Assembler Language
as a Higher Level Language:
Macros and
Conditional Assembly Techniques

SHARE 102, Sessions 8167-8168

John R. Ehrman
Ehrman@ VNet.IBM.Com

IBM Silicon Valley (Santa Teresa) Laboratory
555 Bailey Avenue
San Jose, California 95141

February, 2004

Conditional Assembly and Macro

Overview

HLASM
Rev. 23 Oct 2003, 1210

© Copyright IBM Corporation 1993, 2004. All rights reserved.

Overview-1
Fmt. 23 Dec 03, 1236

The Two Assembler Languages

e System/360/370/390 assemblers support two (nearly) independent
languages

— “ordinary” or “base” assembly language: you program the machine

— translated by the Assembler into machine language

— usually executed on a System/360/370/390 processor

— “conditional” assembly language: you program the assembler
— interpreted and executed by the Assembler at assembly time

— tailors, selects, and creates sequences of statements

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Overview-2

Why is the Conditional Assembly Language Interesting?

e Adds great power and flexibility to the base (ordinary) language
— You write programs that write programs!

— Lets the language do more of the work

e |ets you build programs “bottom-up”
— Repeated patterns become macro calls
— Enhances program readability, reduces program size

— Reduces the gap between abstraction and expression
e HLLs: you must make the problem fit the language

e Macros: you can change the language to fit the problem

— Each application encourages design of its own language

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Overview-3

Part 1: The Conditional

Assembly Language

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-1

Conditional Assembly Language

e (Conditional Assembly Language:

— general purpose (if a bit primitive): data types and structures; variables;
expressions and operators; assignments; conditional and unconditional
branches; built-in functions; 1/0O; subroutines; external functions

e Analogous to preprocessor support in some languages

— But the Assembler's is much more powerful!

e Fundamental concepts of conditional assembly apply
— outside macros (“open code,” the primary input stream)

— inside macros (“assembly-time subroutines”)

e The two languages manage different classes of symbols:
— ordinary assembly: ordinary symbols (internal and external)

— conditional assembly: variable and sequence symbols
— variable symbols: for evaluation and substitution

— sequence symbols: for selection

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-2

Evaluation, Substitution, and Selection

e Three key concepts of conditional assembly:

1. Evaluation

— Assigns values to variable symbols, based on the results of computing complex
expressions.

2. Substitution

— You write the name of a variable symbol where the Assembler is to substitute the
value of the variable symbol.

— Permits tailoring and modification of the “ordinary assembly language” text
stream.

3. Selection

— Use sequence symbols to alter the normal, sequential flow of statement
processing.

— Selects different sets of statements for further processing.

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-3

Variable Symbols

e Written as an ordinary symbol prefixed by an ampersand (&)

e Examples:
8A &Time &DATE &My Value

e Variable symbols starting with &SYS are reserved to the Assembler

e Three variable symbol types are supported:
— Arithmetic: values represented as signed 32-bit (2's complement) integers
— Boolean: values are 0, 1

— Character: strings of 0 to 255 EBCDIC characters

e Two scopes are supported:

— local: known only within a fixed, bounded context; not shared across scopes
(macros, “open code”)

— global: shared in all contexts that declare the variable as global

e Some variable symbol values are modifiable (“SET” symbols)

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-4

Declaring Variable Symbols

e There are six explicit declaration statements (3 types x 2 scopes)

Arithmetic Type | Boolean Type Character Type
Local Scope LCLA LCLB LCLC
Global Scope GBLA GBLB GBLC
Initial Values 0 0 null

e Examples of scalar-variable declarations:

LCLA &J,&K
GBLB &INIT
LCLC &Temp_Chars

e May be subscripted, in a 1-dimensional array (positive subscripts)
LCLA &F(15),&G(1) No fixed upper limit; (1) suffices

e May be created, in the form &(e) (where e is a character expression
starting with an alphabetic character)

&(B&J&K) SETA &(XY&J.Z)-1

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-5

Declaring Variable Symbols ...

e All explicitly declared variable symbols are SETtable

— Their values can be changed

e Three forms of implicit declaration:
1. by the Assembler (for System Variable Symbols)

— names always begin with characters &SYS

— most have local scope

2. by appearing as symbolic parameters (dummy arguments) in a macro
prototype statement

— symbolic parameters always have local scope

3. as local variables, if first appearance is as target of an assignment

— this is the only implicit form that may be changed (SET)

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-6

Substitution

e |n appropriate contexts, a variable symbol is replaced by its value
e Example: Suppose the value of &A is 1.

Then, substitute &A:

Char&A DC C'&A' Before substitution
+Charl DC c'1l After substitution

e Note: '+' in listing's “column 0” indicates a generated statement

e This example illustrates why paired ampersands are required if you want
a single & in a character constant or self-defining term!

e To avoid ambiguities, mark the end of a variable-symbol substitution with

a period:
Write: CONST&A.B DC C'8A.B' &A followed by 'B'
Result: +CONST1B DC C'1B' Value of & followed by 'B' !!
Not: CONST&AB DC C'&AB' &A followed by 'B' ?? No: &AB !

** ASMAOO3E Undeclared variable symbol — OPENC/AB

— OPENC/AB means “in Open Code, and &AB is an unknown symbol”

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-7

Substitution, Evaluation, and Re-Scanning

e Points of substitution identified only by variable symbols
— HLASM is not a general string- or pattern-matching macro processor
e Statements once scanned for points of substitution are not re-scanned

&A SETC '3+4'
&B SETA 5*&A Is the result 5*(3+4) or (5*3)+4 ??

** ASMA102E Arithmetic term is not self-defining term; default = 0
(Neither! The characters '3+4' are not a self=defining term!)

e Substitutions cannot create points of substitution

e Another example (the SETC syntax and the &&s are explained later):

&A SETC '&8B' &A has value &&B
&C SETC '&A'(2,2) &C has value &B
&B SETC 'XXX!' &B has value XXX
Con DC C'&C' Is the result &B or XXX?

** ASMA127S I1legal use of Ampersand

The operand is '&B', so the statement gets a diagnostic

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-8

Assigning Values to Variable Symbols: SET Statements

e Three assignment statements: SETA, SETB, and SETC

— One SET statement for each type of variable symbol

&x_varsym SETx x_expression Assigns value of x_expression to &x_varsym

&A_varsym SETA arithmetic_expression
&B_varsym SETB boolean_expression
&C varsym SETC character_expression
— SETA uses familiar arithmetic operators and “internal function” notation

— SETB uses “internal function” notation

— SETC uses specialized forms and “internal function” notation
¢ [nternal function notation:

(operand OPERATOR operand) for binary operators
(OPERATOR operand) for unary operators

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-9

Assigning Values to Variable Symbols: SET Statements ...

e Target variable symbol may be subscripted

&A(6) SETA 9 Set &A(6)=9
&A(7) SETA 2 Set 8&8A(7)=2

e Values can be assigned to successive elements in one statement

&Subscripted x VarSym SETx x_Expression List x' is A, B, or C

&A(6) SETA 9,2,5%5 Sets 8A(6)=9, &A(7)=2, &A(8)=10

— Leave an existing value unchanged by omitting the expression

8A(3) SETA 6,,3 Sets 8A(3)=6, &A(4) unchanged, &A(5)=3

e External functions use SETAF, SETCF (more at slide Conditional-22)

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-10

Evaluating and Assigning Arithmetic Expressions: SETA

e Syntax:

&Arithmetic_Var_Sym SETA arithmetic_expression

e Follows same evaluation rules as ordinary-assembly expressions

— Simpler, because no relocatable terms are allowed
— Richer, because internal functions are allowed
— Arithmetic overflows always detected! (but anything/0 = 0!)

e Valid terms include:

— arithmetic and boolean variable symbols
— self-defining terms (binary, character, decimal, hexadecimal)
— character variable symbols whose value is a self-defining term
— predefined absolute ordinary symbols
— arithmetic-valued attribute references
(Count, Definition, Integer, Length, Number, Scale)
— internal function evaluations (shifting and “masking”)

e Example:
&A SETA &D*(2+&K)/&G+ABSSYM-C'3'+L'&PL3*(&Q SLL 5)

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-11

Arithmetic Expressions: Internal Arithmetic Functions

e Shifting functions
— Written (operand Shift Op shift_amount)
— Shift_Op may be SRL, SLL, SRA, SLA

&A SLL SetA (&A1 SLL 3) Shift left 3 bits, unsigned

&A SRL SetA (&A1l SRL &A2) Shift right &A2 bits, unsigned
&A SLA SetA (&A1l SLA 1) Shift left 1 bit, signed

&A SRA SetA (&A1l SRA 8A2) Shift right &A2 bits, signed

e Masking functions AND, OR, XOR
— Written (operand Mask Op operand)
— Produces 32-bit bitwise logical result
&B SETA (&B AND X'F0') AND &B with X'FO'
&A SetA (7 XOR (7 OR (8A+7))) Round &A to next multiple of 8
e Masking function NOT
— Takes only one operand, written (NOT operand)
— Produces bit-wise complement; equivalent to (operand XOR —1)
&C SETA (NOT &C) Invert all bits of &C

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-12

SETA Statements vs. EQU Statements

e Note differences between SETA and EQU statements:

SETA Statements

EQU Statements

Active only at conditional assembly
time

Active at ordinary assembly time;
predefined absolute values usable at
conditional assembly time

May assign values to a given
variable symbol many times

A value is assigned to a given
ordinary symbol only once

Expressions yield a 32-bit binary
signed (non-relocatable) value

Expressions may yield absolute,
simply relocatable, or complexly
relocatable unsigned values

No base-language attributes are
assignable to variable symbols

Attributes (length, type) may be
assigned with an EQU statement

HLASM

© Copyright IBM Corporation 1993, 2004. All rights reserved.

Conditional-13

Evaluating and Assigning Boolean Expressions: SETB

e Syntax:

&Boolean Var Sym SETB (boolean_expression)

e Boolean constants: 0 (false), 1 (true)

e Boolean operators:
— NOT (highest priority), AND, OR, XOR (lowest)
— Unary NOT also allowed in AND NOT, OR NOT, XOR NOT

e Relational operators (for arithmetic and character comparisons):
- EQ, NE, GT, GE, LT, LE

e Examples

&A SETB (&N LE 2)
& SETB (&N LE 2 AND '&CVAR' NE '*')
& SETB ((&A GT 10) AND NOT ('&X' GE 'Z') OR &R)

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-14

Evaluating and Assigning Boolean Expressions: SETB ...

e Warning! Character comparisons use EBCDIC collating sequence, but:
— Comparisons don't stop at end of shorter string
— Shorter string not blank-padded to length of longer string

&8 SETB ('B' GT 'A') &B is 1 (True)
&8 SETB ('B' GT 'AA') &B is 0 (False)

— Shorter strings always compare LT than longer!
— 'B' > 'A' but 'B' < 'AA’

e Note: cannot compare arithmetic to character expressions

— Only character-to-character and arithmetic-to-arithmetic comparisons

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-15

Evaluating and Assigning Character Expressions: SETC

e Syntax:

&Character Var Sym SETC character_expression

e A character constant is a 'quoted string' O to 255 characters long

&CvVarl SETC 'AaBbCcDdEeFf'

&CVar2 SETC 'This is the Beginning of the End'
&Decimal SETC '0123456789'

&Hex SETC '0123456789ABCDEF"

&Empty SETC '' Null (zero—-length) string

e All terms must be quoted, except type-attribute references
(and opcode-attribute references)

— Type-attribute references are neither quoted nor duplicated nor combined
&TCVarl SETC T'&CVarl

e Strings may be preceded by a parenthesized duplication factor

&X SETC (3)'ST' &X has value STSTST
&J SETA 2
&Y SETC (2*&J)"'*" &Y has value ****

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-16

Evaluating and Assigning Character Expressions: SETC ...

e Apostrophes and ampersands in strings must be paired
— Apostrophes are paired internally for assignments and relationals!

&T SetC '''' Value of &QT is a single apostrophe
&Yes SetB ('&QT' eq '''') &Yes is TRUE

— Ampersands are not paired internally for assignments and relationals!

&Amp SetC '&&' &Amp has value &&

&Yes SetB ('&Amp' eq '&&') &Yes is TRUE
&D SetC (2)'A8B' &D has value A8RBA&RZB

— Use substring notation to get a single & (see slide Conditional-19)
e Warning! SETA variables are substituted without sign!

& SETA -5
DC F'&A' Generates X'00000005'

&C SETC '&A' &C has value 5 (not —5!)

— The SIGNED built-in function avoids this problem
&C SETC (SIGNED &) &C has value -5

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-17

Character Expressions: Concatenation

e Concatenation of character variables indicated by juxtaposition

e (Concatenation operator is the period (.)

&C SETC 'AB' &C has value AB
& SETC 'A'.'B' &C has value AB

& SETC '&C'.'E' &D has value ABE
&E SETC '&D&D' &E has value ABEABE

e Remember: a period indicates the end of a variable symbol

& SETC '&D.&D' &E has value ABEABE
& SETC '&C.E' &D has value ABE

e Periods are data if not at the end of a variable symbol

& SETC '&D..&D' &E has value ABE.ABE
& SETC 'A.B' &B has value A.B

e |ndividual terms may have duplication factors
& SETC (2)'A'.(3)'B' &J has value AABBB

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-18

Character Expressions: Substrings

e Substrings specified by 'string' (start_position,span)

&C
&C

SETC
SETC

"ABCDE' (1,3) &C has value ABC
'"ABCDE' (3,3) &C has value CDE

e span may be zero (substring is null)

&C

SETC

'"ABCDE' (2,0) &C is a null string

e span may be * (meaning “to end of string”)

&C

SETC

'"ABCDE' (2,*) &C has value BCDE

e Substrings take precedence over duplication factors
&C SETC (2)'abc'(2,2) &C has value bcbc, not bc

e |ncorrect substring operations may cause warnings or errors

&C
&C
&C

&C

SETC
SETC
SETC

SETC

'"ABCDE' (6,1) &C has null value (with a warning)
'"ABCDE' (2,—-1) &C has null value (with a warning)
"ABCDE' (0,2) &C has null value (with an error)

'"ABCDE' (5,3) &C has value E (with a warning)

Note: warning disabled in AsmH, HLASM R1; option control was added in HLASM R2

HLASM

© Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-19

Character Expressions: String Lengths

e Use a Count Attribute Reference (K') to determine the number of
characters in a variable symbol's value

&N

&C
&N

&C
&N

&C
&N

&C
&N

SETA

SETC
SETA

SETC
SETA

SETC
SETA

SETC
SETA

K'&C Sets &N to number of characters in &C
'12345" &C has value 12345

K'&C &N has value 5

' null string

K'&C &N has value 0

TrrgRt ! &C has value '&%&'

K'&C &N has value 4

(3) 'AB' &C has value ABABAB

K'&C &N has value 6

e Arithmetic and boolean variables converted to strings first

&A

SETA

—999 K'&A has value 3

HLASM

© Copyright IBM Corporation 1993, 2004. All rights reserved.

Conditional-20

Character Expressions: Internal Character Functions

e Character-valued (unary) character operations:

&X_Up SetC
&Y Low SetC
& Pair SetC
&CharVal SetC
&EBCDIC SetC

(UPPER
(LOWER

_m_x_v
m<.v

(DOUBLE '&Z')
(SIGNED &A)

(BYTE

X'FF')

A1l letters in & set to upper case

A1l letters in &Y set to lower case
Ampersands/apostrophes in &Z doubled
Convert arithmetic &A to signed string
Create one-byte character-variable value

e Arithmetic-valued (binary) character operations: INDEX, FIND

— INDEX finds position in 1st operand string of first match with 2nd operand

&First Match SetA ('&BigStrg' INDEX '&SubStrg') First string match
&First Match SetA ('&HayStack' INDEX '&0neBigNeedle')

— FIND finds position in 1st operand string of first match with any character of
the 2nd operand

&First Char SetA ('&BigStrg' FIND '&CharSet') First character match
&First Char SetA ('&HayStack' FIND '&AnySmallNeedle')

— Both return 0 if nothing matches

— These two functions may not be recognizable in all SetA expressions

— May have to write separate statements

HLASM

© Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-21

External Conditional-Assembly Functions

e Interfaces to assembly-time environment and resources

e Two types of external, user-written functions
1. Arithmetic functions: like &\ = AFunc(&V1, &V2, ...)

