
File Manager for z/OS V9R1

Addenda to V9R1 User's Guides and
Customization Guide

fmv9apar

���

File Manager for z/OS V9R1

Addenda to V9R1 User's Guides and
Customization Guide

fmv9apar

���

ii Addenda to V9R1 User's Guides and Customization Guide

Contents

About this document v

Part 1. PTF/APAR documentation
changes 1

UK64397, UK64398, UK64399, UK64400 3
PM28967. 3

Changes to the User's Guide and Reference for
DB2 3

UK63245 5
PM20660. 5

Changes to the User's Guide and Reference for
DB2 5

PM22660. 6
Changes to the User's Guide and Reference . . . 7

UK62005 9
PM20322. 9

Changes to the User's Guide and Reference for
DB2 9

UK58321, UK08097, UK08098, UK08099 13
PM08924 13

Changes to the User's Guide and Reference. . . 14

UK54336 15
PM02105 15

Changes to the User's Guide and Reference for
DB2 15

PK95961 16
Changes to the Customization Guide 17

UK52267 19
PK93460 20

Changes to the Customization Guide 20
PK94449 30

Changes to the Customization Guide 30
PK95812 31

Changes to the User's Guide and Reference. . . 31
Changes to the User's Guide and Reference for
IMS Data 35

UK49461, UK49462, UK49463, UK49464,
UK49465, UK49466, UK49467 37
PK83865 37

Changes to the Customization Guide 37
PK85062 38

Changes to the User's Guide and Reference. . . 38

UK48204, UK48205, UK48206, UK48207,
UK48239, UK48243, UK48254 39

PK84077 39
Changes to the Customization Guide 39
Changes to the User's Guide and Reference for
DB2 39

UK47675 41
PK84110 41

Changes to the User's Guide and Reference for
DB2 42

PK90394 43
Changes to the User's Guide and Reference for
DB2 43

UK44837 45
PK77613 45

Changes to the User's Guide and Reference. . . 45

UK44322 53
PK79535 53

Changes to the User's Guide and Reference. . . 53

UK42251 55
PK75870 55

Changes to the User's Guide and Reference. . . 55
Changes to the User's Guide and Reference for
IMS 57
Changes to the Customization Guide 60

Part 2. General documentation
changes 63

Customization Guide (SC19-2494-00) 65
December 2008 65

Part 1. Customizing File Manager 65
Part 4. Customizing File Manager CICS
Component 65
Appendix A. File Manager Options 65

June 2009 66
Part 1. Customizing File Manager 66

User's Guide and Reference
(SC19-2495-00) 67
Change #8: June 2010 67

Chapter 16, "Functions" 67
Change #7: May 2010 67
Change #6: May 2010 67

Chapter 16, "Functions" 67
Change #5: April 2010 67
Change #4: August 2009 67
Change #3: May 2009 68
Change #2: December 2008 68
Change #1: November 2008 68

© Copyright IBM Corp. 2000, 2008 iii

User's Guide and Reference for DB2
Data (SC19-2496-00) 71
Change #1 November 2010 71

User's Guide and Reference for IMS
Data (SC19-2497-00) 73

User's Guide and Reference for CICS
(SC19-2498-00) 75

Part 3. Appendixes. 77

Index 79

iv Addenda to V9R1 User's Guides and Customization Guide

About this document

This document provides details of all the APAR service fixes that impact upon
documentation, for IBM File Manager for z/OS Version 9.1, since the most recent
edition of the product manuals in September 2008. These editions are:
v Customization Guide (SC19-2494-00) - First Edition
v User's Guide and Reference (SC19-2495-00) - First Edition
v User's Guide and Reference for DB2 Data (SC19-2496-00) - First Edition
v User's Guide and Reference for IMS Data (SC19-2497-00) - First Edition
v User's Guide and Reference for CICS (SC19-2498-00) - First Edition

The Addendum document is divided into two parts:
v Part One: PTF/APAR documentation changes

This section lists the changes to the File Manager for z/OS Version 9 Release 1
documentation that are required to reflect new behavior resulting from the
application of APAR fixes.
The fixes are listed by PTF number, in reverse date order, so that the most
recently released fix appears at the beginning of the document. Each description
shows:
– The set of PTF numbers in the release
– The date of the PTF release
– The APARs included in the released fix
– Details of those APAR changes that affect documentation
– Page references for the manuals affected by the change

Notes:

1. This document does NOT describe those APAR fixes that do not have an
impact upon documentation.

2. The enhancements and corrections described in this section are only available
after applying the listed PTFs for the APAR.

v General documentation changes

This section describes enhancements, corrections and updates in the
documentation for File Manager for z/OS Version 9 Release 1. These changes are
not associated with PTF numbers, as they do not require the application of any
code updates.
The changes are grouped by manual and listed within each section in reverse
date order. That is, the most recent documentation change appears at the
beginning of each manual section.

© Copyright IBM Corp. 2000, 2008 v

vi Addenda to V9R1 User's Guides and Customization Guide

Part 1. PTF/APAR documentation changes

UK64397, UK64398, UK64399, UK64400 3
PM28967. 3

Changes to the User's Guide and Reference for
DB2 3

Chapter 4, "Viewing and changing DB2 data" . 3

UK63245 5
PM20660. 5

Changes to the User's Guide and Reference for
DB2 5

Chapter 15, "FM/DB2 panels and fields" . . . 5
PM22660. 6

Changes to the User's Guide and Reference . . . 7
Chapter 16, "Functions" 7

UK62005 9
PM20322. 9

Changes to the User's Guide and Reference for
DB2 9

Chapter 17, "Functions" 9

UK58321, UK08097, UK08098, UK08099 13
PM08924 13

Changes to the User's Guide and Reference. . . 14
Chapter 16, "Functions" 14

UK54336 15
PM02105 15

Changes to the User's Guide and Reference for
DB2 15

Chapter 15, "FM/DB2 panels and fields". . . 15
Chapter 17, "FM/DB2 functions" 16

PK95961 16
Changes to the Customization Guide 17

Appendix B, "FM/DB2 options" 17

UK52267 19
PK93460 20

Changes to the Customization Guide 20
Chapter 20, "Customizing the FM/IMS
security environment" 20

PK94449 30
Changes to the Customization Guide 30

Chapter 12, "Customizing the operating
environment for FM/DB2" 30

PK95812 31
Changes to the User's Guide and Reference. . . 31

Chapter 16, "Functions" 31
Chapter 17, "File Manager messages" 34

Changes to the User's Guide and Reference for
IMS Data 35

Chapter 11, "Batch reference" 35

UK49461, UK49462, UK49463, UK49464,
UK49465, UK49466, UK49467 37

PK83865 37
Changes to the Customization Guide 37

Chapter 2, "Customizing the operating
environment for File Manager" 37

PK85062 38
Changes to the User's Guide and Reference. . . 38

Chapter 16, "Functions" 38

UK48204, UK48205, UK48206, UK48207,
UK48239, UK48243, UK48254 39
PK84077 39

Changes to the Customization Guide 39
Chapter 1, "Preparing to customize File
Manager" 39

Changes to the User's Guide and Reference for
DB2 39

Chapter 2, "Getting started with FM/DB2" . . 39

UK47675 41
PK84110 41

Changes to the User's Guide and Reference for
DB2 42

Chapter 3, "Working with templates",
subsection "Handling special data" 42

PK90394 43
Changes to the User's Guide and Reference for
DB2 43

Chapter 4, "Viewing and changing DB2 data",
subsection "Handling special data" 43

UK44837 45
PK77613 45

Changes to the User's Guide and Reference. . . 45
Chapter 14, "Panels and fields" 46
Chapter 16, "Functions" 46
Replacement pages for “Copy To panel”
section 47
Replacement pages for “Find/Change Utility
panel” section 48
Replacement pages for “DSC (Data Set Copy)”
section 49
Replacement pages for “DSM (Data Set
Copy)”, “DSP (Data Set Print)”, “DSU (Data
Set Update)” sections 50
Replacement pages for “FCH (Find/Change)”
section 51
Replacement pages for “External REXX
functions” section 52

UK44322 53
PK79535 53

Changes to the User's Guide and Reference. . . 53
Chapter 15, "Primary commands", subsection
"LOCATE primary command" 53

© Copyright IBM Corp. 2000, 2008 1

UK42251 55
PK75870 55

Changes to the User's Guide and Reference. . . 55
Chapter 14, "Panels and fields", subsection
"Print Audit Trail panel" 55
Chapter 16, "Functions", section "File Manager
functions", subsection "AUD (Print Audit Trail
Report)" 56

Changes to the User's Guide and Reference for
IMS 57

Chapter 9, "Panels and fields", subsection
"Print Audit Trail panel" 57
Chapter 11, "Batch reference", subsection
"Print Audit Report (AUD)" 58

Changes to the Customization Guide 60
Chapter 5, "Customizing the File Manager
audit facility", subsection "Setting the
appropriate options to produce an audit trail" . 60
Chapter 14, "Customizing the FM/DB2 audit
facility", subsection "Determining if an audit
trail is to be produced" 60
Chapter 19, "Customizing FM/IMS" 60
Chapter 20, "Customizing the FM/IMS
security environment", subsection, "Security
Exit Parameters", Table 30. Parameters - Exit
Type A 61
Chapter 21, "Customizing the FM/IMS audit
facility" 61
Chapter 29, "Customizing the FM/CICS audit
facility" 61
Appendix A, "File Manager options" 61
Appendix B, "FM/DB2 options" 61
Appendix C, "FM/IMS options" 62

2 Addenda to V9R1 User's Guides and Customization Guide

UK64397, UK64398, UK64399, UK64400

Release Date: 3 February 2011

This set of PTFs contains the following APAR fixes:

APAR # APAR Abstract Doc Impact

PM28967 When using FM/DB2 view
or edit, additional rows are
displayed than what exists in
the DB2 table.

User's Guide and Reference
for DB2 (SC19-2496-00)

PM28967
Initial problem description

In File Manager DB2 edit, large table mode, scrolling to the bottom (max)
of the object shows extraneous rows beyond the last row in the object.

Outline of solution
File Manager DB2 component has been changed to correct the problem.
This APAR also changes the error message displayed when the editor
SORT command is issued in an FM/DB2 large edit session. The FM/DB2
User's Guide and Reference for DB2 data is updated to explicitly state that
the editor SORT command is not available in a large mode editor session.

Documentation impact
This APAR requires changes to be made to the User's Guide and Reference
for DB2 (SC19-2496-00).

Changes to the User's Guide and Reference for DB2

Chapter 4, "Viewing and changing DB2 data"
In the section "Starting and ending FM/DB2 editor sessions", subsection
"Specifying the editor session mode: normal mode or large mode?", subsection
"Choosing the appropriate editor mode", add the following to Table 4,
"Characteristics of editor modes":

Table 1.

"Normal mode" "Large mode"

Sort command Allowed. Prohibited.

© Copyright IBM Corp. 2000, 2008 3

PM28967

4 Addenda to V9R1 User's Guides and Customization Guide

UK63245

Release Date: 24 December 2010

This set of PTFs contains the following APAR fixes:

APAR # APAR Abstract Doc Impact

PM20660 Receive SQLCODE -530
when attempting to copy a
DB2 table using FM/DB2
COPY utility.

User's Guide and Reference
for DB2 (SC19-2496-00)

PM22660 FINDNEXT function
returning "TOF" value
instead of record number or
zero.

User's Guide and Reference
(SC19-2495-00)

PM20660
Initial problem description

In the FM/DB2 Copy utility, the option Ignore referential integrity errors
is not working.

Outline of solution
FM/DB2 has been updated to correct the problem. The option description
has been changed to better reflect the option's function. When the option is
selected, any SQLCODE-530 or SQLCODE-545 errors are ignored.

Documentation impact
This APAR requires changes to be made to:
v User's Guide and Reference for DB2 (SC19-2496-00)

Changes to the User's Guide and Reference for DB2

Chapter 15, "FM/DB2 panels and fields"
In the section, "Copy Options panel":
v Replace the panel with:

© Copyright IBM Corp. 2000, 2008 5

v Replace the text and description for the Ignore referential integrity errors
option with the following:

Ignore RI/Constraint errors
Determines what processing occurs when the Copy utility encounters an
SQLCODE-530 (RI error - no primary key) or SQLCODE-545 (Constraint
error).

/ The Copy process ignores the error and continues with the next
row. The row is not copied or updated and is not included in the
copy count.

(blank)
Copy utility canceled. This is the default setting.

PM22660
Initial problem description

FINDPREV() FINDNEXT functions are:
1. Returning EOF or TOF instead of 0.
2. Not search the current record as documented.
3. Only finding one occurrence of a string in a given record. DOWN()

command returns EOF inconsistently.

Outline of solution
FINDPREV(), FINDNEXT() have been changed to ensure the documented
behaviour is followed.
1. 0 will be returned when string is not found.
2. Searching will take place from the current record as documented.

Repeated searching will resume from the previously located string
unless the record location has been changed by a UP(), Down(), TOP(),
or BOT() commands.

3. DOWN() behavior will be changed so that it only returns end of file
when you are positioned on the last record and the command is issued.

Process Options Utilities Help
──
FM/DB2 (DFA2) Copy Options Global Settings

From Table Concurrency Option: To Table Locking Option:
Enter "/" to select option Locking
/ Use uncommitted read 1 1. None

2. Share mode
3. Exclusive mode

Copy Options:
Duplicate key processing Enter "/" to select option
2 1. Ignore Delete existing rows

2. Update Ignore RI/Constraint errors
For ALL duplicates / Create audit trail

Command ===>
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F12=Cancel

PM20660

6 Addenda to V9R1 User's Guides and Customization Guide

Documentation impact
This APAR requires changes to be made to the User's Guide and Reference
(SC19-2495-00).

Changes to the User's Guide and Reference

Chapter 16, "Functions"
In the section "File Manager functions", subsection "DOWN (DSEB only)", change
the sentence:

If, after moving, the current record is the last record, then the DOWN function
returns the string value “EOF” (end of file). Otherwise, DOWN returns 0.

to:

If, before moving, the current record is the last record, then the DOWN function
returns the string value “EOF” (end of file). Otherwise, DOWN returns 0.

In the section "File Manager functions", subsection "FINDNEXT, FINDPREV (DSEB
only)", add the following:

If a FINDNEXT() or FINDPREV() has located a needle on a given record, then
repeated searching resumes from the previously located needle plus 1 for
FINDNEXT and minus 1 for FINDPREV. If the record location has been changed
by an UP(), Down(), TOP(), or BOT() command, or there has been no previous
located needle, then FINDPREV searches from the end of the current record
backward, and FINDNEXT searches from the start of the current record forward.

PM22660

UK63245 7

PM22660

8 Addenda to V9R1 User's Guides and Customization Guide

UK62005

Release Date: 22 November 2010

This set of PTFs contains the following APAR fixes:

APAR # APAR Abstract Doc Impact

PM20322 File Manager alternate field
heading too short for DBCS
headings.

User's Guide and Reference
for DB2 (SC19-2496-00)

PM20322
Initial problem description

1. Header field for template edit is restricted to 20 bytes.

2. There is no function to create or update a DB2 template in batch.

Outline of solution
1. Header field space has been increased to 36 bytes.

2. A new function D2TP has been created to facilitate batch create and
update of DB2 templates.

Documentation impact
This APAR requires changes to be made to:
v User's Guide and Reference for DB2 (SC19-2496-00)

Changes to the User's Guide and Reference for DB2

Chapter 17, "Functions"
Subsection: "File Manager DB2 batch functions"

Add the following new function:

D2TP (Template create/update) batch command:

Purpose

To create or update a template based on one DB2 object. The object must be
accessible from the currently connected DB2 system.

Usage

The FM/DB2 template create/update utility creates a template if it does not exist,
or updates the template if it does exist.

Syntax

© Copyright IBM Corp. 2000, 2008 9

Syntax

�� D2TP OBJIN= name
owner.

location.
OBJINAME=name

OBJIOWNER=owner
OBJILOCN=location

�

�
TOUTPUT=TDDOUT

TOUTPUT=ddname
TOUTMEM=member

TMOUT=template_data_set_name(member)

��

OBJIN location.owner.object
The optional name of the DB2 remote server (location) where the source
object is located; the optional name of the owner of the source object
(owner) and the source object name (name).

When location is not specified the current (local) DB2 server is used. When
the owner is not specified the object name is qualified using the current
SQLID. When FM/DB2 generates the utility control statements, the owner
value is non-blank.

OBJIN should be used when the fully qualified name fits on a single line
in the JCL deck. The last usable column is column 71. When the fully
qualified name does not fit on a single line in the JCL deck, use one or
more of the OBJILOCN, OBJIOWNR, OBJINAME keywords to specify the
object.

OBJILOCN=location
The optional name of the DB2 remote server (location) where the source
object is located. See "Specifying a DB2 object name".

OBJIOWNR=owner
The optional name of the owner of the source object (owner). See
"Specifying a DB2 object name".

OBJINAME=name
The object name (name) for the source object. See "Specifying a DB2 object
name".

TOUTPUT=ddname
Defines a reference to a DD statement for the data sets which contain the
DB2 template that describes the target DB2 object. Concatenated DD
statements are not supported and the referenced data set must be
catalogued. If you have not specified a member name in the referenced DD
statement, then you must provide a TOUTMEM keyword. If no TOUTPUT
or TMOUT parameter has been provided, then TOUTPUT=TDDOUT is
used. See "Specifying the template for a DB2 object".

TOUTMEM=member
The name of the template member in the dataset identified by the
TOUTPUT or TMOUT parameter. This parameter is ignored if the member

PM20322

10 Addenda to V9R1 User's Guides and Customization Guide

name is provided with the DD statement or the TMOUT parameter. See
"Specifying the template for a DB2 object".

TMOUT=template_data_set_name(member)
The PDS (template_data_set_name) and member name (member) of the File
Manager DB2 template that describes the target DB2 object. See "Specifying
the template for a DB2 object".

Examples

Example 1: Create a DB2 template for the DSN8810.EMP using TMOUT keyword.
//D2TPJOB (acct),'name'
//* Create template FMN.TEMPLATE(EMP) for DSN8810.EMP table
//*
//FMNDB2 EXEC PGM=FMNDB2,PARM=('SSID=DSN1,SQID=ID1')
//STEPLIB DD DSN=FMN.SFMNMOD1,DISP=SHR
// DD DSN=DB2V810.DSN1.SDSNEXIT,DISP=SHR
// DD DSN=DB2.V810.SDSNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=*
//FMNTSPRT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSIN DD *
$$FILEM D2TP OBJIN="DSN8810"."EMP",
$$FILEM TMOUT=FMN.TEMPLATE(EMP)
/*

Example 2: Use TOUTPUT, TOUTMEM keywords to create output template for
DSN8810.EMP
//D2TPJOB (acct),'name'
//* Create template FMN.TEMPLATE(EMP) for DSN8810.EMP table
//*
//FMNDB2 EXEC PGM=FMNDB2,PARM=('SSID=DSN1,SQID=ID1')
//STEPLIB DD DSN=FMN.SFMNMOD1,DISP=SHR
// DD DSN=DB2V810.DSN1.SDSNEXIT,DISP=SHR
// DD DSN=DB2.V810.SDSNLOAD,DISP=SHR
//TOUT DD DSN=FMN.TEMPLATE,DISP=SHR
//SYSPRINT DD SYSOUT=*
//FMNTSPRT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSIN DD *
$$FILEM D2TP OBJIN="DSN8810"."EMP",
$$FILEM TOUTPUT=TOUT,TOUTMEM=EMP
/*

Example 3: Use Default output DD TDDOUT with TOUTMEM to create output
template for DSN8810.EMP
//D2TPJOB (acct),'name'
//* Create template FMN.TEMPLATE(EMP) for DSN8810.EMP table
//*
//FMNDB2 EXEC PGM=FMNDB2,PARM=('SSID=DSN1,SQID=ID1')
//STEPLIB DD DSN=FMN.SFMNMOD1,DISP=SHR
// DD DSN=DB2V810.DSN1.SDSNEXIT,DISP=SHR
// DD DSN=DB2.V810.SDSNLOAD,DISP=SHR
//TDDOUT DD DSN=FMN.TEMPLATE,DISP=SHR
//SYSPRINT DD SYSOUT=*
//FMNTSPRT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSIN DD *
$$FILEM D2TP OBJIN="DSN8810"."EMP",
$$FILEM TOUTMEM=EMP
/*

PM20322

UK62005 11

Example 4: Use Default output DD TDDOUT with member to create output
template for DSN8810.EMP
//D2TPJOB (acct),'name'
//* Create template FMN.TEMPLATE(EMP) for DSN8810.EMP table
//*
//FMNDB2 EXEC PGM=FMNDB2,PARM=('SSID=DSN1,SQID=ID1')
//STEPLIB DD DSN=FMN.SFMNMOD1,DISP=SHR
// DD DSN=DB2V810.DSN1.SDSNEXIT,DISP=SHR
// DD DSN=DB2.V810.SDSNLOAD,DISP=SHR
//TDDOUT DD DSN=FMN.TEMPLATE(EMP),DISP=SHR
//SYSPRINT DD SYSOUT=*
//FMNTSPRT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSIN DD *
$$FILEM D2TP OBJIN="DSN8810"."EMP"
/*

Example 5: Create 3 templates
//D2TPJOB (acct),'name'
//* Create template TOUT1-3 for DSN8810.EMP table
//*
//FMNDB2 EXEC PGM=FMNDB2,PARM=('SSID=DSN1,SQID=ID1')
//STEPLIB DD DSN=FMN.SFMNMOD1,DISP=SHR
// DD DSN=DB2V810.DSN1.SDSNEXIT,DISP=SHR
// DD DSN=DB2.V810.SDSNLOAD,DISP=SHR
//TOUT1 DD DSN=FMN.TEMPLATE(T1),DISP=SHR
//TOUT2 DD DSN=FMN.TEMPLATE(T2),DISP=SHR
//TOUT3 DD DSN=FMN.TEMPLATE(T3),DISP=SHR
//SYSPRINT DD SYSOUT=*
//FMNTSPRT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSIN DD *
$$FILEM D2TP OBJIN="DSN8810"."EMP",TOUTPUT=TOUT1
$$FILEM D2TP OBJIN="DSN8810"."EMP",TOUTPUT=TOUT2
$$FILEM D2TP OBJIN="DSN8810"."EMP",TOUTPUT=TOUT3
/*

PM20322

12 Addenda to V9R1 User's Guides and Customization Guide

UK58321, UK08097, UK08098, UK08099

Release Date: 6 July 2010

This set of PTFs contains the following APAR fixes:

APAR # APAR Abstract Doc Impact

PM07801 File Manager FLDI, FLDO,
TESTC functions using
relative start positions
produces incorrect results.

None.

PM08432 ABEND0C4 in FMNDVT. None.

PM08924 The column name is not
displayed correctly after the
second page is running DSP
function with RLEN=Y.

User's Guide and Reference
(SC19-2495-00)

PM09604 File Manager DSM (Data Set
Compare) job repeats
ABENDD37 followed by
ABEND001 if no DCB on
SYSPRINT DD statement.

None.

PM11583 Queue names are not
displayed correctly on
WebSphere MQ queue list
panel with
TERMTYPE=3270KN
environment.

None.

PM12162 PGM=FMNMAIN => S0C4. None.

PM12366 Receive abend S0C4-X'10'
when running FM DSU
function in batch mode.

None.

PM13069 Japanese panels for DB2
feature, for example
FMN2PD2E, has SBCS
middle dot ' ' (X'46') instead
of DBCS (X'4345').

None.

PM14437 File Manager miscellaneous
problems.

None.

PM15254 Receive compilation errors
when running FM from a
CLIST.

None.

PM08924
Initial problem description

When printing data in TABL format and the edit option 'Display record
length' or batch option RLEN has been selected, the heading on the second
and subsequent pages of the report do not include the 'Length' heading
and the heading is not aligned correctly.

© Copyright IBM Corp. 2000, 2008 13

Outline of solution
The Length heading will be included in the heading of all pages of the
report when the option has been selected and the record length is being
included in the TABL format report.

Documentation impact
This APAR requires changes to be made to the User's Guide and Reference
(SC19-2495-00).

Changes to the User's Guide and Reference

Chapter 16, "Functions"
In the section "File Manager functions", subsection "DSP (Data Set Print)", change
the default for parameter RLEN from NO to YES:

��
RLEN=YES

RLEN=NO
��

PM08924

14 Addenda to V9R1 User's Guides and Customization Guide

UK54336

Release Date: 19 February 2009

This set of PTFs contains the following APAR fixes:

APAR # APAR Abstract Doc Impact

PM02105 FM/DB2 export not
wrapping graphic fields with
shift out/shift in for CSV
output.

User's Guide and Reference
for DB2 (SC19-2496-00)

PK95961 On panel FMN2PEO7 the
settings for the two options
are swapped.

Customization Guide
(SC19-2494-00)

PM02105
Initial problem description

A number of issues, specific to FM/DB2 export utility, CSV format.

1. GRAPHIC data is not wrapped with the appropriate shift out/shift in
characters.

2. No ability to produce the column headers in CSV format.

3. Data with embedded commas is not enclosed within double quotes.

4. Embedded double quotes need escape character or another double
quote.

Outline of solution
1. Graphic data will be wrapped with shift out/shift in values.

2. A new online option "Include column headers" and a new batch
keyword CSVHDR has been added to optionally produce column header
values for the first record.

3. Data with an embedded delimiter value has been enclosed in double
quotes.

4. An extra double quote will be inserted for each embedded double quote.

Documentation impact
This APAR requires changes to be made to:
v User's Guide and Reference for DB2 (SC19-2496-00)

Changes to the User's Guide and Reference for DB2

Chapter 15, "FM/DB2 panels and fields"
In the section "Export Options (2 of 3) panel", change the panel to include new
panel option Include column headers after the Separator character field as
follows:

© Copyright IBM Corp. 2000, 2008 15

Include column headerss
Selecting this option produces comma-delimited column headers as the
first export record.

Chapter 17, "FM/DB2 functions"
In the section "File Manager DB2 batch functions", subsection "DBX (Export) batch
command", add new keyword CSVHDR which is a subset of CSV=YES to the
syntax diagram.

��
CSV=NO DATAFORMAT=SQLDA

CSV=NO DATAFORMAT=DSNTIAUL
DATAFORMAT=USER

Null Data type
DATAFORMAT=UNLOAD

SEPARATOR=',' CSVHDR=NO
CSV=YES DATAFORMAT=CSV

SEPARATOR='character' CSVHDR=YES
NIUSAGE=CSV Null type

��

CSVHDR
Specifies whether column headers are to be produced on the first record of
the export file when CSV=YES has been specified.
NO Column headers are not produced.
YES Column headers are produced.

PK95961
Initial problem description

1. FM/DB2 issues "LOCK TABLE" statements in edit even though the
appropriate editor option is set for no (table) locking.

2. FM/DB2 is not adding the "WITH UR" clause to the SELECT statement
used to access DB2 data for browse and view only, even though the
appropriate editor option is set for uncommitted read.

Process Options Utilities Help

──
FM/DB2 (DFA2) Export Options - (2 of 3) Global Settings

Null Indicators:
Usage Placement Type Indicator
1 1. Separate 1. Before 2 1. One byte Char

2. None 2. After 2. Two byte -1 Integer
3. CSV, use NI char 3. User defined

Delimited Variables (CSV):
, Separator character Enter "/" to select option

/ Include column headers

Command ===>
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=PrvPage F11=NxtPage F12=Cancel

Figure 1. Export Options (2 of 3) panel

PM02105

16 Addenda to V9R1 User's Guides and Customization Guide

Outline of solution
File Manager DB2 component has been updated to correct the problems.

Documentation impact
This APAR requires changes to be made to:
v Customization Guide (SC19-1238-01)

Changes to the Customization Guide

Appendix B, "FM/DB2 options"
In the section, "FMN2SSDM", add the following new option:

TABLE_LOCKING:

��
TABLE_LOCKING=YES

TABLE_LOCKING=NO
��

TABLE_LOCKING
specifies whether the table being edit should be locked.

YES The table is to be locked.

NO The table is not to be locked.

PK95961

UK54336 17

PK95961

18 Addenda to V9R1 User's Guides and Customization Guide

UK52267

Release Date: 27 December 2009

This set of PTFs contains the following APAR fixes:

APAR # APAR Abstract Doc Impact

PK92977 FM/DB2 unable to locate
catalog table
SYSIBM.SYSUSERAUTH

None.

PK93285 Large files load slowly into
File Manager when using a
template

None.

PK93460 File Manager IMS security
enhancement to include IMS
subsystem name in SAF
rules.

Customization Guide
(SC19-2494-00)

PK94449 FM/DB2 requires all product
end users to have access to
SYSIBM.SYSUSERAUTH.

Customization Guide
(SC19-2494-00)

PK94529 File Manager rollback and
commit reporting for DB2
and IMS audit reports.

None.

PK95244 Display of
template/copybook fields is
incorrect for variable records.

None.

PK95812 File Manager miscellaneous
base enhancements

User's Guide and
Reference (SC19-2495-00)
User's Guide and
Reference for IMS Data
(SC19-2497-00)

PK96107 Update segmented template
from copybook (option 7.1),
template is not updated with
copybook changes.

None.

PK98418 Receive ABEND0C4 running
FM FCH function with
FINDNOT primary
command.

None.

PK99540 Receive S0C4 when running
function DVT and VM
volumes are online to z/OS.

None.

PM00235 RECEIVE ABEND0C4 when
displaying VTOC list using
File Manager option 3.5.

None.

PM01134 Getting S0C4 abend trying to
view a DSN using a
template.

None.

© Copyright IBM Corp. 2000, 2008 19

APAR # APAR Abstract Doc Impact

PM01888 DSC function with FB input
generates an error in the
output file when output is
VB tape.

None.

PK93460
Initial problem description

User wants to control File Manager access to IMS subsystems using SAF
Facility classes. File Manager does not allow for specifying a subsystem ID
in the SAF resource names.

Outline of solution
File Manager has been enhanced to perform an extra level of SAF resource
checking by appending the subsystem ID to the function and group level
resource names and checking the sub system qualified SAF resource access
before the current security checking is performed. If the SAF resource with
sub system ID appended has not been defined, then the security checking
remains the same.

Documentation impact
This APAR requires changes to be made to:
v Customization Guide (SC19-1238-01)

Changes to the Customization Guide

Chapter 20, "Customizing the FM/IMS security environment"
Replace the entire contents of the chapter with the following:

This chapter describes:
v How you can control access to the FM/IMS functions and IMS subsystems.
v How you can use user-written security exit routines to control access to various

IMS resources.

Controlling access to IMS subsystems and FM/IMS functions: FM/IMS allows
you to control which IMS subsystems a user can access when using each of the
functions listed in Table 2. These functions are protected by default when you
receive FM/IMS.

Table 2. Protected FM/IMS Functions

Function
code

Description UPDATE or
READONLY

DBI Initialize dialog - generates JCL for the initialize function UPDATE

DDD Delete or define dialog - generates JCL to delete or define
database data sets

UPDATE

DIB Initialize - initialize databases (batch) UPDATE

IB Browse - browse a database READONLY

IBBO Batch browse dialog - generate JCL for the batch browse
function

READONLY

IBB Batch browse - read a database in batch (batch) READONLY

IE Edit - edit a database UPDATE

20 Addenda to V9R1 User's Guides and Customization Guide

Table 2. Protected FM/IMS Functions (continued)

Function
code

Description UPDATE or
READONLY

IEBO Batch edit dialog - generates JCL for the batch edit function UPDATE

IEB Batch edit - edit a database in batch (batch) UPDATE

IPRO Print dialog - generates JCL for the print function READONLY

IPR Print - print data from databases (batch) READONLY

IX Extract dialog - generates JCL for the extract function READONLY

IXB Extract - extract data from databases (batch) READONLY

IL Load dialog - generates JCL for the load function UPDATE

ILB Load - load data into databases (batch) UPDATE

Table 2 on page 20 lists the function's code (column 1), a brief description of the
function (column 2), and whether the function has been classified as an update or
a read-only function (column 3).

The facility allows you to grant or deny some or all users access to:
1. Individual IMS subsystems by individual functions in Table 2 on page 20.
2. Individual functions in Table 2 on page 20. When you grant or deny users

access to individual functions, they are granted or denied access to all IMS
subsystems when using these functions.

3. Individual IMS subsystems by the update or read-only functions.
4. The update or read-only functions. When you grant or deny users access to the

update or read-only functions, they are granted or denied access to all IMS
subsystems when using the update or read-only functions.

FM/IMS provides security for these functions, in one of two ways, either through
RACF (or an equivalent security product) or through the FMNSECUR exit.

If Security Server, RACF 1.9 (or later), or an equivalent security product is active,
the System Authorization Facility (SAF) with the File Manager enhanced security
facility is used for access control and authorization verification. Authorization is
controlled by FM/IMS-specific profiles in the FACILITY class. This chapter
describes the FM/IMS-specific profiles that you must define to RACF or your
equivalent security product. It also describes how you define these profiles to
RACF. If you use another security product, consult the documentation for your
product to determine how to define these profiles to your product.

If SAF with RACF 1.9 (or an equivalent security product), is not active when an
FM/IMS function is started, the function access control checks are passed to the
FMNSECUR user exit instead of to SAF.

To use FMNSECUR, it must be installed in the LPA. If the FMNSECUR module is
required and it cannot be found in the LPA, an error message is issued and the
FM/IMS function will not start.

FMNSECUR is a customizable exit. It provides FMNS macros which allow you to
define a table of user names or job names, File Manager-protectable resources
(called profiles), and access levels. For information on FMNSECUR, see "Setting up
the security environment by using FMNSECUR".

Controlling access to IMS subsystems and FM/IMS functions

UK52267 21

Notes:

1. The FMNSECUR module is not used (even if present) if SAF with RACF 1.9 (or
an equivalent security product), is active when an FM/IMS function is started.

2. FM/IMS functions that are not listed in Table 2 cannot be protected by RACF
(or an equivalent security product) or by the FMNSECUR exit.

Most installations will use RACF or an equivalent security product to protect their
functions. The rest of this section describes how you implement RACF (or an
equivalent security product) security for the functions in Table 2.

Controlling access to the update or read-only functions: The update functions in
Table 2 are protected by the profile FILEM.IMS.UPDATE. The read-only functions
in this table are protected by the profile FILEM.IMS.RDONLY. As a minimum, you
need to define these profiles and grant or deny users access to them.

You define these profiles in the FACILITY class. You do this by entering the
following RACF commands:
RDEFINE FACILITY FILEM.IMS.UPDATE UACC(READ or NONE)
RDEFINE FACILITY FILEM.IMS.RDONLY UACC(READ or NONE)

Specify:
v UACC(READ), if you want users or groups to be granted access to these

resources, unless they are specifically denied access.
v UACC(NONE), if you want users or groups to be denied access to these

resources, unless they are specifically granted access.

In the following, assume that:
v The RDEFINE for the FILEM.IMS.UPDATE profile specifies UACC(NONE), so

users and groups are denied access to the update functions unless they are
specifically granted access.

v The RDEFINE for the FILEM.IMS.RDONLY profile specifies UACC(READ), so
users and groups are granted access to the read-only functions unless they are
specifically denied access.

To grant a user (with userid userid) or a group (with groupid groupid) access to the
update functions, you enter one of the following RACF commands:
PERMIT FILEM.IMS.UPDATE CLASS(FACILITY) ID(userid) ACCESS(READ)
PERMIT FILEM.IMS.UPDATE CLASS(FACILITY) ID(groupid) ACCESS(READ)

To deny a user (with userid userid) or a group (with groupid groupid) access to the
read-only functions, you enter one of the following RACF commands:
PERMIT FILEM.IMS.RDONLY CLASS(FACILITY) ID(userid) ACCESS(NONE)
PERMIT FILEM.IMS.RDONLY CLASS(FACILITY) ID(groupid) ACCESS(NONE)

Controlling access to individual IMS subsystems by the update or read-only
functions: Access to individual IMS subsystems by the update functions in
Table 2 on page 20 is protected by the profiles FILEM.IMS.UPDATE.ssid, where
ssid is the IMS subsystem ID. Access to individual IMS subsystems by the
read-only functions in Table 2 on page 20 is protected by the profiles
FILEM.IMS.RDONLY.ssid, where ssid is the IMS subsystem ID.

If you want to grant or deny some or all users access to individual IMS
subsystems by the update or read-only functions in Table 2 on page 20, you will
need to define the aforementioned profiles.

Controlling access to IMS subsystems and FM/IMS functions

22 Addenda to V9R1 User's Guides and Customization Guide

You define these profiles in the FACILITY class. You do this by entering the
following RACF commands:
RDEFINE FACILITY FILEM.IMS.UPDATE.ssid UACC(READ or NONE)
RDEFINE FACILITY FILEM.IMS.RDONLY.ssid UACC(READ or NONE)

Specify:
v UACC(READ), if you want users or groups to be granted access to these

resources, unless they are specifically denied access
v UACC(NONE), if you want users or groups to be denied access to these

resources, unless they are specifically granted access.

You use the PERMIT commands to grant or deny users and groups access to these
resources, in the same way as for the FILEM.IMS.UPDATE and
FILEM.IMS.RDONLY profiles described in “Controlling access to the update or
read-only functions” on page 22.

Controlling access to individual functions: Individual functions in Table 2 on
page 20 are protected by the profiles FILEM.FUNCTION.fc, where fc is the function
code. If you want to grant or deny some or all users access to individual functions
in Table 2, you will need to define the profiles for these functions.

You define these profiles in the FACILITY class, by entering the following RECF
command:
RDEFINE FACILITY FILEM.FUNCTION.fc UACC(READ or NONE)

Specify:
v UACC(READ), if you want users or groups to be granted access to this function,

unless they are specifically denied access
v UACC(NONE), if you want users or groups to be denied access to this function,

unless they are specifically granted access.

You use the PERMIT commands to grant or deny users and groups access to these
function, in the same way as for the FILEM.IMS.UPDATE and FILEM.IMS.RDONLY
profiles.

Controlling access to individual IMS subsystems by individual functions:
Access to individual IMS subsystems by individual functions in Table 2 is
protected by the profiles FILEM.FUNCTION.fc.ssid, where fc is the function code
and ssid is the IMS subsystem ID.

If you want to grant or deny some or all users access to individual IMS
subsystems by individual functions in Table 2, you will need to define the
aforementioned profiles.

You define these profiles in the FACILITY class. You do this by entering the
following RACF command:
RDEFINE FACILITY FILEM.FUNCTION.fc,ssid UACC(READ or NONE)

Specify:
v UACC(READ), if you want users or groups to be granted access to these

resources, unless they are specifically denied access
v UACC(NONE), if you want users or groups to be denied access to these

resources, unless they are specifically granted access.

Controlling access to individual IMS subsystems by the update or read-only functions

UK52267 23

You use the PERMIT commands to grant or deny users and groups access to these
resources in the same way as for the FILEM.IMS.UPDATE and
FILEM.IMS.RDONLY profiles described in “Controlling access to the update or
read-only functions” on page 22.

What governs whether access is granted or denied: Access to a subsystem ssid by an
update function in Table 2 with function code fc is governed by the first profile in
this list
v FILEM.FUNCTION.fc.ssid
v FILEM.FUNCTION.fc
v FILEM.IMS.UPDATE.ssid
v FILEM.IMS.UPDATE

Access to a subsystem ssid by a read-only function in Table 2 with function code fc
is governed by the first profile in this list that has been defined in the FACILITY
class:
v FILEM.FUNCTION.fc.ssid
v FILEM.FUNCTION.fc
v FILEM.IMS.RDONLY.ssid
v FILEM.IMS.RDONLY

Figure 2 on page 25 illustrates the security checking that FM/IMS performs when a
function in Table 2 attempts to access an IMS subsystem.

Controlling access to individual IMS subsystems by individual functions

24 Addenda to V9R1 User's Guides and Customization Guide

Notes:

1. FILEM.IMS.name is either FILEM.IMS.UPDATE or FILEM.IMS.RDONLY

ALTER, UPDATE or READ access means that the user can use the function. Access
NONE means that the user cannot use the function.

┌─────────────────────────────────┐
│FM/IMS function fc subsystem ssid│
└──────┬──────────────────────────┘

�
┌──────┴─────────────────────────────────────┐
│Facility FILEM.FUNCTION.fc.ssid Access │
├─────────────┬───────┬────────┬──────┬──────┤ ┌────────┐
│ Not defined │ Alter │ Update │ Read │ None ├───�┤Rejected│
└──────┬──────┴───┬───┴────┬───┴───┬──┴──────┘ └────────┘

│ │ │ │ ┌────────┐
│ └────────┴───────┴─────────────�┤Accepted│
� └────────┘

┌──────┴─────────────────────────────────────┐
│Facility FILEM.FUNCTION.fc Access │
├─────────────┬───────┬────────┬──────┬──────┤ ┌────────┐
│ Not defined │ Alter │ Update │ Read │ None ├───�┤Rejected│
└──────┬──────┴───┬───┴────┬───┴───┬──┴──────┘ └────────┘

│ │ │ │ ┌────────┐
│ └────────┴───────┴─────────────�┤Accepted│
� └────────┘

┌──────┴─────────────────────────────────────┐
│Facility FILEM.IMS.name.sid1 Access │
├─────────────┬───────┬────────┬──────┬──────┤ ┌────────┐
│ Not defined │ Alter │ Update │ Read │ None ├───�┤Rejected│
└──────┬──────┴───┬───┴────┬───┴───┬──┴──────┘ └────────┘

│ │ │ │ ┌────────┐
│ └────────┴───────┴─────────────�┤Accepted│
� └────────┘

┌──────┴─────────────────────────────────────┐
│Facility FILEM.IMS.name1 Access │
├─────────────┬───────┬────────┬──────┬──────┤ ┌────────┐
│ Not defined │ Alter │ Update │ Read │ None ├───�┤Rejected│
└─────────────┴───┬───┴────┬───┴───┬──┴──────┘ └────────┘

│ │ │ ┌────────┐
└────────┴───────┴─────────────�┤Accepted│

└────────┘

Figure 2. Security checking for FM/IMS functions

What governs whether access is granted or denied

UK52267 25

Important information for users of non-IBM security products
FM/IMS issues a RACROUTE TYPE=AUTH for FILEM.FUNCTION.fc, and if
this profile is not defined, RACF returns RC=4. If RC=4 is returned, FM/IMS
issues a RACROUTE for either FILEM.IMS.UPDATE (if it is an update
function), or FILEM.IMS.RDONLY (if it is a read-only function). If the return
code from the RACROUTE TYPE=AUTH for FILEM.FUNCTION.fc is greater
than 4, no RACROUTE is issued for FILEM.IMS.UPDATE or
FILEM.IMS.RDONLY.

You should be aware that not all non-IBM security products issue RC=4 when
a RACROUTE TYPE=AUTH for a profile fails; in this case no RACROUTE is
issued for FILEM.IMS.UPDATE or FILEM.IMS.RDONLY, and the access
request fails immediately. If this applies to your security product, you will
have to provide individual profiles for all FM/IMS functions listed in Table 2
on page 20.

Customizing the FM/IMS security exit: FM/IMS provides a security exit module,
FMN1SXT. FMN1SXT is called from four different points during processing.
v Exit Type A - Prior to allocating an audit trail data set when editing a database.
v Exit Type D - When allocating a database data set (DLI mode only).
v Exit Type I - Prior to invoking the IMS region controller.
v Exit Type T - After the IMS region controller terminates.

The default security program supplied returns control immediately for all exit
types thus allowing normal processing to continue.

You can provide your own version of FMN1SXT in High Level Assembler or
COBOL, using either of the sample source decks, FMN1XITA (HLASM) or
FMN1XITC(COBOL), as a base. FMN1XITA and FMN1XITC are distributed in
FMN1.SFMNSAM1.

Types of security exits: The following describes what you can use each exit type for.

Audit Trail Exit - Type A: The Audit Trail exit can be used to:
v Force the creation of an audit trail for a certain database or group of databases

or for a certain user or group of users, or both.
v Override the standard audit trail data set name that is constructed by FM/IMS.
v Force the use of System Management Facilities (SMF) recording for the audit

trail instead of using an audit trail data set. If you want to use SMF recording,
the SMF record ID to be used must have been specified in the options macro,
FMN1POPT.

v This exit is called only for the Edit function.

Database Data set Allocation Exit - Type D: The database data set allocation exit is
called when the function runs in DLI mode. For example, this exit can be used to:
v Control access to database data sets.
v Override the database data set allocation status from OLD to SHR during

database edit if IMS data sharing is used at your installation.

IMS Initialization Exit - Type I: The IMS Initialization exit can be used to:
v Control access to databases.

What governs whether access is granted or denied

26 Addenda to V9R1 User's Guides and Customization Guide

v Validate the value entered by the user for the IMS log data set. You can either
accept, override, or disallow the value entered by the user.

v Override the standard FM/IMS log data set naming conventions.
v Override the Profile Option MAXGN.

IMS Termination Exit - Type T: The IMS Termination exit can be used to perform
post-IMS processing of the log data set. This exit type has no parameters, it is
provided as a point where you can add your own REXX code for termination
processing

Invoking the security exit: The security exit program is invoked as follows:
CALL FMN1SXT (FMN_SECURITY_PARAMETERS, FMN_SECURITY_WORKAREA, FMN_IMS_SECURITY_PARAMETERS)

The security exit interface parameters are:
v The security parameter list passed to the security exit. This parameter list is

documented in the following pages.
v A security area work area which is a 256-byte area initialized to binary zeroes.

This area is unchanged by FM/IMS and can be used to pass information
between multiple calls to the security exit.

v IMS security parameters which are passed to the IMS Initialization and
Termination exits.

Common Exit Parameters:

Table 3. Common Parameters - All Exit Types

Field Update Size Description

Request Type N Char(1) A Audit Trail allocation
D Database data set allocation
I IMS Initialization
T IMS Termination

Option N Char(1) B Browse
E Edit
L Extract/Load
P Batch printing
U Utilities

User Id N Char(7) TSO userid

Permitted Y Char(1) Y Allow intended action
N Disallow intended action
Blank N/A
Not used for Exit Type A.

Security Exit Parameters:

Table 4. Parameters - Exit Type A.

Field Update Size Description

DB DSN N Char(44) This field is obsolete and no longer populated.

DSN Y Char(44) The Audit Trail DSN to be allocated.

SMF Record Id Y Binary(16) Default is 00 (SMF not used for audit trail).
Choose a number between 128 and 255. Only
applies if the 'Create Indicator' (below) is set to
Y.

IMS Initialization Exit - Type I

UK52267 27

Table 4. Parameters - Exit Type A. (continued)

Field Update Size Description

Create Y Char(1) Input value from the Edit Entry Panel.
Override the value with one of the following:
Y Create an audit trail.
N Do not create an audit trail.
D See IMSAUDLG=D description.

Keep Y Char(1) Y Keep the audit trail data set.
N Delete the audit trail data set after

printing.

Report Y Char(1) Y Produce the Audit Trail report at the
end of the edit session.

N Do not produce the Audit Trail report
at the end of the edit session.

Job Type N Char(1) B DLI mode
M BMP mode

DBD DSN N Char(44) The DBD library that has been allocated.

DBD Name N Char(8) The DBD being processed.

IMS System Id N Char(4) The IMS SYSTEM ID entered.

Appl. Group
Name

N Char(8) The AGN used.

PSB Type N Char(1) S Static
D Dynamic

PSB Name N Char(8) The name of the Program Specification Block
(PSB).

PSB DSN N Char(44) The name of the PSB library data set (static
DLI).

Table 5. Parameters - Exit Type D.

Field Update Size Description

Primary DBD
Name

N Char(8) The primary DBD being processed.

Physical DBD
Name

N Char(8) The physical DBD that has the DATASET=
statement for this DDNAME.

DDNAME N Char(8) The DDNAME of the database being allocated.

DSN Status Y Char(3) SHR or OLD. Default is SHR for Browse and
OLD for Edit.

DSN N Char(44) The DSN of the database.

Table 6. Parameters - Exit Type I

Field Update Size Description

DBD DSN N Char(44) The DBD library that has been allocated.

DBD Name N Char(8) The DBD being processed.

Security Exit Parameters

28 Addenda to V9R1 User's Guides and Customization Guide

Table 6. Parameters - Exit Type I (continued)

Field Update Size Description

Subfunction N Char(1) Option subfunction.

Function L, Extract/Load:
E Extract
L Load

Function U, Utilities:
D Delete/define database data sets
I Initialize IMS databases

IMS Log
Indicator

Y Char(1) The user entered IMS log indicator. Only
applicable during the online portion of the
Edit and Load functions. Values are:
K Allocate and keep log data set.
D Allocate and delete log data set.
N Do not use a log data set

IEFRDER DSN Y Char(44) The IMS log data set name as constructed by
FM/IMS when the 'IMS log data set' option
has been selected in the Edit and Load online
functions.

Job Type N Char(1) B DLI mode
M BMP mode

IMS System Id N Char(4) The IMS SYSTEM ID entered.

Appl. Group
Name

N Char(8) The AGN used.

Processing
Option

N Char(1) The Database Load Processing Option as
specified by the user.
1 Update and insert segments.
2 Insert new segments only.

Time N Char(6) The time the exit call is made. Format is
HHMMSS.

Date N Char(8) The date the exit call is made. Format is
YYYYMMDD.

PSB Type N Char(1) S Static
D Dynamic

PSB Name N Char(8) The name of the Program Specification Block
(PSB).

PSB DSN N Char(44) The name of the PSB library data set (static
DLI).

MAXGN Value Y Binary(16) This value is only applicable during the Edit
and Browse functions. The maximum number
of GN (Get Next) calls allowed to satisfy a
FIND or CHANGE command. Used to
override the Profile Option MAXGN value.

Sample programs for a security exit: Copybooks, sample program source and
JCL for the security exit are supplied for High Level Assembler and COBOL. The
sample program source and JCL are distributed in FMN.SFMNSAM1, and the
copybooks in FMN.SFMNMAC1. They are:
FMN1AXIT HLASM copybook for security exit parameters.
FMN1XITA Sample HLASM code for program FMN1SXT.
FMN1UMDS Usermod to install an HLASM version of FMN1SXT.

Security Exit Parameters

UK52267 29

FMN1CXIT COBOL copybook for security exit parameters.
FMN1XITC Sample COBOL code for program FMN1SXT.
FMN1SECC Job control to install a COBOL version of FMN1SXT.

To provide your version of FMN1SXT in HLASM you use the usermod
FMN1UMDS as follows:
1. Copy the member FMN1XITA from FMN.SFMNSAM1 to your own source

library.
2. Code your version of FMN1XITA in your source library, using FMN1XITA from

FMN.SFMNSAM1 as a base.
3. Modify the usermod FMN1UMDS member in FMN.SFMNSAM1 to meet your

requirements. Refer to the usermod for information about changes you might
need to make.

4. Install SMP/E usermod FMN1UMDS.

To provide your version of FMN1SXT in COBOL:
1. Copy the member FMN1XITC from FMN.SFMNSAM1 to your own source

library.
2. Code your version of FMN1XITC in your source library, using FMN1XITC from

FMN.SFMNSAM1 as a base.
3. Modify the sample job FMN1SECC in FMN.SFMNSAM1 to meet your site's

requirements. Refer to the sample job for information about any changes you
might need to make.

4. Run the job to FMN1SECC to compile and link your version of FMN1SXT. This
job will link FMN1SXT into FMN.SFMNMOD1.

To implement your exit, add FMN.SFMNMOD1 to your LINKLIST or to the
STEPLIB DD statement in your TSO logon procedure.

Note: If the security exit program is written in COBOL, the performance of the
application may be impacted.

