COBOL REPORT WRITER PRECOMPILER

PROGRAMMER'S MANUAL

Program Number 5798-DYR

and Program Number 5798-DZX (Run Time Library only)

IBM Publication SC26-4301-03 with updates

On-Line Version: Cross References are Yellow

Eighth Edition, January 2002

Text Copyright © 1986, 1995, 2002 by: SPC Systems Ltd.

browsable media (PDF) version Wimbledon, London SW19 3PX
Complete copies of this document may England.

be freely made and distributed on Tel: (US) (206) 725-7431
computer or magnetic media. Tel: (UK) +44-208-540-8409

Fi\ Get Acro

Adobe _ Reader www.spc-systems.com

www.adobe.com/products/acrobat/readstep.html info@spc—sysTe ms.com

http://www.spc-systems.com/
http://www.adobe.com/products/acrobat/readstep.html

Contents

Index

1

2

3

Infroduction and Tutorial

1.
1.
1.
1.
1.

ONNWON —

Welcome to COBOL Report Writer
Gentle Infroduction

More about COBOL Report Writer
Some Shorter Forms

Other Features

Report Files and RD Entries

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

Report Files and RD: Keyword Table
Report Files

REPORT SECTION and RD

ALLOW clause

CODE clause

CONTROL clause

LINE LIMIT clause

OVERFLOW clauses

PAGE LIMIT clause

Report Group Descriptfions

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19

Infroducing Report Groups
Coding Report Group Descriptions
BLANK WHEN ZERO clause
COLUMN clause
COLUMN-COUNTER
COUNT clause

FUNCTION clause

GROUP LIMIT clause
JUSTIFIED clause

LINE clause

LINE-COUNTER

MULTIPLE PAGE clause
NEXT GROUP clause
OCCURS clause
PAGE-COUNTER

PICTURE clause

PRESENT AFTER clause
PRESENT WHEN clause
REPEATED clause

331
1

3
4
18
30
31

39

41
43
50
53
54
56
63
65
68

75

77
81
86
87
23
94
26
103
104
1056
112
114
116
120
127
129
1156
139
152

COBOL Report Writer Precompiler Programmer’s Manual

3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28

SIGN clause
SOURCE clause
STYLE clause
SUM clause
TYPE clause
USAGE clause
VALUE clause
VARYING clause
WRAP clause

4 Procedural Statements

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Report Writer Verbs: Overview
GENERATE statement

INITIATE statement

Report Writer SET statements
SUPPRESS PRINTING statement
TERMINATE statement

USE BEFORE REPORTING directive

5 Special Topics

5.1
5.2
5.3

Multiple Reports
Developing User-Written Functions
Independent Report File Handlers

6 Migration from OS/VS or DOS/VS COBOL Report Writer

6.1
6.2
6.3
6.4

Appendices

Re-compiling OS/VS and DOS/VS COBOL Sources
Other Considerations

Physical Comparison of Report Writer Output
Unreachable Code

Appendix A - List of Post-1968 Extensions
Appendix B - List of New Reserved Words
Appendix C - Summary of Formats
Appendix D - Glossary

Appendix E - Precompiler Messages

Contents

156
158
163
167
188
195
196
199
203

209

211
213
219
221
227
228
230

288

237
244
248

261

263
274
274
275

277

279
287
289
297
303

Preface

Note for the browsable (PDF) edition. This version is a true rendering of the original printed
document, but with color replacing lines and arrows, and many cross-references (or “hot
spots”) inserted. When reading text that refers elsewhere, please probe for these hot spots
to get there automatically. Also, these Preface sheets were simplified for convenience.

This publication is intended for programmers engaged in the writing of new COBOL programs using
Report Writer, or the maintenance of old ones. Most of the text is infended for the general
application programmer, but there is also information in part 5 for the systems programmer engaged
in writing user extensions, such as for special output devices.

The language described in this eigth edition includes all the extensions to the Report Writer feature
described in the ANS-85 standard and enhancements to the language made up to May 1995.

This publication also describes the basic (ANS-68) features used in IBM* OS/VS and DOS/VS COBOL
and the many extensions infroduced by IBM, Codasyl, and SPC Systems. For this reason, the product
is referred to here as new Repor Writer to distinguish it from the built-in Report Writer of OS/VS and
DOS/VS COBOL that they contain as a subset.

This publication is a combination of all the following elements:

tutorial (Introduction and Tutorial),

detailed language description (Report Files and RD Entries, Report Group
Descriptions, Procedural Statements and Special Topics),

migration guide (Migration from OS/VS or DOS/VS COBOL Report Writer),
quick reference (Appendices)

The tutorial is a step-by-step infroduction, containing sufficient detail to enable programmers to write
or maintain simple Report Writer code, while giving them an appreciation of what is possible using
the more advanced features. Readers with a knowledge of OS/VS or DOS/VS COBOL's built-in
Report Writer should also read this part.

The language description contains a formal explanation of the syntax and illustrated explanation of
the usage of each clause and statement.

The migration guide is for use in the migration of programs from OS/VS or DOS/VS COBOL's built-in
Report Writer to the new Report Writer described here. You can obtain notification of your use of any
extensions by means of a precompiler option (see Installation and Operation).

The Appendices list and categorize the extensions, with an explanation of the error messages and a
summary of syntax and reserved words.

* IBM is a frademark of International Business Machines Corporation.

4 COBOL Report Writer Precompiler Programmer’s Manual

This first part is a short infroduction to the principles of COBOL Report Writer. After
reading it, you will be able to write or maintain simple report writer code and you will
have enough appreciation of the more advanced concepfts to be able to locate the
information quickly in the main parts.

All the information given here can also be found in the more formal context of Parts 2
to 5.

1 —Intfroduction and Tutorial

1.1

111

1.1.2

Welcome to COBOL Report Writer

Introduction to this Product

This product has two separate purposes:

® To improve programmer productivity in all aspects of printed output in COBOL
by encouraging both experienced users and newcomers to make more use of
COBOL's report writer feature.

® To help users who have had experience with a version of COBOL report writer
that was an integral part of the compiler and want o contfinue to use the same
facilities.

The Report Writer features are implemented in this product by means of a precompiler,
rather than within the compiler itself. The compiler processes the intermediate source
which the precompiler automatically passes to it. The precompiler phase is made as
far as possible transparent to programmers, so that their attention is not distracted from
the original report writer source. The precompiler and the compiler cooperate closely
in a single-step operation and a final listing phase combines the output from both to
produce a single source listing, enabling you to disregard the fact that two separate
processes are involved. A description of this process will be found in Installation and
Operation.

What is Report Writer?

Report Writer is COBOL's own built-in non-procedural facility for the production of
printfed output. It enables you to define and produce all the listings, reports, and
displayed summaries that would normally be required from a COBOL application, but in
far less fime. It allows many more printed outputs, which might have been produced
previously using stand-alone non-COBOL report generators, to be done in COBOL,
because it reduces greatly the fime and effort needed to code and test a COBOL
program with printed output.

Report writer appeared in its original form in 1961 and later entered the 1968 ANS
Standard. This version provided certain basic features that users of accounting
machines were accustomed to, such as simple accumulation, cross-footing, and
counter-rolling, as well as automatic page numbering. The implementation of report
writer described in this volume contains all the facilities of the standard ANS-68, ANS-74,
and ANS-85 report writer, plus IBM extensions, and includes many additional features
which were added in various stages since 1974, many of which appear in the proposed
ANS-9x standard. It is more suitable for the more varied and complex outputs needed
by modern applications. There is no special ferm for this generalized, extended version
of the language, so it is referred to in this manual simply as new Report Writer.

1.1 - Welcome to COBOL Report Writer 3

1.1.3

1.2
1.2.1

1.2.2

Compatibility With Built-In COBOL Report Writer

Apart from a few insubstantial differences, listed and explained in Part 6, COBOL Report
Writer includes the whole of the ANS-68 Report Writer of IBM's OS/VS COBOL and
DOS/VS COBOL, so if you will be using sources migrated from either of these, they should
work just as they did before. Customizing with the (default) option OSVS set on ensures
the highest degree of compatibility with OS/VS and DOS/VS COBOL (see Installation
and Operation.)

COBOL Report Writer also has many completely new features that are not a part of
these standards, as well as enhancements to the original features. Several of them look
forward to the next ANS standard. This volume points out which features are unique to
new Report Writer in a Compatibility paragraph at the end of each section. A summary
list of all the enhancements will be found at the start of parts 2, 3, and 4, and in
Appendix A. Those ANS-68 features that were deleted or changed in the ANS-74 and
ANS-85 Standards are nevertheless retained in this product; these cases are also listed in
Appendix A.

Gentle Introduction

What is a Report?

Wherever you see the term report in this publication, it means any human readable
oufput that may be produced by a program. Nowadays, the term report is normally
used to mean a special printout or screen produced by a report generator. We use
the term in a more general sense. Any readable output, whether long or short, "one-
shot" or routine, printed or not, is a report. For instance, any of the following is a report
and could be produced by COBOL Report Writer:

® Pay slips and paychecks prinfed on a mainframe printer;
® |nvoices printed by a small remote printer;
® A small summary print produced at the end of a large update program;

® Sales of golf shoes, summarized by region and area, during the years 1985 to
1992 (a one-time, ad hoc report);

® An extremely complex print of personnel records with many variable-length lines
and fields, "printed" on microfiche.

The only requirements for a report are that it should be readable (all fields USAGE
DISPLAY only) and should consist of output only.

What Does Report Writer Do?

When you write Report Writer code, you do not write a sequence of procedural
statements as you would in elementary COBOL. Instead, most of your effort is spent in
specifying the appearance of the report. The DATA DIVISION syntax enables you to
code the layout of your printout entirely in descriptive data-oriented terms. The only

COBOL Report Writer Precompiler Programmer’s Manual

1.2.3

"verbs" used are those that begin (INITIATE) and end (TERMINATE) the report and that
GENERATE whole blocks of lines, known as report groups.