&A SetAF 'AFunc',&V1,&V2,... Arithmetic arguments
&LogN SetAF 'Log2',&N Logb (&N)

2. Character functions: like &€ = CFunc('&S1', '&S2', ...)

&C SetCF 'CFunc','&S1','&S2',... String arguments
&RevX SetCF 'Reverse','8X' Reverse (&X)

e Functions may have zero to many arguments

e Standard linkage conventions

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-22

Conditional Expressions with Mixed Operand Types

e Expressions sometimes simplified with mixed operand types

— Some limitations on substituted values and converted results

e Let &A, &B, &C be arithmetic, boolean, character:

Variable Type SETA Statement | SETB Statement | SETC Statement
Arithmetic no conversion zero &A becomes | '&A' is decimal
0; nonzero &A representation of
becomes 1 magnitude(&A)
Boolean extend &B to no conversion '&B"' is '0' or
32-bit 0 or 1 ‘1!
Character &C must be a &C must be a no conversion
self-defining term | self-defining
term; convert to
O or 1 as above
HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-23

Statement Selection

e Allows the Assembler to select different sequences of statements for
further processing

e Key elements are:

1. Sequence symbols
— Used to “mark” positions in the statement stream

— A “conditional assembly label”

2. Two statements that reference sequence symbols:
AGO conditional-assembly “unconditional branch”
AIF conditional-assembly “conditional branch”

3. One statement that helps define a sequence symbol:

ANOP conditional-assembly “No-Operation”

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-24

Sequence Symbols

e Sequence symbol: an ordinary symbol preceded by a period (.)

A .Repeat_Scan .Loop_Head .Errorl2

e Used to mark a statement
— Defined by appearing in the name field of a statement

A LR RO,R9

— Used as target of AlF, AGO statements to alter sequential statement
processing

e Not assigned any value (absolute, relocatable, or other)
e Purely local scope; no sharing of sequence symbols across scopes

e (Cannot be created or substituted (unlike ordinary and variable symbols)
— Cannot even be created by substitution in a macro-generated macro (!)

— Never passed as the value of any symbolic parameter

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-25

Sequence Symbols and the ANOP Statement

e ANOP: conditional-assembly “No-Operation”

e Serves only to hold a sequence-symbol marker before statements that
wouldn't have room for it in the name field

.Target ANOP
&ARV SETA &ARV+1 Name field required for target variable

e No other effect
— Conceptually similar to (but very different from!)

Target EQU * For ordinary symbols in ordinary assembly

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-26

The AGO Statement

e AGO unconditionally alters normal sequential statement processing
— Assembler breaks normal sequential statement processing
— Resumes at statement marked with the specified sequence symbol

— Two forms: Ordinary AGO and Extended AGO
e Ordinary AGO (Go-To statement)
AGO sequence_symbol

Example:
AGO .Target Next statement processed marked by .Target

e Example of use:

————— AGO .BB
| * (1) This statement is ignored

> .BB ANOP
* (2) This statement is processed

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-27

The Extended AGO Statement

e Extended AGO (Computed Go-To, Switch statement)
AGO (arith_expr)seqsym 1[,seqsym k]...

e Value of arithmetic expression determines which “branch” is taken from
sequence-symbol list

— Value must lie between 1 and number of sequence symbols in “branch” list

e Warning! if value of arithmetic expression is invalid, no “branch” is
taken!

AGO (&SW).SW1,.SW2,.SW3,.SW4
MNOTE 12, 'Invalid value of &&SW = &SW..' Always a good practice!

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-28

The AIF Statement

e AIF conditionally alters normal sequential statement processing
e Two forms: Ordinary AIF and Extended AlF

e Ordinary AIF:

AIF (boolean_expression)seqsym
AIF (%A GT 10).Exit_Loop

¢ |[f boolean_expression is

true: continue processing at specified sequence symbol
false: continue processing with next sequential statement

—— AIF (& GT 40).BD
| * (1) This statement is processed if (NOT (&2 GT 40))
> .BD ANOP

* (2) This statement is processed

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-29

The Extended AIF Statement

e Extended AlIF (Multi-condition branch, Case statement)

AIF (bool_expr 1)seqsym 1[,(bool _expr n)seqsym n]...

e Equivalent to a sequence of ordinary AIF statements

e Boolean expressions are evaluated in turn until first true one is found

— Remaining boolean expressions are not evaluated

e Example:

AIF (&A GT 10).SS1,(&B0OOL2).SS2,('&C' EQ '*').SS3

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-30

Logical Operators in SETA, SETB, and AIF

e “Logical’ operators may appear in SETA, SETB, and AlF statements:
— AND, OR, XOR, NOT

e Interpretation in SETA and SETB is well defined
(see slide Conditional-23)

— SETA: treated as 32-bit masking operators
— SETB: treated as boolean connectives

e In AIF statements, possibility of ambiguous interpretation:
AIF (8A1 AND &A2).Skip

Let &A1 = 1, &A2 = 2; then, evaluate
AIF (1 AND 2).Skip

— Arithmetic evaluation of (1 AND 2) yields O (bitwise AND)
— Boolean evaluation of (1 AND 2) yields 1 (both operands TRUE)

e Rule: AlIF statements use boolean interpretation
— Provides consistency with previous language definitions.

AIF (1 AND 2).Skip will go to .Skip!

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-31

Displaying Variable Symbol Values: The MNOTE Statement

e Useful for diagnostics, tracing, information, error messages
— See also discussion of macro debugging (slide Concepts-41)

e Syntax:
MNOTE severity, 'message text'

e severity may be

— any arithmetic expression of value between 0 and 255

— omitted (if the following comma is present, severity = 1)
— value of severity is used to determine assembly completion code

— an asterisk; the message is treated as a comment

— omitted (if the following comma is also omitted, treat as a comment)

e Displayed quotes and ampersands must be paired
e Examples:

.Msg 1B MNOTE 8,'Missing Required Operand’

.X14 MNOTE ,'Conditional Assembly has reached .X14'

.Traced MNOTE *,'Value of &%A = &A., value of &(C = "'&C."'""'
MNOTE 'Hello World (How Original!)'’

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-32

Example: Generate a Byte String with Values 1-N

e Sample 0: write everything by hand

N EQU 5 Predefined absolute symbol
DC AL1(1,2,3,4,N) Define the constants

— Defect: if the value of N changes, must rewrite the DC statement

e Sample 1: generate separate statements

— Pseudocode: DO for J =1 to N (GEN(DC AL1(J)))

N EQU 5 Predefined absolute symbol
LCLA &J Local arithmetic variable symbol, initially 0
> .Test AIF (&) GE N).Done Test for completion (N could be LE 0!)
| &J SETA &J+1 | Increment &J
| DC AL1(&J) | Generate a byte constant
L——— AGO .Test | Go to check for completion
.Done ANOP <« _ Generation completed

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-33

Example: Generate a Byte String with Values 1-N ...

e Sample 2: generate a string with the values (like '1,2,3,4,5")

— Pseudocode:
Set S='1'; DO for K =2 to N (S=S || ',K'); GEN(DC AL1(S))

N EQU 5 Predefined absolute symbol
LCLA &K Local arithmetic variable symbol
LCLC &S Local character variable symbol
&K SETA 1 Initialize counter
AIF (&K GT N).Done2 Test for completion (N could be LE 0!)
&S SETC '1' Initialize string
> .Loop ANOP Loop head
&K SETA &K+1 Increment &K
AIF (&K GT N).Donel Test for completion
&S SETC '&S'.',8K' | Continue string: add comma and next value
AGO .Loop | Branch back to check for completed
.Donel DC AL1(8S.) < Generate the byte string
—> .Done2 ANOP Generation completed

e Try it with 'N EQU 30", 'N EQU 90', 'N EQU 300

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-34

Example: System-Dependent I/O Statements

e Suppose a system-interface module declares I/O control blocks for MVS,

CMS, and VSE:

&0pSys SETC 'MVS' Set desired operating system
AIF ('&0pSys' NE 'MVS').T1 Skip if not MVS

Input DCB DDNAME=SYSIN,...etc... Generate MVS DCB
AGO .T4

.T1 AIF ('&0pSys' NE 'CMS').T2 Skip if not CMS

Input FSCB ,LRECL=80,...etc... Generate CMS FSCB
AGO .T4

T2 AIF ('&0pSys' NE 'VSE').T3 Skip if not VSE

Input DTFCD LRECL=80,...etc... Generate VSE DTF
AGO .T4

T3 MNOTE 8, 'Unknown &&0pSys value ''&0pSys''.’

T4 ANOP

e Setting of &OpSys selects statements for running on one system
— Assemble the module with a system-specific macro library

HLASM

© Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-35

Conditional Assembly Language Eccentricities

e Some items described above...

1. Character string comparisons: shorter string is always less (see slide
Conditional-14)

2. Different pairing rules for ampersands and apostrophes (see slide
Conditional-17)

3. SETC of an arithmetic value uses its magnitude (see slide Conditional-17)

4. Character functions may not be recognized in SetA expressions (see slide
Conditional-21)

5. Computed AGO may fall through (see slide Conditional-28)

6. Logical operators in SETx and AlF statements (see slide Conditional-31)
e Normal, every-day language considerations:

— Arithmetic overflows in arithmetic expressions

— Incorrect string handling (bad substrings, exceeding 255 characters)

e Remember, it's not a high-level language!

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Conditional-36

Part 2: Basic Macro Concepts

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-1

What is a Macro Facility?

e A mechanism for extending a language
— Introduces new statements into the language

— Defines how the new statements translate into the “base language”

— Which may include existing macros!

— Allows mixing old and new statements

e |In Assembler Language, “new” statements are called
macro instructions or macro calls

e Easy to create application-specific languages

— Typical use is to extend base language

— Can even hide it entirely!
— Create higher-level language appropriate to application needs

— Can be made highly portable, efficient

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-2

Benefits of Macro Facilities

e Re-use: write once, use many times and places

e Reliability and modularity: write and debug “localized logic” once
e Reduced coding effort: minimize focus on uninteresting details

e Simplification: hide complexities, isolate impact of changes

e FEasier application debugging: fewer bugs and better quality

e Standardize coding conventions painlessly

e Encapsulated, insulated interfaces to other functions

e Increased flexibility and adaptability of programs

— Greater application portability

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-3

The Macro Concept: Fundamental Mechanisms

e Macro processors rely on two basic mechanisms:
1. Macro recognition: identify some character string as a macro “call”

2. Macro expansion: generate a character stream to replace the “call”

e Macro processors typically do three things:

1. Text insertion: injection of one stream of source program text into another
stream

2. Text modification: tailoring (“parameterization”) of the inserted text

3. Text selection: choosing alternative text streams for insertion

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-4

Basic Macro Concepts: Text Insertion

e Text insertion: injection of one stream of source program text into
another stream

Macro Definition Main Program Logical Effect

Name = MACO1

AA AA

cC BB BB

DD MACO1 —> CC

EE DD

FF EE

FF

e The processor recognizes MACO1 as a macro name

e The text of the macro definition replaces the “macro call” in the Main
Program

e When the macro ends, processing resumes at the next statement

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-5

Basic Macro Concepts: Text Parameterization

e Text parameterization: tailoring of the inserted text

Macro Definition Main Program Logical Effect

Name = MACO2
Parameters X,Y

AA

BB AA BB

X MACO2 CC,DD | —» cC

Y FF DD

EE EE

FF

e Processor recognizes MAC02 as a macro name, with arguments CC,DD
— Arguments CC,DD are associated with parameters X,Y by position

— As in all high-level languages

e The text from the macro definition is modified during insertion

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-6

Basic Macro Concepts: Text Selection

e Text selection: choosing alternative text streams for insertion

Macro Definition Main Program Logical Effect

Name = MACO3

Parameter X AA

AA JJ

JJ MACO3 0 LL

if (X = 0) skip 1 stmt BB —> BB

KK MACO3 1 JJ

LL CC KK

LL

cC

e Processor recognizes MAC0O3 as a macro name with argument O or 1

e (Conditional actions in the macro definition allow selection of different
insertion streams

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-7

Basic Macro Concepts: Call Nesting

e Generated text may include calls on other (“inner”) macros

— New statements can be defined in terms of previously-defined extensions

e Generation of statements by the outer (enclosing) macro is interrupted to
generate statements from the inner

e Multiple levels of call nesting OK (including recursion)

e Technical Detail: Inner macro calls recognized during expansion of the
outer macro, not during definition and encoding of the outer macro

— Can pass arguments of outer macros to inner macros that depend on
arguments to, and analyses in, outer macros

— Provides better independence and encapsulation
— Allows passing parameters through multiple levels

— Can change definition of inner macros without having to re-define the outer

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-8

Macro Call Nesting: Example

e Two macro definitions: OUTER contains a call on INNER

Macro Definitions Main Program Logical Effect

Name = OUTER

AA

BB AA BB

INNER OUTER —> cC

EE FF DD

INNER EE

Name = INNER FF

cC

cC DD

DD

e Expansion of OUTER is suspended until expansion of INNER completes

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-9

Macro Definition Nesting: Example

e Macro definitions may contain macro definitions

Macro Definitions Main Program Logical Effect
Name = OUTER
AA
BB AA BB
MACRO INNER OUTER —> EE
CC FF CC
DD DD
MACEND INNER FF
EE
INNER
Name = INNER
.
cC | This definition is created
DD ; only when OUTER is called.

e Expanding OUTER causes INNER to be defined

— INNER can then be called anywhere

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-10

The Assembler Language Macro Definition

e A macro definition has four parts:

(1)
(2)

(3)

(4)

MACRO

Prototype Statement

Model Statements

Macro Header (begins a definition).

Model of the macro instruction
that can call on this definition;
a model or “template” of the new
statement introduced into the
language by this definition.

A single statement.

Declarations, conditional assembly
statements, and text for selection,
modification, and insertion.

Zero to many statements.

Macro Trailer (ends a definition).

HLASM

© Copyright IBM Corporation 1993, 2004. All rights reserved.

Concepts-11

The Assembler Language Macro Definition ...

1. Declares a macro name representing a stream of program text

2. MACRO and MEND statements delimit start and end of the definition
3. Prototype statement declares parameter variable symbols

4. Model statements (“macro body”) provide logic and text

e Definitions may be found
— “in-line” (a “source macro definition”)
— in a library (COPY can bring definitions “in-line”)

— or both

e Recognition rules affected by where the definition is found

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-12

Macro-Instruction Recognition Rules

1. If the operation code is already known as a macro name, use its
definition

2. If an operation code does not match any operation code already known
to the assembler (i.e., it is “possibly undefined”):

a. Search the library for a macro definition of that name

b. If found, encode and then use that macro definition

c. If there is no library member with that name, the operation code is flagged as
“undefined.”

e Macros may be redefined during the assembly!

