
COBOL REPORT WRITER PRECOMPILER

INSTALLATION AND OPERATION

for VSE

Program Number 5798-DYR

and Program Number 5798-DZX (Run Time Library only)

IBM Publication SC26-4864-00 with updates

On-Line version: cross references are yellow

Third Edition, May 2001

Text Copyright © 1986, 1995, 2002 by: SPC Systems Ltd.
browsable media (PDF) version Wimbledon, London SW19 3PX
Complete copies of this document may England.
be freely made and distributed on Tel: (US) (206) 725-7431
computer or magnetic media. Tel: (UK) +44-208-540-8409

www.spc-systems.com
www.adobe.com/products/acrobat/readstep.html info@spc-systems.com

http://www.spc-systems.com/
http://www.adobe.com/products/acrobat/readstep.html

Contents i

Contents

Index 75

1 Precompiler: General Information 1

1.1 Objectives 3
1.1.1 Purpose of COBOL Report Writer 3
1.1.2 Purpose of the Precompiler 4
1.1.3 Benefits 5

1.2 Migration from DOS/VS COBOL to IBM COBOL 6
1.3 Precompiler System Overview 7
1.4 Notes on Precompiler Operation 8
1.5 Purpose of PRTEXIT(RW) 8
1.6 Options and Customization 9
1.7 Run Time Library 9
1.8 Elements of Input Source 9

1.8.1 Compiler-Directing Statements 9
1.8.2 Sequence Numbers 11
1.8.3 Comment Lines 12
1.8.4 Debug Lines 12
1.8.5 Identification Columns 12
1.8.6 Nested and Batched Programs 12

1.9 Intermediate Source 12
1.10 Source Listings 13
1.11 Return Codes 14
1.12 Debug 15
1.13 Output from Report Writer Programs 15

1.13.1 Basic Printing 15
1.13.2 Special Printing 15
1.13.3 Special Effects 15

2 Planning and Preparation for Installation 17

2.1 Requirements for Precompiler 19
2.1.1 Minimum Hardware and Software Requirements 19
2.1.2 Size and Memory Requirements 19
2.1.3 Data Set Requirements 20

2.2 Requirements for Run Time Library 21
2.2.1 What Run Time Services are Required? 21

 COBOL Report Writer Precompiler Installation and Operation for VSEii

2.2.2 How Run Time Routines are Incorporated 21
2.3 Preparing to Customize 23

2.3.1 Why Customize? 23
2.3.2 How Options Control the Precompilation 23
2.3.3 Meanings of the Options 24
2.3.4 Restrictions to Other Compiler Options 33

3 Installation and Customization for VSE 35

3.1 Allocating the Report Writer Library 37
3.2 Copying the Precompiler (5798-DYR) 37
3.3 Customizing the Precompiler 38

3.3.1 Options 39
3.4 Compiling the COBOL Run Time Routines 39

3.4.1 Link Editing the COBOL Run Time Routines 40
3.5 Installation Verification 40
3.6 Installing the Library Only (5798-DZX) 41

4 Using the Precompiler on VSE 43

4.1 Using INEXIT(RW),PRTEXIT(RW) 45
4.1.1 The Work File IJSYS11 45

4.2 Using the Stand-alone Precompiler 45
4.3 Linking and Running the Compiled Program 46

4.3.1 Run Time Library 46
4.3.2 User-Developed Report Writer Routines 47

Appendices 49

Appendix A List and Description of Programs and Library routines 51
Appendix B Clauses that Require Run Time Routines 57
Appendix C How CONTROLS are Implemented 59
Appendix D Using the CHAN File Handler 61
Appendix E Printer STYLES 63
Appendix F COBOL Reserved Words Generated by Precompiler 65
Appendix G Run Time Messages 67

Preface iii

Preface
This publication is intended for:

• technical planning and systems programming personnel engaged in the
installation or customization of the COBOL Report Writer Precompiler,

• personnel who are writing JCL procedures to compile programs containing
Report Writer, for use by application programmers,

• application programmers who need to compile COBOL programs containing
Report Writer, or need additional information on the listings and other outputs
produced by the precompiler.

This publication is designed to help you to:

• understand the basic functions and principles of operation of the COBOL
Report Writer Precompiler, and its relationship to the *IBM VS COBOL II, IBM
COBOL for VSE and DOS/VS compilers (Part 1), so that you will be able to
make an appropriate choice of the options described in the remaining
sections;

• plan for installing and customizing of the COBOL Report Writer Precompiler
(Part 2);

• install and customize the COBOL Report Writer Pecompiler under VSE/ESA*,
(Part 3) (referred to as VSE in the rest of this manual);

• precompile and compile a Report Writer program under VSE (Part 4);

You should already be familiar with VSE* Job Control Language. You will not require a
detailed knowledge of either elementary COBOL or Report Writer to use this
publication, but a knowledge of the requirements of the application programming
functions at your installation is necessary in order to perform the customization tasks.

If your main concern is with the language, and how to code or understand a COBOL
program incorporating Report Writer, you should consult the Programmer's Manual.

* IBM, VSE and VSE/ESA are trademarks of International Business Machines Corporation.

 COBOL Report Writer Precompiler Installation and Operation for VSEiv

Related Publications

Precompiler

COBOL Report Writer Precompiler, Programmer's Manual, SC26-4301

(referred to henceforth as the Programmer's Manual)

VS COBOL II

VS COBOL II Application Programming: Language Reference, GC26-4695

VS COBOL II Installation and Customization for VSE, SC26-4696

VS COBOL II Application Programming Guide for VSE, SC26-4697

DOS/VS COBOL

IBM DOS Full American Standard COBOL, GC28-6394

IBM VS COBOL for DOS/VSE, GC26-3998

IBM DOS/VS COBOL Compiler and Library Programmer's Guide, SC28-6483

VSE

IBM Virtual Storage Extended, Advanced Functions, System Control Statements,

SC33-6198

1 - Precompiler: General Information 1

1
Precompiler:
General
Information

This first part provides some basic information on the design objectives of the COBOL
Report Writer Precompiler. It summarizes the COBOL language features and describes
the basic principles of the precompiler, explaining its relationship to the COBOL
compilers, and the inputs and outputs used in each step. By reading these sections,
you will be better able to make the correct choice for the options that will be required
when you install and customize this product.

1 - Precompiler: General Information 3

1.1 Objectives
1.1.1 Purpose of COBOL Report Writer

COBOL Report Writer is a data-oriented addition to basic COBOL that greatly simplifies
the production of all printed output. The language available through this Report Writer
product contains the ANS-68 COBOL Report Writer supported by the DOS/VS COBOL
compiler, together with the IBM, ANS-74 and ANS-85 extensions. The implementation
covered by this publication also contains a large number of extensions that greatly
expand the power and usability of the standard features.

The ANS-68 features cover, briefly, the following areas:
• Representation of the main components of the report in two-dimensional form in

the DATA DIVISION by means of LINE and NEXT GROUP clauses (for vertical
spacing) and COLUMN clause (for horizontal spacing),

• Automatic output of report lines to specified report file(s), controlled by INITIATE,
GENERATE, and TERMINATE statements,

• Automatic storage of SOURCE fields in the report lines,
• Detection of the page-full condition and automatic generation of page

headings and footings,
• Detection of control breaks and automatic generation of control headings and

footings,
• Simple subtotalling, rolling forward and cross-footing of totals.

The extended Report Writer features cover the following areas:
• Rationalization of the syntax with more optional abbreviations,
• Automatic repetition vertically, horizontally, and in blocks,
• COBOL conditions in the REPORT SECTION to control the output of lines, or report

items,
• Subheadings after page or control breaks,-
• Option to print CONTROL HEADING groups at top of page,
• Greatly extended functionality of the SUM feature,
• Relative (floating) COLUMN clause, plus CENTER/RIGHT column positioning,
• Variable-length fields (automatically trimmed),
• Multiple COLUMN and LINE clauses allowed in a single entry,
• Arithmetic-expressions allowed as SOURCE and SUM operands,
• Built-in and user-written FUNCTION facility,
• Page Buffer feature for generation of irregular page formats,
• Multiple Report facility,
• Direction of output through a built-in or user-written file handler to special

devices or spooling software.

 COBOL Report Writer Precompiler Installation and Operation for VSE4

The ANS-85 features added in Release 2 of the product were:

• GLOBAL and EXTERNAL report files,
• GLOBAL reports, and access to them from contained programs,
• Existing elements (e.g. SOURCE) extended to allow new ANS-85 features.

The features added in Release 3 of this product (the first for VSE) are:
• Use of compiler's EXIT feature,
• Generation of pure SAA* COBOL code,
• No dependence on run time routines for DOS/VS COBOL sources,
• In addition, an option to eliminate most dependence on run time routines for

new programs by copying sources of COBOL run time routines as nested
programs (RTNEST option),

• Many new data clauses: see Programmer's Manual,
• Option to skip the precompilation automatically when the source contains no

Report Writer code (*CONTROL RW/NORW),
• Option to show line numbers of intermediate source (LGSEQ option) for on-line

debugging, plus other listing features,
• Automatic skip-to-channel feature,
• DBCS support,
• Amendments for the handling of listings from Release 3.2 of VS COBOL II.

For additional information on the syntax and facilities provided within the language
itself, you should refer to the Programmer's Manual.

1.1.2 Purpose of the Precompiler
This product gives you two different methods of processing a COBOL program
containing Report Writer code. Both methods provide the same language features,
because, from the top level, they use the same precompiler phases.
• Using the compiler's EXIT option.

With this method, the precompiler runs under the control of the compiler. You
use the IBM COBOL or VS COBOL II compiler as you would for a basic COBOL
program, except that you include an INEXIT(RW) option. There is also a
PRTEXIT(RW) option which modifies the compiler's listing by printing the original
source code instead of the expanded code. Both can be permanently
selected when you customize the compiler.

*SAA is a trademark of International Business Machines Corporation.

1 - Precompiler: General Information 5

To specify them as parameters to the compiler, you code:

EXIT(INEXIT('parameters',RW),PRTEXIT(RW))

or, to use their abbreviated forms:

EX(INX('parameters',RW),PRTX(RW))

By this method, the compiler appears to handle Report Writer itself as a
built-in part of COBOL.

If you need the compiler's EXIT option for another preprocessor, you can still
use this method, because the precompiler has its own EXIT option, similar to
the compiler's. This may also be permanently selected by customization
(including any parameter strings). If you need the EXIT option for a third-
party librarian product, you can use the LIBEXIT sub-parameter of either the
precompiler's or the compiler's EXIT option for this purpose.

You will need a certain amount of extra virtual memory for the largest
programs when you use the EXIT option, since the precompiler and its own
data areas must be loaded in memory at the same time as the compiler's
initial phase. However, the precompiler is deleted from memory during the
principal compilation phases.

• Using the stand-alone precompiler.

The alternative to using the EXIT option is to run the precompiler as a
separate step. Here, the precompiler runs in "preprocessor mode". It scans
the source program for any Report Writer elements, and converts them to
basic COBOL, leaving the rest of the source program unchanged. The
resultant intermediate source program is written to the SYSPCH. This may
then be compiled normally as a second step.

You must use the stand-alone precompiler if, for any reason, you need to
access the intermediate source code.

1.1.3 Benefits
Whichever method you use, using a precompiler brings you these benefits:

• It enables the "higher-level" COBOL features to be enhanced without all the
complications of installing a new compiler. (New releases of this product do not
necessarily coincide with new releases of the compiler.)

• It makes it easier to provide good Programmer's documentation, because
Report Writer is now far too rich to summarize in just one chapter of a COBOL
language manual.

• It eases the debugging of Report Writer programs, because the generated
COBOL code can be listed and looked at if required, or viewed via the on-line
debugger.

 COBOL Report Writer Precompiler Installation and Operation for VSE6

1.2 Migration from DOS/VS COBOL to IBM COBOL
The precompiler enables you to use any current IBM COBOL to compile your source
programs written for DOS/VS COBOL that incorporate Report Writer, without needing to
convert or re-write the Report Writer code. The precompiler also enables you to
continue to use Report Writer in new programs, with the additional benefit of a greatly
enhanced set of features. All the ANS-85 features affecting Report Writer are
supported. The additional ANS-85 Report Writer features are also supported, provided
the NOCMPR2 option is in effect.

The precompiler processes only the Report Writer syntax in your program. Before
attempting to precompile and compile it for the first time, you should first ensure that all
the remaining (non-Report Writer) COBOL code in the program will be acceptable to
the compiler.

Most DOS/VS COBOL Report Writer source programs are accepted completely
unchanged by the precompiler. Where DOS/VS COBOL has allowed a "doubtful" or
non-standard Report Writer construction, in the great majority of cases the precompiler
issues a Warning message and still accepts the code. Generally speaking, the
precompiler is stricter than the older compilers, so quite a number of Warning messages
may be issued. Sometimes the message indicates a serious previously undetected flaw
in the coding that must be attended to. Details of all these discrepancies and
suggested means of avoiding them will be found in part 6 of the Programmer's Manual.

1 - Precompiler: General Information 7

1.3 Precompiler System Overview
The diagrams on this page give you a pictorial view of how the precompiler operates.

Using INEXIT(RW),PRTEXIT(RW)

IBM COBOL for VSE

Initialization
and Copy
phases

main
phases

Lister and
other print
phases

 ▲ ▲
 │ │

 SYSIPT ▼ ▼ SYSLST

Source
Program ─► INEXIT(RW)

phase
PRTEXIT(RW)

phase ─► Source
Listing

Using the Stand-alone Precompiler

 SYSIPT SYSPCH=SYSIPT SYSLST

Source
Program ─► Precompiler

(SPCRWCOB) ─► Intermediate
Source ─► Compiler ─► Source

Listing

 COBOL Report Writer Precompiler Installation and Operation for VSE8

1.4 Notes on Precompiler Operation
• Non-Report Writer Sources

If the source program contains no Report Writer code, it is possible to bypass the
precompiler's conversion routines by placing a **CONTROL NORW compiler-
directing statement as the first or second line of the source (see 1.8.1 for details).
This causes the precompiler to pass its input directly to its output and thus saves
processing time, enabling you to use the same JCL for all COBOL sources.
(Alternatively, you can specify that only those programs with a **CONTROL RW
compiler-directing statement at the start of the source are to be precompiled.) If
a non-Report Writer source escapes this filtering process and is unnecessarily
precompiled, it emerges unchanged in the precompiler's output (apart from some
comments inserted by he precompiler).

• Messages

Embodied in the precompiler are a comprehensive range of error, warning and
informational messages which are issued for every conceivable syntax error. An
explanation of each precompiler message will be found in the Programmer's
Manual.