Report writer automatically generates your print record descriptions, your intermediate
data areas, and all the procedural code needed to produce your outputs, saving you
the effort that elementary COBOL would have required. For particularly difficult or
challenging layouts, there are more advanced data clauses. By studying these in the
later parts of this publication, you will learn to produce all your outputs with COBOL
Report Writer.

Although so much is performed automatically, you still retain control at the highest level
over all operations, because no report writer action takes place until one of the
statements INITIATE, GENERATE, or TERMINATE is executed. However, these statements
are sufficiently high-level to require only the simplest logic in your PROCEDURE DIVISION.

Since you may use COBOL Report Writer in any COBOL program, you may use it in any
program that has to produce readable output - even if the program performs many
other tasks. COBOL Report Writer does not extract the input data itself, unlike a report
generator, which means that it may be used in partnership with all types of COBOL
input: standard files, databases, and subroutine or module linkage.

Report Writer in Easy Steps
Step 1: Find the Report Groups

Your program may have one or several report layouts. Here is an example of one
hypothetical report layout:

CRUMBLY COOKIE COMPANY ORDERS PAGE 1

DATE TYPE QUANTITY VALUE OF ORDER
10/04/84 GINGERBREAD 100 $20.50
06/05/84 CHOC. CHIPS 50 $18.20
11/06/84 LEMON CREAM 150 $110.00

**QUT OF STOCK

TOTALS: DEPOT NORTH-WEST $148.70

Your first task is to divide up the layout into report groups. A report group is a "block" of
lines, produced in one operation. Your layout may be built up from any number of
different report groups. You can allow the shape and contents of each report group to
vary as much as you like but, if the variations become very complex, it will be easier to
define two different report groups. The following guidelines should be used to define a
report group:

® |t may consist of from one up to any number of lines, and may have any number
of fields.

1.2 — Gentle Intfroduction 5

® |t normally fits on one page, rather than being split by a page boundary. There
are exceptions to this rule in MULTIPLE PAGE groups and REPORT HEADING and
FOOTING groups, described later.

® |t may contain fields whose contents come from anywhere in the DATA
DIVISION, provided that all the fields are present in memory at the moment your
program generates the report group.

If your report structure corresponds to records in a main file or database, remember
that, unless you have a special reason for reading ahead and buffering several records,
a report group should correspond to one record from your main file or database.
(However, there is also a summary reporting feature that enables your program to
oufput one report group that summarizes a whole set of records.)

Mark each report group clearly. Only one instance of each group needs to be
marked, because only one description of each group is needed. You might use square
brackets in the margin of your layout. In this example, let's draw a rectangle round
each report group.

Here is the result:

“ CRUMBLY COOKIE COMPANY ORDERS PAGE 1 (A)
DATE TYPE QUANTITY VALUE OF ORDER
10/04/84 GINGERBREAD 100 $20.50 (B)
06/05/84 CHOC. CHIPS 50 $18.20 (B)

|‘ 11/06/84 LEMON CREAM 150 $110.00 (B)

**QUT OF STOCK

©)

“ TOTALS: DEPOT NORTH-WEST $148.70

There are three instances of report group (B) in the picture. Only one instance needs a
"box", and it is best to draw it around the most complex case, that is, the instance with
the exira line "*OUT OF STOCK". (We want this line to be part of the same report group,
rather than a report group in its own right, because we want to ensure that it will never
be separated from the preceding line by a page advance.)

Step 2: Decide on the TYPE of Each Report Group

Each report group can appear in one of seven basic positions in your report, indicated
by the TYPE clause. Here are their names and positions:

COBOL Report Writer Precompiler Programmer’s Manual

DETAIL or DE

This is the TYPE assumed by any group that is not of one of the special six described
below. DETAIL groups usually contain the most basic data in the report. They are
the only report groups that you GENERATE. TYPE DETAIL and the next two are
known as body groups. (They fall between the PAGE HEADING and PAGE
FOOTING, if any, on each page.)

CONTROL HEADING or CH

This group is generated automatically at the start of each different value of the
corresponding control field (as explained in Step 3 below).

CONTROL FOOTING or CF

This group is generated automatically at the end of each different value of the
corresponding control field.

PAGE HEADING or PH

This group will appear at the start of each page.
PAGE FOOTING or PF

This group will appear at the end of each page.
REPORT HEADING or RH

This group will appear once, on a page by itself or before the first PAGE HEADING
(if any), at the very start of the printout.

REPORT FOOTING or RF

This group will appear once, on a page by itself or after the last PAGE FOOTING (if
any), at the very end of the printout.

Each TYPE is optional. Your report may contain any number of different DETAIL groups,

any number of different CONTROL HEADING and CONTROL FOOTING groups (up to one
of each for each control level), but only one of each of the other four.

1.2 — Gentle Intfroduction 7

We can now assign the correct TYPEs to each group in our layout:

CRUMBLY COOKIE COMPANY ORDERS PAGE 1 (A) IYPE PH
DATE TYPE QUANTITY VALUE OF ORDER
10/04/84 GINGERBREAD 100 $20.50 (B)
06/05/84 CHOC. CHIPS 50 $18.20 (B)
11/06/84 LEMON CREAM 150 $110.00 (B) TYPE DE

**QUT OF STOCK

(C) TYPE CF
TOTALS: DEPOT NORTH-WEST $148.70

Step 3: Code the RD Entry

Your report groups are described in the REPORT SECTION, which is the last section in
your program's DATA DIVISION. The REPORT SECTION may contain any number of
Report Descriptions. Each of these begins with an RD entry that starts in the A-margin:

REPORT SECTION.
RD

Follow this with a report-name of your choice. This name will be used to stand for the
report as a whole, so choose a name that is appropriate:

REPORT SECTION.
RD STOCK-SUMMARY

Several clauses may follow your report-name. The optional LINE LIMIT clause gives the
maximum number of columns you expect per line and is used as a safety measure
against losing data due to line overflow. The FIRST DETAIL clause (or its alternative
spellings FIRST DE or FIRST BODY GROUP) indicates on which line the main information of
each page should start. The PAGE LIMIT clause is required if your report is divided into
pages. It gives the maximum number of lines to be written to each page. The orderin
which you code these clauses and phrases does not matter.

COBOL Report Writer Precompiler Programmer’s Manual

REPORT SECTION.

RD STOCK-SUMMARY
LINE LIMIT 132
FIRST DETAIL 5
PAGE LIMIT 64

There are other clauses available to mark out different regions of the page. (See 2.9
PAGE LIMIT clause.)

Our report has control totals. That is, after the change in value of a certain confrol field
(DEPOT), we want COBOL Report Writer to produce an extra report group (the
CONTROL FOOTING). The data must arrive in the correct sequence as COBOL Report
Writer does not SORT your data itself. (You might use COBOL SORT for that.) The field is
called a control and a change in its value is called a control break. You may nest as
many different levels of control as you need. You may also have corresponding
CONTROL HEADING groups to appear before the start of the detail lines for the new
control value. (In our example, there is just one level of control and no CONTROL
HEADING group). You indicate which fields are to be used to test for control breaks by
means of the CONTROL (or CONTROLS) clause. Each control represents a different
level. Your controls must be listed in hierarchical order from highest down to lowest. In
our example it is simple because there is only one level:

REPORT SECTION.

RD STOCK-SUMMARY
LINE LIMIT 132
FIRST DETAIL 5
PAGE LIMIT 64
CONTROL IS DEPOT.

Because the CONTROL clause is the last clause of the RD entry, you write a period (".")
afterit. Here is another example of a CONTROL clause. This time, we have two conftrol
fields and also a special all-encompassing level, known as REPORT or FINAL, that may
be used for producing grand totals for the whole report.

CONTROLS ARE REPORT, YEAR, MONTH

LINE LIMIT, FIRST DETAIL, PAGE LIMIT, and CONTROL are not the only clauses you can
write in the RD entry. The others are described in the chapter Report Files and RD
Entries. The order in which you code the RD clauses is irrelevant.

Step 4: Code the Report Group Descriptions

Step 4A: 01-Level Entries

1.2 — Gentle Infroduction 9

10

Each report group is coded as a series of COBOL entries. Each entry consists of a level-
number, an opfional data-name, any number of opfional clauses, and a period. Each
report group must start with a 01 level-number in the A-margin:

| 01

If the group is a DETAIL, follow this with a report-group data-name of your choice,
followed by the optional word TYPE and the type of the group:

01 TYPE PH.
soo GEC ooo
01 COOKIE-LINE TYPE DE.
... etc .
01 TYPE CF.
etc

To make your program even clearer, you may spell out the TYPE clause in full; for
instance: TYPE IS PAGE HEADING. Any number of entries, indicated by our "...", may
follow the O1-level entry, as you will shortly see.

You indicate which level of CONTROL HEADING and CONTROL FOOTING you are
describing by writing FOR name-of-control after CH and CF. (This is optional if there is
only one level, or you want ALL levels in a CONTROL FOOTING). Taking our example
with three levels above, you might code:

01 TYPE CH FOR YEAR.

01 TYI;I.E.CH FOR MONTH.

Step 4B: LINEs and COLUMNSs

After each group's O1-level entry, code a series of LINE enfries, each containing a series
of COLUMN entries. COLUMN may be abbreviated as COL. (You will see, in the
chapter Report Group Descriptions, that you can also code a dummy group without
LINEs or COLUMNEs.) You indicate that an entry is at a lower level by increasing the
level-number. Forinstance, you might choose 03 for LINE entries and 05 for COLUMN
entries:

03 LINE

H 01 TYPE PH.
05 coL ..

After the LINE or COL keyword you may choose one of two ways to specify positioning
for your line or field by writing either integer or +integer.

e LINE integer gives you an absolute, that is, fixed, LINE position, counting from
1 at the top of the page, to the maximum given in your PAGE LIMIT. If you

COBOL Report Writer Precompiler Programmer’s Manual

use absolute LINE clauses in a group, the integers must increase. You might
use this form for the PAGE HEADING in our example.

LINE + integer (+ can also be written PLUS) gives you a relative LINE position.
It will cause the vertical position to move down that number of lines. For
example, LINE + 1 means place on the next line. LINE + 2 means leave one
blank line. (This form is rather like WRITE... AFTER ADVANCING..., translated
entirely into data terms, of course.) You may mix absolute and relative LINE
clauses in the same report group, provided that you begin with an absolute
LINE. LINE alone implies LINE + 1.

