inserted by the Linkage Editor at the end of an overlay
segment, to assist branching into other segments

- Segment table

— A special section created by the Linkage Editor describing segments of an
overlay program, placed at the base of the root segment

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

Glossary: Some General Definitions ... 66

Reusable

— Attribute of a module that describes the extent to which it can be reused or
shared by multiple tasks in an address space

Serially reusable

— A module that can be executed by multiple tasks, one at a time in sequence

Reenterable

— A module that can be executed by multiple tasks concurrently

Refreshable

— A module that can be replaced by a new copy during execution without
affecting its operation

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001

References 67

1. OS/390 DFSMS Program Management (SC27-0806)

2. High Level Assembler for MVS & VM & VSE Language Reference
(SC26-4940)

3. High Level Assembler for MVS & VM & VSE Programmer's Guide
(SC26-4941)

- These Assembler publications describe the most basic forms of language
elements that create inputs to the Linkage Editor, Loader, and Binder.

4. Linkers and Loaders, by Leon Presser and John R. White, ACM
Computing Surveys, Vol. 4 No. 3, Sept. 1972, pp. 149-167.

5. Linkage Editor and Loader User's Guide

6. Linkage Editor, Loader Program Logic manuals

Linkage Editing, Loading, Object & Load Modules © IBM Corporation 1994, 2001
Rev. 27 Nov 00, 1440 Fmt. 27 Nov 00, 1501