If the FLAGSTD option is specified, the precompiler will issue an informational FIPS-
message against elements of the Report Writer code where appropriate.

• COPY books

If your source program contains COPY, BASIS or REPLACE statements, the
precompiler will expand them unless you specify the NOCOPY option. (Note that
only the simple BASIS statement, without INSERT or DELETE is allowed.) Thus, your
COPY books may contain Report Writer code.

• Virtual and disk memory

The precompiler needs a minimum amount of virtual storage space for its own
use, but also makes use of basic disk space to hold its tables and work areas. For
this purpose it uses a data set IJSYS11. This may reside in VSAM-managed or basic
disk space. The amount of GETVIS space used by the precompiler can be
controlled using the SIZE option. This topic is covered fully in Part 2.

1.5 Purpose of PRTEXIT(RW)
If you use PRTEXIT(RW), this routine is invoked by the compiler to print the whole of the
source listing in a compact form that makes the source easy to understand and
maintain. It embeds the original source program in the compiler listing and does not
print the intermediate code (unless you specify MGENER). In addition, it copies the
other parts of the listing (MAP, XREF etc.) and alters the line numbers so that they
correspond to the original source. Any messages from the precompiler and the
compiler are combined and printed as a single set. This is especially important
because the precompiler relies on the compiler to report certain syntax errors in the
REPORT SECTION. If the precompiler phase is successful, this does not guarantee that
the original code is error free. For example, the validity of a data name coded in a
SOURCE statement is not checked by the precompiler but by the compiler.

1 - Precompiler: General Information 9

PRTEXIT(RW) conceals the distracting intermediate data definitions and procedural
code. You do not need to "jump" from the original to the intermediate source listing to
find an entry in the Cross Reference, Data Map, or Offset listing. The listing is presented
in a manner close to that which you might have expected if there had not been a
precompiler at all and the compiler had in fact handled the higher COBOL syntax itself.
It is similar to the listing you are used to working with if you have used DOS/VS COBOL.

If PRTEXIT(RW) is not used, your listing is printed in two parts: the original source listing,
printed by the precompiler, with any Report Writer error messages, and the
intermediate source listing, printed by the compiler, together with any basic COBOL
error messages and any additional compiler listing options. For technical reasons, the
compiler options appear before any precompiler messages.

1.6 Options and Customization
A number of options are provided to control the precompilation and listing. Some are
specific to the precompiler, while others, such as ADV, and QUOTE/APOST are shared
by the precompiler and the compiler. If INEXIT(RW) is used, the precompiler will obtain
the values of these shared options from the compiler and you do not need to specify
them separately. All the precompiler options can be specified when the precompiler is
customized. If the INEXIT(RW) method is not used, the shared options must also be
specified in this way, because the precompiler then runs quite separately from the
compiler.

The Customization Routine INEXIT(RWCUS) may be used to select or alter the default
values of these options.

1.7 Run Time Library
A run time library is provided with the precompiler. However, Report Writer in principle
do not depend on a run time system. These routines are needed only occasionally for
the more advanced functions. A detailed description of this library will be found in 2.2.

1.8 Elements of Input Source
The purpose of this section is to describe how the precompiler handles some of the
input source elements, apart from the Report Writer syntax itself, which is fully described
in the Programmer's Manual.

1.8.1 Compiler-Directing Statements

The precompiler responds to certain compiler-directing statements. The following list
shows the effects of each statement.

*CONTROL/*CBL

*CONTROL (*CBL) SOURCE/NOSOURCE are acted upon by the precompiler in
producing its own listing. They are also passed to the compiler.

 COBOL Report Writer Precompiler Installation and Operation for VSE10

*CONTROL (*CBL) LIST/NOLIST and MAP/NOMAP are not acted upon by the
precompiler but are passed to the compiler. They will therefore be used by the
compiler in suppressing parts of its own LIST and MAP listings, and this will be
reflected in the final listing whether or not PRTEXIT(RW) is used.

*CONTROL RW and *CONTROL NORW are recognized only by the precompiler.
(**CONTROL may be written instead of *CONTROL so as not to cause a compiler
error if you compile the source directly.) The directive must occupy the first or
second line of the source. *CONTROL RW tells the precompiler to convert any
Report Writer code in the source. **CONTROL NORW tells the precompiler that
there is no Report Writer code in the program and that it may therefore bypass
the precompiler and pass the original source directly to the compiler. If both
forms of this statement are absent, the setting of the RW/NORW option (as
customized or given explicitly in the PARM) is used.

BASIS, INSERT, DELETE

The precompiler recognizes the BASIS statement and will copy the source
program specified. However, it does not recognize INSERT and DELETE
statements.

CBL/PROCESS

The precompiler recognizes the CBL (or PROCESS) statement, processing any
precompiler or shared options (see 2.3.3) and passing any compiler or shared
options on to the compiler.

COPY

The precompiler processes this statement in all its forms, unless NOCOPY is in
effect, when it is passed across unaltered. The LANGLVL(1) format of DOS/VS
COBOL is not recognized. Copied text may itself contain COPY statements, up
to six levels of nesting and REPLACING may be used at any level.

Lines containing the word COPY, up to the closing period, are passed to the
compiler with an asterisk (*) in column 7. If COPY is not the first word in the line,
the line is split into two lines to make it so.

In addition to the standard COPY statement, the precompiler allows the wild
card combination "??" to represent "any non-null string", for example:

COPY...REPLACING ==0?? FILLER PIC ??.== BY == ==.

The wild cards may also appear in the replacing text, provided they are
expected to be replaced in the same order, for example:
COPY...REPLACING ==WS-??-DATE PIC ??==
 BY ==WS-??-DATE2 PICTURE ??==.

EJECT, SKIP1, SKIP2, SKIP3

These statements are passed to the compiler and therefore affect the printing of the
source listing in the usual way. Blank lines and a slash ("/") in column 7 may be used for
a similar purpose.

1 - Precompiler: General Information 11

ENTER

This statement is passed unchanged to the compiler.

EXEC...END-EXEC

Any code between these two keywords is copied unchanged, thus allowing full
use of DB2 and other COBOL extensions that use this format in their command
language.

REPLACE

The precompiler processes this ANS-85 statement in all its forms, unless NOCOPY is
in effect, in which case REPLACE statements are passed unchanged to the
compiler. Processing of the source lines containing REPLACE is similar to that for
COPY above, including its extensions. REPLACE can affect code brought in by a
COPY (but not the COPY itself) and, if the COPY has a REPLACING phrase, the
text is subject to change from both the REPLACING and the REPLACE (in that
order).

SERVICE LABEL

This statement is not recognized and, like all Procedure Division items that are
not specifically recognized by the precompiler, will be passed to the
intermediate source unchanged.

SKIP1, SKIP2, SKIP3 - see EJECT above.

TITLE

This statement will be recognized and used by the precompiler in printing the
page headings of the program source listings. It is also passed unchanged to
the intermediate source.

USE

All USE statements are passed unchanged to the intermediate source, except
for the USE BEFORE REPORTING... statements which are processed by the
precompiler and deleted.

1.8.2 Sequence Numbers
Sequence numbers in columns 1 to 6 are passed unchanged by the precompiler to the
compiler in any line that is altered or copied unchanged. The precompiler's own
generated lines have blanks in these columns. The NUMBER option cannot be used with
PRTEXIT(RW).

 COBOL Report Writer Precompiler Installation and Operation for VSE12

1.8.3 Comment Lines

Comment lines, containing a "/" or "*" character in column 7, are ignored by the
precompiler (apart from causing a page advance in the case of "/") and passed
unchanged to the compiler.

Any character other than these and "D" and space is also assumed to be a comment
and is passed across unchanged, thus allowing for other preprocessors that rely on a
special character in column 7.

1.8.4 Debug Lines
The precompiler correctly processes debug lines (those with a "D" in column 7) in the
following manner:

a. If WITH DEBUGGING MODE has been coded in the SOURCE-COMPUTER
entry, debug lines are treated as normal lines, each "D" is removed, and
the lines processed.

b. If WITH DEBUGGING MODE is not found in the SOURCE-COMPUTER entry,
debug lines are treated as comment lines and are passed to the
intermediate source unchanged, where it is the compiler's responsibility
to ignore them.

1.8.5 Identification Columns
The contents of columns 73-80 are retained by the precompiler in any line that is altered
or copied unchanged. In precompiler generated source lines these columns contain
the characters:

" RWnnnn+" or " RWnnnn="

where nnnn is the version/release number.

1.8.6 Nested and Batched Programs
The input source may have ANS-85 contained programs and "batched" programs
(consisting of non-nested programs each terminated by an END PROGRAM header).

1.9 Intermediate Source
If you use INEXIT(RW), there is no physical output from the precompiler and the only
sight you may have of the intermediate (that is, converted) code is in the compiler
listing (or the listing from PRTEXIT(RW) if you specify MGENER).

The intermediate source is produced by the stand-alone precompiler. It consists of the
original source program, suitably modified and with additional generated COBOL
code. Although the code is clear and modular in construction, it was designed
primarily to be compiled efficiently, rather than to be inspected and understood. If you
make any permanent alterations to the intermediate source, you and subsequent users
will be unable to repeat the precompilation without losing the changes. Alterations to
the intermediate source are therefore not recommended under any circumstances.

1 - Precompiler: General Information 13

1.10 Source Listings
If PRTEXIT(RW) is not specified, you will obtain the following listings in tandem:

• Precompiler options in effect,

• Precompiler's listing of the original source,

• Compiler’s front sheet showing options in effect,

• Any precompiler messages,

• Compiler’s normal listing of the intermediate source, depending on the listing
options requested.

If PRTEXIT(RW) is specified, you will obtain a single unified listing, with the following
features:

• In the front sheet, the compiler's and the precompiler's options are shown side-
by-side.

• The source listing (if SOURCE is in effect) shows the original source program. If
the MGENER option is specified, precompiler generated source lines are shown
merged into the original source.

• Messages from both the precompiler and the compiler are combined into a
single set, and printed according to the FLAG option. If the second operand of
FLAG is in effect, they are also embedded in the source listing. Some compiler
messages that refer to unseen precompiler generated source lines are not
embedded but appear only at the end. An "*" against a message at the end
identifies messages that were embedded. The messages displayed may
include any produced as a result of the FLAGSTD, FLAGSAA, or FLAGMIG
options.

• The compiler's embedded XREF and embedded MAP, if specified, are placed
correctly against the lines to which they refer.

• Sequence numbers of the corresponding intermediate source lines are printed
over the original sequence numbers, if LGSEQ is in effect.

• Additional features of the compiler listing will, if specified, be modified by
PRTEXIT(RW) as follows:

VBREF causes the Cross Reference of Verbs to be printed, with line numbers
changed to refer to the original listing.

XREF causes the Cross Reference listing to be printed both embedded in
the source and as a separate listing, with the line numbers changed to
show the line numbers of the original source listing.

MAP causes the Data Division map to be printed with its line numbers
changed to show the line numbers of the original source listing.

 COBOL Report Writer Precompiler Installation and Operation for VSE14

OFFSET causes the Procedure Division offset summary to be printed together
with Global Tables, Literal Pools, etc. Line numbers are changed to show
the line numbers of the original source listing.

LIST causes the compiler's assembler-language listing to be printed with line
numbers changed to show the line numbers of the original source listing.

The summary and statistics are also printed in suitably modified form.

The illusion that the compiler performed the Report Writer processing itself is
occasionally broken by certain features which may nevertheless prove useful:

a. PRTEXIT(RW) does not suppress generated data names and procedure
names and a number of names with the prefix R- - usually appear, many
bearing the same sequence number that coincides with an RD entry or
a report group. These items may be ignored if not relevant.

b. The XREF and MAP will not show the standard names for the Report
Writer locations that are reserved words, namely PAGE-COUNTER and
LINE-COUNTER. You must therefore look them up under their internal
names, R--rPCT and R--rLCT (r = report number).

c. The XREF will not show DETAIL report group names used in a GENERATE,
or report names used in an INITIATE, GENERATE or TERMINATE, or any of
Report Writer's internal references (such as SUM...UPON or COUNT).

d. The XREF and MAP will not show the RD entry, and the FD entries for
report files that use a file handler will have been re-located.

e. In the VBREF, OFFSET, and LIST, any INITIATE, GENERATE, or TERMINATE
statements will not appear as such but as PERFORM statements. Report
Writer SET and SUPPRESS statements will appear as MOVE statements. In
addition, the precompiler-generated statements will have been taken
into account in the VBREF. LIST always shows the whole of the Procedure
Division, corresponding to the statements in the intermediate source.

f. If RTNEST is in effect, the locations belonging to the run time routines
appear in any VBREF, XREF, MAP, OFFSET, and LIST.

g. If TERM is in effect, the line numbers displayed by the compiler as those
of the intermediate, not the original, source.

1.11 Return Codes
The return code from the precompiler depends on the highest severity level of the
precompiler messages using the same convention as the compiler. If INEXIT(RW) is
used, the return code is the higher of the return codes from the precompiler and the
compiler.

1 - Precompiler: General Information 15

1.12 Debug
The TEST option can be used to enable on-line debugging in the usual way. Since the
compiler sets up the debug information using the intermediate source as a reference,
this will be the source shown on your terminal, whatever other options you specify. If
the debugger reaches the point where an INITIATE, GENERATE, or TERMINATE statement
had been coded, you will see a PERFORM statement. If you allow the debugger to
execute the PERFORM you will step through the logic of the Report Writer statement.
However, if you do not suspect any problems with the Report Writer logic, you can use
break-points to proceed directly to other parts of the program, avoiding the Report
Writer code. The line numbers of the intermediate source will not be the same as the
original line numbers, but it is possible to perform most debugging operations by
referring to data-names and procedure-names (which are not changed by the
precompiler). If you need to use line numbers, you should either obtain a listing of the
intermediate source, by specifying NOPRTEXIT or by using the stand-alone precompiler,
or you should use the LGSEQ option which prints the compiler's line numbers against the
original source.

1.13 Output from Report Writer Programs
1.13.1 Basic Printing

The normal output from a Report Writer file is a basic SAM file produced by a series of
generated COBOL WRITE statements. The block size, logical record length and
organization are therefore established from the FD clauses, supplemented by JCL.
However, note that some features cause a report file handler to be used instead of
generated WRITEs. These are listed under 2.1.1 together with some restrictions that result
from using a COBOL file handler.

1.13.2 Special Printing

If the output device is not a regular printer, and needs special codes or control
characters, or special software routines, output can be generated for it using a special
user-written file handler. These are fully described in the Programmer's Manual. Even if
the output is to a regular printer, a file handler may be used to achieve a particular
technical objective, such as the use of printer channels (see Appendix D), output from
a modular system, or output without page feeds (see Appendix A and Programmer's
Manual).