CRUMBLY COOKIE COMPANY ORDERS PAGE 1 < LINE 1

DATE TYPE QUANTITY VALUE OF ORDER | <« LINE 3 or LINE + 2

COLUMN integer gives you an absolute, i.e. fixed, COLUMN position for the
left-hand character of the field, counting character positions from 1 at the
left, up to the maximum given in your LINE LIMIT. You can also anchor the
field at its CENTER column by writing COLUMN CENTER integer, and you can
fix the field at its RIGHT column by writing COLUMN RIGHT integer. If you use
these absolute COLUMN clauses, the integers must increase within a LINE.

COLUMN + integer (COLUMN can be shortened to COL and + can be
written PLUS) gives you a relative COLUMN position. It will cause the current
horizontal position to move right that number of positions from the last
column of the preceding field (from zero if this is the first field) to the first
column of the current field. For example, COL + 1 means place this field in
the next column without a gap, and COL + 2 means leave one column
blank.

line nos

1

5or+4

column numbers ...>>>
1 20 or + 3
XX XXXXXXXKXKXKXXXXXX . YYYYYYYY

222277

Report Writer writes your report groups vertically down the page in the order in which
they are GENERATEd. DETAIL and CONTROL groups (HEADING or FOOTING), which are
known as body groups, are first checked to see whether all their lines will fit on the
current page. If your report group begins with an absolute LINE, report writer will
advance to a new page if that LINE number has been reached or passed. If your
report group begins with a relative LINE, report writer checks the size of the report
group. If there is no room, or if there is not enough room for the whole group, report
writer will advance to a new page.

1.2 — Gentle Intfroduction 11

Advancing to a new page involves automatically generating your PAGE FOOTING, if
you defined one, followed by your PAGE HEADING, if you defined one. If a body group
(CH, DE or CF) begins with a relative LINE, it is positioned on the FIRST DETAIL line,
irespective of the value in the LINE clause. (If you did not code a FIRST DETAIL sub-
clause, it is assumed to be the line immediately following our PAGE HEADING, or line 1 if
there is no PAGE HEADING.)

Step 4C.: VALUEs and SOURCEs

To complete your Report Group Descriptions, you need to specify the contents of the
fields. The two most usual ways, which are sufficient for this example, are as follows:

If the contents of the field consist of fixed text, write:
VALUE "literal", orsimply: "lTiteral"
If the contents of the report field come from a field in your COBOL DATA DIVISION, write:
PICTURE (or PIC) picture-symbols SOURCE name-of-field

Your SOURCE field may be defined in any section of your DATA DIVISION, or it may be a
special register such as LINE-COUNTER. The SOURCE keyword may be omitted. You
may use subscripts and qualifiers, for example: SOURCE BACK-PAY IN MASTER-RECORD
(4). You may also use arithmetic expressions and the word ROUNDED , if needed; for
example:

PIC $(9)9.99 SOURCE (MONTHLY-PAY * 12) + YEARLY-BONUS ROUNDED

You must code a PICTURE clause with the SOURCE clause. This specifies the format in
which you would like the field displayed and is the same clause as in elementary
COBOL. It can be abbreviated as PIC. Here are two examples:

PIC $(8)9.99 SOURCE MONTHLY-PAY
PIC X(32) SOURCE NAME-OF-STUDENT

The rules for storing the field work exactly as for the MOVE (or the COMPUTE) statement
of elementary COBOL. If your SOURCE refers o a CONTROL field, then you will obtain
the value before the control break if report writer is currently processing CONTROL
FOOTING groups. This is the only case where you do not obtain the value contained in
the field at that instant.

Your layout may require a page number. This is held in a special register (a dedicated
intfernal COBOL location) called PAGE-COUNTER. This location is set up automatically
by report writer. There are also LINE-COUNTER and COLUMN-COUNTER special registers.

Suppose that the record that supplies data for the layout above is defined in a
standard file as follows:

COBOL Report Writer Precompiler Programmer’s Manual

FD COOKIE-FILE LABEL RECORDS STANDARD.
01 COOKIE-RECORD.

05 DEPOT PIC X(10).

05 ORDER-DATE PIC 9(6).

05 COOKIE-TYPE PIC X(12).

05 QTY-ORDERED PIC 9(4) COMP.

05 QTY-IN-STOCK PIC 9(4) COMP.

05 ORDER-VALUE PIC S9(5)V99 CowmP.

Now we are ready to complete the PAGE HEADING group and the first line of the
DETAIL group for the layout above, using these new clauses.

REPORT SECTION

(A) | RD STOCK-SUMMARY
LINE LIMIT 132
FIRST DETAIL 5
PAGE LIMIT 64
CONTROL IS DEPOT.

01 TYPE PH.

03 LINE 1.

05 coL 12 VALUE "CRUMBLY COOKIE COMPANY ORDERS".
05 coL 47 VALUE "PAGE".
05 coL +2 PIC Z9 SOURCE PAGE-COUNTER.

03 LINE 3.
05 coL 7 VALUE
"DATE TYPE QUANTITY VALUE OF ORDER".

01 COOKIE-LINE TYPE DE.
03 LINE + 2.
05 coL 4 PIC 99/99/99 SOURCE ORDER-DATE.
05 coL 16 PIC X(12) SOURCE COOKIE-TYPE.
05 coL 29 PIC 7779 SOURCE QTY-ORDERED.
05 coL 41 PIC $(5)9.99 SOURCE ORDER-VALUE.

Step 4D: Conditional Items

There is one item in our layout that we do not want to produce every time. This is the
message "OUT OF STOCK". We deliberately allowed for it by including it in the "box" we
drew round the typical DETAIL group. It should only be produced if the condition

QTY-ORDERED > QTY-IN-STOCK
is true. To make any item depend on a condition's being true or false, use the clause:
PRESENT WHEN condition

1.2 — Gentle Infroduction 13

14

Report writer will then automatically test the condition when it is about to produce the
item. If the condition is false, the item is ignored. If you put the clause on a LINE entry, it
is the whole line that is ignored. (You can in fact put it at any level. When a group field
is ignored, so are all the fields within the group.) In the case here, we do want the
whole line to be ignored if the condition is false, so the following would be a valid
description for the second line for the DETAIL group:

03 LINE PRESENT WHEN QTY-ORDERED > QTY-IN-STOCK.
(B) 05 cCoL 2 VALUE "**QUT OF STOCK".
Step 4E: Totalling

The sample layout tells you to produce a total in the CONTROL FOOTING group.
COBOL Report Writer allows you to produce totals from virtually any numeric fields, and
you may do it in any TYPE of group. To produce a total, follow these two simple steps:

1. Put a data-name at the front of the entry you want totalled.

2. In another entry, use the clause: SUM OF data-name instead of SOURCE or
VALUE.

First, you must go back to our coding for the DETAIL group above and add a dato-
name to the entry for ORDER-VALUE. For example, you could re-write the last entry as:

05 REP-ORD-VAL COL 41 PIC $(5)9.99 SOURCE ORDER-VALUE. |

©) 03 LINE + 3.
05 cCcoL 16 VALUE "TOTALS: DEPOT".
05 coL + 2 PIC X(10) SOURCE DEPOT.
05 coL 41 PIC $(5)9.99 SUM OF REP-ORD-VAL.
03 LINE.

where REP-ORD-VAL is a new data-name of your choice. Now you can code the
CONTROL FOOTING group for our layout:

01 TYPE CF.

05 coL 41 VALUE '"=========",

You may have any number of CONTROLS in your program, and you may have a
CONTROL HEADING as well as a CONTROL FOOTING report group for each control.

Step 5: Code the SELECT...ASSIGN and FD
COBOL Report Writer requires a standard COBOL file to which to write your output. So,

to begin with, you need a SELECT...ASSIGN clause and an FD . The FD entry may
contain any clauses that you would normally use for a report file, plus a new clause:

COBOL Report Writer Precompiler Programmer’s Manual

REPORT IS name-of-report. You should not need a record description to follow. For our
example, you might write:

IDENTIFICATION DIVISION.
(D) ... (other paragraphs as normal)
FILE-CONTROL.
SELECT COOKIE-FILE ASSIGN TO UT-S-DATAIN.
SELECT STOCK-PRINT ASSIGN TO UT-S-LISTO1l.
DATA DIVISION.
FILE SECTION.
FD COOKIE-FILE.
... (description as in step 40C)
FD STOCK-PRINT

REPORT IS STOCK-SUMMARY.
WORKING-STORAGE SECTION.
01 WS-EOF PIC X VALUE "N"

Step 6: Code the PROCEDURE DIVISION

Report Writer is entirely under the control of your program, but at a higher level than is
the case with elementary COBOL. This means that no action will be taken until your
program executes a report writer statement. There are three of these:

1. INITIATE name-of-report

This statement initializes your report at the start of the whole process. Your program
must do this before it is allowed to execute any other report writer statements. It does
not open the file. Name-of-report is the data-name you wrote right after the RD.

2. GENERATE detail-name

This statement generates one instance of a DETAIL report group. Detail-name is the
data-name you used to name your DETAIL report group. The GENERATE also performs
all the other actions that might be necessary before the DETAIL report group is output,
namely:

It tests for control breaks (if your report has a CONTROL clause) and, if necessary,
produces CONTROL FOOTING and CONTROL FOOTING report groups.

It checks that your DETAIL report group will fit completely on the current page
(assuming that your report has a PAGE clause). If nof, it produces your PAGE FOOTING
report group (if there is one defined in your report), advances to a new page and
produces your PAGE HEADING report group (if there is one defined in your report).
Unless you explicitly allow it with a MULTIPLE PAGE clause, report writer never splits your
report group over two pages.

If it is the first occasion after the INITIATE, the GENERATE statement will output any

REPORT HEADING, your PAGE HEADING, and all your CONTROL HEADING groups before
generating your DETAIL report group.