— New macro definitions supersede previous operation code definitions

e Name recognition activates interpretation of the macro definition

— Also called “macro expansion” or “macro generation”

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-13

Macro-Instruction Recognition: Details

e A macro “call” could use a special CALL syntax, such as

MCALL macroname(argl,arg2,etc...)
or MCALL macroname,argl,arg2,etc...

e Advantages to having syntax match base language's:

— Format of prototype dictated by desire not to introduce arbitrary forms of
statement recognition for new statements

— No special characters, statements, or rules to “trigger” recognition
— No need to distinguish language extensions from the base language

— Allows overriding of most existing opcodes; language extension can be natural
(and invisible)

e No need for “MCALL”; just make “macroname” the operation code

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-14

Macro-Definition Encoding

e Assembler “edits” a macro definition into an efficient internal format
— Macro name is identified and saved; all parameters are identified
— COPY statements processed immediately

— Model and conditional assembly statements converted to “internal text” for
faster interpretation

— All points of substitution are marked

— In name, operation, and operand fields
— But not in remarks fields or comment statements

— Some errors in model statements are diagnosed

— Others may not be detected until macro expansion
— “Dictionary” space (variable-symbol tables) are defined

— Parameter names discarded, replaced by dictionary indexes
e Avoids the need for repeated searches and scans on subsequent uses

e Re-interpretation is more flexible, but much slower

— AINSERT statement provides some re-interpretation possibilities

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-15

Nested Macro Definitions in High Level Assembler

e Nested macro definitions are supported by HLASM

e Problem: should outer macro variables parameterize nested macro

definitions?
Macro , Start of MAJOR's definition
&L MAJOR &X
LCLA &A Local variable
Macro , Start of MINOR's definition
&N MINOR &Y
LCLA &A Local variable
&A SetA 2*RA*&Y Evaluate expression (Problem: which &A ??
MEnd , End of MINOR's definition

MNote *,&8A = &A' Display value of &A
MEnd , End of MAJOR's definition

e Solution: no parameterization of inner macro text

— Statements are “shielded” from substitutions (no nested-scope problems)

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-16

Macro Expansion and MEXIT

e Macro expansion or generation is initiated by recognition of a macro
instruction

e Assembler suspends current activity, begins to “execute” or “interpret”
the encoded definition

— Parameter values assigned from associated arguments
— Conditional assembly statements interpreted, variable symbols assigned

values
— Model statements substituted, and output to base language processor

e Generated statements immediately scanned for inner macro calls

— Recognition of inner call suspends current expansion, starts new one

e Expansion terminates when MEND is reached, or MEXIT is interpreted

— Some error conditions may also cause termination
— MEXIT is equivalent to “AGO to MEND” (but quicker)

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-17

Macro Comments and Readability Aids

e Assembler Language supports two types of comment statement:
1. Ordinary comments (“*” in first column position)

Can be generated from macros like all other model statements

2. Macro comments (“.*” in first two column positions)

— Not model statements; never generated

MACRO
&N SAMPLE1 &A
.* This is macro SAMPLE1l. It has a name—field parameter &N,
.* and an operand-field positional parameter &A.

This comment is a model statement, and may be generated

e Two “formatting” instructions are provided for macro listings:

1. ASPACE provides blank lines in listing of macros
2. AEJECT causes start of a new listing page for macros

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-18

Example 1: Define General Register Equates

e Generate EQUates for general register names (GRO, ..., GR15)

MACRO (Macro Header Statement)

GREGS (Macro Prototype Statement)
GRO EQU O (First Model Statement)
* - —— etc. Similarly for GR1 — GR14
GR15 EQU 15 (Last Model Statement)

MEND (Macro Trailer Statement)

e A more interesting variation with a conditional-assembly loop:

MACRO

GREGS

LCLA &N Define a counter variable, initially 0
X ANOP 2 points of substitution in EQU statement
GR&N EQU &N
&N SETA &N+1 Increment &N by 1

AIF (&N LE 15).X Repeat for all registers 1-15

MEND

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-19

Macro Parameters and Arguments

e Distinguish parameters from arguments:

e Parameters are
— declared on macro definition prototype statements
— always local character variable symbols

— assigned values by association with the arguments of macro calls

e Arguments are
— supplied on a macro instruction (macro call)
— almost any character string (typically, symbols)

— providers of values to associated parameters

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-20

Macro-Definition Parameters

e Parameters are declared on the prototype statement

— as operands, and as the name-field symbol

e All macro parameters are (“read-only”) local variable symbols

— Name may not match any other variable symbol in this scope

e Parameters usually declared in exactly the same order as the
corresponding actual arguments will be supplied on the macro call

— Exception: keyword-operand parameters are declared by writing an equal sign
after the parameter name
— Can provide default keyword-parameter value on prototype statement

e Parameters example: one name-field, two positional, one keyword

MACRO
&Name MYMAC3 &Paraml,&Param2,&KeyParm=YES

MEND

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-21

Macro-Instruction Arguments

e Arguments are:
— Operands (and name field entry) of a macro instruction

— Arbitrary strings (with some syntax limitations)

— Most often, just ordinary symbols
— “Internal” quotes and ampersands in quoted strings must be paired

e Separated by commas, terminated by blank
— Like ordinary Assembler-Language statement operands

— Comma and blank must otherwise be quoted

e Omitted (null) arguments are recognized, and are valid
e Examples:
MYMAC1 A,,'String' 2nd argument null (omitted)

MYMAC1 Z,RR,'Testing, Testing' 3rd argument contains comma and blank
MYMAC1 A,B,'Do''s, & Don''ts' 3rd argument with everything...

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-22

Macro Parameter-Argument Association

e Three ways to associate (caller's) arguments with (definition's)
parameters:

1. by position, referenced by declared name (most common way)
2. by position, by argument number (using &SYSLIST variable symbol)

3. by keyword: always referenced by name, arbitrary order

— Argument values supplied by writing keyname=value
e Example 1: (Assume prototype statement as on slide/foil Concepts-21)

&Name MYMAC3 &Paraml,&Param2,&KeyParm=YES Prototype

Labl MYMAC3 X,Y,KeyParm=NO Call: 2 positional, 1 keyword argument
* Parameter values: &Name = Labl

* &KeyParm = NO

* &Paraml = X

* &Param2 =Y

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-23

Macro Parameter-Argument Association ...

e Example 2:

Lab2 MYMAC3 A Call: 1 positional argument
* Parameter values: &Name = Lab2

* &KeyParm = YES

* &Paraml = A

* &Param2 = (null)

e Example 3:

MYMAC3 H,KeyParm=MAYBE,J Call: 2 positional, 1 keyword argument

* Parameter values: &Name = (null)
* &KeyParm = MAYBE
* &Paraml = H
* &Param2 = J

— Note: it's good practice to put positionals first, keywords last

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-24

Constructed Keyword Arguments Do Not Work

Keyword arguments cannot be created by substitution

Suppose a macro prototype statement is
&X TestMac &K=KeyVal,&P1 Keyword and Positional Parameters
If you construct an “apparent” keyword argument and call the macro:
&C SetC 'K=What' Create an apparent keyword

TestMac &C,Maybe Call with “"keyword”?

This looks like a keyword and a positional argument:

TestMac K=What,Maybe Call with “"keyword”?

In fact, the argument is positional, with value 'K=What' !

Macro calls are not re-scanned after substitutions!

— The loss of generality is traded for gains in efficiency

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-25

Example 2: Generate a Byte Sequence (BYTESEQ1)

e Rewrite previous example (see slide Conditional-33) as a macro
e BYTESEQT1 generates a separate statement for each value

MACRO
&L BYTESEQ1 &N Prototype statement: 2 positional parameters
.* BYTESEQL — generate a sequence of byte values, one per statement.
.* No checking or validation is done.

Lc1A &K
——— AIF ('&L' EQ '"').Loop Don't define the label if absent
v &L DS O0ALl Define the label
b .Loop ANOP
4 3K SetA &K+l Increment &K
| AIF (&K GT &N).Done Check for termination condition
| DC AT1(8K) |
L———— AGO .Loop | Continue

.Done MEND < |

e Examples

BSla BYTESEQ1 5
BYTESEQ1 1

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-26

Macro Parameter Usage in Model Statements

e Parameter values supplied by arguments in the macro instruction (“call”)
are substituted as character strings

e Parameters may be substituted in name, operation, and operand fields of
model statements

— Substitutions ignored in remarks fields and comment statements
— Can sometimes play tricks with operand fields containing blanks

— AINSERT lets you generate fully substituted statements

e Some limitations on which opcodes may be substituted in conditional
assembly statements

— Can't substitute ACTR, AGO, AIF, ANOP, AREAD, COPY, GBLx, ICTL,
LCLx, MACRO, MEND, MEXIT, REPRO, SETx, SETxF

— The assembler must understand basic macro structures at the time it encodes
the macro!

e |mplementation trade-off: generation speed vs. generality

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-27

Macro Argument Attributes and Structures

e Assembler Language provides some simple mechanisms to “ask
guestions” about macro arguments

Built-in functions, called attribute references

Most common questions: “What is it?” and “How big is it?”

e Determine properties (attributes) of the actual arguments

Provides data about possible base language properties of symbols:
Type (T'), Length (L'), Scale (S'), Integer (I"'), Defined (D'),
and “OpCode” (0') attributes

Decompose argument structures, especially parenthesized lists

Use Number (N') and Count (K') attribute references
— Determine the number and nesting of argument list structures (N')

— Determine the count of characters in an argument (K')

Extract sublists or sublist elements
Use substring and concatenation operations to parse list items

Concepts-28

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved.

Macro Argument Attributes: Type

e Type attribute reference (T') answers
- “What is it?”

— “What meaning might it have in the ordinary assembly (base) language?”

— The answer may be “None” or “I can't tell”!

e Assume the following statements in a program:

A DC A(*)

B DC F'10°

C DC E'2.71828'
D MVC A,B

e And, assume the following prototype statement for MACTA:

MACTA &P1,&P2,...,etc.

— Just a numbered list of positional parameters...

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-29

Macro Argument Attributes: Type ...

e Then a call to MACTA like

Z MACTA A,B,C,D,C'A',,'?',Z Call MACTA with various arguments

e would provide these type attributes:

T'&P1 = 'A’
T'&P2 = 'F'
T'&P3 = 'E'
T'&P4 = 'T°
T'&P5 = 'N'
T'&P6 = '0"
T'&P7 = 'U"
T'&P8 = 'M'

aligned, implied-length address

aligned, implied-length fullword binary
aligned, implied-length short floating—point
machine instruction statement

self-defining term

omitted (null)

unknown, undefined, or unassigned

macro instruction statement

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-30

Macro Argument Attributes: Count

e Count attribute reference (K') answers:

— “How many characters in a SETC variable symbol's value (or in its character
representation, if not SETC)?” (see slides Conditional-20 and Conditional-23)

e Suppose macro MACS8 has many positional and keyword parameters:
MAC8 &P1,&P2,&P3,...,&K1=,&K2=,8K3=,...
e This macro instruction would give these count attributes:

MAC8 A,BCD,'EFGH',,K1=5,K3==F'25"

K'&1 = 1 corresponding to A

K'&P2 = 3 ABC

K'&P3 = 6 'DEFG'

K'&P4 = 0 (omitted; explicitly null)
K'&P5 = 0 (implicitly null; no argument)
K'&1 =1 5

K'8&K2 = 0 (null default value)

K'&3 = 6 =F'25"

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-31

Macro Argument Attributes: Number

e Number attribute reference (N') answers
“How many items in a list or sublist?”

e List: a parenthesized sequence of items separated by commas

Examples: (A) (B,C) (D,E,,F)

e List items may themselves be lists, to any nesting

Examples: ((A)) (A, (B,C)) (A, (B,C, (D,E,,F),G),H)

e Subscripts on parameters refer to argument list (and sublist) items
— FEach added subscript references one nesting level deeper

— Provides powerful list-parsing capabilities

e N' also determines maximum subscript used with a subscripted variable
symbol

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-32

Macro Argument List Structure Examples

e Assume the same macro prototype as in slide Concepts-31:

MAC8 &P1,&P2,&P3,...,&K1=,8K2=,&K3=,... Prototype

MAC8 (A),A,(B,C),(B,(C,(D,E))) Sample macro call

e Then, the number attributes and sublists are:

&P1 = (A) N'&P1 =1 1-item list: A

&P1(1) = A N'&P1(1) =1 (A is not a list)

&P2 = A N'&P2 =1 (A is not a list)

&P3 = (B,C) N'&P3 =2 2—item list: B and C

&P3(1) = B N'&P3(1) =1 (B is not a 1list)

&P4 = (B,(C,(D,E))) N'&P4 =2 2—item list: B and (C,(D,E))
&P4(2) = (C,(D,E)) N'&P4(2) =2 2—item list: C and (D,E)
&P4(2,2) = (D,E) N'&P4(2,2) =2 2—item list: D and E
&P4(2,2,1) =D N'&P4(2,2,1) =1 (D is not a list)

&P4(2,2,2) = E N'&P4(2,2,2) =1 (E is not a list)

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-33

Macro Argument Lists and &SYSLIST

e &SYSLIST(k): a “synonym” for the k-th positional parameter
— Whether or not a named positional parameter was declared

— Handle macro calls with varying or unknown number of positional arguments
e N'&SYSLIST = number of all positional arguments
e Assume a macro prototype MACNP (with or without parameters)

e Then these arguments would have Number attributes as shown:

MACNP A, (A),(C,(D,E,F)),(YES,NO)

N'&SYSLIST = 4 MACNP has 4 arguments
N'&SYSLIST(1) =1 &SYSLIST(1) = A (A is not a list)
N'&SYSLIST(2) =1 &SYSLIST(2) = (A) is a list with 1 item
N'&SYSLIST(3) = 2 &SYSLIST(3) = (C,(D,E,F)) is a list with 2 items
N'&SYSLIST(3,2) =3 &SYSLIST(3,2) = (D,E,F) is a list with 3 items
N'&SYSLIST(3,2,1) =1 &SYSLIST(3,2,1) =D (D is not a list)
N'&SYSLIST(4) = 2 &SYSLIST(4) = (YES,NO) is a list with 2 items

e &SYSLIST(0) refers to the call's name field entry

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-34

Macro Argument Lists and Sublists

e High Level Assembler can treat macro argument lists in two ways:

e Old assemblers pass these two types of argument differently:

MYMAC (A,B,C,D) Macro call with one (1ist) argument
&Char SetC '(A,B,C,D)' Create argument for MYMAC call
MYMAC &Char Macro call with one (string) argument

— Second macro argument was treated simply as a string, not as a list

e COMPAT(SYSLIST) option enforces “old rules”
— Inner-macro arguments treated as having no list structure

— NOCOMPAT (SYSLIST) option allows both cases to be handled the same way

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-35

Macro Lists and Sublists: COMPAT Option

e Powerful scanning techniques always usable for outer-level macros
— N'&SYSLIST(n) to refer to n-th positional argument
— N'&SYSLIST(n,m) to refer to m-th element of n-th positional argument
— K'&SYSLIST(n,m) to determine its character count
— T'&SYSLIST(n,m) to determine its type attribute
— Result: Many language facilities available to scan a list

e Awkward scanning techniques were required for inner-level macros
— Parse the argument one character at a time
— Figure out where symbols start and end, where delimiters intrude
— Then decide what to do with the pieces (no attributes available)

— Result: Lots of complicated logic, hard to debug and maintain

e NOCOMPAT(SYSLIST) relaxes restrictions on inner macros

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-36

Global Variable Symbols

e Macro calls have one serious defect:

— Can't assign (i.e. return) values to arguments
— unlike most high level languages

— “one-way” communication with the interior of a macro:
arguments in, statements out

— no “functions” (i.e. macros with a value)

e Values to be shared among macros (and/or with open code) must use
global variable symbols

— Scope: available to all declarers

— Can use the same name as a local variable in a scope that does not declare
the name as global

e One macro can create (multiple) values for others to use

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-37

Variable Symbol Scope Rules: Summary

e Global Variable Symbols

— Available to all declarers of those variables on GBLx statements (macros and
open code)

— Must be declared explicitly
— Arithmetic, Boolean, and Character types; may be subscripted

— Values persist through an entire assembly

— Values kept in a single, shared, common dictionary
— Values are shared by name

— All declarations must be consistent (type, scalar vs. dimensioned)

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-38

Variable Symbol Scope Rules: Summary ...

e |ocal Variable Symbols
— Explicitly and implicitly declared local variables

— Symbolic parameters

— Values are “read-only”

— Local copies of system variable symbols whose value is constant throughout a
macro expansion

— Values kept in a local, transient dictionary
— Created on macro entry, discarded on macro exit