1.13.3 Special Effects

The STYLE clause, by which special printer effects can be introduced, such as
UNDERLINE and HIGHLIGHT, is described in the Programmer's Manual. The available
printer TYPEs together with their available STYLEs are listed below in (See Appendix E).

2 – Planning and Preparation for Installation 17

2
Planning and
Preparation for
Installation

This part describes the minimum hardware and software requirements for the installation
and use of the COBOL Report Writer Precompiler. It also describes the options available
for customization and the planning you should perform before installing the product. If
you intend to install the run time system only, you should read only section (see 2.2).

2 – Planning and Preparation for Installation 19

2.1 Requirements for Precompiler
2.1.1 Minimum Hardware and Software Requirements

This product is designed to run on an IBM System 3000-series, 9000-series, 2000-series, or
any machine that supports VSE/ESA. Either IBM COBOL for VSE, or VS COBOL II, Release
3.0 or later, must be available.

2.1.2 Size and Memory Requirements
Apart from the control routine of the stand-alone precompiler, the precompiler runs
entirely in GETVIS space below the 16-megabyte line. SIZE=SPCRWCOB should be
coded in the JCL when the stand-alone precompiler is used. In calculating the size of
the partition required, you need to add the following to the maximum memory required
by the compiler:

Fixed Memory Requirements Tally Column

The size of the largest phase, plus
any dynamically loaded routines, held
in memory at any one time is 300K

If PRTEXIT is specified,
add for that routine: 30K

Since the precompiler is written
in COBOL you must allow for the
size of the general and VSE
batch COBPACKs:
The precompiler also needs a
minimum quota of GETVIS space
for its own work areas: 21K

Variable Memory Requirements

The precompiler will also use GETVIS space above its minimum requirement (see above)
when this is available. However, it can always run (albeit more slowly) with this
minimum even for the largest sources by writing data out to disk (see IJSYS11 below).
The amount of additional GETVIS it will take to avoid use of the disk is governed by the
following considerations:

• The stand-alone precompiler will allocate itself GETVIS up to the size of the partition.
This is usually much less than the GETVIS needed by the compiler.

• The INEXIT(RW) routine allocates a certain fraction (currently 3/8) of the available
GETVIS, leaving the lion's share to the compiler. It frees most of this space before
the compiler begins the compilation but it is difficult to predict how much GETVIS
will be needed by the compiler.

• If a SIZE option is coded, INEXIT(RW) will ensure that the specified amount of space
is available for the compiler. For example, if you code

 COBOL Report Writer Precompiler Installation and Operation for VSE20

SIZE(1000K)

you can be sure that at least 1000K will be available for the compiler's work
space.

• If the compiler terminates with the message:

'IGYxx5062-U There was insufficient storage for compiler processing. The "SIZE"
compiler option value (and/or the PARTITION GETVIS size) should be
increased.'

you should try specifying a SIZE option as above, increasing the amount of GETVIS
available to the compiler in stages (and reducing the amount allocated to the
precompiler). If you increase the SIZE too far, you may obtain one of the messages:

RW-PS01:MINIMUM GETVIS NOT AVAILABLE FOR PRECOMPILER

RW-PM01:ERROR IN LOADING PHASE SPCHxxxx

indicating that the remaining GETVIS is too little for the precompiler. Even if the
precompiler runs, you may find that the precompilation is slow because of too much
disk swapping. In these cases, your choice of action is:

a. You can increase the partition size.

b. You can try using the stand-alone precompiler. This will also enable you to
determine the size of the inter-mediate source and check that the partition is
large enough for the compiler to compile the source by itself. Note that there
is no upper limit to the amount of GETVIS required by the compiler.

c. If you are successful in using the stand-alone precompiler, it may be that your
COBPACKs contain too many seldom-used routines and could be tuned.

d. Placing the compiler or the COBPACKs, or both, in shared storage will of
course reduce the amount of partition GETVIS required. You cannot place
any part of the precompiler in shared storage.

• If you estimate the size of the partition needed for compilations on the basis of the
size of your source programs, note that the Report Writer programs are effectively
larger (by between 20% and 200%, average 60%) after being processed by the
precompiler.

2.1.3 Data Set Requirements

The precompiler requires the following data sets:

• SYSIPT (input source)

• SYSLST (output listing)

• SYSPCH (stand-alone precompiler only)

• The working data set IJSYS11

• The source library, if COPY statements are present.

2 – Planning and Preparation for Installation 21

2.2 Requirements for Run Time Library
2.2.1 What Run Time Services are Required?

Run time routines are segments of code which are pre-written and brought in by a
generated CALL rather than generated as in-line code. These routines are used only
occasionally to perform certain more complex functions that cannot easily be
generated as in-line code. If the option NOXCAL is specified, no run time routines will
be invoked by an unchanged DOS/VS COBOL program. Certain additional run time
routines (file handlers and FUNCTION routines) may be written by the user.

The names and functions of the run time routines will be found in Appendix A. Appendix
B lists the language features or options that cause a run time routine to be used. Note
that a few of the routines are written in Assembler rather than COBOL, so, if you intend
to maintain a "COBOL-only" system, you may wish to avoid the few indicated language
elements or options that cause them to be invoked.

You should also refer to Appendix C to understand the important topic of how
CONTROLS are implemented.

2.2.2 How Run Time Routines are Incorporated
The way that COBOL run time routines are incorporated into your program depends on
your use of the RTNEST option, as follows:

1. Using RTNEST

The routines are placed in the program in source form as nested programs (an
ANS-85 feature). Nested programs are incorporated by means of a COBOL
COPY into the outer (or only) program of a nested structure. The SUPPRESS
option of COPY is used so that they do not appear in the program listing.
(Hence it is advisable to keep the listing of the entire COBOL library, which you
normally receive if you compile them during installation.) Source modules are
supplied in two libraries which are alike except that one uses QUOTE and the
other APOST.

Advantages of using RTNEST are:

a. You do not need to remember to include parts of the run time library
when you want to transfer the programs to a different computer system.

b. You guarantee that the run time routines are compiled with the same
compiler options (RESIDENT/NORESIDENT, RENT/NORENT etc.) as the
program itself.

c. You need not worry about the effect of the DYNAM option as nested
programs are always called statically.

 COBOL Report Writer Precompiler Installation and Operation for VSE22

2. Using NORTNEST

The routines are incorporated in object form. Since they are invoked by a
generated COBOL CALL, there are two ways they can be brought in,
depending on your choice of DYNAM or NODYNAM when you compile the
application program. If NODYNAM is in effect, they will incorporated by the link
editor. If DYNAM is in effect, they will be called dynamically at run time. In case
DYNAM may be required, PHASE versions of each run time routine are provided
in the run time library.

Some routines are always called dynamically, because they are invoked via
CALL identifier. They are as follows:

a. All file handlers,

b. The Page Buffer handlers CXRPBFnn, invoked whenever the WITH PAGE
BUFFER clause is used,

c. The STYLE handler CXRSTYLE, invoked whenever the STYLE clause is used.

Because of these dynamic CALLs, it is necessary to specify the RESIDENT
compiler option if any of these features are used. The supplied OBJECT versions
of the COBOL run time routines were compiled with the RESIDENT option, so, if
the NORESIDENT option is to used, the COBOL routines must be re-compiled at
installation time.

Advantages of NORTNEST are:

a. You need not worry about the use of Assembler run time routines (listed
in the previous section).

b. Nested programs are not currently an SAA COBOL feature.

c. They eliminate the overhead of repeatedly re-compiling the run time
routines and reduce the size of the main object module.

d. They can be shared (by use of the RENT option) between several run
units.

e. Only this method works with the CMPR2 option, because CMPR2 does
not allow nested programs.

Routines written in Assembler are always incorporated in object form.

2 – Planning and Preparation for Installation 23

2.3 Preparing to Customize
2.3.1 Why Customize?

The precompiler is delivered with each of the available options set to its default value,
indicated by underlined choices in 2.3.3 below. If you want to change any of these
defaults, you must do the Customization Program. You can repeat it at any time if you
decide to alter your installation defaults. You may wish to make modifications for any
of the following reasons:
• You may need to ensure that stand-alone precompiler's defaults agree with

those you established when you customized the compiler, for example in the
use of APOST or QUOTE. This is not necessary if you use INEXIT(RW) as this obtains
these defaults from the compiler.

• There may be a constant requirement among applications programmers for
certain features such as FMODE or PPSNS. You may wish to pre-set the default
values of these options so that the programmers are certain to use them as
standard.

• There may be insufficient room in the JCL PARM string for certain common
options.

If you will be using INEXIT(RW), you need only worry about the options marked
precompiler only, since the compiler's default values are used for all the options shared
with the compiler (QUOTE, ADV, etc.).

2.3.2 How Options Control the Precompilation
The precompiler's options are described in the section that follows. Options may be
specific to the precompiler or they may be common to the precompiler and the
compiler, in which case they take exactly the same form as the standard compiler
options.

The options specific to the precompiler are:

List A: COPY, CTRLEN, EXIT, FMODE, LGSEQ, MGENER,
MONIT, OSVS, PPSNS, RTNEST, RW, XCAL

(note that a different EXIT parameter is also used by the compiler)

The options shared by the precompiler and the compiler are:

List B: ADV, CMPR2, DBCS, FLAG, FLAGSTD, LANGUAGE,
LINECOUNT, QUOTE/APOST, SEQUENCE, SIZE, SOURCE,
SPACE, TERM

 COBOL Report Writer Precompiler Installation and Operation for VSE24

There are two ways by which options may be specified:

1. By customizing them permanently.

If you are using INEXIT(RW), you need do this only for options which are specific
to the precompiler (List A). The shared compiler options (List B) will be obtained
from the compiler whatever value you customize. If you will be using the stand-
alone precompiler you should ensure that the settings of shared options (List B)
agree with those you chose when you customized the compiler.

2. By coding them in the PARM in the JCL.

If you are using INEXIT(RW), options specific to the precompiler (List A) must be
placed in the 'parameter string' of the INEXIT, for example:

EXIT(INEXIT(' 'COPY,NOOSVS' ',RW))

Note that the apostrophes have been doubled on the assumption that your
entire PARM string is enclosed in apostrophes.

The PRTEXIT does not take a parameter string. Even if the options apply chiefly to
the listing, they should be coded with the INEXIT.

If you are using the stand-alone precompiler, the options are placed in the
PARM to phase SPCRWCOB.

Shared options (List B) are placed in the main PARM where they will be picked up both
by the precompiler and (if you are using INEXIT(RW)) by the compiler, for example:

PARM='QUOTE,FLAG(I,W),EXIT(INEXIT(' 'OSVS' ',RW))'

Common options which have been customized for the compiler will also be picked up
by the precompiler if you use INEXIT(RW). Hence you can customize all the options you
will need regularly and avoid exceeding the maximum size for the PARM.

The precompiler accepts the same abbreviated keywords as the compiler. Thus F may
be coded for FLAG, LC for LINECOUNT, and so on. Keywords specific to the precompiler
have no abbreviations.

2.3.3 Meanings of the Options

The following list explains each option. Alongside each keyword you will see the phase
or phases it applies to (precompiler only or shared). The supplied default option value
is underlined in each case. Note that the default setting of shared options is always the
same as the default for the compiler. You will need to refer back to this section later
when you read the sections describing customization (see Part 3) and operation (see
Part 4). In those parts you will be shown exactly how and where to code the
parameters.

2 – Planning and Preparation for Installation 25

┌─ ADV ─────────────────┐
│ ►►───┬─ADV─┬─►◄ │ shared
│ └NOADV┘ │
└───────────────────────┘

ADV instructs the precompiler and compiler to reserve an extra byte at the
start of each report file record for the carriage control character.

NOADV states that the first byte of each report file record, as defined in the
program, is set aside by the Programmer for this purpose.

APOST – see QUOTE

┌─ CMPR2 ───────────────┐
│ ►►───┬─CMPR2─┬─►◄ │ shared
│ └NOCMPR2┘ │
└───────────────────────┘

The option CMPR2 modifies the code generated by the precompiler so that
it conforms with the requirements of the compiler CMPR2 option.

┌─ COPY ────────────────┐
│ ►►───┬─COPY─┬─►◄ │ precompiler only
│ └NOCOPY┘ │
└───────────────────────┘

COPY instructs the precompiler itself to process any COPY and REPLACE
statements in the source program. If it is specified, the COPY statements
and their expansions (unless SUPPRESS is specified in the COPY statement)
are then printed in the source listing and the compiler's source input will
contain no COPY statements. Similarly, REPLACE statements are processed
and the results after replacement are printed in the listing. This option is
required if any of your COPY books contain any Report Writer statements,
or if a REPLACING statement affects any Report Writer statements.

NOCOPY prevents the processing of COPY and REPLACE statements,
leaving this task to the compiler, if necessary. NOCOPY differs from NOLIB in
that it affects the precompiler only. If NOCOPY is specified, PRTEXIT(RW)
should not be used.

┌─ CTRLEN ────────────────┐
│ ►►─CTRLEN(┬integer┬─►◄ │ precompiler only
│ └──80───┘ │
└─────────────────────────┘

CTRLEN gives the size in bytes of the largest Data Division item that will be
used in the CONTROL(S) clause of a Report Description. This option is not
relevant unless NOXCAL is also specified (see below). If in doubt, you may
give a value of up to 256 for this option.

 COBOL Report Writer Precompiler Installation and Operation for VSE26

The precompiler allocates for each CONTROL item (other than FINAL) a
saved control location which holds the previous contents of the control.
This is used by Report Writer both to check for control breaks and also to
restore controls to their previous values during the processing of CONTROL
FOOTING report groups.

┌─ DBCS ────────────────┐
│ ►►───┬─DBCS─┬─►◄ │ shared
│ └NODBCS┘ │
└───────────────────────┘

DBCS tells the precompiler and compiler that there may be Double Byte
Character Set literals in the source, so that the Shift Out and Shift In
characters will be recognized as such.