PK94449
Initial problem description

Unable to use File Manager DB2 component when SELECT access to
SYSIBM.SYSUSERAUTH has not been granted to the user.

Outline of solution
File Manager DB2 component has been changed to ignore any errors
associated with users not having SELECT access to
SYSIBM.SYSUSERAUTH (as documented in the Customization Guide).

Documentation impact
This APAR requires changes to be made to:
v Customization Guide (SC19-1238-01)

Changes to the Customization Guide

Chapter 12, "Customizing the operating environment for
FM/DB2"
In the section, "Granting access to the DB2 catalogs (required)", replace the first
paragraph with the following:

Sample programs for a security exit

30 Addenda to V9R1 User's Guides and Customization Guide

"FM/DB2 uses dynamic SQL, issued against the DB2 catalog, as part of its
processing. To make FM/DB2 available and to ensure the product's correct and
optimum operation, you need to grant SELECT access against the DB2 catalog
tables to all FM/DB2 users.

Granting access to the DB2 catalog tables can be done in a number of ways, as
described below. Some sites have security requirements in place that conflict with
FM/DB2's requirement for DB2 catalog access. If, after reading the various options
described below, it is not possible to grant the required level of DB2 catalog table
access to FM/DB2 users, you should not attempt to install the FM/DB2 product."

PK95812
Initial problem description

1. PRINT function is REXX only and therefore uses high CPU.

2. WRITE() statement to UNIT=AFF data sets ends up in ABENDS413-04.

3. No ability to specify multiple member names to DSP, DSU and FCH.

Outline of solution
New FASTREXX functions PRT_OUT, PRT_IN, and PRT_VAR have been
developed to support printing with FASTREXX. WRITE() processing will
now detect UNIT=AFF and force a close for a any previous WRITE()
statement that are holding the unit. If a WRITE statement causes a re-open
of the unit, then the File Manager procedure will terminate.

Documentation impact
This APAR requires changes to be made to:
v User's Guide and Reference (SC19-2495-00)
v User's Guide and Reference for IMS Data (SC19-2497-00)

Changes to the User's Guide and Reference

Chapter 16, "Functions"
Subsection: "File Manager functions"

v For the DSC function, in the description for the keyword CPYMBR, change the
following sentence in the description for the variable from_mem from:
"Generic name masks are not allowed."
to:
"Generic name masks are allowed."

v For the BTB and BTU functions, in the description for the keyword MEMLIST,
change the following sentence in the description for the variable member_n from:
"Generic name masks are not allowed."
to:
"Generic name masks are allowed."

v For the DSP, FCH, and DSU functions:
– Add the MEMLIST keyword to the syntax diagram:

��

�

,

MEMLIST=(member_n)

��

– Add the following description after the syntax diagram:

PK94449

UK52267 31

MEMLIST
Allows you to specify a list of member names.

member_n
The name of the member to be processed. Generic name
masks are allowed.

Subsection: "External REXX functions"

v Add new functions PRT_OUT, PRT_VAR, and PRT_IN:
PRT_IN

Syntax

�� PRT_IN(format,count) ��

Can be used in FASTREXX condition expressions.

Prints the input record in the format specified.

format
Format in which the input record is to be printed. Valid values are:
CHAR, HEX, SNGL, or TABL.

If you specify TABL or SNGL format:
– On the function or panel that you are enhancing, you must specify a

copybook or template that describes the record type to be printed.
– File Manager determines the type of the record to be printed by using

the record identification criteria if present, or by comparing its length
with the record types in the template.

– When using PRT_IN with DSC or the Copy Utility (option 3.3) and
you have specified both an input and an output copybook or
template, the copybook or template used to format the printed record
is the output template.

– Only those fields that have been selected in the template are printed.

count FASTREXX only. The maximum number of times this function will be
performed. The default is no limit.

Note: Avoid using PRT_IN in a REXX procedure for:
– DSP function
– FCH function
– Print Utility (option 3.2)

Output from PRT_IN is interspersed with the normal output (from DSP,
FCH, or Print) which can be confusing.

Using PRT_IN in a REXX procedure that runs from the Find/Change
Utility panel (option 3.6) does not result in this problem because the
report produced by the panel is sent to a data set, separate from print
output.

Example

Print the first 5 records in hex format and print the remainder in tabular format.
PRT_IN('HEX',5)
If recsin() > 5 then PRT_IN('TABL')

PK95812

32 Addenda to V9R1 User's Guides and Customization Guide

PRT_OUT

Syntax

�� PRT_OUT(format,count) ��

Can be used in FASTREXX condition expressions.

Prints the output record in the format specified.

format
Format in which the output record is to be printed. Valid values are:
CHAR, HEX, SNGL, or TABL.

If you specify TABL or SNGL format:
– On the function or panel that you are enhancing, you must specify a

copybook or template that describes the record type to be printed.
– File Manager determines the type of the record to be printed by using

the record identification criteria if present, or by comparing its length
with the record types in the template.

– When using PRT_OUT with DSC or the Copy Utility (option 3.3) and
you have specified both an input and an output copybook or
template, the copybook or template used to format the printed record
is the output template.

– Only those fields that have been selected in the template are printed.

count FASTREXX only. The maximum number of times this function will be
performed. The default is no limit.

Note: Avoid using PRT_OUT in a REXX procedure for:
– DSP function
– FCH function
– Print Utility (option 3.2)

Output from PRT_OUT is interspersed with the normal output (from DSP,
FCH, or Print) which can be confusing.

Using PRT_OUT in a REXX procedure that runs from the Find/Change
Utility panel (option 3.6) does not result in this problem because the
report produced by the panel is sent to a data set, separate from print
output.

Example

Print the first 5 records in hex format and print the remainder in tabular format.
PRT_OUT('HEX',5)
If recsin() > 5 then PRT_OUT('TABL')

PRT_VAR

Syntax

�� PRT_VAR(name,format,count) ��

Can be used in FASTREXX condition expressions.

PK95812

UK52267 33

Prints the specified variable in the format specified.

name The name of the variable to be printed. This must be the name of an
existing character variable.

format
Format in which the output record is to be printed. Valid values are:
CHAR, HEX, SNGL, or TABL.

If you specify TABL or SNGL format:
– On the function or panel that you are enhancing, you must specify a

copybook or template that describes the record type to be printed.
– File Manager determines the type of the variable (record) to be

printed by using the record identification criteria if present, or by
comparing its length with the record types in the template.

– When using PRT_VAR with DSC or the Copy Utility (option 3.3) and
you have specified both an input and an output copybook or
template, then the copybook or template used to format the printed
variable is the input template for any variable other than ZOUTREC.
ZOUTREC is formatted with the output record.

– Only those fields that have been selected in the template are printed.

count FASTREXX only. The maximum number of times this function will be
performed. The default is no limit.

Note: Avoid using PRT_VAR in a REXX procedure for:
– DSP function
– FCH function
– Print Utility (option 3.2)

Output from PRT_VAR is interspersed with the normal output (from DSP,
FCH, or Print) which can be confusing.

Using PRT_VAR in a REXX procedure that runs from the Find/Change
Utility panel (option 3.6) does not result in this problem because the
report produced by the panel is sent to a data set, separate from print
output.

Example

Print the first 5 records in hex format and print the remainder in tabular format.
PRT_VAR('ZINREC','HEX',5)
If recsin() > 5 then PRT_VAR('ZINREC','TABL')

v For the WRITE function, add this note:

Note: If you have multiple WRITE() statements to more than one file that share
the same tape unit via UNIT=AFF then File Manager will perform a close
for a file opened by any previous write statement for the shared unit
when processing the WRITE() statement to the unit with affinity specified.
If the file associated with a WRITE() statement has been closed as a result
of a subsequent WRITE() statement to a different file then the latter file
cannot be re-opened and if the WRITE() statement for the closed file is
processed again the procedure will be terminated with an error message.

Chapter 17, "File Manager messages"
Add the following error message:

PK95812

34 Addenda to V9R1 User's Guides and Customization Guide

FMNBA055 WRITE(&dd) issued that would cause a
re-open of a file with UNIT=AFF
specified

Explanation: The DD name referenced has been closed
due to processing of another WRITE function that

shares the same tape unit. This file cannot be re-opened
once it has been closed.

User response: Examine the logic in your procedure
and correct the logic so that you are not writing to one
file then the next file and then the previous file again.

Changes to the User's Guide and Reference for IMS Data

Chapter 11, "Batch reference"
Subsection: "File Manager functions"

v For the ITU, IVU, and ICU functions, in the description for the keyword
MEMLIST, change the following sentence in the description for the variable
member_n from:
"Generic name masks are not allowed."
to:
"Generic name masks are allowed."

PK95812

UK52267 35

PK95812

36 Addenda to V9R1 User's Guides and Customization Guide

UK49461, UK49462, UK49463, UK49464, UK49465, UK49466,
UK49467

Release Date: 31 August 2009

This set of PTFs contains the following APAR fixes:

APAR # APAR Abstract Doc Impact

PK83865 File Manager is not handling
short of storage conditions
correctly for the queue list.

Customization Guide
(SC19-2494-00)

PK85062 Receive messages
FMNBA091 AND FMNBB291
when number of digits
specified for parameter
position on DSC is greater
than 8.

User's Guide and Reference
(SC19-2495-00)

PK83865
Initial problem description

After selecting a queue manager from the Websphere MQ Managers panel,
a message "Insufficient Virtual Storage" may occur while generating a list
of queues, or a list containing blank elements may be presented which
prevents working with the list of queues.

Outline of solution
File Manager has been updated in order to recognize the short of storage
condition while listing queues and to issue a short message "Limited
results shown" which will allow a filter to be applied to the queue list.

Documentation impact
This APAR requires changes to be made to:
v Customization Guide (SC19-1238-01)

Changes to the Customization Guide

Chapter 2, "Customizing the operating environment for File
Manager"
In the section, "Enabling File Manager to work with certain products", subsection
"Enabling WebSphere MQ support", in the paragraph:

"For File Manager base function, the WebSphere MQ load libraries SCSQANLE,
SCSQAUTH and SCSQLOAD must be made available to the TSO user, either in
the linklist, or as part of the STEPLIB in the TSO procedure, or as part of the
ISPLLIB concatenation."
v Remove the phrase "or as part of the ISPLLIB concatenation".
v Add:

Note: ISPF LIBDEF ISPLLIB cannot be used to access these libraries.

© Copyright IBM Corp. 2000, 2008 37

PK85062
Initial problem description

1. Messages FMNBA091 and FMNBB291 are issued when the number of
digits specified in the POSITION parameter of the DSC function is greater
than 8.

2. The message IEC036I is displayed followed by an ISPF Dialog error
when editing a PDSE load module.

Outline of solution
1. The number of digits which will be accepted when a record number is
entered as either a start, skip, limit, include, or count has been increased
from 8 to 9.

2. If editing a PDSE load module, the function will be changed from an
edit to a browse function.

Documentation impact
This APAR requires changes to be made to:
v User's Guide and Reference (SC19-2495-00)

Changes to the User's Guide and Reference

Chapter 16, "Functions"
Change the definition of the identified fields in the functions listed below to
increase the maximum size to 9 digits (999 999 999):

Function Fields

DSC NLRECS

DSG NLRECS

DSM CMPOLD, CMPNEW

DSP NLRECS

PK85062

38 Addenda to V9R1 User's Guides and Customization Guide

UK48204, UK48205, UK48206, UK48207, UK48239, UK48243,
UK48254

Release Date: 16 July 2009

This set of PTFs contains the following APAR fixes:

APAR # APAR Abstract Doc Impact

PK84077 FM/DB2 fails when using
the generate SQL from DB2
catalog function.

Customization Guide
(SC19-2494-00)

User's Guide and
Reference for DB2
(SC19-2496-00)

PK84077
Initial problem description

1. When using the GEN prefix command to generate SQL from a DB2
Catalog and the TSO Execution Mode is specified the message 'Data set not
found' is issued.

2. When using the GEN prefix command to generate SQL from a DB2
Catalog and the Batch Execution Mode is specified the message 'JCL
Generation failed' is issued.

Outline of solution
1. The correct data set name will be used for the generated SQL.

2. The JCL to generate SQL from a DB2 Catalog will be generated.

Documentation impact
This APAR requires changes to be made to:
v Customization Guide (SC19-1238-01)
v User's Guide and Reference for DB2 (SC19-2496-00)

Changes to the Customization Guide

Chapter 1, "Preparing to customize File Manager"
In the section, "Alternatives for making File Manager available", subsection
"Modifying the TSO logon procedure", add the following to the list of File Manager
libraries you need to add to your TSO logon procedure:
DDNAME SYSPROC: add library FMN.SFMNCLIB

Changes to the User's Guide and Reference for DB2

Chapter 2, "Getting started with FM/DB2"
In the section, "Starting and exiting FM/DB2", subsection "TSO region size", add
the following sentence to the end of the existing paragraph:

If using the GEN prefix command, you may require more than 8MB of storage.

© Copyright IBM Corp. 2000, 2008 39

PK84077

40 Addenda to V9R1 User's Guides and Customization Guide

UK47675

Release Date: 9 July 2009

This set of PTFs contains the following APAR fixes:

APAR # APAR Abstract Doc Impact

PK84110 Changing data in a
Unicode-encoded table
results in SQLCODE+100

User's Guide and Reference
for DB2 (SC19-2496-00)

PK90394 AE PK84110 FIX
COMPLETION

User's Guide and Reference
for DB2 (SC19-2496-00)

PK84110
Initial problem description

In File Manager DB2 component, it is not possible to edit the contents of a
DB2 column when the data is stored (by DB2) in Unicode. "SQLCODE+100
row not found" error message.

Outline of solution
This APAR introduces an enhancement to FM/DB2 component only, that
allows data in a Unicode-encoded table to be displayed and changed using
the FM/DB2 editor. Other FM/DB2 functions are NOT affected by this
change. The main features of this enhancement are:
v Data in CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC columns that

are Unicode-encoded within DB2 will appear in the FM/DB2 editor in
the CCSID of the terminal.

v Any characters that could not be converted to the CCSID of the terminal
will appear as unprintable ('.') characters (x'3F' in hexadecimal mode).

v When the data for a Unicode-encoded column is displayed in
hexadecimal, the native Unicode representation will be shown, rather
than the hexadecimal characters for the converted (displayed) characters.

v Data can be overtyped in the usual way, however data corruption will
occur when the original field contains any unconverted Unicode
characters.

v Data can also be changed by overtyping the hexadecimal characters in
the column. To use this method, the user must enter the Unicode
hexadecimal representation of the required characters.

v The Find/Change and related commands operate by converting text
data, eg 'ABC' to Unicode prior to making the search or change.
Hexadecimal data eg '414243'x is not converted prior to making the
search or change, and the hexadecimal characters must therefore be in
Unicode, rather than in the CCSID of the terminal.

Documentation impact
This APAR requires changes to be made to:
v User's Guide and Reference for DB2 (SC19-2496-00)

© Copyright IBM Corp. 2000, 2008 41

Changes to the User's Guide and Reference for DB2

Chapter 3, "Working with templates", subsection "Handling
special data"
Add this new section:

UNICODE data: The FM/DB2 editor handles character data stored in Unicode
differently to data stored in EBCDIC or ASCII. (Requires APAR PK84110). The
differences are summarized here.

FM/DB2 normally retrieves character data from DB2 with automatic conversion to
the CCSID of the FM/DB2 plan, normally CCSID 37. This is US EBCDIC; other
EBCDIC CCSIDs may also be used.

When FM/DB2 retrieves character data stored in Unicode (within DB2), this
automatic data conversion does not occur. The FM/DB2 editor processes the
character data internally in native Unicode format. This means that, prior to
display on the terminal, the data is converted from Unicode to the CCSID of the
terminal. This may result in conversion errors when a Unicode character has no
corresponding code point in the CCSID of the terminal. Any characters that cannot
be converted are shown on the display as periods, indicating an unconverted
character. When data displayed (and possibly changed) on the terminal is
processed, it is converted from the CCSID of the terminal into Unicode, prior to
submission to DB2. This conversion will always be successful, since Unicode
includes code points for all characters in commonly used CCSIDs.

Data corruption is possible when the displayed data includes a period indicating
an unconverted Unicode character, and the data for the column is changed by
overtyping. Any periods in the modified data are converted to the Unicode
equivalent. Therefore, if the period represents an unconverted Unicode character,
that character will be corrupted by the change. When character data is displayed in
hexadecimal mode, the hexadecimal characters normally represent the encoding for
the displayed character in the CCSID of the terminal. For example, 'A' is
represented by 'C1'x in EBCDIC. When the character data is for a Unicode-encoded
column, the hexadecimal characters represent the native Unicode data, not the
encoding of the displayed character in the CCSID of the terminal. For example, 'A'
is represented by '41'x when Unicode data is being displayed.

You can also make changes to the data in a column stored in Unicode by turning
hexadecimal display on (HEX ON command) and overtyping the hexadecimal
characters directly. When you do this, you should use the Unicode representation
of any character, not the terminal's CCSID representation.

Assuming the target column is character data stored within DB2 in Unicode, the
FIND, CHANGE, and EXCLUDE commands operate like this:
v Strings such as 'ABC' are converted to Unicode prior to any search or change

occurring.
v Hexadecimal strings such as '414243'x are not converted to Unicode prior to any

search or change occurring. Therefore F 'ABC' and F '414243'x are equivalent
commands when the target column contains Unicode data, but not when the
target column contains EBCDIC data.

PK84110

42 Addenda to V9R1 User's Guides and Customization Guide

PK90394
Initial problem description

Dialog error attempting to access FM/DB2 under FM/CICS.

Outline of solution
File Manager has been updated to correct the problem.

Documentation impact
This APAR requires changes to be made to:
v User's Guide and Reference for DB2 (SC19-2496-00)

Changes to the User's Guide and Reference for DB2

Chapter 4, "Viewing and changing DB2 data", subsection
"Handling special data"
At the end of the "Unicode data" topic, add:

Note: When running FM/DB2 under FM/CICS, the terminal CCSID always
defaults to 37 (US EBCDIC).

PK90394

UK47675 43

PK90394

44 Addenda to V9R1 User's Guides and Customization Guide

UK44837

Release Date: 23 March 2009

This set of PTFs contains the following APAR fixes:

APAR # APAR Abstract Doc Impact

PK77613 File Manager batch
enhancements to support
data ageing and other
improvements

User's Guide and Reference
(SC19-2495-00)

PK77613
Initial problem description

1. Ability to add and subtract from date values.

2. Ability to use variables in FASTREXX procedures.

3. Ability to default packed decimal lengths for all affected functions.

4. Ability to default character lengths for comparisons.

5. Ability to force ISPF stats when copying or updating members.

6. Ability to interpret a start position with reference to an RDW.

7. Ability to set the batch return code for compare processing when a
specified number of differences have been found.

8. Panel 'FMNPEQC' error when viewing cut and paste clipboard.

Outline of solution
1. New Mod_date function that can perform arithmetic on date fields
described in a copybook or by start, length type.

2. New functions to create and change variables for FASTREXX processing.

3. Packed decimal lengths defaulted for all functions that refer to a packed
decimal.

4. New FLDI/O functions default lengths for character comparisons to a
literal length.

5. STATS=FORCE option added.

6. INRDW, OUTRDW options added to adjust start locations.

7. RCDIFF keyword added for data set compare.

8. Panel error for clipboard displays addressed.

Documentation impact
This APAR requires changes to be made to:
v User's Guide and Reference (SC19-2495-00)

Changes to the User's Guide and Reference
Changes in the replacement pages are marked with a vertical change bar in the left
margin

© Copyright IBM Corp. 2000, 2008 45

Chapter 14, "Panels and fields"
Copy To panel

Replace the section with the pages shown at “Replacement pages for
“Copy To panel” section” on page 47.

Find/Change Utility panel
Replace the section with the pages shown at “Replacement pages for
“Find/Change Utility panel” section” on page 48.

Chapter 16, "Functions"
DSC (Data Set Copy)

Replace the section with the pages shown at “Replacement pages for “DSC
(Data Set Copy)” section” on page 49.

DSM (Data Set Copy), DSP (Data Set Print), DSU (Data Set Update)
Replace the sections with the pages shown at “Replacement pages for
“DSM (Data Set Copy)”, “DSP (Data Set Print)”, “DSU (Data Set Update)”
sections” on page 50.

FCH (Find/Change)
Replace the section with the pages shown at “Replacement pages for “FCH
(Find/Change)” section” on page 51.

External REXX functions
Replace the whole section with the pages shown at “Replacement pages for
“External REXX functions” section” on page 52.

PK77613

46 Addenda to V9R1 User's Guides and Customization Guide

Replacement pages for “Copy To panel” section

PK77613

UK44837 47

Copy To panel
You use the Copy To panel to specify the data set to which you want your copy to
be made. This panel comes in three versions, depending on whether or not you
have specified a template in the Copy From panel and requested that the output be
in an external format.

Panel and field definitions

Copy from
Lists the data set or HFS file (directory) from which you are copying data.

To data set/file: Data set/path name
Can be a fully-qualified data set name or a pattern, or a HFS file or
directory. The data set name may include a member name or name pattern
in parenthesis. If the member is specified here, the associated Member
field must be empty.

When you specify an HFS file or directory, you must enter a full path
name. If the path name is longer than the displayed entry field, press the
Expand function key (F4) to display a pop-up window in which you can
enter a longer name.

To Data Set: Member
If you specified the name of a partitioned data set (PDS) without including
a member name or name pattern in parenthesis in the Data set name field,
then you can use this field to specify the member name or a member name
pattern.

Volume serial
Serial number of the volume which is to contain the copied data set.
Required for data sets which are not cataloged.

Disposition
The To data set status:

Process Options Help
──
Copy from USERID.FMDATA(DATA1)

To Partitioned, Sequential or VSAM Data Set, or HFS file:
Data set name FMDATA +
Member DATA2
Volume serial

Processing Options:
Disposition Execution "/" options ISPF Packing
1 1. Old or Reuse Replace members 1 1. Asis

2. Mod Binary mode, reclen 2. Pack
Stats Option 3. Unpack
1 1. Off 4. None

2. Force 5. Skip

Command ===>
F1=Help F2=Split F3=Exit F4=Expand F7=Backward F8=Forward
F9=Swap F10=Actions F12=Cancel

Figure 137. Copy Utility: “To” panel (no copybook or template in Copy From panel)

Copy To panel

Chapter 14. Panels and fields 477

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

Old/Reuse
Writes copied records into the output data set, starting from the
beginning of the set and replacing any existing records.

Mod Appends the input records to the end of the data set.

Replace members
Replace like-named members in an output partitioned data set.

Binary mode
When processing an HFS file, allows you to specify binary mode (selected)
or text mode (unselected).

reclen When processing an HFS file and the Binary mode option is selected,
records are derived based on the fixed record length specified. The default
is 80.

Can be in the range: 1–32760

Stats Determines whether ISPF statistics (if present) for the PDS members being
processed are updated:
Blank Update ISPF statistics.
1 Off Do not update ISPF statistics.
2 Force Always update or create ISPF statistics.

Use I/O exit
Allows you to specify a user I/O exit for compressed or encrypted data
sets.

This option has two fields. To select the option, enter “/” in the field to the
left of Use I/O exit. With this selected, you can then specify which exit to
use in the field to the right of the field label.

Notes:

1. The field only displays if File Manager is installed with the option
USEIOX=ENABLE, and the Exit enabled field (in the Set System
Processing Options panel) is set to YES. If a default is specified with
either of those options, it is displayed in the field to the right of Use
I/O exit.

2. I/O exits can only be used to process the data sets that you are using.
They cannot be used to process the copybook or template that you are
using to format the data set.

ISPF Packing
Provided that the output data set is a sequential, PDS or PDSE file, an I/O
exit routine is not used and the DISP is set to OLD, one of these options
can be used to control the copy behavior when processing data that is in
ISPF PACK format.

1. Asis
If the input data set is packed, it is unpacked before any
processing. The output is written in packed format only when the
input is packed.

2. Unpack
If the input data set is packed, it is unpacked before processing.
The output is always written in unpacked format.

3. Pack
If the input data set is packed, it is unpacked before processing.
The output is always written in packed format.

Copy To panel

478 File Manager for z/OS V10R1 User’s Guide

||
|
||
||
||

4. None
No checking or processing of ISPF packed data occurs. This option
is forced if an I/O exit has been used.

5. Skip
If the input data is packed, no processing or copying occurs.

When you have specified a template in the Copy From panel, the Copy To panel
contains additional fields, so that you can choose to specify a template for the
output data set.

Copybook/Template From
Lists the copybook or template specified in the Copy From panel, if
applicable.

To Copybook or Template: Data set name
Data set name of the template or copybook to be used when mapping
fields from the From Copybook or Template. This template does not affect
the record selection or field format of the copied data. The field is ignored
when the Copybook/template usage field is set to 2. None.

Note: In the case of a copybook, this can be the name of a CA-Panvalet
library, or a library accessed using the Library Management System
Exit.

To Copybook or Template: Member
If you specified the name of a partitioned data set (PDS) or CA-Panvalet or
other external library in the Data set name field, then use this field to
specify the member name or member name pattern. This field is ignored
when the Copybook/template usage field is set to 2. None.

Process Options Help
──
Copy from FMNUSER.EXPORT Top of data

To Partitioned, Sequential or VSAM Data Set, or HFS file:
Data set/path name . . 'FMNUSER.DATX' +
Member name (or mask) .
Volume serial

To Copybook/Template From: FMNUSER.DATA(TEMPA)
Data set name
Member (Blank or pattern for member)

Processing Options:
Copybook/template usage Disposition Enter "/" to select option
2 1. Above 1 1. Old or Reuse Replace members

2. None 2. Mod Edit template mapping
3. Create dynamic Stats Option Edit template source

ISPF Packing 1 1. Off Binary mode, reclen
1 1. Asis 2. Force

2. Pack
3. Unpack
4. None
5. Skip

Command ===>
F1=Help F2=Split F3=Exit F4=CRetriev F7=Backward F8=Forward
F9=Swap F10=Actions F12=Cancel

Figure 138. Copy Utility: “To” panel (copybook or template specified in Copy From panel)

Copy To panel

Chapter 14. Panels and fields 479

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

Edit template mapping
Specifies that you want to change the mapping of input fields to output
fields or the data creation patterns for new fields.

Edit template source
Specifies that you want to edit the copybook used to generate the template.

If you selected the Export mode option on the Copy From panel, the Copy To
panel contains additional fields specific for external format that allow you to
customize the result of copy.

Disposition

1. Old or Reuse
Copies from the beginning of the existing data set.

2. Mod
Appends the input records to the end of the data set. MOD is
invalid for a member of a partitioned data set.

ISPF Packing
Provided an I/O exit routine is not used, one of these options can be
selected to control the copy behaviour when considering data that is in
ISPF packed format. (Note that packed options do not apply to VSAM
input.)

1. Asis
If the input data set is packed, it is unpacked before any
processing. The output is written in packed format if the input was
packed.

2. Pack
If the input data set is packed, it is unpacked before processing.
The output is written in packed format.

Process Options Help
──
Copy from FMNUSER.FMDATA

To Partitioned, Sequential or VSAM Data Set, or HFS file:
Data set/path name . . 'FMN.FMDATA' +
Member name (or mask) .
Volume serial

Processing Options:
Disposition Execution "/" options Non-print. characters
1 1. Old or Reuse Replace members 2 1. Asis

2. Mod Binary mode, reclen 2. Hex
ISPF Packing Include fillers 3. Replace with .
1 1. Asis Include redefines 4. Skip

2. Pack Convert to Unicode Special characters
3. Unpack Split output line 1 1. Escape
4. None 2. CData
5. Skip Stats Option 3. Hex

Format 1 1. Off 4. Replace with *
1 1. XML 2. Force Invalid data

Indent step 1 1 1. Hex
2. Replace with *
3. Skip

Command ===>
F1=Help F2=Split F3=Exit F4=Expand F7=Backward F8=Forward
F9=Swap F10=Actions F12=Cancel

Figure 139. Copy Utility: “To” panel (Export mode specified in Copy From panel)

Copy To panel

480 File Manager for z/OS V10R1 User’s Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

3. Unpack
If the input data set is packed, it is unpacked before processing.
The output is written in unpacked format.

4. None
No checking or processing of ISPF packed data occurs. This option
is forced if an I/O exit has been used.

5. Skip
If the input data is packed, no processing or copying occurs.

Format
Specifies an external format to be used for the output.

1. XML
The output is generated in XML format.

Execution ″/″ options

Replace members
Replace like-named members in an output partitioned data set.

Binary mode
Data in an HFS file is processed without record delimiters (in
binary mode).

reclen: The logical record length used to deblock data into fixed
records (default: 80).

Include fillers
Indicates whether fillers (unnamed items), defined in the input
template (COBOL copybook or PL/I include), are to be represented
in the output or ignored.

Include redefines
Indicates whether redefinitions of data items, specified in the input
template (COBOL copybook or PL/I include), are to be represented
in the output or ignored.

Convert to Unicode
Indicates whether the output is to be converted to Unicode, or not.

Split output line
Indicates whether the output lines resulting from processing an
input record are to be spanned contiguously over multiple output
records. If so, the output records will not match output lines. If
not, each output line must fit (as the only line) into a single output
record, otherwise File Manager truncates the output, ends
processing, and reports an error.

Use I/O exit
Activates the specified exit routine which handles a compressed or
encrypted data set. Specify the name of the exit routine unless the
default exit is in effect and can be used.

Indent step
Defines the number of blanks used to indent each level of XML tag nesting
(each nested level in the template, COBOL copybook, or PL/I include
causes an increase in indentation by the specified number of blanks). Valid
range: 0–9 (default:1).

Non-print. characters
Indicates how non-printable characters are to be represented in the output.

Copy To panel

Chapter 14. Panels and fields 481

1. Asis
Non-printable characters appear unchanged in the output.

2. Hex A value with one or more non-printable characters is substituted
by its hexadecimal representation.

3. Replace with replacing-character
Each non-printable character is substituted with a replacing
character, or each substring of non-printable characters is converted
to its hexadecimal representation and surrounded by nested
<HEX> and </HEX> tags. The set of allowable replacing
characters is limited to printable characters with the exception of
special characters.

You can specify the replacing character in one of the following
forms:

char Each non-printable character is replaced with a character,
such as ″?″. Default character: ″.″ (dot).

C’char Each non-printable character is replaced with a character
without case translation.

X’cc’ Each non-printable character is replaced with a character
defined by its hexadecimal value.

HEX If you specify HEX instead of a replacing character, each
substring of consecutive special characters is replaced by
its hexadecimal representation, tagged by <HEX> and
</HEX>, and nested into the content of the element. In
other words, each string of consecutive special characters is
represented by:
<HEX>hex-representation-of-string-of-non-printable-characters</HEX>

nested in the content of the element.

4. Skip
Value is skipped if it contains any non-printable characters.

Special characters
Indicates how special characters are to be represented in XML output.

1. Escape
Special characters are converted into escaped strings:

″>″ for ″>″
″<″ for ″<″
″'″ for ″’″
″"″ for ″'″
″&″ for ″&″

2. CData
The string containing special characters is left unchanged. It is
enclosed in the CDATA section.

3. Hex A value with one or more special characters is substituted with its
hexadecimal representation.

4. Replace with replacing-character
Each special character is substituted with a replacing character, or
each substring of special characters is converted to its hexadecimal
representation and surrounded by nested <HEX > and </HEX >
tags. If a replacing character is specified or defaulted, each special
character is substituted with the replacing character. The set of

Copy To panel

482 File Manager for z/OS V10R1 User’s Guide

allowable replacing characters is limited to printable characters
with the exception of special characters.

You can specify the replacing character in one of the following
forms:

char Each special character is replaced with a character, such as
″?″. Default character: ″_″ (underscore).

C’char’ Each special character is replaced with a character without
case translation.

X’cc’ Each special character is replaced with a character defined
by its hexadecimal value.

HEX If you specify HEX instead of a replacing character, each
substring of consecutive special characters is replaced by
its hexadecimal representation, tagged by <HEX> and
</HEX>, and nested into the content of the element. In
other words, each string of consecutive special characters is
represented by:
<HEX>hex-representation-of-string-of-special-characters</HEX>

nested in the content of the element.

Invalid data
Indicates how invalid data is to be represented in the output.

1. Hex Any invalid value is substituted by its hexadecimal representation.

2. Replace with replacing character
Any invalid value is replaced with a string of replacing characters
for the length of the value. The set of allowable characters is
limited to printable characters with the exception of special
characters.

You can use:

char The value is replaced with a string of characters, such as
″?″. Default character: ″*″ (asterisk).

C’char’ The value is replaced with a string of characters without
case translation.

X’cc’ The value is replaced with a string of characters, each
character being defined by its hexadecimal value.

3. Skip
Any invalid value is skipped.

Parent panels
v “Copy From panel” on page 471

Child panels
v “Copy From panel” on page 471 (the Copy To data set and template, if specified,

was fully qualified)
v “Data Set Selection panel” on page 499 (a pattern has been entered in the Data

set name field)
v “Member Selection panel” on page 579(a pattern or a blank has been entered in

the Member field)

Copy To panel

Chapter 14. Panels and fields 483

v “Record Type Selection panel” on page 613 (Edit Template is selected and the
specified template was based on a copybook with more than one record type).

v “Field Selection/Edit panel” on page 546 (Edit Template is selected and the
specified template was based on a copybook with only one record type).

v “Dynamic Template panel” on page 510 (Create Dynamic option is selected or
Edit Template is selected and the specified template was created dynamically).

v “Personal Data Set List panel” on page 590 (Current Data Set List option
selected from the Process drop-down menu, or REFL fastpath command
entered).

v “Personal Data Set Lists panel” on page 592 (Personal Data Set Lists option
selected from the Process drop-down menu, or REFD fastpath command
entered).

Equivalent functions
“DSC (Data Set Copy)” on page 854

Related tasks and examples
v “Copying data sets” on page 229
v “Supplying a procedure when using a File Manager panel” on page 395

Copy To panel

484 File Manager for z/OS V10R1 User’s Guide

Replacement pages for “Find/Change Utility panel” section

PK77613

48 Addenda to V9R1 User's Guides and Customization Guide

Find/Change Utility panel
The Find/Change Utility allows you to search for or change a string in a PDS, a
VSAM data set, or a sequential data set by entering a FIND or CHANGE
command on the Command line. You can also search for strings in HFS files.

Panel and field definitions

Data set/path name
Can be a fully-qualified data set name or a pattern, or a HFS file or
directory. The name may include a member name or name pattern in
parenthesis. If the member is specified here, the associated Member field
must be empty.

When you specify an HFS file or directory, you must enter a full path
name. If the path name is longer than the displayed entry field, press the
Expand function key to display a pop-up window in which you can enter
a longer name.

Member
If you specified the name of a partitioned data set (PDS) without including
a member name or name pattern in parenthesis in the Data set name field,
then you can use this field to specify the member name or a member name
pattern.

Volume serial
Serial number of the volume which contains the data set. Required for data
sets which are not cataloged.

Process Options Help
──
File Manager Find/Change Utility

Input Partitioned, Sequential or VSAM Data Set, or HFS file:
Data set/path name 'FMNUSER.DATA' +

Member * (Blank - selection, pattern - process list)
Volume serial . (If not cataloged)
Record count . . ALL (Number of records to be searched)

- Additional options
Listing data set . SRCHFOR.LIST

Enter "/" to select option Listing Option ISPF Packing
JCL Source format Immediate change 1 1. Long 1 1. Asis
Use REXX proc Batch execution 2. Summary 2. Pack
REXX no update Directory integrity Stats Option 3. Unpack
Advanced member selection 2 1. Off 4. None
Binary mode, reclen CAPS initially on 2. Force 5. Skip

Process List:
Sel Name Prompt Alias-of Size Created Changed ID

M100 Selected
M1000 Selected
M10000 Selected
M10001 Selected
M10003 Selected
M10005 Selected
M10006 Selected
M10007 Selected
M10008 Selected

Command ===> Scroll PAGE
F1=Help F2=Split F3=Exit F4=CRetriev F5=Refresh F7=Up
F8=Down F9=Swap F12=Cancel

Figure 172. Find/Change Utility panel

Find/Change Utility panel

Chapter 14. Panels and fields 555

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

Record count
Number of logical records to be searched for FIND/CHANGE/FINDNOT
commands. For a PDS, the number of logical records to be searched per
member.

Range = 1 - 99,999,999; default = ALL.

Additional options
Collapses or expands the following section of the Find/Change Utility
panel.

When a minus sign (“-”) is shown, position the cursor on the minus sign
and press Enter to expand the following section of the panel.

When a plus sign (“+”) is shown, position the cursor on the plus sign and
press Enter to collaps the following section of the panel.

Listing data set
Specifies the data set where File Manager find/change results are to be
stored. Use the default name or enter a sequential data set name.

Default: ’userid.SRCHFOR.LIST’

JCL source format
Indicates that the data set contains JCL and that the JCL syntax is to be
preserved.

If not successful at maintaining the number and size of records, File
Manager attempts to rewrite the file:
v More errors are possible in this case. For example, a PDS(E) may run out

of room.
v If a logical line is changed and requires more physical records, the file is

rewritten. The data in columns 73–80 for new physical records is copied
from the last related original physical record.

The file must be non-VSAM and have a fixed record length of 80.

When using the JCL source format option, the columns searched are set to
3 through 71, unless the statement is not a JCL statement. A statement is
considered to be a JCL statement if it begins with the strings ″/*″ or ″//″.
If the statement does not begin with either of these strings, it is not
considered to be a JCL statement in which case any column range specified
on the FIND (or CHANGE, respectively) command or preset using the
BOUNDS command is honored. If no column range has been specified, the
full record is searched.

Use REXX proc
You can use this option to perform either of these actions
v Enter a temporary REXX procedure for one-time use by entering a single

asterisk (*). File Manager displays an Edit panel, in which you can create
a new REXX procedure.

v Specify the name of the member containing the REXX procedure you
want to use, The member must belong to the PDS allocated to ddname
FMNEXEC. You can enter any of the following:
– The name of the member.
– A member name pattern (other than a single *) to list all matching

members. You can then select the required member by entering an S
in the Sel field. A member name pattern can consist of any characters
that are valid in a member name and the following two special
pattern characters:

Find/Change Utility panel

556 File Manager for z/OS V10R1 User’s Guide

asterisk (*)
Represents any number of characters. As many asterisks as
required can appear anywhere in a member name. For
example, if you enter *d*, a list of all members in the data set
whose name contains “ d” is displayed.

percent sign (%)
A place-holding character representing a single character. As
many percent symbols as necessary can appear anywhere in a
member name. For example, if you enter %%%%, a list of all
members in the data set whose name is four characters in
length is displayed.

Note: If you select this option but leave the Use REXX proc member entry
field blank, File Manager displays a member name list. You can then
select the required member by entering S in the Sel field.

(Also, see “Supplying a procedure when using a File Manager panel” on
page 395.)

REXX no update
Allows you to specify that you intend no updates to the FCH data set
while executing the utility. This option is valid only when a REXX
procedure has been specified and is ignored otherwise. If selected, it forces
the allocation of the data set as input only. All updates to the data are
ignored.

Advanced member selection
Enter ″/″ to specify a range of members to be selected rather than a
specific or generic member name.

Use I/O exit
Allows you to specify a user I/O exit for compressed or encrypted data
sets.

This option has two fields. To select the option, enter “/” in the field to the
left of Use I/O exit. With this selected, you can then specify which exit to
use in the field to the right of the field label.

Notes:

1. The field only displays if File Manager is installed with the option
USEIOX=ENABLE, and the Exit enabled field (in the Set System
Processing Options panel) is set to YES. If a default is specified with
either of those options, it is displayed in the field to the right of Use
I/O exit.

2. An I/O exit can only be used to process the data set in which you are
creating records. It cannot be used to process the copybook or template
that you are using to format the data set.

Immediate change
When you use the CHANGE command, the input data set is updated
immediately (without displaying the changes in the listing data set).

Batch execution
Creates JCL to reflect the command entered. The JCL is presented in an
Edit session which you can edit before submitting.

Batch execution restricts the member selection to the pattern specified in
the member field. Batch execution does not produce a pop-up selection

Find/Change Utility panel

Chapter 14. Panels and fields 557

panel for member selection. If you leave the member field blank, an
asterisk (*) is substituted in the JCL generated. For more information, see
“FCH (Find/Change)” on page 990.

Stats Determines whether ISPF statistics (if present) for the PDS members being
processed are updated:
Blank Update ISPF statistics.
1 Off Do not update ISPF statistics.
2 Force Always update or create ISPF statistics.

Directory integrity
Forces an override of the default PDS(E) member processing method which
allows for faster PDS directory access.

This option has significant performance impact. When selected, the
members are processed in a way which allows concurrent directory
updates as File Manager accesses the members using current directory
information.

When not selected, the member processing is performed faster, but may be
affected by PDS(E) directory updates, possibly causing I/O errors if the
data set is updated concurrently.

Listing Option
Determines the format of the output report.

1 A full report, including each record found or changed.

2 A summary report providing totals for records processed and
strings found and changed.

ISPF Packing
Provided that the data set is a sequential, PDS or PDSE file and an I/O
exit routine is not used, one of these options can be used to control the
utility’s behavior when processing data that is in ISPF PACK format.

1. Asis
If the data set is packed, it is unpacked before any processing. The
data set is rewritten in packed format only when it was packed
initially.

2. Unpack
If the data set is packed, it is unpacked before processing. The data
set is always rewritten in unpacked format.

3. Pack
If the data set is packed, it is unpacked before processing. The data
set is always rewritten in packed format.

4. None
No checking or processing of ISPF packed data occurs. The FIND
and CHANGE commands operate on the packed data. This option
is forced if an I/O exit has been used.

5. Skip
If the data is packed, no processing occurs.

Binary mode
When processing an HFS file, allows you to specify binary mode (selected)
or text mode (unselected).

Find/Change Utility panel

558 File Manager for z/OS V10R1 User’s Guide

||
|
||
||
||

reclen When processing an HFS file and the Binary mode option is selected,
records are derived based on the fixed record length specified. The default
is 80. Can be in the range: 1–32760.

Available commands
v “BOUNDS primary command” on page 711
v “CAPS primary command” on page 712
v “CHANGE/CX primary command” on page 716
v “FIND/FX primary command” on page 736
v “FINDNOT primary command” on page 744
v “LOCATE primary command” on page 753
v “REFRESH primary command” on page 773
v “RESET primary command” on page 775
v “SELECT primary command” on page 783
v “SORT primary command” on page 788
v “VCONTEXT primary command” on page 803

Parent panels
v “Utility Functions menu panel” on page 676

Equivalent functions
v “FCH (Find/Change)” on page 990

Related tasks and examples
v “Finding and changing data in multiple PDS members” on page 246
v “Selecting a range of PDS(E) members” on page 25

Find/Change Utility panel

Chapter 14. Panels and fields 559

Replacement pages for “DSC (Data Set Copy)” section

PK77613

UK44837 49

DSC (Data Set Copy)
Purpose

Use the DSC function to copy data from any sequential or VSAM data set,
PDS, or HFS file (directory) to any other sequential or VSAM data set,
PDS, or HFS file (directory). The function’s performance when copying
PDS(E)es greatly depends on the available storage: larger regions generally
result in better performance.

Usage notes

v You can select the records to be copied using:
– Member name selection criteria
– Date created selection criteria
– Date last modified selection criteria
– User ID selection criteria
– The start key (VSAM only)
– The skip field
– The copy count field
– A conditional expression defined in the from template

v Change data set attributes. File Manager can copy records where the
input and output data sets have different record formats, record lengths,
or block sizes. The copy process truncates or pads records appropriately.
Specify the pad character in the PAD field of the SET function. For
details see “SET (Set Processing Options)” on page 1025.

v Copy from field to field. Using both a “From” and a “To” template lets
you copy selected fields, change the size and type of fields, and create
new fields in the output data set. For details, see “Copying data sets” on
page 229.

v Copy to output in external format. The ″From″ template defines the
traditional format of a dataset, but also determines a natural character
representation of the data. The result of the generation is an output
dataset containing a copy of the input data in an external format (such
as XML). For details, see “Generating data in external format - XML
representation” on page 239.

v Copy concatenated data sets with like or unlike attributes. Note that,
under some conditions (with tape data sets), File Manager may not be
able to detect unlike data set attributes and still invoke DFSORT for
processing. Such invocation may fail as DFSORT does not allow for
unlike concatenation of data sets. In such cases, you can disable the
DFSORT with the NOSORT function to allow for successful processing
of concatenated datasets with unlike attributes.

v Change ISPF packed format. File Manager can unpack existing packed
members or sequential data sets, or can write members or sequential
data sets in ISPF packed format.

v These changes are visible in the printed DSC BATCH processing report:
– Member names are printed as specified on the CPYMBR list (when

used).
– Whenever a member name, its alias or new name (prompt value)

contains unprintable characters, an additional line of output is printed
below the regular output containing the hexadecimal values of the
respective member names.

Function reference: DSC

854 File Manager for z/OS V10R1 User’s Guide

– Whenever a member was located in the input library and appeared
on the CPYMBR list but was not selected for processing because of
the member mask or advanced member selection criteria, then it is
shown in the processing report as ″Not selected″ (as opposed to ″Not
found″) and be counted in the ″not copied″ category (as opposed to
″in error″).

– For example, with these control cards:
$$FILEM MEMBER=X'5C22',
$$FILEM CPYMBR=(C'allocplx',
$$FILEM x'8289879784a222',
$$FILEM autotest,
$$FILEM X'84A282')

One would see this output:
Member Copy Report

Member Newname Alias Status

allocplx Not selected
bigpds Replaced
X'8289879784A222'
AUTOTEST Not found
dsb Not selected
FMN4688I 0 member(s) copied; 1 replaced; 2 not copied; 1 in error

v Member names containing lowercase or unprintable characters:

– Member names specified with the CPYMBR, MEMBER, MEMSTART,
MEMEND, or MEMOUT keywords may contain lowercase or
unprintable characters.

– To specify a member name containing lowercase or mixedcase
characters, use the character literal form of the name surrounded by
quotes and preceded with character C. For example, C'aBc'.

– To specify a member name containing unprintable characters, use the
hexadecimal literal form of the name surrounded by quotes and
preceded with character X. For example, X'81C283'. Mask characters
(their hexadecimal value) may be included within the string.

Note: File Manager supports the copying of Load Modules, when the
following conditions are met:
v Your input and output data sets are PDS(E)es.
v Your TSO environment is active (and you can use the TSO

authorized program services), or you are running File Manager as
program-authorized.

v You have not specified a REXX user procedure.
v You have not specified Start key, Skip or Copy counts.
v You are not using templates.
v You do not request member record counts.

Performance tips

v See “General tips about performance when you use File Manager
functions” on page 809. The comments about File Manager using
DFSORT technology when performing sequential file I/O are important
to DSC performance.

v When you are using DSC to copy members of a PDS(E):

Function reference: DSC

Chapter 16. Functions 855

– One DSC default is STATS=ON, which causes the ISPF statistics for
each copied member to be updated. This can significantly increase
I/O (EXCP) and CPU utilization. To improve performance, consider
using STATS=OFF.

– File Manager attempts to use IEBCOPY or an equivalent product to
copy members if it can. File Manager using IEBCOPY can
significantly reduce I/O and CPU requirements, compared to File
Manager not using IEBCOPY. If any File Manager processing of
individual records is required, it cannot use IEBCOPY. For example,
File Manager cannot use IEBCOPY if:
- A proc (PROC=) is used.
- A template or copybook is used.
- Record counts are requested (RECCOUNTS=YES).

v File Manager does not use IEBCOPY when processing members of a
PDS(E) when it detects any member names containing unprintable or
lowercase characters since IEBCOPY is not capable of processing such
member names. This may negatively affect the performance of the DSC
operation.

Options
When you specify the PROC option, you are supplying a DFSORT or
REXX procedure that controls the selection and formatting used during the
copy function. For more information, see the proc parameter below.

Return codes
The default return codes from the DSC function have the following
modified meanings:

1 No records copied for some of multiple members.

2 No records copied for any of multiple members.

3 REXX member selection is in effect but the procedure encountered
a RETURN DROP, STOP or STOP IMMEDIATE string. This has
been treated as a RETURN string with no arguments.

OR

REXX member selection is NOT in effect but the procedure
encountered a RETURN DROP MEMBER, RETURN PROCESS
MEMBER string. This has been treated as a RETURN string with
no arguments.

4 No records copied because no records selected (for single member
or data set)

4 No records copied because no members to process

4 No records copied because input empty

4 No records copied because member exists and “no replace” option
specified

4 Input data set or member was skipped because it is in ISPF Packed
Data format and the “PACK=SKIP” option was specified

8 REXX non-syntax error encountered while processing records

8 Line generated in an external format is greater than output record
size.

16 No records copied because input and output physically the same
(not applicable to a PDS member)

Function reference: DSC

856 File Manager for z/OS V10R1 User’s Guide

16 Program Object specified - this is not supported

16 Output data set or member in use

16 Data set or member open error

16 Data set or member not found

16 Other input or output error occurred

16 Insufficient storage available

16 DSC abended

16 Input data appears ISPF packed but is not valid.

16 Other serious error that stops processing occurred

Note: Return codes can be customized during installation. If you receive
return codes that do not match those listed above, your site might
have customized the return codes in place for this function. File
Manager may also issue the 999 abend, if the return code in batch is
equal to or greater than the ABENDCC value. Please contact your
File Manager systems administrator for details.

Related functions
OS Backup objects from an OAM database to a data set
OV Backup objects from an OAM database to a VSAM data set
TS Copy tape data to a data set
SO Copy a data set to an object database
ST Copy a data set to tape
VO Copy VSAM data to an object database

Function reference: DSC

Chapter 16. Functions 857

Syntax: Part 1 of 4

�� DSC
INPUT=DDIN

INPUT=ddname
DSNIN=dsname

VOLSERIN=volser

MEMSTART=startstring MEMEND=endstring
MEMBER=member1

�

�
CRESTART=crestart CREEND=creend

CREATED=created
CHGSTART=chgstart CHGEND=chgend

CHANGED=changed

�

�
UIDSTART=uidstart UIDEND=uidend

USERID=userid
�

,

CPYMBR=(from_mem)
(to_mem)

�

�
BINRECIN=binrecin-len

USEIOXIN=NO

IOXIN=sysexit
USEIOXIN=YES

IOXIN=ioxname

EXCLUSIVE=NO

EXCLUSIVE=YES

DIRINTEGR=NO

DIRINTEGR=YES
�

�
JCL=NO

JCL=YES

OUTPUT=DDOUT

OUTPUT=ddname
DSNOUT=dsname

(member2) VOLSEROUT=volser

BINRECOUT=binrecout-len
�

�
USEIOXOUT=NO

IOXOUT=sysexit
USEIOXOUT=YES

IOXOUT=ioxname

MEMOUT=mask

STATS=ON

STATS=OFF
STATS=FORCE

DISP=MOD

DISP=OLD

POSITION=0

POSITION=skip
(1)

KEY=key

�

�
NLRECS=ALL

NLRECS=nlrecs

CORRESP=NO

CORRESP=YES

REPLACE=NO

REPLACE=YES

IGNLEN=NO

IGNLEN=YES

RECCOUNTS=NO

RECCOUNTS=YES
�

�
PACK=ASIS

PACK= PACK
UNPACK
NONE
SKIP

PROC=proc
MEMPROC= PROCESS

DROP

INRDW=NO

INRDW=YES

OUTRDW=NO

OUTRDW=YES
�

�
Template options (see Part 2) External format options (see Part 3)

��

Notes:

1 VSAM only.

Function reference: DSC

858 File Manager for z/OS V10R1 User’s Guide

Syntax: Part 2 of 4

Template options (from Part 1):

Input template options
Output template options Copybook processing options

Input template options:

TINPUT=TDDIN

TINPUT=ddname
TINMEM=member

TCIN=tcin(member)

�

OFFSETIN=(value)
,ALL

value,fieldname
value,ALL,

Output template options:

TOUTPUT=TDDOUT

TOUTPUT=ddname
TOUTMEM=member

TCOUT=tcout(member)

�

OFFSETOUT=(value)
,ALL

value,fieldname
value,ALL,

Copybook processing options:

LANG=AUTO

LANG= COBOL
PLI
HLASM

COBOL options PL/I options HLASM options

COBOL options:

DBCS=NO

DBCS=YES

CDPC=NO

CDPC=YES

CAE=NO

CAE=YES

MIXED=NO

MIXED=YES

� RFROMn=operand1 , RTOn=operand2

�

�
COMPMAXRC=4

COMPMAXRC=num

Function reference: DSC

Chapter 16. Functions 859

Syntax: Part 3 of 4

PL/I options:

BIN63=NO

BIN63=YES

DEC31=NO

DEC31=YES

GRAPHIC=NO

GRAPHIC=YES

UNALIGNED=NO

UNALIGNED=YES

COMPMAXRC=4

COMPMAXRC=num

HLASM options:

DBCS=NO

DBCS=YES

NOALIGN=NO

NOALIGN=YES

COMPMAXRC=4

COMPMAXRC=num

Syntax: Part 4 of 4

External format options (from Part 1):

FORMAT=XML

NPRTCHAR='.'