1.2 — Gentle Infroduction 15

Your CONTROL HEADING and CONTROL FOOTING report groups are also subject to the
page-fit test. They are freated similarly to DETAIL report groups. These three TYPEs are
often referred to as body groups, because they fit into the "body" of the page
(oetween the PAGE HEADING and FOOTING) and usually contain the most important
information.

3. TERMINATE name-of-report

This statement ends your report and produces any final items that are required at the
end of the report, namely:

® Al CONTROL FOQOTINGs up to the highest level defined;
® The last PAGE FOOTING (if defined);

e The REPORT FOOTING (if defined).

To produce output for a simple report layout from standard files, the following logical
structure should apply:

OPEN 1input and report files
INITIATE report-name

l

READ input file for each input record
GENERATE detail-name

!

TERMINATE repo rt-name
CLOSE all files

at end-of-file

If your input is from a database, or reaches your program's DATA DIVISION by some
means other than from a standard file, you will need to replace the OPEN and CLOSE
for the input files and the READ by more appropriate statements.

To produce a more complex layout, you would probably define several different DETAIL

report groups and decide in your program when to GENERATE one or the other. For our
example, the following would be a suitable complete PROCEDURE DIVISION:

COBOL Report Writer Precompiler Programmer’s Manual

PROCEDURE DIVISION.
(E) PROGRAM-START.
OPEN INPUT COOKIE-FILE, OUTPUT STOCK-PRINT
INITIATE STOCK-SUMMARY
PERFORM NEXT-RECORD
PERFORM GENERATE-LINE THRU NEXT-RECORD
UNTIL WS-EOF = "Y"
TERMINATE STOCK-SUMMARY
CLOSE STOCK-PRINT, COOKIE-FILE
STOP RUN.
GENERATE-LINE.
GENERATE COOKIE-LINE.
NEXT-RECORD.
READ COOKIE-FILE AT END MOVE "Y" TO WS-EOF.

Place this code after the code in the code samples (D), (A), (B) and (C) (in that order)
and you have a complete program.

You may use report writer "verbs" just as you would use any other PROCEDURE DIVISION
statements. So your program may do many other tasks apart from just producing your
report output.

1.2 — Gentle Infroduction 17

1.3

13.1

1.3.2

18

More about COBOL Report Writer

More about Files and Reports

You may describe as many reports as you like per program. Each report has its own RD
entry, followed by one or more Report Group Descriptions. Separate reports may either
be assigned to separate files or to the same file, in which case you could write:

PRINT-FILE
REPORTS ARE MAIN-REPORT, SUMMARY-REPORT.

This last approach is useful where you need to produce a report that has distinct
sections, perhaps with different page headings. So a single physical report (as the end-
user sees it) may consist of several different logical reports (as the programmer sees
them), all written to the same file.

You can also direct your report output o a special Independent Report File Handler,
designed to process the output from reports in a particular way. To use the special file
handler, write the extra clause: MODE IS mnemonic-name in the SELECT clause. It does
not affect the FD or any other statements in your program.

More about the RD Entry

Apart from the clauses used in our example, there are several other clauses that you
may write in your RD entry. They are all explained in detail in the chapter Report Files
and RD Entries. Here is a brief summary:

LAST DETAIL gives the last line on which a DETAIL or CONTROL HEADING report
group may appear.

LAST CF (or LAST CONTROL FOOTING or just FOOTING) gives the last line on which
a CONTROL FOOTING group may appear. If you do not specify it, a default value
is assumed forit. You can use it fo ensure that a CONTROL FOOTING will never
appear af the top of a page (since there will always be space reserved for it at
the bottom of the previous page).

OVERFLOW and SUM OVERFLOW enable you to specify the action that takes
place if any arithmetic expressions or totals defined in your report groups are too
large for the report field or involve dividing by zero.

CODE is used when your output report data must have extra unprinted
information placed at the start of each record, or when you need to pass
information to a special Independent Report File Handler (see Independent
Report File Handlers). For example, if your installation has provided a file handler
to do spooling and restart, you may be required to provide a key by which restart
would be done. You would then write: CODE IS name-of-key-field.

ALLOW SOURCE SUM CORR and ALLOW NO SOURCE SUM CORR determine
whether the ANS-68 or the ANS-85 rules will be used for calculating certain SUM
fields. ALLOW NO SOURCE SUM CORR is assumed in default in the version as
supplied A descriptfion of this process will be found in Installation and Operation. .

GLOBAL makes the report available to nested programs.

COBOL Report Writer Precompiler Programmer’s Manual

1.3.3

More about CONTROLS

Each RD entry may have a CONTROL clause, and you may write the names of any
number of fields in your program. Your confrol fields must have a hierarchy and must
be listed in order from the highest down to the lowest. When your program issues a
GENERATE, report writer tests each control field in order, beginning with the highest. If it
detects a change (a control break), this process ends. Report writer will then
automatically take additional action before it produces the DETAIL group, depending
on which CONTROL FOOTING or CONTROL HEADING report groups (if any) you defined.

COBOL Report Writer keeps an internal copy of each of your conftrol fields so that it can
test for a control break by comparing them with the new values on each GENERATE.
Before it produces your CONTROL FOOTING report groups, it temporarily stores these
previous values back into the control fields. So if your CONTROL FOOTING refers to a
control field, as a SOURCE for example, you will get the previous or pre-break value,
even though the original control field has changed in value.

You may also want a major heading and a major footing at the very start and end of
your report. For example, you may want to produce grand totals for the entire report.

If so, you may use the reserved word REPORT or FINAL. This is the highest possible control
level. If you use it, it must therefore be first in the list of confrols in your CONTROLS
clause.

There may be fields other than totals or lines that should be produced only once after a
control break. These may be inside a report group, where you cannot make use of a
separate CONTROL HEADING. You can define them by writing:

PRESENT AFTER NEW name-of-control-field
or ABSENT AFTER NEW name-of-control-field

The field or line will then appear only on the first occasion after a control break atf the
level you indicate. (Alternatively, if you use ABSENT AFTER..., the field or line will not
appear the first time and will appear every tfime thereafter until the next control break.)
You may also write PRESENT or ABSENT AFTER NEW PAGE, indicating that you want the
field or line to appear (or disappear) only on the first occasion after a page advance.
Finally, you may code both the control-field and PAGE operands in one clause.

It is possible for a report to have no DETAIL groups at all. This case is called summary
reporting. The only body groups coded are CONTROL FOOTING - and possibly
CONTROL HEADING - groups. Therefore, since you have no name of a DETAIL group to
give in your GENERATE statement, you write: GENERATE report-name.

The next example illustrates all the points made in this section. There are three levels of
control, including REPORT, each with a CONTROL FOOTING.

1.3 — More About Report Writer 19

RD SUBSCRIPTIONS

FIRST DE 4 PAGE LIMIT 60

SPORTS CLUB: TENNIS SECTION
K _ CONTROLS REPORT, YEAR, MONTH.
SUBSCRIPTIONS: FULL OFF-PEAK Ol TYPE PH ... etc
1997 JAN $4000 $10000 01 TYPE CF FOR MONTH LINE + 1.
FEB $3000 $9000 05 coL 1 PIC 9(4) SOURCE YEAR
MAR $1500 $8000 PRESENT AFTER NEW YEAR.
APR $1000 $3000 05 COL 6 PIC XXX
SOURCE W-MONTH-NAME (MONTH).
— #1500 5500 05 coL 16 PIC $(5)9 SUM OF FULL.
05 coL 28 PIC $(5)9 SUM OF OFFP.
. 01 TYPE CF FOR YEAR NEXT GROUP 1.
1997 TOTALS: $26500 $43000 03 LINE 4 2. i
====== ====== 05 coL 1 PIC 9(4) SOURCE YEAR.
05 coL 6 VALUE "TOTALS:".
LB J 2000 S EI0e 05 coL 16 PIC $(5)9 SUM OF FULL.
e 2300 SR 05 coL 28 PIC $(5)9 SUM OF OFFP.
03 LINE + 1 cCoOLS 16 28
DEC 52000 54500 VALUE E——
) *Blank Tline:
oIS 00 0003 LaNe 1.
01 TYPE CF FOR REPORT LINE + 1.
) 05 coL 16 PIC $(5)9 SUM OF FULL.
GRAND TOTALS: $61200 $55800 05 COL 28 PIC $(5)9 SUM OF OFEP.

1.3.4

20

PROCEDURE DIVISION.

GENERATE SUBSCRIPTIONS

There is much more about CONTROLS in the main section (see 2.6 CONTROL clause).
More about TYPEs

In the diagram on the next page, you can see all seven types of report group in use in
the same layout. You may choose any or all of the seven types in a report, and none
of them are compulsory (except that you must have at least one body group (CH, DE,
or CF)). You cannotf have more than one REPORT HEADING, PAGE HEADING, PAGE
FOOTING, and REPORT FOOTING, and you cannot have more than one CONTROL
HEADING and CONTROL FOOQOTING for each confrol level. But you can code any
number of DETAIL groups.

If your report needs a particularly long or complex REPORT HEADING or REPORT
FOOTING, or if your report layout changes completely at a later stage, code a second
separate RD with its own Report Group Descriptions following and expand the REPORT
clause of your FD to include the second report-name. (You may associate as many RDs
as you like with the same FD.) For further details, see 2.2 Report Files, 2.3 REPORT
SECTION and RD, and 5.1 Multiple Reports.

COBOL Report Writer Precompiler Programmer’s Manual

SPORTS CLUB EXPENSES SUMMARY

1999

SPORTS CLUB EXPENSES PAGE 1
SPORT: GOLF
JAN

01 MOLE DAMAGE $350
23 NEW CAR PARK $2250
JAN GOLF TOTAL $2600
FEB
DEC TOTAL $1400
YEAR GOLF TOTAL $15000
SPORT: CRICKET

JAN

CONTINUED ...