— Recursion still implies a separate dictionary for each entry

— Open code has its own local dictionary

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-39

Macro Debugging Techniques

e Complex macros can be hard to debug

— Written in a difficult, unstructured language

e Some useful debugging facilities are available:

1. MNOTE statement
— Can be inserted liberally to trace control flows and display values

2. MHELP statement
— Built-in assembler trace and display facility
— Many levels of control; can be quite verbose!

3. ACTR statement
— Limits number of conditional branches within a macro
— Very useful if you suspect excess looping

4. LIBMAC Option
— Library macros appear to be defined in-line

5. PRINT MCALL statement, PCONTROL(MCALL) option
— Displays inner-macro calls

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-40

Macro Debugging: The MNOTE Statement

e MNOTE allows the most detailed controls over debugging output
(see also slide Conditional-32)

e You specify exactly what to display, and where

MNote *,'At Skipl9: &&VG = &VG., Q&TEXT = ''&TEXT'''

e You can control which ones are active (with global variable symbols)

Gb1B &DEBUG(20)

AIF (NOT &DEBUG(7)).Skipl9
MNote *,'At Skipl9: 88VG = &VG., &TEXT = ''&TEXT'''
.Skipl9 ANop
e You can use &SYSPARM values to set debug switches

e You can “disable” MNOTEs with conditional-assembly comments

X MNote *,'At Skipl9: &&VG = &VG., Q&TEXT = ''&TEXT'''

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-41

Macro Debugging: The MHELP Statement

e MHELP controls display of conditional-assembly flow tracing and variable
“dumping”

— Use with care; output is potentially large

e MHELP operand value is sum of 8 bit values:

Trace macro calls (name, depth, &SYSNDX value)

Trace macro branches (AGO, AIF)

AIF dump (dump scalar SET symbols before AIFs)

Macro exit dump (dump scalar SET symbols on exit)
6 Macro entry dump (dump parameter values on entry)
2 Global suppression (suppress GBL symbols in AlF, exit dumps)
4 Hex dump (SETC and parameters dumped in hex and EBCDIC)
128 MHELP suppression (turn off all active MHELP options)

DW=05LAN=

— Best to set operand with a GBLA symbol (can save/restore its value), or from
&SYSPARM value

e Can also limit total number of macro calls (see Language Reference)

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-42

Macro Debugging: The ACTR Statement

e ACTR specifies the maximum number of conditional-assembly branches
in a macro or open code

ACTR 200 Limit of 200 successful branches

— Scope is local (to open code, and to each macro)

— Can set different values for each; default is 4096
— Count decremented by 1 for each successful branch

— When count goes negative, macro's invocation is terminated

e Executing erroneous conditional assembly statements halves the ACTR

value!
* Following statement has syntax errors
&J SETJ &J+? If executed, would cause ACTR = ACTR / 2

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-43

Macro Debugging: The LIBMAC Option

e The LIBMAC option causes library macros to be defined “in-line”
— Specify as invocation option, or on a *PROCESS statement

*PROCESS LIBMAC

e Errors in library macros harder to find:
— HLASM can only indicate “There's an error in macro XYZ”
— Specific location (and cause) are hard to determine

e LIBMAC option causes library macros to be treated as “source”
— Can use ACONTROL [NO]JLIBMAC statements to limit range

e Errors can be indicated for specific macro statements

e FErrors can be found without
— modifying any source

— copying macros into the program

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-44

Macro Debugging: The PRINT MCALL Statement

e PRINT [NOJMCALL controls display of inner macro calls

PRINT MCALL Turns ON inner-macro call display
PRINT NOMCALL Turns OFF inner-macro call display

— Normally, you see only the outermost call and generated code from it and all
nested calls

— Difficult to tell which macro may have received invalid arguments

— With MCALL, HLASM displays each macro call before processing it

— Some limitations on length of displayed information
e PCONTROL ([NOJMCALL) option
— Forces PRINT MCALL on [or off] for the assembly
— Specifiable at invocation time, or on a *PROCESS statement:

*PROCESS PCONTROL (MCALL)

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Concepts-45

Part 3: Macro Techniques

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-1

Macros as a Higher Level Language

e (Can be created to perform very simple to very complex tasks

— Housekeeping (register saving, calls, define symbols, map structures)
— Define your own application-specific language increments and features

e Macros can provide much of the “goodness” of HLLs

— Abstract data types, private data types
— Information hiding, encapsulation

— Avoiding side-effects

— Polymorphism

— Enhanced portability

e Macro sets can be built incrementally to suit application needs

— Can develop “application-specific languages” and increments
— Code re-use promotes faster learning, fewer errors

e Avoid struggling with the latest “universal language” fad

— Add new capabilities to existing applications without converting

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-2

Examples of Macro Techniques

e Sample-problem “case studies” illustrate some techniques

1.

> W D

o o

~

Define EQUated names for registers

Generate a sequence of byte values

“MVC2” macro takes implied length from second operand
Conditional-assembly conversions between decimal and hex
Generate lists of named integer constants

Create length-prefixed message text strings and free-form comments
Recursion (indirect addressing, factorials, Fibonacci numbers)

Basic and advanced bit-handling techniques

Defining assembler and user-specified data types and operations

“Front-ending” or “wrapping” a library macro

HLASM

© Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-3

Case Study 1: EQUated Symbols for Registers

e |ntent: Write a GREGS macro to define “symbol equates” for GPRs

e Basic form: simply generate the 16 EQU statements

Variation 1: ensure that “symbol equates” can be generated only once

Variation 2: generate equates for up to four register types

— General Purpose, Floating Point, Control, Access

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-4

Define General Register Equates (Simply)

e Define “symbol equates” for GPRs with this macro (see slide
Concepts-19)

MACRO
GREGS
GRO Equ 0
GR1 Equ 1
* - —— etc.
GR15 Equ 15
MEND

e Problem: what if two code segments are combined?

— If each calls GREGS, could have duplicate definitions
— How can we preserve modularity, and define symbols only once?

e Answer: use a global variable symbol &GRegs

— Value is available across all macro calls

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-5

Define General Register Equates (Safely)

e Initialize &GRegs to “false”; set to “true” when EQUs are generated

MACRO
GREGS
GBLB &GRegs &GRegs initially 0 (false)
AIF (&GRegs) .Done Check if &GRegs already true
LCLA &N &N initially 0

X ANOP <«

GR&N Equ &N

&N SETA &N+1 Increment &N by 1
AIF (&N LE 15).X Test for completion

&GRegs SetB 1 &GRegs true (definitions have been done)
MEXIT

> .Done MNOTE 0, 'GREGS previously called, this call ignored.'

MEND

e |f &GRegs is true, no statements are generated

GREGS
GREGS This,Call,Is,Ignored

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-6

Defining Register Equates Safely: Pseudo-Code

e Allow declaration of multiple register types on one call:
Example: REGS type,[,type,]... asin REGS G,F

e Pseudo-code:

IF (number of arguments is zero) EXIT
FOR each argument:
Verify valid register type (A, C, F, or G):
IF invalid, ERROR EXIT with message
IF (that type already done) Give message and ITERATE
Generate equates
Set appropriate 'Type Done' flag and ITERATE

e 'Type Done' flags are global boolean variable symbols

— Use created variable symbols &(&T.Regs _Done)

e |f &(&T.Regs_Done) is true, no statements are generated

REGS G,F,A,G G registers are not defined again

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-7

Define All Register Equates (Safely)

MACRO
REGS
AIF (N'&SysList eq 0).Exit
&J SetA 1 Initialize argument counter
.GetArg ANOP
&T SetC (Upper '&SysList(&J)') Pick up an argument
&N SetA ('ACFG' Index '&T') Check type
AIF (&N eq 0) .Bad Error if not a supported type
GBLB &(&T.Regs_Done) Declare global variable symbol
AIF (&(&T.Regs_Done)) .Done Test if true already
&N SetA 0
.Gen ANop R Generate Equ statements
&T.R&N Equ &N
&N SetA &N+1
AIf (&N 1e 15).Gen
&(&T.Regs_Done) SetB (1) Indicate definitions have been done
.Next ANOP
&J SetA &J+1 Count to next argument
AIF (&) le N'&SysList).GetArg Get next argument
MEXIT
.Bad MNOTE 8, '&SysMac.: Unknown type "''&T.''.'
MEXIT
.Done MNOTE O, '&SysMac.: Previously called for type &T..'
AGO .Next
.Exit MEND
HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-8

Case Study 2: Generate Sequence of Byte Values

e |ntent: generate a sequence of bytes containing values 1,2,...,N

e Basic form: simple loop generating one byte at a time

e Variation: generate a single DC with all values; check for invalid input

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-9

Generating a Byte Sequence: BYTESEQ1 Macro

e BYTESEQ1 generates a separate DC statement for each value (compare
with slides Conditional-33 and Concepts-26)

MACRO
&L BYTESEQ1 &N
.* BYTESEQL — generate a sequence of byte values, one per statement.
.* No checking or validation is done.

Lc1A &K
AIF ('&L' EQ '').Loop Don't define the label if absent
&L DS 0AL1 Define the label
.Loop ANOP
&K SetA &K+l Increment &K
AIF (&K GT &N).Done Check for termination condition
DC AL1 (&K)
AGO .Loop Continue
.Done MEND

* Two test cases

BSla BYTESEQ1 5
BYTESEQ1 1

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-10

Generating a Byte Sequence: Pseudo-Code

e BYTESEQ2: generate a single DC statement, creating a string of bytes
with binary values from 1 to N

— N has been previously defined as an absolute symbol

IF (N not self-defining) ERROR EXIT with message
IF (N > 88) ERROR EXIT with too—big message

IF (N < 0) EXIT with notification

Set local string variable S = '1'
DO for K =2 to N
S=S || ", 'K (append comma and next value)

GEN (Tabel DC AL1(S))

e Compare to slide Conditional-34

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-11

Generating a Byte Sequence (BYTESEQ2)

MACRO
&L BYTESEQ2 &N Generates a single DC statement
&K SetA 1 Initialize generated value counter
&S SetC 1 Initialize output string
AIF (T'&N EQ 'N') .Num Validate type of argument
MNOTE 8, 'BYTESEQ2 — &&N=8&N not self-defining.'
MEXIT
.Num AIF (&N LE 88) .NotBig Check size of argument
MNOTE 8, 'BYTESEQ2 — &&N=&N 1is too large.'
MEXIT
.NotBig AIF (&N GT 0).0K Check for small argument
MNOTE *,'"BYTESEQ2 — &&N=&N too small, no data generated.'
MEXIT
.0K AIF (&K GE &N) .DoDC If done, generate DC statement
&K SetA &K+1 Increment &K
&S SetC '8&S.'.',8K' Add comma and new value of &K to &S
AGO .0K Continue
.DoDC ANOP
&L DC AL1(&S)
MEND

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-12

Case Study 3: MVC2 Macro

e Want a macro to do an MVC, but with the source operand's length:

MVC2 Buffer,=C'Message Text' should move 12 characters...

Buffer DS CL133 even though buffer is longer

— MVC would move 133 bytes!

e Macro utilizes ORG statements, forces literal “definitions”

Macro
&Lab MVC2 &Target,&Source
&Lab CLC 0(0,0),&Source X'D500 0000',S(&Source)

Org *-6 Back up to first byte of instruction
LA 0,&Target. (0) X'4100',S(&Target),S(&Source)

Org *4 Back up to first byte of instruction
DC AL1(X'D2',L'&Source-1) First 2 bytes of instruction
Org *+4 Step to next instruction

MEnd

e The CLC instruction “forces” a literal source operand into the
assembler's symbol table, so it's available to the L' reference

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-13

Case Study 4: Conversion Between Hex and Decimal

e (Convert hexadecimal values to their decimal equivalent in a SetA
variable

Dec A Sets global SetA variable &Dec to 10

e Convert decimal values to their hexadecimal equivalent in a SetC
variable

Hex 10 Sets global SetC variable &Hex to 'A’

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-14

Macro-Time Conversion from Hex to Decimal

e Convert macro-time hex digit strings to decimal values;
return values in GBLA variable &DEC

Macro
Dec &Hex Convert &Hex to decimal
Gb1A &Dec Decimal value returned in &Dec
&X SetC 'X''&Hex''' Create hex self-defining term
&Dec SetA &X Do the conversion
MNote 0, '&Hex (hex) = &ec (decimal)' For debugging
MEnd
*
Dec AA
%* MNOTE * 0,AA (hex) = 170 (decimal)
Dec FFF
*** MNOTE *** O,FFF (hex) = 4095 (decimal)
Dec FFFFFF
*** MNOTE *** O,FFFFFF (hex) = 16777215 (decimal)
Dec 7FFFFFFF
*** MNOTE *** 0,7FFFFFFF (hex) = 2147483647 (decimal)
HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-15

Macro-Time Conversion from Decimal to Hex

e Convert macro-time decimal values to hex digit strings

— Returns value in GBLC variable &Hex

e Pseudo-code:

Set Q = decimal value
Set Hex = "'

DO UNTIL (Q = 0)
Remainder = Q mod 16
Hex = Substr('0123456789ABCDEF', Remainder+l, 1) || Hex
Q=0Q/ 16

— Note: DO WHILE (Q # 0) wouldn't work for decimal value zero

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-16

Macro-Time Conversion from Decimal to Hex ...

e Convert decimal values to hex digit strings in GBLC variable &Hex

Macro
Hex &Dec Convert &Dec to hexadecimal
Gb1C &Hex Hex value returned in &Hex
&Hex SetC "' Initialize &Hex
&Q SetA &Dec Local working variable
.Loop ANop , Top of reduction loop
&R SetA (&Q AND 15) &R = Mod (&Q, 16)
&Q SetA (&Q SRL 4) Quotient for next iteration

&Hex SetC '0123456789ABCDEF' (&R+1,1).'&8Hex' Build hex value
Aif (&Q gt 0).Loop Repeat if &Q not zero
MNote 0, '&Dec (decimal) = &Hex (hex)' For debugging
MEnd

Hex 170
*** MNOTE *** 0,170 (decimal) = AA (hex)
Hex 16777215
*** MNOTE *** 0,16777215 (decimal) = FFFFFF (hex)

e Exercise: extend Hex macro to accept negative arguments

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-17

Case Study 5: Generate Named Integer Constants

e |ntent: generate a list of “intuitively” named halfword or fullword integer
constants

e For example:
— Fullword value “1” is a constant named F1

— Halfword value “—1” is a constant named HM1

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-18

Generate a List of Named Integer Constants

e Syntax: INTCONS n,[,n,]...[,Type=F]

— Default constant type is F

e Examples:
Clb INTCONS 0,1 Type F: names FO, FM1
+Clb DC OF'0’ Define the label
+F0 DC F'0'
+FM1 DC F'-1'
Clc INTCONS 99,-99,Type=H Type H: names H99, HM99
+Clc DC OH'0' Define the label

+H99 DC H'99'
+HM99 DC H'-99'

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-19

Generate a List of Named Integer Constants ...

e INTCONS Macro definition (with validity checking omitted)

MACRO
&Lab INTCONS &Type=F Default type is F
AIF ('&Lab"' eq '').ArgsOK Skip if no label
&Lab DC 0&Type.'0’ Define the label
.ArgsOK ANOP Argument—checking loop
&J SetA &J+1 Increment argument counter

AIF (&J GT N'&SysList).End Exit if all done
&Name SetC '&Type.&SysList(&J)' Assume non—negative arg

AIF ('&SysList(&J)"'(1,1) ne '-').NotNeg Check arg sign
&Name SetC '&Type.M'.'&SysList(&J)'(2,*) Negative argument, drop —
.NotNeg ANOP
&Name DC &Type. '&SysList(&J)"

AGO .ArgsOK Repeat for further arguments
.End MEND

e Exercise: generalize to support + signs on operands

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-20

Case Study 6: Using the AREAD Statement

1. Case Study 6a: Generate strings of message text

Prefix string with “effective length” byte (length-1)
e Basic form: count characters
e Variation 1: create an extra symbol, use its length attribute

e Variation 2: use the AREAD statement and conditional-assembly functions to
support “readable” input

2. Case Study 6b: Block comments

e Write free-form text comments (without * in column 1)

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-21

Case Study 6a: Create Length-Prefixed Message Texts

e Problem: want messages with prefixed “effective length” byte

-1 |« L Characters >

e How they might be used:

HW PFMSG 'Hello World' Define a sample message text

+HW DC AL1(10),C'Hello World' Length—prefixed message text
LA 2,HW Prepare to move message to buffer
IC 1,0(,2) Effective length of message text
EX 1,MsgMove Move message to output buffer

MsgMove MVC Buffer(*—*),1(2) Executed to move message texts

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-22

Create Length-Prefixed Messages (1)

e PFMSGI: length-prefixed message texts

MACRO
&Lab PFMSG1 &Txt
X PFMSG1 — requires that the text of the message, &Txt,
* contain no embedded apostrophes (quotes) or ampersands.