NPRTCHAR= ASIS
HEX
replacing-character-1
NESTHEX
SKIP

SPECCHAR='_'

SPECCHAR= ESCAPE
CDATA
HEX
replacing-character-2
NESTHEX

�

�
INVDATA='*'

INVDATA= HEX
replacing-character-3
SKIP

INDENT=1

INDENT=indent-step

FILLERS=NO

FILLERS=YES

REDEFINES=NO

REDEFINES=YES
�

�
UNICODE=NO

UNICODE=YES

LINESPLIT=NO

LINESPLIT=YES

INPUT=ddname
Defines a reference to a DD or TSO ALLOC statement for the “From” data
set or HFS file. The default is DDIN.

DSNIN=dsname
Defines the name of the “From” data set or an absolute path to the “From”
HFS file (directory). If specified, any DD statement provided are not used.
The name can include a member name in parenthesis. If the member is
specified here, the associated Member parameter must be empty. An
absolute path to an HFS file (directory) must be enclosed in apostrophes. If
it does not fit on one line, you can split it over more than one line. You can
further describe this data set, as follows:

VOLSERIN=volser
Volume serial number for a non-cataloged “From” data set.

MEMBER=member1
The name of a single member in a PDS, or a member name pattern
representing one or more members in a PDS. If the input data set is a

Function reference: DSC

860 File Manager for z/OS V10R1 User’s Guide

PDS(E), you may specify this parameter, or a member name in the DD
statement for ddname, or specify a member or members in the CPYMBR
parameter, or specify a range of member names via the MEMSTART
and/or MEMEND keywords.

A member name pattern can consist of any characters that are valid in a
member name and two special pattern characters: the asterisk (*) and the
percent symbol (%).

* represents any number of characters. As many asterisks as required
can appear anywhere in a member name pattern. For example, if you
enter a member name pattern of *d*, all members in the PDS whose
name contains “d” are processed.

% is a place holding character that means a single character. As many
percent symbols as necessary can appear anywhere in a member
name pattern. For example, if you enter a member name pattern of
%%%%, all members in the PDS whose name is four characters in
length are processed.

member1 is ignored if the data set is not a PDS.

Note: See 854.

MEMSTART=startstring
Is used to specify the start of a range of member names to be included in
the copy. If MEMSTART is specified but MEMEND is omitted, all members
of the PDS(E) from the startstring value onwards are included. startstring
can have the same values, including wild cards, as for the member1
parameter of the MEMBER keyword.

Note: See 854.

MEMEND=endstring
Is used to specify the end of a range of member names to be included in
the copy. If MEMEND is specified but MEMSTART is omitted, all members
of the PDS(E) up to the endstring value onwards are included. endstring can
have the same values, including wild cards, as for the member1 parameter
of the MEMBER keyword.

Note: See 854.

CREATED=created
The date on which a member was created, in YYYY/MM/DD format.

If the input data set is a PDS(E), you may specify this parameter, or specify
a range of creation dates with the CRESTART and CREEND keywords.

You can specify an asterisk (*) as the last character to indicate a range of
dates or a percent sign (%) in place of a single character to indicate a
selection of dates.

created is ignored if the data set is not a PDS.

CRESTART=crestart
The start of a range of creation dates in YYYY/MM/DD format to be
included in the copy.

If CRESTART is specified but CREEND is omitted, all members of the
PDS(E) from the crestart value onwards are included.

Function reference: DSC

Chapter 16. Functions 861

If omitted, or you do not enter a full date, or you specify an asterisk (*) as
the last character, the unspecified portion of crestart defaults to the right as
follows:
DD = 01
MM = 01
YYYY = 0000

No other wildcarding is allowed.

CREEND=creend
The end of a range of creation dates in YYYY/MM/DD format to be
included in the copy.

If omitted, or you do not enter a full date, or you specify an asterisk (*) as
the last character, the unspecified portion of creend defaults to the right as
follows:
DD = 31
MM = 12
YYYY = 9999

No other wildcarding is allowed.

CHANGED=changed
The date on which a member was last modified, in YYYY/MM/DD
format.

If the input data set is a PDS(E), you may specify this parameter, or specify
a range of modification dates with the CHGSTART and CHGEND
keywords.

You can specify an asterisk (*) as the last character to indicate a range of
dates or a percent sign (%) in place of a single character to indicate a
selection of dates.

changed is ignored if the data set is not a PDS.

CHGSTART=chgstart
The start of a range of modification dates in YYYY/MM/DD format to be
included in the copy.

If CHGSTART is specified but CHGEND is omitted, all members of the
PDS(E) from the chgstart value onwards are included.

If omitted, or you do not enter a full date, or you specify an asterisk (*) as
the last character, the unspecified portion of chgstart defaults to the right as
follows:
DD = 01
MM = 01
YYYY = 0000

No other wildcarding is allowed.

CHGEND=chgend
The end of a range of modification dates in YYYY/MM/DD format to be
included in the copy.

If omitted, or you do not enter a full date, or you specify an asterisk (*) as
the last character, the unspecified portion of chgend defaults to the right as
follows:
DD = 31
MM = 12

Function reference: DSC

862 File Manager for z/OS V10R1 User’s Guide

YYYY = 9999

No other wildcarding is allowed.

USERID=userid
The TSO user ID by which the member was last updated.

If the input data set is a PDS(E), you may specify this parameter, or specify
a range of user IDs with the UIDSTART and UIDEND keywords.

You can enter a generic user ID by using asterisks and percent signs.

userid is ignored if the data set is not a PDS.

UIDSTART=uidstart
The start of a range of user IDs to be included in the copy.

If UIDSTART is specified but UIDEND is omitted, all members of the
PDS(E) from the uidstart value onwards are included.

If omitted, or you do not enter a full 7-character user ID, or you specify an
asterisk (*) as the last character, File Manager replaces the asterisk and
pads the unspecified portion of uidstart to the right with low values (X'00').

UIDEND=uidend
The end of a range of user IDs to be included in the copy.

If you omit this field, it defaults to high values (X'FF').

If you specify less than 7 characters (without an asterisk as the last
character), File Manager pads uidstart to the right with low values (X'00').
If you specify an asterisk (*) as the last character, File Manager replaces the
asterisk and pads the unspecified portion of uidend with high values
(X'FF').

CPYMBR
Provides a means of selecting input members from a PDS(E) where no
generic name pattern and no member name range has been specified. Also
provides a means for renaming the selected members as they are copied to
the output data set. If the CPYMBR keyword is specified, only those
members included in the CPYMBR arguments are copied to the output
data set. Members selected by the MEMBER=member1 that are not included
in the CPYMBR arguments are not copied.

The CPYMBR arguments also refine the member list specified in the
MEMBER=member1 parameter. If the MEMBER keyword is not specified, it
is assumed to be MEMBER=*, and all members named in the CPYMBR list
are processed. However, if the MEMBER keyword is specified, for example
as MEMBER=TEST*, the members included in the CPYMBR list are
selected from the TEST* subset of members. Any members named in the
CPYMBR arguments that do not match the mask given in the MEMBER
parameter are not copied.

from_mem
The name of the member to be copied. Generic name masks are
not allowed.

to_mem
The name of the member after it has been copied to the output
data set. If unspecified, the output member is not renamed.

Note: See 854.

Function reference: DSC

Chapter 16. Functions 863

BINRECIN=binrecin-len
Specifies the record length used for processing the “From” HFS file. Valid
range: 1 to 32760.

The file is processed in Binary mode (fixed-length records derived from the
file, delimiters not distinguished). If you do not specify this parameter, the
file is processed in Text mode (variable-length records, boundaries
determined by delimiters).

USEIOXIN
Specifies whether to invoke a user I/O exit, to process the input data set.

NO Default. Do not invoke a user I/O exit.

YES Invoke a user I/O exit to process the input data set. This option is
only available if the person who did the site customization for File
Manager allowed user I/O exits on a site-wide basis.

IOXIN
Specifies the name of the user I/O exit used for the input data set. There
are no restrictions on the programming language that you can use to write
an exit. The exit must be provided to File Manager in the
STEPLIB/ISPLLIB concatenation or their extensions (LINKLIST, LPA, and
so on).

sysexit Default. If you specify USEIOXIN=YES and do not supply a user
I/O exit name, File Manager uses the name of the exit provided in
the installation customization options. If USEIOXIN has been set to
YES and no installation default has been provided, you must
specify IOXIN=ioxname.

Note: If you have selected batch processing in an online panel, the
generated JCL statements use the default name provided in
your Set System Processing Options panel.

ioxname
The name of a PDS(E) member of a data set that has been
provided to File Manager in the STEPLIB concatenation.

EXCLUSIVE

Note: This option is supported for backward compatibility only.

Use the new DIRINTEGR option.
Determines the disposition of the From (input) data set.

NO Default. The data set is allocated with DISP=SHR, so that other
users can obtain concurrent access to a PDS or PDSE during
execution of DSC.

YES The data set is allocated with DISP=OLD, preventing concurrent
access to the PDS or PDSE.

Note: If you pre-allocate the input data set with DISP=SHR and
then specify,EXCLUSIVE=YES in batch, I/O errors might
occur during concurrent access to the data.

DIRINTEGR
Specifies whether to invoke a user I/O exit to process the input data set.

NO Default. File Manager uses a faster PDS(E) directory processing

Function reference: DSC

864 File Manager for z/OS V10R1 User’s Guide

method. This may cause I/O errors when multiple users are
concurrently updating the directory of the data set being
processed.

YES File Manager uses safer, but slower, PDS(E) directory processing
method. This method allows for safe concurrent updates of the
PDS(E) directory by multiple users.

JCL=NO
Treat the data set as a non-JCL data set.

JCL=YES
The data set contains JCL and the JCL syntax is to be preserved.

You cannot specify a template with this option.

OUTPUT=ddname
Defines a reference to a DD or TSO ALLOC statement for the “To” data set
or HFS file. The default is DDOUT.

DSNOUT=dsname
Defines the name of the “To” data set or an absolute path to the “To” HFS
file (directory). If specified, any DD statement provided are not used. The
name may include a member name in parenthesis. If the member is
specified here, the associated Member parameter must be empty. You can
further describe this data set, as follows:

(member2)
Where DSNOUT=dsname specifies a PDS and you want to send the
output to a specific member within this data set, this defines the
output member name. An absolute path to an HFS file (directory)
must be enclosed in apostrophes. If it does not fit on one line, you
can split it overmore than one line.

VOLSEROUT=volser
Volume serial number for a new or non-cataloged “To” data set.

BINRECOUT=binrecout-len
Specifies the record length used for processing the “To” HFS file. Valid
range: 1 to 32760.

The file is processed in Binary mode (fixed-length records derived from the
file, delimiters not distinguished). If you do not specify this parameter, the
file is processed in Text mode (variable-length records, boundaries
determined by delimiters).

Note: See 854.

USEIOXOUT
Specifies whether to invoke a user I/O exit, to process the output data set.

NO Default. Do not invoke a user I/O exit.

YES Invoke a user I/O exit to process the output data set. This option
is only available if the person who did the site customization for
File Manager allowed user I/O exits on a site-wide basis.

MEMOUT=mask
Where a number of input members have been specified, you can specify a
member name pattern for the output members, allowing you to rename
your members as they are copied. The member name pattern can consist of
any characters that are valid in a member name and two special pattern
characters: the asterisk (*) and percent sign (%).

Function reference: DSC

Chapter 16. Functions 865

Asterisk (*)
The asterisk is a place-holding character that means multiple
characters with no change. Only one asterisk should appear in the
mask. Any subsequent asterisk characters are treated as percent
signs. For example, if you enter:
ABC*

The renamed members all begin with ABC followed by the
remainder of the old member name.

Percent sign (%)
The percent sign is a place-holding character that means a single
character with no change. As many percent symbols as necessary
may appear anywhere in a member name. For example, if you
enter:
%%%A*

The 1st 3 characters of the renamed members remain unchanged,
the 4th character is replaced with the letter “A” and the remainder
of the old member name remains unchanged.

IOXOUT
Specifies the name of the user I/O exit used for the output data set. There
are no restrictions on the programming language that you can use to write
an exit. The exit must be provided to File Manager in the
STEPLIB/ISPLLIB concatenation or their extensions (LINKLIST, LPA, and
so on).

sysexit Default. If you specify USEIOXOUT=YES and do not supply a user
I/O exit name, File Manager uses the name of the exit provided in
the installation customization options. If USEIOXOUT has been set
to YES and no installation default has been provided, you must
specify IOXOUT=ioxname.

Note: If you have selected batch processing in an online panel, the
generated JCL statements use the default name provided in
your Set System Processing Options panel.

ioxname
The name of a PDS(E) member of a data set that has been
provided to File Manager in the STEPLIB concatenation.

STATS=ON
Default. This updates the ISPF statistics (if already present) when a PDS or
PDSE member has been changed.

STATS=OFF
The ISPF statistics are not updated when a PDS or PDSE member has been
changed.

STATS=FORCE
The ISPF statistics that exist for members being processed are always
updated and statistics for a member that previously did not have statistics
are created.

DISP Determines the disposition of the To (output) data set. Specify OLD or
MOD.

OLD Writes input records to the existing output data set, starting from
the beginning.

Function reference: DSC

866 File Manager for z/OS V10R1 User’s Guide

|
|
|
|

MOD Default. Appends the input records to the end of the existing
output data set.

Note: MOD is not available for PDS(E) member processing.

Note: SMS might modify the allocation of new data sets on your system.
For details, contact your SMS Administrator.

POSITION=skip
Number of logical records to be skipped from the beginning of the data
set. The default is 0.

KEY=key (VSAM only)
A key for KSDS records, or a slot number for RRDS records. The maximum
key length is 30 characters. The first record with a key or slot value greater
than or equal to key is the first record copied. If you omit the key and skip
values, copying begins with the first record in the data set.

If the key contains lowercase characters, blanks, or commas, enclose it in
quotation marks. You can also specify a key in hexadecimal format (for
example, X'C1C2C3').

NLRECS
Number of records to be copied or ALL.

ALL If you specify ALL or omit the parameter, all the remaining records
are copied.

nlrecs The maximum number is 99 999 999.

When you are coding a REXX procedure and NLRECS is specified, then
this can affect the number of records presented to the REXX procedure.
NLRECS only applies to the number of records written to the primary
output data set. It does not apply to records written in the REXX
procedure with the WRITE() function.

CORRESP
Specifies whether or not File Manager maps output fields to input fields
with the corresponding name. The default is NO.

NO Instructs File Manager to use the existing field mapping in the
TCOUT member. If the TCOUT member is a copybook, or no field
mapping is supplied, then File Manager ignores this option and
performs a corresponding copy (as if you had specified
CORRESP=YES).

YES Instructs File Manager to map output fields to input fields with the
corresponding name.

If you want to use existing mapping in the “To” template, specify
CORRESP=NO.

REPLACE
Specifies whether or not File Manager replaces like-named members in an
output partitioned data set. The default is NO.

NO Like-named members in the output partitioned data set are not
replaced.

YES Like-named members in the output partitioned data set are
replaced.

Function reference: DSC

Chapter 16. Functions 867

IGNLEN
Specifies whether or not File Manager ignores length mismatches when
selecting records for processing.

NO Do not ignore length mismatches. Records that are shorter than the
matching structure length in the template are not selected for
processing.

YES Use this option to ignore length mismatches.

When a field in the “From” template spans or is beyond the copied
record’s boundary, the corresponding field on the output record is
initialized (since there is no data available from the from field). The
exception is alphanumeric fields, where the portion of the field that
exists on the input record is copied (a partial copy) and the
remainder of the output field is padded with blanks.

RECCOUNTS
Controls whether or not the count of records for copied PDS(E) members
and sequential/VSAM data sets is printed in the processing listing in
batch.

NO Record counts are not reported.

YES Record counts are reported.

Note: This option affects PDS(E) processing ONLY. For
sequential/VSAM data sets, the record counts are always
provided. When the option is selected, it prevents the use of
IEBCOPY for PDS(E) processing, which may affect the copy
performance.

PACK Determines if File Manager should detect if the input data is in ISPF
packed format and specifies if the output data is to be written in ISPF
packed format. This keyword is ignored when processing VSAM data sets.
When an I/O exit has been specified for either the input or output data set
(or both), the only valid option is PACK=NONE.

ASIS Instructs File Manager to write the output in ISPF Packed format
only if the input is in ISPF packed format.

PACK Instructs File Manager to write the output in ISPF packed format
regardless of the input format.

UNPACK
Instructs File Manager to write the output without ISPF packing,
regardless of the input format.

NONE
Instructs File Manager not to determine if the input data set is in
ISPF packed format and writes the output records as they are read
from the input data set (after any enhanced processing).

SKIP Instructs File Manager to determine if the input data set is in ISPF
packed format and if so, to skip the copy processing.

PROC=proc
Member name of a REXX procedure that you want to use to process each
record before it is copied, or an asterisk (*) to indicate the procedure is
inline. If you specify a member name, you must define an FMNEXEC
ddname that identifies the PDS containing the member. If you specify *,
the procedure is read from SYSIN immediately following the control

Function reference: DSC

868 File Manager for z/OS V10R1 User’s Guide

statement for the current function. The inline procedure is terminated by a
record containing a slash and a plus sign (/+) in columns 1–2.

For more information about using DFSORT or REXX procedures to process
records before they are copied, see Chapter 13, “Enhancing File Manager
processing,” on page 385.

If PROC=proc is specified, you can then choose to include a MEMPROC
parameter:

MEMPROC
Specifies that REXX member selection is in effect. Records are read
from the input member and then cached in memory until a
decision is made, within the REXX procedure, on whether the
member is to be copied or dropped. Once the decision has been
made, the entire member is either copied or dropped, depending
upon the RETURN string specified in the REXX procedure.

If the entire member is processed without encountering a RETURN
DROP MEMBER or RETURN PROCESS MEMBER string, the
member is processed according to the action specified by the
parameter specified for MEMPROC. These are:

PROCESS
The member is to be included in the copy. The member is
copied intact, subject to any specified template processing,
which is performed before the user REXX proc is invoked.

This is the default action, if no parameter is specified with
the MEMPROC keyword.

DROP The member is to be excluded from the copy. Processing
continues with the next member.

INRDW
Controls whether or not to adjust the input start location when the
specified start location takes into account the record descriptor word
(RDW).

NO Does not adjust the input start location.

YES Subtracts 4 from all start locations that have been coded on
external functions that refer to the input record.

OUTRDW
Controls whether or not to adjust the output start location when the
specified start location takes into account the record descriptor word
(RDW).

NO Does not adjust the output start location.

YES Subtracts 4 from all start locations that have been coded on
external functions that refer to the output record.

Template options (Part 2 of syntax diagram)
The template options define which templates (if any) are used to describe
the record structure in the “From” and “To” data sets, and how File
Manager processes those templates.

TINPUT=ddname
Defines a reference to a DD or TSO ALLOC statement for the data
sets which contain the copybook or template that describes the
record structure of your input data. The default is TDDIN.

Function reference: DSC

Chapter 16. Functions 869

|
|
|
|

||

||
|

|
|
|
|

||

||
|

If you specify a concatenated DD, then you must provide the
member name, member.

Note: When you specify concatenated data sets in the template DD
statement, and these data sets are vendor-managed
copybook libraries, a maximum of 20 data sets are
supported.

TINMEM=member
The name of the copybook or template member in the datasets
identified by the TINPUT parameter if it has not been specified on
the DD statement. This parameter must not be specified if the
TCIN parameter is specified.

TCIN=tcin(member)
PDS and member name of the copybook or template that describes
the record structure of your input data.

OFFSETIN
The length of the 01 field in the “From” template and the start
locations of the fields within that 01 field are adjusted by the value
provided.

value The offset value, which must be in the range -32760 to
32760, to be applied to the corresponding field identifier. If
no field identifier is supplied and ALL is not used, the
value is applied to the first Level 01 field in the “From”
template.

ALL Where the template contains multiple record structures,
this keyword applies the corresponding value to all Level
01 within the “From” template.

Note: You can specify a value for ALL and then override
this value for individual layouts by providing
subsequent value and fieldname combinations.

fieldname
The name of the Level 01 field to which value is to be
applied. The default is the first Level 01 field in the
“From” template.

TOUTPUT=ddname
Defines a reference to a DD or TSO ALLOC statement for the data
sets which contain the copybook or template that describes the
record structure of your output data. The default is TDDOUT.

If you specify a concatenated DD, then you must provide the
member name, member.

TOUTMEM=member
The name of the copybook or template member in the datasets
identified by the TOUTPUT parameter if it has not been specified
on the DD statement. This parameter must not be specified if the
TCOUT parameter is specified.

TCOUT=tcout(member)
PDS and member name of the copybook or template that describes
the record structure of your output data.

Function reference: DSC

870 File Manager for z/OS V10R1 User’s Guide

OFFSETOUT
The length of the 01 field in the “To” template and the start
locations of the fields within that 01 field are adjusted by the value
provided.

value The offset value, which must be in the range -32760 to
32760, to be applied to the corresponding field identifier. If
no field identifier is supplied and ALL is not used, the
value is applied to the first Level 01 field in the “To”
template.

ALL Where the template contains multiple record structures,
this keyword applies the corresponding value to all Level
01 fields within the “To” template.

Note: You can specify a value for ALL and then override
this value for individual layouts by providing
subsequent value and fieldname combinations.

fieldname
The name of the Level 01 field to which value is applied.
The default is the first Level 01 field in the “To” template.

Copybook processing (Part 2 of syntax diagram)
If you specify a copybook (instead of an existing template), then File
Manager uses these processing options to compile the copybook into a
template:

LANG
Determines whether File Manager automatically detects the
copybook language or interprets the language as COBOL, PL/I, or
HLASM.

AUTO
Automatically detect whether the copybook language is
COBOL or PL/I, and invoke the appropriate compiler. If
the compilation results in a return code greater than 4, then
invoke the compiler for the other language. If the second
compilation also results in a return code greater than 4,
then retry the first compiler and report the compilation
errors. If File Manager successfully creates a template
(despite the compilation errors), then continue processing
with the template.

COBOL
Invoke the COBOL compiler to create a template from the
copybook. (Do not invoke the PL/I compiler, even if the
COBOL compilation results in errors.)

PLI Invoke the PL/I compiler to create a template from the
copybook. (Do not invoke the COBOL compiler, even if the
PL/I compilation results in errors.)

HLASM
Invoke the HLASM compiler to create a template from the
copybook.

COBOL options
The following options are used to compile a COBOL copybook into a
template:

Function reference: DSC

Chapter 16. Functions 871

DBCS=YES
Use the DBCS compiler option.

DBCS=NO
Use the NODBCS compiler option.

For details on the effect of the DBCS and NODBCS compiler
options, see the IBM COBOL Programming Guide for OS/390 & VM.

CDPC=NO
Do not use the COBOL SPECIAL-NAMES paragraph
″Decimal-point is comma″.

CDPC = YES
Use the COBOL SPECIAL-NAMES paragraph ″Decimal-point is
comma″.

CAE=NO
Do not use the COBOL compile option ARITH(EXTEND).

CAE = YES
Use the COBOL compile option ARITH(EXTEND).

MIXED = NO
Field names stored in the template in uppercase.

MIXED = YES
Field names stored in the template in the original case as coded in
the COBOL copybook.

RFROM1 RTO1 ... RFROM5 RTO5
Up to five pairs of “From” and “To” pseudo-text character strings
for the COBOL REPLACE compiler-directing statement.

If your COBOL copybooks contain characters that you want to
remove or replace with other characters before compiling the
copybooks into templates, then use these replacing options.

For example, if your copybooks contain colon characters (:) that
you want to remove before compiling, then specify '==:==' as
operand1 and '=====' as operand2.

For details on specifying “From” and “To” strings for COBOL
REPLACE, see the IBM COBOL Language Reference.

COMPMAXRC
Sets the maximum acceptable return code for a copybook compile.
A return code higher than the specified level causes the function to
stop. Default is 4.

PL/I options
The following options are used to compile a PL/I copybook into a
template:

BIN63=YES Use the LIMITS(FIXEDBIN(63)) compiler option.

BIN63=NO Use the LIMITS(FIXEDBIN(31)) compiler option.

DEC31=YES Use the LIMITS(FIXEDDEC(31)) compiler option.

DEC31=NO Use the LIMITS(FIXEDDEC(15)) compiler option.

GRAPHIC=YES
Use the GRAPHIC compiler option.

Function reference: DSC

872 File Manager for z/OS V10R1 User’s Guide

GRAPHIC=NO
Use the NOGRAPHIC compiler option.

UNALIGNED=YES
Use the DEFAULT RANGE (*) UNALIGNED, language
statement to change the default alignment.

UNALIGNED=NO
Use the PL/I default.

COMPMAXRC
Sets the maximum acceptable return code for a copybook
compile. A return code higher than the specified level
causes the function to stop. Default is 4.

For details on the effect of these compiler options, see the IBM VisualAge
PL/I for OS/390 Programming Guide.

HLASM options
The following options are used to compile a HLASM copybook into a
template:

DBCS=YES Use the DBCS compiler option.

DBCS=NO Use the NODBCS compiler option

NOALIGN=YES
Use the NOALIGN compiler option.

NOALIGN=NO
Use the ALIGN compiler option.

COMPMAXRC
Sets the maximum acceptable return code for a copybook
compile. A return code higher than the specified level
causes the function to stop. Default is 4.

For details on the effect of these compiler options, see the HLASM V1R5
Programmer’s Guide.

External format processing (Part 3 of syntax diagram)
When generating the output in an external format, File Manager uses the
following options:

FORMAT Specifies the external format to be used for output.

XML Indicates that XML format is used.

NPRTCHAR Determines how non-printable characters are to be
represented in the output.

'.' (dot)
Default. Each non-printable character is replaced
with ″.″.

ASIS Non-printable characters appear unchanged in the
output.

HEX Any non-printable character is converted into its
hexadecimal representation.

'replacing-character-1'
Each non-printable character is replaced with the
replacing-character-1. The set of allowable

Function reference: DSC

Chapter 16. Functions 873

characters is limited to printable characters with
exception of special characters. You may specify:

char A character, such as ″?″.

C’char’ A character used without case translation.

X’cc’ A character defined by its hexadecimal
value.

NESTHEX
Each string of consecutive non-printable characters
will be nested into content of element as
X'hex-representation-of-string-
of-non-printable-characters'

SKIP Any non-printable character causes the value to be
skipped (data is represented by start and end tags,
without any content).

SPECCHAR Determines how special characters are to be represented in
the XML output.

'_' (underscore)
Default. Each special character is replaced with ″_″.

ESCAPE
Special characters are converted into escaped
strings:

″>″ for ″>″
″<″ for ″<″
″'″ for ″’″
″"″ for ″'″
″&″ for ″&″

CDATA
Unchanged string containing special characters are
enclosed into the CDATA section.

HEX Any special character will cause the XML value to
be converted into its hexadecimal representation.

'replacing-character-2'
Each special character is replaced with the
replacing-character-2. The set of allowable
characters is limited to printable characters with
exception of special characters. You may use:

char A character, such as ″?″.

C’char’ A character used without case translation.

X’cc’ A character defined by its hexadecimal
value.

NESTHEX
Each string of consecutive special characters is
nested into content of element as
X'hex-representation-of-string-of-special-characters'

INVDATA Determines how invalid data is to be represented in the
output.

Function reference: DSC

874 File Manager for z/OS V10R1 User’s Guide

'*' (asterisk)
Default. Invalid data is represented by string of ″*″
with a length equal to the assumed length of the
output value.

HEX Invalid data causes the output value to be a
hexadecimal representation of the input value.

'replacing-character-3'
Invalid data is represented by a string of
replacing-character-3 with a length equal to the
assumed length of the output value. The set of
allowable characters is limited to printable
characters with exception of special characters. You
can use:

char A character, such as ″?″.

C’char’ A character used without case translation.

X’cc’ A character defined by its hexadecimal
value.

SKIP Invalid data is skipped (data is represented by start
and end tags, without any content).

INDENT Specifies the number of blanks used to indent each level of
XML tag corresponding to the nested level in the template
or copybook.

1 Default. Each nested level causes an increase in
indentation of each XML level by one blank.

indent-step
Any value from 0 to 9. INDENT=0 will force no
indentation. Each positive number will cause an
increase in indentation of each XML level by this
number of blanks.

FILLERS Indicates whether fillers (unnamed data elements) are to be
included into the output or not.

NO Default. Fillers are ignored (not represented in the
output).

YES Fillers are treated as named data elements and
represented in the output.

REDEFINES Indicates whether data elements redefining other data
elements are to be included into the output or not.

NO Default. Redefines are ignored (not represented in
the output).

YES Redefines are treated as other data elements and
represented in the output.

UNICODE Indicates whether the output is to be converted to Unicode
or not.

NO Default. The output is not converted.

YES The output is converted to Unicode.

LINESPLIT Indicates, whether the output lines resulting from

Function reference: DSC

Chapter 16. Functions 875

processing an input record are spanned contiguously over
multiple output records, or each output line must be
included as the only line in an output record.

NO Default. Output line is contained, as the only
output line, in one output record.

YES Output records are cut independently of external
formatting. An output line can span multiple
output records and not necessarily start from the
beginning of the record. However, output
representation of each input record starts from the
new output record.

Note: You cannot specify different options for compiling “From” and “To”
copybooks; the same copybook options are used for both.

Batch example
//DSC JOB (acct),'name'
//* Copy data set to data set
//*
//FMBAT PROC
//FMBAT EXEC PGM=FILEMGR
//STEPLIB DD DSN=FMN.SFMNMOD1,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
// PEND
//*
//STPSSEX EXEC FMBAT
//SYS1INP DD DISP=SHR,
// DSN=SYS1.PARMLIB(LNKLST00)
//SYSIN DD *
$$FILEM VER
$$FILEM DSC INPUT=SYS1INP,
$$FILEM DSNOUT=FMNUSER.TEMP.LINKLIST,
$$FILEM TCIN=FMNUSER.FMN.TEMPLATE(ODOTWO01)
$$FILEM EOJ
/*

Batch example - renaming members
This example copies all members of the input PDS (’USERID.PLXIN’) that
match the input mask ’FMNE*’ to the output PDS(’USERID.PLXOUT’),
renaming them using the rename mask JBG*. The members FMNEDIT,
FMNEDIT1, FMNEDIT2, FMNEDIT3, FMNEDIT4, FMNEDIT5 and
FMNEDIT6 are copied and renamed as JBGEDIT, JBGEDIT1, JBGEDIT2,
JBGEDIT3, JBGEDIT4, JBGEDIT5 and JBGEDIT6 respectively.
//SYSIN DD *
$$FILEM DSC DSNIN=USERID.PLXIN,
$$FILEM MEMBER=FMNEDIT*,
$$FILEM DISP=MOD,
$$FILEM DSNOUT=USERID.PLXOUT,
$$FILEM MEMOUT=JBG*

Function reference: DSC

876 File Manager for z/OS V10R1 User’s Guide

Batch example - copying PDS(E)s using a TSO environment
This example shows copying PDS(E)s using a TSO environment (required for
load module processing when File Manager is not APF-authorized and
recommended for better performance with PDS(E)s).
//FMBAT EXEC PGM=IKJEFT01,DYNAMNBR=100
//STEPLIB DD DSN=FMN.SFMNMOD1,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
CALL *(FMNMAIN)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
$$FILEM DSC DSNIN=TEST.PDS,
$$FILEM MEMBER=*,
$$FILEM REPLACE=YES,
$$FILEM DISP=OLD,
$$FILEM DSNOUT=TEST2.PDS

Function reference: DSC

Chapter 16. Functions 877

Replacement pages for “DSM (Data Set Copy)”, “DSP (Data Set
Print)”, “DSU (Data Set Update)” sections

PK77613

50 Addenda to V9R1 User's Guides and Customization Guide

DSM (Data Set Compare)
Purpose

Use the DSM function to:
v Compare data from any partitioned, sequential or VSAM data set, or

HFS file to data in any other partitioned, sequential or VSAM data set,
or HFS file.

v Perform a field level comparison. By using an “Old” copybook or
template with a “New” copybook or template, you can compare selected
fields with the result of the comparison reflecting the types of data in
the fields.

v Perform a load module comparison. Load module and CSECT
information from both the ″Old″ and ″New″ versions of the module is
extracted and compared. By specifying compare criteria, you can see
differences between specific properties of the load modules, such as load
module size, link date, CSECT names, and compilers used.

v Produce a comparison report, showing information such as where
insertions, deletions or changes have occurred in the “New” data set.
The report’s content and structure reflects the various comparison
options used.

v Create output data sets containing records identified as inserted, deleted,
old and new changed records, and old and new matched records. (These
data sets can only be created if the synchronization option,
SYNCH=READAHEAD, has not been specified.)

Usage Notes

v Select the records to be compared, using:
– The start key (VSAM only)
– The skip field
– The compare count field
– Conditional expressions defined in the “Old” and/or “New”

templates.
– The ″Number of differences to report″ option
To perform a field level comparison, you must provide an “Old” and a
“New” copybook or template and use the TYPE=FORMATTED
comparison option. You can use the field mapping specified in a “New”
template (created online), or you can use the default mapping generated
from the template or copybook contents, or you can specify the field
mapping in the batch file, using the FIELDOLD and FIELDNEW
keywords.

v Specify the way in which the comparison is performed, using:
– The compare options
– The synchronization options
If SYNCH=KEYED is used, up to sixteen key segments can be specified
to create a single composite key.

v Specify the type of output produced and the way in which the output is
displayed, using:
– The listing type
– The listing options

Performance tips

Function reference: DSM

910 File Manager for z/OS V10R1 User’s Guide

v DSM was designed with a focus on comparing data in fields using
templates or copybooks. See the template performance tips in “General
tips about performance when you use File Manager functions” on page
809.

v The ISPF utility SuperC may perform more efficiently when comparing
ordinary text data sets, since the special features of File Manager are not
required. For more details on SuperC, see the z/OS ISPF User’s Guide Vol
II.

Return codes
The default return codes from the DSM function have the following
modified meanings:

0 The function was completed successfully and the compare sets
match.

1 The function was completed successfully and the compare sets do
not match.

2 One of the compare sets was empty, so no comparison was
performed.

4 Both of the compare sets were empty, so no comparison was
performed.

4 No comparison was performed because one of the input data sets
or members in ISPF Packed Data format and the “PACK=SKIP”
option was specified.

4 At least one record with an unmapped type was encountered.

8 A data error occurred, for example, a key sequence error was
found when using a keyed comparison. The conditions that result
in a return code of 8 are:

For keyed synchronization:

key truncation error
A key truncation error occurs when a key segment
falls outside the record.

key sequence error
A key sequence error occurs when the key for a
record is found to be less than or equal to the key
for the previous record.

For read-ahead synchronization:

read-ahead resynchronization failure
Read-ahead resynchronization fails when matching
records cannot be found within the read-ahead
limit.

16 No records compared because input and output physically the
same.

16 Invalid data in template.

16 Data set or member in use.

16 Data set or member open error.

16 Data set or member not found.

16 Other input or output error occurred.

Function reference: DSM

Chapter 16. Functions 911

16 Member name required and not specified.

16 Insufficient storage available.

16 DSM abended

16 Input data appears ISPF packed but is not valid.

16 Other serious error that stops processing occurred.

16 A severe error occurred, causing File Manager to terminate.

Tip: When handling return codes 0, 1, 2, and 4 in your JCL, you might
choose to deal with each code separately or you might choose to deal
with return codes 0 and 4 as a single result (the compare sets match)
and 1 and 2 as another result (the compare sets do not match).

Note: Return codes can be customized during installation. If you receive
return codes that do not match those listed above, your site might
have customized the return codes in place for this function. File
Manager may also issue the 999 abend, if the return code in batch is
equal to or greater than the ABENDCC value. Please contact your
File Manager systems administrator for details.

Function reference: DSM

912 File Manager for z/OS V10R1 User’s Guide

DSM Syntax: Part 1 of 7

�� DSM
DSCMP Old data set New data set (see Part 2)

�

�
Comparison options (see Part 4) Template reporting options (see Part 6)

��

Old data set:

INPUT=DDOLD

INPUT=ddold
DSNOLD=dsnold

VOLSEROLD=volserold

MEMSTART=startstring MEMEND=endstring
MEMOLD=memold

�

�
CRESTART=crestart CREEND=creend

CREATED=created
CHGSTART=chgstart CHGEND=chgend

CHANGED=changed

�

�
UIDSTART=uidstart UIDEND=uidend

USERID=userid
�

,

MEMLIST=(comp_mem)

�

�
USEIOXOLD=NO

IOXOLD=sysexit
USEIOXOLD=YES

IOXOLD=ioxname

BINRECOLD=binrecold-len KEYOLD=keyold
�

�
SKIPOLD=0

SKIPOLD=skipold

CMPOLD=ALL

CMPOLD=cmpold

IGNLEN=YES

IGNLEN=NO

Old template processing:

TOLD=TDOLD

TOLD=ddname
TOLDMEM=member

TCOLD=tcold(tcomem)

�

OFFSETOLD=(value)
,ALL

,

value,fieldname
value,ALL,

�

�

�

,

FIELDOLD=(oldfield)

Copybook processing (see Part 3)

Function reference: DSM

Chapter 16. Functions 913

DSM Syntax: Part 2 of 7

New data set (from Part 1):

DDNEW=DDNEW

DDNEW=ddnew
DSNNEW=dsnnew

(memnew) VOLSERNEW=volsernew

USEIOXNEW=NO

IOXNEW=sysexit
USEIOXNEW=YES

IOXNEW=ioxname

�

�
BINRECNEW=binrecnew-len KEYNEW=keynew

SKIPNEW=0

SKIPNEW=skipnew

CMPNEW=ALL

CMPNEW=cmpnew
�

�
New template processing

New template processing:

TNEW=TDNEW

TNEW=ddname
TNEWMEM=member

TCNEW=tcnew(tcnmem)

�

OFFSETNEW=(value)
,ALL

value,fieldname
value,ALL,

�

�

�FIELDNEW=(newfield)

Copybook processing (see Part 3)

Function reference: DSM

914 File Manager for z/OS V10R1 User’s Guide

DSM Syntax: Part 3 of 7

Copybook processing (from Part 1 and Part 2):

LANG=AUTO

LANG= COBOL
PLI
HLASM

COBOL options PL/I options HLASM options

COBOL options:

DBCS=NO

DBCS=YES

CDPC=NO

CDPC=YES

CAE=NO

CAE=YES

� RFROMn=operand1 , RTOn=operand2

�

�
COMPMAXRC=4

COMPMAXRC=num

PL/I options:

BIN63=NO

BIN63=YES

DEC31=NO

DEC31=YES

GRAPHIC=NO

GRAPHIC=YES

UNALIGNED=NO

UNALIGNED=YES

COMPMAXRC=4

COMPMAXRC=num

HLASM options:

DBCS=NO

DBCS=YES

NOALIGN=NO

NOALIGN=YES

COMPMAXRC=4

COMPMAXRC=num

Function reference: DSM

Chapter 16. Functions 915

DSM Syntax: Part 4 of 7

Comparison options (from Part 1):

TYPE=RECORD

Formatted type options (see Part 6)

CORRESP=NO

CORRESP=YES
�

�

SYNCH=ONETOONE
SYNCH=121

LIMIT=100 LENGTH=1
SYNCH=READAHEAD
SYNCH=RA LIMIT=ralim LENGTH=ralen
Keyed synchronization options (see Part 6)
Load module compare options (see Part 7)

LIST=SUMMARY

LIST=DELTA
LIST=MATCHING
LIST=LONG
LIST=NONE

�

�

�

,

EXCLUDE=(exclude_type)

NUMDIFF=ALL

NUMDIFF=numdiff RCDIFF=(numdiff,return_code)
�

�
WIDE=NO

WIDE=YES

HEX=NO

HEX=YES

HILIGHT=NO

HILIGHT=YES

SHOWATTR=NO

SHOWATTR=YES

CHNGDFLD=NO

CHNGDFLD=YES
�

�
SLCTDFLD=NO

SLCTDFLD=YES

PACK=UNPACK

PACK= NONE
SKIP

Comparison output data sets (see Part 5)

Function reference: DSM

916 File Manager for z/OS V10R1 User’s Guide

|

DSM Syntax: Part 5 of 7

Comparison output data sets (from Part 4):

IOUTPUT=FMINSOUT

IOUTPUT=ddname
IOUTMEM=member

IOUTDSN=ioutdsn(member)

IBINREC=binrec_len

IDISP=MOD

IDISP=OLD
�

�
DOUTPUT=FMDELOUT

DOUTPUT=ddname
DCOUTMEM=member

DOUTDSN=doutdsn(member)

DBINREC=binrec_len

DDISP=MOD

DDISP=OLD
�

�
NCOUTPUT=FMNCHOUT

NCOUTPUT=ddname
NCOUTMEM=member

NCOUTDSN=coutdsn(member)

NCBINREC=binrec_len

NCDISP=MOD

NCDISP=OLD
�

�
OCOUTPUT=FMOCHOUT

OCOUTPUT=ddname
OCOUTMEM=member

OCOUTDSN=ocoutdsn(member)

OCBINREC=binrec_len

OCDISP=MOD

OCDISP=OLD
�

�
NMOUTPUT=FMNMTOUT

NMOUTPUT=ddname
NMOUTMEM=member

NMOUTDSN=nmoutdsn(member)

NMBINREC=binrec_len

NMDISP=OLD

NMDISP=MOD
�

�
OMOUTPUT=FMOMTOUT

OMOUTPUT=ddname
OMOUTMEM=member

OMOUTDSN=omoutdsn(member)

OMBINREC=binrec_len

OMDISP=OLD

OMDISP=OMOD

Function reference: DSM

Chapter 16. Functions 917

DSM Syntax: Part 6 of 7

Formatted type options (from Part 4):

TYPE=FORMATTED
IGNORELB=NO

IGNORELB=YES

IGNORETB=NO

IGNORETB=YES

MATCHREF=NO

MATCHREF=YES

IGNORECASE=NO

IGNORECASE=YES

Keyed synchronization options (from Part 4):

(1)
SYNCH=KEYED

YES
KEYTCOLD= NO

YES
KEYTCNEW= NO

�

,

KEYFLDOLD=(okeyfld)

�

�

�

,

KEYFLDNEW=(nkeyfld) �

,

KEYLOCOLD=(okeyloc) �

,

KEYLOCNEW=(nkeyloc)

�

�

�

,

KEYLEN=(keylen) �

,
CHAR

KEYTYPE=(BINARY)
PACKED
FLOAT

Template reporting options (from Part 1):

PBK=NONE

PBK=LAYOUTS
PBK=CRITERIA
PBK=ALL

MAP=NONE

MAP=MAPPED
MAP=UNMAPPED
MAP=ALL

ARRAY=NO

ARRAY=YES

HEXLOC=NO

HEXLOC=YES

HEXLEN=NO

HEXLEN=YES

Notes:

1 All of the following keywords are shown as optional in the syntax, but in practice the actual
requirements are dependent on a number of factors, as described in the SYNCH=KEYED
definition below the syntax diagram.

Function reference: DSM

918 File Manager for z/OS V10R1 User’s Guide

DSM Syntax: Part 7 of 7

Load module compare options (from Part 4):

SYNCH=LMOD
CMPLVL=LMOD

CMPLVL=CSECT

DATEFORM=YYYYDDD

DATEFORM=YYMMDD
�

�

�

,

LMODC= SIZE
(ADDRESS (1)

LINKER)
BINDER
DATE
TIME

MODE
AC
AUTH

ATTR

�

�

�

,

CSECTC= SIZE
(ADDRESS (1)

COMPILER)
DATE
MODE

IDRZAP
ZAP

TEXT

Notes:

1 Provide closing bracket when opening bracket has been used.

Old data set specifications (Part 1 of syntax diagram)
The “Old” data set can be specified as follows:

DDOLD=ddold
Defines a reference to a DD or TSO ALLOC statement for the
“Old” data set or HFS file. The default is DDOLD.

DSNOLD=dsnold
Defines the name of the “Old” data set or an absolute path to the
“Old” HFS file. If specified, any DD statements provided are not
used. The name may include a member name in parenthesis. If the
member is specified here, the associated MEMOLD parameter must
be empty. An absolute path to an HFS file must be enclosed in
apostrophes. If it does not fit on one line, you can split it over
more than one line. To further describe the data set, use the
following:

Function reference: DSM

Chapter 16. Functions 919

VOLSEROLD=volserold
The VOLUME serial number for a non-cataloged “Old”
data set.

MEMOLD=memold
The name of a single member in a PDS, or a member name pattern
representing one or more members in a PDS library. You can
specify this parameter, or a member name in the DD statement for
ddname, or specify a member or members in the MEMLIST
parameter, or specify a range of member names with the
MEMSTART and MEMEND keywords.

A member name pattern can consist of any characters that are
valid in a member name, and two special pattern characters: the
asterisk (*) and the percent symbol (%).

An * represents any number of characters. As many asterisks as
required can appear anywhere in a member name pattern. For
example, if you enter a member name pattern of *d*, all members
in the PDS whose name contains ″d″ are processed.

A % is a place-holding character that represents a single character.
As many percent symbols as necessary can appear anywhere in a
member name pattern. For example, if you enter a member name
pattern of %%%%, all members in the PDS with a 4-character name
are processed.

MEMOLD is ignored if the data set is not a PDS.

MEMSTART=startstring
Is used to specify the start of a range of member names to be
included in the compare. If MEMSTART is specified but MEMEND
is omitted, all members of the PDS(E) from the startstring value
onwards are included. startstring can have the same values,
including wild cards, as for the memold parameter of the MEMOLD
keyword.

MEMEND=endstring
Is used to specify the end of a range of member names to be
included in the compare. If MEMEND is specified but MEMSTART
is omitted, all members of the PDS(E) up to the endstring value
onwards are included. endstring can have the same values,
including wild cards, as for the memold parameter of the MEMOLD
keyword.

CREATED=created
The date on which a member was created, in YYYY/MM/DD
format.

If the “Old” data set is a PDS(E), you can specify this parameter, or
specify a range of creation dates with the CRESTART and
CREEND keywords.

You can specify an asterisk (*) as the last character to indicate a
range of dates, or a percent sign (%) in place of a single character
to indicate a selection of dates.

created is ignored if the data set is not a PDS.

CRESTART=crestart
The start of a range of creation dates in YYYY/MM/DD format to
be included in the compare.

Function reference: DSM

920 File Manager for z/OS V10R1 User’s Guide

If CRESTART is specified but CREEND is omitted, all members of
the PDS(E) from the crestart value onwards are included.

If omitted, or you do not enter a full date, or you specify an
asterisk (*) as the last character, the unspecified portion of crestart
defaults to the right as follows:
DD = 01
MM = 01
YYYY = 0000

No other wildcarding is allowed.

CREEND=creend
The end of a range of creation dates in YYYY/MM/DD format to
be included in the compare.

If omitted, or you do not enter a full date, or you specify an
asterisk (*) as the last character, the unspecified portion of creend
defaults to the right as follows:
DD = 31
MM = 12
YYYY = 9999

No other wildcarding is allowed.

CHANGED=changed
The date on which a member was last modified, in
YYYY/MM/DD format.

If the “Old” data set is a PDS(E), you can specify this parameter, or
specify a range of modification dates with the CHGSTART and
CHGEND keywords.

You can specify an asterisk (*) as the last character to indicate a
range of dates, or a percent sign (%) in place of a single character
to indicate a selection of dates.

changed is ignored if the data set is not a PDS.

CHGSTART=chgstart
The start of a range of modification dates in YYYY/MM/DD
format to be included in the compare.

If CHGSTART is specified but CHGEND is omitted, all members of
the PDS(E) from the chgstart value onwards are included.

If omitted, or you do not enter a full date, or you specify an
asterisk (*) as the last character, the unspecified portion of chgstart
defaults to the right as follows:
DD = 01
MM = 01
YYYY = 0000

No other wildcarding is allowed.

CHGEND=chgend
The end of a range of modification dates in YYYY/MM/DD format
to be included in the compare.

If omitted, or you do not enter a full date, or you specify an
asterisk (*) as the last character, the unspecified portion of chgend
defaults to the right as follows:

Function reference: DSM

Chapter 16. Functions 921

DD = 31
MM = 12
YYYY = 9999

No other wildcarding is allowed.

USERID=userid
The TSO user ID by which the member was last updated.

If the “Old” data set is a PDS(E), you can specify this parameter, or
specify a range of user IDs with the UIDSTART and UIDEND
keywords.

You can enter a generic user ID by using asterisks and percent
signs.

userid is ignored if the data set is not a PDS.

UIDSTART=uidstart
The start of a range of user IDs to be included in the compare.

If UIDSTART is specified but UIDEND is omitted, all members of
the PDS(E) from the uidstart value onwards are included.

If omitted, or you do not enter a full 7-character user ID, or you
specify an asterisk (*) as the last character, File Manager replaces
the asterisk and pads the unspecified portion of uidstart to the right
with low values (X'00').

UIDEND=uidend
The end of a range of user IDs to be included in the compare.

If you omit this field, it defaults to high values (X'FF').

If you specify less than 7 characters (without an asterisk as the last
character), File Manager pads uidstart to the right with low values
(X'00'). If you specify an asterisk (*) as the last character, File
Manager replaces the asterisk and pads the unspecified portion of
uidend with high values (X'FF').

MEMLIST
Provides a means of selecting members from a PDS where no
generic name pattern and no member name range has been
specified. If the MEMLIST keyword is specified, only those
members included in the MEMLIST arguments are compared with
the corresponding members in the output data set. Members
selected by the MEMBER=memold that are not included in the
MEMLIST arguments are not compared.

The MEMLIST arguments also refine the member list specified in
the MEMOLD=memold parameter. If the MEMOLD keyword is not
specified, it is assumed to be MEMOLD=*, and all members named
in the MEMLIST list are processed. However, if the MEMLIST
keyword is specified, for example as MEMLIST=TEST*, the
members included in the MEMLIST list are selected from the
TEST* subset of members. Any members named in the MEMLIST
arguments that do not match the mask given in the MEMOLD
parameter are not compared.

comp_mem
The name of the member to be compared. Generic name
masks are not allowed.