END OF EXPENSES SUMMARY

Report showing all 7 TYPEs of group:
TYPE RH or REPORT HEADING

TYPE PH or PAGE HEADING

TYPE CH FOR SPORT
or CONTROL HEADING FOR SPORT
(higher control heading)

TYPE CH FOR MONTH
or CONTROL HEADING FOR MONTH
(lower control heading)

TYPE DE or DETAIL

TYPE CF FOR MONTH

orr CONTROL FOOTING FOR
MONTH

(lower control footing)

TYPE CF FOR SPORT
or CONTROL FOOTING FOR SPORT
(higher control footing)

TYPE PF or PAGE FOOTING

TYPE RF or REPORT FOOTING

1.3 — More About Report Writer 21

1.35

22

Automatic Repetition

If your report has a series of fields or lines or groups of similar layout or format, it is usually
possible to save time in coding by writing one multiple clause instead of several entries
with single-operand clauses. Here is a list of cases:

A. VALUES in Consecutive Fields

If you have consecutive fields in a line containing literals, you may code multiple
COLUMNS and VALUE clauses to avoid writing several entries:

SPORTS CLUB SUBSCRIPTIONS
TENNIS GOLF SWIMMING CRICKET 03 LINE + 1.
05 coLs 1 9 15 25
VALUES "TENNIS" "GOLF"
“SWIMMING" "CRICKET".

B. SOURCES in Consecutive Fields, with Same PICTURE

If you have several consecutive fields in a line with the same PICTURE (or if you can
expand shorter PICTUREs to match longer ones), you may code multiple COLUMNS and
SOURCE clauses in one entry:

SPORTS CLUB SUBSCRIPTIONS
TENNIS GOLF SWIMMING CRICKET

$238 $340 $500 $350

--- 05 COLS 1 8 16 26 PIC $$$$9

SOURCES TENNIS GOLF SWIMMING
CRICKET.

Here, as usual, each SOURCE field is a data item defined in the DATA DIVISION of your
program (in this particular case, a numeric item). VALUE and SOURCE clauses cannot
be combined within the same multiple clause.

Using a single entry like this also makes it easy to total a series of fields by coding just
one SUM entry:

SPORTS CLUB SUBSCRIPTIONS

TENNIS GOLF SWIMMING CRICKET TOTAL
| $238 $340 $500 $350 ... $1428
05 R-SUBS cCoLS 1 8 16 26 PIC $$$%9
SOURCES TENNIS GOLF SWIMMING CRICKET.
05 coL 35 PIC $(5)9 SUM OF R-SUBS.

If separate entries are used, you would have to total them by writing either: SOURCE
TENNIS + GOLF + SWIMMING + CRICKET, or SUM R-TENNIS R-GOLF R-SWIMMING R-
CRICKET, placing these data-names on the entries in furn.

COBOL Report Writer Precompiler Programmer’s Manual

C. Regularly Spaced COLUMNS

If the gap between successive fields is regular, you need not give a COLUMN for each
one. Instead, you can combine an OCCURS clause and a STEP phrase:

SPORTS CLUB SUBSCRIPTIONS
TENNIS GOLF RUGBY SQUASH

5238 3340 8500 £350 05 COL 1 OCCURS 4 STEP 7 PIC $$$$9
SOURCES TENNIS GOLF RUGBY SQUASH

You can also use OCCURS with a relative COLUMN to provide the gap, in which case
the STEP phrase is unnecessary.

D. Repeating the Same VALUE

You can combine a single VALUE with an OCCURS clause or a multiple COLUMNS
clause, in which case the VALUE is simply repeated:

($) (9) (9) ($) 05 COL 2 OCCURS 4 STEP 8 VALUE "($)".
238 340 500 350 (or 05 COLS 2, 10, 18, 26 VALUE "($)".)

A single-operand SOURCE field can be similarly repeated, although the occasions for
doing so are rarer.

E. Repeating LINE

The LINE clause also has a multiple form. You may also combine an OCCURS clause
with a single-operand LINE clause. (In the latfter case, if you use STEP , as you must if the
LINE is absolute, it refers to the vertical distance.) If you use a SOURCE, the entire table
of SOURCE items must be "read info memory" first. Within the repeating LINE, you may
have multiple VALUES and SOURCES clauses. This enables you to improve clarity by
stacking your heading values in one place:

NEW OLD MEMBERS 03 LINES 2, 3.
MEMBERS MEMBERS LEAVING ‘ 05 cCcoL 1 VALUES " NEwW"
___ "MEMBERS" .
05 coL 10 VALUES " O©EB"
"MEMBERS" .
05 coL 19 VALUES "MEMBERS"
"LEAVING".

(You don’t have to code the literals vertically like this, but it does help the eye.)

F. Variable Number of Repetitions

If the number of repetitions is variable, you should use the OCCURS clause's keyword TO
and DEPENDING ON phrase, whose operand can be any data-name or arithmetic
expression. Report writer will then dynamically calculate the actual number of repeats

1.3 — More About Report Writer 23

24

present on each occasion. It is valid for there to be no occurrences, so your minimum
can be zero. Any "unused'repeats are freated as ABSENT:

FAMILY MEMBERSHIPS AMOUNT DUE

JONES PETER MARY IAN SARAH $240

SMITH ALAN DEBBIE $120

ROBERTS SUSAN TOM IONA $180
03 LINE.

05 coL 1 PIC X(10) SOURCE SURNAME .
05 coL 11 PIC X(8)
OCCURS 2 TO 4 DEPENDING ON NO-MEMBERS-IN-FAMILY
STEP 9 VARYING FORENAME-SUB
SOURCE FORENAME (FORENAME-SUB).
05 coL 50 PIC $(4)9 SOURCE NO-MEMBERS-IN-FAMILY * SUBSCRIPTION.

The same method can be used for LINEs. If a body group has a variable number of

lines and they are all relative, report writer will take info account only those lines
actually present when applying its page-fit test.

GC. SOURCE ltems in a Table

If you need to output SOURCE items that are held in a table, report writer will
automatically vary an internal data-name which you can then use as a subscript. You
can specify a FROM value for the starting point and a BY value for the increment for
your subscript, but these are assumed to be 1 if you omit them:

SPORTS CLUB SUBSCRIPTIONS
TENNIS GOLF RUGBY SQUASH

3238 5340 3500 3350 05 COL 1 OCCURS 4 STEP 7
''''''''''''''''''''''''''''''''''' VARYING SPORT-NO PIC $$$$9
SOURCE SPORT (SPORT-NO).

You choose your own data-name for the VARYING clause, but it must not be defined
anywhere as a data item in your program. You can reuse the same data-name many
times in the REPORT SECTION, except where the VARYING clauses are nested.

COBOL Report Writer Precompiler Programmer’s Manual

You may combine VARYING with a multiple COLUMNS or LINES clause, as well as with
an OCCURS clause, and you may output results in more than one dimension. In the
next example, the SPORT fields are printed in reverse order:

SPORTS CLUB 4-YEAR SUBSCRIPTIONS
SQUASH RUGBY GOLEF TENNIS

1996 $180 $300 $445 $290
1997 $196 $280 $440 $310
1998 $223 $320 $450 $320
1999 $238 $340 $500 $350

03 LINE OCCURS 4 VARYING YEAR-NO.
05 COL 2 PIC 9(4) SOURCE 1988 + YEAR-NO.
05 COL 8 OCCURS 4 STEP 7 VARYING SPORT-NO FROM 4 BY -1
PIC $$$%9 SOURCE SPORT (YEAR-NO, SPORT-NO).

H. Repeating Whole Groups Horizontally

The REPEATED clause enables you to place whole groups side-by-side. On each
GENERATE, report writer will place the group in an internal buffer, until the last of each
set arrives, whereupon the whole set will be printed side-by-side. You should define
only the left-hand group.

CRICKET FIXTURES
1ST TEAM VS OLD C.T.'S 2ND TEAM VS S.RICHMOND
ON 21ST APRIL ON 21ST APRIL
AWAY HOME
1ST TEAM VS OLD C.T.'S 2ND TEAM VS S.RICHMOND
ON 28TH APRIL ON 28TH APRIL
HOME AWAY

01 CRICKET-FIXTURE TYPE DE REPEATED 2 TIMES EVERY 30 COLS.
03 LINE + 3.

05 coL 4 VALUE "1SsT1" WHEN REPEATED-COUNTER = 1
VALUE "2ND" WHEN OTHER.
05 coL 8 VALUE "TEAM VS".
05 cCoL + 2 PIC X(10) SOURCE OPPONENTS-NAME.
03 LINE + 1 ... etc
03 LINE + 1 ... etc

If a different DETAIL group is GENERATEd - say SOCCER-FIXTURE - or if your program issues
a TERMINATE, and there are sfill left-hand groups in the buffer, these buffered groups
are output first, padded out with blank entries on the right where necessary.

1.3 — More About Report Writer 25

1.3.6

l. Different Levels Using the same CONTROL FOOTING

You will have noticed from some of the preceding examples that a lower CONTROL
FOOTING and a higher CONTROL FOOTING often have a very similar layout and you
may wish you could code a single report group and use it for any number of conftrol
levels. You can do this simply by listing more than one control in the TYPE clause, for
example TYPE CF FOR REPORT, YEAR, MONTH or just CF FOR ALL. Any SUM tfotals are then
automatically rolled forward up to each higher level. If any CONTROL FOOTING has a
different layout from the others, you can use PRESENT WHEN CONTROL IS YEAR, PRESENT
WHEN CONTROL IS MONTH, and so on to vary it.

More about Totalling

There are many other ways to use the SUM clause to produce totals. As well as totalling
from one group to another, you may form ftotals within the same group. Here's how you
might enhance our four-yearly table with row and column totals. (Absorb this example
slowly.)

26

SPORTS CLUB 4-YEAR SUBSCRIPTIONS

1996 $180 $300 $445 $290 $1215
1997 $196 $280 $440 $310 $1226
1998 $223 $320 $450 $320 $1313
1999 $238 $340 $500 $350 $1428

ToTALS §8270S12407SI835S1270 $5162

SQUASH RUGBY GOLF TENNIS TOTAL (Totals may also be specified at the
top or on the left.)