┌─ EXIT (as compiler option) ───────────────────┐
│ ►►─┬─EXIT(─┬─INEXIT(─┬──────────┬RW) ────┬─►1 │ compiler only
│ │ │ └�options�,┘ │ │
│ │ ├─NOINEXIT────────────────────┤ │
│ │ └─────────────────────────────┘ │
│ └─NOEXIT────────────────────────────────►2 │
│ 1►───────┬─,LIBEXIT(─┬─────────┬module)─┬──►3 │
│ │ └�string�,┘ │ │
│ ├─,NOLIBEXIT───────────────────┤ │
│ └──────────────────────────────┘ │
│ 3►───────┬─,PRTEXIT(RW)┬──────────────)─┬──►◄ │
│ ├─,NOPRTEXIT──┤ │ │
│ └─────────────┘ │ │
│ 2►──────────────────────────────────────┘ │
└───┘

This is the option that enables the precompiler to run under the control of
the compiler. Abbreviations are: EX, INX, LIBX, PRTX.
The 'options' represent any string of precompiler-specific options, as
described here. Apostrophes must be doubled if the main PARM is
enclosed in apostrophes. Commas in the above syntax are optional.
LIBEXIT cannot be used to invoke the precompiler, and it is included here
for completeness. If you are using a third-party librarian product that uses a
LIBEXIT, you can put its name here and specify NOCOPY, in which case the
compiler will be given the library expansions, or you can put it in the
precompiler's own LIBEXIT slot (see next).

PRTEXIT(RW) is necessary to obtain a single compact source listing. It is
required if you specify the options LGSEQ or MGENER, or if you specify FLAG
with a second operand, or SEQUENCE, and you want the precompiler listing
to show the effect of these. (See 1.5 for an explanation of the benefits of
PRTEXIT(RW).)

2 – Planning and Preparation for Installation 27

 ┌─ EXIT (as precompiler option) ──────────────────┐
 │ ►►─┬─EXIT(─┬─INEXIT(─┬──────────┬module1) ─┬─►1 │ precompiler
 │ │ │ └�string1�,┘ │ │ only
 │ │ ├─NOINEXIT──────────────────────┤ │
 │ │ └───────────────────────────────┘ │
 │ └─NOEXIT──────────────────────────────────►2 │
 │ 1►───┬─,LIBEXIT(─┬──────────┬module2)─┬──────►3 │
 │ │ └�string2�,┘ │ │
 │ ├─,NOLIBEXIT─────────────────────┤ │
 │ └────────────────────────────────┘ │
 │ 3►───┬─,PRTEXIT(─┬──────────┬module3)─┬─)──┬─►◄ │
 │ │ └�string3�,┘ │ │ │
 │ ├─,NOPRTEXIT─────────────────────┤ │ │
 │ └────────────────────────────────┘ │ │
 │ 2►───┘ │
 └───┘

This option is similar in format to the compiler's EXIT option, except that
quotes may be used instead of apostrophes. It is provided for those who
already need the EXIT option for some other purpose (another preprocessor
or a librarian utility) other than for Report Writer. It can be used both by
INEXIT(RW) and by the stand-alone precompiler. The effects of INEXIT,
LIBEXIT, and PRTEXIT are exactly as described in the Application
Programming Guide for VSE. The LIBEXIT is not used if NOCOPY is in effect. If
you want LIBEXIT to take effect with NOCOPY, you should place it within the
compiler's EXIT option.

This entire EXIT option can in turn be coded as one of the options'of the
'string' passed to the precompiler via the compiler's INEXIT('string',RW)
option, thus nesting the EXIT options. To avoid a long and complex PARM
'string' in your JCL, this, like all the precompiler options, may be customized.
Unlike the compiler's EXIT option, the precompiler also allows the three
parameter 'strings' to specified on customization, with a maximum of 64
characters each.

┌─ FLAG ──────────────────────┐
│ ►►──┬─FLAG(x┬────┬)─┬─►◄ │ shared
│ │ └─,y─┘ │ │
│ └─NOFLAG────────┘ │
└─────────────────────────────┘

FLAG controls the printing of precompiler and compiler messages. See your
Application Programming Guide for VSE for full details. The default value is
FLAG(I).

 COBOL Report Writer Precompiler Installation and Operation for VSE28

If the second operand is present, PRTEXIT(RW) is required if precompiler
messages are also to be embedded. PRTEXIT(RW) collects together the
messages from both the precompiler and compiler, merges them in
sequence and displays them embedded in the source, according to the
second operand, and at the end of the listing, according to the first
operand. The second severity level must be higher than or equal to the first
severity level. For example, FLAG(I,E) will print all messages at the end and
only level E, S, or U messages embedded.

┌─ FLAGSTD ────────────────────────┐
│ ►►──┬─FLAG(x┬────┬┬────┬)─┬─►◄ │ shared
│ │ └─yy─┘└─,o─┘ │ │
│ └─NOFLAGSTD───────────┘ │
└──────────────────────────────────┘

FLAGSTD provides informational messages about the conformance of your
program to the Standard. See your Application Programming Guide for full
details. The precompiler provides additional FIPS messages- relating to the
Report Writer syntax. All IBM and SPC extensions to the ANS-85 syntax are
flagged as "NONCONFORMING NONSTANDARD" and whatever level is
implied by the first character, all clauses and statements specific to Report
Writer are flagged as "NONCONFORMING STANDARD". If O is specified, all
obsolete language features held over from either the ANS-68 or ANS-74
standard are flagged as "OBSOLETE". The FLAGSTD option also has its
standard effect on the compiler.

Note: If you require Report Writer FIPS messages but you do not want the
compiler messages, you may place the FLAGSTD option in the 'parameter
string' of the INEXIT instead of in the main PARM. For example, under
VSE/ESA, to obtain just details of extensions to Report Writer, code:

PARM='EXIT(INEXIT(' 'FLAGSTD(H)' ',RW))'

┌─ FMODE ─────────────────┐
│ ►►─FMODE(mode)──────►◄ │ precompiler only
└─────────────────────────┘

This option can be used to redirect all the output from the reports in a
program through a specified file handler, in order to give it special
treatment or to direct it to a special output medium. If FMODE is coded,
every report file in the program that does not already have a MODE clause
in its SELECT statement is treated as though MODE IS mode had been
coded. Mode may be any alphanumeric string of up to four characters.

┌─ LANGUAGE ─────────────────┐
│ ►►─LANGUAGE(┬─UE─┬)─►◄ │ shared
│ └─EN─┘ │
└────────────────────────────┘

This option chooses whether the English text printed by the precompiler
should be only in upper case (EN) or whether lower-case is acceptable
(UE). If any other value is used by the compiler, the precompiler assumes
EN.

2 – Planning and Preparation for Installation 29

┌─ LGSEQ ───────────────┐
│ ►►───┬─LGSEQ─┬─►◄ │ precompiler only
│ └NOLGSEQ┘ │
└───────────────────────┘

LGSEQ causes PRTEXIT(RW) to place sequence number of the
corresponding intermediate source line in columns 1 through 6 of each
original source line in the source listing. (The actual contents of columns 1
through 6 in the input source are not shown but are of course left
unchanged in the input source.) Thus you obtain all of the compiler's
source line numbers (except for precompiler-generated lines) and this
option saves you the need to print and save the intermediate listing in the
cases such as the following:

a. If a compiler-generated run time message is issued from your program,
you can locate the source line that caused it.

b. If you wish to refer to line numbers during on-line debug, you can find
them in the original source listing.

┌─ LINECOUNT ────────────────┐
│ ►►─LINECOUNT(┬integer┬─►◄ │ shared
│ └──60───┘ │
└────────────────────────────┘

LINECOUNT gives the maximum number of lines per page for all the
precompiler's and compiler's listings. Integer must be at least 4.

┌─ MGENER ────────────────┐
│ ►►───┬─MGENER─┬─►◄ │ precompiler only
│ └NOMGENER┘ │
└─────────────────────────┘

MGENER causes generated source lines to be printed embedded in the
original source. Source lines that have not changed are listed once only.
Additional source lines generated by the precompiler are indicated by the
following characters in the identification columns:

 "RWnnnn+" (nnnn = version/release number)

Each altered line is followed by the new line containing:

 "RWnnnn="

in these columns. NOMGENER suppresses this function.

 COBOL Report Writer Precompiler Installation and Operation for VSE30

┌─ MONIT ─────────────────────┐
│ ►►─┬MONIT(integer┬─►◄ │ precompiler only
│ └NOMONIT──────┘ │
└─────────────────────────────┘

The MONIT option is reserved for program maintenance by, or under the
direction, of your support center.

┌─ OSVS ────────────────┐
│ ►►───┬─OSVS─┬─►◄ │ precompiler only
│ └NOOSVS┘ │
└───────────────────────┘

OSVS specifies that the DOS/VS COBOL variants of the Report Writer
semantics are to be used wherever they differ from the standard used in
the precompiler. It should be specified for the migration of DOS/VS Report
Writer programs. The effects of specifying OSVS are:

a. SOURCE SUM correlation will assumed to be in effect for any SUM
clauses, causing them to be interpreted according to the ANS-68 rules,
rather than ANS-85. It may be overridden in a Report Description entry
in the source program by means of the ALLOW NO SOURCE SUM CORR
clause. Further information will be found in the Programmer's Manual
under ALLOW clause.

b. Any subtotalling is performed after the printing of any PAGE FOOTING
and/or PAGE HEADING groups and after the execution of any
associated USE BEFORE REPORTING Declarative section.

c. An entry with a PICTURE clause but no data-name or COLUMN clause is
not printed.

d. The positioning of relative REPORT HEADING, PAGE HEADING, PAGE
FOOTING, and REPORT FOOTING groups is one line lower than when
the option is not specified.

NOOSVS produces the opposite result for each of these items. In particular,
the ANS-85 rules for the SUM clause will apply, with no checking for
correlation of SOURCE and SUM entries unless ALLOW SOURCE SUM CORR is
coded in the source program.

For further details, refer to the Programmer's Manual.

┌─ PPSNS ────────────────────────┐
│ ►►─PPSNS(┬integer┬┬────┬)──►◄ │ precompiler only
│ └──132──┘└─/F─┘ │
└────────────────────────────────┘

The PPSNS option gives the default value of LINE LIMIT to be assumed for
any RD entry that has no LINE LIMIT clause. In other words, it specifies the
highest value a report COLUMN will be allowed to attain. For details of the
LINE LIMIT clause, refer to the Programmer's Manual.

2 – Planning and Preparation for Installation 31

If the optional /F is coded, the value is taken as the default value of the
RECORD CONTAINS (plus 1 if NOADV is in effect). This has the additional
effect of forcing the logical record length of the given value (as opposed
to setting a maximum value). Use this option if it is essential for the print files
to have a logical record length of a certain value even when some reports
never use that many columns' width. For example, to force a record length
of 133, code PPSNS(132/F).

┌─ QUOTE/APOST ──────────┐
│ ►►───┬─QUOTE─┬─►◄ │ shared
│ └─APOST─┘ │
└────────────────────────┘

This option tells the precompiler which delimiter it should use for generated non-numeric
literals and has its usual effect on the compiler. The precompiler will accept either
delimiter in the input source, regardless of this option.

┌─ RTNEST ────────────────┐
│ ►►───┬─RTNEST─┬─►◄ │ precompiler only
│ └NORTNEST┘ │
└─────────────────────────┘

This option causes the precompiler to copy any COBOL run time routines into the
intermediate source as nested programs, rather than requiring them to be linked in or
loaded at run time. This option enables you to generate self-contained "pure" sources
that do not have "hidden calls" to run time routines that might be overlooked, in the
occasional instances when a run time routine is needed. It also has the advantage
that calls to the precompiler's run time routines are not affected by your choice of
DYNAM/NODYNAM. If RTNEST is present, LIB and NOCMPR2 must be in effect.

Of course, Assembler routines cannot be included as nested programs and are
unaffected by this option. However, as indicated earlier (see 2.2.1), use of these can
be avoided in all but some exceptional cases.

┌─ RW ──────────────────┐
│ ►►───┬─RW─┬─►◄ │ precompiler only
│ └NORW┘ │
└───────────────────────┘

This option gives the default action if the source contains no **CONTROL RW or NORW
precompiler-directing statement (see 1.8.1). These options enable you to use the same
JCL or command for all compilations.

If RW is specified, every source program will be assumed to contain Report Writer code
unless an **CONTROL NORW statement is present at the start of the program. This
statement thus saves the small unnecessary overhead of running the precompiler in
such cases.

If NORW is specified, every source program will be assumed to contain no Report Writer
code unless an *CONTROL RW statement is present at the start of the program.

 COBOL Report Writer Precompiler Installation and Operation for VSE32

┌─ SEQUENCE ────────────────┐
│ ►►───┬─SEQUENCE─┬─►◄ │ shared
│ └NOSEQUENCE┘ │
└───────────────────────────┘

SEQUENCE indicates that the sequence columns (1 through 6) in the original source
should be checked for correct ascending sequencing. If sequence errors are found,
two asterisks (**) are printed against the offending line and a single warning message
(RW-882) is printed at the end. The compiler's messages resulting from this option are
ignored by PRTEXIT(RW) because the sequence numbers in the intermediate source are
never in strict ascending sequence. This option should therefore not be used without
PRTEXIT(RW).

NOSEQUENCE indicates that sequence checking is to be omitted.

┌─ SIZE ─────────────────────────┐
│ ►►──SIZE(─┬─integer─┬─┬──┬)─►◄ │ shared
│ │ └K┘ │ │
│ └─MAX──────────┘ │
└────────────────────────────────┘

The SIZE clause has its usual effect on the compiler. The precompiler uses this clause to
ensure that the compiler receives the intended amount of GETVIS space. (See 2.1.2.)

┌─ SOURCE ─────────────────┐
│ ►►───┬─SOURCE─┬─►◄ │ shared
│ └NOSOURCE┘ │
└──────────────────────────┘

SOURCE causes the original source program to be listed.

NOSOURCE suppresses the listing of the source. NOSOURCE is invalid if you specify
LGSEQ, MGENER, SEQUENCE or FLAG with two operands.

┌─ SPACE ──────────────────┐
│ ►►──SPACE(─┬─1─┬─►◄ │ shared
│ ├─2─┤ │
│ └─3─┘ │
└──────────────────────────┘

This option specifies the spacing between successive lines of the SOURCE listings.

┌─ TERM ──────────────────┐
│ ►►───┬─TERM─┬─►◄ │ shared
│ └NOTERM┘ │
└─────────────────────────┘

TERM causes the precompiler to display all messages on the System Log, as well as
having the usual similar effect on the compiler.

2 – Planning and Preparation for Installation 33

┌─ XCAL ──────────────────┐
│ ►►───┬─XCAL─┬─►◄ │ precompiler only
│ └NOXCAL┘ │
└─────────────────────────┘

XCAL enables the precompiler to invoke external run time routines in certain cases (see
2.2.1) where doing so will produce a more efficient, or completely compatible, or more
satisfactory program. If XCAL is in effect, there are no restrictions on the size and format
of controls and any run time error messages are displayed in full.