Function reference: DSM

922 File Manager for z/OS V10R1 User’s Guide

USEIOXOLD
Specifies whether to invoke a user I/O exit, to process the “Old”
data set.

NO Default. Do not invoke a user I/O exit.

YES Invoke a user I/O exit to process the “Old” data set. This
option is only available if the person who did the site
customization for File Manager allowed user I/O exits on a
site-wide basis.

IOXOLD
Specifies the name of the user I/O exit used for the “Old” data set.
There are no restrictions on the programming language that you
can use to write an exit. The exit must be provided to File Manager
in the STEPLIB/ISPLLIB concatenation or their extensions
(LINKLIST, LPA, and so on).

sysexit Default. If you specify USEIOXOLD=YES and do not
supply a user I/O exit name, File Manager uses the name
of the exit provided in the installation customization
options. If USEIOXOLD has been set to YES and no
installation default has been provided, you must specify
IOXOLD=ioxname.

Note: If you have selected batch processing in an online
panel, the generated JCL statements use the default
name provided in your Set System Processing
Options panel.

ioxname
The name of a PDS(E) member of a data set that has been
provided to File Manager in the STEPLIB concatenation.

BINRECOLD=binrecold-len
Specifies the record length used for processing the “Old” HFS file.
Valid range: 1 to 32760.

The file is processed in Binary mode (fixed-length records derived
from the file, delimiters not distinguished). If you do not specify
this parameter, the file is processed in Text mode (variable-length
records, boundaries determined by delimiters).

KEYOLD=keyold
A key for KSDS records or a slot number for RRDS records, for the
“Old” data set. The maximum key length is 30 characters. The first
record with a key or slot value greater than or equal to key is the
first record compared. If you omit the keyold and skipold values, the
comparison begins with the first record in the data set.

If the key contains lowercase characters, blanks, or commas,
enclose it in quotation marks. You can also specify a key in
hexadecimal format (for example, X'C1C2C3').

SKIPOLD=skipold
Number of logical records to be skipped from the beginning of the
“Old” data set. The default is 0.

CMPOLD=cmpold
Number of records from the “Old” data set to be compared. The

Function reference: DSM

Chapter 16. Functions 923

maximum number is 99 999 999. If you specify ALL or omit the
parameter, all the remaining records are compared.

IGNLEN
Specifies whether or not File Manager ignores length mismatches
when selecting records for processing.

NO Do not ignore length mismatches. Records that are shorter
than the matching structure length in the template are not
selected for processing.

YES Use this option to ignore length mismatches.

Old template processing (Part 1 of syntax diagram)
Use these options to specify the “Old” copybook or template that describes
the record structure of your “Old” data set.

TOLD=ddname
Defines a reference to a DD or TSO ALLOC statement for the data
sets which contain the copybook or template that describes the
record structure of your ″Old″ data set. The default is TDOLD.

If you specify a concatenated DD, then you must provide the
member name, member.

TOLDMEM=member
The name of the copybook or template member in the datasets
identified by the TOLD parameter if it has not been specified on
the DD statement. This parameter must not be specified if the
TCOLD parameter is specified.

TCOLD=tcold(tcomem)
PDS and member name of the ″Old″ copybook or template that
describes the record structure of your ″Old″ data set.

OFFSETOLD
The length of the 01 field in the “Old” template and the start
locations of the fields within that 01 field are adjusted by the value
provided.

value The offset value, which must be in the range -32760 to
32760, to be applied to the corresponding field identifier. If
no field identifier is supplied and ALL is not used, the
value is applied to the first Level 01 field in the “Old”
template.

ALL Where the template contains multiple record structures,
this keyword applies the corresponding value to all Level
01 fields within the “Old” template.

Note: You can specify a value for ALL and then override
this value for individual layouts by providing
subsequent value and fieldname combinations.

fieldname
The name of the Level 01 field to which value is to be
applied. The default is the first Level 01 field in the “Old”
template.

FIELDOLD=(oldfield1,oldfield2,...)
Field name or names in the “Old” template, used to create a
mapping for a formatted comparison. This keyword is used in

Function reference: DSM

924 File Manager for z/OS V10R1 User’s Guide

conjunction with the FIELDNEW keyword to define mapping
within the batch file. The parentheses are optional when only one
field is specified but mandatory when more than one field is
included. The names are mapped in the order given, that is,
oldfield1 is mapped to newfield1 and so on, overriding any default
or existing mapping.

FIELDOLD and FIELDNEW can be used with or without an
existing mapping in the template and with or without the
CORRESP keyword setting, as follows:

Table 13. Batch mapping behavior

Specifications Behavior

“New” template
contains
mapping?

CORRESP=? FIELDxxx
specified?

no NO no map corresponding fields

yes map specified fields

YES no map corresponding fields

yes map corresponding fields then
remap specified fields

yes NO no use mapping in TCNEW template

yes use mapping in TCNEW template
then remap specified fields

YES no map corresponding fields

yes map corresponding fields then
remap specified fields

Note: “Specified fields” refers to those fields specified in the
FIELDOLD and FIELDNEW arguments.

Handling multiple 01s and duplicate field names

Field mapping specifications that are created via the FIELDOLD
and FIELDNEW keywords are applied on a first match basis. For
example, if the “Old” template came from a copybook containing:

01 OLD-TYPE01.
03 BINARY-X PIC 999999999 USAGE BINARY.

01 OLD-TYPE02.
03 BINARY-1 PIC 999999999 USAGE BINARY.

01 OLD-TYPE03.
03 BINARY-1 PIC 999999999 USAGE BINARY.

and the “New” template came from a copybook containing:
01 NEW-TYPE01.

03 BINARY-2 PIC 999999999 USAGE BINARY.
01 NEW-TYPE02.

03 BINARY-2 PIC 999999999 USAGE BINARY.
05 DUP-FIELD.
07 BINARY-2 PIC 999999999 USAGE BINARY.

01 NEW-TYPE03.
03 BINARY-2 PIC 999999999 USAGE BINARY.

a mapping specification of:
$$FILEM FIELDOLD=BINARY-1,
$$FILEM FIELDNEW=BINARY-2,

Function reference: DSM

Chapter 16. Functions 925

maps the 03 BINARY-2 field in NEW-TYPE02 to the BINARY-1 field in
OLD-TYPE02. This is because the 03 BINARY-2 field in NEW-TYPE02 is
the first “New” template field found named BINARY-2, where the
corresponding 01-level, OLD-TYPE02, contains a field called
BINARY-1. The 03 BINARY-2 field in NEW-TYPE01 is not mapped
because the corresponding 01-level, OLD-TYPE01, does not contain a
03 BINARY-1 field.

You can override this default behavior to specify different field
mappings by using a dot qualification. For example,
$$FILEM FIELDOLD=BINARY-1,
$$FILEM FIELDNEW=DUPFIELD.BINARY-2,

would map the 07 BINARY-2 field in NEW-TYPE02 to the BINARY-1
field in OLD-TYPE02.
$$FILEM FIELDOLD=BINARY-1,
$$FILEM FIELDNEW=NEW-TYPE03.BINARY-2,

would map the 03 BINARY-2 field in NEW-TYPE03 to the BINARY-1
field in OLD-TYPE03.

Notes:

1. This only affects the mapping. Normal record identification
procedures must be understood and employed to ensure the
correct 01 is in effect for each record comparison.

2. The qualifiers are resolved from left to right, skipping over
levels not present in the qualification so that only enough
information to uniquely identify a field need be provided.

New data set specifications (Part 2 of syntax diagram)
The “New” data set can be specified as follows:

DDNEW=ddnew
Defines a reference to a DD or TSO ALLOC statement for the
“New” data set or HFS file. The default is DDNEW.

DSNNEW=dsnnew
Defines the name of the “New” data set or an absolute path to the
“New” HFS file. If specified, any DD statement provided are not
used. The name may include a member name in parenthesis. If the
member is specified here, the associated MEMNEW parameter
must be empty. An absolute path to an HFS file (directory) must be
enclosed in apostrophes. If it does not fit on one line, you can split
it over more than one line. To further describe the data set, use the
following:

VOLSERNEW=volsernew
The VOLUME serial number for a non-cataloged “New”
data set.

MEMNEW=memnew
The name of a single member in a PDS library, or a member name
pattern representing one or more members in the library. You can
specify this parameter, or a member name in the DD statement for
ddname.

A member name pattern can consist of any characters that are
valid in a member name, and two special pattern characters: the
asterisk (*) and the percent symbol (%).

Function reference: DSM

926 File Manager for z/OS V10R1 User’s Guide

An * represents any number of characters. As many asterisks as
required can appear anywhere in a member name pattern. For
example, if you enter a member name pattern of *d*, all members
in the library whose name contains ″d″ are processed.

A % is a place holding character that means a single character. As
many percent symbols as necessary can appear anywhere in a
member name pattern. For example, if you enter a member name
pattern of %%%%, all members in the library with a 4-character
name are processed.

Specification of MEMNEW (or a member in DSNNEW) depends
on the parameters used in MEMOLD (or member used in
DSNOLD). If MEMOLD (member in DSNOLD) specifies one
member, MEMNEW (member in DSNNEW) must also point at one
member. If MEMOLD (member in DSNOLD) contains a member
name pattern, the specification of MEMNEW (member in
DSNNEW) must use the same pattern or an ″*″.

MEMNEW is ignored if the data set is not a PDS.

USEIOXNEW
Specifies whether to invoke a user I/O exit, to process the “New”
data set.

NO Default. Do not invoke a user I/O exit.

YES Invoke a user I/O exit to process the “New” data set. This
option is only available if the person who did the site
customization for File Manager allowed user I/O exits on a
site-wide basis.

IOXNEW
Specifies the name of the user I/O exit used for the “New” data
set. There are no restrictions on the programming language that
you can use to write an exit. The exit must be provided to File
Manager in the STEPLIB/ISPLLIB concatenation or their extensions
(LINKLIST, LPA, and so on).

sysexit Default. If you specify USEIOXNEW=YES and do not
supply a user I/O exit name, File Manager uses the name
of the exit provided in the installation customization
options. If USEIOXNEW has been set to YES and no
installation default has been provided, you must specify
IOXNEW=ioxname.

Note: If you have selected batch processing in an online
panel, the generated JCL statements use the default
name provided in your Set System Processing
Options panel.

ioxname
The name of a PDS(E) member of a data set that has been
provided to File Manager in the STEPLIB concatenation.

BINRECNEW=binrecnew-len
Specifies the record length used for processing the “New” HFS file.
Valid range: 1 to 32760.

The file is processed in Binary mode (fixed-length records derived
from the file, delimiters not distinguished). If you do not specify

Function reference: DSM

Chapter 16. Functions 927

this parameter, the file is processed in Text mode (variable-length
records, boundaries determined by delimiters).

KEYNEW=keynew
A key for KSDS records or a slot number for RRDS records, for the
“New” data set. The maximum key length is 30 characters. The
first record with a key or slot value greater than or equal to key is
the first record compared. If you omit the keynew and skipnew
values, the comparison begins with the first record in the data set.

If the key contains lowercase characters, blanks, or commas,
enclose it in quotation marks. You can also specify a key in
hexadecimal format (for example, X'C1C2C3').

SKIPNEW=skipnew
Number of logical records to be skipped from the beginning of the
“New” data set. The default is 0.

CMPNEW=cmpnew
Number of records from the “New” data set to be compared. The
maximum number is 99 999 999. If you specify ALL or omit the
parameter, all the remaining records are compared.

New template processing (Part 2 of syntax diagram)
Use these options to specify the “New” copybook or template that
describes the record structure of your “New” data set.

TNEW=ddname
Defines a reference to a DD or TSO ALLOC statement for the data
sets which contain the copybook or template member that
describes the record structure of your ″New″ data set. The default
is TDNEW.

If you specify a concatenated DD, then you must provide the
member name, member.

TNEWMEM=member
The name of the copybook or template member in the datasets
identified by the TNEW parameter if it has not been specified on
the DD statement. This parameter must not be specified if the
TCNEW parameter is specified.

TCNEW=tcnew(tcnmem)
PDS and member name of the ″New″ copybook or template that
describes the record structure of your ″New″ data set.

OFFSETNEW
The length of the 01 field in the “New” template and the start
locations of the fields within that 01 field are adjusted by the value
provided.

value The offset value, which must be in the range -32760 to
32760, to be applied to the corresponding field identifier. If
no field identifier is supplied and ALL is not used, the
value is applied to the first Level 01 field in the “New”
template.

ALL Where the template contains multiple record structures,
this keyword applies the corresponding value to all Level
01 fields within the “New” template.

Function reference: DSM

928 File Manager for z/OS V10R1 User’s Guide

Note: You can specify a value for ALL and then override
this value for individual layouts by providing
subsequent value and fieldname combinations.

fieldname
The name of the Level 01 field to which value is to be
applied. The default is the first Level 01 field in the “New”
template.

FIELDNEW=(newfield1,newfield2,...)
Field name or names in the “New” template, used to create a
mapping for a formatted comparison. This keyword is used in
conjunction with the FIELDOLD keyword to define mapping
within the batch file. The parentheses are optional when only one
field is specified but mandatory when more than one field is
included. The names are mapped in the order given, that is,
oldfield1 is mapped to newfield1 and so on, overriding any default
or existing mapping.

FIELDOLD and FIELDNEW can be used with or without an
existing mapping in the template and with or without the
CORRESP keyword setting. See Table 13 on page 925 for details.

Copybook processing (Part 3 of syntax diagram)
If you specify a copybook (instead of an existing template) for either
TCOLD or TCNEW, then File Manager uses these processing options to
compile the copybook into a template:

LANG
Determines whether File Manager automatically detects the
copybook language or interprets the language as COBOL,PL/I, or
HLASM.

AUTO
Automatically detect whether the copybook language is
COBOL or PL/I, and invoke the appropriate compiler. If
the compilation results in a return code greater than 4, then
invoke the compiler for the other language. If the second
compilation also results in a return code greater than 4,
then retry the first compiler and report the compilation
errors. If File Manager successfully creates a template
(despite the compilation errors), then continue processing
with the template.

COBOL
Invoke the COBOL compiler to create a template from the
copybook. (Do not invoke the PL/I compiler, even if the
COBOL compilation results in errors.)

PLI Invoke the PL/I compiler to create a template from the
copybook. (Do not invoke the COBOL compiler, even if the
PL/I compilation results in errors.)

HLASM
Invoke the HLASM compiler to create a template from the
copybook.

COBOL options (Part 3 of syntax diagram)
The following options are used to compile a COBOL copybook into a
template:

Function reference: DSM

Chapter 16. Functions 929

DBCS=YES
Use the DBCS compiler option.

DBCS=NO
Use the NODBCS compiler option.

For details on the effect of the DBCS and NODBCS compiler
options, see the IBM COBOL Programming Guide for OS/390 & VM.

CDPC=NO
Do not use the COBOL SPECIAL-NAMES paragraph
″Decimal-point is comma″.

CDPC = YES
Use the COBOL SPECIAL-NAMES paragraph ″Decimal-point is
comma″.

CAE=NO
Do not use the COBOL compile option ARITH(EXTEND).

CAE = YES
Use the COBOL compile option ARITH(EXTEND).

MIXED = NO
Field names stored in the template in uppercase.

MIXED = YES
Field names stored in the template in the original case as coded in
the COBOL copybook.

RFROM1=RTO1 ... RFROM5=RTO5
Up to five pairs of “From” and “To” pseudo-text character strings
for the COBOL REPLACE compiler-directing statement.

If your COBOL copybooks contain characters that you want to
remove or replace with other characters before compiling the
copybooks into templates, then use these replacing options.

For example, if your copybooks contain colon characters (:) that
you want to remove before compiling, then specify '==:==' as
operand1 and '=====' as operand2.

For details on specifying “From” and “To” strings for COBOL
REPLACE, see the IBM COBOL Language Reference.

COMPMAXRC
Sets the maximum acceptable return code for a copybook compile.
A return code higher than the specified level causes the function to
stop. Default is 4.

PL/I options (Part 3 of syntax diagram)
The following options are used to compile a PL/I copybook into a
template:

BIN63=YES Use the LIMITS(FIXEDBIN(63)) compiler option.

BIN63=NO Use the LIMITS(FIXEDBIN(31)) compiler option.

DEC31=YES Use the LIMITS(FIXEDDEC(31)) compiler option.

DEC31=NO Use the LIMITS(FIXEDDEC(15)) compiler option.

GRAPHIC=YES
Use the GRAPHIC compiler option.

Function reference: DSM

930 File Manager for z/OS V10R1 User’s Guide

GRAPHIC=NO
Use the NOGRAPHIC compiler option.

UNALIGNED=YES
Use the DEFAULT RANGE (*) UNALIGNED, language
statement to change the default alignment.

UNALIGNED=NO
Use the PL/I default.

COMPMAXRC
Sets the maximum acceptable return code for a copybook
compile. A return code higher than the specified level
causes the function to stop. Default is 4.

For details on the effect of these compiler options, see the IBM VisualAge
PL/I for OS/390 Programming Guide.

HLASM options
The following options are used to compile a HLASM copybook into a
template:

DBCS=YES Use the DBCS compiler option.

DBCS=NO Use the NODBCS compiler option.

NOALIGN=YES
Use the NOALIGN compiler option.

NOALIGN=NO
Use the ALIGN compiler option.

COMPMAXRC
Sets the maximum acceptable return code for a copybook
compile. A return code higher than the specified level
causes the function to stop. Default is 4.

For details on the effect of these compiler options, see the HLASM V1R5
Programmer’s Guide.

Note: You cannot specify different options for compiling “Old” and “New”
copybooks; the same copybook options are used for both.

Comparison options (Part 5 of syntax diagram)

TYPE=RECORD
Record comparison.

CORRESP=NO
Use this option if the field mapping you want to use is in the
TCNEW member. If the TCNEW member is a copybook, or no
field mapping is supplied, then File Manager ignores this option
and performs a compare as if you had specified CORRESP=YES.

CORRESP=YES
This option instructs File Manager to map output fields to input
fields with the corresponding name.

If you want to use the existing mapping in the “New” template,
specify CORRESP=NO.

SYNCH=ONETOONE
One-to-one synchronization.

Function reference: DSM

Chapter 16. Functions 931

SYNCH=READAHEAD
Read-ahead synchronization. If specified, you can use the following
option:

LIMIT=ralim
Limit for read-ahead synchronization.

LENGTH=ralen
The number of records that must match during read-ahead
processing for synchronization to occur.

LIST=SUMMARY
Summary listing.

LIST=DELTA
Delta listing.

LIST=MATCHING
Matching listing.

LIST=LONG
Long listing.

LIST=NONE
No listing.

Listing Options
The following option takes effect if the LIST=LONG parameter is
specified:

EXCLUDE=exclude_type
The specified compare result types are not reported.

exclude_type can have the following values:

INSERTED
Excludes inserted records from the report.

DELETED
Excludes deleted records from the report.

CHANGED
Excludes changed records from the report.

MATCHED
Excludes matched records from the report.

The following options take effect if the LIST keyword is not
specified (that is, it defaults to SUMMARY) or is set to anything
other than NONE:

NUMDIFF=numdiff
The number of differences after which the Compare Utility
stops processing the data sets.

RCDIFF=(numdiff,return_code)
Sets the batch return code when a threshold of changes has
been met, where:
numdiff

The minimum number of differences to trigger the
return code.

return_code
The batch return code value that is set if the
number of differences have been detected.

Function reference: DSM

932 File Manager for z/OS V10R1 User’s Guide

|
|
|
|
|
|
|
|
|

WIDE=NO
Narrow listing.

WIDE=YES
Wide listing. The WIDE listing is limited in width to
approximately 32K bytes of (record) data. When working
with records longer than 32K, the record data, and optional
change hilighting, is truncated past 32K bytes of data
because of the SYSPRINT output record limitation. The
entire record length is used to perform the comparison so
records ar marked correctly as ″changed″ regardless of
length.

HEX=NO
No hex formatting.

HEX=YES
Show hex formatting.

Note: The print processing option, DUMP, is ignored and
the hexadecimal print output is in updown format.

HILIGHT=NO
No highlighting of changed fields.

HILIGHT=YES
Highlight changed fields.

SHOWATTR=NO
Suppress attribute information in headings (affects
formatted comparisons only).

SHOWATTR=YES
Show attribute information in headings (affects formatted
comparisons only).

CHNGDFLD=NO
Show all fields in the formatted comparison reports.

CHNGDFLD=YES
Show only changed fields in formatted comparison reports.
This option has no effect if the ’Wide listing’ (WIDE=YES)
option has been selected, or for record type comparisons.

SLCTDFLD=NO
Fields selected in the template are not shown in addition to
changed fields. This option has effect only if
CHNGDFLD=YES is also specified.

SLCTDFLD=YES
Fields selected in the template are always shown. This
option has effect only if CHNGDFLD=YES is also specified.

PACK=UNPACK
Allow detection of ISPF packed data and unpack the records if
they are packed before passing to the processing routine or
printing.

PACK=NONE
Omit the detection of ISPF packed data and process the records as
they are.

Function reference: DSM

Chapter 16. Functions 933

PACK=SKIP
Check for ISPF packed data and if packed, skip processing of this
data set or member.

IOUTPUT=ddname
Defines a reference to a DD or TSO ALLOC statement for the data
set or HFS file the ″inserted″ records are to be written to.

IOUTMEM=member
The name of the member in the dataset identified by the
COUTPUT parameter if it has not been specified on the DD
statement.

IOUTDSN=ioutdsn(member)
The name of the output data set, or an absolute path to the output
HFS file, the ″inserted″ records are to be written to. The name can
include a member name in parenthesis.

An absolute path to an HFS file (directory) must be enclosed in
apostrophes. If it does not fit on one line, you can split it over
more than one line.

IBINREC=binrec_len
Specifies the record length to be used for processing the inserted
HFS output data set. Valid range is 1–32760. The file is processed
in binary mode. If you do not specify this parameter, the file is
processed in text mode.

IDISP=MOD
Writes inserted records to the existing output data set, starting
from the beginning.

IDISP=OLD
Appends inserted records to the existing output data set.

DOUTPUT=ddname
Defines a reference to a DD or TSO ALLOC statement for the data
set or HFS file the ″deleted″ records are to be written to.

DOUTMEM=member
The name of the member in the dataset identified by the
COUTPUT parameter if it has not been specified on the DD
statement.

DOUTDSN=doutdsn(member)
The name of the output data set, or an absolute path to the output
HFS file, the ″deleted″ records are to be written to. The name can
include a member name in parenthesis.

An absolute path to an HFS file (directory) must be enclosed in
apostrophes. If it does not fit on one line, you can split it over
more than one line.

DBINREC=binrec_len
Specifies the record length to be used for processing the deleted
HFS output data set. Valid range is 1–32760. The file is processed
in binary mode. If you do not specify this parameter, the file is
processed in text mode.

DDISP=MOD
Writes deleted records to the existing output data set, starting from
the beginning.

Function reference: DSM

934 File Manager for z/OS V10R1 User’s Guide

DDISP=OLD
Appends deleted records to the existing output data set.

NCOUTPUT=ddname
Defines a reference to a DD or TSO ALLOC statement for the data
set or HFS file the new ″changed″ records are to be written to. The
default is FMNCHOUT.

NCOUTMEM=member
The name of the member in the dataset identified by the
NCOUTPUT parameter if it has not been specified on the DD
statement.

NCOUTDSN=ncoutdsn(member)
The name of the output data set, or an absolute path to the output
HFS file, the new ″changed″ records are to be written to. The name
can include a member name in parenthesis.

An absolute path to an HFS file (directory) must be enclosed in
apostrophes. If it does not fit on one line, you can split it over
more than one line.

NCBINREC=binrec_len
Specifies the record length to be used for processing the New
Change HFS output data set. Valid range is 1–32760. The file is
processed in binary mode. If you do not specify this parameter, the
file is processed in text mode.

NCDISP=MOD
Writes new changed records to the existing output data set,
starting from the beginning.

NCDISP=OLD
Appends new changed records to the existing output data set.

OCOUTPUT=ddname
Defines a reference to a DD or TSO ALLOC statement for the data
set or HFS file the new ″changed″ records are to be written to. The
default is FMOCHOUT.

OCOUTMEM=member
The name of the member in the dataset identified by the
OCOUTPUT parameter if it has not been specified on the DD
statement.

OCOUTDSN=ocoutdsn(member)
The name of the output data set, or an absolute path to the output
HFS file, the old ″changed″ records are to be written to. The name
can include a member name in parenthesis.

An absolute path to an HFS file (directory) must be enclosed in
apostrophes. If it does not fit on one line, you can split it over
more than one line.

OCBINREC=binrec_len
Specifies the record length to be used for processing the New
Change HFS output data set. Valid range is 1–32760. The file is
processed in binary mode. If you do not specify this parameter, the
file is processed in text mode.

Function reference: DSM

Chapter 16. Functions 935

OCDISP=MOD
Writes old changed records to the existing output data set, starting
from the beginning.

OCDISP=OLD
Appends old changed records to the existing output data set.

NMOUTPUT=ddname
Defines a reference to a DD or TSO ALLOC statement for the data
set or HFS file the new ″matched″ records are to be written to. The
default is FMNMTOUT.

NMOUTMEM=member
The name of the member in the dataset identified by the
COUTPUT parameter if it has not been specified on the DD
statement.

NMOUTDSN=nmoutdsn(member)
The name of the output data set, or an absolute path to the
matched HFS file, the new ″matched″ records are to be written to.
The name can include a member name in parenthesis.

An absolute path to an HFS file (directory) must be enclosed in
apostrophes. If it does not fit on one line, you can split it over
more than one line.

NMBINREC=binrec_len
Specifies the record length to be used for processing the new
matched HFS output data set. Valid range is 1–32760. The file is
processed in binary mode. If you do not specify this parameter, the
file is processed in text mode.

NMDISP=MOD
Writes new matched records to the existing output data set,
starting from the beginning.

NMDISP=OLD
Appends new matched records to the existing output data set.

OMOUTPUT=ddname
Defines a reference to a DD or TSO ALLOC statement for the data
set or HFS file the old ″matched″ records are to be written to. The
default is FMOMTOUT.

OMOUTMEM=member
The name of the member in the dataset identified by the
COUTPUT parameter if it has not been specified on the DD
statement.

OMOUTDSN=omoutdsn(member)
The name of the output data set, or an absolute path to the
matched HFS file, the old ″matched″ records are to be written to.
The name can include a member name in parenthesis.

An absolute path to an HFS file (directory) must be enclosed in
apostrophes. If it does not fit on one line, you can split it over
more than one line.

OMBINREC=binrec_len
Specifies the record length to be used for processing the old

Function reference: DSM

936 File Manager for z/OS V10R1 User’s Guide

matched HFS output data set. Valid range is 1–32760. The file is
processed in binary mode. If you do not specify this parameter, the
file is processed in text mode.

OMDISP=MOD
Writes old matched records to the existing output data set, starting
from the beginning.

OMDISP=OLD
Appends old matched records to the existing output data set.

Formatted type options (Part 6 of syntax diagram)
If you specify TYPE=FORMATTED, for a formatted comparison, you can
use the following options:

IGNORELB=NO
Respect leading blanks when comparing alphanumeric fields.

IGNORELB=YES
Ignore leading blanks when comparing alphanumeric fields.

IGNORETB=NO
Respect trailing blanks when comparing alphanumeric fields.

IGNORETB=YES
Ignore trailing blanks when comparing alphanumeric fields.

MATCHREF=NO
Ignore leading blanks (unless IGNORELB=NO is also specified),
trailing blanks (unless IGNORETB=YES also specified) and
embedded blanks when comparing alphanumeric fields.

MATCHREF=YES
Respect leading blanks, trailing blanks and embedded blanks when
comparing alphanumeric fields.

Note: Any setting of IGNORELB or IGNORETB is ignored if
MATCHREF=YES is also specified.

IGNORECASE=NO
Respect case when comparing alphanumeric fields.

IGNORECASE=YES
Ignore case when comparing alphanumeric fields.

Keyed synchronization options (Part 6 of syntax diagram)
If you specify SYNCH=KEYED, you are requesting keyed synchronization.

If specified, you can define up to sixteen key segments to be concatenated
to form a single key. A key segment is comprised of the key’s location in
the “Old” and “New” data sets and the key’s length and data type. These
values are built using one of the following sources or a combination of
these elements:
v The intrinsic data set keys (where the data set is keyed, for example,

VSAM KSDS).
If only one of the data sets is keyed, the location and length values for
the first segment is initialized from the available data set key
information, and the keywords corresponding to the initialized values
are not required. However, you need to supply the location value and,
optionally, the data type for the non-keyed data set. If you do not
specify the data type, the default type of AN is used.

Function reference: DSM

Chapter 16. Functions 937

If both data sets are keyed, you do not need to supply any of the
keywords and the location values is initialized from the data set key. The
length value is that of the shorter of the two keys.
If used in a multi-segment key, this defines the first segment. To prevent
other segment sources from overriding the intrinsic key, leave the first
argument in the KEYxxx keyfields as a void, for example,
KEYLOCOLD=(,keylocold).

v The key segment sequence information stored in your templates.
v The KEYFLDOLD and KEYFLDNEW keyfields (when a template has

been specified)
v The KEYLOCOLD, KEYLOCNEW, KEYLEN, and (optionally)

KEYTYPE keyfields.

In most situations, you would use only one of these sources to define your
key segments, however, all of them can be intermixed to define the key
segments, with the caveat that KEYLOCOLD, KEYLOCNEW, KEYLEN,
and KEYTYPE override KEYFLDOLD and KEYFLDNEW when both
specify data for the same segment.

Up to 16 values can be specified for each keyword, and the parentheses
can be omitted if only one value is provided. The same number of key
segments must be defined for both data sets, and the data type and length
of corresponding segments must match. Each set of corresponding values
then defines a key segment.

Notes:

1. KEYFLDOLD and KEYFLDNEW can only be specified if a template is
specified for the corresponding data set.

2. Any segment whose presence is implied by a keyword must be fully
specified, except that the data type for the segment can default as
described in KEYTYPE below.

KEYTCOLD
Determines whether or not any key segment information stored in
the “Old” template is used.

If unspecified, the default behavior is that key segment information
stored in the “Old” template is only used when all of the following
conditions are met:
v TCOLD=tcold has been specified.
v The “Old” template contains key segment information.
v No other keyed synchronization options have been specified for

either the “Old” or the “New” data sets.

If any of these conditions are not met, key segment information in
an “Old” template is ignored.

If specified, the setting given overrides the default behavior.

YES The key segment information in the “Old” template is
loaded regardless of whether or not other KEY... keywords
have been specified. Where present, the other KEY...
keywords function as overrides to the template
specifications.

NO The key segment information in the “Old” template is
ignored regardless of whether or not other KEY...
keywords have been specified.

Function reference: DSM

938 File Manager for z/OS V10R1 User’s Guide

KEYTCNEW
Determines whether or not any key segment information stored in
the “New” template is used.

If unspecified, the default behavior is that key information stored
in the “New” template is only used when all of the following
conditions are met:
v TCNEW=tcnew has been specified.
v The “New” template contains key segment information.
v No other keyed synchronization options have been specified for

either the “Old” or the “New” data sets.

If any of these conditions are not met, key segment information in
an “New” template is ignored.

If specified, the setting given overrides the default behavior.

YES The key segment information in the “New” template is
loaded regardless of whether or not other KEY... keywords
have been specified. Where present, the other KEY...
keywords function as overrides to the template
specifications.

NO The key segment information in the “New” template is
ignored regardless of whether or not other KEY...
keywords have been specified.

KEYFLDOLD=(keyfieldold,...)
Specifies the name of the field or fields in the “Old” template to be
used as key segments. When used in combination with other key
segment sources, empty arguments must be included to indicate
the position of the keyfieldold value or values in the concatenated
key.

KEYFLDNEW=(keyfieldnew,...)
Specifies the name of the field or fields in the “New” template to
be used as key segments. When used in combination with other
key segment sources, empty arguments must be included to
indicate the position of the keyfieldnew value or values in the
concatenated key.

KEYLOCOLD=(keylocold,...)
Key locations in “Old” data set for keyed synchronization. When
used in combination with other key segment sources, empty
arguments must be included to indicate the position of the keylocold
value or values in the concatenated key.

KEYLOCNEW=(keylocnew)
Key location in “New” data set for keyed synchronization. When
used in combination with other key segment sources, empty
arguments must be included to indicate the position of the
keylocnew value or values in the concatenated key.

KEYLEN=keylen
Key length for keyed synchronization. When used in combination
with other key segment sources, empty arguments must be
included to indicate the position of the keylen value in the
concatenated key.

KEYTYPE
Defines the data type of the key segment. Can be used to override

Function reference: DSM

Chapter 16. Functions 939

the data type of an existing template field. When used in
combination with other key segment sources, empty arguments
must be included to indicate the position of the keylen value in the
concatenated key.

KEYTYPE is optional - any key segments defined by
KEYLOCxxx/KEYLEN that do not have a corresponding
KEYTYPE keyword is given type CHAR.

Key segments defined using KEYFLDOLD and KEYFLDNEW
inherit the type of the template field on which they are based, and
the expected record sequence is assumed to follow accordingly. In
practice this is only likely to be significant for signed binary and
packed decimal fields (though internal floating point is also
supported). For example, if a key were defined on a two-byte field
by location and length, then a value of ’001C’x would be less than
a value of ’001D’x. However if the key were defined via a
packed-decimal template field then ’001D’x (-1) would be less than
’001C’x (+1). Equivalent results can be obtained by using
KEYTYPE with KEYLOCxxx and KEYLEN.

CHAR
This is equivalent to the internal C/AN data type. CHAR
data type segments are synchronized using the normal
EBCDIC collating sequence.

BINARY
This is equivalent to the internal B/BI data type. BINARY
data type segments are synchronized as signed binary
integers. They must have a length of 2, 4 or 8.

PACKED
This is equivalent to the internal P/PD data type. PACKED
data type segments are synchronized as signed packed
decimal integers. They must have a length less than or
equal to 16.

FLOAT
This is equivalent to the internal FP data type. FLOAT data
type segments are synchronized as signed floating point
numbers. They must have a length less of 4 or 8.

Note: Template fields that are selected as key segments but do not
have one of the above data types, is treated as CHAR. In
particular, this means that the actual data lengths of varying
fields is ignored.

Load module compare options (Part 7 of syntax diagram)
If you specify SYNCH=LMOD, you are requesting load module
comparison.

Load module comparison has these specific options:

CMPLVL
Determines the level of load module comparison.

LMOD
Only information on the load module level is extracted and
compared. CSECT information (and differences at CSECT
level) is ignored. This results in a less detailed comparison.

Function reference: DSM

940 File Manager for z/OS V10R1 User’s Guide

CSECT
Information on both the load module and CSECT levels is
extracted and compared. This results in a detailed
comparison.

DATEFORM=YYYYDDD
Reported dates (link and compile dates) shown in YYYY.DDD
format.

DATEFORM=YYMMDD
Reported dates (link and compile dates) shown in YY/MM/DD
format.

LMODC
Determines what information at the load module level is to be
included in the compare. The criteria correspond with load module
properties; only those specified are compared and displayed. Each
of the options below can be specified in any sequence, enclosed in
parenthesis:

SIZE The load module size is compared.

ADDRESS
The entry point address of load module is compared.

LINKER | BINDER
The version of the linkage editor or binder used to prepare
the load module is compared. LINKER and BINDER are
mutually exclusive.

DATE | TIME
The load module link (bind) date and time are compared.
DATE and TIME are mutually exclusive.

MODE
The AMODE and RMODE of the load module are
compared.

AC | AUTH
The load module authorization code is compared. AC and
AUTH are mutually exclusive.

ATTR The load module link (bind) attributes are compared.

CSECTC
Determines what information at the CSECT level is to be included
in the compare. The criteria correspond with the CSECT properties;
only those specified are compared and displayed. Each of the
options below can be specified in any sequence, enclosed in
parenthesis. If CMPLVL=LMOD, this parameter is ignored.

SIZE The CSECT size is compared.

ADDRESS
The address of the CSECT is compared.

COMPILER
The versions of the language compilers used to compile the
CSECT are compared

DATE The date of the CSECT compile is compared.

MODE
The AMODE and RMODE of the CSECT are compared.

Function reference: DSM

Chapter 16. Functions 941

IDRZAP | ZAP
The AMSPZAP IDR data is compared. The IDR ZAP data
is an extension of the CSECT information, but is formatted
into separate records. ISRZAP and ZAP are mutually
exclusive.

TEXT The CSECT content is compared. The CSECT content is an
extension of the CSECT information, but is formatted into
separate, 32-byte records shown in ″memory dump″ format
(hexadecimal and character).

Template reporting options (Part 6 of syntax diagram)

PBK=NONE
Template layout and criteria information not reported.

PBK=LAYOUTS
Template layout information reported if TYPE=FORMATTED is
also specified.

PBK=CRITERIA
Template criteria information reported. In this case, a terse layout
report is also generated, containing only the fields referred to in
the criteria expressions.

PBK=ALL
Template layout and criteria information reported. If
TYPE=RECORD is specified, a terse layout report is generated,
containing only the fields referred to in the criteria expressions. If
TYPE=FORMATTED is specified, a full layout report is generated.

MAP=NONE
Template mapping information not reported.

MAP=MAPPED
Mapped template fields reported if TYPE=FORMATTED is also
specified.

MAP=UNMAPPED
Unmapped template fields reported if TYPE=FORMATTED is also
specified.

MAP=ALL
Both mapped and unmapped template fields reported if
TYPE=FORMATTED is also specified.

ARRAY=YES
If field information is reported, all occurrences of any array
elements are reported.

For COBOL OCCURS DEPENDING ON tables, the maximum
occurrences are reported.

For PL/1 REFER arrays, the minimum occurrences are reported.

ARRAY=NO
Occurrences of array elements not reported.

HEXLOC=YES
If field information is reported, all field start and end positions are
reported as hexadecimal offsets.

HEXLOC=NO
Field start and end positions not reported as hexadecimal offsets.

Function reference: DSM

942 File Manager for z/OS V10R1 User’s Guide

HEXLEN=YES
If field information is reported, all field lengths are reported in
hexadecimal.

HEXLEN=NO
Field lengths not reported in hexadecimal.

Simple batch example: One-to-one synchronization
//DSM JOB (ACCT),'NAME'
//* COMPARE DATA SETS
//*
//FMBAT PROC
//FMBAT EXEC PGM=FILEMGR
//STEPLIB DD DSN=FMN.SFMNMOD1,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
// PEND
//*
//STPSSEX EXEC FMBAT
//SYSIN DD *
$$FILEM VER
$$FILEM DSM TYPE=RECORD,
$$FILEM SYNCH=ONETOONE,
$$FILEM LIST=LONG,
$$FILEM WIDE=YES,
$$FILEM HILIGHT=YES,
$$FILEM DSNOLD=FMN.SFMNSAM1(FMNCDATA),
$$FILEM SKIPOLD=0,
$$FILEM CMPOLD=20,
$$FILEM DSNNEW=FMN.SFMNSAM1(FMNCDATA),
$$FILEM SKIPNEW=20,
$$FILEM CMPNEW=20
$$FILEM EOJ
/*

Complex batch example
$$FILEM DSCMP TYPE=RECORD,
$$FILEM SYNCH=KEYED,
$$FILEM LIST=LONG,
$$FILEM WIDE=YES,
$$FILEM HILIGHT=YES,
$$FILEM HEX=YES,
$$FILEM DSNOLD=USERID.COMPARE.KSDS1,1

$$FILEM KEYLOCOLD=(,11),2

$$FILEM DSNNEW=USERID.COMPARE.FLAT2,3

$$FILEM TCNEW=USERID.TEMPLATE(FLAT2),4

$$FILEM KEYTCNEW=YES,5

$$FILEM KEYFLDNEW=(,FIELD-3),6

$$FILEM KEYLEN=(,1),7

$$FILEM KEYTYPE=(,CHAR)8

$$FILEM EOJ

Notes:

1. DSNOLD is intrinsically keyed with key position 1 and length 10.
2. KEYLOCOLD provides a position for the second segment of the “Old” key.
3. DSNNEW is not intrinsically keyed.
4. TCNEW specifies a new template: the template specifies FIELD-1 (position 1,

length 10, type AN) as key segment 1.

Function reference: DSM

Chapter 16. Functions 943

5. KEYTCNEW forces the loading of the TCNEW key segment information, in
spite of the presence of the other KEY... keywords, which act as overrides
wherever they clash with the information from the template.

6. KEYFLDNEW specifies FIELD-3 (position 12, length 2, type BI) as the second
segment of the “New” key

7. KEYLEN overrides the length of the second key segment
8. KEYTYPE overrides the type of the second key segment

The resulting key segments are shown in the following table:

Segment
number

“Old” key
position

“New” key
position

Key length Key type

1 11 12 103 AN4

2 115 126 17 AN8

Source of key information:
1. DSNOLD catalog entry
2. Template field FIELD-1
3. DSNOLD catalog entry and template field FIELD-1 (must be consistent)
4. Template field FIELD-1 (consistent with AN default for key type)
5. KEYLOCOLD
6. Template field FIELD-3 via KEYFLDNEW
7. KEYLEN
8. KEYTYPE

DSP (Data Set Print)
Purpose

Use the DSP function to print sequential data sets, VSAM data sets, PDS
members, or HFS files in a selected format. You can print data by:
v record
v block (non-VSAM)
v control interval (VSAM)
v field (if a template or copybook has been provided)

You can select records for printing using:
v Member name selection criteria
v Date created selection criteria
v Date last modified selection criteria
v User ID selection criteria
v the start key (VSAM only)
v skip and print count fields
v conditional expression defined in the provided template

The print function can be run in the foreground or as a batch job. The
output for the print function is controlled by the SET options.

Usage notes
Choose between four data print formats:
v character
v hexadecimal
v single-record, using a template
v multiple-record (tabular), using a template

Function reference: DSM

944 File Manager for z/OS V10R1 User’s Guide

When you use a copybook or template, records are formatted field by field
using the record layout defined in the copybook or template.

You can Print concatenated data sets with like or unlike attributes. Note
that, under some conditions (with tape data sets), File Manager may not be
able to detect unlike data set attributes and still invoke DFSORT for
processing. Such invocation may fail as DFSORT does not allow for unlike
concatenation of data sets. In such cases, you can disable DFSORT with the
NOSORT function to allow for successful processing of concatenated
datasets with unlike attributes.

Performance tips

v See “General tips about performance when you use File Manager
functions” on page 809. The comments about File Manager using
DFSORT technology when performing sequential file I/O are important
to DSP performance.

Options
You can specify the following options:
v Whether to process logical records or physical blocks.
v The position of the first record to print.
v The number of records to print.
v The name of a DFSORT or REXX procedure, if you want the output

records passed to a procedure for processing before they are printed.

Physical block processing is not compatible with SNGL or TABL print
format, or with using templates, and SNGL or TABL print format requires
you to use a template.

You can use the various SET processing options to control the print output:
v SET PRINTOUT defines the destination of the print output. If set to

PRINTOUT=SYSOUT, you can use the PB (Print Browse) function to
browse the accumulated output.

v When you specify CHAR or LHEX print format, SET RECLIMIT controls
how many bytes of each record are printed, and SET DATAHDR
determines whether header information, such as record number, is
printed.

v The format of the print output also depends on the settings of SET
PAGESIZE, SET PRINTLEN, and SET PRTTRANS.

v Use SET DUMP to specify the dump format.

Note that additional formatting options are available when using formatted
print in SNGL mode. Additional field information (redefined fields, field
reference number, field type and length values, picture clause, start
location, structure and numeric field justification) can be set and printed
depending on the options selected using the keywords listed later in this
section.

When you specify the PROC option, you are supplying a REXX procedure.
For more information, see the proc parameter below.

Return codes
The default return codes from the DSP function have the following
modified meanings:

1 No records printed for some of multiple members

2 Print error encountered

3 REXX member selection is in effect but the procedure encountered

Function reference: DSP

Chapter 16. Functions 945

a RETURN DROP, STOP or STOP IMMEDIATE string. This has
been treated as a RETURN string with no arguments. OR REXX
member selection is NOT in effect but the procedure encountered a
RETURN DROP MEMBER or RETURN PROCESS MEMBER string.
This has been treated as a RETURN string with no arguments.

4 No records printed because no records selected

4 No records printed because no members to process

4 No records printed because input empty

4 No records printed because the input data set or member is in ISPF
Packed Data format and the “PACK=SKIP” option was specified

8 REXX non-syntax error encountered while processing records

16 Data set or member open error

16 Data set not found

16 Input data appears ISPF packed but is not valid.

16 Other input or output error occurred

16 Insufficient storage available

16 DSP abended

16 Other serious error that stops processing occurred

Note: Return codes can be customized during installation. If you receive
return codes that do not match those listed above, your site might
have customized the return codes in place for this function. File
Manager may also issue the 999 abend, if the return code in batch is
equal to or greater than the ABENDCC value. Please contact your
File Manager systems administrator for details.

Related functions
DP Print physical disk records
DVT Print VTOC entries

Function reference: DSP

946 File Manager for z/OS V10R1 User’s Guide

Syntax: Part 1 of 3

�� DSP
INPUT=DDIN

INPUT=ddname
DSNIN=dsname

VOLSERIN=volser

MEMSTART=startstring MEMEND=endstring
MEMBER=member1

�

�
CRESTART=crestart CREEND=creend

CREATED=created
CHGSTART=chgstart CHGEND=chgend

CHANGED=changed

�

�
UIDSTART=uidstart UIDEND=uidend

USERID=userid

USEIOXIN=NO

IOXIN=sysexit
USEIOXIN=YES

IOXIN=ioxname

�

�
BINRECIN=binrecin-len

(1)
CIACCESS=NO

(1)
CIACCESS=YES

(2)
BLKACCESS=NO

(2)
BLKACCESS=YES

FORMAT=CHAR

FORMAT=format

POSITION=0

POSITION=skip
(1)

KEY=key

�

�
NLRECS=ALL

NLRECS=nlrecs

PACK=UNPACK

PACK= NONE
SKIP

PROC=proc
MEMPROC= PROCESS

DROP

REF=NO

REF=YES

RDF=NO

RDF=YES
�

�
PIC=NO

PIC=YES

SLOC=NO

SLOC=YES

STR=NO

STR=YES

JUST=NO

JUST=YES

TYPE=NO

TYPE=YES

RLEN=NO

RLEN=YES

IGNLEN=YES

IGNLEN=NO
�

�
INRDW=NO

INRDW=YES

OUTRDW=NO

OUTRDW=YES Template processing options (see Part 2)
��

Notes:

1 VSAM only.

2 Non-VSAM only.

Function reference: DSP

Chapter 16. Functions 947

||||

Syntax: Part 2 of 3

Template processing options (from Part 1):

TINPUT=TDDIN

TINPUT=ddname
TINMEM=member

TCIN=tcin(member)

�

OFFSETIN=(value)
,ALL

,

value,fieldname
value,ALL,

�

�
Copybook processing options

Copybook processing options:

LANG=AUTO

LANG= COBOL
PLI
HLASM

COBOL options PL/I options HLASM options

COBOL options:

DBCS=NO

DBCS=YES

CDPC=NO

CDPC=YES

CAE=NO

CAE=YES
�

�

�
(1) COMPMAXRC=4

RFROMn =operand1 RTOn=operand2
COMPMAXRC=num

Notes:

1 RFROM1 RTO1, RFROM2 RTO2, ... RFROM5 RTO5 (n=1–5).

Function reference: DSP

948 File Manager for z/OS V10R1 User’s Guide

Syntax: Part 3 of 3

PL/I options:

BIN63=NO

BIN63=YES

DEC31=NO

DEC31=YES

GRAPHIC=NO

GRAPHIC=YES

UNALIGNED=NO

UNALIGNED=YES

COMPMAXRC=4

COMPMAXRC=num

HLASM options:

DBCS=NO

DBCS=YES

NOALIGN=NO

NOALIGN=YES

COMPMAXRC=4

COMPMAXRC=num

INPUT=ddname
Defines a reference to a DD or TSO ALLOC statement for the input data
set or HFS file. The default is DDIN.

DSNIN=dsname
Defines the name of the input data set or an absolute path to the input
HFS file (directory). If specified, any DD statement provided are not used.
The name may include a member name in parenthesis. If the member is
specified here, the associated Member parameter must be empty. An
absolute path to an HFS file (directory) must be enclosed in apostrophes. If
it does not fit on one line, you can split it over more than one line. You can
further describe this data set, as follows:

VOLSERIN=volser
Volume serial number for a non-cataloged data set.

MEMBER=member1
The name of a single member in a PDS, or a member name pattern
representing one or more members in a PDS. If the input data set is a
PDS(E), you may specify this parameter, or a member name in the DD
statement for ddname, or specify a range of member names with the
MEMSTART and MEMEND keywords.

A member name pattern can consist of any characters that are valid in a
member name and two special pattern characters: the asterisk (*) and the
percent symbol (%).

* represents any number of characters. As many asterisks as required
can appear anywhere in a member name pattern. For example, if you
enter a member name pattern of *d*, all members in the PDS whose
name contains “d” are processed.

% is a place holding character that means a single character. As many
percent symbols as necessary can appear anywhere in a member
name pattern. For example, if you enter a member name pattern of
%%%%, all members in the PDS whose name is four characters in
length are processed.

member1 is ignored if the data set is not a PDS.

MEMSTART=startstring
Is used to specify the start of a range of member names to be included in
the copy. If MEMSTART is specified but MEMEND is omitted, all members

Function reference: DSP

Chapter 16. Functions 949

of the PDS(E) from the startstring value onwards are included. startstring
can have the same values, including wild cards, as for the member1
parameter of the MEMBER keyword.

MEMEND=endstring
Is used to specify the end of a range of member names to be included in
the copy. If MEMEND is specified but MEMSTART is omitted, all members
of the PDS(E) up to the endstring value onwards are included. endstring can
have the same values, including wild cards, as for the member1 parameter
of the MEMBER keyword.

CREATED=created
The date on which a member was created, in YYYY/MM/DD format.

If the input data set is a PDS(E), you may specify this parameter, or specify
a range of creation dates with the CRESTART and CREEND keywords.

You can specify an asterisk (*) as the last character to indicate a range of
dates or a percent sign (%) in place of a single character to indicate a
selection of dates.

created is ignored if the data set is not a PDS.

CRESTART=crestart
The start of a range of creation dates in YYYY/MM/DD format to be
included in the copy.

If CRESTART is specified but CREEND is omitted, all members of the
PDS(E) from the crestart value onwards are included.

If omitted, or you do not enter a full date, or you specify an asterisk (*) as
the last character, the unspecified portion of crestart defaults to the right as
follows:
DD = 01
MM = 01
YYYY = 0000

No other wildcarding is allowed.

CREEND=creend
The end of a range of creation dates in YYYY/MM/DD format to be
included in the copy.

If omitted, or you do not enter a full date, or you specify an asterisk (*) as
the last character, the unspecified portion of creend defaults to the right as
follows:
DD = 31
MM = 12
YYYY = 9999

No other wildcarding is allowed.

CHANGED=changed
The date on which a member was last modified, in YYYY/MM/DD
format.

If the input data set is a PDS(E), you may specify this parameter, or specify
a range of modification dates with the CHGSTART and CHGEND
keywords.

Function reference: DSP

950 File Manager for z/OS V10R1 User’s Guide

You can specify an asterisk (*) as the last character to indicate a range of
dates or a percent sign (%) in place of a single character to indicate a
selection of dates.

changed is ignored if the data set is not a PDS.

CHGSTART=chgstart
The start of a range of modification dates in YYYY/MM/DD format to be
included in the copy.

If CHGSTART is specified but CHGEND is omitted, all members of the
PDS(E) from the chgstart value onwards are included.