03 LINE OCCURS 4 VARYING YEAR-NO.
05 coL 2 PIC 9(4) SOURCE 1995 + YEAR-NO.
05 R-VAL COL 8 OCCURS 4 STEP 7
VARYING SPORT-NO FROM 4 BY -1
PIC $$$$9 SOURCE SPORT (YEAR-NO SPORT-NO).
05 coL 37 PIC $(5)9 SUM OF R-VAL.
03 LINE CoLS 8 15 22 29 37 VALUE "----- ",
03 LINE.
05 cCcoL 1 VALUE "TOTALS".

05 coL 37 PIC !(5)9 SUM OF T-VAL.

Report writer totals repeating values automatically along the horizontal or vertical axes.
Notice that you should not place any subscripts after the data-name that is the
operand of the SUM clause.

A SUM may be combined in an entry with a multiple COLUMN (or LINE) clause to give

you a series of totals of another repeating entry with the same number of repetitions, as
you see in the last line of this example:

COBOL Report Writer Precompiler Programmer’s Manual

CLUB OUTGOINGS IN 1999

MONTH BUILDINGS INTERIOR WAGES TAX
JAN $80 $445 $2290 $121
FEB $170 $350 $440 $2260
DEC $190 $440 $2260 $1130

rorars 83120 $1240 $13250 $34930
03 LINE OCCURS 12 VARYING MONTH.
05 coL 2 PIC XXX SOURCE WS-MONTH-NAME (MONTH) .

05 R-OUTGOINGS COLS 10 20 29 37 PIC $(5)9
SOURCES BUILDINGS INTERIOR WAGES TAX.

03 LINE.
05 COL 2 VALUE "TOTALS".
05 COLS 9 19 28 36 PIC $(6)9 SUM OF R-OUTGOINGS.

The total line may also be in a different group from the repeating line. If so, you might
then remove the OCCURS 12 on the first LINE entry and GENERATE the group containing
it 12 fimes.

As well as totalling a field using SUM, you may count the occurrences using the COUNT
clause. COUNT simply adds 1 each time instead of the value of the field. You may
COUNT the number of times any REPORT SECTION item appears, including LINEs or
whole groups. All multiple occurrences contribute to the COUNT.

You may use SUM and COUNT as terms of a SOURCE expression. Be sure to enclose
each term in parentheses. For example, to find the average amount of the subscription
of our four sports above, you may write:

01 MAIN-GROUP TYPE DE.
05 R-SUBS coL 1 PIC $$$%9 SOURCE SPORT-SUBSCRIPTION.
01 TYPE CF.
05 coL 1 PIC $$$%9
SOURCE IS (SUM OF R-SUBS) / (COUNT OF R-SUBS) ROUNDED.

(As usual, the words SOURCE IS are opfional.) If the divisor (the COUNT term above)
happens to be zero, report writer will detect the error, unless you write OVERFLOW
PROCEDURE IS OMITTED in your RD statement. The action taken depends on what, if
anything, you coded in the OVERFLOW PROCEDURE clause. (By default, report writer
will detect the error and write an error message on your terminal or job log, leaving the
field blank.)

1.3 — More About Report Writer 27

1.3.7

28

You may also total numeric fields directly from other sections in your DATA DIVISION.
(With the older ANS COBOL report writer this method was necessary to obtain totals.
You coded the name of the FILE, WORKING-STORAGE, or LINKAGE SECTION item as an
operand of the SUM clause in the lowest-level CONTROL FOOTING.) With such external
items, you may use subscripts, and you may also SUM an arithmetic expression; for
instance:

05 coL 1 PIC 7779 SUM OF (WS-INCOME - WS-TAX).

If the item does not already appear as a SOURCE, this is the only method of totalling it.
So this technique is useful where you require totals of a field but do not want to show
the individual values that were added to produce the total. Its main disadvantage is
that it may not be clear to the reader of your program exactly when the values are
added into the total. See the remainder of this publication for a discussion of the
relevant rules.

More about Conditional Entries

You have already seen how a single COBOL condition may be used to decide whether
fo output areport field. Multiple-choice entries are used when you have several
possible contents for a field. Just write a series of SOURCE or VALUE clauses, each
followed by PRESENT WHEN condition. (The keyword PRESENT is oftfen omitted in a
multiple-choice entry.) The period does not come until the end. Report writer examines
all the conditions in sequence until it finds the first that is true and then uses the VALUE or
SOURCE associated with that true condition. WHEN OTHER can be used to indicate
"when none of the given conditions is true". (Compare the use of ELSE in elementary
COBOL.) Study the following example:

NEW MEMBERS
TITLE/NAME PAY MONTHLY AMOUNT DUE
OR YEARLY?
MR. CODER M $10
MISS PROGRAMMER Y $120
ANALYST Y $160
03 LINE.
05 coL 1 VALUE "MR. " WHEN TITL = 1
VALUE "MRS. " WHEN TITL = 2
VALUE "MISS " WHEN TITL = 3
VALUE "DR. " WHEN TITL = 4.
*NB: One period after last item!
05 coL +1 PIC X(12) SOURCE SURNAME.
05 coL 24 VALUE "M" WHEN YEARLY-FLAG = 0

VALUE "Y" WHEN OTHER.
05 coL 40 PIC 3%$%9
SOURCE (SUBSCRIPTION / 12) WHEN YEARLY-FLAG = 0
SOURCE SUBSCRIPTION WHEN OTHER.

Note that the third person in our list, ANALYST, has no title because there is no WHEN
OTHER ("catch-all") in the choice of fitles.

COBOL Report Writer Precompiler Programmer’s Manual

You may produce many useful effects with the PRESENT WHEN clause by causing fields
or lines, relative or absolute, to appear or disappear at certain fimes. If a relative entry
(COLUMN + ... or LINE + ...) follows an enfry that may or may not be PRESENT, its position

is variable:
UNPAID SUBSCRIPTIONS
TESTER (CRICKET SQUASH): $250
CODER (RUGBY): $100
_ANALYST _ (TENNIS SQUASH RUGBY): $450 _
03 LINE.

05 coL 1 PIC X(10) SOURCE SURNAME.
05 coL 12 VALUE "(".
05 <COL +1 VALUE "CRICKET " PRESENT WHEN CRICKET-FLAG = 1.

05 COL +1 VALUE "TENNIS " PRESENT WHEN TENNIS-FLAG = 1.
05 COL +1 VALUE "SQUASH " PRESENT WHEN SQUASH-FLAG = 1.

05 <COoL +1 VALUE "RUGBY " PRESENT WHEN RUGBY-FLAG = 1.
05 cCoL +1 VALUE "):".
05 coL +2 PIC $$%9 SOURCE UNPAID-SUBS.

The ABSENT WHEN clause has the same effect as PRESENT WHEN except that you write
the negative condition. Other conditional clauses are PRESENT AFTER (previously known
as GROUP INDICATE) and ABSENT AFTER. Instead of checking a standard COBOL
condifion, these clauses test whether there has been a page advance or a control
break since the group was last produced. You may write PRESENT AFTER NEW PAGE,
PRESENT AFTER NEW control-id, or PRESENT AFTER NEW control-id OR PAGE:

SURVEY OF MEMBERSHIP
YEAR MONTH GOLF RUGBY TENNIS SQUASH

1997 JAN 350 100 500 250 Without the PRESENT AFTER
FEB 360 120 450 260 clause, the YEAR would
appear on each line.

DEC 340 125 250 360

1998 JAN 360 105 400 150

FEB 260 150 250 260

SURVEY OF MEMBERSHIP
YEAR MONTH GOLF RUGBY TENNIS SQUASH

1999 MAR 250 130 400 350
APR 380 100 650 190

RD MEMBERS-SURVEY
PAGE LIMIT 60 LINE LIMIT 132
CONTROL IS YEAR-NO.
01 SURVEY-FIGURES TYPE DE LINE + 1.
05 coL 1 PIC 9(4)
SOURCE YEAR-NO PRESENT AFTER NEW YEAR-NO OR PAGE.

1.3 — More About Report Writer 29

Some Shorter Forms

COBOL Report Writer offers you several ways to shorten the amount of code you write.
You have already seen several, such as shortening COLUMN to COL. Of course, the
shorter forms may not always be clearer, and you may decide not to adopt them all.
Here are some of them:

1. The keywords TYPE, SOURCE, VALUE, and PRESENT may be omitted. This
reduces your coding effort at a cost of making your program less readable to a
maintenance programmer unfamiliar with report writer.

2. If you do not code a TYPE clause in a level-01 entry, TYPE DETAIL is implied.

3. You may write LINE and COLUMN (or COL) in the same entry, provided that
there is only one item in the LINE. So you could code:

03 LINE + 1 coL 20 VALUE "GOLF".

instead of:

03 LINE + 1.
05 coL 20 VALUE "GOLF".

If there is second item in the line, this second method is the only way.

4, You may code the LINE clause in the level-01 entry, provided that there is
only one LINE in the report group. So you could code:

01 ACCOUNT-ENTRY TYPE DE LINE + 1.

instead of:

01 ACCOUNT-ENTRY TYPE DE.
05 LINE + 1.

If there is another LINE in the report group, this second method is the only
way.

COBOL Report Writer Precompiler Programmer’s Manual

1.5 Other Features

151 Variable-Length Fields

If any of your report fields are to take up a variable number of columns, use the left-shift
(or "squeeze") symbols "<" and ">"in the PICTURE. The examples below show the effect
of these symbols:

MEMBERS AND CHILDREN'S AGES

CODER: MANDY (7), TOM(5) .
TESTER: ALAN(11), HILARY (9), JASON(8) .
ANALYST: ANGELO(8) .

03 LINE.
05 coL 1 PIC <X(12)> SOURCE SURNAME.
05 coL + 1 VALUE ": "

05 OCCURS 1 TO 9 DEPENDINé ON NUMBER-OF-CHILDREN
VARYING R-CHILD-SUB.

07 coL + 1 PIC <X(8)> SOURCE FORENAME (R-CHILD-SUB).

07 coL + 1 VALUE "(".

07 coL + 1 PIC <9>9 SOURCE AGE (R-CHILD-SUB).

07 coL + 1 VALUE ")".