NOXCAL instructs the precompiler to avoid, if possible, the generation of CALLs to
certain run time routines. The effects of specifying NOXCAL are as follows:

• If a CONTROL clause is present in an RD (other than REPORT or FINAL), control
breaks will be processed through generated in-line code, rather than by using
the LENGTH register and subroutines CXRCTCP, CXRCTUS, and CXRCTRS. If this
option is used, CONTROL operands must be, implicitly or explicitly, USAGE
DISPLAY and there is an upper limit of 256 to their size (see CTRLEN option
above). See the Programmer's Manual for details.

• If an error occurs during the running of the program, a short message is printed,
showing only the identity of the message but no explanatory text, page, or line
number information.

Use of NOXCAL prevents the generation of calls to all external subroutines from an
unchanged DOS/VS COBOL program.

2.3.4 Restrictions to Other Compiler Options

The NOCOMPILE(x) option is unaffected by errors found by the precompiler.

The DYNAM/NODYNAM option has an important indirect effect on the precompiler
since calls to the run time routines are generated as a CALL "literal". See 2.2.2 for more
information.

The NUMBER option is not allowed with PRTEXIT(RW).

The WORD option could adversely affect the precompiler's code generation if you use it
to restrict the use of certain reserved words. The precompiler does not generate any
reserved word (such as ALTER) that you would be likely to restrict. A list of the reserved
words that may be used by the precompiler in its COBOL code generation are listed in
Appendix F.

3 – Installation and Customization for VSE 35

3
Installation and
Customization for
VSE

This part contains information to enable you to install the Report Writer software under
VSE/ESA from the supplied distribution tape, customize the precompiler, prepare the run
time library, and verify that the installation and customization steps have been
successful.

If you are installing the Run Time Library only (5798-DZX), proceed at once to stage 3.6.

Before installing, you should check with the Information Network, or the supplier (see
inside front cover), to ensure that you have any amendments due for this release.

3 – Installation and Customization for VSE 37

3.1 Allocating the Report Writer Library
To install COBOL Report Writer, you need to do just two things: allocate enough disk
space for the library, and copy it using LIBR. It is then ready for immediate use.
Optional additional steps can be done to customize the system.

Before beginning the copy, you should first allocate disk space for the Report Writer
library RW. It requires 2700 1024-byte blocks (although you can reduce this space
requirement after installation - see next section). When you have allocated either
VSAM-controlled or basic disk space for this library, you should code the appropriate
DLBL for RW, plus appropriate EXTENT and ASSGN statements in the case of non-VSAM
space, in the JCL of the next section. These definitions can then be added to your
standard labels, if you wish, to make RW available for all COBOL jobs.

3.2 Copying the Precompiler (5798-DYR)
First MOUNT your installation tape read-only on a tape unit of your choice. It was
created using LIBR BACKUP, so you simply use LIBR RESTORE to recreate it. The following
JCL may be used, tailored as required by your installation standards:

// JOB RWINSTL INSTALL COBOL REPORT WRITER PRECOMPILER
* definition of library
if VSAM...
// DLBL RW,'REPORT WRITER LIBRARY',,VSAM,CAT=catalog
if basic disk space...
// DLBL RW,'REPORT WRITER LIBRARY',9999,SD
// EXTENT SYS001,volser,...
// ASSGN SYS001,DISK,VOL=volser,SHR
followed by...
// MTC REW,cuu
// EXEC LIBR,SIZE=256K
DEFINE LIB=RW
RESTORE * -
 TAPE=cuu -
 LIST=YES -
 REPLACE=YES

If you wish to preview the contents of the tape before actual copying, you could add
the option SCAN=YES - in the above JCL.

Your library now contains phase, object, and source sub-libraries as follows:

RW.JCL JCL procedures
RW.PREC precompiler phases
RW.RUN run time object and phase library
RW.COB run time COBOL sources (APOST format)
RW.COBQ run time COBOL sources (QUOTE format)
RW.ASM run time Assembler sources

 COBOL Report Writer Precompiler Installation and Operation for VSE38

If you use the supplied defaults (in particular NORTNEST), then the only sub-libraries
constantly required are RW.PREC and RW.RUN. The run time sources are provided to
enable you to re-compile the run time library, if the need arises, and to use the RTNEST
option (which copies run time routines in source form). If you have standardized on
QUOTE or APOST throughout your facility, you will need only RW.COBQ or RW.COB
respectively. Hence you can reduce the size of your library if disk space is short (or
select only the sub-libraries you need by coding SUBLIB=... instead of the asterisk in the
LIBR RESTORE operation above).

Both COBOL source libraries contain sample COBOL file handlers, CRFHNOPF,
CRFHCHAN, and CRFHMODL and COPY books for their standard linkage areas
(RWFCACOM, RWRCACOM, and RWPLNCOM). You may use one of these as a basis for
producing your own Report Writer file handlers for directing Report Writer output to a
non-standard medium in a manner that you decide. For further information, consult the
Programmer's Manual.

3.3 Customizing the Precompiler
Perform this step only when you want to change the supplied precompiler default
settings. These settings are all indicated by underlined choices in 2.3.3 above. You can
do the following step now or at any time in the future if you decide to alter your
installation defaults. If you will be using INEXIT(RW), you need only worry about the
options marked precompiler only, since the compiler's default values are used for all
the options shared with the compiler (QUOTE, ADV, etc.).

This step runs the COBOL compiler and link editor to create a new copy of the
customized-options phase SPCHOPTS. JCL to perform this task is printed below. Insert
your options before the first /* line. The definitions for the work files (IJSYS01 through
IJSYS07) have been omitted. If you do not have these defined as standard labels, you
must insert them into the JCL also. The LIBDEF statement must include both the
compiler and the COBOL run time system. You will need to modify this to reflect the
COBOL compiler you are currently using.

The option EX(INX(RWCUS)) invokes the INEXIT routine RWCUS, which generates all the
COBOL source code automatically. Where the compiler would normally expect a
COBOL source program, you code a list of options instead. The rules for coding options
is given in the next paragraph.

// JOB RWCUSTM CUSTOMIZE COBOL REPORT WRITER PRECOMPILER
// usual COBOL workfiles, if not globally defined
// LIBDEF PHASE,SEARCH=(lib.COMPnnn,RW.PREC,lib.PRODnnn,lib.SCEEBASE)
// OPTION CATAL,NODECK
// EXEC
IGYCRCTL,SIZE=IGYCRCTL,PARM='QUOTE,RES,NAME,EX(INX(RWCUS),NOPRTX)'
default options (see next paragraph)
/*
// LIBDEF OBJ,SEARCH=(lib.PRODnnn,lib.SCEEBASE)
// LIBDEF PHASE,CATALOG=RW.PREC
// EXEC LNKEDIT
/*

You may wish to alter your default options by repeating this step at any time, so it is
advisable to keep a copy of the JCL with the options that you last used.

3 – Installation and Customization for VSE 39

3.3.1 Options
Code options beginning anywhere on the line. You may combine several on a line
separated by a comma. The precompiler's EXIT parameter can be split across several
lines at the commas. (You cannot code INEXIT, LIBEXIT, or PRTEXIT as though they were
independent options.) Comment lines may be coded by placing an asterisk (*) in the
first column. Here is a random sample showing how options may be coded:
 *Report Writer Precompiler Options
 NOOSVS
 FMODE(PRNT),NOMGENER,NORW
 EXIT(INEXIT('string1',module1),
 (LIBEXIT('string2',module2),
 (PRTEXIT('string3',module3))

Options that you do not specify are set to their supplied default values (underlined in
2.3.3, not the values you last set them to. If you wish to reset all options to their supplied
defaults, follow the EXEC statement directly with a /* line.

3.4 Compiling the COBOL Run Time Routines
You need to perform this step if your COBOL compiler is not COBOL/VSE and also if you
want to change the COBOL options originally used in generating your run time library.
Your run time library RW.RUN was generated using IBM COBOL for VSE Release 1.1.0 and
Assembler, as appropriate. Since every run time routine is provided in source form, you
can re-compile or re-assemble all or any part whenever necessary. The only forseeable
reason for doing this is to change the compiler options. The only options originally
specified that can affect operation are:

RENT,NOOPTIMIZE,OUTDD(SYSOUT),NOSSRANGE,NOTEST

In particular, if you want the NORENT option, because you do not require above-the-
line execution, then you must re-compile all the COBOL run time routines.

If you have POWER, you can make use of the procedure COMPRWRT in RW.JCL. This in
turn uses the procedure COMPRWR to compile each routine. You should first use LIBR or
an editor to fetch COMPRWRT PROC and COMPRWR PROC from sub-library RW.JCL.
Change the PARM option settings in COMPRWR PROC according to your requirements.
It contains no COBOL work file definitions, so these must also be inserted if they are not
already defined in your standard labels. You may also need at change or insert POWER
commands, and CP control commands if you are executing your jobs via VM. The
positions are indicated by comments in the JCL of these procedures. When you re-
catalog them in the library, be sure to specify DATA=YES.

These compilation procedures use an input-to-punch program to "punch out" a job that
uses LIBR to catalog the object decks. Therefore your job should contain no other job
steps other than EXEC PROC=COMPRWRT and the POWER $$ PUN line should specify
DISP=I,CLASS=0. Here is an outline of the JCL required:

 COBOL Report Writer Precompiler Installation and Operation for VSE40

* $$ PUN PUN=SYSPCH,DISP=I,CLASS=0
// JOB RWCOMP COMPILE COBOL REPORT WRITER RUN TIME LIBRARY
// LIBDEF PROC,SEARCH=RW.JCL
// EXEC PROC=COMPRWRT

If you are not using POWER, or if you prefer to use your own JCL for compilations, you
should examine COMPRWRT PROC for the names of the routines to be compiled and
compile each of them into OBJ form in RW.RUN. (They are also listed in Appendix A.)

Always follow this step with a separate job to link edit the routines into PHASE form, as
explained in the next paragraph.

3.4.1 Link Editing the COBOL Run Time Routines

This step must be done whenever you re-compile or re-assemble any of the run time
routines. The run time routines must be present in PHASE versions, so that programmers
can use the DYNAM option, and also because certain of the routines are always called
dynamically. The JCL to perform this task will be found in the procedure LINKRWRT in
sub-library RW.JCL. Suitable JCL is as follows:

// JOB RWLINK LINK EDIT COBOL REPORT WRITER PRECOMPILER
// LIBDEF PROC,SEARCH=RW.JCL
// EXEC PROC=LINKRWRT

3.5 Installation Verification
RW.COB and RW.COBQ contain a sample Report Writer source program, RWTEST01,
which should be precompiled, compiled, link edited, and run to check that the
installation has been successful. The JCL to do this will be found in the file TESTRW01 in
RW.JCL. (This also contains no COBOL work file descriptions. The program is too small to
need the precompiler work file IJSYS11.) Suitable JCL is as follows:

// JOB TESTRW RUN COBOL REPORT WRITER SAMPLE PROGRAM
// usual COBOL workfiles, if not globally defined
// LIBDEF PROC,SEARCH=RW.JCL
// EXEC PROC=TESTRW01

Alternatively, you may use your own standard JCL for a COBOL compilation with the
additional option EXIT(INEXIT(RW),PRTX(RW)), followed by a link edit and run.

You should obtain a calendar for the current year.

Try out any PARM options that are likely to be used by programmers. This may be done
by overriding the JCL line containing the PARM or by extracting the JCL and
embedding it directly in your job.

3 – Installation and Customization for VSE 41

3.6 Installing the Library Only (5798-DZX)
Your supply tape contains only the run time libraries (that is, all but RW.PREC). Allocate
the library RW and copy the tape as described in and above. A total of 2000 1024-
byte blocks are required for the library.

4 – Using the Precompiler on VSE 43

4
Using the
Precompiler on
VSE

This part describes in detail how to load and run the precompiler on VSE after it has
been installed from the supply tape and customized. It also describes which data sets
are required and explains how options may be selected. Finally, it describes the
procedures necessary to link-edit and run your resultant program.

4 – Using the Precompiler on VSE 45

4.1 Using INEXIT(RW),PRTEXIT(RW)
INEXIT(RW) is the normal way to precompile and compile any source program. You use
your existing JCL for a COBOL compilation, adding an additional EXIT option to the
compiler's PARM string as follows:

PARM='...EXIT(INEXIT(' 'parameters' ',RW),PRTEXIT(RW))'

which may be abbreviated to

PARM='...EX(INX(' 'parameters' ',RW),PRTX(RW))'

The doubled apostrophes are required by the rules of JCL syntax. In the 'parameters'
you code any options that apply to the precompiler only. The compiler does not
recognize options placed inside the EXIT construction, so any options which are also
used by the compiler must be coded outside the EXIT in the compiler's main PARM
string. For example, if you want the options QUOTE and NOOSVS, you must code the
following:

PARM='QUOTE,EX(INX(' 'NOOSVS' ',RW),PRTX(RW))'

If there are no precompiler options, because you are happy with the supplied or
customized defaults, you code simply:

PARM='...EX(INX(RW),PRTX(RW))'

If you do not require the PRTEXIT, code the following:

PARM='...EX(INX(RW))'

If the VSE PARM string becomes too long, you can define the EXIT sub-options in the
COBOL compiler's customization macro. (You can create a second copy of IGYCDOPT
with these EXIT sub-options set, placing it in a different library, and select it by placing
this library at the front in your LIBDEF PHASE line.)

The COBOL compiler does not allow the parameters to the INEXIT to be customized, but
you can specify any of the precompiler options to the precompiler customization
procedure (see 3.3).

4.1.1 The Work File IJSYS11
The additional data set IJSYS11 must be assigned in your compilation JCL as working
space for the precompiler in case GETVIS space is insufficient. It may be assigned in a
similar way to the compiler work files IJSYS01 to IJSYS07. It may be assigned to any
basic (maximum 16 extents) or VSAM-controlled disk area, on any CKD or FBA device.

4.2 Using the Stand-alone Precompiler
The stand-alone precompiler SPCRWCOB reads the source from SYSIPT and writes it to
SYSPCH. The output may be retained or fed direct to the compiler. Sample JCL to do a
separate precompilation followed by a compilation is given below.

 COBOL Report Writer Precompiler Installation and Operation for VSE46

// JOB RWPREC COBOL REPORT WRITER COMPILATION IN TWO STEPS
* Precompilation step:
// DLBL IJSYS11,'COBOL.WORKFILE.IJSYS01',0,SD
// EXTENT SYS001,volser,...
// ASSGN SYS001,DISK,VOL=volser,SHR
// DLBL IJSYSPH,'intermediate-filename',0,SD
// EXTENT SYSPCH,volser,...
ASSGN SYSPCH,DISK,VOL=volser,SHR
// EXEC SPCRWCOB,SIZE=SPCRWCOB,PARM='options'
CLOSE SYSPCH,00D
* Compilation step:
// DLBL IJSYSIP,'intermediate-filename',0,SD
// EXTENT SYSIPT,volser,...
ASSGN SYSIPT,DISK,VOL=volser,SHR
 ... rest of JCL as for usual COBOL compile ...
CLOSE SYSIPT,SYSRDR

As the first file identifier suggests, IJSYS11 may re-use some of the compiler work space.