If omitted, or you do not enter a full date, or you specify an asterisk (*) as
the last character, the unspecified portion of chgstart defaults to the right as
follows:
DD = 01
MM = 01
YYYY = 0000

No other wildcarding is allowed.

CHGEND=chgend
The end of a range of modification dates in YYYY/MM/DD format to be
included in the copy.

If omitted, or you do not enter a full date, or you specify an asterisk (*) as
the last character, the unspecified portion of chgend defaults to the right as
follows:
DD = 31
MM = 12
YYYY = 9999

No other wildcarding is allowed.

USERID=userid
The TSO user ID by which the member was last updated.

If the input data set is a PDS(E), you may specify this parameter, or specify
a range of user IDs with the UIDSTART and UIDEND keywords.

You can enter a generic user ID by using asterisks and percent signs.

userid is ignored if the data set is not a PDS.

UIDSTART=uidstart
The start of a range of user IDs to be included in the copy.

If UIDSTART is specified but UIDEND is omitted, all members of the
PDS(E) from the uidstart value onwards are included.

If omitted, or you do not enter a full 7-character user ID, or you specify an
asterisk (*) as the last character, File Manager replaces the asterisk and
pads the unspecified portion of uidstart to the right with low values (X'00').

UIDEND=uidend
The end of a range of user IDs to be included in the copy.

If you omit this field, it defaults to high values (X'FF').

If you specify less than 7 characters (without an asterisk as the last
character), File Manager pads uidstart to the right with low values (X'00').

Function reference: DSP

Chapter 16. Functions 951

If you specify an asterisk (*) as the last character, File Manager replaces the
asterisk and pads the unspecified portion of uidend with high values
(X'FF').

USEIOXIN
Specifies whether to invoke a user I/O exit, to process the input data set.

NO Default. Do not invoke a user I/O exit.

YES Invoke a user I/O exit to process the input data set. This option is
only available if the person who did the site customization for File
Manager allowed user I/O exits on a site-wide basis.

IOXIN
Specifies the name of the user I/O exit used for the input data set. There
are no restrictions on the programming language that you can use to write
an exit. The exit must be provided to File Manager in the
STEPLIB/ISPLLIB concatenation or their extensions (LINKLIST, LPA, and
so on).

sysexit Default. If you specify USEIOXIN=YES and do not supply a user
I/O exit name, File Manager uses the name of the exit provided in
the installation customization options. If USEIOXIN has been set to
YES and no installation default has been provided, you must
specify IOXIN=ioxname.

Note: If you have selected batch processing in an online panel, the
generated JCL statements use the default name provided in
your Set System Processing Options panel.

ioxname
The name of a PDS(E) member of a data set that has been
provided to File Manager in the STEPLIB concatenation.

BINRECIN=binrecin-len
Specifies the record length used for processing the HFS file. Valid range: 1
to 32760.

The file is processed in Binary mode (fixed-length records derived from the
file, delimiters not distinguished). If you do not specify this parameter, the
file is processed in Text mode (variable-length records, boundaries
determined by delimiters).

CIACCESS=NO
Process logical records.

CIACCESS=YES
Process control intervals.

BLKACCESS=NO
Process logical records.

BLKACCESS=YES
Process blocks.

FORMAT=format
The format of the output:
CHAR

Character format (the default).
HEX Hexadecimal format.
SNGL Single-record format (one field on each line). This option is

available when viewing logical records.

Function reference: DSP

952 File Manager for z/OS V10R1 User’s Guide

TABL Tabular format (fields printed across the page). This option is
available when viewing logical records.

POSITION=skip
Number of logical records to be skipped from the beginning of the data
set. The default is 0.

KEY=key (VSAM only)
A key for KSDS records, or a slot number for RRDS records. The maximum
key length is 30 characters. The first record with a key or slot value greater
than or equal to key is the first record printed. If you omit the key and skip
values, printing begins with the first record in the data set.

If the key contains lowercase characters, blanks, or commas, enclose it in
quotation marks. You can also specify a key in hexadecimal format (for
example, X'C1C2C3').

NLRECS
Number of records to be printed or ALL.

ALL If you specify ALL or omit the parameter, all the remaining records
are copied.

nlrecs The maximum number is 99 999 999.

PACK Determines if File Manager should detect if the input data is in ISPF
packed format. This keyword is ignored when processing VSAM data sets.
When an I/O exit has been specified for either the input or output data set
(or both), the only valid option is PACK=NONE.

UNPACK
Instructs File Manager to check if the input data set is in ISPF
packed format and if so, to unpack it before print processing.

NONE
Instructs File Manager not to check if the input data set is in ISPF
packed format.

SKIP Instructs File Manager to determine if the input data set is in ISPF
packed format and if so, to skip the print processing.

PROC=proc
Member name of a REXX procedure that you want to use to process each
record before it is printed, or an asterisk (*) to indicate the REXX procedure
is inline. If you specify a member name, you must define an FMNEXEC
ddname that identifies the PDS containing the member. If you specify *,
the procedure is read from SYSIN immediately following the control
statement for the current function. The inline procedure is terminated by a
record containing a slash and a plus sign (/+) in columns 1–2.

For more information about using REXX procedures to process records
before they are printed, see Chapter 13, “Enhancing File Manager
processing,” on page 385.

MEMPROC
Specifies that REXX member selection is in effect. Records are read from
the input member and then cached in memory until a decision is made,
within the REXX procedure, on whether the member is to be copied or
dropped. Once the decision has been made, the entire member is either
copied or dropped, depending upon the RETURN string specified in the
REXX procedure. If the entire member is processed without encountering a

Function reference: DSP

Chapter 16. Functions 953

RETURN DROP MEMBER or RETURN PROCESS MEMBER string, the
member is processed according to the action specified by the parameter
specified for MEMPROC. These are:

PROCESS
The member is to be included in the copy. The member is copied
intact, subject to any specified template processing, which is
performed before the user REXX proc is invoked. This is the
default action, if no parameter is specified with the MEMPROC
keyword.

DROP The member is to be excluded from the copy. Processing continues
with the next member.

REF=YES
Show field reference number on SNGL print.

REF=NO
Do not show field reference number on SNGL print.

RDF=YES
Show redefined fields on SNGL or TABL print.

RDF=NO
Do not show redefined fields on SNGL or TABL print.

PIC=YES
Show picture clause on SNGL print.

PIC=NO
Do not show picture clause on SNGL print.

SLOC=YES
Show start location on SNGL print.

SLOC=NO
Do not show start location on SNGL print.

STR=YES
Show structure on SNGL print.

STR=NO
Do not show structure on SNGL print.

JUST=YES
Left-justify numeric fields on SNGL print.

JUST=NO
Do not left-justify numeric fields on SNGL print.

TYPE=YES
Show field type and length values on SNGL print.

TYPE=NO
Do not show field type and length values on SNGL print.

RLEN=YES
Print record length in TABL and SNGL formats.

RLEN=NO
Do not print record length in TABL and SNGL formats.

IGNLEN
Specifies whether or not File Manager ignores length mismatches when
selecting records for processing.

Function reference: DSP

954 File Manager for z/OS V10R1 User’s Guide

NO Do not ignore length mismatches. Records that are shorter than the
matching structure length in the template are not selected for
processing.

YES Use this option to ignore length mismatches.

INRDW
Controls whether or not to adjust the input start location when the
specified start location takes into account the record descriptor word
(RDW).

NO Does not adjust the input start location.

YES Subtracts 4 from all start locations that have been coded on
external functions that refer to the input record.

OUTRDW
Controls whether or not to adjust the output start location when the
specified start location takes into account the record descriptor word
(RDW).

NO Does not adjust the output start location.

YES Subtracts 4 from all start locations that have been coded on
external functions that refer to the output record.

Template processing
Define which template (if any) is used to describe the record structure in
the input data set, and how File Manager processes this template.

TINPUT=ddname
Defines a reference to a DD or TSO ALLOC statement for the data
sets which contain the copybook or template that describes the
record structure of your input data. The default is TDDIN.

If you specify a concatenated DD, then you must provide the
member name, member.

TINMEM=member
The name of the copybook or template member in the datasets
identified by the TINPUT parameter if it has not been specified on
the DD statement. This parameter must not be specified if the
TCIN parameter is specified.

TCIN=tcin(member)
PDS and member name of the copybook or template that describes
the record structure of your input data.

OFFSETIN
The length of the 01 field in the template and the start locations of
the fields within that 01 field are adjusted by the value provided.

value The offset value, which must be in the range -32760 to
32760, to be applied to the corresponding field identifier. If
no field identifier is supplied and ALL is not used, the
value is applied to the first Level 01 field in the template.

ALL Where the template contains multiple record structures,
this keyword applies the corresponding value to all Level
01 fields within the template.

Function reference: DSP

Chapter 16. Functions 955

|
|
|
|

||

||
|

|
|
|
|

||

||
|

Note: You can specify a value for ALL and then override
this value for individual layouts by providing
subsequent value and fieldname combinations.

fieldname
The name of the Level 01 field to which value is to be
applied. The default is the first Level 01 field in the
template.

Copybook processing
If you specify a copybook (instead of an existing template), then File
Manager uses these processing options to compile the copybook into a
template:

LANG
Determines whether File Manager automatically detects the
copybook language or interprets the language as COBOL, PL/I, or
HLASM.

AUTO
Automatically detect whether the copybook language is
COBOL or PL/I, and invoke the appropriate compiler. If
the compilation results in a return code greater than 4, then
invoke the compiler for the other language. If the second
compilation also results in a return code greater than 4,
then retry the first compiler and report the compilation
errors. If File Manager successfully creates a template
(despite the compilation errors), then continue processing
with the template.

COBOL
Invoke the COBOL compiler to create a template from the
copybook. (Do not invoke the PL/I compiler, even if the
COBOL compilation results in errors.)

PLI Invoke the PL/I compiler to create a template from the
copybook. (Do not invoke the COBOL compiler, even if the
PL/I compilation results in errors.)

HLASM
Invoke the HLASM compiler to create a template from the
copybook.

COBOL options
The following options are used to compile a COBOL copybook into
a template:

DBCS=YES
Use the DBCS compiler option.

DBCS=NO
Use the NODBCS compiler option.

For details on the effect of the DBCS and NODBCS
compiler options, see the IBM COBOL Programming Guide
for OS/390 & VM.

CDPC=NO
Do not use the COBOL SPECIAL-NAMES paragraph
″Decimal-point is comma″.

Function reference: DSP

956 File Manager for z/OS V10R1 User’s Guide

CDPC = YES
Use the COBOL SPECIAL-NAMES paragraph
″Decimal-point is comma″.

CAE=NO
Do not use the COBOL compile option ARITH(EXTEND).

CAE = YES
Use the COBOL compile option ARITH(EXTEND).

MIXED = NO
Field names stored in the template in uppercase.

MIXED = YES
Field names stored in the template in the original case as
coded in the COBOL copybook.

RFROM1 RTO1 ... RFROM5 RTO5
Up to five pairs of “From” and “To” pseudo-text character
strings for the COBOL REPLACE compiler-directing
statement.

If your COBOL copybooks contain characters that you
want to remove or replace with other characters before
compiling the copybooks into templates, then use these
replacing options.

For example, if your copybooks contain colon characters (:)
that you want to remove before compiling, then specify
'==:==' as operand1 and '=====' as operand2.

For details on specifying “From” and “To” strings for
COBOL REPLACE, see the IBM COBOL Language Reference.

COMPMAXRC
Sets the maximum acceptable return code for a copybook
compile. A return code higher than the specified level
causes the function to stop. Default is 4.

PL/I options
The following options are used to compile a PL/I copybook into a
template:

BIN63=YES Use the LIMITS(FIXEDBIN(63)) compiler option.

BIN63=NO Use the LIMITS(FIXEDBIN(31)) compiler option.

DEC31=YES Use the LIMITS(FIXEDDEC(31)) compiler option.

DEC31=NO Use the LIMITS(FIXEDDEC(15)) compiler option.

GRAPHIC=YES
Use the GRAPHIC compiler option.

GRAPHIC=NO
Use the NOGRAPHIC compiler option.

UNALIGNED=YES
Use the DEFAULT RANGE (*) UNALIGNED,
language statement to change the default
alignment.

UNALIGNED=NO
Use the PL/I default.

Function reference: DSP

Chapter 16. Functions 957

COMPMAXRC
Sets the maximum acceptable return code for a
copybook compile. A return code higher than the
specified level causes the function to stop. Default
is 4.

For details on the effect of these compiler options, see the IBM
VisualAge PL/I for OS/390 Programming Guide.

HLASM options
The following options are used to compile a HLASM copybook
into a template:

DBCS=YES Use the DBCS compiler option.

DBCS=NO Use the NODBCS compiler option.

NOALIGN=YES
Use the NOALIGN compiler option.

NOALIGN=NO
Use the ALIGN compiler option.

COMPMAXRC
Sets the maximum acceptable return code for a
copybook compile. A return code higher than the
specified level causes the function to stop. Default
is 4.

For details on the effect of these compiler options, see the HLASM
V1R5 Programmer’s Guide.

PACK Determines if File Manager should detect if the input data sets are
in ISPF packed format. This keyword is ignored when processing
VSAM data sets. When an I/O exit has been specified for either
data set (or both), the only valid option is PACK=NONE.

UNPACK
Instructs File Manager to check if the input data sets are in
ISPF packed format and if they are, to unpack them before
the comparison.

NONE
Instructs File Manager not to check if the input data sets
are in ISPF packed format.

SKIP Instructs File Manager to check if the input data set is in
ISPF packed format and if so, to skip the compare
processing.

Function reference: DSP

958 File Manager for z/OS V10R1 User’s Guide

Batch example 1
//DSP JOB (acct),'name' Print QSAM Data
//*
//FMBAT PROC
//FMBAT EXEC PGM=FILEMGR
//STEPLIB DD DSN=FMN.SFMNMOD1,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
// PEND
//*
//STPSPEX EXEC FMBAT
//SYSIN DD *
$$FILEM VER
$$FILEM DSP DSNIN=SYS1.PROCLIB,MEMBER=COBUCLG
$$FILEM EOJ
/*

Batch example 2
//DSPJPN JOB (acct),'name' Print with DBCS characters
//JAPEF96 OUTPUT DUPLEX=NORMAL,CHARS=(GT15,EF96),PRMODE=SOSI1
//FILEMGR EXEC PGM=FILEMGR
//SYSPRINT DD SYSOUT=*,OUTPUT=(*.JAPEF96)
//FMNTSPRT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSIN DD *
$$FILEM SET LANGUAGE=JAPANESE
$$FILEM DSP FORMAT=SNGL,
$$FILEM TCIN=hlq.TEMPLATE(member),
$$FILEM DSNIN=hlq.DBCSDATA

Batch example 3
//FMNUSR3 JOB (FMNUSER),'USER',USER=FMNUSER,NOTIFY=FMNUSER,
// TIME=(5),CLASS=A,MSGLEVEL=(1,1),MSGCLASS=H
//*
//* TEST PRINTING USING JAPANESE CHARACTER SETS WITH FMT
//*
//JAPEF96 OUTPUT DUPLEX=NORMAL,CHARS=(GT15,EF96),PRMODE=SOSI1
//FILEMGR EXEC PGM=FMNMAIN
//STEPLIB DD DSN=FMN.V2R1M0.SFMNMOD1,DISP=SHR
//SYSPRINT DD SYSOUT=H,OUTPUT=(*.JAPEF96),DEST=(PTHMVS8,QAPT22Q1)
//SYSTERM DD SYSOUT=*
//SYSIN DD *
$$FILEM SET LANGUAGE=JAPANESE
$$FILEM FMT SET,FLD=(11,20,DB),FLD=(31,40,DB),FLD=(51,60,DB),
$$FILEM FLD=(71,80,DB)
$$FILEM DSP DSNIN=FMNUSER.JPN.TESTDATA,MEMBER=$FMTDATA
/*

DSU (Data Set Update) — batch only
Purpose

Update disk data set records.

Function reference: DSP

Chapter 16. Functions 959

Usage notes
Use this function to update logical records in a single sequential disk data
set, a single VSAM data set, or one or more members of a PDS.

Note: DFSMS-compressed datasets are not supported (for use with DSU).

You can select the records to be processed using:
v Member name selection criteria
v Date created selection criteria
v Date last modified selection criteria
v User ID selection criteria

Records in the data set are read sequentially. After each record is read, File
Manager invokes the REXX procedure specified in the PROC parameter,
and passes the contents of the record to the exec. The contents are passed
in two File Manager-defined REXX variables, INREC and OUTREC. When
the exec is invoked, the contents of the two variables are identical. The
INREC variable is intended to be used as a reference variable. Any changes
made to it are ignored by File Manager. The OUTREC variable can be
updated by the exec. After the REXX procedure has processed the record, if
the data in OUTREC has changed, the record is updated in the data set
using the contents of OUTREC.

You cannot add records or delete records using DSU. If you need to add or
delete records, you can use one of the File Manager data set copy
functions. You cannot change the length of records in a data set using DSU.
If the REXX procedure increases the length of the data in OUTREC, the
data is truncated to its original length before the record is updated. If the
REXX procedure decreases the length of the data in OUTREC, the data is
padded to its original length using the pad value specified in the PAD
processing option. If no pad value has been specified, the contents of the
record are unpredictable.

Performance tips

v When you use DSU to update members of a PDS(E):
One DSU default is STATS=ON, which causes the ISPF statistics for each
updated member to be updated. This can significantly increase I/O
(EXCP) and CPU utilization. To improve performance, consider using
STATS=OFF.

Options
When you specify the PROC option, you are supplying a REXX procedure.
For more information, see the proc parameter below.

Return codes
The default return codes from the DSU function have the following
modified meanings:

1 One or more members not updated

2 Change failed (for example invalid key change)

4 No records updated

4 No records processed because no members to process

4 No records processed because input empty

4 No records processed because input is in ISPF Packed Data format
and the “PACK=STOP” option was specified.

Function reference: DSU

960 File Manager for z/OS V10R1 User’s Guide

8 REXX non-syntax error encountered while processing records

16 Program Object specified - this is not supported

16 Data set or member in use

16 Data set or member open error

16 Data set not found

16 Other input or output error occurred

16 Insufficient storage available

16 DSU abended

16 Other serious error that stops processing occurred

Note: Return codes can be customized during installation. If you receive
return codes that do not match those listed above, your site might
have customized the return codes in place for this function. File
Manager may also issue the 999 abend, if the return code in batch is
equal to or greater than the ABENDCC value. Please contact your
File Manager systems administrator for details.

Related functions
DSEB Edit a data set via batch job processing.
DSX Display the extents of a data set.

Function reference: DSU

Chapter 16. Functions 961

Syntax: Part 1 of 2

�� DSU
INPUT=DDIO

INPUT=ddname
DSNIN=dsname

VOLSERIN=volser

�

�
MEMSTART=startstring MEMEND=endstring

MEMBER=member1

INRDW=NO

INRDW=YES

OUTRDW=NO

OUTRDW=YES
�

�
CRESTART=crestart CREEND=creend

CREATED=created
CHGSTART=chgstart CHGEND=chgend

CHANGED=changed

�

�
UIDSTART=uidstart UIDEND=uidend

USERID=userid

POSITION=0

POSITION=skip
(1)

KEY=key

NLRECS=ALL

NLRECS=nlrecs
�

�
PACK=STOP

PACK=CONTINUE

STATS=ON

STATS=OFF
STATS=FORCE

USEIOXIN=NO

IOXIN=sysexit
USEIOXIN=YES

IOXIN=ioxname

PROC=proc �

�
Template processing options

��

Template processing options:

TINPUT=TDDIN

TINPUT=ddname
TINMEM=member

TCIN=tcin(member)

�

OFFSETIN=(value)
,ALL

,

value,fieldname
value,ALL,

�

�
Copybook processing options (see Part 2)

Notes:

1 VSAM only.

Function reference: DSU

962 File Manager for z/OS V10R1 User’s Guide

||||

|

Syntax: Part 2 of 2

Copybook processing options (from Part 1):

LANG=AUTO

LANG= COBOL
PLI
HLASM

COBOL options PL/I options HLASM options

COBOL options:

DBCS=NO

DBCS=YES

CDPC=NO

CDPC=YES

CAE=NO

CAE=YES

�
(1)

RFROMn =operand1 RTOn=operand2

�

�
COMPMAXRC=4

COMPMAXRC=num

PL/I options:

BIN63=NO

BIN63=YES

DEC31=NO

DEC31=YES

GRAPHIC=NO

GRAPHIC=YES

UNALIGNED=NO

UNALIGNED=YES

COMPMAXRC=4

COMPMAXRC=num

HLASM options:

DBCS=NO

DBCS=YES

NOALIGN=NO

NOALIGN=YES

COMPMAXRC=4

COMPMAXRC=num

Notes:

1 RFROM1 RTO1, RFROM2 RTO2, ... RFROM5 RTO5 (n=1–5).

INPUT=ddname
Defines a reference to a DD or TSO ALLOC statement for the input data
set. The default is DDIN.

DSNIN=dsname
Defines the name of the input data set. If specified, any DD statement
provided are not used. The name may include a member name in
parenthesis. If the member is specified here, the associated Member
parameter must be empty. You can further describe this data set, as
follows:

VOLSERIN=volser
Volume serial number for a non-cataloged data set.

MEMBER=member1
The name of a single member in a PDS, or a member name pattern

Function reference: DSU

Chapter 16. Functions 963

representing one or more members in a PDS. If the input data set is a
PDS(E), you may specify this parameter, or a member name in the DD
statement for ddname, or specify a range of member names with the
MEMSTART and MEMEND keywords.

A member name pattern can consist of any characters that are valid in a
member name and two special pattern characters: the asterisk (*) and the
percent symbol (%).

* represents any number of characters. As many asterisks as required
can appear anywhere in a member name pattern. For example, if you
enter a member name pattern of *d*, all members in the PDS whose
name contains “d” are processed.

% is a place holding character that means a single character. As many
percent symbols as necessary can appear anywhere in a member
name pattern. For example, if you enter a member name pattern of
%%%%, all members in the PDS whose name is four characters in
length are processed.

member1 is ignored if the data set is not a PDS.

MEMSTART=startstring
Is used to specify the start of a range of member names to be included in
the copy. If MEMSTART is specified but MEMEND is omitted, all members
of the PDS(E) from the startstring value onwards are included. startstring
can have the same values, including wild cards, as for the member1
parameter of the MEMBER keyword.

MEMEND=endstring
Is used to specify the end of a range of member names to be included in
the copy. If MEMEND is specified but MEMSTART is omitted, all members
of the PDS(E) up to the endstring value onwards are included. endstring can
have the same values, including wild cards, as for the member1 parameter
of the MEMBER keyword.

INRDW
Controls whether or not to adjust the input start location when the
specified start location takes into account the record descriptor word
(RDW).

NO Does not adjust the input start location.

YES Subtracts 4 from all start locations that have been coded on
external functions that refer to the input record.

OUTRDW
Controls whether or not to adjust the output start location when the
specified start location takes into account the record descriptor word
(RDW).

NO Does not adjust the output start location.

YES Subtracts 4 from all start locations that have been coded on
external functions that refer to the output record.

CREATED=created
The date on which a member was created, in YYYY/MM/DD format.

If the input data set is a PDS(E), you may specify this parameter, or specify
a range of creation dates with the CRESTART and CREEND keywords.

Function reference: DSU

964 File Manager for z/OS V10R1 User’s Guide

|
|
|
|

||

||
|

|
|
|
|

||

||
|

You can specify an asterisk (*) as the last character to indicate a range of
dates or a percent sign (%) in place of a single character to indicate a
selection of dates.

created is ignored if the data set is not a PDS.

CRESTART=crestart
The start of a range of creation dates in YYYY/MM/DD format to be
included in the copy.

If CRESTART is specified but CREEND is omitted, all members of the
PDS(E) from the crestart value onwards are included.

If omitted, or you do not enter a full date, or you specify an asterisk (*) as
the last character, the unspecified portion of crestart defaults to the right as
follows:
DD = 01
MM = 01
YYYY = 0000

No other wildcarding is allowed.

CREEND=creend
The end of a range of creation dates in YYYY/MM/DD format to be
included in the copy.

If omitted, or you do not enter a full date, or you specify an asterisk (*) as
the last character, the unspecified portion of creend defaults to the right as
follows:
DD = 31
MM = 12
YYYY = 9999

No other wildcarding is allowed.

CHANGED=changed
The date on which a member was last modified, in YYYY/MM/DD
format.

If the input data set is a PDS(E), you may specify this parameter, or specify
a range of modification dates with the CHGSTART and CHGEND
keywords.

You can specify an asterisk (*) as the last character to indicate a range of
dates or a percent sign (%) in place of a single character to indicate a
selection of dates.

changed is ignored if the data set is not a PDS.

CHGSTART=chgstart
The start of a range of modification dates in YYYY/MM/DD format to be
included in the copy.

If CHGSTART is specified but CHGEND is omitted, all members of the
PDS(E) from the chgstart value onwards are included.

If omitted, or you do not enter a full date, or you specify an asterisk (*) as
the last character, the unspecified portion of chgstart defaults to the right as
follows:
DD = 01
MM = 01
YYYY = 0000

Function reference: DSU

Chapter 16. Functions 965

No other wildcarding is allowed.

CHGEND=chgend
The end of a range of modification dates in YYYY/MM/DD format to be
included in the copy.

If omitted, or you do not enter a full date, or you specify an asterisk (*) as
the last character, the unspecified portion of chgend defaults to the right as
follows:
DD = 31
MM = 12
YYYY = 9999

No other wildcarding is allowed.

USERID=userid
The TSO user ID by which the member was last updated.

If the input data set is a PDS(E), you may specify this parameter, or specify
a range of user IDs with the UIDSTART and UIDEND keywords.

You can enter a generic user ID by using asterisks and percent signs.

userid is ignored if the data set is not a PDS.

UIDSTART=uidstart
The start of a range of user IDs to be included in the copy.

If UIDSTART is specified but UIDEND is omitted, all members of the
PDS(E) from the uidstart value onwards are included.

If omitted, or you do not enter a full 7-character user ID, or you specify an
asterisk (*) as the last character, File Manager replaces the asterisk and
pads the unspecified portion of uidstart to the right with low values (X'00').

UIDEND=uidend
The end of a range of user IDs to be included in the copy.

If you omit this field, it defaults to high values (X'FF').

If you specify less than 7 characters (without an asterisk as the last
character), File Manager pads uidstart to the right with low values (X'00').
If you specify an asterisk (*) as the last character, File Manager replaces the
asterisk and pads the unspecified portion of uidend with high values
(X'FF').

POSITION=skip
Number of logical records to be skipped from the beginning of the data
set. The default is 0.

KEY=key (VSAM only)
A key for KSDS records, or a slot number for RRDS records. The maximum
key length is 30 characters. The first record with a key or slot value greater
than or equal to key is the first record updated. If you omit the key and skip
values, updating begins with the first record in the data set.

If the key contains lowercase characters, blanks, or commas, enclose it in
quotation marks. You can also specify a key in hexadecimal format (for
example, X'C1C2C3').

NLRECS
Number of records to be printed or ALL.

Function reference: DSU

966 File Manager for z/OS V10R1 User’s Guide

ALL If you specify ALL or omit the parameter, all the remaining records
are copied.

nlrecs The maximum number is 99 999 999.

PACK Determines if File Manager should detect if the input data is in ISPF
packed format.

STOP Default. File Manager detects whether the input data is in ISPF
packed format, and if it is, stops the processing.

CONTINUE
File Manager does not detect whether the input data is in ISPF
packed format and continues processing.

STATS=ON
Default. This updates the ISPF statistics (if already present) when a PDS or
PDSE member has been changed.

STATS=OFF
The ISPF statistics is not updated when a PDS or PDSE member has been
changed.

STATS=FORCE
The ISPF statistics that exist for members being processed are always
updated and statistics for a member that previously did not have statistics
are created.

USEIOXIN
Specifies whether to invoke a user I/O exit, to process the input data set.

NO Default. Do not invoke a user I/O exit.

YES Invoke a user I/O exit to process the input data set. This option is
only available if the person who did the site customization for File
Manager allowed user I/O exits on a site-wide basis.

IOXIN
Specifies the name of the user I/O exit used for the input data set. There
are no restrictions on the programming language that you can use to write
an exit. The exit must be provided to File Manager in the
STEPLIB/ISPLLIB concatenation or their extensions (LINKLIST, LPA, and
so on).

sysexit Default. If you specify USEIOXIN=YES and do not supply a user
I/O exit name, File Manager uses the name of the exit provided in
the installation customization options. If USEIOXIN has been set to
YES and no installation default has been provided, you must
specify IOXIN=ioxname.

Note: If you have selected batch processing in an online panel, the
generated JCL statements use the default name provided in
your Set System Processing Options panel.

ioxname
The name of a PDS(E) member of a data set that has been
provided to File Manager in the STEPLIB concatenation.

PROC=proc
Member name of a REXX procedure that you want to use to process each
record before it is updated, or an asterisk (*) to indicate the REXX
procedure is inline. If you specify a member name, you must define an
FMNEXEC ddname that identifies the PDS containing the member. If you

Function reference: DSU

Chapter 16. Functions 967

|
|
|
|

specify *, the procedure is read from SYSIN immediately following the
control statement for the current function. The inline procedure is
terminated by a record containing a slash and a plus sign (/+) in columns
1–2.

For more information about using REXX procedures to process records
before they are updated, see Chapter 13, “Enhancing File Manager
processing,” on page 385.

Template processing
Define which template (if any) is used to describe the record structure in
the input data set, and how File Manager processes this template.

TINPUT=ddname
Defines a reference to a DD or TSO ALLOC statement for the data
sets which contain the copybook or template that describes the
record structure of your input data. The default is TDDIN.

If you specify a concatenated DD, then you must provide the
member name, member.

TINMEM=member
The name of the copybook or template member in the datasets
identified by the TINPUT parameter if it has not been specified on
the DD statement. This parameter must not be specified if the
TCIN parameter is specified.

TCIN=tcin(member)
PDS and member name of the copybook or template that describes
the record structure of your input data.

Note: If you specify a template for DSEB and DSU, it is ignored,
except for calls to the external REXX function PRINT
specifying TABL or SNGL format.

OFFSETIN
The length of the 01 field in the template and the start locations of
the fields within that 01 field are adjusted by the value provided.

value The offset value, which must be in the range -32760 to
32760, to be applied to the corresponding field identifier. If
no field identifier is supplied and ALL is not used, the
value is applied to the first Level 01 field in the template.

ALL Where the template contains multiple record structures,
this keyword applies the corresponding value to all Level
01 fields within the template.

Note: You can specify a value for ALL and then override
this value for individual layouts by providing
subsequent value and fieldname combinations.

fieldname
The name of the Level 01 field to which value is to be
applied. The default is the first Level 01 field in the
template.

Copybook processing
If you specify a copybook (instead of an existing template), then File
Manager uses these processing options to compile the copybook into a
template:

Function reference: DSU

968 File Manager for z/OS V10R1 User’s Guide

LANG
Determines whether File Manager automatically detects the
copybook language or interprets the language as COBOL, PL/I, or
HLASM.

AUTO
Automatically detect whether the copybook language is
COBOL or PL/I, and invoke the appropriate compiler. If
the compilation results in a return code greater than 4, then
invoke the compiler for the other language. If the second
compilation also results in a return code greater than 4,
then retry the first compiler and report the compilation
errors. If File Manager successfully creates a template
(despite the compilation errors), then continue processing
with the template.

COBOL
Invoke the COBOL compiler to create a template from the
copybook. (Do not invoke the PL/I compiler, even if the
COBOL compilation results in errors.)

PLI Invoke the PL/I compiler to create a template from the
copybook. (Do not invoke the COBOL compiler, even if the
PL/I compilation results in errors.)

HLASM
Invoke the HLASM compiler to create a template from the
copybook.

COBOL options
The following options are used to compile a COBOL copybook into
a template:

DBCS=YES
Use the DBCS compiler option.

DBCS=NO
Use the NODBCS compiler option.

For details on the effect of the DBCS and NODBCS
compiler options, see the IBM COBOL Programming Guide
for OS/390 & VM.

CDPC=NO
Do not use the COBOL SPECIAL-NAMES paragraph
″Decimal-point is comma″.

CDPC = YES
Use the COBOL SPECIAL-NAMES paragraph
″Decimal-point is comma″.

CAE=NO
Do not use the COBOL compile option ARITH(EXTEND).

CAE = YES
Use the COBOL compile option ARITH(EXTEND).

MIXED = NO
Field names stored in the template in uppercase.

MIXED = YES
Field names stored in the template in the original case as
coded in the COBOL copybook.

Function reference: DSU

Chapter 16. Functions 969

RFROM1 RTO1 ... RFROM5 RTO5
Up to five pairs of “From” and “To” pseudo-text character
strings for the COBOL REPLACE compiler-directing
statement.

If your COBOL copybooks contain characters that you
want to remove or replace with other characters before
compiling the copybooks into templates, then use these
replacing options.

For example, if your copybooks contain colon characters (:)
that you want to remove before compiling, then specify
'==:==' as operand1 and '=====' as operand2.

For details on specifying “From” and “To” strings for
COBOL REPLACE, see the IBM COBOL Language Reference.

COMPMAXRC
Sets the maximum acceptable return code for a copybook
compile. A return code higher than the specified level
causes the function to stop. Default is 4.

PL/I options
The following options are used to compile a PL/I copybook into a
template:

BIN63=YES Use the LIMITS(FIXEDBIN(63)) compiler option.

BIN63=NO Use the LIMITS(FIXEDBIN(31)) compiler option.

DEC31=YES Use the LIMITS(FIXEDDEC(31)) compiler option.

DEC31=NO Use the LIMITS(FIXEDDEC(15)) compiler option.

GRAPHIC=YES
Use the GRAPHIC compiler option.

GRAPHIC=NO
Use the NOGRAPHIC compiler option.

UNALIGNED=YES
Use the DEFAULT RANGE (*) UNALIGNED,
language statement to change the default
alignment.

UNALIGNED=NO
Use the PL/I default.

COMPMAXRC
Sets the maximum acceptable return code for a
copybook compile. A return code higher than the
specified level causes the function to stop. Default
is 4.

For details on the effect of these compiler options, see the IBM
VisualAge PL/I for OS/390 Programming Guide.

HLASM options
The following options are used to compile a HLASM copybook
into a template:

DBCS=YES Use the DBCS compiler option.

DBCS=NO Use the NODBCS compiler option.

Function reference: DSU

970 File Manager for z/OS V10R1 User’s Guide

NOALIGN=YES
Use the NOALIGN compiler option.

NOALIGN=NO
Use the ALIGN compiler option.

COMPMAXRC
Sets the maximum acceptable return code for a
copybook compile. A return code higher than the
specified level causes the function to stop. Default
is 4.

For details on the effect of these compiler options, see the HLASM
V1R5 Programmer’s Guide.

Batch example
//DSU JOB (acct),'name' PDS Member Update
//*
//FMBAT PROC
//FMBAT EXEC PGM=FILEMGR
//STEPLIB DD DSN=FMN.SFMNMOD1,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
// PEND
//*
//FILEMGR EXEC FMBAT
//FMNTSPRT DD SYSOUT=*
//JCLPDS DD DSN=FMNUSER.FMOS390.JCL,DISP=SHR
//SYSIN DD *
$$FILEM DSU INPUT=JCLPDS,MEMBER=*,PROC=*
/* Translate all records to uppercase */
Upper outrec
Return
/+
$$FILEM EOJ
/*

//DSU JOB (acct),'name' Fix post code
//*
//FMBAT PROC
//FMBAT EXEC PGM=FILEMGR
//STEPLIB DD DSN=FMN.SFMNMOD1,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
// PEND
//*
//FILEMGR EXEC FMBAT
//FMNTSPRT DD SYSOUT=*
//SYSIN DD *
$$FILEM DSU DSNIN=FMNUSER.FMOS390.TRANRECS,
$$FILEM PROC=*
/* Locate name and address record for James */
/* Browne and change postcode, stored in */
/* packed decimal, from 6011 to 6194 */
If Substr(inrec,1,1) == 'A' &

Substr(inrec,32,5) == 'James' &
Substr(inrec,57,6) == 'Browne' then
outrec = Change(outrec,'06011F'x,'06194F'x,1,125,3)

Return
/+
$$FILEM EOJ
/*

Function reference: DSU

Chapter 16. Functions 971

Replacement pages for “FCH (Find/Change)” section

PK77613

UK44837 51

FCH (Find/Change)
Purpose

The FCH function allows you to:
v Search for, and optionally change, strings in a PDS, VSAM data set, or

sequential data set.
v Search for strings in HFS files.

Usage notes

You can select the records to be processed using:
v Member name selection criteria
v Date created selection criteria
v Date last modified selection criteria
v User ID selection criteria

You can either specify a REXX procedure with the proc parameter, or enter
a FIND or CHANGE command in the Command line. For information
about the primary commands, see “Finding and changing data in multiple
PDS members” on page 246. The LOCATE primary command is ignored in
batch jobs. When working with compressed non-VSAM extended format
data sets (compressed PSE data sets), the CHANGE command is not
supported, however, the FIND command can be used.

Multiple command processing

There is no limit on the number of FIND or CHANGE commands that can
be processed in one pass of the file, but each FIND or CHANGE command
must start on a new line. Be careful when using overlapping change
commands such as C cat dog and C catapult crossbow. A string is only
matched against the first command with a matching search argument.
Therefore, you must place the longer change first. For example, if you
specify the following change commands:
C Cat Dog
C Catapult Crossbow

The second command would never get processed. Reversing the command
order would ensure any occurrences of “Catapult” were changed.

After a change is made, FCH processing continues for the same data
record. The point where processing resumes is immediately following the
most recently changed string. As a result, changes are not recursive, so that
C cat cow and C cow dog does not change “cat” to “dog”, unless separate
runs are done. Furthermore, if the search argument is found but the
change fails, subsequent FIND or CHANGE commands that match that
string are not done.

Performance tips

v When you use FCH to update members of a PDS(E):
One FCH default is STATS=ON, which causes the ISPF statistics for each
changed member to be updated. This can significantly increase I/O
(EXCP) and CPU utilization. To improve performance, consider using
STATS=OFF.

v Using JCL processing (JCL=YES) is more CPU intensive than JCL=NO.
Only use JCL=YES if necessary.

Function reference: FCH

990 File Manager for z/OS V10R1 User’s Guide

v You can improve concurrent read access by other users or jobs to the
target data set when there is a user PROC, by using the
NOUPDATE=YES option when the PROC will not be performing any
updates.

Options
When you specify the PROC option, you are supplying a REXX procedure.
For more information, see the proc parameter below.

Return codes
The default return codes from the FCH function have the following
modified meanings:

1 One or more FIND or CHANGE commands successful but one or
more FIND or CHANGE commands unsuccessful because no
strings found.

2 One or more strings found but one or more CHANGE commands
could not be performed (no space available or invalid key change).

4 No FIND or CHANGE command successful because no strings
found (no matches).

4 No FIND or CHANGE command successful because no members
to process.

4 No FIND or CHANGE command successful because input empty.

8 Bad FIND/CHANGE command(s) supplied.

8 Too many FIND/CHANGE commands supplied.

8 REXX error encountered.

8 Job step interrupted/cancelled.

16 Program Object not supported (but specified).

16 Data set in use.

16 Member in use.

16 Data set/member open error.

16 Data set not found / allocation error.

16 Insufficient storage available.

16 Input data appears ISPF packed but is not valid.

16 FCH abended.

16 Other serious error that stops processing occurred (for example an
input/output error).

Note: Return codes can be customized during installation. If you receive
return codes that do not match those listed above, your site might
have customized the return codes in place for this function. File
Manager may also issue the 999 abend, if the return code in batch is
equal to or greater than the ABENDCC value. Please contact your
File Manager systems administrator for details.

Related functions
DSEB Edit a data set via batch job processing
TRS Locate data within a tape file

Function reference: FCH

Chapter 16. Functions 991

Syntax

�� FCH
INPUT=DDIN

INPUT=ddname
DSNIN=dsname

VOLSERIN=volser

�

�
MEMSTART=startstring MEMEND=endstring

MEMBER=member1

�

�
CRESTART=crestart CREEND=creend

CREATED=created
CHGSTART=chgstart CHGEND=chgend

CHANGED=changed

�

�
UIDSTART=uidstart UIDEND=uidend

USERID=userid
NLRECS=num BINRECIN=record-length

�

�
USEIOXIN=NO

IOXIN=sysexit
USEIOXIN=YES

IOXIN=ioxname

JCL=NO

JCL=YES NOUPDATE=NO
PROC=proc

NOUPDATE=YES

�

�
LIST=LONG

LIST=SUMMARY DBCS=NO
DBCS=YES

STATS=ON

STATS=OFF
STATS=FORCE

EXCLUSIVE=NO

EXCLUSIVE=YES

DIRINTEGR=NO

DIRINTEGR=YES
�

�
PACK=ASIS

PACK= PACK
UNPACK
NONE
SKIP

��

INPUT=ddname
Defines a reference to a DD or TSO ALLOC statement for the input data
set, or HFS file. The default is DDIN.

DSNIN=dsname
Defines the name of the input data set, or an absolute path to a HFS file
(directory). . If specified, any DD statement provided are not used. The
name may include a member name in parenthesis. If the member is
specified here, the associated Member parameter must be empty. You can
further describe this data set, as follows:

VOLSERIN=volser
Volume serial number for a non-cataloged data set.

Function reference: FCH

992 File Manager for z/OS V10R1 User’s Guide

|

An absolute path to a HFS file (directory) must be enclosed in
apostrophes. If it does not fit on one line, it can be split into
several lines.

MEMBER=member1
The name of a single member in a PDS, or a member name pattern
representing one or more members in a PDS. If the input data set is a
PDS(E), you may specify this parameter, or a member name in the DD
statement for ddname, or specify a range of member names with the
MEMSTART and MEMEND keywords.

A member name pattern can consist of any characters that are valid in a
member name and two special pattern characters: the asterisk (*) and the
percent symbol (%).

* represents any number of characters. As many asterisks as required
can appear anywhere in a member name pattern. For example, if you
enter a member name pattern of *d*, all members in the PDS whose
name contains “d” are processed.

% is a place holding character that means a single character. As many
percent symbols as necessary can appear anywhere in a member
name pattern. For example, if you enter a member name pattern of
%%%%, all members in the PDS whose name is four characters in
length are processed.

member1 is ignored if the data set is not a PDS.

MEMSTART=startstring
Is used to specify the start of a range of member names to be included in
the copy. If MEMSTART is specified but MEMEND is omitted, all members
of the PDS(E) from the startstring value onwards are included. startstring
can have the same values, including wild cards, as for the member1
parameter of the MEMBER keyword.

MEMEND=endstring
Is used to specify the end of a range of member names to be included in
the copy. If MEMEND is specified but MEMSTART is omitted, all members
of the PDS(E) up to the endstring value onwards are included. endstring can
have the same values, including wild cards, as for the member1 parameter
of the MEMBER keyword.

CREATED=created
The date on which a member was created, in YYYY/MM/DD format.

If the input data set is a PDS(E), you may specify this parameter, or specify
a range of creation dates with the CRESTART and CREEND keywords.

You can specify an asterisk (*) as the last character to indicate a range of
dates or a percent sign (%) in place of a single character to indicate a
selection of dates.

created is ignored if the data set is not a PDS.

CRESTART=crestart
The start of a range of creation dates in YYYY/MM/DD format to be
included in the copy.

If CRESTART is specified but CREEND is omitted, all members of the
PDS(E) from the crestart value onwards are included.

Function reference: FCH

Chapter 16. Functions 993

If omitted, or you do not enter a full date, or you specify an asterisk (*) as
the last character, the unspecified portion of crestart defaults to the right as
follows:
DD = 01
MM = 01
YYYY = 0000

No other wildcarding is allowed.

CREEND=creend
The end of a range of creation dates in YYYY/MM/DD format to be
included in the copy.

If omitted, or you do not enter a full date, or you specify an asterisk (*) as
the last character, the unspecified portion of creend defaults to the right as
follows:
DD = 31
MM = 12
YYYY = 9999

No other wildcarding is allowed.

CHANGED=changed
The date on which a member was last modified, in YYYY/MM/DD
format.

If the input data set is a PDS(E), you may specify this parameter, or specify
a range of modification dates with the CHGSTART and CHGEND
keywords.

You can specify an asterisk (*) as the last character to indicate a range of
dates or a percent sign (%) in place of a single character to indicate a
selection of dates.

changed is ignored if the data set is not a PDS.

CHGSTART=chgstart
The start of a range of modification dates in YYYY/MM/DD format to be
included in the copy.

If CHGSTART is specified but CHGEND is omitted, all members of the
PDS(E) from the chgstart value onwards are included.

If omitted, or you do not enter a full date, or you specify an asterisk (*) as
the last character, the unspecified portion of chgstart defaults to the right as
follows:
DD = 01
MM = 01
YYYY = 0000

No other wildcarding is allowed.

CHGEND=chgend
The end of a range of modification dates in YYYY/MM/DD format to be
included in the copy.

If omitted, or you do not enter a full date, or you specify an asterisk (*) as
the last character, the unspecified portion of chgend defaults to the right as
follows:
DD = 31
MM = 12

Function reference: FCH

994 File Manager for z/OS V10R1 User’s Guide

YYYY = 9999

No other wildcarding is allowed.

USERID=userid
The TSO user ID by which the member was last updated.

If the input data set is a PDS(E), you may specify this parameter, or specify
a range of user IDs with the UIDSTART and UIDEND keywords.

You can enter a generic user ID by using asterisks and percent signs.

userid is ignored if the data set is not a PDS.

UIDSTART=uidstart
The start of a range of user IDs to be included in the copy.

If UIDSTART is specified but UIDEND is omitted, all members of the
PDS(E) from the uidstart value onwards are included.

If omitted, or you do not enter a full 7-character user ID, or you specify an
asterisk (*) as the last character, File Manager replaces the asterisk and
pads the unspecified portion of uidstart to the right with low values (X'00').

UIDEND=uidend
The end of a range of user IDs to be included in the copy.

If you omit this field, it defaults to high values (X'FF').

If you specify less than 7 characters (without an asterisk as the last
character), File Manager pads uidstart to the right with low values (X'00').
If you specify an asterisk (*) as the last character, File Manager replaces the
asterisk and pads the unspecified portion of uidend with high values
(X'FF').

NLRECS=num
Specifies the number of records to be processed in each data set or
member.

BINRECIN=record-length
Specifies the record length used for processing a HFS file. Valid range: 1 to
32760. The file is processed in binary mode (fixed-length records derived
from the file, delimiters not distinguished). If you do not specify this
parameter, the file is processed in text mode (variable-length records,
boundaries determined by delimiters).

USEIOXIN
Specifies whether to invoke a user I/O exit, to process the input data set.

NO Default. Do not invoke a user I/O exit.

YES Invoke a user I/O exit to process the input data set. This option is
only available if the person who did the site customization for File
Manager allowed user I/O exits on a site-wide basis.

IOXIN
Specifies the name of the user I/O exit used for the input data set. There
are no restrictions on the programming language that you can use to write
an exit. The exit must be provided to File Manager in the
STEPLIB/ISPLLIB concatenation or their extensions (LINKLIST, LPA, and
so on).

sysexit Default. If you specify USEIOXIN=YES and do not supply a user
I/O exit name, File Manager uses the name of the exit provided in

Function reference: FCH

Chapter 16. Functions 995

the installation customization options. If USEIOXIN has been set to
YES and no installation default has been provided, you must
specify IOXIN=ioxname.

Note: If you have selected batch processing in an online panel, the
generated JCL statements use the default name provided in
your Set System Processing Options panel.

ioxname
The name of a PDS(E) member of a data set that has been
provided to File Manager in the STEPLIB concatenation.

JCL=NO
Treat the data set as a non-JCL data set.

JCL=YES
The data set contains JCL and the JCL syntax is to be preserved.

The columns searched are set to 3 through 71, unless the statement is not a
JCL statement. A statement is considered to be a JCL statement if it begins
with the strings ″/*″ or ″//″. If the statement does not begin with either of
these strings, it is not considered to be a JCL statement in which case any
column range specified on the FIND (or CHANGE, respectively) command
or preset using the BOUNDS command is honored. If no column range has
been specified, the full record is searched.

If not successful at maintaining the number and size of records, File
Manager attempts to rewrite the file:
v More errors are possible in this case. For example, a PDS(E) may run out

of room.
v If a logical line is changed and requires more physical records, the file is

rewritten. The data in columns 73–record length for new physical
records is copied from the last related original physical record. Data past
column 72 is treated as non-changeable sequence numbers or comments.

PROC=proc
Member name of a REXX procedure that you want to use to process each
record, or an asterisk (*) to indicate the procedure is inline. If you specify a
member name, you must define an FMNEXEC ddname that identifies the
PDS containing the member. If you specify *, the procedure is read from
SYSIN immediately following the control statement for the current
function. The inline procedure is terminated by a record containing a slash
and a plus sign (/+) in columns 1–2.

Whether or not a record appears in the FCH report is determined by the
return code from the REXX procedure for that record. (If no PROC
statement is specified, one is assumed at the end of the $$FILEM control
statements.) If the REXX procedure ends with a RETURN DROP statement,
then the current record is considered to be “not selected” (not one of the
records you wanted to find), and does not appear in the FCH report. If the
REXX procedure ends normally, or with an explicit RETURN (without the
DROP keyword), then the current record is considered to be “selected”,
and is included in the FCH report. Records that have been selected without
being changed by the REXX procedure are marked in the FCH report by
an “s” suffix attached to their record number, while records that have been
selected and changed are marked by a “c”.

Function reference: FCH

996 File Manager for z/OS V10R1 User’s Guide

In a REXX procedure for FCH, explicitly code a RETURN statement when
you identify a record that you want to select. To ensure that other records
are not selected, on the last line of the REXX procedure, code a RETURN
DROP statement.

For more information about using REXX procedures to process records, see
Chapter 13, “Enhancing File Manager processing,” on page 385.

NOUPDATE
Allows you to specify that you intend no updates to the FCH data set
while executing the utility. This option is valid only when a REXX
procedure has been specified and is ignored otherwise.

NO Updates to the data are honored.

YES Forces the allocation of the data set as input only. All updates to
the data are ignored.

LIST=LONG
Default. This prints each record where the string was found as well as a
summary report.

LIST=SUMMARY
This produces a summary report only.

DBCS=YES
(Default for LANGUAGE=JAPANESE). This processes and preserves DBCS
shiftin and shiftout characters within the data records.

DBCS=NO
(Default for LANGUAGE=ENGLISH). This ignores DBCS shiftin and
shiftout characters within the data records.

STATS=ON
Default. This updates the ISPF statistics (if already present) when a PDS or
PDSE member has been changed.

STATS=OFF
The ISPF statistics is not updated when a PDS or PDSE member has been
changed.

STATS=FORCE
The ISPF statistics that exist for members being processed are always
updated and statistics for a member that previously did not have statistics
are created.

EXCLUSIVE=NO

Note: This option is supported for backward compatibility only.

Use the new DIRINTEGR option.
Default. The data set is allocated with DISP=SHR, so that other users can
obtain concurrent access to a PDS or PDSE during execution of FCH.

EXCLUSIVE=YES
Forces an override of the PDS(E) member processing method which allows
for safe concurrent updates by other users. This option has significant
performance impact. When set to YES, the member processing is
performed much faster but may be affected by PDS(E) directory updates,
possibly causing I/O errors if the data set is concurrently updated. This
option overrides the processing method selected by File Manager
(EXCLUSIVE=NO, default, unless the input data set has been allocated

Function reference: FCH

Chapter 16. Functions 997

|
|
|
|

OLD by the user), which always assumes concurrent safe processing when
the data set is allocated to multiple users.