LclA &Len Effective Length
&Len SetA K'&Txt-3 (# text chars)—3 (quotes, eff. length)
&Lab DC AL1(&Len),C&Txt

MEND

e Limited to messages with no quotes or ampersands

Mla PFMSG1 'This is a test of message text 1.'
+Mla DC AL1(32),C'This is a test of message text 1.'

Mlb PFMSG1 'Hello'
+M1b DC AL1(4),C'Hello’

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-23

Create General Length-Prefixed Messages (2)

e PFMSG2: Allow all characters in text (may require pairing)

MACRO
&Lab PFMSG2 &Txt
X PFMSG2 — the text of the message, &Txt, may contain embedded
* apostrophes (quotes) or ampersands, so long as they are paired.

&T SetC 'TXT&SYSNDX.M' Create TXTnnnM symbol to name the text
&Lab DC AL1(L'&T.-1) Effective length
&T DC C&Txt
MEND
M2a PFMSG2 'Test of ''This'' & ''That''.’
+M2a DC AL1(L'TXT0001M-1) Effective length
+TXT0001M DC C'Test of ''This'' && ''That''.'
M2b PFMSG2 'Hello, World'
+M2b DC AL1(L'TXT0002M-1) Effective length

+TXT0002M DC C'Hello, World'

e Quotes/ampersands in message are harder to write, read, translate
e Extra (uninteresting) labels are generated

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-24

Readable Length-Prefixed Messages (3): Pseudo-Code

e User writes “plain text” messages (single line, < 72 characters)

e PFMSGS3: AREAD statement within the macro “reads” the next source
record (following the macro call) into a character variable symbol

e Pseudo-code:

IF (any positional arguments) ERROR EXIT with message

AREAD a message from the following source record
Trim off sequence field (73-80) and trailing blanks

Create paired quotes and ampersands (for nominal value in DC)

GEN (1abel DC AL1(Text Length-1),C'MessageText')

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-25

Create Readable Length-Prefixed Messages

e Allow all characters in message text without pairing, using AREAD

MACRO
&Lab PFMSG3 &Null Comments 0K after comma
e PFMSG3 — the text of the message may contain any characters.
* The message is on a single line following the call to PFMSG3.

LclA &L,&N Local arithmetic variables

LciC &T,&C,&M Local character variables

AIF ("&Null' eq '').0K Null argument 0K

AIF (N'&SYSLIST EQ 0).0K No arguments allowed

MNote 8,'PFMSG3 — no operands should be provided.'

MEXIT Terminate macro processing
.0K ANOP
&N SetA 1 Initialize char—scan pointer to 1
.* Read the record following the PFMSG3 call into &M
&M ARead , Read the message text
&M SetC '&M'(1,72) Trim off sequence field
&L SetA 72 Point to end of initial text string

.* Trim off trailing blanks from message text
Trim AIF ('&8M' (&L,1) NE " ').C Check last character

&L SetA &L-1 Deduct blanks from length
AGO Trim Repeat trimming loop
o — — — (continued)

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-26

Create Readable Length-Prefixed Messages ...

K — — — (continuation)
.C ANOP
&T SetC (DOUBLE '&M'(1,8&L)) Pair-up quotes, ampersands
&L SetA &L-1 Set to effective length
&Lab DC AL1(&L),C'&T"
MEnd

e Messages are written as they are expected to appear!
e Easier to read and translate to other national languages

Mda PFMSG3 , Test with mixed apostrophes/ampersands
—Test of 'This' & 'That'.
+M4a DC AL1(27),C'Test of ''This'' && ''That''."'

Mac PFMSG3
—This is the text of a long message & says nothin' very much.

+M4c DC AL1(63),C'This is the text of a long message &% saysX
+ nothin'' very much.'

e '+' prefix in listing for generated statements, '-' for AREAD records
e Exercise: generalize to multi-line messages, of any length!

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-27

Case Study 6b: Block Comments

e Sometimes want to write “free-form” comments in a program:

This is some text
for a block of
free—form comments.

e Must tell HLASM where the comments begin and end:

COMMENT

This is some text

for a block of
free—form comments.

TNEMMOC

e Restriction: block-end statement (TNEMMOC) can't appear in the text

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-28

Block Comments Macro

e (COMMENT macro initiates block comments:

Macro
&L Comment &Arg
LciC &C

AIf ('&L' eq '' and '&Arg' eq '').Read
MNote *,'Comment macro: Label and/or argument ignored.'

.Read ANop
&C ARead ,
&C SetC (Upper '&C') Force upper case
8A SetA ('&C'(1,72) Index ' TNEMMOC ') Note blanks!
AIf (&A eq 0) .Read
MEnd

e Can even include “SCRIPT-able” text (with .xx command words) IF the
command words aren't used elsewhere as sequence symbols!

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-29

Case Study 7: Macro Recursion

e Macro recursion illustrated with:
1. “Indirect addressing”
2. Integer factorial values: N! = N * (N-1)

3. Integer Fibonacci numbers: F(N) = F(N-1) + F(N-2)

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-30

Indirect Addressing via Recursion

e “Load Indirect” macro for multiple-level “pointer following”

e Syntax: each operand prefix asterisk specifies a level of indirection

LI 3,0(4) Load from 0(4)

LI 3,*0(,4) Load from what 0(,4) points to
LI 3,**0(,7) Two levels of indirection

LI 3,%**X Three levels of indirection

e || macro calls itself for each level of indirection

Macro
&Lab LI &Reg, &X Load &Reg with indirection
Aif ('&X'(1,1) eq '*').Ind Branch if indirect
&Lab L &Reg, &X
MExit Exit from bottom level of recursion
.Ind ANop
&XI SetC '&X'(2,*) Strip off leading asterisk
LI &Reg, &XI Call myself recursively
L &Reg,0(,&Reg)
MEnd

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-31

Indirect Addressing via Recursion ...

e Examples of code generated by calls to LI macro:

LI
+ L

LI

+
rrrrr

-

I

+ + + +
rrrrr

3,0(4)
3,0(4)

3,*0(,4)

3,0(,4)
3,0(,3)

3,**0(,7)

3,0(,7)
3,0(,3)
3,0(,3)

Load from 0(4)

Load from what 0(,4) points to

Two levels of indirection

Three levels of indirection

HLASM

© Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-32

Generate Factorial Values Recursively

Macro
&Lab FACTORAL &N
.* Factorials defined by Fac(N) = N * Fac(N-1), Fac(0) = Fac(1l) =1

GBLA &Ret For returning values of inner calls
AIF (T'&N NE 'N').Error N must be numeric
&L SetA &N Convert from external form
* MNote 0,'Evaluating FACTORAL(&L.)' For debugging
AIF (&L LT 0).Error Can't handle N < 0
AIF (&L GE 2).Calc Calculate via recursion if N> 1
&Ret SetA 1 F(0) = F(1) =1
AGO .Test Return to caller
.Calc ANOP
&K SetA &L-1
FACTORAL &K Recursive call
&Ret SetA &Ret*&L
.Test AIF (&SysNest GT 1).Cont
K MNote 0, 'Factorial(&L.) = &Ret.' Display result
&Lab DC F'&Ret'
.Cont MExit Return to caller
.Error MNote 11, 'Invalid Factorial argument &N..'
MEnd

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-33

Generate Fibonacci Numbers: Pseudo-Code

e Defined by F(0) = F(1) = 1, F(n) = F(n-1) + F(n-2)

e Use a global arithmetic variable &Ret for returned values

Macros have no other way to return “function” values

e Pseudo-code:

IF

(argument N < 0) ERROR EXIT with message

(N < 2) Set &Ret = 1 and EXIT

CALL myself recursively with argument N-1

Sa

ve evaluation in local temporary &Temp

CALL myself recursively with argument N-2

Se

t &Ret = &Ret + &Temp, and EXIT

HLASM

© Copyright IBM Corporation 1993, 2004. All rights reserved.

Tech-34

Generate Fibonacci Numbers Recursively

Macro
&Lab FIBONACI &N
.* Fibonacci numbers defined by F(N) = F(N-1)+F(N-2), F(0) = F(1) = 0

GBLA &Ret For returning values of inner calls
MNote 0,'Evaluating FIBONACI(&N.), Level &SysNest.'
AIF (&N LT 0) .Error Negative values not allowed
AIF (84N GE 2).Calc If &N > 1, use recursion
&Ret SETA 1 Return F(0) or F(1)
AGO .Test Return to caller
.Calc ANOP Do computation
&K SetA &N-1 First value 'K' = N-1
&L SetA &N-2 Second value 'L' = N-2
FIBONACI &K Evaluate F(K) = F(N-1) (Recursive call)
&Temp SetA &Ret Hold computed value
FIBONACI &L Evaluate F(L) = F(N-2) (Recursive call)
&Ret SetA &Ret+&Temp Evaluate F(N) = F(K) + F(L)
.Test AIF (&SysNest GT 1).Cont
MNote 0,'Fibonacci(&N.) = &Ret..' Display result
&Lab DC F'&Ret'
.Cont MExit Return to caller
.Error MNote 11, 'Invalid Fibonacci argument &N..'
MEnd

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-35

Case Study 8: Macros for Bit-Handling Operations

e Discuss safe bit-manipulation techniques
e Use bit-manipulation operations to create a “mini-language”

e Basic forms: create macros to
— Allocate storage to named bits
— Set bits on and off, and invert their values

— Test bit values and branch if on or off

e Enhanced forms: create macros to
— Ensure bit names were properly declared

— Generate highly optimized code for bit manipulation and testing

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-36

Bit-Defining and Bit-Handling Macros

e Two levels of implementation:

1. One-pass, “memory-less,” “trusting” macros that make no attempts to
— verify that names identify bit flags
— validate type declarations

— retain information across macro calls

optimize storage utilization or generated instructions

2. Two-pass “cautious” macros utilize retained information to provide
encapsulation and abstract data typing:

— Bit names must be declared to have “bit” type before use
— Storage utilization minimized, generated instructions optimized

— “Symbol table” retains information across macro calls

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-37

Basic Bit Definition and Manipulation Techniques

e Frequently need to set, test, manipulate “bit flags”:

Flagl DS X Define 1st byte of bit flags
BitA Equ X'01' Define a bit flag
Flag2 DS X Define 2nd byte of bit flags
BitB Equ X'10' Define a bit flag

e Serious defect: no correlation between bit name and byte name!

0I Flagl,BitB Set Bit B ON ??
NI Flag2,255-BitA Set Bit A OFF ??

e Want a simpler technique: use a length attribute reference; then use just
one name for all references

— Advantage: less chance to misuse bit names and byte names!

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-38

Simple Bit-Defining Macro: Design Considerations

e Two similar ways to generate bit definitions

1. Allocate storage byte first, define bits following:

DC B'O' Unnamed byte
Bit A Equ *-1,X'80' Bit_A defined as bit 0

2. Define bits first, allocate storage byte following:

Bit B DS OXL(X'40') Bit B defined as bit 1
pC X'0' Unnamed byte

e Length Attribute used for named bits and unnamed bytes

TM Bit Name,L'Bit_Name Refer to byte and bit using bit name

DS X Unnamed byte

BitA Equ *-1,X'01’ Define BitA: Length Attribute = bit value
DS X Unnamed byte

BitB Equ *-1,X'10’ Define BitB: Length Attribute = bit value
01 BitB,L'BitB Set BitB ON (uses name 'BitB' only)

NI BitA,255-L'BitA Set BitA OFF (uses name 'BitA' only)

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-39

Simple Bit-Defining Macro: Pseudo-Code

e Generate a bit-name EQUate for each argument, allocate storage
e Syntax: SBitDef bitname[,bitname]...
e Examples:

SBitDef bl,b2,b3,b4,b5,b6,b7,b8 Eight bits in one byte

SBitDef c¢.,d,e,f,g,h,i,j,k,1,myn,0,p,q,r,s,t,u,v Many bits+bhytes

e Pseudo-code:

Set Lengths to bit—position weights (128,64,32,16,8,4,2,1)

DO for M = 1 to Number_of Arguments
IF (Mod(M,8)=1) GEN (DC B'O') (Generate unnamed byte)
GEN (Arg(M) EQU *-1,Lengths(Mod(M-1,8)+1)) (Define bit name)

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-40

Simple Bit-Defining Macro: SBITDEF

&L(1)

&NN

&M
—> .NB

&C

> .NewN
&B
&B
&M

&C

.Done

+bl
+b2

Macro ,
SBitDef ,

SetA 128,64,32,16,8.4,2,1

SetA N'&SysList
SetA 1

Aif (&M gt &NN).Done

SetA 1
DC B'O'
ANop

SetC '&SysList(&M)'
Equ *-1,&L(&C)

SetA &M+l

Aif (&M gt &NN).Done
SetA &C+l |
Aif (& Te 8).NewN |
Ago .NB |
MEnd < _
SBitDef bl,b2

DC B'0'

Equ *-1,128

Equ *-1,64

Error checking omitted

No declared parameters

Define bit position values
Number of bit names provided
Name counter

Check if names exhausted

Start new byte at leftmost bit
Allocate a bit—flag byte

Get a new bit name

Get M—th name from argument list
Define bit via length attribute
Step to next name

Exit if names exhausted

Count bits in a byte

Get new name if byte not full
Byte is filled, start a new byte

Define bits bl, b2

Allocate a bit-flag byte

Define bit via length attribute
Define bit via length attribute

HLASM

© Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-41

Simple Bit-Manipulation Macros: Pseudo-Code

e QOperations on “named” bits

e Setting bits on: one Ol instruction per named bit

IF (Label # null) GEN (Label DC OH'0')

DO for M = 1 to Number_of Arguments
GEN (OI Arg(M),L'Arg(M)) to set bits on

e |ength Attribute reference specifies the bit

— As illustrated in the simple bit-defining macro

e Similar macros for setting bits off, or inverting bits

IF (Label # null) GEN (Label DC OH'O')
GEN (NI Arg(M),255-L'Arg(M)) to set bits off
GEN (XI Arg(M),L'Arg(M)) to invert bits

e Warning: these simple macros are very trusting!

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-42

Simple Bit-Handling Macros: Setting Bits ON

e Macro SBitOn to set one or more bits ON

e Syntax: SBitOn bitname[,bitname]...

Macro , Error Checking omitted
&Lab SBitOn
&NN SetA N'&SysList Number of Names
&M SetA 1
Aif ('&Lab' eq '').Next Skip if no name field
&Lab DC OH'0’' Define label
» .Next ANop , Get a bit name
&B SetC '&SysList(&M)' Extract name (&-th positional argument)
.Go 0I &B,L'&B Set bit on
&M SetA &M+l Step to next bit name
Aif (&M l1e &NN).Next Go get another name

MEnd

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-43

Simple Bit-Handling Macros: Setting Bits ON ...

e Examples:

e QObserve: one Ol instruction per bit!