If COPY statements may be present in the source (LIB option set) and the precompiler
option COPY is in effect, add the following before the EXEC statement:

// LIBDEF SOURCE,SEARCH=(your copy libraries)

If NOCOPY is in effect, the LIBDEF may be placed in the compilation step.

If RTNEST is in effect, add before the EXEC statement:

// LIBDEF SOURCE,SEARCH=(RW.COB,your copy libraries)

 or if the option QUOTE is in effect:

// LIBDEF SOURCE,SEARCH=(RW.COBQ,your copy libraries)

4.3 Linking and Running the Compiled Program
4.3.1 Run Time Library

Follow your compilation step with a LNKEDT step and the program is ready to use. In
general, the precompiler will have generated some external references to the Report
Writer run time library. An explanation of the functions of all the subroutines in this library
are given in Appendix A. If your program requires run time routines (and they are not all
included in source form using RTNEST) and the compiler option NODYNAM was in effect,
you should include the Report Writer run time library in your JCL for the Linkage-Editor
step:

4 – Using the Precompiler on VSE 47

// LIBDEF OBJ,SEARCH=(...,RW.RUN,...)

If the compiler option DYNAM was in effect, the Report Writer run time library is needed
instead at program run time:

// LIBDEF PHASE,SEARCH=(...,RW.RUN,...)

4.3.2 User-Developed Report Writer Routines

As well as the supplied routines, the run time library may contain routines written by you
or other local personnel. These are fully described in the Programmer’s Manual and
consist of:

• Report Writer FUNCTION routines

• Independent Report File Handlers

If NORTNEST and NODYNAM are in effect, and user-written FUNCTION routines are
required, the library containing them should also be included in the link edit step. User-
written file handlers are always called dynamically.

Appendices 49

Appendices

Appendix A – Programs and Library Routines 51

Appendix A
List and Description of Programs and Library Routines

The following is a list of the compile-time and run time programs, together with their
sources that are copied from your distribution tape on installing.

(i) Precompiler

Phase Name Purpose

RW INEXIT/PRTEXIT routine
This phase is executed by the compiler when you code
EXIT(INEXIT(RW)) in its PARM string. If you include
PRTEXIT(RW), the same phase is used for the PRTEXIT.

SPCRWCOB Stand-alone Precompiler
This program may be used as instead of the INEXIT to
precompile a Report Writer source separately.

SPCHCXIN Precompiler Phases
SPCHCXTB These run in succession to precompile a single source.
SPCHCXDP For a nested or batched program source, they run again
SPCHCXGE for each new PROGRAM-ID.

SPCHNDLR Common Routines
This phase contains the common routines used by the
above precompiler phases.

SPCHCXOT Output Phase
This phase runs at the end of the precompilation, either to
write out the intermediate source or, if INEXIT(RW) is in use,
to feed that to the COBOL compiler.

SPCHPRTX PRTEXIT Phase
This module is called by phase RW if you include
PRTEXIT(RW) in the EXIT option.

SPCHMESG Messages Phase
This module holds the text of the precompiler's standard
messages.

RWCUS Customizing Program
This module is run as an INEXIT routine when you customize
the precompiler.

SPCHOPTS Customized Options
This module contains default values for all the precompiler
options. It can be re-generated using the customizing
program.

 COBOL Report Writer Precompiler Installation and Operation for VSE52

SETCHAN Set up Printer Channels
This phase is used optionally to set the positions of printer
channels before running a program that uses the CHAN
file handler. Strictly speaking, this phase is part of the run
time system, but it is stored in the precompiler library.

COBINPUT Compilation INEXIT Routine
This phase is used by the compilation procedure
COMPRWR to enable the program name to be passed as
a parameter.

SPCIPTPH Input-to-Punch Routine
This phase is used by the procedure COMPRWR to
generate a LIBR job to catalog the object decks.

(ii) Run Time Library

Run time routines are invoked not as a constant overhead, but only occasionally when
required by the application. The circumstances of the use of each is given against
each entry following.

Module Name Purpose

(a) COBOL Routines and Areas

CXRFHCON File Handler Steering Routine
This routine is invoked if the Report Writer program uses an
Independent Report File Handler. It directs control to and
from the file handler on each call, performing
housekeeping and checking functions. It also handles the
PAGE BUFFER and the DUPLICATED features, if called for.

CXRSTYLE STYLE processing
This routine is used whenever a STYLE clause is found in a
Report Writer entry. It looks for the escape sequences
inserted into the print data by the Report Writer code to
implement underline, boldface and any other special
effects required.

CXRCHMV Variable-position field processing
CXRCHNF These routines handle the positioning of fields in the report

line whose starting position depends on the value of
COLUMN-COUNTER.

CXRERNF Log Run time Error Condition
This routine displays an error number and message to
indicate that a standard error condition has arisen during
the execution of the Report Writer program. It is not used
if NOXCAL is specified, in which case the program
DISPLAYs a shorter message directly. Standard run time
errors are listed below in Appendix G.

Appendix A – Programs and Library Routines 53

CXRPBF01-nn Page Buffer Handling
These routines handle the buffering of up to a whole page
of data when the clause WITH PAGE BUFFER is used. Any
number of these may be present, depending on how
many report files open simultaneously require a page
buffer. Six are normally provided (01-06), but additional
routines can be produced simply by increasing the value
of nn in the program-id and re-compiling.

CXRRELA REPEATED processing
This routine handles the buffering and side-by-side
alignment of groups defined with the REPEATED clause.

CXRVARF Variable-length field processing
This routine is used to process fields defined with "<"
(variable-length) PICTURE symbols.

CXRLWRP WRAP processing
This routine handles the WRAP clause which is used to
produce "wrap-around".

CXRCTMV Copy CONTROL item
This routine is used to copy the contents of a control data
item to and from its saved control area. It is used only as
a nested program. If NORTNEST is specified, in-line code is
substituted.

FUNCTION Routines

These are invoked when the corresponding FUNCTION is used. The second character of
the alias name represents the number of parameters given in the FUNCTION clause. For
instance, FUNCTION DATE (i.e. print today's date) calls R0DATE, whereas FUNCTION DATE
(WS-IP-DATE) (i.e. print the given date) calls R1DATE.

Module Name Mnemonic Purpose

R0CTIME CTIME Print 12-hour clock time
R1DATE,R0DATE DATE Print current or specific date

(day-month-year)
R1DAY,R0DAY DAY Print current or supplied day-of-week

R1DAYSIN DAYSIN Print date, converting from days
elapsed (day-month-year)

R1MDATE,R0MDATE MDATE Print current or specific date
(month-day-year)

R1MDAYS MDAYS Print date, converting from days
elapsed (month-day-year)

R1MONTH,R0MONTH MONTH Print month name

R2MOVE MOVE Capture contents of internal register
or counter

 COBOL Report Writer Precompiler Installation and Operation for VSE54

R0RDATE RDATE Real date, updated at midnight

R0RMDATE RMDATE Real date (month-day-year)

R0RYDATE RYDATE Real date (year-month-day)

R1STATE STATE Print US State name

R1STATEF STATEF Print US State name, including
overseas territories

R0STIME STIME Print time, fixed at start

R0TIME TIME Print actual time

R1YDATE,R0YDATE YDATE Print current or specific date
(year-month-day)

R1YRDAY,R0YRDAY YRDAY Print current date (YYDDD)

R1ZIP ZIP Print US ZIP code

File Handlers and Dependent Routines

As well as a copy of the source of each of the routines above, the supplied source
library contains the following file handler source items.

Handler Name Function

CRFHMODL MODL File Handler. This file handler enables several
independently compiled modules to write to the same
report file. It may be used as a basis for other user-written
file handlers. Full details are given in the source. It is also
described in Part 5 of the Programmer's Manual.

CRFHNOPF NOPF File Handler. This file handler writes without
page feeds. Whenever it needs to advance a page, it
writes blank lines down to the bottom of the page. Full
details are given in the Programmer's Manual.

CRFHCHAN CHAN File Handler. This file handler writes using
printer channels wherever possible. Details are given in
Appendix and in the Programmer's Manual.

CRFHDUPL DUPL File Handler. This file handler emulates the
ability of DOS/VS COBOL to write simultaneously to two
report files.

RWFCACOM COPY library source of File Control Area.

RWRCACOM COPY library source of Report Control Area.

RWPLNCOM COPY library source of Report Writer Print Line.

(b) Assembler Routines

CXRCTCP Handle controls for VS COBOL II
CXRCTUS These routines save, compare, and restore Control
CXRCTRS values when XCAL and NORTNEST are specified. If

NOXCAL is specified, in-line code is generated instead.

Appendix A – Programs and Library Routines 55

CXRGBLS Process GLOBAL requests
This routine executes the inter-program linkage for
GLOBAL items. It is invoked when a program issues an
INITIATE, GENERATE, or TERMINATE statement for a GLOBAL
report, or when a USE GLOBAL AFTER REPORTING section is
implicitly invoked, in a different containing program.

CRFHPRNT Basic Print File Handler (MODE PRNT)
This file handler is used if a report requires the STYLE,
DUPLICATED, or PAGE BUFFER facility, and is not already
using a file handler. CRFHPRNT writes direct to SYSLST.

CXRFHUSG Assist Routine #1 for USING Phrase
This is called as a "front end" to a COBOL file handler
control routine CXRFHCON with additional parameters
defined by a USING phrase.

CRFHXXXP Assist Routine #2 for USING Phrase
This is called as a "front end" to a COBOL file handler with
additional parameters defined by a USING phrase.

CXPHJCOM Subroutines of CRFHCHAN
CXPHPRNT

 Appendix B – Clauses that Invoke Run Time Routines 57

Appendix B
Clauses that Require Run Time Routines

1. Routines Written in Assembler

a. If the option XCAL is in effect, and a program contains a CONTROL clause (a
commonplace feature at all levels) the Assembler routines CXRCTCP,
CXRCTUS, CXRCTRS will be used for the testing of control breaks and copying
of your CONTROL identifiers. See page 33 for full details.

b. If any report is defined as GLOBAL (so that it can be referred to from a
different program in a nested structure), the Assembler routine CXRGBLS is
invoked.

c. If there is a MODE clause with a USING phrase, the Assembler routines
CXRFHUSG and CRFHXXXP are used.

d. If the program uses one of the following features and there is no MODE
clause in the SELECT statement for the corresponding report file, the
Assembler report file handler CRFHPRNT will be used. The features in question
are:

• The DUPLICATED clause,

• The WITH PAGE BUFFER clause,

• The STYLE clause,

• The UPON option of the INITIATE statement,

• The use of CODE in more than one RD for the same file, where not all
CODE operands have the same length,

• The (erroneous) omission of the FD entry,

If none of these features is present, the program will use direct WRITEs at run
time (unless a MODE clause is coded for the file). For full details of file
handlers, see the Programmer's Manual.

Even if these features are present, use of the Assembler file handler can be
avoided by using a COBOL file handler: either one of those which are
supplied with the precompiler, such as CRFHMODL, or a user-written file
handler. This may be done in one of two ways:

i In the program source, add the clause MODE IS mode to the
appropriate SELECT statement(s), or

ii Assuming that there is no MODE clause already for the report file(s) in
question, use the option FMODE(mode).

Either of these ways forces use of the file handler CRFHmode.

 COBOL Report Writer Precompiler Installation and Operation for VSE58

A COBOL file handler may however have the following disadvantages over
the Assembler file handler:

i The supplied COBOL file handlers cannot handle more than one file if
they will be open simultaneously, since they contain only a single FD
(File Description) entry. (However, a user-written file handler may of
course have any number of FD entries and could, for example,
allocate multiple files to different FDs in order of OPENing.)

ii COBOL file handlers use a pre-defined logical record length and
record format by virtue of the record description and/or FD clauses
and hence ignores the RECORD CONTAINS and RECORDING MODE of
the original report file. (The supplied COBOL file handlers assume fixed-
length records of 133 bytes.)

iii The supplied COBOL file handlers place the value of any CODE after
instead of before the carriage control character of each record. A
user-written file handler can of course place the CODE wherever
desired. (Note that CODE is now very little used for its original purpose,
namely to spool several print files to the same "tape".)

2. Routines Written in COBOL

COBOL run time routines are used to implement certain special functions, chiefly
of the more "advanced" kind. The Report Writer features that cause them to be
introduced are as follows:

a. If XCAL is in effect, and no file handler is in use, a CALL to CXRERNF is always
generated at the TERMINATE statement. This routine handles run time errors
by printing a full explanatory message. If NOXCAL is in effect an in-line
DISPLAY is used instead, but this gives only the reference number of the error.

b. If any MODE clause (other than PRNT) or any FUNCTION clause is specified,
the corresponding run time routine will be invoked. Any of these routines
may be user-written.

c. If RTNEST and NOXCAL are specified, and the program contains a
CONTROL(S) clause, the routine CXRCTMV is invoked to copy controls to and
from the "saved controls" area (see Appendix C - How CONTROLS are
Implemented).

d. The following "more advanced" features cause additional CALLs to be
generated: REPEATED clause, PICTURE symbol <, WRAP clause, any field that
has a variable horizontal position.

 Appendix C – How Controls are Implemented 59

Appendix C
How CONTROLS are Implemented

It is important to understand the way Report Writer's CONTROL(S) clause is handled
because this clause frequently appears in both old and new programs.

If the XCAL option is in effect, the precompiler uses Assembler library routines to test for
control breaks and save the controls.

The advantage of these routines are:

i They run rather more efficiently than the alternative methods described under
NOXCAL below.

ii They allocate space for the "saved controls" dynamically and fully
automatically, so there is no need to worry about the "maximum control size"
option (CTRLEN), and no unexpected run time errors will arise because the
saved controls are shorter than the actual controls.

iii As with the RTNEST option (see below), they allow CONTROL identifiers to have
any COBOL PICTURE, so no unexpected compilation errors will arise from the
CONTROL(S) clause of a correct DOS/VS COBOL program.

These routines assume a native collating sequence. Hence, if an ALPHABET clause is
specified in the program, NOXCAL may be necessary to ensure that the specified
collating sequence is used.