07 coL +1 VALUE ", " WHEN R-CHILD-SUB < NUMBER-OF-CHILDREN
VALUE "." WHEN OTHER.

The reason why PIC <9>9 was coded rather than PIC <99> against the child's age is to
prevent a value of zero from causing the field to vanish completely. In the other cases,
the closing ">" symbol is optional.

Now imagine this same code with all the "<" and ">" symbols removed from the
PICTUREs. This is what would appear:

MEMBERS AND CHILDREN'S AGES

CODER : MANDY (07), TOM (05) .
TESTER : ALAN (11), HILARY (09), JASON (08) .
ANALYST : ANGELO (08) .

15.2 Insertion Characters

As well as by using standard PICTURE symbols such as /", "0" and "B", you can place any
additional characters into your report field by placing them within "quotes" (or
‘apostrophes') within the PICTURE. For example, to print a percentage:

PIC 7zz79.99"%" SOURCE 100 * COST / TOTAL ROUNDED

1.5 — Other Features 31

153

154

155

32

COLUMN CENTER and RIGHT

You can specify the center or the right-hand column as an anchor point, rather than
just the left-hand column. To do so, write COLUMN CENTER or COLUMN RIGHT. (CENTRE
is an alternative spelling.) In the case of COLUMN CENTER, if your field has an even
number of characters, the odd character goes on the right. This feature saves you fime
when you are working with fields of different lengths, in different lines, that should
appear centered or right-aligned in a "stack”. It also simply saves you the effort of
counting out the length of a field in order to centerit. See the following cases, all of
which produce the same result:

Expenditure
A A A
COL 15 | COL RIGHT 25

COL CENTER 20

If your field is variable-length, report writer first takes the actual size of the field before it
positions it. In this way a name, fitle, etc. can be centered or right-aligned:

JOHN CODER
12 WALLINGTON ROAD
EGHAM

03 LINE OCCURS 1 TO 5 DEPENDING ON NO-OF-ADDR-LINES
VARYING R-ADDR-LINE.
05 COL CENTER 20 PIC <X(32) SOURCE ADDR-LINE (R-ADDR-LINE).

NEXT GROUP Clause

Use this clause when you want to create extra space between report groups or when
you need to ensure that a particular report group is the last on the page, perhaps the
CONTROL FOQOTING of a major control. With new Report Writer, this clause is necessary
only with body groups. It has the useful property that, if there is a higher-level control
break, the lower-level CONTROL FOOTING group does not affect the higher-level one,
so that, if there is room, they normally remain together on the same page.

Write the clause in your 01-level entry for the group. The form NEXT GROUP + integer will
create integer exira blank lines following the group, provided it is not the last on the
page. The form NEXT GROUP NEXT PAGE causes your group to be the last on its page.

GROUP LIMIT Clause

You may not want some particular report groups to appear below a certain line on the
page. For example, a CONTROL HEADING would seem out of place if it were last on
the page. Just code GROUP LIMIT IS integer in the 01-level entry of your group. Integer
will then be the bottom line number allowed for the last line of the group. See
immediately below for an example.

COBOL Report Writer Precompiler Programmer’s Manual

1.5.6

CONTROL HEADING at Top of Every Page

Many report layouts have CONTROL HEADING groups that have to appear at the top of
each page as well as after a control break. If this is required, just write the words OR
PAGE after the control-name in the TYPE clause of your CH group. The following
diagram shows this effect, and also illustrates the GROUP LIMIT clause that we discussed
above (see 1.5.5 GROUP LIMIT Clause).

SPORT: GOLF

21 MAR BUNKERS RESURFACED $1500
04 AUG COFFEE ROOM TABLES $260
12 DEC XMAS DECORATIONS $500

SPORT: RUGBY

03 JAN REPATIR GOALPOSTS $500
11 FEB BARSTOOLS $80

CLUB EXPENDITURE 1999

Because of the GROUP LIMIT, the
CONTROL HEADING will not appear
after line 57.

SPORT: RUGBY (CONT.)

22 APR REPAIR SHOWERS $390

CLUB EXPENDITURE 1999

A CONTROL HEADING re-appears
because of the new page even
though no control break occurred.

RD CLUB-EXPENDITURE

01

03

03

PAGE LIMIT 60 FIRST BODY GROUP 3 LINE LIMIT 132
CONTROL IS SPORT.

TYPE CH FOR SPORT OR PAGE
GROUP LIMIT 58.

LINE + 2.

05 coL 1 VALUE "SPORT:".

05 coL + 2 PIC X(8) SOURCE SPORT.

05 coL + 2 VALUE "(CONT.)" ABSENT AFTER NEW SPORT.
LINE VALUE '"=====".

1.5 — Other Features 33

1.5.7

1.5.8

159

34

01

03

etc.

MULTIPLE PAGE Groups

If you have a large vertical table to print, perhaps a summary with one line for each
value encountered, you may be concerned that it will not always fit on one page.
Perhaps there are usually less than 60 items but you have fo allow for anything up to
1000 items! To handle this, code the clause MULTIPLE PAGE on your 01-level. Report
writer will then automatically do a page advance whenever the page is full (printing
PAGE FOOTING and PAGE HEADING as usual). Thus your code would be:

SUMMARY-PAGES TYPE DETAIL MULTIPLE PAGE.
03 LINE OCCURS O TO 1000 DEPENDING ON NO-OF-ITEMS.
etc.

This feature also handles more complex layouts, perhaps a multi-page personnel profile.
Line WRAP

You may sometimes define a number of relative COLUMN entries in one line and
wonder whether they will all fit in the same line. If not, report writer will automatically
wrap your data round onto a continuation line, but only if you code a WRAP clause.
You can specify the last column before the wrap, the starting column for the
continuation and the line advance required. As an example, you may have a series of
possible error messages:

LINE + 3 WITH WRAP AFTER COL 120 TO COL 82 STEP 2.

05 coL 1 PIC X(80) SOURCE INPUT-RECORD.

05 coL + 2 "ACCOUNT NUMBER INVALID" PRESENT WHEN
05 coL + 2 "AMOUNT NOT NUMERIC" PRESENT WHEN
05 coL + 2 "DATES IN REVERSE ORDER" PRESENT WHEN
FUNCTIONSs

The FUNCTION clause is used when you need to produce a specially formatted or
converted report field that cannot be produced by SOURCE, SUM, or VALUE . Each
FUNCTION corresponds to a pre-written routine that is either a built-in part of the report
writer software or written by a person at your location. Examples of built-in FUNCTIONs
are:

DATE This outputs foday's date, or any given date, in the order: Day-Month-Year.

MDATE This produces the same output as DATE, but in the order: Month-
Day-Year.

TIME This gives the current time.

COBOL Report Writer Precompiler Programmer’s Manual

1.5.10

1511

Here is an example of how to use MDATE. Let's suppose that today is May 7th, 1999.
Then if you write:

PIC 99/99/99 FUNCTION MDATE, you will obtain: | 05/07/99

PIC <X(9)B<99,B9(4) FUNCTION MDATE,
you will obtain:

MAY 7, 1999

Information about developing your own functions will be found later (see 5.2
Developing User-Written Functions).

Special Print Attributes (Styles)

Nowadays all large system printers and smaller-scale printers and terminals have the
ability to produce special effects which we hardly ever make any use of in COBOL
applications. The STYLE clause enables you to make full use of any special effects that
are available without affecting your program's portability. Supposing that you wish to
highlight any "negative profits". Write:

05 coL 21 PIC -(8)9 SOURCE PROFIT
STYLE IS HIGHLIGHT WHEN PROFIT < O.

You will now not need to change your program when moving between, say, a personal
system, a mainframe with a laser printer, and a mainframe with an old impact printer,
except possibly to change the TYPE clause in the SELECT...ASSIGN if it is not preset as the
default. Also, the STYLE clause has no effect on the COLUMN clauses or any other part
of your source program.

Independent Report File Handlers

Normally, your report's outputs are directed to a standard print file, as though you had
written the program in elementary COBOL using WRITE AFTER ADVANCING...
statements. An Independent Report File Handler is a pre-written routine to which all the
output for areport file is directed. It may manipulate and output the data in any way
the designer chooses. Your program can be made to invoke the file handler each time
it has a line of report data, instead of implicitly executing a WRITE...AFTER ADVANCING.
Each file handler is identified by a unique "mnemonic-name" of up to four characters.
You cause your report program fo use a file handler by coding your SELECT clause for
the report file in the following way:

SELECT print-file ASSIGN TO assignment-name
MODE IS mnemonic-name.

The file handler may require you to define a CODE clause in your RD statement. This
clause is used to pass additional information to the file handler. Apart from this, no
other change need be made to your program.

1.5 — Other Features 35

1.5.12

1.5.13

36

Multiple Reports

Your program may need to produce several different physical reports. Of course, you
may define as many report files as you like, and each may be associated with as many
Report Descriptions as you wish. But what if several of the reports have a similar
appearance? You will not want to duplicate the code for all the Report Group
Descriptions. Instead, you may define the report just once and effectively assign it fo
several files (although only one FD entry is coded). Just add the following clause to
your SELECT clause:

DUPLICATED integer TIMES

with the integer set to the maximum number of distinct reports you need.

The DUPLICATED clause causes the special register REPORT-NUMBER to be set up. You
can MOVE any value into REPORT-NUMBER from 1 to your maximum number. This
causes report writer to channel subsequent output to the corresponding report file.
Each report is logically separate. Of course, the contents of each report are different
because your program is writing to only one of the set at any given time. The layouts
need not all be identical, since you are quite free to vary them conditionally in the
usual way. (For example, REPORT-NUMBER could be used as a subscript or within the
condifion of a PRESENT WHEN clause.)

Only one FD entry is required for all the physical files associated with the multiple report.

Similarly, only one OPEN and one CLOSE are required to open and close all ifs files.
More details will be found later (see 5.1 Multiple Reports).