AAl

+AAl DC

+

+
+
+
+

0I
0I
0I
0I
0I

SBitOn

0I
0I

We will consider optimizations later

SBitOn

bl,b3,b8,cl,c2

OH'0’

bl,L'bl
b3,L'b3
b8,L'b8
cl,L'cl
c2,L'c2

bl,b8
bl,L'bl
b8,L'b8

Define label

Set
Set
Set
Set
Set

Set
Set

bit
bit
bit
bit
bit

on
on
on
on
on

on
on

HLASM

© Copyright IBM Corporation 1993, 2004. All rights reserved.

Tech-44

Simple Bit-Handling Macros: Set OFF and Invert Bits

e Macros SBit0Off and SBitInv are defined like SBitOn:

— SBitOff uses NI to set bits off

Macro
&Lab SBitOff
* — — — etc., as for SBitOn
.Go NI &B,255-L'&B Set bit off
* - — — etc.
MEnd

— SBitInv uses Xl to invert bits

Macro
&Lab SBitlInv
* — — — etc., as for SBitOn
.Go XI &B,L'&B Invert bit
* - — — etc.
MEnd

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-45

Simple Bit-Handling Macros: Set OFF and Invert Bits ...

e Examples:
bbl SBit0ff bl,b3,b8,cl,c2
+bb1l DC OH'O'
+ NI bl,255-L'bl
+ NI b3,255-L'b3
+ NI b8,255-L'b8
+ NI cl,255-L'cl
+ NI c2,255-L"'c2
ccl SBitInv bl,b3,b8,cl,c2
+ccl DC OH'O'
+ XI bl,L'bl
+ XI b3,L'b3
+ XI b8,L'b8
+ XI cl,L'cl
+ XI c2,L'c2

Define label
Set bit off
Set bit off
Set bit off
Set bit off
Set bit off

Define label
Invert bit
Invert bit
Invert bit
Invert bit
Invert bit

e QObserve: one NI or Xl instruction per bit

HLASM

© Copyright IBM Corporation 1993, 2004. All rights reserved.

Tech-46

Simple Bit-Handling Macros: Branch on Bit Values

e Simple bit-testing macros: branch to target if bitname is on/off

e Syntax: SBBitxxx bitname,target
Macro
&Lab SBBitOn &B,&T Bitname and branch label
&Lab TM &B,L'&B Test specified bit
BO &T Branch if ON
MEnd
Macro
&Lab SBBitOff &B,&T Bitname and branch label
&Lab TM &B,L'&B Test specified bit
BNO &T Branch if OFF
MEnd
* Examples
ddl SBBitOn bl,aal
+dd1 ™ bl,L'bl Test specified bit
+ BO aal Branch if ON
SBBitOn b2,bbl
+ ™ b2,L'b2 Test specified bit
+ BO bbl Branch if ON
HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-47

Bit-Handling Macros: Enhancements

e The previous macros work, and can be put to immediate use.
They will be enhanced in two ways:

1. Check to ensure that “bit names” really do name bits!
(We need “encapsulation” and “strong typing!”)

X DC F'23'
Flag Equ X'08'
SBitOn Flag,X

Define a constant

Define a flag bit (?) 'somewhere'
Set two bits ON 'somewhere' ???

2. Handle bits within one byte with one instruction (code optimization!)

e More enhancements are possible (but not illustrated here):

Pack all bits (storage optimization) (but may not gain much)

“Hide” declared bit names so they don't appear as ordinary symbols
(make “strong typing” even stronger!)

Provide a “run-time symbol table” for debugging

— ADATA instruction can put info into SYSADATA file

— Create separate CSECT with names, locations, bit values

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-48

Bit-Handling “Micro-Compiler”

e Goal: Create a “Micro-compiler” for bit operations
— Micro: Limit scope of actions to specific data types and operations

— Compiler: Perform typical syntax/semantic scans, generate code
— Each macro can check syntax of definitions and uses

— Build and use “Symbol Tables” of created global variable symbols

e “Bit Language” the same as for the simple bit-handling macros:
— Data type: named bits

— Operations: define; set on/off/invert; test-and-branch

e Can incrementally add to and improve each language element

— As these enhancements will illustrate

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-49

Bit-Handling Macros: Data Structures

e Bit declaration requires three simple “global”’ items:
1. A Byte_Number to count bytes in which bits are declared
2. A BitCount for the next unallocated bit in the current byte

3. An associatively addressed Symbol Table --
Each declared bit name creates a global arithmetic variable:

— Its name &(BitDef_MyBit_ByteNo) is constructed from
— a prefix BitDef_ (whatever you like, to avoid global-name collisions)
— the declared bit name MyBit (the “associative” feature)
— a suffix _ByteNo (whatever you like, to avoid global-name collisions)

— Its value is the Byte_Number in which this bit was allocated

e Remember: the bytes themselves will be unnamed!

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-50

General Bit-Defining Macro: Design

e Bits may be “packed”; sublisted names are kept in one byte
e Example: BitDef a,(b,c),d keeps b and c together

e High-level pseudo-code:

DO for all arguments

IF argument is not a sublist
THEN assign the named bit to a byte (start another if needed)
ELSE IF sublist has more than 8 items, ERROR STOP, can't assign

ELSE if not enough room in current byte, start another

Assign sublist bit names to a byte

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-51

General Bit-Defining Macro: Pseudo-Code

Set Lengths = 128,64,32,16,8,4,2,1 (Bit values, indexed by Bit Count)
DO for M = 1 to Number_of_Arguments

Set B = Arg_List(M)
IF (Substr(B,1,1) # '(') PERFORM SetBit(B) (not a sublist)

ELSE (Handle sublist)

—

F (N_SubList Items > 8) ERROR Sublist too long

F (BitCount+N_Sublist Items > 8) PERFORM NewByte

DO for CS = 1 to N _Sublist Items (Handle sublist)
PERFORM SetBit(Arg List(M,CS))

—

SetBit(B): (Save bit name and Byte Number in which the bit resides:)
IF (Mod(BitCount,8) = 0) PERFORM NewByte
Declare created global variable &(BitDef &B. Byte Number)
Set created variable (Symbol Table entry) to Byte Number
GEN (B EQU *-1,Lengths(BitCount))
Set BitCount = BitCount+l (Step to next bit in this byte)

NewByte: GEN(DC B'O'); Increment Byte Number; BitCount =1

e Created symbol contains bit name; its value is the byte number

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-52

General Bit-Handling Macros: Bit Definition

&BitDef ByteNo
128,64,32,16,8,4,2,1
N'&SysList

1

(&M gt &NN) .Done

1

B'0’

Some error checks omitted

Used to count defined bytes
Define bit position values
Number of bit names provided
Name counter

Check if names exhausted

Start new byte at leftmost bit
Define a bit—flag byte

&BitDef ByteNo SetA &BitDef ByteNo+l Increment byte number

Macro
BitDef
Gb1A
&L(1) SetA
&NN SetA
&M SetA
.NB Aif
&C SetA
DC
.NewN ANop
&B Set(C
Aif
&NS SetA
&CS SetA
Aif
&C SetA
DC

'&SysList (&M) '

('&'(1,1) ne "(').NoL

N'&SysList (&M)

1

(&C+&NS T1e 9).SubT
1

w-c-

Get a new bit name

Get M—th name from argument 1list
Branch if not a sublist

Number of sublist elements

Initialize count of sublist items

Skip if room left in current byte

Start a new bhyte

Define a bit—flag byte

wwdﬁcm* w<ﬁmzo SetA &BitDef ByteNo+l Increment byte number

(continued)

HLASM

© Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-53

General Bit-Handling Macros: Bit Definition ...

* _ - —

.SubT ANop

Gb1A &(BitDef &B. ByteNo)

(continuation)

'&SysList(&M,&CS) "

*~1,&L(&C)

Name is in a sublist

Generate sublist equates

Extract sublist element

Created var sym with ByteNo for this bit
Define bit via length attribute

&(BitDef _&B. ByteNo) SetA &BitDef ByteNo Byte no. for this bit

&B SetC
&B Equ
&CS SetA
Aif
&C SetA
Ago
.NoL ANop

Gb1A &(BitDef &B. ByteNo)

&B Equ

&CS+1
(&CS gt &NS) .NewA
&C+1
.SubT

*~1,&L(&C)

Step to next sublist item

Skip if end of sublist

Count bits in a byte

And go do more list elements

Not a sublist

Declare byte number for this bit
Define bit via length attribute

&(BitDef _&B. ByteNo) SetA &BitDef ByteNo Byte no. for this bit

.NewA ANop , Ready for next argument
&M SetA &M+l Step to next name
Aif (&M gt &NN).Done Exit if names exhausted
&C SetA &C+1 Count bits in a byte
Aif (&C le 8).NewN Get new name if not done
Ago .NB Bit filled, start a new byte
.Done MEnd
HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-54

Examples of Bit Definition

e Example: Define ten bit names (with macro-generated code)

ad BitDef d1,d2,d3,(d4,d5,d6,d7,d8,d9),d10 d4 starts new byte

+ DC B'O' Define a bit—flag byte

+d1 Equ *-1,128 Define bit via length attribute
+d2 Equ *-1,64 Define bit via length attribute
+d3 Equ *-1,32 Define bit via length attribute
+ DC B'O' Define a bit—flag byte

+d4 Equ *-1,128 Define bit via length attribute
+d5 Equ *-1,64 Define bit via length attribute
+d6 Equ *-1,32 Define bit via length attribute
+d7 Equ *-1,16 Define bit via length attribute
+d8 Equ *-1,8 Define bit via length attribute
+d9 Equ *-1,4 Define bit via length attribute
+d10 Equ *-1,2 Define bit via length attribute

e Bits named d4-d9 are allocated in a single byte

— Causes some bits to remain unused in the first byte

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-55

General Bit-Setting Macro: Data Structures

Two “phases” used to generate bit-operation instructions:

1. Check that bit names are declared (the “strong typing”), and
collect information about bits to be set:

a. Number of distinct Byte_Numbers (what bytes “own” the bit names?)
b. For each byte, the number of instances of bit names in that byte

c. An associatively addressed “name table” (variable symbol)
e Name prefix is BitDef _Nm_ (whatever, to avoid global-name collisions)
e Suffix is a “double subscript,” &ByteNumber. &InstanceNumber

e Value (of the symbol) is the bit name itself

2. Use the information to generate optimal instructions

e Names and number of name instances needed to build each operand

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-56

General Bit-Setting Macro: Design

e QOptimize generated code using variables declared by BitDef macro

e Syntax: BitOn bitname[,bitname]...
Example: BitOn a,b,c,d

e High-level pseudo-code:

DO for all arguments (Pass 1)

Verify that the argument bit name was declared (check global symbol)
IF not declared, stop with error message for undeclared bit name

Save argument bit names and their associated byte numbers
DO for all saved distinct byte numbers (Pass 2)

GEN Instructions to handle argument bits belonging to each byte

e Pass 1 captures bit names & byte numbers, pass 2 generates code

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-57

General Bit-Setting Macro: Pseudo-Code

e Detailed pseudo-code:

Save macro—call label
Set NBN (Number of known Byte Numbers) = 0
DO for M = 1 to Number of Arguments
Set B = Arg(M)
Declare created global variable &(BitDef &B. Byte Number)
IF (Its value is zero) ERROR EXIT 'Undeclared Bitname &B'
DO for K = 1 to NBN (Check byte number from the global variable)
IF (This Byte Number is known) Increment its count
ELSE Increment NBN (this Byte Number is new: set its count = 1)
Save B in bitname 1ist for this Byte Number

(End Arg scan: have all byte numbers and their associated bit names)
DO for M = 1 to number of distinct Byte Numbers
Set Operand = 'First Bitname,L''First Bitname' (local character string)
DO for K = 2 to Number of bitnames in this Byte
Operand = Operand || '+L''Bitname(K)'
GEN (Tabel OI Operand); set label = ''

e Easy generalization to Bit_Off (NI) and Bit_Invert (XI)

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-58

General Bit-Setting Macros: Set Bits ON

e Macro BitOn optimizes generated instructions (most error checks

omitted)
Macro
&Lab BitOn
&L SetC '&Lab' Save label
&NBN SetA 0 No. of distinct Byte Nos.
&M SetA 0 Name counter
&NN SetA N'&SysList Number of names provided
.NmLp Aif (&M ge &NN).Pass2 Check if all names scanned
&M SetA &M+l Step to next name
&B SetC '&SysList(&M)' Pick off a name
Aif ('&' eq '').Null Check for null item
Gb1A &(BitDef &B. ByteNo) Declare GBLA for Byte No.
Aif (&(BitDef &B. ByteNo) eq 0).UnDef Exit if undefined
&K SetA 0 Loop through known Byte Nos
.BNLp Aif (&K ge &NBN) .NewBN Not in list, a new Byte No
&K SetA &K+l Search next known Byte No
Aif (&BN(&8K) ne &(BitDef &B. ByteNo)).BNLp Check match
* — — — continued

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-59

General Bit-Setting Macros: Set Bits ON ...

* - — - (continuation)
&J SetA 1 Check if name already specified
.Ckbup Aif (&J gt &IBN(&K)) .NmOK Branch if name is unique

Aif ('&B' eq '&(BitDef Nm &BN(&K). &J)').DupNm Duplicated

&J SetA &J+1 Search next name in this byte
Ago .CkDup Check further for duplicates

.DupNm MNote 8,'BitOn: Name ''&B'' duplicated in operand list'
MExit

.NmOK ANop , No match, enter name in list

&IBN(&K) SetA &IBN(&K)+1 Matching BN, bump count of bits in this byte
Lc1C &(BitDef Nm &BN(&K). &IBN(&K)) Slot for bit name
&(BitDef Nm &BN(&K). &IBN(&8K)) SetC '&B' Save K'th Bit Name, this byte

Ago .NMLp Go get next name
.NewBN ANop , New Byte No
&NBN SetA &NBN+1 Increment Byte No count
&BN (&NBN) SetA &(BitDef &B. ByteNo) Save new Byte No
&IBN(&NBN) SetA 1 Set count of this Byte No to 1

Lc1C &(BitDef Nm &BN(&NBN). 1) Slot for first bit name
&(BitDef Nm &BN(&NBN). 1) SetC '&B' Save 1lst Bit Name, this byte
Ago .NMLp Go get next name
* — — — continued

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-60

General Bit-Setting Macros: Set Bits ON ...

* - - =

.Pass2 ANop

&M SetA
—> .BLp Aif
&M SetA
&X SetA
&K SetA
&0p SetC
™ .OpLp Aif
| &K SetA
| &0p SetC
| Ago
.Gen0I ANop
&L 0I
&L Set(C
Ago

(continuation)
, Pass 2: scan Byte No list
0 Byte No counter
(&M ge &NBN) .Done Check if all Byte Nos done
&M+1 Increment outer—loop counter
&BN (&M) Get M-th Byte No
1 Set up inner loop

'&(BitDef Nm &X. &K).,L''&(BitDef Nm &X. &K)' 1st operand
(&K ge &IBN(&M)).Gen0I Operand loop, check for done

8K+1 v Step to next bit in this byte
'&p.+L''&(BitDef Nm &X. &K)' Add ”“L'bitname” to operand
.OpLp | Loop (inner) for next operand

, ¢ ! Generate instruction for Byte No
&0p Turn bits ON

' Nullify label string

.BLp Loop (outer) for next Byte No

.UnDef MNote 8,'BitOn: Name ''&B'' not defined by BitDef'

MExit

Null MNote 8, 'BitOn: Null argument at position &M.'

.Done MEnd

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-61

General “Branch if Bits On” Macro: Design

e Function: branch to target if all named bits are on

e Syntax: BBitOn (bitlist),target
Example: BBitOn (a,b,c,d),Label

e QOptimize generated code using global data created by BitDef

e If more than one byte is involved, need “skip-if-false” branches

Test a —>»| Test b —>| Test ¢ —>| Test d —>Target Label

T T T T

False ﬁ False
_

ﬁ False + False

HA

Next Statement (tagged by “Skip Label”)

—<

e Need only one test instruction for multiple bits in a byte!