If NOXCAL is in effect, the following different implementation is used:

The precompiler allocates a "saved control" area for each control level (other
than REPORT/FINAL). The size of each saved control location is taken from the
value established in the CTRLEN option (see 2.3.3). This would ideally be exactly
the same as the length of the corresponding CONTROL data item. However, the
precompiler does not scan the whole DATA DIVISION for the PICTURE of the control
item and must therefore assume a reasonable maximum size. The default as
supplied is 80 (one screen's width) but up to 256 may be specified.

If RTNEST is also in effect, the precompiler will generate a CALL to the nested
program CXRCTMV to move the CONTROL data items to and from the saved
control areas.

If instead NORTNEST is also in effect (preventing the inclusion of run time routines in
source form), the code to move the CONTROL data items to and from the saved
control areas is generated in line. This has the drawback that only data items with
an implicit or explicit USAGE of DISPLAY can be used as CONTROL identifiers (not
COMPUTATIONAL or COMPUTATIONAL-n). So it is possible for a valid DOS/VS
COBOL program to result in a compilation error. This situation is easy for the
programmer to rectify (see Programmer's Manual: CONTROL Clause). This

 COBOL Report Writer Precompiler Installation and Operation for VSE60

combination (NOXCAL,NORTNEST) is necessary to ensure SAA compatibility of the
intermediate source.

If any program uses CONTROL items that have a length of more than the value of
CTRLEN, this error will be detected (by the subroutine CXRCTMV) if RTNEST is in
effect but will not be detected if NORTNEST is in effect. In either case, the contents
of CONTROL fields when printed in a CONTROL FOOTING group may then appear
truncated.

 Appendix D – Using the CHAN File Handler 61

Appendix D
Using the CHAN File Handler

This file handler makes best use of any available printer channels by calculating how to
get to each next line position in the fewest number of transfers. It is invoked by coding
MODE IS CHAN in the program or by using the FMODE(CHAN) option. The positions of
the channels are defined by executing the program SETCHAN before running the
Report Writer program. The parameters follow in the JCL. The format of these
parameters is:

c(p q...)
where c is an integer from 1 to 12 and p, q,... are integers from 1 to 255. A new line may
begin anywhere. A comma may be used to separate the p, q... terms if desired and
spaces may appear anywhere between terms and separators and at the start of the
line, if desired. Comment lines may be written by placing an asterisk (*) in column 1.

The term c represents the channel number and p, q,... are the line numbers that can be
reached by skipping to that channel. If several channels are defined, these
parameters follow one another in any order. If channel 1 is defined, the only line
number defined for it must be 1; if channel 1 is not defined, this is assumed.

For example, to set up channel 1 and channel 2 with positions 20 and 40, the following
JCL is used:

// LIBDEF PHASE,SEARCH=(RW.PREC,libr.SCEEBASE)
// EXEC SETCHAN,SIZE=SETCHAN
1(1)
2(20,40)
/*

The Report Writer program is then executed directly afterwards in the same job.

To reset all channels, an empty SYSCHANS data set can be set up.

If a 3800-type printer is in use, the Forms Control Block (FCB) still needs to be configured.
This file handler does not do that. Moreover, the FCB channel settings must agree with
those given to SETCHAN.

 Appendix E – Printer Styles 63

Appendix E
Printer Styles

Printer styles are defined by means of the STYLE clause (see Programmer's Manual).
They enable special effects to be made use of, depending on the type of printer in use.
The following printer TYPEs are available:

IBM-3800 or 3800 (the IBM laser printer)
IBM-3211 or 3211 (line printer)
IBM-1403 or 1403 (line printer)

If no TYPE is given, TYPE 3800 is assumed in default.

On 3800, all the styles apart from UNDERLINE are implemented using a Table Reference
Character (TRC). This is an additional character that appears immediately after the
carriage control character. This option is set by the file handler PRNT. TRC 0 indicates
NORMAL printing. TRCs 1 through 3 are arbitrarily assigned the following names:

1 - HIGHLIGHT
2 - ALT-FONT
3 - GRAPHIC

Thus TRC 1 is normally assigned to a HIGHLIGHT (i.e. BOLDFACE effect). It is up to the
user to attach appropriate meanings to ALT-FONT and GRAPHIC. UNDERLINE and
HIGHLIGHT may also be achieved on an older impact printer.

The following STYLEs are therefore available:

NORMAL

UNDERLINE This causes under-strike characters ("_") to be written in the
same positions as the characters to be underlined.

HIGHLIGHT This is implemented on 3800 as Table Reference Character 1. It
is implemented on impact printers by printing the same line
twice ("double hammering").

ALT-FONT This is implemented on 3800 as Table Reference Character 2. It
is not available on impact printers.

GRAPHIC This is implemented on 3800 as Table Reference Character 3. It
is not available on impact printers.

Internal formats

These styles are encoded by the precompiler as Escape sequences with the following
composition (Esc - Escape character):

start-UNDERLINE: Esc:UN>
start-HIGHLIGHT: Esc:HI>
start-ALT-FONT: Esc:AL>
start-GRAPHIC: Esc:GC>
end-style: Esc:<

Appendix F – Generated Reserved Words 65

Appendix F
COBOL Reserved Words Generated by the Precompiler

The following COBOL reserved words may be used by the precompiler in its COBOL
code generation.

ADD
ALL
AND
CALL
COMP
COMPUTE
COPY *
DEPENDING
END-PROGRAM *
ERROR
EXIT
FROM
GIVING
GO
IF
IN

LOW-VALUES
MOVE
MULTIPLY
NOT
OBJECT-COMPUTER
OCCURS
OF
ON
OR
PERFORM
PICTURE
RIGHT
REDEFINES
REPLACING
ROUNDED
SECTION

SIZE
SOURCE-COMPUTER
SPACES
SUBTRACT
SUPPRESS
SYNC
THRU
TIMES
TO
UNSTRING
UNTIL
USING
VALUE
VARYING
WORKING-STORAGE
ZERO

In addition, the precompiler will reproduce any COBOL condition used in a
PRESENT/ABSENT WHEN clause, thereby reproducing any reserved words used within it.

Words marked * are generated only if the RTNEST option is used. If RTNEST is used,
COBOL code from any of the run-time routines is incorporated directly into the program,
and these may contain keywords other than those listed above.

Appendix G – Run Time Messages 67

Appendix G
Run Time Messages

These conditions occur only at run time. Unless an Independent Report File
Handler is in use that directs them elsewhere, all messages are displayed on
SYSOUT. The line and page number are also displayed and, if a file handler is
in use, the name of the report.

Internal Report Writer Errors

These appear as the result of an error during the formation of a report line or
page, and are generated by the Report Writer code itself, rather than by a run
time routine.

REPORT WRITER ERROR n

is always printed, and in addition if the XCAL option is in effect (see page 33),
one of the following explanatory messages will appear:

Value of n Message and Explanation

1 COLUMN OVERLAP WITHIN LINE: PREVIOUS CHARACTER(S) OVERWRITTEN

This happens when two or more absolute elementary overlapping fields, or
groups of columns, with PRESENT WHEN clauses (or the equivalent) were both
present at the same time. The second field will overwrite all or part of the first.
The precompiler will have given an informational message RW-251-I at
precompilation time and will have assumed them to be mutually exclusive This
error usually has no serious effect on execution.

2 LINE EXTENDED BEYOND LIMIT: TRUNCATED

This condition will occur when several conditional relative COLUMN entries
(COLUMN + n PRESENT WHEN ...) happen to be all present and their total size
exceeds the LINE LIMIT. The precompiler would have assumed that at least
some were mutually exclusive.

3 LAST DETAIL IDENTIFIER OUT OF RANGE: USING PAGE LIMIT

This implies that the program contains the identifier form of the LAST DETAIL
clause but, when this was evaluated, the contents were found to be higher
than the LAST CONTROL FOOTING value.

5 LINE OVERLAP: UNSCHEDULED PAGE ADVANCE MAY OCCUR

This happens when two or more absolute lines, or groups of lines, with PRESENT
WHEN clauses (or the equivalent) were both present. The precompiler would
have assumed that at least some where mutually exclusive. This will cause an
unscheduled page advance without the usual production of PAGE FOOTING
and PAGE HEADING groups, with lines that have the same LINE number
appearing on successive pages.

 COBOL Report Writer Precompiler Installation and Operation for VSE68

6 PAGE OVERFLOW: PAGE WILL EXCEED LIMIT

This condition will occur when several conditional relative LINE entries (LINE + n
PRESENT WHEN ...) all happen to be present and their total vertical size
exceeds the maximum size normally allowed for the group. The precompiler
would have assumed that at least some were mutually exclusive.

7 LINE LIMIT IDENTIFIER OUT OF RANGE: USING DEFAULT

This message implies that the identifier form of the LINE LIMIT clause has been
used and that its value was found to be higher than the maximum record
length of the report file.

8 REPORT-NUMBER OUT OF RANGE: CHANGED TO 1

This means that the field REPORT-NUMBER was not in the range 1 to the
DUPLICATED value. Its value is changed to 1.

10 SIZE ERROR ON STORING EXPRESSION

This message will appear when a SOURCE clause contains an expression that
causes a zero-divide error or an overflow when its value is computed before
storing in the report line. Report Writer will take the error action specified by
the OVERFLOW clause.

11 SIZE ERROR ON SUMMING

This message will appear when a SUM clause or term was coded and an
overflow condition occurred on adding into the total field. Report Writer will
take the error action specified by the SUM OVERFLOW clause.

14 REPORT WRITER HAS INITIATED REPORT BY DEFAULT

This message implies that the INITIATE statement has not been executed when
a GENERATE for the same report was executed.

15 AT LEAST ONE TOTAL FIELD HAD NOT BEEN PRINTED ON TERMINATE

This message is issued when the total fields (other than those with RESET ON
FINAL) are checked on TERMINATE to ensure that their values are all zero,
indicating that they have all been "printed" in the report. This message will
appear in the following circumstances:

(a) When a SUM or COUNT clause or term was coded in a DETAIL group that
was not generated at the end when non-zero values had been accumulated.

(b) When a SUM or COUNT clause is subject to a PRESENT WHEN clause, or the
equivalent, and the condition prevented the last total from being displayed.
This fault may occur innocently when a SUM or COUNT is used for some
purpose other than to be "printed".

Appendix G – Run Time Messages 69

File Handler Errors
These messages may be issued by the File Handler Control routine:

REPORT WRITER ERROR n IN FILE HANDLER xxxx
or

REPORT WRITER PAGE BUFFER ERROR n

always appears, and

IN REPORT rrrrrr ON PAGE ppp LINE lll

appears if the report has been initiated.

The value of n may be any of the following:

Value of n Message and Explanation

8 REPORT-NUMBER OUT OF RANGE: NO DUPLICATION

The value of REPORT-NUMBER was found to be less than 1 or greater than the
DUPLICATED integer. This indicates a corruption, since REPORT-NUMBER is
checked independently by the Report Writer code.

11 FILE ALREADY OPEN

An OPEN is being performed but the state of the current file is already "open".
The OPEN is ignored.

33 FILE NOT OPEN: OPEN OUTPUT EXECUTED IN DEFAULT

The report file was not in "open" mode for an operation other than OPEN, the
file was opened as for OUTPUT.

34 REPORT NOT INITIATED: INITIATED BY DEFAULT

The report was not in an "initiated" state when a GENERATE was executed. The
file handler performs the INITIATE action by default. However, not all the
actions, such as the clearing of total fields, will have been performed and the
results are therefore unreliable.

35 CHARACTERS IN PAGE BUFFER OVERWRITTEN BY DIFFERENT CHARACTERS
BEFORE OUTPUT

Two different entries placed different non-space characters in the same
position in the Page Buffer. The second entry will overwrite the first. (Space
characters do not rub out a previous character. Identical characters are
allowed to coincide without provoking this message.)

36 COLUMN SET > LINE LIMIT: CHANGED TO 1

A SET COLUMN statement has set the margin beyond the LINE LIMIT.

37 COLUMN SET NEGATIVE OR ZERO: CHANGED TO 1

A SET COLUMN statement has attempted to set the value of the margin to less
than 1. The SET is ignored.

 COBOL Report Writer Precompiler Installation and Operation for VSE70

38 PAGE BUFFER WIDTH EXCEEDED DUE TO SET COLUMN OR TOO MANY STYLES

The left-hand margin (resulting from a possible SET COLUMN) and the size of
the data line taken together exceed LINE LIMIT. The line is truncated at the
limit.

39 LINE SIZE EXCEEDS LIMIT: TRUNCATED

The width of the line data, without taking account of any margin, exceeds the
LINE LIMIT. Either the byte count of the data line or the LINE LIMIT held in the
report control area has been corrupted.

40 DATA LENGTH OVERRIDE EXCEEDS LINE SIZE: IGNORED

The value stored in the field L-RCA-LINE-SIZE (the line size override) is greater
than the size of the data line itself. This indicates either a corruption to the
report control area or a fault in the setting of the line size and may be the
result of incompatibilities between the precompiler and the run time software.

41 LINE LIMIT TOO LARGE: CHANGED TO MAXIMUM (m)

The LINE LIMIT should not exceed the absolute upper limit of 256.

44 INTERNAL FILE HANDLER ERROR

The file is being OPENed other than OUTPUT or EXTEND. Some file handlers may
give this a special interpretation. Others will issue this message and assume
OUTPUT.

49 INTERNAL FILE HANDLER ERROR

The file handler has detected an improbable line advance, indicating
corruption of LINE-COUNTER (L-RCA-LINE-CNTR). The file handler does a "PLUS
1" advance.

50 DUPLICATED NUMBER > m

The integer of the DUPLICATED clause exceeds the maximum permitted (m).
This messages indicates a corruption, since the maximum is an arbitrary high
value.

55 ATTEMPT TO SET LINE OUT OF RANGE OR BEFORE POSITION ALREADY WRITTEN

Either: a SET LINE clause has either set the LINE-COUNTER to a value outside the
range 1 to PAGE LIMIT. Or it has set it to a position above a line that has
already been written in RELEASE mode; the program should generate the
upper lines with the page SET to HOLD.

56 REPORT'S MAXIMUM LINE BYTE WIDTH IS TOO HIGH

57 REPORT'S MAXIMUM PAGE SIZE IS TOO HIGH

These messages are displayed by the PAGE BUFFER handler if the byte length
of a print line, or the number of lines per page, respectively, exceeds the
dimensions of its own internal storage table. These are set to generous limits as
supplied (see the source of CXRPBF01). To change these limits, re-compile the
PAGE BUFFER handler(s) changing the limit both in the OCCURS and clause
and in the location used in the test, and inform your supplier, so that the limits
can be increased in any future release.

Appendix G – Run Time Messages 71

58 LINE-COUNTER < 1 OR > PAGE LIMIT

A check on the feasibility of the value of LINE-COUNTER has failed. The line will
appear in an unscheduled position on the page.