DIRINTEGR
Specifies whether to invoke a user I/O exit to process the input data set.

NO Default. File Manager uses a faster PDS(E) directory processing
method. This may cause I/O errors when multiple users are
concurrently updating the directory of the data set being
processed.

YES File Manager uses safer, but slower, PDS(E) directory processing
method. This method allows for safe concurrent updates of the
PDS(E) directory by multiple users.

PACK Determines if File Manager should detect if the input data is in ISPF
packed format and specifies if the output data is to be written in ISPF
packed format. This keyword is ignored when processing VSAM data sets.
When an I/O exit has been specified for either the input or output data set
(or both), the only valid option is PACK=NONE.

ASIS Instructs File Manager to write the output in ISPF Packed format
only if the input is in ISPF packed format.

PACK Instructs File Manager to write the output in ISPF packed format
regardless of the input format.

UNPACK
Instructs File Manager to write the output without ISPF packing,
regardless of the input format.

NONE
Instructs File Manager not to determine if the input data set is in
ISPF packed format and writes the output records as they are read
from the input data set (after any enhanced processing).

SKIP Instructs File Manager to determine if the input data set is in ISPF
packed format and if so, to skip the find/change processing.

See “Finding and changing data in multiple PDS members” on page 246 for details
of the FCH commands.

Note: It is not possible to use multiple FINDNOT commands in the input stream
for batch processing. Similarly, it is not possible to combine FINDNOT
commands with FIND and/or CHANGE commands in the batch input
stream.

Function reference: FCH

998 File Manager for z/OS V10R1 User’s Guide

Batch example
//FMUSRFCH JOB (@TS2,MVS6),'FMNUSER',NOTIFY=FMNUSER,
// CLASS=A,MSGLEVEL=(1,1),MSGCLASS=H
//FMNBAT EXEC PGM=FILEMGR
//STEPLIB DD DSN=FMNUSER.FMN110.TSTLOAD,DISP=SHR
// DD DSN=FMN.V1R1M0.TSTLOAD,DISP=SHR
// DD DSN=FMN.V1R1M0.SFMNMOD1,DISP=SHR
// DD DSN=FMN.IGYV1R20.SIGYCOMP,DISP=SHR
//SYSPRINT DD SYSOUT=*
//FMNEXEC DD DSN=FMN.EXEC,DISP=SHR
//FMNTSPRT DD SYSOUT=*
//FMNIN DD DSN=FMNUSER.JCL.TESTING,DISP=SHR
//FMNOUT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSIN DD *
$$FILEM FCH ,
$$FILEM INPUT=FMNIN,MEMBER=J*
F 'rights reserved'
C 'Copyright 2001-2002' ,
'Copyright 2001-2003' 1 71
C 'Alpha Company Ltd' ,
'Alpha Beta Company Ltd' 1 71
C 'Beta Company Ltd' ,
'Alpha Beta Company Ltd' 1 71
/+
/*

Function reference: FCH

Chapter 16. Functions 999

Replacement pages for “External REXX functions” section

PK77613

52 Addenda to V9R1 User's Guides and Customization Guide

External REXX functions
This section describes the REXX external functions that you can use when writing
REXX procedures to enhance a File Manager function. In addition, File Manager
provides access to the REXX internal functions described in the z/OS TSO/E REXX
Reference.

CHANGE
Changes a specified character string.

CHG_OUT
(Can be used in FASTREXX procedures.) Changes a character string in the
output record.

CHG_VAR
(Can be used in FASTREXX procedures.) Changes one or more occurrences
of an old string in a variable to a new string.

CONTAINS
Checks for character values in a specified string.

FLD (Can be used in FASTREXX condition expressions or internally processed
criteria expressions.) Refers to a field from the current input record.

FLD_CO
(Can be used in FASTREXX condition expressions or internally processed
criteria expressions.) Searches a field in the input record for one or more
occurrences of a string, or tests a field in the input record for one more
numeric values.

FLD_OUT
(Can be used in FASTREXX procedures.) Overlays the output record with a
field from the input record.

FLD_TM
(Can be used in FASTREXX condition expressions or internally processed
criteria expressions.) Tests selected bits of a field in the input record.

FLD_TYPE
(Can be used in FASTREXX condition expressions or internally processed
criteria expressions.) Tests the data type of a field in the input record.

FLDI (Can be used in FASTREXX procedures.) Performs a conditional test
against an input record field.

FLDO (Can be used in FASTREXX procedures.) Performs a conditional test
against an output record field.

I_LENGTH
(Can be used in FASTREXX condition expressions or internally processed
criteria expressions.) Returns the length of the input record.

MOD_DATE
(Can be used in FASTREXX procedures.) Sets, increments, or decrements a
date field using year, month, or day values.

NCONTAIN
Checks for numeric values in a specified string.

O_LENGTH
(Can be used in FASTREXX condition expressions or internally processed
criteria expressions.) Returns the current length of the output record.

Function reference: External REXX functions

Chapter 16. Functions 1063

|
|
|

||
|

||
|

|
|
|

OFLD_CO
(Can be used in FASTREXX condition expressions or internally processed
criteria expressions.) Searches a field in the output record for one or more
occurrences of a string, or tests a field in the output record for one more
numeric values, and resets the current output relative position (OUTPOS)
accordingly.

OVLY_OUT
(Can be used in FASTREXX procedures.) Overlays the output record with a
literal (constant) or variable value.

OVLY_VAR
(Can be used in FASTREXX procedures.) Overlays the named character
variable with a string.

PRINT
Prints a record.

PRTCOUNT
(Can be used in FASTREXX condition expressions or internally processed
criteria expressions.) Returns the count of records printed.

RECSIN
(Can be used in FASTREXX condition expressions or internally processed
criteria expressions.) Returns the count of records read.

RECSOUT
(Can be used in FASTREXX condition expressions or internally processed
criteria expressions.) Returns the count of records written to a given data
set.

RSTR_OUT
(Can be used in FASTREXX condition expressions.) Restores the most
recently saved copy of the output buffer.

SAVE_OUT
(Can be used in FASTREXX condition expressions.) Saves a copy of the
current output buffer.

SET_OLEN
(Can be used in FASTREXX procedures.) Sets the length of the output
record.

SETC (Can be used in FASTREXX procedures.) Defines or changes a character
variable.

SETN (Can be used in FASTREXX procedures.) Defines or changes a numeric
variable

TESTC
(Can be used in FASTREXX procedures.) Performs a conditional test
against a character variable.

TESTN
(Can be used in FASTREXX procedures.) Performs a conditional test
against a numeric variable.

TALLY
(Can be used in FASTREXX procedures.) Totals a field value and reports
the total.

TFLD (Can be used in FASTREXX condition expressions or internally processed
criteria expressions.) Searches a field in the input record for one or more

Function reference: External REXX functions

1064 File Manager for z/OS V10R1 User’s Guide

|

|
|
|

|

|

||
|

||
|

|
|
|

|
|
|

occurrences of a string, or tests a field in the input record for one more
numeric values. For dimensioned fields, you can search any or all of the
elements of the array.

TM Tests a string for a bit value.

VAR_OUT
(Can be used in FASTREXX procedures.) Overlays the output record with a
field from a variable.

VAR_TM
(Can be used in FASTREXX procedures.) Tests selected bits of a field in a
variable.

WRITE
(Can be used in FASTREXX procedures.) Writes a record.

The following REXX external functions can only be used with DSEB (Data Set Edit
Batch):

BOT Move to the last record

DOWN
Move down (forwards) a specified number of records

FINDNEXT
Search for a string from the current record forwards

FINDPREV
Search for a string from the current record backwards

RECCUR
Return the current record number

TOP Move to the first record

UP Move up (backwards) a specified number of records

UPDATE
Replace the current input record with the value in OUTREC

Note: You can only use these File Manager-specific REXX external functions, and
the INREC and OUTREC variables, in a REXX procedure specified by the
PROC parameter of a File Manager function (or, when using panels, by the
Use REXX proc field). You cannot use these functions and variables in REXX
procedures outside of this File Manager environment.

Absolute and relative positioning in external REXX functions
All File Manager external REXX functions that refer to positions within the input
or output record can use absolute values to determine the byte location within the
record. For example, the FLD function syntax is:
FLD(start_column,length,type)

where start_column can be an integer that refers to a specific byte in the input
record.

However, some external REXX functions also allow positions to be specified as an
offset value, relative to the “current position” within the input or output record.
The current position is initialized as each record is processed but can be modified
by these functions.

Function reference: External REXX functions

Chapter 16. Functions 1065

|
|
|

|
|
|

For input records, this allows you to perform tasks such as searching for a string in
the input record and then testing or copying the contents of a field relative to the
located string.

For output records, this allows you to easily append fields or constants at positions
relative to the most recently updated output record field. For example, you could
append a number of constants and fields, one after the other in the output record,
without needing to keep track of the exact current starting position or manually
updating the starting position with the length of added fields.

Note: You cannot use the REXX external functions to write data beyond the logical
record limitations of the output data set. For example, when using a Fixed
Block data set that has an LRECL of 80, you cannot write data to position 81
or beyond.

The following functions support relative positioning:
v CHG_OUT
v CHG_VAR
v FLD
v FLD_CO
v FLD_OUT
v FLD_TM
v FLD_TYPE
v FLDI
v FLDO
v MOD_DATE
v OVLY_OUT
v OVLY_VAR
v SETC
v SETN
v TESTC
v TESTN
v VAR_OUT
v VAR_TM

To maintain the current position within the input and output records, these
functions use two internal variables, INPOS and OUTPOS. These values have not
been externalized to the REXX environment and can only be accessed or altered
indirectly, by using the functions listed above or SET_OLEN (which does not
support relative position arguments but does alter the value of OUTPOS in some
circumstances).

INPOS
For each new record that is processed, INPOS is set to 1. INPOS is then
changed for the current input record whenever the FLD_CO function or
FLDI function (with contains operator) executes a successful search for a
needle that is a string (type C or U). If a needle is found, INPOS is set to the
first byte of the located needle. If no needle is found, INPOS is unchanged.

OUTPOS
For each new record that is processed, OUTPOS is set to 1 greater than the
length of the current output record. The output record is initially the same
length as the input record, unless templates have been used to reformat the
record. OUTPOS is then modified (as a side effect) when the following
functions are used:

Function reference: External REXX functions

1066 File Manager for z/OS V10R1 User’s Guide

|

|
|
|

|
|
|
|
|
|
|

|
|

CHG_OUT
CHG_OUT sets OUTPOS to one byte past the end of the last
changed field in the output record.

FLD_OUT
FLD_OUT sets OUTPOS to one byte past the end of the field being
overlaid in the output record.

OVLY_OUT
OVLY_OUT sets OUTPOS to one byte past the end of the field
being overlaid in the output record.

SET_OLEN
SET_OLEN only changes OUTPOS if it truncates the output record
so that the existing OUTPOS becomes greater than the reduced
record length. In this case, OUTPOS is reset to the reduced length
plus 1.

FLDO with contains operator
If a needle is found, OUTPOS is set to the first byte of the located
needle. If no needle is found, OUTPOS is unchanged.

Specifying relative positions
Relative positioning is specified when you use a special character string, in the
form of <type><offset>, in place of an integer in the start argument of a supported
function. The relative position can be specified in the following ways:

IPx The start position is taken from the current INPOS (the “I” in <type>) and
then offset a positive (the “P” in <type>) number of bytes, as specified by
x. For example, if the INPOS was currently 20 and you specified a start
argument of IP5, the start position would be 25.

INx The start position is taken from the current INPOS and then offset a
negative (the “N” in <type>) number of bytes, as specified by x. For
example, if the INPOS was currently 20 and you specified a start argument
of IN5, the start position would be 15.

OPx The start position is taken from the current OUTPOS (the “O” in <type>)
and then offset a positive number of bytes, as specified by x. For example,
if the OUTPOS was currently 20 and you specified a start argument of
OP5, the start position would be 25.

ONx The start position is taken from the current OUTPOS and then offset a
negative number of bytes, as specified by x. For example, if the OUTPOS
was currently 20 and you specified a start argument of ON5, the start
position would be 15.

When the start argument’s natural target is the input record, IPx and INx can be
abbreviated to Px or Nx.

When the argument’s natural target is the output record, OPx and ONx can be
abbreviated to Px or Nx.

When the argument’s natural target is a variable, IPx, INx, OPx, ONx, can be used
to denote the current relative variable position. They can be abbreviated to Px or
Nx.

For example, FLD(start_column,length,type) reads from the input record, so you
could specify start_column as IP5 or P5 and get the same result. On the other hand,

Function reference: External REXX functions

Chapter 16. Functions 1067

|
|
|

|
|
|

if you wanted to use the current value of OUTPOS to specify the start_column in
the input record, you must specify the <type> in full, that is, as OP5.

Using FASTREXX variables
File Manager supports these variables for FASTREXX processing:
v System numeric variables. See Table 16 on page 1069 below for descriptions.
v System character variables. See Table 15 below for descriptions.
v User character variables.
v User numeric variables.
v Tally registers.

System and tally variables are maintained by File Manager and are read-only to
user procedures.

User variables are defined by SETC or SETN functions (there is an implied
definition in TESTC and TESTN functions for variables that do not exist). These
variables can be referenced and modified by these functions:

Table 14. Batch update status and action

Function Reference Modify

CHG_VAR Y Y

CHG_OUT Y N

FLDI Y N

FLDO Y N

OVLY_VAR Y Y

OVLY_OUT Y N

SETC Y Y

SETN Y Y

TESTC Y N

TESTN Y N

VAR_OUT Y N

VAR_TM Y N

A user variable persists from its creation by a procedure to the end of the File
Manager invocation. This allows any number of procedures run within the same
File Manager invocation to refer to the same variables.

Table 15. System character variables

Name Description

ZINREC Input record

ZOUTREC Output record

ZMEMBERI Input member name

ZMEMBERO Output member name

ZDSNIN Input data set name

ZDSNOUT Output data set name

Function reference: External REXX functions

1068 File Manager for z/OS V10R1 User’s Guide

|

|

|

|

|

|

|

|
|

|
|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|
|
|

||

||

||

||

||

||

||

||
|

Table 16. System numeric variables

Name Description

ZRECSIN Input record count

ZRECSOUT Output record count

Tally register for external REXX functions
Table 17 shows the functions that support a tally register that allows you to report
on the function activity.

Table 17. Functions supporting a TALLY register

Function name Counts number of Sample coding for tally literal

CHANGE Strings changed (fld(1),'a','c',0,,,'Change 'a' to 'c' ')

CHG_OUT Strings changed chg_out('a','c',0,,,, 'Change 'a' to 'c' ')

CHG_VAR Strings changed chg_var(myvar,'a','c',0,,,, 'Change 'a' to 'c' ')

CONTAINS True results co(fld(1,2),'aa','bb','cc',,'Contains 'aa','bb','cc'')

FLD_CO True results fld_co(1,2,c,'aa','bb','cc',, 'Contains 'aa','bb','cc'')

FLD_OUT Invocations fld_out(1,2,3,2,,'Move Columns 1,2 to Columns 3,4 ')

FLD_TM True results fld_tm(1,'01'x,,'Test under mask column 1 for '01'x ')

FLD_TYPE True results fld_type(36,1,Z,'Check Column 36 for valid zoned')

FLDI True results fldi(1,4,b,'>',64,'People over 64')

FLDO True results fldo(1,4,b,'>',64,'People over 64')

NCONTAIN True results nco(fld(36,1),1,4,3,2,,Column 36 contains 1,4,3,2'))

OFLD_CO True results ofld_co(1,2,c,'aa','bb','cc',, 'Output contains 'aa','bb','cc'')

OVLY_OUT Invocations ovly_out('**',1,2,,,'Overlay columns 1,2 with '**' ')

OVLY_VAR Invocations ovly_var(myvar,'**',1,2,,,'Overlay columns 1,2 with '**' ')

SET_OLEN Invocations Set_olen(84,'b','Change output record length to 84')

SETC True results setc(myvar,'abc',,'Set myvar to abc')

SETN True results setn(mynum,'+2','Add 2 to mynum')

TESTC True results testc(myname,'cu','Smith','Jones',,'Common surnames')

TESTN True results testn(varage,'>',64,'People over 64')

TFLD True results tfld('Age','>',64,'People over 64')
tfld('Age','NN','Non-Numeric Age fields')
tfld('Age','RG',21,75,'People between 21 and 75')
tfld('Name','CU','Smith','Jones',,'Common surnames')

TM True results tm(fld(1,1),'01'x,,'Test under mask column 1 for '01'x ')

VAR_OUT Invocations var_out(myvar,1,2,3,2,,'Move Columns 1,2 to Columns 3,4 ')

VAR_TM True results var_tm(myvar,1,'01'x,,'Test under mask column 1 for '01'x ')

Specifying your tally register
The tally register is defined when you provide a literal value as an additional
operand to the functions in Table 17. For functions that have a fixed number of
operands, the literal operand is the next positional operand beyond the defined
operands for the given function. For functions that have an indefinite number of
operands, a null operand is required to delimit the function operands and to
denote the next operand as a tally literal.

Function reference: External REXX functions

Chapter 16. Functions 1069

||

||

||

||
|

|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Example 1
IF FLD_CO(1,8,c,'a',,'Number of records with "a"') then

chg_out('a','c',0,,,,'Number of strings changed from "a" to "c"')

produces this tally report:
TALLY summary report

Number of records with "a" 4
Number of strings changed from "a" to "c" 32

Note: FLD_CO can have an indefinite number of search literals. As a result, the
tally register is specified by ,,'Number of records with "a".

For CHG_OUT, no null positional delimiter is required and the TALLY
literal must be the seventh operand.

Example 2
*FASTREXX
if fld_tm(1,'01'x) then do;

OVLY_OUT('**',1,2,,, 'Count of first 2 chars set to "**"')
return

end;

produces this tally report:
TALLY summary report
--
Count of first 2 chars set to "**" 4

Using a tally register
Each tally register is defined by the literal description. If you code the same literal
description in a number of functions, then the same tally registered is incremented
as determined by the function being invoked.

BOT (DSEB only)

Syntax

�� BOT() ��

Moves to the last input record.

Function reference: External REXX functions

1070 File Manager for z/OS V10R1 User’s Guide

CHANGE

Syntax

�� CHANGE (haystack , old ,
new

, new

,
1

count
, �

�
1

start
,

0

length
) ��

Note: Commas following the last specified argument can be omitted.

Searches haystack and changes one or more occurrences of old to new.

Returns
Returns haystack, with up to count occurrences of the substring old changed
to the substring new.

haystack
The string that you want to search.

old Old string to change. If this argument is omitted, the new string is inserted
at the start location.

new New string. If this argument is omitted, then count occurrences of old are
deleted.

count Maximum number of occurrences of old to change. Must be a non-negative
integer. Default value is 1. A value of 0 indicates that all occurrences
should be changed, unless the old string field is omitted, in which case it is
equivalent to a value of 1.

start Position in haystack in bytes at which to start searching for occurrences of
old. Must be a positive integer. The default value is 1. If start is greater than
the current length of the output record, the function has no effect.

length Number of bytes within haystack to search for occurrences of old. Must be a
non-negative integer. A value of 0 indicates that the remainder of haystack
from start should be searched. If length is less than the length of old, the
function has no effect.

Example 1
CHANGE('abcabcabc','abc','DeF') → 'DeFabcabc'

/* 1 (default) occurrence of old changed */

Example 2
CH('abcabcabc','abc','DeF',2) → 'DeFDeFabc'

/* 2 occurrences of old changed */

Example 3
CHANGE('abcabcabc','abc','DeF',0) → 'DeFDeFDeF'

/* count = 0, all occurrences of old changed */

Example 4

Function reference: External REXX functions

Chapter 16. Functions 1071

CH('abcabcabc','abc','DeF',,4) → 'abcDeFabc'
/* 1 (default) occurrences of old changed, */
/* starting at position 4 */

Example 5
CHANGE('aaaaaaaa','a','A',0,3,2) → 'aaAAaaaa'

/* all occurrences of old changed, starting at */
/* position 3 for a length of 2 */

Example 6
CH('abcabcabc','a',,0) → 'bcbcbc'

/* new omitted, count = 0, */
/* all occurrences of old deleted */

Example 7
CHANGE('abc',,'def',,2) → 'adefbc'

/* old omitted, new inserted, starting at */
/* position 2 */

CHG_OUT

CHG_OUT syntax

�� CHG_OUT (old ,
new

, new

,
1

count
,

1

start
, �

�
0

length
,

’’

text_char
) ��

Note: Commas following the last specified argument can be omitted.

Can be used in FASTREXX procedures.

Changes one or more occurrences of an old string in the output record to a new
string. On successful execution, also updates the value of OUTPOS to one byte
past the end of the last changed field in the output record.

Returns
A single blank.

old Old string to change. If this argument is omitted, the new string is inserted
at the start location.

You can substitute a character or numeric variable or tally literal by
specifying an &varname where varname matches an existing variable name.

Notes:

1. Numeric values are converted to display form with leading zeros
removed.

2. If a variable name is not found, then the string is interpreted as literal.

new New string. If this argument is omitted, then count occurrences of old are
deleted.

Function reference: External REXX functions

1072 File Manager for z/OS V10R1 User’s Guide

|
|

|

|
|

|

You can substitute a character or numeric variable or tally literal by
specifying an &varname where varname matches an existing variable name.

Notes:

1. Numeric values are converted to display form with leading zeros
removed.

2. If a variable name is not found, then the string is interpreted as literal.

count Maximum number of occurrences of old to change. Must be a non-negative
integer. Default value is 1. A value of 0 indicates that all occurrences
should be changed, unless the old string field is omitted, in which case it is
equivalent to a value of 1.

start Position, in bytes, in the output record at which to start searching for
occurrences of old. Can be specified as:

Absolute position
Must be a positive integer. Default value is 1. If start is greater than
the current length of the output record, the function has no effect.

Relative to current INPOS
Must be specified as IPx or INx. If this resolves to a value of less
than or equal to zero, the function results in an error. If this
resolves to a value that is greater than the current length of the
output record, the function has no effect.

Relative to current OUTPOS
Can be specified as OPx or ONx, or as Px or Nx.If this resolves to
a value of less than or equal to zero, the function results in an
error. If this resolves to a value that is greater than the current
length of the output record, the function has no effect.

length Amount, in bytes, of the output record to search for occurrences of old.
Must be a non-negative integer. Default value is 0. A value of 0 indicates
that the remainder of the output from start should be searched. If length is
less than the length of old, the function has no effect.

text_char
Can be a null string or a single character.

Specifying a null string (the default), indicates CHG_OUT should behave
without text sensitivity.

Specifying a single character defines the special text-sensitive character and
indicates that text-sensitive change behaviour is required. When a character
has been specified for text_char, CHG_OUT behaves as follows:
v If the new and old strings are the same length, CHG_OUT behaves as if

text-sensitive change behaviour had not been requested.
v If the new string is shorter than the old string, then when a replacement

is made, CHG_OUT searches for the first text_char character following
the end of the replaced string. Note that the entire record is searched. If
the text_char character is found, additional text_char characters are
inserted at the point of this first subsequent character, to make up the
difference in length between new and old. If the text_char character is
not found in the remainder of the record, then no insertion takes place
and the record is reduced in length. If the record is fixed-length and no
subsequent action occurs to make up the shortfall, then the File Manager
record padding process fills out the record when it is written.

Function reference: External REXX functions

Chapter 16. Functions 1073

|
|

|

|
|

|

The intended effect is that text on multiple lines, if aligned in columns
separated by the text char character, continues to align in columns after
replacement. This is useful for updating files with sequence numbers on
the right, such as COBOL or JCL.

v When the new string is longer than the old string., then when a
replacement is made, CHG_OUT searches to the right of the replaced
string for two consecutive text_char characters. Note that the entire
record is searched. If two consecutive text_char characters are found, they
are replaced with a single text_char character. This process is repeated,
starting from the remaining single character (and including that
character) until the length difference between old and new is accounted
for. Using this algorithm, multiple text_char characters can be reduced to
a single text_char character, but a single text_char char character between
other characters is never eliminated.
The intended effect is to try to use existing “blank” areas in the string, to
leave text on the right unchanged as much as possible. There is no
guarantee that there will be an adequate number of text_char characters
to accomplish the goal. If there are not enough text_char characters, then
the rest of the record is shifted right and possibly truncated when it is
written, if fixed in length. This is useful for modifying files like COBOL
or JCL source, where a sequence number may exist to the right.

v If you have specified multiple string replacements (count is greater than
1), then the intent remains the same. The search proceeds from left to
right, firstly checking for the search argument, and secondly text_char
characters to expand or collapse. If the search argument is found, it is
replaced and the search continues immediately following the replaced
string.

v Note that the string replacement may be limited to byte positions by the
length argument. However, the search for text char characters to add or
remove continues past that limit to the end of the record if required.

Example 1

Assuming that the current output record contains ’abcabcabcabcabcabcabc’, then:
CHG_OUT('abc','DeF',0)
/* All occurrences of old within the */
/* output record are changed */

The output record becomes ’DeFDeFDeFDeFDeFDeFDeF’.

Example 2

Assuming that the current output record contains ’abcabcabcabcabcabcabc’, then:
CHG_OUT('abc','DeF',,4)
/* 1 (default) occurrences of old changed, */
/* starting at position 4 within the output record */

The output record becomes ’abcDeFabcabcabcabcabc’.

Example 3

Assuming that the current output record contains ’aaaaaaaaaa’, then:
CHG_OUT('a','A',0,3,2)
/* all occurrences of old changed, starting at */
/* position 3 in the output record, for a length of 2 */

Function reference: External REXX functions

1074 File Manager for z/OS V10R1 User’s Guide

The output record becomes ’aaAAaaaaaa’.

Example 4

Assuming that the current output record contains ’abcabcabcabcabcabcabc’, and
that INPOS is currently set to 13 and OUTPOS is currently set to 4, then:
CHG_OUT('abc','DeF',1,P3)
/* 1 occurrence of old changed, */
/* uses OUTPOS as the default target, therefore */
/* starts at position 7 within the output record */

The output record becomes ’abcabcDeFabcabcabcabc’ and OUTPOS is set to 10
(INPOS remains unchanged).

Example 5

Assuming that the current output record contains ’abcabcabcabcabcabcabc’, and
that INPOS is currently set to 13 and OUTPOS is currently set to 4, then:
CHG_OUT('abc','DeF',1,IN3)
/* 1 occurrence of old changed, */
/* forces start to use INPOS value, therefore */
/* starts at position 10 within the output record */

The output record becomes ’abcabcabcDeFabcabcabc’ and OUTPOS is set to 13
(INPOS remains unchanged).

CHG_VAR

CHG_VAR syntax

�� CHG_VAR (name , old ,
new

, new

,
1
count ,

1
start �

� ,
0
length ,

''
text_char) ��

(Can be used in FASTREXX procedures.)

Note: Commas following the last specified argument can be omitted.

Changes one or more occurrences of an old string in the variable to a new string.
On successful execution, also updates the value of OUTPOS to one byte past the
end of the last changed field in the variable.

Returns
A single blank.

name 1–256 character variable identifier. Variable name matching is not case
sensitive. If the name is not found, a severe error occurs and the procedure
is terminated. Cannot be a system character variable or a system numeric
variable. See “Using FASTREXX variables” on page 1068.

old Old string to change. If this argument is omitted, the new string is inserted

Function reference: External REXX functions

Chapter 16. Functions 1075

|
|

|

|||
|

|
|||||||||||||||||||||||||||||

||||

|

|

|
|
|

|
|

||
|
|
|

||

at the start location. You can substitute a character or numeric variable or
tally literal by specifying an &varname where varname matches an existing
variable name.

Notes:

1. Numeric values are converted to display form with leading zeros
removed.

2. If a variable name is not found, then the string is interpreted as a
literal.

new New string. If this argument is omitted, then count occurrences of old are
deleted. You can substitute a character or numeric variable or tally literal
by specifying an &varname where varname matches an existing variable
name.

Notes:

1. Numeric values are converted to display form with leading zeros
removed.

2. If a variable name is not found, then the string is interpreted as a
literal.

count Maximum number of occurrences of old to change. Must be a non-negative
integer. Default value is 1. A value of 0 indicates that all occurrences
should be changed.

start Position, in bytes, in the variable at which to start searching for
occurrences of old. Can be specified as:

Absolute position
Must be a positive integer. Default value is 1. If start is greater than
the current length of the variable, the function has no effect.

Relative to current variable position
Can be specified as OPx or ONx, or as Px or Nx, or as IPx or INx.
If this resolves to a value of less than or equal to zero, the function
results in an error.If this resolves to a value that is greater than the
current length of the variable, the function has no effect.

length Amount, in bytes, of the variable to search for occurrences of old. Must be
a non-negative integer. Default value is 0. A value of 0 indicates that the
remainder of the output from start should be searched. If length is less than
the length of old, the function has no effect.

text_char
Can be a null string or a single character.

Specifying a null string (the default), indicates CHG_VAR should behave
without text sensitivity.

Specifying a single character defines the special text- sensitive character
and indicates that text-sensitive change behaviour is required. When a
character has been specified for text_char, CHG_VAR behaves in this way:
v If the new and old strings are the same length, CHG_VAR behaves as if

text-sensitive change behaviour had not been requested.
v If the new string is shorter than the old string, then when a replacement

is made, CHG_VAR searches for the first text_char character following
the end of the replaced string. Note that the entire record is searched. If
the text_char character is found, additional text_char characters are
inserted at the point of this first subsequent character, to make up the
difference in length between new and old. If the text_char character is not

Function reference: External REXX functions

1076 File Manager for z/OS V10R1 User’s Guide

|
|
|

|

|
|

|
|

||
|
|
|

|

|
|

|
|

||
|
|

||
|

|
|
|

|
|
|
|
|

||
|
|
|

|
|

|
|

|
|
|

|
|

|
|
|
|
|
|

found in the remainder of the record, then no insertion takes place and
the record is reduced in length. If the record is fixed-length and no
subsequent action occurs to make up the shortfall, then the File Manager
record padding process fills out the record when it is written.
The intended effect is that text on multiple lines, if aligned in columns
separated by the text char character, continues to align in columns after
replacement. This is useful for updating files with sequence numbers on
the right, such as COBOL or JCL.

v When the new string is longer than the old string, then when a
replacement is made, CHG_VAR searches to the right of the replaced
string for two consecutive text_char characters. Note that the entire
record is searched. If two consecutive text_char characters are found, they
are replaced with a single text_char character. This process is repeated,
starting from the remaining single character (and including that
character) until the length difference between old and new is accounted
for. Using this algorithm, multiple text_char characters can be reduced to
a single text_char character, but a single text_char character between other
characters is never eliminated.
The intended effect is to try to use existing ″blank″ areas in the string, to
leave text on the right unchanged as much as possible. There is no
guarantee that there will be an adequate number of text_char characters
to accomplish the goal. If there are not enough text_char characters, then
the rest of the record is shifted right and possibly truncated when it is
written, if fixed in length. This is useful for modifying files like COBOL
or JCL source, where a sequence number may exist to the right.

v If you have specified multiple string replacements (count is greater than
1), then the intent remains the same. The search proceeds from left to
right, firstly checking for the search argument, and secondly text_char
characters to expand or collapse. If the search argument is found, it is
replaced and the search continues immediately following the replaced
string.

v Note that the string replacement may be limited to byte positions by the
length argument. However, the search for text_char characters to add or
remove continues past that limit to the end of the record if required.

Example 1

Assuming that the current variable contains ’abcabcabcabcabcabcabc’, then:
CHG_VAR(MYVAR,'abc','DeF',0)
/* All occurrences of old within the */
/* variable are changed */

The variable becomes ’DeFDeFDeFDeFDeFDeFDeF’.

Example 2

Assuming that the current variable contains ’abcabcabcabcabcabcabc’, then:
CHG_VAR(MYVAR,'abc','DeF',,4)
/* 1 (default) occurrences of old changed, */
/* starting at position 4 within the variable */

The variable becomes ’abcDeFabcabcabcabcabc’.

Example 3

Function reference: External REXX functions

Chapter 16. Functions 1077

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

|

|
|
|

|

|

|

|
|
|

|

|

Assuming that the current variable contains ’aaaaaaaaaa’, then:
CHG_VAR(MYVAR,'a','A',0,3,2)
/* all occurrences of old changed, starting at */
/* position 3 in the variable, for a length of 2 */

The variable becomes ’aaAAaaaaaa’.

Example 4

Assuming that the current variable contains ’abcabcabcabcabcabcabc’, and that
current variable position is 4, then:
CHG_VAR(MYVAR,'abc','DeF',1,P3)
/* 1 occurrence of old changed, */
/* uses current position as the default target, therefore */
/* starts at position 7 within the variable */

The variable becomes ’abcabcDeFabcabcabcabc’ and the variable position is set to
10.

Example 4

Assuming that the current variable contains ’abcabcabcabcabcabcabc’, and that
current variable position is currently set to 13 , then:
CHG_VAR(MYVAR,'abc','DeF',1,IN3)
/* 1 occurrence of old changed, */
/* forces start to use current position value, therefore */
/* starts at position 10 within the variable */

The variable becomes ’abcabcabcDeFabcabcabc’ and the variable position is set to
13.

CONTAINS

Syntax

�� �

,

COntains(haystack, needle) ��

Checks the contents of haystack for one or more occurrences of needle.

Returns
If the haystack string contains one or more of the needle strings, then
CONTAINS returns 1. Otherwise, CONTAINS returns 0.

CONTAINS is case-sensitive: it only returns 1 if the haystack contains a
string with the same mix of uppercase and lowercase as a needle.

haystack
The string that you want to search.

needle The string that you are attempting to find within haystack. You can search
for up to 20 strings at a time.

For a similar function that matches numeric values, see “NCONTAIN” on page
1096. For a FASTREXX-eligible equivalent, see “FLD_CO” on page 1082.

Function reference: External REXX functions

1078 File Manager for z/OS V10R1 User’s Guide

|

|
|
|

|

|

|
|

|
|
|
|

|
|

|

|
|

|
|
|
|

|
|

Example 1

If the current input record contains “Michael”, “Mick” or “Mike” in the first ten
columns, then print the record.
If CO(FLD(1,10),'Michael','Mick','Mike') Then

PRINT(inrec, 'CHAR')

Example 2

If the current input record contains “USA”, “Australia” or “England”, then drop
the record from processing.
If CONTAINS(inrec,'USA','Australia','England') Then

Return 'DROP'

DOWN (DSEB only)

Syntax

�� DOWN(n) ��

Moves down n number of records, or to the last record, if there are less than n
records below the current record.

Returns
If, after moving, the current record is the last record, then the DOWN
function returns the string value “EOF” (end of file). Otherwise, DOWN
returns 0.

FINDNEXT, FINDPREV (DSEB only)

Syntax

�� FINDNEXT
FINDPREV

(needle)
,start ,CASE

,end

��

Searches for needle in the input data set, from the current input record forwards
(FINDNEXT) or backwards (FINDPREV). You can limit the search to a range of
columns, or to an exact matching case.

Returns
If the search is successful, the record in which needle was found becomes
the current input record, and the FINDNEXT function returns the starting
column of needle in the record. If the search is unsuccessful, the current
input record remains the same, and FINDNEXT returns 0.

needle String(s) or numeric(s) to search for.

start The position, in bytes, of the start of the range in each input record to be
searched.

Function reference: External REXX functions

Chapter 16. Functions 1079

end The position, in bytes, of the end of the range in each input record to be
searched.

CASE Specifies that the comparison is case-sensitive.

If you want to save any changes you have made to the record that was current
prior to calling FINDNEXT or FINDPREV, use the UPDATE function. Otherwise, if
the search is successful, any changes made to that record are lost when FINDNEXT
or FINDPREV moves to another record.

Here are some examples:

Example 1
FINDPREV('abc') /* Finds 'abc', 'ABC', 'ABc' and so on */

Example 2
FINDNEXT('abc',1,10,'CASE') /* Finds 'abc', but not 'ABC', 'ABc' and so on */

FLD

Syntax

�� FLD(start_column)
,length ,type

��

Can be used in FASTREXX condition expressions.

Fetches the value of a field from the current input record (INREC), starting at
start_column, of length number of bytes, interpreted according to the specified type.

Returns
The value of the field from the current input record.

start_column
Position, in bytes, in the input record at which to start reading the field
value. Can be specified as:

Absolute position
Must be a positive integer. Default value is 1. If start is greater than
the current length of the input record, the function has no effect.

Relative to current INPOS
Can be specified as IPx or INx, or as Px or Nx. If this resolves to a
value of less than or equal to zero, the function results in an error.
If this resolves to a value that is greater than the current length of
the input record, the function has no effect.

Relative to current OUTPOS
Must be specified as OPx or ONx. If this resolves to a value of less
than or equal to zero, the function results in an error. If this
resolves to a value that is greater than the current length of the
input record, the function has no effect.

length The length of the field in bytes.

For binary fields, you must specify the length. It can be 2, 4, or 8.

Function reference: External REXX functions

1080 File Manager for z/OS V10R1 User’s Guide

For character fields, if you omit the length, FLD returns the remainder of
the record.

For packed decimal fields, if you specify the length, it must be in the range
1–16. If you omit the length, FLD attempts to determine the packed field
length from the record data and returns only that field.

For zoned decimal fields, if you specify the length, it must be in the range
1–31 or, if the field contains a separate sign character, in the range 1–32. If
you omit the length, FLD returns the remainder of the record.

type The data type of the field. Valid values are:

B Binary. FLD interprets binary fields as being signed.

C Character. This is the default.

P Packed decimal.

U Interprets the field as Character, but converts it to uppercase before
returning the string.

Z Zoned decimal. Interprets all of the COBOL external decimal
variants as numeric data.

If you specify a value for length that would cause the record length to be
exceeded:
v For character fields (type C, U), FLD returns the remainder of the record.
v For numeric fields (types B, P, Z), FLD returns a null string.

If you specify a numeric type (types B, P, Z), and the specified field
contains invalid data for that type, then FLD returns a null string. Numeric
data is always returned in integer form; that is, FLD does not perform
scaling of numeric data.

The FLD function is similar to the built-in REXX SUBSTR function, except that FLD
interprets the “substring” according to the specified data type, and returns the
value formatted appropriately. (For a numeric field, FLD returns the value with a
sign, and without leading zeros.)

Example 1

If the value of the packed decimal field that starts at column 8 is greater than 100,
then do not process the current record.
If FLD(8,P) > 100 Then Return 'DROP'

Example 2

If the value of the 2-digit year field starting at column 42 is greater than 60, then
insert the literal “19” before the year field; otherwise, insert “20”.
If FLD(42,2,Z) > 60 Then

outrec = FLD(1,41)||'19'||FLD(42)
Else

outrec = FLD(1,41)||'20'||FLD(42)

Example 3

If the 4-byte field that starts at column 11 does not contain valid packed decimal
data, then do not process the current record.
If FLD(11,4,p) = '' Then Return 'DROP'

Function reference: External REXX functions

Chapter 16. Functions 1081

Example 4

If the value of the packed decimal field that starts at INPOS + 8 is greater than
100, then do not process the current record.
If FLD(P8,P) > 100 Then Return 'DROP'

FLD_CO

FLD_CO syntax

�� FLD_CO (
1

start
,

length(inrec)-start+1

length
,

type
, �

� �

,

needle) ��

(Can be used in FASTREXX condition expressions.)

Searches the field within the input record specified by start and length, for one or
more occurrences of needle. On successful execution when searching for a string,
also updates the value of INPOS to the first byte of the located field in the input
record.

Returns
If at least one occurrence of needle is found, returns 1. If no occurrences are
found, returns 0.

start Position, in bytes, in the input record at which to start searching for
occurrences of needle. Can be specified as:

Absolute position
Must be a positive integer. Default value is 1. If start is greater than
the current length of the input record, the function has no effect.

Relative to current INPOS
Can be specified as IPx or INx, or as Px or Nx. If this resolves to a
value of less than or equal to zero, the function results in an error.
If this resolves to a value that is greater than the current length of
the input record, the function has no effect.

Relative to current OUTPOS
Must be specified as OPx or ONx. If this resolves to a value of less
than or equal to zero, the function results in an error. If this
resolves to a value that is greater than the current length of the
input record, the function has no effect.

length Length, in bytes, of the field to be searched.
v For character fields, the length defaults to the remaining record length

from the start position to the end of the record (inclusive). A value of 0
also indicates that the field extends to the end of the record.

v For binary fields, you must specify the length. It can be 2, 4, or 8.

Function reference: External REXX functions

1082 File Manager for z/OS V10R1 User’s Guide

v For packed decimal fields, if you specify the length, it must be in the
range 1-16. If you omit the length, FLD_CO attempts to determine the
packed field length from the record data.

v For zoned decimal fields, if you specify the length, it must be in the
range 1-31 or, if the field contains a separate sign character, in the range
1-32. If you omit the length, it defaults to the remainder of the record.

type The data type of the field. Valid values are:

B Binary. FLD_CO interprets binary fields as being signed.

C Character. This is the default. The comparison is case sensitive.

P Packed decimal.

U Interprets the field as Character, but converts it to uppercase before
comparing it with needle.

Z Zoned decimal. Interprets all of the COBOL external decimal
variants as numeric data.

needle String(s) or numeric(s) to search for. For the character types, FLD_CO
searches the haystack for each of the needles. In this context, it behaves like
a combination of the FLD and CONTAINS functions. For the numeric data
types, the haystack is treated as a single numeric field, and an appropriate
numeric comparison is performed against each of the needles. In this
context it behaves like a combination of the FLD and NCONTAIN
functions. You can search for up to 20 strings at a time.

To perform case-insensitive searches, specify type as ’U’ and needle in uppercase.

Example 1

If the current input record contains “MIKE”, “Mike” or “mike” in the first ten
columns, then write the record.
If FLD_CO(1,10,'U','MIKE') Then WRITE('MDD')

Example 2

If the current input record contains “USA”, “Australia” or “England”, then drop
the record from processing.
If FLD_CO(,,,'USA','Australia','England') Then Return 'DROP'

Example 3

If the current input record contains “MIKE”, “Mike” or “mike” in the ten columns
immediately after the current INPOS, then write the record.
If FLD_CO(P0,10,'U','MIKE') Then WRITE('MDD')

Function reference: External REXX functions

Chapter 16. Functions 1083

FLD_OUT

FLD_OUT syntax

�� FLD_OUT (
1

i_start
,

0

i_length
,

0

o_start
, �

�
i_length

o_length
,

pad
) ��

Note: Commas following the last specified argument can be omitted.

Can be used in FASTREXX procedures.

Overlays the output record with a field from the input record. See OVLY_OUT for
a function to overlay the output record with a literal. If the target field length
exceeds the source field length, then the source field is padded to the specified
length using the pad character. If the target field length is less than the source
field, the source field is truncated from the right. On successful execution, also
updates the value of OUTPOS to one byte past the end of the field overlaid in the
output record.

Returns
A single blank

i_start Position, in bytes, in the input record at which to start reading the field to
be copied. Can be specified as:

Absolute position
Must be a positive integer. Default value is 1.

Relative to current INPOS
Can be specified as IPx or INx, or as Px or Nx. Must resolve to a
positive integer.

Relative to current OUTPOS
Must be specified as OPx or ONx. Must resolve to a positive
integer.

i_length
Length, in bytes, of the source field. Must be a non-negative integer.
Defaults to 0. If you omit i_length or specify zero, the remainder of the
input record from the i_start position is used. This also applies if you
specify a value that would cause the source field to be read from beyond
the end of the current input record.

o_start Position, in bytes, in the output record at which to start overlaying the
copied field. If you omit o_start or specify zero, the field is appended to the
end of the output record. If o_start is greater than the current length of the
output record, the record is padded with the specified or defaulted pad
character from the current record length to the specified start position. Can
be specified as:

Absolute position
Must be a non-negative integer. Default value is 0.

Function reference: External REXX functions

1084 File Manager for z/OS V10R1 User’s Guide

Relative to current INPOS
Must be specified as IPx or INx. Must resolve to a positive integer.

Relative to current OUTPOS
Can be specified as OPx or ONx, or as Px or Nx. Must resolve to a
positive integer.

o_length
Length, in bytes, of the target field. Defaults to the source field length
(i_length). A value of 0 indicates that the target field length is the greater of
i_length and the remaining output record length. If 0 is specified for both
o_start and o_length, then i_length is used as the target length.

pad Pad character. Defaults to the pad character set on the File Manager
System Processing Options panel (when processing online) or the pad
character specified in the SET function (when running in batch). If the
current pad setting is OFF or unspecified, the default pad character is a
blank.

Example 1

Copy the characters in columns one and two of the input record to columns three
and four of the output record.
FLD_OUT(1,2,3,2)

Example 2

Append the characters in columns eleven and twelve of the input record to the
end of the output record, padded with two blanks.

FLD_OUT(11,2,0,4,' ')

Example 3

Search a field in the input record for the characters ’AA’ and, if found, copy to the
end of the output record (assumes that OUTPOS is still set to end of output
record).

IF FLD_CO(10,2,C,'AA') Then
/* when successful, updates INPOS to 12 */
FLD_OUT(N2,2,P0,2)
/* copies from INPOS - 2, appends to end of output record */

FLD_TM

FLD_TM syntax

��
1

FLD_TM (, mask ,)
start 1

type

��

Note: Commas following the last specified argument can be omitted.

Can be used in FASTREXX condition expressions.

Tests selected bits of a field in the input record.

Function reference: External REXX functions

Chapter 16. Functions 1085

Returns
Returns 1 if the test evaluates as True, and 0 if the test evaluates as False.

start Position, in bytes, in the input record at which to start testing. The length
of the field is defined by the mask. Can be specified as:

Absolute position
Must be a positive integer. Default value is 1. If start is greater than
the current length of the input record, the function has no effect.

Relative to current INPOS
Can be specified as IPx or INx, or as Px or Nx. If this resolves to a
value of less than or equal to zero, the function results in an error.
If this resolves to a value that is greater than the current length of
the input record, the function has no effect.

Relative to current OUTPOS
Must be specified as OPx or ONx. If this resolves to a value of less
than or equal to zero, the function results in an error. If this
resolves to a value that is greater than the current length of the
input record, the function has no effect.

mask Bit-string determining which bits to test in the field. The length of the
mask defines the length of the input field. This field defines a bit-string
mapping used to test the specified bits in the input record. You can use the
bit-string, hex-string or character-string formats to define this field,
Therefore, ’0100 0000’b, ’40’x, and ’ ’ are all legitimate and equivalent ways
of defining a mask to test the second bit of a one-byte field.

type Type of test.

1 FLD_TM returns True (1) if all the bits that are on in the mask are
on in the input record field. This is the default value.

0 FLD_TM returns True (1) if all the bits that are on in the mask are
off in the input record field.

M FLD_TM returns True (1) if at least one of the bits that are on in
the mask is on in the input record, and at least one is off.

N FLD_TM returns True (1) if at least one of the bits that are on in
the mask is off in the input record field.

Example 1

Test the third byte of the input record and, if the low order bit is set, overlay a hex
FF into the second byte of the output record.
If FLD_TM(3,'01'x) Then Do

OVLY_OUT('ff'x,2,1)
Return

End
Return 'DROP'

Example 2

Test the third byte of the input record and if some of the three high order bits are
set, and some are not, overlay the contents of the second byte of that record with a
hex 04.
If FLD_TM(3,'11100000'b,M) Then Do

OVLY_OUT('04'x,2,1)

Function reference: External REXX functions

1086 File Manager for z/OS V10R1 User’s Guide

Example 3

Test the current INPOS position of the input record and, if the low order bit is set,
overlay a hex FF into the byte prior to this location in the output record.
If FLD_TM(P0,'01'x) Then Do

OVLY_OUT('ff'x,IN1,1)
Return

End
Return 'DROP'

FLD_TYPE

FLD_TYPE syntax

�� FLD_TYPE (
1

start
,

length(inrec)-start+1

length
,

type
) ��

Note: Commas following the last specified argument can be omitted.

Can be used in FASTREXX condition expressions.

Tests the data type of a field in the input record.

Returns
Returns 1 if the test evaluates as True, and 0 if the test evaluates as False.

start Position, in bytes, in the input record at which to start testing. Can be
specified as:

Absolute position
Must be a positive integer. Default value is 1. If start is greater than
the current length of the input record, the function has no effect.

Relative to current INPOS
Can be specified as IPx or INx, or as Px or Nx. If this resolves to a
value of less than or equal to zero, the function results in an error.
If this resolves to a value that is greater than the current length of
the input record, the function has no effect.

Relative to current OUTPOS
Must be specified as OPx or ONx. If this resolves to a value of less
than or equal to zero, the function results in an error. If this
resolves to a value that is greater than the current length of the
input record, the function has no effect.

length Length of the field in the input record.
v For packed decimal fields, if you specify the length, it must be in the

range 1-16. If you omit the length, FLD_CO attempts to determine the
packed field length from the record data.

v For zoned decimal fields, if you specify the length, it must be in the
range 1-31 or, if the field contains a separate sign character, in the range
1-32. If you omit the length, it defaults to the remainder of the record. A
value of 0 also indicates that the field extends to the end of the record.

type Data type to test for.

Function reference: External REXX functions

Chapter 16. Functions 1087

P FLD_TYPE returns 1 if the field is a valid packed decimal field.
Variant sign values (such as ’f’x for positive) are considered valid.
Returns 0 otherwise.

Z FLD_TYPE returns 1 if the field is a valid zoned decimal field.
FLD_TYPE recognizes all of the COBOL external decimal variants
as numeric data. Returns 0 otherwise.

Example 1

If the first three bytes of the current input record contain a valid packed decimal
number, tally the field. Otherwise, tally the first two bytes as a binary number.
If FLD_TYPE(1,3,P) Then

TALLY(1,3,P,'Tally packed')
Else

TALLY(1,2,B,'Tally binary')

Example 2

If the three bytes starting at the current INPOS in the input record contain a valid
packed decimal number, copy the three bytes to the end of the output record.
Otherwise, copy the two bytes starting at INPOS to the end of the output record.
If FLD_TYPE(P0,3,P) Then

FLD_OUT(P0,3,P0,3)
Else

FLD_OUT(P0,2,P0,2)

Note: In this example, the abbreviated form of the relative position specification
can be used in both arguments of the FLD_OUT function. This is because
i_start naturally targets the input record and o_start naturally targets the
output record.

FLDI

FLDI syntax

��
1

FLDI (, length , type ,
start

’EQ’

operator
�

�

�

,

value

, duplication) ��

Can be used in FASTREXX condition expressions.

Performs a conditional test against input record field defined in by the start length
and type parameters.

Notes:

1. The operator (operator), and non-numeric values should all be enclosed in
quotes to avoid syntax errors.

Function reference: External REXX functions

1088 File Manager for z/OS V10R1 User’s Guide

|
|

|

|||||||||||||||||||||||||||||||||||
|

|
||||||||||||||||||||||||

||||

|

|
|

|

|
|

2. If you specify a value for length that would cause the record length to be
exceeded, a false result is returned.

3. If you specify a numeric type (types B, P, Z), and the specified field contains
invalid data for that type, then the function returns a false result. Numeric data
is always returned in integer form; that is, the function does not perform
scaling of numeric data.

start Position in bytes, in the input record at which to start reading the field
value. Can be specified as:

Absolute position
Must be a positive integer. If start is greater than the current length
of the input record, the function has no effect.

Relative to current INPOS
Can be specified as IPx or INx, or as Px or Nx. If this resolves to a
value of less than or equal to zero, the function results in an error.
If this resolves to a value that is greater than the current length of
the input record, the function produces a false result.