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-62

General “Branch if Bits On” Macro: Pseudo-Code

e Pseudo-code:

Save macro—call label; Set NBN (Number of known Byte Numbers)
DO for M = 1 to Number_of 1lst-Arg Items
Set B = Arg(M)
Declare created global variable &(BitDef &B. Byte Number)
IF (Its value is zero) ERROR EXIT, undeclared bitname
DO for K = 1 to NBN (Check byte number from the global variable)
IF (This Byte Number is known) Increment its count
ELSE Increment NBN (this Byte Number is new: set its count = 1)
Save B in bit name list for this Byte Number

(End Arg scan: have all byte numbers and their associated bit names)
Create Skip_Label (using &SYSNDX)
DO for M = 1 to NBN
Set Operand = 'First Bitname,L''First Bitname' (first operand)
DO for K = 2 to Number of bitnames in this Byte
Operand = Operand || '+L''Bitname(K)"
|m (M < NBN) GEN (Tabel TM Operand ; BNO Skip Label); set label = "'
ELSE GEN (1abel TM Operand ; BO Target label)
IF (NBN > 1) GEN (Skip Label DS OH)

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-63

General Bit-Handling Macros: Branch if Bits On

e BBitOn macro optimizes generated instructions (most error checks
omitted)

e Two “passes” over bit name list:
1. Scan, check, and save names, determine byte numbers (as in Bit0On)

2. Generate optimized tests and branches;
if multiple bytes, generate “skip” tests/branches and label

Macro
&Lab BBitOn &NL,&T Bit Name List, Branch Target
Aif (N'&SysList ne 2 or '8&NL' eq '' or '&T' eq '').BadArg
&L SetC '&Lab' Save label
&NBN SetA 0 No. of distinct Byte Nos.
&M SetA 0 Name counter
&NN SetA N'&NL Number of names provided
.NmLp Aif (&M ge &NN).Pass2 Check if all names scanned
o - - - (continued)

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-64

General Bit-Handling Macros: Branch if Bits On ...

Kx - — - (continuation)
&M SetA &M+l Step to next name
&B SetC '&NL(&M)' Pick off a name

Gb1A &(BitDef &B. ByteNo) Declare GBLA with Byte No.
Aif (&(BitDef &B. ByteNo) eq 0).UnDef Exit if undefined

&K SetA 0 Loop through known Byte Nos
.BNLp Aif (&K ge &NBN) .NewBN Not in list, a new Byte No
&K SetA &K+l Search next known Byte No
Aif (&BN(&8K) ne &(BitDef &B. ByteNo)).BNLp Check match
&J SetA 1 Check if name already specified

.CkDup Aif (&J gt &IBN(&K)).NmOK Branch if name is unique
Aif ('&' eq '&(BitDef Nm &BN(&K). &J)').DupNm Duplicated

&J SetA &J+1 Search next name in this byte
Ago .CkDup Check further for duplicates

.DupNm MNote 8,'BBitOn: Name ''&B'' duplicated in operand list’
MExit

.NmOK ANop , No match, enter name in list

&IBN(&K) SetA &IBN(&K)+1 Have matching BN, count up by 1

Lc1C &(BitDef Nm &BN(&K). &IBN(&K)) Slot for bit name
&(BitDef Nm &BN(&K). &IBN(&K)) SetC '&B' Save K'th Bit Name, this byte
Ago .NMLp Go get next name
K - - - (continued)

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-65

General Bit-Handling Macros: Branch if Bits On ...

* - - - (continuation)

.NewBN ANop , New Byte No

&NBN SetA &NBN+1 Increment Byte No count

&BN (&NBN) SetA &(BitDef &B. ByteNo) Save new Byte No

&IBN(&NBN) SetA 1 Set count of this Byte No to 1

Lc1C &(BitDef Nm &BN(&NBN). 1) Slot for first bit name
&(BitDef Nm &BN(&NBN). 1) SetC '&B' Save 1lst Bit Name, this byte

Ago .NMLp Go get next name
.Pass2 ANop , Pass 2: scan Byte No list
&M SetA 0 Byte No counter
&Skip SetC 'Off&SysNdx' False—branch target
.BLp Aif (&M ge &NBN).Done Check if all Byte Nos done
&M SetA &M+l Increment outer—loop counter
&X SetA &BN(&M) Get M-th Byte No
&K SetA 1 Set up inner loop
&0p SetC '&(BitDef Nm &X. &K).,L''&(BitDef Nm &X. &K)' Operand
.OpLp Aif (&K ge &IBN(&M)).GenBr Operand loop, check for done
&K SetA &K+l Step to next bit in this byte
&0p SetC '&0p.+L''&(BitDef Nm &X. &K)' Add next bit to operand
Ago .OpLp Loop (inner) for next operand
o* - - - (continued)

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-66

General Bit-Handling Macros: Branch if Bits On ...

* - - - (continuation)
.GenBr ANop , Generate instruction for Byte No
Aif (&M eq &NBN).Last Check for last test
&L ™ &0p Test if bits are ON
BNO &Skip Skip if not all ON
&L SetC "' Nullify label string
Ago .BLp Loop (outer) for next Byte No
.Last ANop , Generate last test and branch
&L ™ &0p Test if bits are ON
BO &T Branch if all ON
Aif (&NBN eq 1) .Done No skip target if just 1 byte
&Skip DC OH'O' Skip target
MExit
.UnDef MNote 8,'BBitOn: Name ''&B'' not defined by BitDef'
MExit

.BadArg MNote 8,'BBitOn: Improperly specified argument 1list'
.Done MEnd

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-67

Case Study 9: Defining and Using Data Types

e QOverview of data typing

e Using base-language type attributes

— Case Study 9a: use operand type attribute to generate correct literal types

e Shortcomings of assembler-assigned type attributes

— Case Study 9b: create macros to check conformance of instructions and
operand types

— Extension: instruction vs. operand vs. register consistency checking

e User-assigned (and assembler-maintained) data types

— Case Study 9c: declare user data types and “operators” on them

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-68

Defining and Using Data Types

e We're familiar with type sensitivity in higher-level languages:
— Instructions generated from a statement depend on data types:
A=B+C; '=' and '+' are polymorphic operators
— A, B, C might be integer, float, complex, boolean, string, .
e Most named assembler objects have a type attribute

— Can exploit type attribute references for type-sensitive code sequences and for
operand validity checking

e Extensions to the “base language” types are possible:

— Assign our own type attributes (avoiding conflicts with Assembler's)
— Utilize created variable symbols to retain type information

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-69

Base-Language Type Sensitivity: Simple Polymorphism

e |ntent: INCR macro increments var by a constant amt (or 1)

INCR var[,amt]

H Type
Type
PL6 Type
Type
Type
Type

-

>Xm o

Day
Rate,—3,Reg=15
MyPay,150.50
Dist,—3.16227766
Wt,—2E4,Reg=6

Syntax:

e Usage examples:
Day DS
Rate DS
MyPay DS
Dist DS
Wt DS
WXY DS
*
cC Incr
DD Incr

Incr
JJ Incr
KK Incr
Incr

WXY, 2

X MmO v

(default amt=1)

Day of the week

Rate of something

My salary

A distance

A weight

Type not valid for INCR macro

Add 1 to Day

Decrease rate by 3

Add 150.50 to my salary
Decrease distance by sqrt(10)
Decrement weight by 10 tons
Test with unsupported type

e INCR uses assembler type attribute of &var to create compatible literals

type of amt guaranteed to match type of var

HLASM

© Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-70

Base-Language Type Sensitivity: Simple Polymorphism ...

e Supported types: H, F, E, D, P

Macro , Increment &V by amount &A (default 1)
&Lab INCR &V,&A,&Reg=0 Default work register = 0
&T SetC T'&Y Type attribute of 1lst arg
&0p SetC '&T’ Save type of &V for mnemonic suffix
&I SetC '1' Default increment

Aif ('8A' eq '"').IncOK Increment now set OK
&I SetC '&A' Supplied increment (N.B. Not SETA!)

IncOK Aif ('&T' eq 'F').F,('&T' eq 'P').P, (check base language types)
('&T' eq 'H' or '&T' eq 'D' or '&T' eq 'E').T Valid types
MNote 8,'INCR: Cannot use type ''&T'' of ''&V''.'

MExit
.F ANOP , Type of &V is F
&0p SetC "' Null opcode suffix for F (no LF opcode)
T ANOP , Register—types D, E, H (and F)
&Lab L&0p &Reg,&V Fetch variable to be incremented
A%Op &Reg,=&T.'&I" Add requested increment as typed literal
ST&0p &Reg,&YV Store incremented value
MExit
.P ANOP , Type of &V is P
&Lab AP &V,=P'&I" Incr packed variable with P—type literal
MEnd

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-71

Base-Language Type Sensitivity: Generated Code

e Code generated by INCR macro (see slide Tech-70)

cC
+CC
+
+

DD
+DD

JJ

+JJ

KK
+KK

+ *%*% ZZO._.H **k*

Incr
LH
AH
STH
Incr
L

A

ST
Incr
AP
Incr
LD
AD
STD
Incr
LE
AE
STE

Incr

Day

0,Day

0,=H'1l'

0,Day
Rate,—3,Reg=15
15,Rate
15,=F'-3'
15,Rate
MyPay,150.50
MyPay,=P'150.50"
Dist,—3.16227766
0,Dist
0,=D'-3.16227766"
0,Dist
Wt,—2E4,Reg=6
6,Wt

6,=E'-2E4'

6,Wt

WXY, 2

Add 1 to Day
Fetch variable to be increment
Add requested increment
Store incremented value
Decrease rate by 3
Fetch variable to be increment
Add requested increment
Store incremented value
Add 150.50 to my salary
Increment variable
Decrease distance by sqrt(10)
Fetch variable to be increment
Add requested increment
Store incremented value
Decrement weight by 10 tons
Fetch variable to be increment
Add requested increment
Store incremented value

Test with unsupported type

8,INCR: Cannot use type 'X' of 'WXY'.

HLASM

© Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-72

Shortcomings of Assembler-Assigned Types

e Suppose amt is a variable, not a constant...

— Need an ADD2 macro: syntax like ADD2 var,amt

e What if the assembler types of var and amt don't conform?

— Mismatch? Might data type conversions be required? How will we know?

Rate DS F Rate of something
MyPay DS PL6 My salary
ADD2 MyPay,Rate Add (binary) Rate to (packed) MyPay ??

e Assembler data types know nothing about “meaning” of variables,
only their hardware representation; so, typing is very weak!

Day DS H Day of the week
Rate DS F Rate of something
Dist DS D A distance
Wt DS E A weight
*
* Following (assembler) types conform!
*
ADD2 Rate,Day Add binary Day to Rate (??
ADD2 Dist,WT Add floating Distance to Weight (??

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-73

Symbol Attributes and Lookahead Mode

e Symbol attributes are entered in the symbol table when defined

e Attribute references are resolved during conditional assembly by
1. Finding them in the symbol table, or

2. Forward-scanning the source file (“Lookahead Mode”) for the symbol's
definition

— No macro definition/generation, no substitution, no AGO/AIF
— Symbol attributes may change during final assembly
— Scanned records are saved (SYSIN is read only once!)

e Symbols generated by macros can't be found in Lookahead Mode

— Unknown or partially-defined symbols assigned type attribute 'U'

e Symbol attributes needed for conditional assembly must be defined
before they are referenced

e Can use LOCTR instruction to “group” code and data separately

— Data declarations can precede code in source, but follow it in storage

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-74

Case Study 9b: Simple Instruction-Operand Type Checking

e Check the second operand of the A instruction
— Accept type attributes type F, A, or Q; note others
e First, save the assembler's definition of instruction “A”

My A OpSyn A Save definition of A as My A

e Define a macro named “A” that eventually calls My A

e Macro “A” checks the second operand for type F, A, or Q

Macro
&L A &R, &X
AIF (T'& eq 'F' or T'& eq 'A' or T'&X eq 'Q').0K
MNote 1,'Note! Second operand type not F, A, or Q.'
.0K ANop
&L My A &R,&X
MEnd

e Note that allowed types are “hard coded” in the macro

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-75

Base-Language Type Sensitivity: General Type Checking

e |ntent: compatibility checking between instruction and operand types

e Define TypeChek macro to request type checking
Syntax: TypeChek opcode,valid types

e Call TypeChek with: opcode to check, allowable types
TypeChek L, 'ADFQVX' Allowed types: AQV (adcons), D, F, X

e Sketch of macro to initiate type checking for one mnemonic:

Macro

TypeChek &0Op,&Valid Mnemonic, set of valid types

Gb1C &(TypeCheck &0p. Valid),&(TypeCheck &0p)
&(TypeCheck &0p. Valid) SetC '&Valid' Save valid types

TypeCheck &O0p. OpSyn &0p. Save original opcode definition

&0p OpSyn , Disable previous definition of &0p

* MNote *,'Mnemonic ''&0p.'' valid types are ''&(TypeCheck &0p. Valid).''.'
MEnd

e (eneralizable to multiple opcode mnemonics

— But: requires creating macros for each mnemonic...

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-76

Base-Language Type Sensitivity: General Type Checking ...

e Now, need to install L macro in the macro library:

Macro
&Lab L &Reg,&0perand
Gb1C &(TypeCheck L Valid) List of valid types for L

&TypOp SetC T'&0Operand Type attribute of &0Operand
&Test SetA ('&(TypeCheck L Valid)' Find '&TypOp') Check validity
AIf (&Test ne 0).0K Skip if valid
MNote 1, 'Possible type incompatibility between L and ''&0perand.''?’
.0K ANop Now, do the original L instruction
&Lab TypeCheck L &Reg,&0perand
MEnd

e Now, use L “instruction” as usual:

000084 5A DS F A has type attribute F
000088 6 B DS H B has type attribute H
0001E4 5810F084 23 L 1,A Load from fullword
0001E8 5820F088 24 L 2,B Load from halfword

*** MNOTE *** + 1,Possible type incompatibility between L and 'B'?

e |nconvenience: have to write a macro for each checked mnemonic

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-77

Base-Language Type Checking: Extensions

e Previous technique requires writing a macro for each checked instruction
— Not difficult to write, just a lot of repetitive work

— Macros must be available in a library

— If not using TypeChek, don't use the instruction-replacement macros!

e Better:
— Specify a list of instructions to be checked, such as

TypeChek (L,ST,A,AL,S,SL,N,X,0), 'ADFQVX'

— The TypeChek macro generates the replacement macros as needed

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-78

The AINSERT Statement

e AINSERT allows generation of fully parameterized records

AINSERT 'string', [FRONT |BACK]

e Placed at front or back of assembler's internal buffer queue

— HLASM pads or truncates string to form 80-byte record

e HLASM reads from the FRONT of the buffer before reading from SYSIN

— Input from SYSIN resumes when the buffer is empty

e QOperand string may contain “almost anything”

AInsert '* comment about &SysAsm. &SysVer.',BACK
>* comment about HIGH LEVEL ASSEMBLER 1.4.0

— The '>' character in “column 0” indicates AINSERTed statement

e We will use AINSERT to generate macro definitions

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-79

Base-Language Type Checking: Generated Macros

e Generate each type-checking macro using AINSERT
TypeChek (L,ST,A,AL,S,SL,N,X,0),'ADFQVX' Desired style

e Sketch of revised inner loop of TypeChek macro:

&0p SetC '&0ps(&K)' Pick off K—th opcode

&0p OpSyn , Disable previous definition of &0p

.* Generate macro to redefine &0p for type checking

AInsert ' Macro ',BACK

AInsert '&&Lab &0p. &&Reg,&&0pd',BACK

AInsert ' Gb1C &&(TypeCheck &0p. Valid)',BACK

AInsert '&&TO0 SetC T''&&0pd ',BACK

AInsert '8&T SetA (''&%(TypeCheck &0p. Valid)'' Find ''&&T0'')"',BACK

AInsert ' AIf (&&T ne 0).0K ',BACK

AInsert ' MNote 1,''Possible type conflict between &0p and &&0pd?''',B*
ACK

AInsert '.0K ANop ',BACK

AInsert '&2Lab TypeCheck &0p &&Reg,&20pd ',BACK

AInsert ' MEnd ',BACK

X End of macro generation

e Compare to “hand-coded” L macro (slide Tech-77)

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-80

User-Assighed Assembler Type Attributes

e We can utilize third operand of EQU statement for type assignment:

symbol EQU expression,length,type

— Assembler's “native” types are upper case letters (and '@")

— We can use lower case letters for user-assigned types

e Example (extend the REGS macro, slide Tech-8) to create a TYPEREGS

Macro.
GR&N EQU &N,,C'g’ Assign value and type attribute 'g' for GPR
FR&N EQU &N,,C'f' Assign value and type attribute 'f' for FPR

e GRnn symbols have type attribute 'g', FRnn have 'f'

e Can use type attribute to check symbols used in register operands

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-81

Instruction-Operand-Register Type Checking

e |ntent: check “typed” register names in type-checking macros
e Example: extend L macro (see slides Tech-76 and Tech-77)

Macro
&lab L &Reg,&0perand
Gb1C &(TypeCheck L Valid),&(TypeCheck L _RegType)
&TypOp SetC T'&0Operand Type attribute of &0Operand
&Test SetA ('&(TypeCheck L Valid)' Find '&TypOp') Check validity
AIf (&Test ne 0).0K Op Skip if valid
MNote 1,'Possible type incompatibility between L and ''&0perand.'’'?"’
.0K Op ANop Now, do the original L instruction
X Added checking for register type:
&TypRg SetC T'&Reg Type attribute of &Reg
&Test SetA ('&(TypeCheck L RegType)' Find '&TypRg') Check validity
AIf (&Test ne 0).0KReg Skip if valid
MNote 1, 'Possible register incompatibility between L and ''&Reg.''?’