61 REPORT ALREADY INITIATED: INITIATE IGNORED

An INITIATE was executed when the report was already "initiated".

63 INTERNAL FILE HANDLER ERROR (not COBOL)

The DDname for the main report file is not declared. The OPEN cannot take
place.

64 INTERNAL FILE HANDLER ERROR (not COBOL)

For a multiple file (DUPLICATED clause), a series of DDnames are required of the
form dddddd01 to ddddddnn where dddddd is the root name and nn is the
maximum number given in the DUPLICATED phrase. One of these DDnames
had not been declared.

67 NO FREE PAGE BUFFER AVAILABLE

Too many files are open simultaneously and requiring a PAGE BUFFER routine.
These are called CXRPBFnn (nn = 01,02,...) and are allocated in sequence.
New PAGE BUFFER routines may be generated by "cloning" and re-compiling
module CXRPBF01, changing its last two digits to new successive values.

69 NO PAGE BUFFER FOR LINE IN 'HOLD' STATUS

The report is in HOLD status but no PAGE BUFFER has been allocated to it. This
would indicate another serious error condition earlier than this point.

81 REPORT NOT INITIATED ON TERMINATE

A TERMINATE was executed when the report was not in "INITIATEd" state. The
statement is ignored.

91 NOT ALL REPORTS FOR FILE WERE TERMINATED ON CLOSE

An attempt is being made to close a file for which one or more associated
reports are still in an "initiated" state. The CLOSE is actioned but an error will
occur if any of those reports is subsequently TERMINATEd.

92 FILE ALREADY CLOSED

A CLOSE has been actioned when the file was not in the "OPENed" state. The
CLOSE is ignored.

In addition to the above, individual file handlers may display values and
messages of their own, in particular:

CRFHmode ERROR: LINE TOO LONG - TRUNCATED

which indicates a corruption to the print line's two-byte header.

 COBOL Report Writer Precompiler Installation and Operation for VSE72

Report Writer FUNCTION Errors

These errors are issued by the run time component of a FUNCTION. They
always begin with:

function-routine-name: ERROR

followed by the text of the message:

REPORT FIELD OF WRONG LENGTH: n

means that the size of the report field is outside the permitted limits, such as
when a printed DATE has less than six characters.

GIVEN DATE HAS INCORRECT PACKED FORMAT

means that the date parameter to the function, which should have the
COMP-3 format YYDDDs, is not in this packed form.

STYLE Errors

These are issued by the STYLE handler CXRSTYLE. They all indicate errors in the
implementation of the STYLE clause at run time. They always begin with:

CXRSTYLE:ERROR n

followed by the text, depending on the value of n:

1 ONLY UNDERLINE AND HIGHLIGHT POSSIBLE ON IMPACT PRINTER

A STYLE other than UNDERLINE and HIGHLIGHT has been defined but the TYPE
of printer is not an IBM 3800 Laser Printer or compatible. Only these two STYLEs
can be implemented on an "impact" printer.

2 STYLES NESTED OTHER THAN WHEN JUST ONE IS UNDERLINE

Nesting of STYLEs, though syntactically permitted, can only work on a
mainframe printer when UNDERLINE is nested with just one of the others
(HIGHLIGHT, ALT-FONT, GRAPHIC).

3 UNNECESSARY CALL TO STYLE ROUTINE

This warning message is issued when a print line passed to the STYLE handler is
found not to contain any STYLE escape sequences at all.

4 UNRECOGNIZED STYLE

One of the STYLEs in the print line is not one of NORMAL, UNDERLINE,
HIGHLIGHT, ALT-FONT, or GRAPHIC and so cannot be processed.

5 INCOMPLETE STYLE SEQUENCE

The input record was exhausted before the end of the escape sequence.

6 MATCHING END-STYLE NOT FOUND

Every escape sequence that begins a STYLE must pair with an escape
sequence to end it. When the file was closed, at least one of the former was
still unpaired.

Appendix G – Run Time Messages 73

7 END-STYLE FOUND WITHOUT PREVIOUS START-STYLE

An ending escape sequence was encountered without having first had the
starting sequence.

Other Run Time Errors

Several other messages can be issued by run time routines. These normally
signal only very rare conditions caused by corruption of the program. The
message always begins with the name of the routine and can therefore be
found and understood in the source of the routine in question.

Index 75

Index
Click on page numbers

A
abbreviated keywords 24
ADV option 25, 31
ALPHABET clause, effect on CONTROLS 59
ALT-FONT printer STYLE 63
ANS-68 features, summary 3
ANS-74 extensions 3
ANS-85

contained programs 12, 21
extensions: REPLACE 11
features affecting Report Writer 6

APOST option 25, 31
Assembler routines 21

list 54

B
BASIS statement 8, 10
batched programs 12
BOLDFACE – see HIGHLIGHT

C
CBL/PROCESS statement 10
CHAN file handler - use 61
channels - see CHAN file handler
CKD devices 45
clauses that need run time routines 57
CMPR2 option 6, 22, 25
COBOL routines, use 58
comment lines 12
compilation of run time library 39
COMPILE option 33
compiler-directing statements 9

**CONTROL RW 8, 9, 14, 31
*CBL/*CONTROL 9
BASIS 10
CBL/PROCESS 10
COPY 10
EJECT 10
ENTER 11
EXEC...END-EXEC 11
list of statements 9
REPLACE 11

SERVICE LABEL 11
SKIP1,2,3 10
TITLE 11
USE 11

COMPRWR procedure 39
COMPRWT procedure 39
contained programs - see nested programs
CONTROLS – implementation 59
controls, format of 33
controls, size of – see CTRLEN
COPY books 8
COPY option 11, 25
COPY statement 10
COPY, use with RTNEST option 21
copying of precompiler 37
CRFHPRNT file handler 57
CTRLEN option 25, 33, 59
customization

general 9
for VSE 38
of options 24
preparation for 23
reasons for 23

D
data set requirements 20
DB2, combined with Report Writer 11
DBCS option 26
debug 15, 29
debug lines (D in column 7) 12
default options 39
DOS/VS COBOL, migration from 6
DOS/VS COBOL, variants 30
DYNAM option 21, 33
dynamic calls 22

E
EJECT statement 10
embedded XREF and MAP 13
END PROGRAM header 12
END-EXEC statement 11
ENTER statement 11
errors in memory allocation 20
errors (in source) – see messages
EXEC … END-EXEC statement 11
EXIT, compiler option 4, 26

see also INEXIT(RW), PRTEXIT(RW)

 COBOL Report Writer Precompiler Installation and Operation for VSE76

EXIT, precompiler option 27

F
FBA devices 45
FD clause 15
features of Report Writer 3
file handlers

(see Programmer’s Manual)
general 14, 15, 21, 22, 28, 47, 58
list of supplied 54
messages 69

FIPS flagging 8, 28
FLAG option 13, 27
FLAGMIG option 13
FLAGSAA option 13
FLAGSTD option 8, 13, 28
FMODE option 28, 57
FUNCTION routines, development 47
FUNCTION routines, list 53

G
GETVIS space requirements 19
GLOBAL files and reports 3
GLOBAL reports 54
GRAPHIC printer STYLE 63

H
hardware requirements 19
HIGHLIGHT effect, via STYLE 15, 63

I
IBM extensions 28
IBM COBOL for VSE, migration to 6
identification columns 12
IJSYS11 work space 8, 20, 45
imbedded – see embedded
independent report file handlers – see file

handlers
INEXIT(RW) 4, 12, 23, 26, 45
input source, elements of 9
installation

for VSE 35
of library only 41

installation verification program – see IVP
intermediate code production 5
intermediate source 12
INX - see INEXIT
IVP 40

J
JCL

to copy installation tape 37
to customize precompiler 38
to do installation verification 40
to do stand-alone precompilation 45
to link edit run time routines 40
to re-compile run time library 39

L
LANGLVL option 10
LANGUAGE option 28
laser printer 63
LGSEQ option 13, 15, 29
LIBEXIT option 4, 13
LIBR, use in installing 37
libraries, list of routines 51
library RW 37
library, allocation of 37
LINE LIMIT clause 30
LINE-COUNTER 14
LINECOUNT option 24, 29
link editing programs 22, 46
link editing run time routines 40
LINKRWRT procedure 40
LIST option 14
listings, of source program 13
LNKEDT, use 46

M
MAP option 13
memory requirements 19
messages, compiler-generated 29
messages, from precompiler 6, 8
messages, run time 67
MGENER option 13, 29
migration to IBM COBOL 6
MODE clause - see file handlers
MONIT option 30

N
nested programs 12, 21, 31
non-Report Writer sources 8
NORTNEST,NORW etc. options - see under

positive form RTNEST,RW etc.
NUMBER option, restrictions 11, 33

Index 77

O
objectives 3
obsolete features 28
OFFSET option 14
options 9

ADV 25, 31
APOST 25, 31
at customization time 24
CMPR2 6, 22, 25
coding for customization 39
COMPILE 33
COPY 11, 25
CTRLEN 25, 33, 59
DBCS 26
DYNAM 21, 33
EXIT 4, 26, 27
FLAG 13, 27
FLAGMIG 13
FLAGSAA 13
FLAGSTD 8, 13, 28
FMODE 28, 57
how they control precompilation 23
how to code 24
LANGLVL 10
LANGUAGE 28
LGSEQ 13, 15, 29
LIBEXIT 4, 13
LINECOUNT 24, 29
LIST 14
list of 24
MAP 13
MGENER 13, 29
MONIT 30
NUMBER 11, 33
OFFSET 14
OSVS 30
PPSNS 30
precompiler-specific 23
PRTEXIT 4, 8, 13, 14, 26
QUOTE 31
RENT 22
RESIDENT 21, 22
RTNEST 14, 21, 31
RW 31
SEQUENCE 32
shared 23
SIZE 19, 32

SOURCE 32
SPACE 32
TERM 14, 32
TEST 15
VBREF 13
WORD 33
XCAL 21, 25, 33, 52, 57, 58, 59
XREF 13

options, listings 13
OSVS option 30
output, from programs 15

P
Page Buffer handler 22
PAGE HEADING and FOOTING 30
PAGE-COUNTER 14
PARM in JCL 24
PARM string, with INEXIT(RW) 45
phases, list 51
planning for installation 17
PPSNS option 30
precompiler

benefits 5
list of phases 51
notes on operation 8
options 23
overview 7
purpose 4
use under VSE 43

printing
basic 15
special 15

PRNT file handler 54, 63
PROCESS statement - see CBL
product tape – see tape
programs, list 51
PRTEXIT option 4, 14, 26, 27
PRTEXIT(RW) 12, 13, 26, 45
PRTEXIT, purpose 8
PRTX - see PRTEXIT

Q
QUOTE option 31

R
record length: forcing a value 31
RENT option 22

 COBOL Report Writer Precompiler Installation and Operation for VSE78

REPLACE statement 8, 11
REPLACING option of COPY 10
Report Writer Library 37
Report Writer

summary of features 3
user-developed routines 47

reserved words 65
RESIDENT option 21, 22
return codes 14
RTNEST option 14, 21, 31, 46, 58, 59
run time library

general description 9
generation 39
list of routines 52

run time
messages 67
requirements 21
routines, in source form 31
routines, how incorporated 21
routines, when-required list 57

RW library 37
RW option 31
RW operand of **CONTROL 8, 9, 31

S
sequence numbers 11, 29
SEQUENCE option 32
SERVICE LABEL statement 11
severity levels of messages 14, 28
shared options 23
size - see memory
SIZE option 19
size of library 37
size requirements 19
SKIP1/2/3 statements 10
software requirements 19
sources (of run time library) 39
SOURCE option 32
SOURCE SUM correlation 30
SPACE option 32
SPC extensions 28
SPCHOPTS phase, generation 38
special effects 15
stand-alone precompiler 45
stand-alone precompiler, use of 5
STYLE clause 15
STYLE handler 22
STYLEs, list 63
sub-libraries 37
summary and statistics listing 14

SUPPRESS option of COPY 21
SYSIPT 45
SYSLST 13
SYSOUT, use at run time 67
SYSPCH 12, 45
SYSPCH, use by precompiler 5

T
Table Reference Characters 63
TERM option 14, 32
TEST option 15
TITLE statement 11
TRC - see Table Reference Character
tuning 20

U
UNDERLINE effect, via STYLE 15
UNDERLINE printer STYLE 63
USE statements 11
user-written extensions 47
user-written routines 21

V
VBREF option 13
verification of installation - see IVP
virtual memory, use of 19
VSAM-controlled space 37
VSE

installing precompiler 35
using precompiler 43

W
warning messages 6
wild cards in COPY 10
WITH DEBUGGING MODE statement 12
WORD option 33
work space – see IJSYS11

X
XCAL option 21, 25, 33, 52, 57, 58, 59
XREF option 13

etc
3800 model printer 63
**CONTROL statement 8
*CBL & *CONTROL statements 9
*CONTROL statement 8

	Contents
	Index
	Precompiler: General Information
	Objectives
	Purpose of COBOL Report Writer
	Purpose of the Precompiler
	Benefits

	Migration from DOS/VS COBOL to IBM COBOL
	Precompiler System Overview
	Notes on Precompiler Operation
	Purpose of PRTEXIT(RW)
	Options and Customization
	Run Time Library
	Elements of Input Source
	Compiler-Directing Statements
	Sequence Numbers
	Comment Lines
	Debug Lines
	Identification Columns
	Nested and Batched Programs

	Intermediate Source
	Source Listings
	Return Codes
	Debug
	Output from Report Writer Programs
	Basic Printing
	Special Printing
	Special Effects

	Planning and Preparation for Installation
	Requirements for Precompiler
	Minimum Hardware and Software Requirements
	Size and Memory Requirements
	Data Set Requirements

	Requirements for Run Time Library
	What Run Time Services are Required?
	How Run Time Routines are Incorporated

	Preparing to Customize
	Why Customize?
	How Options Control the Precompilation
	Meanings of the Options
	Restrictions to Other Compiler Options

	Installation and Customization for VSE
	Allocating the Report Writer Library
	Copying the Precompiler (5798-DYR)
	Customizing the Precompiler
	Options

	Compiling the COBOL Run Time Routines
	Link Editing the COBOL Run Time Routines

	Installation Verification
	Installing the Library Only (5798-DZX)

	Using the Precompiler on VSE
	Using INEXIT(RW),PRTEXIT(RW)
	The Work File IJSYS11

	Using the Stand-alone Precompiler
	Linking and Running the Compiled Program
	Run Time Library
	User-Developed Report Writer Routines

	Appendices