Relative to current OUTPOS
Must be specified as OPx or ONx. If this resolves to a value of less
than or equal to zero, the function results in an error. If this
resolves to a value that is greater than the current length of the
input record, the function produces a false result.

length The length of the field in bytes.
v For binary fields, you must specify the length. It can be 2, 4, or 8.
v For character fields, if you omit the length, the length is defaulted:

– For contains type operators, to the rest of the input record.
– When all values are variable substitutions, to the rest of the input

record.
– Otherwise, the maximum literal value length is be used.

v For packed decimal fields, if you specify the length, it must be in the
range 1–16. If you omit the length, the function attempts to determine
the packed field length from the record data and returns only that field.

v For zoned decimal fields, if you specify the length, it must be in the
range 1–31 or, if the field contains a separate sign character, in the range
1–32. If you omit the length, the function returns the remainder of the
record. If this exceeds 32, then the function returns a false result.

type The data type of the field. Valid values are:

B Binary. The function interprets binary fields as being signed.

C Character. This is the default.

P Packed decimal.

U Interprets the field as character, but converts it to uppercase before
returning the string.

Z Zoned decimal. Interprets all of the COBOL external decimal
variants as numeric data.

operator
The default is EQ or =. This function supports all the operators described
for dynamic template and criteria edit. For details about the operators
supported and their description, see:
v “Dynamic Template panel” on page 510.

Function reference: External REXX functions

Chapter 16. Functions 1089

|
|

|
|
|
|

||
|

|
|
|

|
|
|
|
|

|
|
|
|
|

||

|

|
|
|
|
|

|
|
|

|
|
|
|

||

||

||

||

||
|

||
|

|
|
|
|

|

v “Record Identification Criteria panel” on page 602.
v “Record Selection Criteria panel” on page 607.

value The value or values entered must be valid in the context of the operator
and the field which is being referenced. For example, only certain
operators like CO (contains) allow multiple values. Numeric values should
be entered when testing numeric fields, and so on.
v Specifying hexadecimal strings. A hexadecimal string must be in the

form ’hhhhhh’x. The value enclosed in quotes must be an even number
of characters and contain valid hexadecimal characters (0–9, A–F).

v Specifying binary strings. A binary string must be in the form ’nnnnnn’b.
The value enclosed in quotes must be a combination of ″0″s and ″1″s.

v Specifying character strings. For non-numeric types, the value should be
enclosed in quotes.

v Specify a variable by specifying &variable_name. A variable is
substituted for the value if a matching character, numeric, or tally
variable can be located. If a matching variable cannot be found, the
string is treated as a literal value. If a numeric comparison is being
performed, a character variable is converted to a number - if the
conversion fails, the function returns a false result. If a numeric or tally
variable is referenced in a character comparison, then the value is the
number converted to its display form with leading zeros removed.

duplication
Specify an integer n to duplicate the literal value n times.

Note: This can only be used for operators that support a single value (for
example, Not contains) and where the value is a literal constant and
not a substitute variable.

Example 1

Check the input record and process only those records that contain values of
’Smith’ or ’Jones’.

Note: In this case, use operator CU so the contains processing is not case-sensitive.
if FLDI(1,,C,'CU','Smith','Jones') then

return
else

return 'DROP'

Example 2

Process all records with a salary greater than 75000, where salary is a packed
decimal value found at start position 28.

Note: In this case, allow File Manager to calculate the packed decimal field length
if FLDI(28,,P,'>',75000) then

return
else

return 'DROP'

Example 3

Process all input records with the value ’ABCABCABCABCABC’ at start position
10.

Function reference: External REXX functions

1090 File Manager for z/OS V10R1 User’s Guide

|

|

||
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|

|
|
|

|

|
|

|

|
|
|
|

|

|
|

|

|
|
|
|

|

|
|

Note: The length defaults to 15, the literal value length.
If FLDI(10,'=','ABC',5) then

return
else

return 'DROP'

Example 4

The same as Example 2, but using a numeric variable.
SETN(salary_high,75000)
if FLDI(28,,P,'>','&salary_high') then

return
else

FLDO

FLDO syntax

��
1

FLDO (, length , type ,
start

’EQ″

operator
�

�

�

,

value

, duplication) ��

FLDO is the same as FLDI except it tests the current output record.

I_LENGTH

I_LENGTH syntax

�� I_LENGTH () ��

Can be used in FASTREXX condition expressions.

Returns the length, in bytes, of the input record.

Example 1

Write only records with a length of 100 to the output file DD100.
If i_length() = 100 Then

WRITE('DD100')

Function reference: External REXX functions

Chapter 16. Functions 1091

|

|
|
|
|

|

|

|
|
|
|

|
|

|

|||||||||||||||||||||||||||||||||||
|

|
||||||||||||||||||||||||

||||

|

MOD_DATE

MOD_DATE syntax - with template

�� MOD_DATE (fieldname , mask
, day , month

�

�
(1)

, year , century , error_report
�

�
, tally_literal

) ��

Notes:

1 At least one of these parameters (day, month, year) must be specified.

MOD_DATE syntax - without template

�� MOD_DATE (start , length , type , mask
, day

�

�
, month

(1)

, year , century , error_report
�

�
, tally_literal

) ��

Notes:

1 At least one of these parameters (day, month, year) must be specified.

(Can be used in FASTREXX procedures.)

Notes:

1. Only modifies valid dates. Input and modified dates must range between and
include 15 October 1582 to 31 December 9999.

2. Commas following the last specified argument can be omitted.

MOD_DATE can be run with or without a template and enables you to set,
increment, or decrement a date field using year.month and day values. The
fieldname or location parameters (start, length, type), the mask parameter and at least
one of the year or month or day values must be specified for the function call to be
valid. The input value is taken from the current output buffer and the modified
value is stored in the output buffer.

fieldname
A template is required with this form and the name you specify must

Function reference: External REXX functions

1092 File Manager for z/OS V10R1 User’s Guide

|
|

|

|||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||
|

|
||||||||||||||||

|

|

|||||
|

|

||||||||||||||||||||||||||||||
|

|
||
|

|
||||||||||||||||

|

|

|||||

|

|

|
|

|

|
|
|
|
|
|

|
|

match a field name in the template. For non-unique names, you can
specify a name in the form groupname.dataname. Name matching is not
case-sensitive. If the name is unqualified, then the first occurrence of the
name is used. For dimensioned fields, you can refer to an individual array
element by providing a suffix subscript in the form (nn), where nn is a
valid subscript for the dimensioned field. If you do not provide a
subscript, the function applies to all elements of the array.

Notes:

1. If you are running a copy process and you have specified an input and
output template, then the field name must be defined to both input and
output templates.

2. If you are copying multiple record layouts, the MOD_DATE function
applies to records that have been identified as the record layout which
contains this field.

start Position, in bytes, in the input record at which to start reading the field
value. Can be specified as:

Absolute position
Must be a positive integer. Default value is 1. If start is greater than
the current length of the input record, the function has no effect.

Relative to current INPOS
Can be specified as IPx or INx, or as Px or Nx. If this resolves to a
value of less than or equal to zero or greater than the current
length of the input record, the function has no effect.

Relative to current OUTPOS
Must be specified as OPx or ONx. If this resolves to a value of less
than or equal to zero or greater than the current length of the input
record, the function has no effect.

length The length of the field in bytes.

For binary fields, either omit the length or specify 4.

For packed decimal fields, if you specify the length, it must be in the range
1–16. If you omit the length, MOD_DATE attempts to determine the
packed field length from the record data and returns only that field.

type The data type of the field. Valid values are:
B Binary.
C Character. This is the default.
P Packed decimal.

mask Picture string describing the date. File Manager supports all pictures
described in the z/OS Language Environment Programming Services,
Appendix B, ″Date and time services tables″. In addition to those masks,
File Manager supports CYYDDD to handle old century value Julian dates.
A ″C″ value of ″0″ is interpreted as ″19″, and a ″C″ value of ″1″ is
interpreted as ″20″. By default, 2-digit years lie within the 100-year range
starting 80 years prior to the system date covered by the LE masks. The
default range is changed by specifying the century parameter.

day Day adjustment.

month Month adjustment.

year Year adjustment.

Function reference: External REXX functions

Chapter 16. Functions 1093

|
|
|
|
|
|
|

|

|
|
|

|
|
|

||
|

|
|
|

|
|
|
|

|
|
|
|

||

|

|
|
|

||
||
||
||

||
|
|
|
|
|
|
|

||

||

||

The day, month, and year adjustment values can set, increment, and or decrement
the respective value in the date field. The presence of a plus or minus symbol
indicates the number provided is to increment or decrement the current value. The
absence of plus or minus symbols indicates the number is to replace the current
value. If the first non-blank character is an asterisk, then the current day, month, or
year value is used to set the current value, otherwise it is derived from the record.
For the month value or year value, you can suffix the value with an ″E″ to indicate
end of month adjustment. If the input date is the end of month, then the resultant
date is the end of month, unless day arithmetic is also performed.

Here are examples showing how to code them:
'*+10' Sets the current day, month, or year and adds 10 to it.
'*-10' Sets the current day, month, or year and subtracts 10 from it.
'+10' Adds 10 to the current value found on the record.
'-10' Subtracts 10 from the current value found on the record.
'+3E' Adds 3 months and make adjustments for end of month if required.
'22' Sets the respective day, month, or year value to 22.

Note: If you specify the symbols ″*″, ″+″, or ″-″, you must code the value in
quotes.

Month and Year Arithmetic:

If input date is the last day of the month and you specify ″E″ as the suffix on the
month or year value, or if the resulting month has fewer days than the day
component of the input date, the result is the last day of the resulting month.
Otherwise, the result has the same day component as input date.

Here are some examples:
v Assume today is January 31, 2007. Adding one month results in the end of

February, 2007-02-28.
v ″+3E″ is specified for month, and the input date is February 28th 2007. The result

is May 31st 2007.
v ″+3″ is specified for month, and the input date is February 28th 2007. The result

is May 28th 2007.

century
Specify a value between 0 and 100 to be used to define the 100-year range
to interpret a 2-digit year. The default value is 80 years prior to the system
date. Use this parameter to adjust that value.

error_report
Specify ″Y″ if you want to produce error messages when the function
cannot modify a date because either the input or resultant date is invalid.
The default is to ignore such dates.

tally_literal
Specify a literal to appear on a tally report that counts every successful
operation of the function.

Examples

This COBOL copybook describes an input record with different date formats and is
used here to illustrate MOD_DATE usage with a template or copybook.
01 DATE-REC.

03 DATE-YYYYMMDD pic x(8).
03 DATE-MM-DD-YYYY pic x(10).

Function reference: External REXX functions

1094 File Manager for z/OS V10R1 User’s Guide

|
|
|
|
|
|
|
|
|

|
||
||
||
||
||
||

|
|

|

|
|
|
|

|

|
|

|
|

|
|

|
|
|
|

|
|
|
|

|
|
|

|

|
|

|
|
|

03 DATE-DD-MM-YYYY pic x(10).
03 DATE-YYYYDDD pic x(7).
03 DATE-YYYYDDDp pic 9(7) packed-decimal.
03 DATE-YYYYMMDDb pic 9(8) binary.
03 DATE-CYYDDD pic 9(6) packed-decimal.
03 DATE-DDMMYYYY pic 9(8).
03 DATE-YYMMDD OCCURS 6 times pic 9(6) packed-decimal.
03 filler pic x.

Example 1

Add 60 days to all date fields and report any errors. Note all array fields are
modified.
$$FILEM DSC INPUT=DDIN,
$$FILEM IGNLEN=YES,
$$FILEM TCIN=hlq.COBOL(SAMPLE),
$$FILEM OUTPUT=DDOUT,PROC=*
MOD_DATE('DATE-YYYYMMDD','YYYYMMDD','+60',,,,Y)
MOD_DATE('DATE-YYYYMMDDB','YYYYMMDD','+60',,,,Y)
MOD_DATE('DATE-MM-DD-YYYY','MM/DD/YYYY','+60',,,,Y)
MOD_DATE('DATE-DD-MM-YYYY','DD/MM/YYYY','+60',,,,Y)
MOD_DATE('DATE-YYYYDDD','YYYYDDD','+60',,,,Y)
MOD_DATE('DATE-YYYYDDDP','YYYYDDD','+60',,,,Y)
MOD_DATE('DATE-CYYDDD','CYYDDD','+60',,,,Y)
MOD_DATE('DATE-DDMMYYYY','DDMMYYYY','+60',,,,Y)
MOD_DATE('DATE-YYMMDD','YYMMDD','+60',,,,Y)
/*

Example 2

Same as example 1 without using a copybook.
$$FILEM DSC INPUT=DDIN,
$$FILEM OUTPUT=DDOUT,PROC=*
MOD_DATE(1,8,C,'YYYYMMDD','+60',,,,Y)
MOD_DATE(40,4,B,'YYYYMMDD','+60',,,,Y)
MOD_DATE(9,10,C,'MM/DD/YYYY','+60',,,,Y)
MOD_DATE(19,10,C,'DD/MM/YYYY','+60',,,,Y)
MOD_DATE(29,7,C,'YYYYDDD','+60',,,,Y)
MOD_DATE(36,,P,'YYYYDDD','+60',,,,Y)
MOD_DATE(44,,P,'CYYDDD','+60',,,,Y)
MOD_DATE(48,8,C,'DDMMYYYY','+60',,,,Y)
MOD_DATE(56,,P,'YYMMDD','+60',,,,Y)
MOD_DATE(60,,P,'YYMMDD','+60',,,,Y)
MOD_DATE(64,,P,'YYMMDD','+60',,,,Y)
MOD_DATE(68,,P,'YYMMDD','+60',,,,Y)
MOD_DATE(72,,P,'YYMMDD','+60',,,,Y)
MOD_DATE(76,,P,'YYMMDD','+60',,,,Y)
/*

Example 3

Add 2 months and 20 days to all date fields and ignore errors.
$$FILEM DSC INPUT=DDIN,
$$FILEM IGNLEN=YES,
$$FILEM TCIN=hlq.COBOL(SAMPLE),
$$FILEM OUTPUT=DDOUT,PROC=*
MOD_DATE('DATE-YYYYMMDD','YYYYMMDD','+20','+2')
MOD_DATE('DATE-YYYYMMDDB','YYYYMMDD','+20','+2')
MOD_DATE('DATE-MM-DD-YYYY','MM/DD/YYYY','+20','+2')
MOD_DATE('DATE-DD-MM-YYYY','DD/MM/YYYY','+20','+2')
MOD_DATE('DATE-YYYYDDD','YYYYDDD','+20','+2')
MOD_DATE('DATE-YYYYDDDP','YYYYDDD','+20','+2')

Function reference: External REXX functions

Chapter 16. Functions 1095

|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|

MOD_DATE('DATE-CYYDDD','CYYDDD','+20','+2')
MOD_DATE('DATE-DDMMYYYY','DDMMYYYY','+20','+2')
MOD_DATE('DATE-YYMMDD','YYMMDD','+20','+2')
/*

Example 4

Set all date field values to the current date plus 1 for year, month, and date.
Change the century window used for DATE-YYMMDD field to 60.
$$FILEM DSC INPUT=DDIN,
$$FILEM IGNLEN=YES,
$$FILEM TCIN=hlq.COBOL(SAMPLE),
$$FILEM OUTPUT=DDOUT,PROC=*
MOD_DATE('DATE-YYYYMMDD','YYYYMMDD','*+1','*+1','*+1')
MOD_DATE('DATE-YYYYMMDDB','YYYYMMDD','*+1','*+1','*+1')
MOD_DATE('DATE-MM-DD-YYYY','MM/DD/YYYY','*+1','*+1','*+1')
MOD_DATE('DATE-DD-MM-YYYY','DD/MM/YYYY','*+1','*+1','*+1')
MOD_DATE('DATE-YYYYDDD','YYYYDDD','*+1','*+1','*+1')
MOD_DATE('DATE-YYYYDDDP','YYYYDDD','*+1','*+1','*+1')
MOD_DATE('DATE-CYYDDD','CYYDDD','*+1','*+1','*+1')
MOD_DATE('DATE-DDMMYYYY','DDMMYYYY','*+1','*+1','*+1')
MOD_DATE('DATE-YYMMDD','YYMMDD','*+1','*+1','*+1','60')
/*

NCONTAIN

Syntax

�� �

,

NCOntain(number, match) ��

Compares the value represented by number against the value or values defined by
match.

Returns
If the numeric value of any of the match arguments is equal to the numeric
value of number, then NCONTAIN returns 1. Otherwise, NCONTAIN
returns 0.

number
The value, represented by a number, a function returning a value or a
variable to which a value has been assigned, that you are comparing with
match.

match The value or list of values that you are comparing with number. You can
search for up to 20 values at a time.

For a similar function for matching string values, see “CONTAINS” on page 1078.
For a FASTREXX-eligible equivalent, see “FLD_CO” on page 1082.

Example 1

If the current record contains a packed decimal value of 10, 20, or 30 starting at
column 8, then print the record.
If NCO(FLD(8,P),10,20,30) Then PRINT(inrec,'CHAR')

Function reference: External REXX functions

1096 File Manager for z/OS V10R1 User’s Guide

|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

Example 2

If the current record contains a zoned decimal value of 11, 12, or 13 starting at
column 10, then drop the record from processing.
If NCO(FLD(10,5,Z),11,12,13) Then Return 'DROP'

O_LENGTH

O_LENGTH syntax

�� O_LENGTH () ��

Can be used in FASTREXX condition expressions.

Returns the length, in bytes, of the output record.

Example 1

If the current length of the output record is 100, overlay the last 20 columns with
asterisks.
If o_length() = 100 Then

OVLY_OUT('*',81,20,'*')

OFLD_CO

OFLD_CO syntax

�� OFLD_CO (
1

start
,

length(outrec)-start+1

length
,

type
, �

� �

,

needle) ��

(Can be used in FASTREXX condition expressions.)

Searches the field within the output record specified by start and length, for one or
more occurrences of needle. On successful execution when searching for a string,
also updates the value of OUTPOS to the first byte of the located field in the
output record.

Returns
If at least one occurrence of needle is found, returns 1. If no occurrences are
found, returns 0.

start Position, in bytes, in the output record at which to start searching for
occurrences of needle. Can be specified as:

Function reference: External REXX functions

Chapter 16. Functions 1097

Absolute position
Must be a positive integer. Default value is 1. If start is greater than
the current length of the output record, the function has no effect.

Relative to current INPOS
Must be specified as IPx or INx. If this resolves to a value of less
than or equal to zero, the function results in an error. If this
resolves to a value that is greater than the current length of the
input record, the function has no effect.

Relative to current OUTPOS
Can be specified as OPx or ONx, or as Px or Nx. If this resolves to
a value of less than or equal to zero, the function results in an
error. If this resolves to a value that is greater than the current
length of the output record, the function has no effect.

length Length, in bytes, of the field to be searched.
v For character fields, the length defaults to the remaining record length

from the start position to the end of the record (inclusive). A value of 0
also indicates that the field extends to the end of the record.

v For binary fields, you must specify the length. It can be 2, 4, or 8.
v For packed decimal fields, if you specify the length, it must be in the

range 1-16. If you omit the length, FLD_CO attempts to determine the
packed field length from the record data.

v For zoned decimal fields, if you specify the length, it must be in the
range 1-31 or, if the field contains a separate sign character, in the range
1-32. If you omit the length, it defaults to the remainder of the record.

type The data type of the field. Valid values are:

B Binary. FLD_CO interprets binary fields as being signed.

C Character. This is the default. The comparison is case sensitive.

P Packed decimal.

U Interprets the field as Character, but converts it to uppercase before
comparing it with needle.

Z Zoned decimal. Interprets all of the COBOL external decimal
variants as numeric data.

needle String(s) or numeric(s) to search for. For the character types, FLD_CO
searches the haystack for each of the needles. In this context, it behaves like
a combination of the FLD and CONTAINS functions. For the numeric data
types, the haystack is treated as a single numeric field, and an appropriate
numeric comparison is performed against each of the needles. In this
context it behaves like a combination of the FLD and NCONTAIN
functions. You can search for up to 20 strings or numerics at a time.

To perform case-insensitive searches, specify type as ’U’ and needle in uppercase.

Example 1

If the current output record contains “MIKE”, “Mike” or “mike” in the first ten
columns, then write the record.
If FLD_CO(1,10,'U','MIKE') Then WRITE('MDD')

Example 2

Function reference: External REXX functions

1098 File Manager for z/OS V10R1 User’s Guide

If the current output record contains “USA”, “Australia” or “England”, then drop
the record from processing.
If FLD_CO(,,,'USA','Australia','England') Then Return 'DROP'

Example 3

If the current output record contains “MIKE”, “Mike” or “mike” in the ten
columns immediately after the current INPOS, then write the record.
If FLD_CO(P0,10,'U','MIKE') Then WRITE('MDD')

OVLY_OUT

OVLY_OUT syntax

�� OVLY_OUT (overlay ,
0

start
,

length(literal)

length
, �

�
C

type

,
pad

) ��

Note: Commas following the last specified argument can be omitted.

Can be used in FASTREXX procedures.

Overlays the output record with a string. If the length of the target field exceeds
the length of the literal, the target field is padded to the specified length using the
pad character. If the length of the target field is less than the length of the literal,
the following occurs:
v Character overlays are truncated on the right without error. For example,

OVLY_OUT(’ABCD’,1,2) overlays ’AB’.
v Numeric overlay truncations are considered to be an error. For example,

OVLY_OUT(500000,1,2,’B’) fails because you can’t fit the specified value into a
2-byte binary field.

On successful execution, also updates the value of OUTPOS to one byte past the
end of the field overlaid in the output record.

Returns
A single blank.

overlay An expression that resolves to a string, which is overlaid on that part of
the output record specified by start and length. To be eligible for
FASTREXX processing, this must be a literal string, a symbol or a
blank-delimited sequence of symbols and/or literal strings.

If the first character of the literal is an ampersand and the literal that
follows matches an existing character or numeric variable or tally literal
(matching not case-sensitive), then the variable value is substituted
according to the type. For example, if the type is character and a numeric
or tally value are referenced, then the literal is the numeric value in

Function reference: External REXX functions

Chapter 16. Functions 1099

|
|
|
|
|

display format with no leading zeros. If the type is binary, packed or
zoned, then the variable value is converted to binary, packed or zoned
number.

Notes:

1. Conversion errors may occur when converting a character variable to a
numeric.

2. If a variable name is not found, then the string is interpreted as a
literal.

start Position, in bytes, in the output record at which to start overlaying the
string. If you omit start, specify zero, or specify a value one greater than
the length of the current output record, the field is appended to the end of
the output record. If start is greater than the current length of the output
record, the record is padded with the specified or defaulted pad character
from the current record length to the specified start position. Can be
specified as:

Absolute position
Must be a non-negative integer that is less than or equal to the
maximum length of the output data set. Default value is 0.

Relative to current INPOS
Must be specified as IPx or INx. Must resolve to a non-negative
integer.

Relative to current OUTPOS
Can be specified as OPx or ONx, or as Px or Nx. Must resolve to a
non-negative integer.

length Length, in bytes, of target field in the output record. Defaults as shown
here:

Character fields
Defaults to the length of the literal. A value of 0 indicates that the
target field length is the greater of the source (literal) length and
the remaining record length. In particular, if 0 is specified for both
start and length, then the length of the literal is used as the target
length.

Packed decimal
Defaults to the last packed length value determined from the input
record by a preceding function. For example,
if FLD(1,P) = 2 then
OVLY_OUT('5',1,,P)

Uses the length determined by the FLD function to default the
packed decimal length. If no previous packed decimal length was
calculated, a length error occurs and the procedure is terminated.

type The data type of the literal to be written to the output record.

B Binary. The literal string must represent a positive or negative
integer, and is stored in the output field as a signed
two’s-complement format binary number, right-justified in the
target field. The length must be 2, 4, or 8, and cannot be omitted.

C Character. This is the default.

P Packed decimal. The literal string must represent a positive or
negative integer, and is stored right-justified in the target field as a

Function reference: External REXX functions

1100 File Manager for z/OS V10R1 User’s Guide

|
|
|

|

|
|

|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|

signed packed decimal number using the preferred positive (’c’x)
and negative (’d’x) sign indicators. The length must be between 1
and 16.

Z Zoned decimal (COBOL external decimal with non-character
trailing sign). The literal string must represent a positive or
negative integer, and is stored in the output field as a signed zoned
decimal number. The length must be between 1 and 31.

pad Pad character. Defaults to the pad character set on the File Manager
System Processing Options panel. If the current pad setting is OFF, the
default pad character is a blank. For numeric types such as B, P or Z, the
pad character is not used when pre-fill characters are required to
right-justify a numeric field. The pre-fill characters are always leading
zeros, as required by the field type.″

See FLD_OUT for a function to overlay the output record with a field from the
input record.

Example 1

Set columns one and two of the output record to asterisks.
OVLY_OUT('**',1,2)

Example 2

Append the two-byte packed decimal value 2 to the end of the output record.
OVLY_OUT(2,0,2,P)

Example 3

Search the input record for a literal and then overlay the last two bytes of that
literal with a new literal in the output record.

If FLD_CO(1,,C,'AABB') Then
OVLY_OUT('CC',IP2,2)

OVLY_VAR

OVLY_VAR syntax

�� OVLY_VAR (name , overlay
0

, start , length �

� ,
C

type

,
pad

) ��

(Can be used in FASTREXX procedures.)

Note: Commas following the last specified argument can be omitted.

Function reference: External REXX functions

Chapter 16. Functions 1101

|
|

|

|||||||||||||||||||||||||||
|

|
||||||||||||||||||||||||||||

||||

|

|

Overlays the named character variable with a string. If the length of the target field
exceeds the length of the literal, the target field is padded to the specified length
using the pad character. If the length of the target field is less than the length of
the literal:
v Character overlays are truncated on the right without error. For example,

OVLY_VAR(MYVAR,'ABCD',1,2) overlays ’AB’.
v Numeric overlay truncations are considered to be an error. For example,

OVLY_VAR(MYVAR,500000,1,2,'B') fails because you cannot fit the specified value
into a 2-byte binary field.

On successful execution, also updates the value of current variable position to one
byte past the end of the field overlaid in the variable.

Returns
A single blank.

name 1–256 character variable identifier. Variable name matching is not case
sensitive. If the name is not found, a severe error occurs and the procedure
is terminated. Cannot be a system character variable or a system numeric
variable. See “Using FASTREXX variables” on page 1068.

overlay An expression that resolves to a string, which is overlaid on that part of
the variable specified by start and length. To be eligible for FASTREXX
processing, this must be a literal string, a symbol, or a blank-delimited
sequence of symbols or literal strings. If the first character of the literal is
an ampersand and the literal that follows matches an existing character,
numeric variable, or tally literal (matching not case-sensitive), then the
variable value is substituted according to the type. For example, if the type
is character and a numeric or tally value are referenced, then the literal is
the numeric value in display format with no leading zeros. If the type is
binary then the variable value is converted to a binary number.

Note: Conversion errors may occur.

start Position, in bytes, in the variable at which to start overlaying the string. If
you omit start, specify zero, or specify a value one greater than the length
of the current variable, the field is appended to the end of the variable. If
start is greater than the current length of the variable, the record is padded
with the specified or defaulted pad character from the current variable
length to the specified start position. Can be specified as:

Absolute position
Must be a non-negative integer that is less than or equal to the
maximum length of the output data set. Default value is 0.

Relative to current variable position
Must be specified as IPx or Inx, OPx or ONx, or as Px or Nx. Must
resolve to a non-negative integer.

length Length, in bytes, of target field in the variable. Defaults:

Character fields
To the length of the literal. A value of 0 indicates that the target
field length is the greater of the source (literal) length and the
remaining variable length. In particular, if 0 is specified for both
start and length, then the length of the literal is used as the target
length.

Function reference: External REXX functions

1102 File Manager for z/OS V10R1 User’s Guide

|
|
|
|

|
|

|
|
|

|
|

|
|

||
|
|
|

||
|
|
|
|
|
|
|
|
|

|

||
|
|
|
|
|

|
|
|

|
|
|

||

|
|
|
|
|
|

Packed decimal
To the last packed length value determined from the input record
by a preceding function. For example:
if FLD(1,P) = 2 then
OVLY_VAR(MYVAR,'5',1,,P)

Uses the length determined by the FLD function to default the
packed decimal length. If no previous packed decimal length was
calculated a length error occurs and the procedure is terminated.

type The data type of the field. Valid values are:

B Binary. FLD_CO interprets binary fields as being signed.

C Character. This is the default. The comparison is case sensitive.

P Packed decimal.

U Interprets the field as Character, but converts it to uppercase before
comparing it with needle.

Z Zoned decimal. Interprets all of the COBOL external decimal
variants as numeric data.

pad Pad character. Defaults to the pad character set on the File Manager
System Processing Options panel. If the current pad setting is OFF, the
default pad character is a blank. For numeric types such as B, P, or Z, the
pad character is not used when pre-fill characters are required to
right-justify a numeric field. The pre-fill characters are always leading
zeros, as required by the field type.

Example 1

Set columns one and two of the variable to asterisks.
OVLY_VAR(MYVAR,'**',1,2)

Example 2

Append the two-byte packed decimal value 2 to the end of the variable.
OVLY_VAR(MYVAR,2,0,2,P)

Example 3

Search the variable for a literal and then overlay the last two bytes of that literal
with a new literal in the variable.

If TESTC(MYVAR,'CU','AABB') Then
OVLY_VAR(MYVAR,'CC',IP2,2)

PRINT

Syntax

�� PRINT(record,format) ��

Prints the record string in the specified format. The print output destination is
determined as follows:

Function reference: External REXX functions

Chapter 16. Functions 1103

|
|
|

|
|

|
|
|

||

||

||

||

||
|

||
|

||
|
|
|
|
|

|

|

|

|

|

|

|

|
|

|
|

Procedure invocation Print output destination

From an online panel Determined by the value of the PRINTOUT field on
the Set Print Processing Options panel.

From a batch job SYSPRINT

From REXX program Determined by the PRINTOUT parameter of the SET
function.

Returns

0 Function was successful.

4 Function was unsuccessful and the record is not printed because
either:
v A format of SNGL or TABL was specified and File Manager

cannot determine the record type.
v A template has been specified and the record did not pass the

selection criteria.

12 Function was unsuccessful and the record is not printed because
either:
v You did not provide parameters.
v A format of SNGL or TABL was specified, but no template or

copybook was provided

record Any string or variable representing a string can be used, however, INREC
or OUTREC are most commonly used in this function.

format Can be CHAR, HEX, SNGL or TABL. If you specify TABL or SNGL format:
v On the function or panel that you are enhancing, you must specify a

copybook or template that describes the record type to be printed.
v File Manager determines the type of the record to be printed by

comparing its length with the record types in the template, and also by
using any record identification criteria in the template.

v When using PRINT with DSC or the Copy Utility (option 3.3) and you
have specified both an input and an output copybook or template, then
the copybook or template used to format the printed record is
determined as follows: if the value of the record to be printed matches
the input record (INREC variable), then the input copybook or template
is used; otherwise, the output copybook or template is used.
Please ensure the record value matches the template that File Manager
uses to print the data set.

v Only those fields that have been selected in the template are printed.
v If the record has been reformatted by template processing, the variable

INREC contains the input record value and OUTREC contains the
reformatted output record.

Note: Avoid using PRINT in a REXX procedure for a:
v DSP function
v FCH function
v Print Utility (option 3.2)

because output from PRINT is interspersed with their normal output, which
can be confusing. Using PRINT in a REXX procedure that runs from the

Function reference: External REXX functions

1104 File Manager for z/OS V10R1 User’s Guide

Find/Change Utility panel (option 3.6), does not result in this problem,
because the report produced by the panel is sent to a data set, separate from
print output.

Example 1

Print the first hundred records.
If PRTCOUNT() < 100 Then PRINT(inrec,'CHAR')

Example 2

Print the current input record in TABL format.
rc = PRINT(inrec,'TABL')

PRTCOUNT

Syntax

�� PRTCOUNT() ��

Can be used in FASTREXX condition expressions.

Returns the current count of records printed. The count is incremented for each
record printed by the DSP function or Print Utility (option 3.2), and for each
invocation of the PRINT function.

Example

Print the first 10 input records.
If PRTCOUNT() < 10 Then PRINT(inrec,'CHAR')

RECCUR (DSEB only)

Syntax

�� RECCUR() ��

Returns the current record number.

Example

If the current record is the hundredth record in the file, then print it.
If RECCUR() = 100 Then PRINT(inrec,'CHAR')

Function reference: External REXX functions

Chapter 16. Functions 1105

RECSIN

Syntax

�� RECSIN() ��

Can be used in FASTREXX condition expressions.

Returns the count of records read so far from the input data set. When the input
data set is a PDS, the RECSIN count restarts for each member being processed.

When used with DSEB, RECSIN returns the record number of the furthest record
read so far in the data set. (For example, if you have moved down as far as record
number 500 in the data set, then you move up to a previous record, RECSIN still
returns 500 after moving up.)

Example

Print every hundredth record.
If RECSIN()//100 = 0 Then PRINT(inrec,'CHAR')

RECSOUT

Syntax

��
(1)

RECSOUT(ddname) ��

Notes:

1 When used with a DSC or DSP function, ddname is optional.

Can be used in FASTREXX condition expressions.

Returns the count of records so far written to the specified output data set.

The argument you can specify is:

ddname
Specifies that the count of records so far written to the data set identified
by the specified ddname be returned. If ddname is omitted when used with
a DSC or DSP function, the default is the ddname of the primary output
data set. The primary output data set depends on the File Manager
function or panel being used:

Function or panel option Primary output data set is...

Print Utility (option 3.2) Determined by the value of the PRINTOUT field on
the Set Print Processing Options panel. For details,
see “Printing from File Manager” on page 274.

Function reference: External REXX functions

1106 File Manager for z/OS V10R1 User’s Guide

Function or panel option Primary output data set is...

DSC function Copy Utility (option
3.3)

The data set that is the target of the copy function.

DSP function When used in a batch job, the primary output data
set is SYSPRINT. When used in a REXX procedure,
the primary output data set is determined by the
PRINTOUT parameter of the SET function. For
details, see “SET (Set Processing Options)” on page
1019.

Specifying the ddname of the primary output data set is the same as omitting the
argument.

If you specify a ddname that is not the ddname of the primary output data set and
has not previously been specified as the argument to a WRITE function, the value
returned is zero.

The count of records written to an output data set is incremented each time a
WRITE function is issued against the specified data set. In the case of the primary
output data set, the count is also incremented each time a record is written to the
data set by the File Manager function. Unless a record is discarded using the
RETURN DROP (or STOP IMMEDIATE) instruction, each record selected for
processing is written to the primary output data set. For information about how to
discard records, see “RETURN return values” on page 1125.

Note: The RECSOUT function treats each member of the primary output data set
as separate, that is, the count starts at zero for each output member.
However, the count is maintained across members of the input data set so
that, if copying from a PDS to a sequential data set, the RECSOUT function
reflects the total number of records written, regardless of how many input
members are involved.

If you are using the DSC function or Data Copy Utility and you have specified
REXX member selection, the RECSOUT function is disabled for the primary output
data set. When RECSCOUT targets a ddname other than the primary output data
set, it still functions as normal. However, you must keep in mind that after a
decision has been made to DROP or PROCESS the member, no further records are
passed to your REXX procedure, so subsequent records are not counted.

Example 1

If more than one hundred records have been written to the EXT100 file, then
terminate File Manager processing.
rc = WRITE(EXT100)
If RECSOUT(EXT100) > 100 Then Return 'STOP'

RSTR_OUT

Syntax

�� RSTR_OUT() ��

Function reference: External REXX functions

Chapter 16. Functions 1107

(Can be used in FASTREXX condition expressions.)

Restores the most recently saved copy of the output buffer.

There are no synchronization restrictions. The SAVE_OUT() invocation that a
RSTR_OUT() invocation is “reversing” could have occurred for the current record,
or any previously processed record.

There is no stacking of saved output buffers. If RSTR_OUT() is invoked twice in
succession, then the second invocation restores the same data as the first.

If RSTR_OUT() is invoked without a prior invocation of SAVE_OUT(), then the
output buffer is “cleared”. The effect is the same as executing SET_OLEN(0).

SAVE_OUT

Syntax

�� SAVE_OUT() ��

(Can be used in FASTREXX condition expressions.)

Saves a copy of the current output buffer.

There are no synchronization restrictions. The SAVE_OUT() invocation that a
RSTR_OUT() invocation is “reversing” could have occurred for the current record,
or any previously processed record.

There is no stacking of saved output buffers. If SAVE_OUT() is invoked twice in
succession, then the data saved by the first invocation is lost.

SET_OLEN

SET_OLEN syntax

��
length(inrec)

SET_OLEN (,)
length pad

��

Note: Commas following the last specified argument can be omitted.

Can be used in FASTREXX procedures.

Sets the length of the output record. If the specified length is greater than the
current length of the output record, the pad character is used to fill out the record
to the specified length. If the specified length is less than the current OUTPOS,
OUTPOS is reset to the new length + 1.

Returns
A single blank.

Function reference: External REXX functions

1108 File Manager for z/OS V10R1 User’s Guide

|

|

length Length, in bytes, to set. Must be a non-negative integer. The default value
is the length of the input record (which is also the original length of the
output record).

pad Pad character. Defaults to the pad character set on the File Manager
System Processing Options panel. If the current pad setting is OFF, the
default pad character is a blank.

Example

Set the length of the current output record to 80.
SET_OLEN(80)

SETC

SETC syntax

�� SETC (name , ’value’ , duplication) ��

Can be used in FASTREXX condition expressions.

Defines or changes a character variable.

name 1–256 character variable identifier. Variable name matching is not case
sensitive. Cannot be a system character variable or a system numeric
variable. See “Using FASTREXX variables” on page 1068.

value A single value can be entered:
v Specifying hexadecimal strings. A hexadecimal string must be in the

form ’hhhhhh’x. The value enclosed in quotes must be an even number
of characters and contain valid hexadecimal characters (0–9, A–F).

v Specifying binary strings. A binary string must be in the form ’nnnnnn’b.
The value enclosed in quotes must be a combination of ″0″s and ″1″s.

v Specifying character strings. For non-numeric types, the value should be
enclosed in quotes.

v Specify a variable by specifying &variable_name. A variable is
substituted for the value if a matching character, numeric, or tally
variable can be located. If a matching variable cannot be found, the
string is treated as a literal value. If a numeric or tally variable is
referenced, then the value is the number converted to its display form
with leading zeros removed.

duplication
Specify an integer n to duplicate the literal value n times.

Note: This can only be used where the value is a literal constant and not a
substitute variable.

Example 1

Set up a variable called A10 with A value repeated 10 times.
If RECSIN() <= 0
SETC ('CHECK_CHAR','A',10)
else

Function reference: External REXX functions

Chapter 16. Functions 1109

|
|

|

|||||||||||||||||||||
||||

|

|

||
|
|

||

|
|
|

|
|

|
|

|
|
|
|
|
|

|
|

|
|

|

|

|
|
|

SETC('CHECK_CHAR','B',10)

If FLDI(20,10,,'EQ','&CHECK_CHAR') then
Return
Else
Return "DROP"

Example 2

Copy the tenth input record into variable REC10.
If RECSIN() = 10 then

SETC('REC10','&ZINREC')

SETN

SETN syntax

�� SETN (name , value) ��

Can be used in FASTREXX condition expressions.

Defines or changes a numeric variable.

name 1–256 character variable identifier. Variable name matching is not case
sensitive. Cannot be a system character variable or a system numeric
variable. See “Using FASTREXX variables” on page 1068.

value An integer or substitute numeric or tally variable preceded with an
optional plus or minus sign. The number can set,increment, or decrement
the respective value in the variable. The variable is initialized with a zero
value if it does not exist. The presence of a plus or minus symbol indicates
the number provided is to increment or decrement the current
valuerespectively. The absence of plus or minus symbols indicates the
number is to replace the current value. Ensure that the value is enclosed in
quotes if a plus or minus sign is specified. A substitute variable name
should begin with an ampersand (&variable_name). This must refer to an
existing tally or numeric variable. If the variable does not exist, the
procedure fails with a severe error. The maximum number supported is 31
digits plus sign.

Example 1

Count the number of records with surname smith that have an age over 50.
If FLDI(1,20,C,'CU','SMITH') and FLD(25,,P) > 50 then
SETN ('Smith_over_50','+1')

Example 2

Save tally value for first 50 record.
TALLY(1,P,'Total Car crashes')
IF RECSIN() = 50 then

SETN('Total_first_50','&total car crashes')

Function reference: External REXX functions

1110 File Manager for z/OS V10R1 User’s Guide

|
|
|
|
|
|

|

|

|
|

|
|

|

|||||||||||||||||
||||

|

|

||
|
|

||
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|

|

|
|
|

TESTC

TESTC syntax

�� TESTC (name ,
start , length , type ,

’EQ″

operator
�

�

�

,

value

, duplication) ��

Can be used in FASTREXX condition expressions.

Notes:

1. The operator (operator) and non-numeric values should all be enclosed in
quotes to avoid syntax errors.

2. The start length and type parameters are optional to provide the capability to
examine part of the variable. The second operand can be the operator. See
examples provided.

3. If you specify a value for length that would cause the record length to be
exceeded, a false result is returned.

4. If you specify a numeric type (types B, P, Z), and the specified field contains
invalid data for that type, then the function returns a false result. Numeric data
is always returned in integer form; that is, the function does not perform
scaling of numeric data.

name 1–256 character variable identifier. Variable name matching is not case
sensitive. If the name is not found, a variable is created with a length of 1
and value X'00'.

start Position in bytes in the variable at which to start reading the field value.
Can be specified as:

Absolute position
Must be a positive integer. If start is greater than the current length
of the input record, the function has no effect.

Relative start position
Can be specified as IPx or INx, or as Px or Nx, OPx, or ONx.
When testing a variable, the current variable position is the basis of
calculation. The current variable position is changed by the TESTC
function with a contains type operator. If this resolves to a value of
less than or equal to zero, the function produces a false result. If
this resolves to a value that is greater than the current length of the
variable, the function produces a false result.

length The length of the field in bytes.
v For binary fields, you must specify the length. It can be 2, 4, or 8.
v For character fields, if you omit the length, the length is defaulted:

– For contains type operators, to the rest of the variable.
– When all values are variable substitutions, to the rest of the variable.
– Otherwise, the maximum literal value length is be used.

Function reference: External REXX functions

Chapter 16. Functions 1111

|
|

|

|||||||||||||||||||||||||||||||||||||
|

|
||||||||||||||||||||||||

||||

|

|

|
|

|
|
|

|
|

|
|
|
|

||
|
|

||
|

|
|
|

|
|
|
|
|
|
|
|

||

|

|
|
|
|

v For packed decimal fields, if you specify the length, it must be in the
range 1–16. If you omit the length, the function attempts to determine
the packed field length from the variable value and returns only that
field.

v For zoned decimal fields, if you specify the length, it must be in the
range 1–31 or, if the field contains a separate sign character, in the range
1–32. If you omit the length, the function returns the remainder of the
variable. If this exceeds 32, then the function returns a false result.

type The data type of the field. Valid values are:

B Binary. The function interprets binary fields as being signed.

C Character. This is the default.

P Packed decimal.

U Interprets the field as character, but converts it to uppercase before
returning the string.

Z Zoned decimal. Interprets all of the COBOL external decimal
variants as numeric data.

operator
The default is EQ or =. This function supports all the operators described
for dynamic template and criteria edit. For details about the operators
supported and their description, see:
v “Dynamic Template panel” on page 510.
v “Record Identification Criteria panel” on page 602.
v “Record Selection Criteria panel” on page 607.

value The value or values entered must be valid in the context of the operator
and the field which is being referenced. For example, only certain
operators like CO (contains) allow multiple values. Numeric values should
be entered when testing numeric fields, and so on.
v Specifying hexadecimal strings. A hexadecimal string must be in the

form ’hhhhhh’x. The value enclosed in quotes must be an even number
of characters and contain valid hexadecimal characters (0–9, A–F).

v Specifying binary strings. A binary string must be in the form ’nnnnnn’b.
The value enclosed in quotes must be a combination of ″0″s and ″1″s.

v Specifying character strings. For non-numeric types, the value should be
enclosed in quotes.

v Specify a variable by specifying &variable_name. A variable is
substituted for the value if a matching character, numeric, or tally
variable can be located. If a matching variable cannot be found, the
string is treated as a literal value. If a numeric comparison is being
performed, a character variable is converted to a number - if the
conversion fails, the function returns a false result. If a numeric or tally
variable is referenced in a character comparison, then the value is the
number converted to its display form with leading zeros removed.

duplication
Specify an integer n to duplicate the literal value n times.

Note: This can only be used for operators that support a single value (for
example, Not contains) and where the value is a literal constant and
not a substitute variable.

Function reference: External REXX functions

1112 File Manager for z/OS V10R1 User’s Guide

|
|
|
|

|
|
|
|

||

||

||

||

||
|

||
|

|
|
|
|

|

|

|

||
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|

|
|
|

Example 1

SET variable named TESTREC to current input record. Check the variable and
process only those records that contain values of ’Smith’ or ’Jones’.

Note: In this case, use the operator CU so the contains processing is not
case-sensitive. The start, length, and type parameters have been omitted.

SETC('TESTREC','&ZINREC')

if TESTC(TESTREC,'CU','Smith','Jones') then
return

else
return 'DROP'

Example 2

Process all records with a salary greater than 75000, where salary is a
packed-decimal value found at start position 28.

Note: In this case, allow File Manager to calculate the packed-decimal field length.
SETC('TESTREC','&ZINREC')

if TESTC(TESREC,28,,P,'>',75000) then
return

else
return 'DROP'

TESTN

TESTN syntax

�� TESTN (name ,
’EQ’

operator

�

,

value

) ��

Can be used in FASTREXX condition expressions.

name This is a 1-256 name that matches either a tally literal or a numeric
variable. Variable name matching is not case sensitive. If the name is not
found, a numeric variable is created with value of 0.

operator
The default is EQ or =. This function supports all the operators described
for dynamic template and criteria edit. For details about the operators
supported and their description, see:
v “Dynamic Template panel” on page 510.
v “Record Identification Criteria panel” on page 602.
v “Record Selection Criteria panel” on page 607.

value The value or values entered must be valid in the context of the operator
and the field which is being referenced. For example, only certain
operators like CO (contains) allow multiple values. Numeric values should
be entered when testing numeric fields, and so on.

Function reference: External REXX functions

Chapter 16. Functions 1113

|

|
|

|
|

|
|
|
|
|
|

|

|
|

|

|
|
|
|
|

|
|

|

||||||||||||||||||||||||||||||||||||||

||||

|

||
|
|

|
|
|
|

|

|

|

||
|
|
|

v Specifying hexadecimal strings. A hexadecimal string must be in the
form ’hhhhhh’x. The value enclosed in quotes must be an even number
of characters and contain valid hexadecimal characters (0–9, A–F).

v Specifying binary strings. A binary string must be in the form ’nnnnnn’b.
The value enclosed in quotes must be a combination of ″0″s and ″1″s.

v Specifying character strings. For non-numeric types, the value should be
enclosed in quotes.

v Specify a variable by specifying &variable_name. A variable is
substituted for the value if a matching character, numeric, or tally
variable can be located. If a matching variable cannot be found, the
string is treated as a literal value. If a numeric comparison is being
performed, a character variable is converted to a number - if the
conversion fails, the function returns a false result. If a numeric or tally
variable is referenced in a character comparison, then the value is the
number converted to its display form with leading zeros removed.

Example 1

Count the number of records with A in the first byte and stop processing after 20.
IF FLD(1,1) = 'A' then

SETN(COUNTA,'+1')

if TESTN(COUNTA,'>',20) then
return "STOP IMMEDIATE"

else
return

Example 2

When the total of packed decimal field start at column 28 is greater than 100, stop
processing

Note: In this case, allow File Manager to calculate the packed-decimal field length.
TALLY(28,P,'Total Sales')

if TESTN('Total Sales',,'>',100) then
return "STOP IMMEDIATE"

else
return

TALLY

Syntax

�� TALLY(start,length,
Z
type ,string) ��

Can be used in FASTREXX procedures.

Accumulates the value of the specified input record field in a TALLY register and,
at the end of the File Manager function, prints on SYSPRINT the TALLY register
prefixed by string. The TALLY is maintained across members of a PDS.

Function reference: External REXX functions

1114 File Manager for z/OS V10R1 User’s Guide

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|

|

|
|

|

|
|
|
|
|

Note: If REXX member selection has been used with the DSC function or the Data
Copy Utility, input records are only passed to the REXX procedure until a
decision has been made on whether to DROP or PROCESS the member.
TALLY accumulates the value of the specified input record field for all
records processed by the REXX procedure. This includes records that were
processed for members that were subsequently DROPped, and excludes
records that were not passed to the REXX procedure because a decision had
already been made to PROCESS or DROP the member.

Returns
A single blank.

start Start, in bytes, position of the field to be tallied in the input record.

length Length, in bytes, of the field to be tallied in the input record.

type The data type of the field to be accumulated. The values that can be
specified are:

B Signed binary. If you specify B for type, length must be 2, 4, or 8.

P Packed decimal. If you specify P for type, length must be between 1
and 16.

UB Unsigned binary. If you specify UB for type, length must be 2, 4, or
8.

Z Zoned decimal. This is the default. If you specify Z for type, length
must be between 1 and 32 or, if the field contains a separate sign
character or leading blanks, between 1 and 33. TALLY ignores
leading blanks for zoned decimal fields, allowing simple character
numeric fields to be tallied. Records containing only blanks in the
target field are ignored. If a separate sign is present, there must be
no blanks between the sign and the zoned data.

string A literal string that is prefixed to the accumulated TALLY total.

The field whose value is to be accumulated starts at position start in the input
record, and is length bytes long. If the sum of start and length is more than one
greater than LENGTH(INREC), the TALLY function returns a blank without
changing the TALLY register.

You can code more than one TALLY function in your procedure. File Manager
creates a separate TALLY register for each TALLY function with a unique
combination of arguments. This means that you can accumulate a given field in
more than one TALLY register by specifying a different value for string in each
TALLY function.

Example

Accumulate hours recorded in personnel records depending on record type.
Select

When (FLD(1,1) == 'E') Then
TALLY(15,4,B,'Sum of employee hours')

When (FLD(1,1) == 'S') Then
TALLY(15,4,B,'Sum of supervisor hours')

Otherwise
TALLY(28,4,B,'Sum of manager hours')

End

Function reference: External REXX functions

Chapter 16. Functions 1115

TFLD

TFLD syntax

�� TFLD (#nn(subscript)
fieldname(subscript)

’EQ’)
’operator’

�

,

value

) ��

(Can be used in FASTREXX condition expressions.)

Performs a conditional test against any field defined in a template. For
dimensioned fields, you can apply the condition to any or all of the elements of
the array. You can only use this function if the associated function is running with
a copybook or template.

Note: The Field name (fieldname), field reference (#nn), operator (operator), and
non-numeric values should all be enclosed in quotes to avoid syntax errors.

#nn or fieldname

#nn Use this form when providing free-format criteria during template
edit. nn is the field reference number displayed during template
edit. It is not valid to use fieldname for a field reference when
providing criteria during template edit.

fieldname
Use this form of identifying fields when coding user procedures.
For non-unique names, you can specify a name in the form
groupname.dataname. Name matching is not case-sensitive. If the
name is unqualified, then the first occurrence of the name is used.
Do not code #nn values in user procedures, as the displayed field
reference values do not identify the correct field when running
from a user procedure.

subscript
This applies only to dimensioned fields. You can specify one of
these forms:

(ANY) This is the default if you do not specify a subscript for a
dimensioned field and it indicates that at least one element
of the associated array must satisfy the condition for a true
result.