.0KReg ANop Now, do the original L instruction
&Lab TypeCheck L &Reg,&0perand
MEnd

e Typical expected output...

L FR4,F
*** MNOTE *** 1,Possible type incompatibility between L and 'F'?
*** MNOTE *** 1,Possible register incompatibility between L and 'FR4'?

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-82

Case Study 9c: Encapsulated Abstract Data Types

e |ntent: declare two user types, and define operations on them

e Types: Date and Duration (or Interval) between 2 Dates

— Unfortunately, both Date and Duration start with D
— So, we'll use “Interval” as the safer (if less intuitive) term

e A measure of elapsed time, in days

— We will use lower case letters 'd' and 'i' for our types!

e DCLDATE and DCLNTVL macros declare variables (abstract data types):
DCLDATE Birth,Graduation,Marry,Hire,Retire,Expire

DCLNTVL Training,Employment,Retirement,LoanPeriod

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-83

User-Assigned Type Attributes: DCLDATE Macro

e Declaration of DATE types made by Dc1Date macro

Macro , Args = list of names
DCLDATE &Len=4 Default data length = 4
Gb1C &DateTyp Type attr of Date variable
&DateTyp SetC 'd' User type attr is lower case 'd'
X Length of a DATE type could also be a global variable
&NV SetA N'&SyslList Number of arguments to declare
&K SetA 0 Counter
.Test Aif (&K ge &NV).Done Check for finished
&K SetA &K+l Increment argument counter
DC PL&Len.'0’ Define storage as packed decimal
&SysList(&K) Equ *—&Len.,&Len.,C'&DateTyp' Define name, length, type
Ago .Test
.Done MEnd
DclDate LoanStart,LoanEnd Declare 2 date fields
+ DC PL4'0Q’ Define storage as packed decimal
+LoanStart Equ *-4,4,C'd’ Define name, length, type
+ DC PL4'0Q’ Define storage as packed decimal
+LoanEnd Equ *-4,4,C'd' Define name, length, type

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-84

User-Assigned Type Attributes: DCLNTVL Macro

e Declaration of INTERVAL types made by DcINtvl macro
— Initial value can be specified with Init= keyword

Macro , Args = list of names
DCLNTVL &Init=0,&Len=3 Optional initialization value
Gb1C &NtviTyp Type attr of Interval variable
Lc1A &NtvlLen Length of an Interval variable
&NtviTyp SetC 'i' User type attr is lower case 'i'
* Length of an INTERVAL type could also be a global variable
&NV SetA N'&SyslList Number of arguments to declare
&K SetA 0 Counter
.Test Aif (&K ge &NV).Done Check for finish
&K SetA &K+l Increment argument count
DC PL&Len. '&Init." Define storage
&SysList(&K) Equ *—&Len.,&Len.,C'&NtvIiTyp' Declare name, length, type
Ago .Test
.Done MEnd
DcINtvl Week,Init=7
+ DC PL3'7' Define storage
+Week Equ *-3,3,C'i' Name, length, type

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-85

Calculating With Date Variables: CalcDat Macro

e Now, define operations on DATEs and INTERVALs

e User-callable CalcDat macro calculates dates:

&AnsDate CalcDat &Argl,Op,&Arg2 Calculate a Date variable

e Allowed forms are:

ResultDate CalcDat Date,+,Interval Date = Date + Interval
ResultDate CalcDat Date,—,Interval Date = Date — Interval
ResultDate CalcDat Interval,+,Date Date = Interval + Date

e (alcDat validates (abstract) types of all arguments,
and calls one of two auxiliary macros

Date+Interval
Date—Interval

DATEADDI Datel,LDat,Interval,LNvl,AnsDate,AnsLen Date
DATESUBI Datel,LDat,Interval,LNvl,AnsDate,AnsLen Date

— Auxiliary service macros (“private methods”) understand actual data
representations (“encapsulation”)
— In this case: packed decimal, with known operand lengths

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-86

Calculating With Date Variables: CalcDat Macro ...

e (Calculate Date=Datex Interval or Date=Interval+Date
— DATESUBI and DATEADDI are “private methods”

Macro , Most error checks omitted!!

&Ans CALCDAT &Argl,&0p,&Arg2 Calculate a date in &Ans
Gb1C &NtviTyp,&DateTyp Type attributes

&T1l SetC T'&Argl Save type of &Argl

&T2 SetC T'&Arg2 And of &Arg2
Aif ('&T1&T2' ne '&DateTyp&NtviTyp' and X

'&T1&T2"' ne '&NtviTyp&DateTyp').Errd Validate types

Aif ('&0p' eq '+').Add Check for add operation
DATESUBI &Argl,L'&Argl,&Arg2,L'&Arg2,&Ans,L'&Argl D = D-I
MExit

.Add AIF ('&T1' eq '&NtviTyp').Add2 1st opnd is interval of days
DATEADDI &Argl,L'&Argl,&Arg2,L'&Arg2,&Ans,L'&Argl D = D+I
MExit

.Add2 DATEADDI &Arg2,L'&Arg2,&Argl,L'&Argl,&Ans,L'&Arg2 D = I+D
MExit

.Errd MNote 8, 'CALCDAT: Incorrect declaration of Date or Interval?'’
MEnd

Hire CalcDat Degree,+,Year

+ DATEADDI Degree,L'Degree,Year,L'Year,Hire,L'Degree D = D+I

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-87

Calculating Interval Variables: CalcNvl Macro

e Define user-called CalcNvl macro to calculate intervals

e Allowed forms are:

ResultInterval
ResultInterval
ResultInterval
ResultInterval
ResultInterval

CalcNvl
CalcNvl
CalcNvl
CalcNvl
CalcNvl

Date,—,Date Difference of two date variables
Interval,+,Interval Sum of two interval variables
Interval,—,Interval Difference of two intervals
Interval,*,Number Product of interval, number
Interval,/,Number Quotient of interval, number

e (CalcNvl validates declared types of arguments, and calls one of five
auxiliary macros (more “private methods”):

NTVLADDI
NTVLSUBI
NTVLMULI
NTVLDIVI
DATESUBD

Nvlil,Lenl,Nvl2,Len2,AnsI,AnsLen Nvl = Nvl + Nvl
Nvlil,Lenl,Nvl2,Len2,AnsI,AnsLen Nvl = Nvl — Nvl
Nvlil,Lenl,Nvl2,Len2,AnsI,AnsLen Nvl = Nvl * Num
Nvil,Lenl,Nv12,Len2,AnsI,AnsLen Nvl = Nvl / Num
Datel,LDatl,Date2,LDat2,AnsI,AnsLen Nvl = Date-Date

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-88

Calculating Interval Variables: CalcNvl Macro ...

Macro
&Ans CALCNVL &Argl,&0p,&Arg2
Gb1C &NtviTyp,&DateTyp Type attributes

&X(C'+') SetC 'ADD' Name for ADD routine
&X(C'-') SetC 'SUB' Name for SUB routine
&X(C'*') SetC 'MUL' Name for MUL routine
&X(C'/') SetC 'DIV' Name for DIV routine
&z SetC 'C''&0p''’ Convert &0p char to self-def term
&T1 SetC T'&Argl Type of Argl
&T2 SetC T'&Arg2 Type of Arg2
Aif ('&T1&T280p' eq '&DateTyp&DateTyp.—').DD Chk date—date
Aif ('&T2' ne 'N').II Second operand nonnumeric
NTVL&X(&Z).I Argl,L'8Argl,=PL3'&Arg2',3,8Ans,L'&Ans I op const
MExit
JII NTVL&X(&Z).I &Argl,L'&Argl,&Arg2,L'&Arg2,8Ans,L'&8Ans I op I
MExit
.DD DATESUBD &Argl,L'&Argl,&Arg2,L'&Arg2,&Ans,L'&Ans date-date
MEnd
Days CALCNVL Days,+,Days Interval + Interval
+ NTVLADDI Days,L'Days,Days,L'Days,Days,L'Days Iopl
Days CALCNVL Hire,—,Degree Date — Date
+ DATESUBD Hire,L'Hire,Degree,L'Degree,Days,L'Days date-date

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-89

Example of an Interval-Calculation Macro

e Macro NTVLADDI adds intervals to intervals

Macro
&L NTVLADDI &Argl,&L1,&Arg2,&L2,&Ans,&LAns
AIf ('&Argl' ne '&Ans').T1 Check for Ans being Argl
AIf (&L1 ne &LAns).Error Same field, different lengths
&L AP &Ans. (&Lans) ,&Arg2. (&L2) Add Arg2 to Answer
MExit
.T1 AIf ('&Arg2' ne '&Ans').T2 Check for Ans being Arg2
AIf (&L2 ne &LAns).Error Same field, different lengths
&L AP &Ans. (&Lans) ,&Argl. (&L1) Add Argl to Answer
MEXit
.12 ANop ,
&L ZAP &Ans. (&Lans),&Argl. (&L1) Move Argl to Answer
AP &Ans. (&Lans) ,&Arg2. (&L2) Add Arg2 to Argl
MExit
.Error MNote 8, 'NTVLADDI: Target ''&Ans'' has same name as, but diffe*
rent length than, a source operand’
MEnd
A NTVLADDI X,3,=P'5',1,X,3
+A AP X(3),=P'5'(1) Add Arg2 to Answer
HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-90

Comparison Operators for Dates and Intervals

e Define comparison macros CompDate and CompNtv]

&Label CompDate &Datel,&0p,&Date2,&True Compare two dates
&Label CompNtvl &Ntv11l,&0p,&Ntvi2,&True Compare two intervals

— &Op is any useful comparison operator (EQ, NEQ, GT, LE, etc.)
— &True is the branch target for true compares

Macro
&Label CompDate &Datel,&0p,&Date2,&True
Gb1A &Datelen Length of Date variables
&Mask(1) SetA 8,7,2,13,4,11,10,5,12,3 BC Masks
&T SetC ' EQ NEQ GT NGT LT NLT GE NGE LE NLE ' Operators
&C SetC (Upper '&0p') Convert to Upper Case
&N SetA ('&T' INDEX '&C') Find operator
AIf (&N eq 0).BadOp
&N SetA (&\+3)/4 Calculate mask index

&Label CP &Datel. (&DatelLen),&Date2. (&Datelen)
BC &Mask(&N) ,&True Branch to 'True Target'
MExit

.BadOp MNote 8, '&SysMac: Bad Comparison Operator ''&0p.'''
MEnd

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-91

Case Study 10: “Front-Ending” a Macro

e Put your code “around” a call to a library macro, to:

— Validate arguments to the library macro
— Generate your own code before/after the library macro's

e Use OPSYN for dynamic renaming of opcodes:

Define your “wrapper” macro with the same name
OPSYN the name to a temp, then nullify itself (!)

Do “front-end” processing, then call the library macro

Do “back-end” processing

5. Re-establish the “wrapper” definition from the temp name

H o=

e Example: “Wrapper’ for READ macro

Macro
&L READ &A,&B,&C
READ XX OpSyn READ Save Wrapper's definition as READ XX
READ OpSyn , Nullify this definition
- == ...perform 'front-end' processing
&L READ &A,&B,&C Call system version of READ
- == ...perform 'back—end' processing
READ OpSyn READ_XX Re—establish Wrapper's definition
MEnd

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-92

Summary

e Easy to implement “High-Level Language” features in your Assembler
Language

e Start with simple, concrete, useful forms
e Build new “language” elements incrementally

e Useful results directly proportional to implementation effort
— Create as few or as many capabilities as needed

— Checking and diagnostics as simple or elaborate as desired
e New language can precisely match application requirements

e Best of all: it's fun!

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. Tech-93

External Functions

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. External Functions-1

External Conditional Assembly Functions

e Two types of external, user-written functions

1. Arithmetic functions: like &\ = AFunc(&V1, &V2, ...)

&A SetAF 'AFunc',&V1,&V2,... Arithmetic arguments
&LogN SetAF 'Log2',&N Logb (&N)

2. Character functions: like & = CFunc('&S1', '&S2', ...)
&C SetCF 'CFunc','&S1','&S2',... String arguments
&RevX SetCF 'Reverse','&X' Reverse (&X)

e Functions may have zero to many arguments

Assembler's call uses standard linkage conventions

— Assembler provides a save area and a 4-doubleword work area
e Functions may provide messages with severity codes for the listing

e Return code indicates success or failure

— Failure return terminates the assembly

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. External Functions-2

SETAF External Function Interface

Primary List Request Info Area

Rl —>| 4 ReqInfoArea ——| ParmList Version

4 WorkArea —> Function Type

e (n) means the
field is repeated

Reserved Return Code n times

Reserved Number of Params

4 Message Buf Flag| Reserved * HLASM provides
a 32-byte work
Reserved area

Msg Len| Msg Sev

Function Value

(n) | Parameters 1-n

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved. External Functions-3

SETCF External Function Interface

Primary List

Rl —>| % ReqInfoArea |—

4 WorkArea —>

(2) | Reserved

4 Msg Buffer

4 Ret. String |—

(n)| 4 Parm 1-n Str. |

(n)

Request Info Area

ParmList Version

Function Type

Number of Params

Return Code

Flag| Reserved

Reserved

Msg Len | Msg Sev

Ret. Str. Length

Parm 1-n Str. Len

(n) means the
field is repeated
n times

HLASM provides
a 32-byte work
area

HLASM © Copyright IBM Corporation 1993, 2004. All rights reserved.

External Functions-4

System (&SYS) Variable
Symbols

HLASM Macro Tutorial © Copyright IBM Corporation 1993, 2004. All rights reserved. SVAR-1

System Variable Symbols: History and Overview

e Symbols whose value is defined by the assembler
— Three in the OS/360 (1966) assemblers: &SYSECT, &SYSLIST, &SYSNDX
— DOS/TOS Assembler (1968) added &SYSPARM
— Assembler XF (1971) added &SYSDATE, &SYSTIME
— Assembler H (1971) added &SYSLOC

— High Level Assembler provides 39 additional symbols

e Symbol characteristics include
— Type (arithmetic, boolean, or character)
— Type attributes (mostly 'U' or '0")
— Scope (usable in macros only, or in open code and macros)

— Variability (when and where values might change)

HLASM Macro Tutorial © Copyright IBM Corporation 1993, 2004. All rights reserved. SVAR-2