(ALL) This indicates that all elements of the associated array
must satisfy the condition for a true result.

(nn) This refers to a single array element and you should
provide a valid subscript for the dimensioned field.

operator
The default is EQ or =. This function supports all the operators described
for dynamic template and criteria edit. For details about the operators
supported and their description, see
v “Dynamic Template panel” on page 510
v “Record Identification Criteria panel” on page 602

Function reference: External REXX functions

1116 File Manager for z/OS V10R1 User’s Guide

v “Record Selection Criteria panel” on page 607

value The value or values entered must be valid in the context of the operator
and the field which is being referenced. For example, only certain
operators like CO (contains) allow multiple values. Numeric values should
be entered when testing numeric fields, and so on.

Specifying hexadecimal strings
A hexadecimal string must be in the form 'hhhhhh'x. The value
enclosed in quotes must be an even number of characters and
contain valid hexadecimal characters (0–9, A–F).

Specifying binary strings
A binary string must be in the form 'nnnnnn'b. The value enclosed
in quotes must be a combination of ″0″s and ″1″s.

Specifying character strings
For non-numeric types, the value should be enclosed in quotes.

Example 1

Check every element of the dimensioned field CONTACTS and process only those
records with contact values of ’Smith’ or ’Jones’.

Note: In this case, we use operator CU so the contains processing is not
case-sensitive.

if TFLD('CONTACTS(ANY)','CU','Smith','Jones') then
return

else
return 'DROP'

Example 2

Check the monthly pay for a contract record types and process those with every
month occurrance higher than 8000.

Note: MPAY is not unique, so we qualify which MPAY we want to check.
Copybook
01 REC-CONTRACT.

05 MPAY PIC S9(8) Binary OCCURS 12 Times.
01 REC-Employee.

05 MPAY PIC S9(8) Binary OCCURS 12 Times.

if TFLD('REC-CONTRACT.MPAY(ALL)','>',8000) then
return

else
return 'DROP'

Performance notes

TFLD is faster than FLD_CO, but requires a template to reference a field value.
TFLD('#3',,'CO','A') & TFLD('#3',,'CO','B')

would be faster if coded as:
TFLD('#3',,'ACO','A','B')

Function reference: External REXX functions

Chapter 16. Functions 1117

TM

Syntax

�� TM(string,mask) ��

Tests selected bits of a string and sets the condition code accordingly. See
“FLD_TM” on page 1085 for a similar function that is FASTREXX eligible.

Returns
If the tested bits are all ones, then TM returns 1. Otherwise, TM returns 0.

string A literal string, or variable representing a string.

mask A bit-string determining which bits to test in string.

The length of the test is based on the length of the shorter of the two
arguments, string and mask. A mask bit of one indicates that the equivalent
bit in string is to be tested. When a mask bit is zero, the equivalent string
bit is ignored.

Example 1

Test the third byte of the input record and, if the low order bit is set, overlay a hex
FF into the second byte of that record.
If TM(FLD(3,1),'01'x) Then Do

outrec = OVERLAY('FF'x,outrec,2)
Return
End
Return 'DROP'

Example 2

Test the third byte of the input record and, if the high order bit is set, logically OR
a hex 04 over the contents of the second byte of that record.
If TM(FLC(3,1),'10000000'b) Then Do

outrec = OVERLAY(BITOR(fld(2,1),'04'x),outrec,2)
Return

End
Return 'DROP'

TOP (DSEB only)

Syntax

�� TOP() ��

Moves to the first input record.

Function reference: External REXX functions

1118 File Manager for z/OS V10R1 User’s Guide

UP (DSEB only)

Syntax

�� UP(n) ��

Moves up n number of input records, or to the first input record, if there are less
than n records above the current input record.

If, after moving, the current input record is the first input record, then the UP
function returns the string value “TOF” (top of file).

UPDATE (DSEB only)

Syntax

�� UPDATE() ��

Replaces the current input record with the value in OUTREC. If you leave DSEB or
move to another record before calling the UPDATE function, then any changes you
made to the current OUTREC are lost.

VAR_OUT

VAR_OUT syntax

�� VAR_OUT (name ,
1
i_start ,

0
i_length ,

0
o_start , �

�
i_length
o_length ,

pad
) ��

(Can be used in FASTREXX procedures.)

Note: Commas following the last specified argument can be omitted.

Overlays the output record with a field from the variable. See “OVLY_OUT” on
page 1099 for a function to overlay the output record with a literal. If the target
field length exceeds the source field length, then the source field is padded to the
specified length using the pad character. If the target field length is less than the
source field, the source field is truncated from the right. On successful execution,
also updates the value of OUTPOS to one byte past the end of the field overlaid in
the output record.

Returns
A single blank.

Function reference: External REXX functions

Chapter 16. Functions 1119

|
|

|

||
|

|
|||||||||||||||||||||||||

||||

|

|

|
|
|
|
|
|
|

|
|

name A 1–256 character variable identifier. Variable name matching is not
case-sensitive. If the name is not found, a variable is created and populated
from the current input record.

i_start Position, in bytes, in the variable at which to start reading the field to be
copied. Can be specified as:

Absolute position
Must be a positive integer. Default value is 1.

Relative to current INPOS
Can be specified as IPx or INx, or as Px or Nx, or as OPx or ONx.
Must resolve to a positive integer.

i_length
Length, in bytes, of the source field. Must be a non- negative integer.
Defaults to 0. If you omit i_length or specify zero, the remainder of the
variable from the i_start position is used. This also applies if you specify a
value that would cause the source field to be read from beyond the end of
the current variable.

o_start Position, in bytes, in the output record at which to start overlaying the
copied field. If you omit o_start or specify zero, the field is appended to the
end of the output record. If o_start is greater than the current length of the
output record, the record is padded with the specified or defaulted pad
character from the current record length to the specified start position. Can
be specified as:

Absolute position
Must be a positive integer. Default value is 1.

Relative to current INPOS
Can be specified as IPx or INx, or as Px or Nx, or as OPx or ONx.
Must resolve to a positive integer.

Relative to current OUTPOS
Can be specified as OPx or ONx, or as Px or Nx. Must resolve to a
positive integer.

o_length
Length, in bytes, of the target field. Defaults to the source field length
(i_length). A value of 0 indicates that the target field length is the greater of
i_length and the remaining output record length. If 0 is specified for both
o_start and o_length, then i_length is used as the target length.

pad Pad character. Defaults to the pad character set on the File Manager
System Processing Options panel (when processing online) or the pad
character specified in the SET function (when running in batch). If the
current pad setting is OFF or unspecified, the default pad character is a
blank.

Example 1

Copy the characters in columns 1 and 2 of the variable to columns 3 and 4 of the
output record.
VAR_OUT(MYVAR,1,2,3,2)

Example 2

Append the characters in columns 11 and 12 of the variable to the end of the
output record, padded with two blanks.

Function reference: External REXX functions

1120 File Manager for z/OS V10R1 User’s Guide

||
|
|

||
|

|
|

|
|
|

|
|
|
|
|
|

||
|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|
|
|

||
|
|
|
|

|

|
|

|

|

|
|

VAR_OUT(MYVAR,11,2,0,4,' ')

Example 3

Search a field in the variable for the characters ’AA’ and, if found, copy to the end
of the output record (assumes that OUTPOS is still set to end of output record).
IF TESTC(MYVAR,'CU','AA') Then
/* when successful, updates variable position to 12 */
VAR_OUT(MYVAR,N2,2,P0,2)
/* copies from variable position - 2, appends to end of output record */

VAR_TM

VAR_TM syntax

�� VAR_TM (name ,
1
start , mask ,

1
type

) ��

(Can be used in FASTREXX procedures.)

Note: Commas following the last specified argument can be omitted.

name 1–256 character variable identifier. Variable name matching is not case
sensitive. If the name is not found, the function returns a false result.

start Position, in bytes, in the variable at which to start testing. The length of the
field is defined by the mask (mask). Can be specified as:

Absolute position
Must be a positive integer. Default value is 1. If start is greater than
the current length of the variable, the function has no effect.

Relative to variable position
Can be specified as IPx or INx, or as Px or Nx, or as OPx or ONx.
If this resolves to a value of less than or equal to zero, the function
results in an error. If this resolves to a value that is greater than the
current length of the variable, the function has no effect.

mask A bit string determining which bits to test in the field. The length of mask
defines the length of the input field. This field defines a bit string mapping
used to test the specified bits in the variable. You can use the bit string,
hex string or character string formats to define this field, Therefore, ’0100
0000’b, ’40’x, and ’ ’ are all legitimate and equivalent ways of defining a
mask to test the second bit of a one-byte field.

type The type of test:

1 VAR_TM returns True (1) if all the bits that are on in the mask are
on in the variable field. This is the default value.

0 VAR_TM returns True (1) if all the bits that are on in the mask are
off in the variable field.

M VAR_TM returns True (1) if at least one of the bits that are on in
the mask is on in the variable, and at least one is off.

Function reference: External REXX functions

Chapter 16. Functions 1121

|

|

|
|

|
|
|
|

|
|

|

||

||||

|

|

||
|

||
|

|
|
|

|
|
|
|
|

||
|
|
|
|
|

||

||
|

||
|

||
|

N VAR_TM returns True (1) if at least one of the bits that are on in
the mask is off in the variable field.

Example 1

Test the third byte of the variable and, if the low order bit is set, overlay a hex FF
into the second byte of the output record.
If VAR_TM(3,'01'x) Then Do

OVLY_OUT('ff'x,2,1)
Return

End
Return 'DROP'

Example 2

Test the third byte of the variable and, if some of the three high order bits are set,
and some are not, overlay the contents of the second byte of that record with a hex
04.
If VAR_TM(3,'11100000'b,M) Then Do

OVLY_OUT('04'x,2,1)

Example 3

Test the current position of the variable and, if the low order bit is set, overlay a
hex FF into the byte prior to this location in the output record.
If VAR_TM(P0,'01'x) Then Do

OVLY_OUT('ff'x,IN1,1)
Return

End
Return 'DROP'

WRITE

Syntax

�� �

,

WRITE()
(1)

ddname

��

Notes:

1 When used with a DSC or DSP function, ddname is optional.

Can be used in FASTREXX procedures.

Writes a record to the specified data set or sets.

Returns
A single blank.

ddname
Specifies a record is to be written to the data set identified by the specified
ddname. If ddname is omitted when used with a DSC or DSP function, the
default is the ddname of the primary output data set. The primary output

Function reference: External REXX functions

1122 File Manager for z/OS V10R1 User’s Guide

||
|

|

|
|

|
|
|
|
|

|

|
|
|

|
|

|

|
|

|
|
|
|
|

data set depends on the File Manager function or panel being used:

Function or panel option Primary output data set is...

Print Utility (option 3.2) Determined by the value of the PRINTOUT field on
the Set Print Processing Options panel. For details,
see “Set Print Processing Options panel (option 0.1)”
on page 634.

Copy Utility (option 3.3) or DSC
function

The data set that is the target of the copy function.

For the DSC function, if a ddname is associated with
the primary output data set, then specifying that
ddname is the same as omitting the argument. Do
not target the primary output data set with another
ddname.

DSP function When used in a batch job, the primary output data
set is SYSPRINT. When used in a REXX procedure,
the primary output data set is determined by the
PRINTOUT parameter of the SET function. For
details, see “SET (Set Processing Options)” on page
1019.

If a ddname is associated with the primary output
data set, then specifying that ddname is the same as
omitting the argument. Do not target the primary
output data set with another ddname.

Except for the primary output data set, the data set attributes of the output data
set are derived from:
v The pre-allocated data set DCB attributes. Existing record formats, lengths and

block sizes are preserved.
v If it has been allocated without DCB attributes then these attributes are inherited

from the input data set.

Sequential data sets specified on a WRITE statement to which no records have
been written during the execution of a program are still opened and closed by File
Manager. This means that:
v Newly allocated data sets with DISP=(NEW,...) are initialized to an ″empty″ state

and only contain an EOF record.
v Existing data sets with data are handled as follows:

– DISP=(OLD,...) data sets are reset to an ″empty″ state and contain only an
EOF record; all previously existing data is lost.

– DISP=(MOD,...) data sets have their data preserved unaffected.

The record is written from the contents of one of the following REXX variables:
v If it has been assigned a value by the procedure, the variable OUTREC.ddname,

where ddname is the ddname specified in the WRITE function.
v If the variable OUTREC.ddname has not been assigned a value, or has been

unassigned using the DROP instruction, the File Manager-defined variable,
OUTREC.

The length of the record written depends upon the data set attributes of the output
data set. If the output data set contains variable-length records, the length of the
record is determined from the length of the data in the REXX variable. If the length
of the data is greater than the maximum record length specified in the data set

Function reference: External REXX functions

Chapter 16. Functions 1123

attributes, the record is truncated. If the output data set contains fixed-length
records, the length of the record written is the length specified in the data set
attributes, truncated or padded as necessary.

If the record format of the output data set specifies that the records contain a
carriage control character, depending on the output device, the first character of
the record data in the REXX variable is interpreted as a carriage control character.
For more information about records containing carriage control characters, see the
z/OS DFSORT Installation and Customization.

If you are using the DSC function or Data Copy Utility and the input data set is a
PDS(E) and the ddname of the target refers to a PDS(E), then members are created
in the target data set with names matching the name of the input data set member
as the result of the WRITE execution.

If you are using the DSC function or Data Copy Utility and you have specified
REXX member selection, the WRITE function is disabled for the primary output
data set. When WRITE targets a ddname other than the primary output data set, it
still functions as normal. However, you must keep in mind that after a decision
has been made to DROP or PROCESS the member, no further records are passed to
your REXX procedure, so subsequent WRITEs are not processed.

Example 1

If the current record is type 01, then write it to the DD01 file.
If FLD(1,2) = 01 Then WRITE('DD01')

Example 2

If the current record is type 02, then write it to the DD02 and DD02COPY files.
If FLD(1,2) = 02 Then WRITE('DD02','DD02COPY')

Function reference: External REXX functions

1124 File Manager for z/OS V10R1 User’s Guide

UK44322

Release Date: 3 March 2009

This set of PTFs contains the following APAR fixes:

APAR # APAR Abstract Doc Impact

PK79535 LOCATE command selects
an exact location rather than
selecting an appropriate start
position.

User's Guide and Reference
(SC19-2495-00)

PK79535
Initial problem description

The LOCATE command requires an exact match and accepts the
parameters NEXT, PREV, FIRST, LAST.

Outline of solution
The behavior of the LOCATE command when viewing a Load Module has
been changed as follows:

Performs a symbol name or symbol address locate and, if a matching
symbol-reference is found, moves the display to the specified reference. If
the symbol-reference is not found, the display is moved to the entry
logically preceding the symbol-reference.

Documentation impact
This APAR requires changes to be made to:
v User's Guide and Reference (SC19-2495-00)

Changes to the User's Guide and Reference

Chapter 15, "Primary commands", subsection "LOCATE primary
command"
In the syntax diagram entitled "Syntax in the Load Module Information panel",
remove the parameters NEXT, PREV, FIRST, and LAST so that the new diagram
looks like this:

Syntax in the Load Module Information panel

�� LOCATE
LOC
L

string ��

© Copyright IBM Corp. 2000, 2008 53

PK79535

54 Addenda to V9R1 User's Guides and Customization Guide

UK42251

Release Date: 18 December 2008

This set of PTFs contains the following APAR fixes:

APAR # APAR Abstract Doc Impact

PK75870 File Manager enhancements
to AUDIT logging and
reporting.

User's Guide and
Reference (SC19-2495-00)

User's Guide and
Reference for IMS
(SC19-2497-00)

Customization Guide
(SC19-2494-00)

PK75870
Initial problem description

File Manager does not have the ability to:
1. Produce an immediate report when SMF logging has been requested.
2. Display non displayable characters in hexadecimal on a formatted audit

report.
3. Show key fields with changed fields.
4. Highlight changes on audit report.

Outline of solution
File Manager will be enhanced to support:
1. A demand installation option that forces an audit trail and

automatically submits a job on completion of the edit session.
2. A Show Key option which will flag key fields and include key fields in

the report when only changed fields have been requested.
3. Two hexadecimal display options - one to display hex for all fields on a

formatted display. The other to display hex for characters that cannot
be currently displayed.

4. A highlight changes option to add an asterisk to the report to indicate
which fields have been changed.

Documentation impact
This APAR requires changes to be made to:
v User's Guide and Reference (SC19-2495-00)
v User's Guide and Reference for IMS (SC19-2497-00)
v Customization Guide (SC19-2494-00)

Changes to the User's Guide and Reference

Chapter 14, "Panels and fields", subsection "Print Audit Trail
panel"
Replace the figure "The Print Audit Trail panel" with this:

© Copyright IBM Corp. 2000, 2008 55

Add these parameter descriptions after the description for Batch execution:

Hex Format
To produce an UPDOWN hexadecimal display below the standard field
display.

Non-display Hex
To produce an UPDOWN hexadecimal display below the standard field
display only for fields that contain non-displayable \ characters.

Highlight changes
Highlight the changed fields. An asterisk is placed to left of the before data
to indicate the field has been changed.

Show key fields
To display key fields even when Print only changed fields is selected. A
"K" is printed to the left of key field names. For a KSDS data set, a key
field is any elementary field that intersects or is contained in the key area.

Chapter 16, "Functions", section "File Manager functions",
subsection "AUD (Print Audit Trail Report)"
Replace the syntax diagram with this:

Process Options Utilities Help
──
File Manager Print Audit Trail

Audit Trail:
Data set name . . . ___
Description _______________________________________

Processing Options:
Enter "/" to select option Formatted display options
_ Formatted print 2 1. Hex Format
_ Print only changed fields 2. Non-display Hex
_ Keep data set after printing / Highlight changes
_ Browse report / Show key fields
_ Batch execution

Command ===> ___
F1=Help F2=Split F3=Exit F4=CRetriev F7=Backward F8=Forward
F9=Swap F10=Actions F12=Cancel

Figure 3. The Print Audit Trail panel

PK75870

56 Addenda to V9R1 User's Guides and Customization Guide

Syntax

�� AUD
INPUT=DDIN
INPUT=ddname
DSNAME=logfile LABEL=description

FORMAT=YES

FORMAT=NO
�

�
DELETELOG=NO

DELETELOG=YES

TYPE=BASE

TYPE=subsys

CHANGED=NO

CHANGED=YES
�

�
NULLIND=displaychar

HEX=NO

HEX=YES

HEXND=NO

HEXND=YES

HICHG=NO

HICHG=YES
�

�
SHOWKEY=NO

SHOWKEY=YES
��

Add these parameter descriptions after the description for NULLIND:

HEX=YES
Produces an UPDOWN hexadecimal display below the standard field
display.

HEXND=YES
Produces an UPDOWN hexadecimal display below the standard field
display only for fields that contain non displayable characters.

HICHG=YES
Highlights the changed fields. An asterisk is placed to the left of the
"before" data to indicate the field has been changed.

SHOWKEY=YES
Displays key fields even when CHANGED=YES has been selected. A "K" is
printed to the left of key field names. For a KSDS data set, a key field is
any elementary field that intersects, or is contained in, the key area. Note:
does not apply to DB2 audit reports.

Changes to the User's Guide and Reference for IMS

Chapter 9, "Panels and fields", subsection "Print Audit Trail
panel"
Replace the figure "Print Audit Trail panel" with this:

PK75870

UK42251 57

Add these parameter descriptions after the description for Batch execution:

Hex Format
To produce an UPDOWN hexadecimal display below the standard field
display.

Non-display Hex
To produce an UPDOWN hexadecimal display below the standard field
display only for fields that contain non-displayable \ characters.

Highlight changes
Highlight the changed fields. An asterisk is placed to left of the before data
to indicate the field has been changed.

Show key fields
To display key fields even when Print only changed fields is selected. A
"K" is printed to the left of key field names. For a KSDS data set, a key
field is any elementary field that intersects or is contained in the key area.

Chapter 11, "Batch reference", subsection "Print Audit Report
(AUD)"
Replace the whole section up to, but excluding, the example with this:

Purpose
Print a formatted or unformatted audit trail report.

Usage Notes
You must specify the name of the audit trail data set from which you want
to produce a report.

Options
You can choose between printing an unformatted report or, if the audited
function used a template, a report formatted according to the template you

Process Options Help
──
FM/IMS Print Audit Trail

Audit Trail:
Data set name . . . 'FMNUSER.IMSAUDIT.D020927.T130548'
Description 'EDIT THE SUBURB DATABASE'

Processing Options:
Enter "/" to select option Formatted display options
/ Formatted print 2 1. Hex Format

Print only changed fields 2. Non-display Hex
Delete data set after printing Highlight changes

/ Browse report Show key fields
Batch execution

Command ===>
F1=Help F2=Split F3=Exit F4=CRetriev F7=Backward F8=Forward
F9=Swap F10=Actions F12=Cancel

Figure 4. Print Audit Trail panel

PK75870

58 Addenda to V9R1 User's Guides and Customization Guide

used. You can also specify whether or not you want the audit trail data set
to be deleted after printing. You can provide a description to help to
identify the audit trail report.

Related functions
None.

Syntax

�� AUD
INPUT=DDIN
INPUT=ddname
DSNAME=logfile LABEL=description

FORMAT=YES

FORMAT=NO
�

�
DELETELOG=NO

DELETELOG=YES

TYPE=BASE

TYPE=subsys

CHANGED=NO

CHANGED=YES

HEX=NO

HEX=YES
�

�
HEXND=NO

HEXND=YES

HICHG=NO

HICHG=YES

SHOWKEY=NO

SHOWKEY=YES
��

INPUT=ddname
Defines a reference to a DD or TSO ALLOC statement for the input data
set or HFS file. The default is DDIN.

DSNAME=logfile
Specifies the name of the audit trail log data set.

LABEL=Description
Optional identification for the audit trail report. Must be within quotes if it
contains blanks.

FORMAT
Determines the formatting of the audit trail report.

YES Default. Report is formatted according to the template used in the
audited Edit session.

NO Report is not formatted.

DELETELOG
Determines whether or not the audit trail data set is deleted after printing.
DELETELOG is not allowed for log data sets allocated using a DD
statement.

NO Default. The audit trail data set is not deleted.

YES The audit trail data set is deleted after the report is printed.

TYPE Specifies the subsystem used for the audited Edit session. Can be one of:

BASE Default.

IMS

DB2

CHANGED

NO Default. All fields are reported.

YES Only fields that are changed are reported.

PK75870

UK42251 59

HEX=YES
Produces an UPDOWN hexadecimal display below the standard field
display.

HEXND=YES
Produces an UPDOWN hexadecimal display below the standard field
display only for fields that contain non displayable characters.

HICHG=YES
Highlights the changed fields. An asterisk is placed to the left of the
"before" data to indicate the field has been changed.

SHOWKEY=YES
Displays key fields even when CHANGED=YES has been selected. A "K" is
printed to the left of key field names. For a KSDS data set, a key field is
any elementary field that intersects, or is contained in, the key area. Note:
does not apply to DB2 audit reports.

Changes to the Customization Guide

Chapter 5, "Customizing the File Manager audit facility",
subsection "Setting the appropriate options to produce an audit
trail"
Insert the following bullet point after the first bullet point:
v If you want to produce an audit trail and report on the changes made at

conclusion of an edit function then specify AUDITLOG=DEMAND. The job
submitted will be determined by skeleton member FMN0FTAD found in
FMN.SFMNSLIB. You should customize the job card and JCL in this skeleton to
specify the reporting options you require. (For FM/CICS, customize skeleton
FMN3FTAD.) The reporting options in the skeleton are described in the File
Manager User's Guide and Reference, SC19-2495.

Chapter 14, "Customizing the FM/DB2 audit facility", subsection
"Determining if an audit trail is to be produced"
Insert the following bullet point as the last bullet point:
v Demand; an audit trail will be produced for each user, regardless of whether or

not the user wants to record audit information and an audit report job will be
submitted at conclusion of the edit function or when you change SSIDs. Specify
AUDIT=(DEMAND,....) The job submitted will be will be determined by
skeleton member FMN2FTAD found in FMN.SFMNSLIB. You should customize
the job card and JCL to specify the reporting options you require. The reporting
options in the skeleton are described in the File Manager User's Guide and
Reference, SC19-2495.

Chapter 19, "Customizing FM/IMS"
In figure 12, describing the sample source for the FMN1POPT module, add the
following option with default values and description, to the FMN1POPD macro
section:
IMSAUDLG=N, Audit logging enforced? Y/N/D X

Also, add the following option with default values and description, to the
FMN1POPI macro section in this figure:
IMSAUDLG=, Audit logging enforced? Y/N/D X

PK75870

60 Addenda to V9R1 User's Guides and Customization Guide

Chapter 20, "Customizing the FM/IMS security environment",
subsection, "Security Exit Parameters", Table 30. Parameters -
Exit Type A
Add the following item to the description of the CREATE field:
D See IMSAUDLG=D description.

Chapter 21, "Customizing the FM/IMS audit facility"
Add the following bullet point to the list in the third paragraph:
v Force audit logging during Edit and at conclusion of the Edit session submit an

audit report job to report on the changes. The job submitted will be will be
determined by skeleton member FMN1FTAD found in FMN.SFMNSLIB. You
should customize the job card and JCL to specify the reporting options you
require. The reporting options in the skeleton are described in the File Manager
User's Guide and Reference, SC19-2495. Also refer to IMSAUDLG option in
Appendix C.

Chapter 29, "Customizing the FM/CICS audit facility"
Add the following as the fourth paragraph:

You can force the production of an audit trail, and report on the changes made, by
specifying AUDITLOG=DEMAND in FMN3POPT. The job submitted will will be
determined by skeleton member FMN3FTAD found in FMN.SFMNSLIB. You
should customize the job card and JCL in this skeleton to specify the reporting
options you require. The reporting options in the skeleton are described in the File
Manager User's Guide and Reference, SC19-2495.

Appendix A, "File Manager options"
Replace the AUDITLOG syntax diagram with the following diagram:

��
AUDITLOG=NO

AUDITLOG= YES
DEMAND

��

Add the following to the explanation of the AUDITLOG parameters:

DEMAND
Audit trail logging is mandatory and a job described by skeleton
FMN0FTAD (FMN3FTAD for FM/CICS) will be submitted to report on the
changes made by a user when exiting the edit function. The reporting
options in the skeleton are described in the File Manager User's Guide and
Reference, SC19-2495.

Appendix B, "FM/DB2 options"
Replace the AUDIT syntax diagram with the following diagram:

PK75870

UK42251 61

��

, PROFILE
AUDIT=(OPTIONAL)

,SMF , OFF

AUDIT= NONE
(REQUIRED)

,SMF
(DEMAND)

,SMF

��

Add the following to the explanation of the AUDIT parameters:

DEMAND
an audit trail is produced, regardless of the setting of Create an audit
trail in the editor options. An audit report job will be submitted at the
conclusion of an edit function. If AUDIT=(DEMAND,SMF) is specified,
then the audit trail is also written to SMF.

Appendix C, "FM/IMS options"
Replace the IMSAUDLG syntax diagram with the following diagram:

��
IMSAUDLG=N

IMSAUDLG= Y
D

��

Add the following to the explanation of the IMSAUDLG parameters:

D audit logging is enforced during Edit and at conclusion of the Edit session
an audit report job will be submitted to report on the changes. This job can
be customized by changing member FMN1FTAD from FMN.SFMNSLIB to
specify job card and the reporting options you require. The reporting
options in the skeleton are described in the File Manager User's Guide and
Reference, SC19-2495.

PK75870

62 Addenda to V9R1 User's Guides and Customization Guide

Part 2. General documentation changes

Customization Guide (SC19-2494-00) 65
December 2008 65

Part 1. Customizing File Manager 65
Chapter 1, "Preparing to customize File
Manager" 65
Chapter 3, "Customizing File Manager" . . . 65
Chapter 7, "Customizing File Manager to use
library management system libraries". . . . 65

Part 4. Customizing File Manager CICS
Component 65

Chapter 24, "Preparing to customize
FM/CICS" 65

Appendix A. File Manager Options 65
LMS option 65
LMSUBSYS option 66

June 2009 66
Part 1. Customizing File Manager 66

Chapter 2, "Customizing the operating
environment for File Manager" 66

User's Guide and Reference (SC19-2495-00) . . 67

Change #8: June 2010 67
Chapter 16, "Functions" 67

Change #7: May 2010 67
Change #6: May 2010 67

Chapter 16, "Functions" 67
Change #5: April 2010 67
Change #4: August 2009 67
Change #3: May 2009 68
Change #2: December 2008 68
Change #1: November 2008 68

User's Guide and Reference for DB2 Data
(SC19-2496-00) 71
Change #1 November 2010 71

User's Guide and Reference for IMS Data
(SC19-2497-00) 73

User's Guide and Reference for CICS
(SC19-2498-00) 75

This section describes enhancements and updates in the documentation for File
Manager for z/OS Version 9 Release 1. These changes are not associated with
individual APAR or PTF numbers, as they do not require the application of any
code updates.

The changes are grouped by manual and listed within each section in reverse date
order. That is, the most recent documentation change appears at the beginning of
each manual section.

© Copyright IBM Corp. 2000, 2008 63

64 Addenda to V9R1 User's Guides and Customization Guide

Customization Guide (SC19-2494-00)

December 2008

Part 1. Customizing File Manager

Chapter 1, "Preparing to customize File Manager"
In Table 1, add a new step (after step 8), "Customize to use HLASM copybooks."
pointing to page 13.

Chapter 3, "Customizing File Manager"
In the section, "Changing the JCL skeleton for batch mode", on page 22, second
complete paragraph, change the beginning of the first sentence to read:

If you plan to use File Manager to access COBOL copybooks, PL/I include books
or HLASM copybooks in library management system (LMS) libraries

Chapter 7, "Customizing File Manager to use library management
system libraries"
In the fifth paragraph on page 53, change the beginning of the first sentence to
read:

If you plan to use File Manager to access COBOL copybooks, PL/I include books
or HLASM copybooks stored in LMS libraries,

In the section, "Accessing source code in CA-Panvalet libraries", on page 53,
replace the first sentence in the first paragraph with:

File Manager provides an interface to CA-Panvalet, enabling you to use File
Manager to work with COBOL copybooks, PL/I include books and HLASM
copybooks stored in CA-Panvalet libraries.

In the section, "Capabilities provided by File Manager via FMNCRAEX", replace
the first sentence of point #1 with the following:

1. The ability to extract LMS files containing COBOL copybooks, PL/I include
books and High Level Assembler copybooks.

Part 4. Customizing File Manager CICS Component

Chapter 24, "Preparing to customize FM/CICS"
In Table 35, add a new step (after step 10), "Customize to process HLASM
copybooks." pointing to page 195.

Appendix A. File Manager Options

LMS option
Change the description to read:

specifies whether or not File Manager will use COBOL copybooks, PL/I include
books or HLASM copybooks stored in CA-Panvalet libraries or other Library
Management System libraries.

© Copyright IBM Corp. 2000, 2008 65

Change the first sentence in each of the descriptions of "PANVALET", "USERLMS",
and "(PANVALET,USERLMS) or (USERLMS,PANVALET)" to read:

File Manager will use copybooks or include books stored in

LMSUBSYS option
Change the first paragraph of the description to read:

specifies that File Manager will, when accessing COBOL copybooks, PL/I include
books, or HLASM copybooks, attempt the access via an I/O subsystem using the
DFSMSdfp SUBSYS=xxxx allocation parameter.

Change the third paragraph of the description to read:

This facility is used to access copybooks or include books in OEM library
management system data sets.

June 2009

Part 1. Customizing File Manager

Chapter 2, "Customizing the operating environment for File
Manager"
In section "Enabling File Manager to work with certain products", subsection
"Enabling WebSphere MQ support", in the paragraph:

"For File Manager base function, the WebSphere MQ load libraries SCSQANLE,
SCSQAUTH and SCSQLOAD must be made available to the TSO user, either in
the linklist, or as part of the STEPLIB in the TSO procedure, or as part of the
ISPLLIB concatenation."

remove the phrase:

", or as part of the ISPLLIB concatenation"

66 Addenda to V9R1 User's Guides and Customization Guide

User's Guide and Reference (SC19-2495-00)

Change #8: June 2010

Chapter 16, "Functions"
Subsection: "File Manager functions"

v For the SCS function:
– In the description for SORTBY, replace the list of possible values with:

ALLOC Sorts by allocated space
DATE Sorts by creation date
DSORG Sorts by organisation
FREESP Sorts by free space
LRECL Sorts by logical record length
NAME Sorts by data set name (the default)
RECFM Sorts by record format

– In the description for DATEFORM, replace the first value ("YYDD") with
"YYDDD".

Change #7: May 2010
Chapter 11, "Using UNIX System Services and the Hierarchical File System",
section "Specifying an HFS file":
v Remove the entire subsection, "Using wildcard characters to specify file names".

Change #6: May 2010

Chapter 16, "Functions"
Subsection: "File Manager functions"

v For the FCH function, remove the //FMNOUT DD SYSOUT=* statement from the
sample JCL.

Change #5: April 2010
Chapter 16, "Functions", section "File Manager functions", subsection "DSM (Data
Set Compare)"
v In the last bullet point in the Purpose section, remove the sentence in brackets

so that the point reads:
vCreate output data sets containing records identified as inserted, deleted, old
and new changed records, and old and new matched records.

Change #4: August 2009
Chapter 6, "Managing data sets", section "Finding and changing data in multiple
PDS members":
v Subsection "Using the CHANGE command in the Find/Change Utility"

After Figure 68, "Find/Change Utility: example of results from CHANGE
command", add:

© Copyright IBM Corp. 2000, 2008 67

Note: On the Find/Change Utility report, the record number can have one of
these prefixes:

K Indicates the change involved a key.

X Indicates that although it was elgible to be changed, the change
could not be performed due to record length restrictions.

KX Indicates both of the above.
v Subsection "Changing data with a REXX procedure"

Change the sentence:
"The Find/Change Utility report prefixes each record number selected by the
REXX procedure with an “S” and each record changed by the REXX procedure
with a “C”."
to:
"The Find/Change Utility report prefixes each record number selected by the
REXX procedure with an “S”, each record changed by the REXX procedure with a
“C”, and each record added by the REXX procedure with a “+”."

Change #3: May 2009
Chapter 6, "Managing data sets", section "Comparing data sets", subsection "Record
synchronization"
v Change the sentence "Any records that do not match are regarded as paired

insertions and deletions."
to:
"Non-matching records are regarded as changed records."

Change #2: December 2008
Chapter 16, "Functions", section "External REXX functions"
v In the list of functions at the beginning of the section:

– In the description for RSTR_OUT, add the sentence:
"(Can be used in FASTREXX condition expressions.)"

– In the description for SAVE_OUT, add the sentence:
"(Can be used in FASTREXX condition expressions.)"

v In the subsection, "RSTR_OUT", after the syntax diagram add the sentence:
"(Can be used in FASTREXX condition expressions.)"

v In the subsection, "SAVE_OUT", after the syntax diagram add the sentence:
"(Can be used in FASTREXX condition expressions.)"

Change #1: November 2008
Chapter 7, "Using File Manager utilities"

In the subsection, "Working with WebSphere MQ", add the following at the end of
step 3.b:

File Manager supplies a sample copybook and template in the sample library
(SFMNSAM1). The member FMNPMQMD is a PL/I copybook extracted from the
Websphere MQ supplied copybook which describes common message header
descriptions. This sample may be extended to include your application data layout
definition by adding the appropriate PL/I statements, or a %INCLUDE statement.

68 Addenda to V9R1 User's Guides and Customization Guide

Likewise, the member FMNCMQMD is a COBOL copybook which describes
common message header descriptions.

The member FMNTPMQD is the template version of the PL/I copybook and the
member FMNTCMQD is the template version of the COBOL copybook.

Both templates include the identification criteria used to identify each message
header type as shown in Table 7. These are easily determined by inspecting the
copybook.

Table 7. Criteria for identifying message header types

Layout name
PL/I template:
add this ID criteria

COBOL template:
add this ID criteria

MQCIH #2=='CIH ' #3=='CIH '

MQDH #2=='DH ' #3=='DH '

MQDLH #2=='DLH ' #3=='DLH '

MQIIH #2=='IIH ' #3=='IIH '

MQMDE #2=='MDE ' #3=='MDE '

MQMD1 #2=='MD ' & #3=1 #3=='MD ' & #4=1

MQMD2 #2=='MD ' & #3=2 #3=='MD ' & #4=2

MQRFH1 #2=='RFH ' & #3=1 #3=='RFH ' & #4=1

MQRFH2 #2=='RFH ' & #3=2 #3=='RFH ' & #4=2

MQRMH #2=='RMH ' #3=='RMH '

MQTM #2=='TM ' #3=='TM '

MQTMC2 #2=='TMC ' #3=='TMC '

MQWIH #2=='WIH ' #3=='WIH '

MQXQH #2=='XQH ' #3=='XQH '

User's Guide and Reference (SC19-2495-00) 69

70 Addenda to V9R1 User's Guides and Customization Guide

User's Guide and Reference for DB2 Data (SC19-2496-00)

Change #1 November 2010
In Chapter 15, "FM/DB2 panels and fields", subsection "Basic SELECT Prototyping
panel", replace the second panel with:

Process Options Utilities Help
──
FM/DB2 (DFA2) Basic SELECT Prototyping Row 1 of 19

SELECT ?
FROM ?
WHERE ?
ORDER BY ?

Row count ALL Number of rows to display

Select columns (S/A/D) or enter predicates to build the SELECT statement:

S LOp (Tab Column Name Data Type(length) Op Value)
_ ___ _ #1 EMPNO CHAR(6) __ _________________________ _
_ ___ _ #1 FIRSTNME VARCHAR(12) __ _________________________ _
_ ___ _ #1 MIDINIT CHAR(1) __ _________________________ _
_ ___ _ #1 LASTNAME VARCHAR(15) __ _________________________ _
_ ___ _ #1 WORKDEPT CHAR(3) __ _________________________ _
_ ___ _ #1 PHONENO CHAR(4) __ _________________________ _
_ ___ _ #1 HIREDATE DATE(4) __ _________________________ _
_ ___ _ #1 JOB CHAR(8) __ _________________________ _
_ ___ _ #1 EDLEVEL SMALLINT(2) __ _________________________ _
_ ___ _ #1 SEX CHAR(1) __ _________________________ _
_ ___ _ #1 BIRTHDATE DATE(4) __ _________________________ _
_ ___ _ #1 SALARY DECIMAL(9,2) __ _________________________ _
_ ___ _ #1 BONUS DECIMAL(9,2) __ _________________________ _
_ ___ _ #1 COMM DECIMAL(9,2) __ _________________________ _
_ ___ _ #2 DEPTNO CHAR(3) __ _________________________ _
_ ___ _ #2 DEPTNAME VARCHAR(36) __ _________________________ _
_ ___ _ #2 MGRNO CHAR(6) __ _________________________ _
_ ___ _ #2 ADMRDEPT CHAR(3) __ _________________________ _
_ ___ _ #2 LOCATION CHAR(16) __ _________________________ _

**** End of data ****

Command ===> ___ Scroll PAGE
F1=Help F2=Split F3=Exit F4=Expand F6=Execute F7=Backward
F8=Forward F9=Swap F10=Left F11=Right F12=Cancel

© Copyright IBM Corp. 2000, 2008 71

72 Addenda to V9R1 User's Guides and Customization Guide

User's Guide and Reference for IMS Data (SC19-2497-00)

There are no general documentation changes.

© Copyright IBM Corp. 2000, 2008 73

74 Addenda to V9R1 User's Guides and Customization Guide

User's Guide and Reference for CICS (SC19-2498-00)

There are no general documentation changes.

© Copyright IBM Corp. 2000, 2008 75

76 Addenda to V9R1 User's Guides and Customization Guide

Part 3. Appendixes

© Copyright IBM Corp. 2000, 2008 77

78 Addenda to V9R1 User's Guides and Customization Guide

Index

E
editor session

UNICODE data 42

P
PK75870

UK42251 55
PK77613

UK44837 45
PK79535

UK44322 53
PK83865

UK49461, UK49462, UK49463,
UK49464, UK49465, UK49466,
UK49467 37

PK84077
UK48204, UK48205, UK48206,

UK48207, UK48239, UK48243,
UK48254 39

PK84110
UK47675, UK47676, UK47684,

UK47687, UK47708, UK47710,
UK47712 41

PK85062
UK49461, UK49462, UK49463,

UK49464, UK49465, UK49466,
UK49467 38

PK90394
UK47675, UK47676, UK47684,

UK47687, UK47708, UK47710,
UK47712 43

PK93460
UK52267, UK52268, UK52269,

UK52270, UK52271, UK52272,
UK52273, UK52274, UK52275,
UK52276, UK52277, UK52278 20

PK94449
UK52267, UK52268, UK52269,

UK52270, UK52271, UK52272,
UK52273, UK52274, UK52275,
UK52276, UK52277, UK52278 30

PK95812
UK52267, UK52268, UK52269,

UK52270, UK52271, UK52272,
UK52273, UK52274, UK52275,
UK52276, UK52277, UK52278 31

PK95961
UKnnnn6, UK24879, UK24880,

UK24893, UK24898, UK24899,
UK24906 16

PM02105
UK54336, UK54337, UK54340,

UK54342, UK54343, UK54344 15
PM08924

UK58321, UK58323, UK58349,
UK58351, UK58361, UK58369 13

PM20322
UK62005, UK62016, UK62018,

UK62049, UK62129, UK62130,
UK62136, UK62138, UK62136 9

PM20660
UK63245, UK63246, UK63247,

UK63251, UK63252 5
PM22660

UK63245, UK63246, UK63247,
UK63251, UK63252 6

PM28967
UK64397, UK64398, UK64399,

UK64400 3

U
UK21782

PK95961 16
UK21784

PK95961 16
UK21785

PK95961 16
UK21789

PK95961 16
UK42251

PK75870 55
UK42251, UK42253, UK42277, UK42278,

UK42279, UK42284, UK42317, UK42329,
UK42367, UK42381, UK42382, UK42383

PK75870 55
UK42253

PK75870 55
UK42277

PK75870 55
UK42278

PK75870 55
UK42279

PK75870 55
UK42284

PK75870 55
UK42317

PK75870 55
UK42329

PK75870 55
UK42367

PK75870 55
UK42381

PK75870 55
UK42382

PK75870 55
UK42383

PK75870 55
UK44322

PK79535 53
UK44837

PK77613 45
UK47675

PK84110 41
PK90394 43

UK47675, UK47676, UK47684, UK47687,
UK47708, UK47710, UK47712

PK84110 41
PK90394 41

UK47676
PK84110 41
PK90394 43

UK47684
PK84110 41
PK90394 43

UK47687
PK84110 41
PK90394 43

UK47708
PK84110 41
PK90394 43

UK47710
PK84110 41
PK90394 43

UK47712
PK84110 41
PK90394 43

UK48204
PK84077 39

UK48204, UK48205, UK48206, UK48207,
UK48239, UK48243, UK48254

PK84077 39
UK48205

PK84077 39
UK48206

PK84077 39
UK48207

PK84077 39
UK48239

PK84077 39
UK48243

PK84077 39
UK48254

PK84077 39
UK49461

PK83865 37
PK85062 38

UK49461, UK49462, UK49463, UK49464,
UK49465, UK49466, UK49467

PK83865 37
UK49462

PK83865 37
PK85062 38

UK49463
PK83865 37
PK85062 38

UK49464
PK83865 37
PK85062 38

UK49465
PK83865 37
PK85062 38

UK49466
PK83865 37
PK85062 38

© Copyright IBM Corp. 2000, 2008 79

UK49467
PK83865 37
PK85062 38

UK52267
PK93460 20
PK94449 30
PK95812 31

UK52267, UK52268, UK52269, UK52270,
UK52271, UK52272, UK52273, UK52274,
UK52275, UK52276, UK52277, UK52278

PK95812 19
UK52268

PK93460 20
PK94449 30
PK95812 31

UK52269
PK93460 20
PK94449 30
PK95812 31

UK52270
PK93460 20
PK94449 30
PK95812 31

UK52271
PK93460 20
PK94449 30
PK95812 31

UK52272
PK93460 20
PK94449 30
PK95812 31

UK52273
PK93460 20
PK94449 30
PK95812 31

UK52274
PK93460 20
PK94449 30
PK95812 31

UK52275
PK93460 20
PK94449 30
PK95812 31

UK52276
PK93460 20
PK94449 30
PK95812 31

UK52277
PK93460 20
PK94449 30
PK95812 31

UK52278
PK93460 20
PK94449 30
PK95812 31

UK54336
PM02105 15

UK54336, UK54337, UK54340, UK54342,
UK54343, UK54344

PM02105 15
UK54337

PM02105 15
UK54340

PM02105 15
UK54342

PM02105 15

UK54343
PM02105 15

UK54344
PM02105 15

UK58321
PM08924 13

UK58321, UK08097, UK08098, UK08099
PM08924 13

UK58323
PM08924 13

UK58349
PM08924 13

UK58351
PM08924 13

UK58361
PM08924 13

UK58369
PM08924 13

UK62005
PM20322 9

UK62005, UK62016, UK62018, UK62049,
UK62129, UK62130, UK62136, UK62138,
UK62144

PM20322 9
UK62016

PM20322 9
UK62018

PM20322 9
UK62049

PM20322 9
UK62129

PM20322 9
UK62130

PM20322 9
UK62136

PM20322 9
UK63245

PM20660 5
PM22660 6

UK63245, UK63246, UK63247, UK63251,
UK63252

PM20660 5
PM22660 5

UK63246
PM20660 5
PM22660 6

UK63247
PM20660 5
PM22660 6

UK63251
PM20660 5
PM22660 6

UK63252
PM20660 5
PM22660 6

UK64397
PM28967 3

UK64397, UK64398, UK64399, UK64400
PM28967 3

UK64398
PM28967 3

UK64399
PM28967 3

UK64400
PM28967 3

UNICODE data 42

80 Addenda to V9R1 User's Guides and Customization Guide

����

Printed in USA

S
pi

ne
in

fo
rm

at
io

n:

�
�

�
Fi

le
M

an
ag

er
fo

r
z/

O
S

V9
R

1
Ad

de
nd

a
to

V
9R

1
U

se
r's

G
ui

de
s

an
d

Cu
st

om
iz

at
io

n
G

ui
de

	Contents
	About this document
	Part 1. PTF/APAR documentation changes
	UK64397, UK64398, UK64399, UK64400
	PM28967
	Changes to the User's Guide and Reference for DB2
	Chapter 4, "Viewing and changing DB2 data"

	UK63245
	PM20660
	Changes to the User's Guide and Reference for DB2
	Chapter 15, "FM/DB2 panels and fields"

	PM22660
	Changes to the User's Guide and Reference
	Chapter 16, "Functions"

	UK62005
	PM20322
	Changes to the User's Guide and Reference for DB2
	Chapter 17, "Functions"

	UK58321, UK08097, UK08098, UK08099
	PM08924
	Changes to the User's Guide and Reference
	Chapter 16, "Functions"

	UK54336
	PM02105
	Changes to the User's Guide and Reference for DB2
	Chapter 15, "FM/DB2 panels and fields"
	Chapter 17, "FM/DB2 functions"

	PK95961
	Changes to the Customization Guide
	Appendix B, "FM/DB2 options"

	UK52267
	PK93460
	Changes to the Customization Guide
	Chapter 20, "Customizing the FM/IMS security environment"

	PK94449
	Changes to the Customization Guide
	Chapter 12, "Customizing the operating environment for FM/DB2"

	PK95812
	Changes to the User's Guide and Reference
	Chapter 16, "Functions"
	Chapter 17, "File Manager messages"

	Changes to the User's Guide and Reference for IMS Data
	Chapter 11, "Batch reference"

	UK49461, UK49462, UK49463, UK49464, UK49465, UK49466, UK49467
	PK83865
	Changes to the Customization Guide
	Chapter 2, "Customizing the operating environment for File Manager"

	PK85062
	Changes to the User's Guide and Reference
	Chapter 16, "Functions"

	UK48204, UK48205, UK48206, UK48207, UK48239, UK48243, UK48254
	PK84077
	Changes to the Customization Guide
	Chapter 1, "Preparing to customize File Manager"

	Changes to the User's Guide and Reference for DB2
	Chapter 2, "Getting started with FM/DB2"

	UK47675
	PK84110
	Changes to the User's Guide and Reference for DB2
	Chapter 3, "Working with templates", subsection "Handling special data"

	PK90394
	Changes to the User's Guide and Reference for DB2
	Chapter 4, "Viewing and changing DB2 data", subsection "Handling special data"

	UK44837
	PK77613
	Changes to the User's Guide and Reference
	Chapter 14, "Panels and fields"
	Chapter 16, "Functions"
	Replacement pages for “Copy To panel” section
	Replacement pages for “Find/Change Utility panel” section
	Replacement pages for “DSC (Data Set Copy)” section
	Replacement pages for “DSM (Data Set Copy)”, “DSP (Data Set Print)”, “DSU (Data Set Update)” sections
	Replacement pages for “FCH (Find/Change)” section
	Replacement pages for “External REXX functions” section

	UK44322
	PK79535
	Changes to the User's Guide and Reference
	Chapter 15, "Primary commands", subsection "LOCATE primary command"

	UK42251
	PK75870
	Changes to the User's Guide and Reference
	Chapter 14, "Panels and fields", subsection "Print Audit Trail panel"
	Chapter 16, "Functions", section "File Manager functions", subsection "AUD (Print Audit Trail Report)"

	Changes to the User's Guide and Reference for IMS
	Chapter 9, "Panels and fields", subsection "Print Audit Trail panel"
	Chapter 11, "Batch reference", subsection "Print Audit Report (AUD)"

	Changes to the Customization Guide
	Chapter 5, "Customizing the File Manager audit facility", subsection "Setting the appropriate options to produce an audit tra
	Chapter 14, "Customizing the FM/DB2 audit facility", subsection "Determining if an audit trail is to be produced"
	Chapter 19, "Customizing FM/IMS"
	Chapter 20, "Customizing the FM/IMS security environment", subsection, "Security Exit Parameters", Table 30. Parameters - Exi
	Chapter 21, "Customizing the FM/IMS audit facility"
	Chapter 29, "Customizing the FM/CICS audit facility"
	Appendix A, "File Manager options"
	Appendix B, "FM/DB2 options"
	Appendix C, "FM/IMS options"

	Part 2. General documentation changes
	Customization Guide (SC19-2494-00)
	December 2008
	Part 1. Customizing File Manager
	Chapter 1, "Preparing to customize File Manager"
	Chapter 3, "Customizing File Manager"
	Chapter 7, "Customizing File Manager to use library management system libraries"

	Part 4. Customizing File Manager CICS Component
	Chapter 24, "Preparing to customize FM/CICS"

	Appendix A. File Manager Options
	LMS option
	LMSUBSYS option

	June 2009
	Part 1. Customizing File Manager
	Chapter 2, "Customizing the operating environment for File Manager"

	User's Guide and Reference (SC19-2495-00)
	Change #8: June 2010
	Chapter 16, "Functions"

	Change #7: May 2010
	Change #6: May 2010
	Chapter 16, "Functions"

	Change #5: April 2010
	Change #4: August 2009
	Change #3: May 2009
	Change #2: December 2008
	Change #1: November 2008

	User's Guide and Reference for DB2 Data (SC19-2496-00)
	Change #1 November 2010

	User's Guide and Reference for IMS Data (SC19-2497-00)
	User's Guide and Reference for CICS (SC19-2498-00)
	Part 3. Appendixes
	Index
	E
	P
	U