Using the Page Buffer
Some layouts are so irregular that you may wish that you could build up the page in
any order like a news-sheet editor. The Page Buffer facility enables you to do this. Just
add to your SELECT clause:

WITH PAGE BUFFER

Now you can fackle a layout such as the following:

NEW MEMBER DETAILS
NAME AND ADDRESS SPORTS PLAYED
ANDREW ANALYST TENNIS
21 MITCHAM ROAD SQUASH
PUTNEY SWIMMING
LONDON SW6

01 NAME-ADDRESS-GROUP
TYPE DE.

01 SPORTS-GROUP TYPE DE.

COBOL Report Writer Precompiler Programmer’s Manual

1.6

The report groups in boxes have been defined separately. Normally you would not be
able to place them alongside each other. (The REPEATED clause is not appropriate as
NAME-ADDRESS-GROUP and SPORTS-GROUP are instances of different groups, not
instances of the same group.) By using the Page Buffer you may now write in the
PROCEDURE DIVISION of your program:

SET PAGE STATUS TO HOLD
GENERATE NAME-ADDRESS-GROUP
SET LINE TO FIRST DETAIL
SET PAGE STATUS TO RELEASE
GENERATE SPORTS-GROUP

You may store the groups on the page in any order. It is also possible to change the
left/right positioning of groups by means of the SET COLUMN statement. There are
several other variants of SET PAGE and SET LINE (see 4.4 Report Writer SET statements).

Further Study

The remainder of this volume cover the topics of this Tutorial in more detail. Since each
part is organized in alphabetical sequence, it is not advisable to read them straight
through, and the following order of topics is suggested for a first reading:

Part 2:

Report Files, REPORT SECTION and RD;
PAGE LIMIT clause;
CONTROL clause.

The rest of this part may be left to a second reading.

Part 3:

Infroducing Report Groups;

TYPE clause;

LINE clause;

COLUMN clause;

SOURCE clause, VALUE clause;

OCCURS clause, VARYING clause;

SUM clause;

PRESENT WHEN clause, PRESENT AFTER clause;
FUNCTION clause.

The rest of this part may be left fo a second reading.

Part 4.
Report Writer Verbs: Overview;

INITIATE statement, GENERATE statement, TERMINATE statement, excluding af first
reading the “GENERATE Processing Cycle” and “TERMINATE Processing Cycle”.

The rest of this part may be left to a second reading.

Part 5 may also be left to a second reading.

1.5 — Other Features 37

This part contains full information about the COBOL Report Writer elements that can
appear in the ENVIRONMENT DIVISION and FILE SECTION of your program, and then, in
alphabetic order, the clauses that may be used in an RD enfry.

If you are migrating older programs written using OS/VS or DOS/VS COBOL's built-in
Report Writer, you should refer to the Compatibility paragraph at the end of each
section, which points out any new Report Writer features that these compilers do not
accept.

Although most of the examples that follow use UPPER-CASE text, you may also use
lower-case characters in any of the keywords and operands.

2 — Report Files and RD Entries 39

2.1

Report Files and RD: Keyword Table

The following table lists the major keywords relevant to COBOL Report Writer that may
appear in the ENVIRONMENT DIVISION, FILE SECTION, and the RD entry, with a summary
of their purposes. The third and fourth columns tell you whether or not the item is
provided by IBM's OS/VS and DOS/VS COBOL and, if so, whether COBOL Report Writer
extends the facilities.

If you wish to remain compatible with OS/VS or DOS/VS COBOL, you should avoid the
new keywords and the extensions to the old ones. You will find additional information
on this subject in the compatibility paragraph at the end of each section.

2.1 — Report Files and RD: Keyword Table 4]

Report Files and RD:

Keyword Table

Keyword Purpose 0S/VS Extensions to 0S/VS and DOS/VS
DOS/VS | COBOL
COBOL?
SELECT yes s MODE clause to direct output
(in ENVI- Associates file to Independent Report File
RONMENT with external Handler
DIVISION) medium = DUPLICATED clause for
multiple report files
= WITH PAGE BUFFER for holding
page contents before printing
o WITH RANDOM PAGE for writing
to a cursor-controlled device
o FIRST PAGE NO ADVANCING to
suppress initial page advance
o TYPE clause to select type
of output device
MERORY [Associates report yes o ALL phrase
/ REPORTS . .
ARE (in with file
FD)
STYLE Invokes a special no
(in FD) printer facility
for the file or
report
LINE LIMIT Gives maximum no
report line width
GLOBAL Makes report no
available to con-
tained programs
PAGE LIMIT | Allocates regions yes = DE=DETAIL
of page for diff- = FIRST BODY GROUP=FIRST DETAIL
erent group TYPEs o LAST DE OR CH=LAST DETAIL
o LAST CF=LAST BODY GROUP
=FOOTING
s phrases are now positionally
independent sub-clauses
s LIMIT, LINE(S) not required
o FIRST DETAIL/LAST DETAIL
not required even when
PAGE HEADING/FOOTING coded
CONTROL Specifies field(s) yes s REPORT=FINAL
whose change of o controls may overlap
contents triggers
a control break
42 COBOL Report Writer Precompiler Programmer’s Manual

CODE Attaches non-print yes s value may be of any length
data to report o CODE IS identifier format
records = CODE IS literal format

OVERFLOW Specifies action no
to be taken when
expression or
SUM overflows

ALLOW Selects ANS-85 or no

SOURCE SUM ANS-68 rules for

CORR SUMming

2.2 Report Files

COBOL Report Writer produces output records and writes them automatically to
COBOL report files when your program executes a GENERATE statement (see 4.2) or
TERMINATE statement (see 4.6). The report files are described very much like any other
output sequential files. Each must have a SELECT...ASSIGN clause in the ENVIRONMENT
DIVISION, and an FD in the FILE SECTION. They are accessed in the PROCEDURE
DIVISION through the OPEN and CLOSE statements.

If the output is to be written to a special medium, or the program is fo run in any special
environment, or special freatment is to be given to the report data, the MODE clause is
used. This directs report writer to use a specific file handler instead of writing output
records in the standard way.

Your program may contain any number of report files and, if required, any number of
other files. As usual, you may code your SELECT...ASSIGN clauses and your FD entries in
any order.

2.2.1

a. SELECT ...ASSIGN clause:

—— Format

»»—SELECT

»P—ASSIGN TO assignment-name

(Continued over)

file-name—»

|—O PTI ONALJ

|
v |

AREA—
AREAS—

|-RESERVE integer-1 I:

2.1 — Report Files and RD: Keyword Table 43

— Format (continued)

>
|

L
ODE IS——BATCH
L |

mnemonic—name
{ |_J
USING parameter

|
I—DUPLICATED integer- 21—"—‘ I:WITH PAGE BUFFER:|
TIMES WITH RANDOM PAGE
|
I—TYPE DEFERRED |
[IS] ENONE
device-name

LFIRST PAGET—NO ADVANCINGJLother standard clausesJ
I

I—DE FERRE DJ

—»><

b. FD entry :

—— Format

»»—I'D file-name _J _J >
LL—J—EXTERNAL LL—J—GLOBAL
IS IS

|
v |

g | ST] [Lsrortnane—>
IS ~ALL

REPORTS

lared v

»Pb——STYLE style- EETE:I——b
I—I SJ |—NORMAL

>

|
L—standard BLOCK CONTAINS c:lause—-|

> >

L—standard RECORD CONTAINS c:lause—-|
|

L—RECORDINGL T Jmode—J
MODEA LTS
—>

L——other standard c:lauses——-|

> >«
|
K |
record-description-entry

44 COBOL Report Writer Precompiler Programmer’s Manual

222

Select and FD: Coding Rules

1.

You may code any other clauses after SELECT and any other clauses except
LINAGE in the FD entry that may be appropriate for an output sequential file. In
particular, a FILE STATUS clause may be used to return the status of your report
file. The order of clauses is noft significant.

Each report-name is a name of up to 30 characters, formed according to the
usual rules for COBOL names. You might choose names that describes the
output produced by the report, such as REPORTS ARE MONTHLY-SALES, END-OF-
YEAR-TOTALS.

Each report-name must be the same as the report-name following an RD in your
REPORT SECTION. A report-name may be DBCS. A report-name may appear
only once in an FD entry. However, it may appear in more than one FD
provided that any INITIATE for the report-name has the UPON file-name phrase
(see 4.3 INITIATE statement) and provided that all the corresponding SELECT
statements for these files differ only in their file-name, ASSIGN clause and MODE
clause (if present).

If every report is to be written to the same file, you may write REPORTS ARE ALL.
ALL must be the only operand and REPORTS ARE ALL must be the only REPORT(S)
clause in the program.

A RECORD CONTAINS clause, or a BLOCK CONTAINS clause with the
CHARACTERS option, is required if the identifier form of the CODE clause is used
in any RD associated with the file. In all other cases, it is optional.

You should not normally specify a record-description-entry after the FD entry,
because report writer relieves you of the need to code any WRITE statements for
the report files. Your program may WRITE records to a report file independently
of report writer, provided that there is no MODE clause in the corresponding
SELECT and no CODE clause in the RD, and in this case you will of course need
to specify at least one 01-level record description following the FD entry.

An explicit WRITE to the report file may be necessary in rare instances, such as
when a downstream program will read your report file and it requires a header
or trailer which must not have a carriage control character in its first byte.
(Otherwise, a REPORT HEADING or REPORT FOOTING could be used for this
purpose: even if there are non-DISPLAY fields to be written, they could be
handled using a SOURCE referencing them as a large group field.) An
Independent Report File Handler may also be used to manipulate the output for
this purpose (see 5.3 Independent Report File Handlers).

If you do code arecord description after the FD entry, and you wish to obtain
fixed-length records, you should code a RECORD CONTAINS clause, even if you
have also specified RECORDING MODE IS F. The integer of the RECORD
CONTAINS clause should agree with the size of your record and must allow for
the carriage control character if the NOADV option is in effect.

The MODE clause is used to indicate that each line of the report is o be passed
to an Independent Report File Handler, instead of being written directly to a
print file. The mnemonic-name consists of up fo four alphanumeric characters .
No check is made on the availability of the file handler until execution time. The

2.2 — Report Files 45

46

10.

11.

file handler may be either the basic file handler PRNT, a user-written, or a built-in
file handler. File handlers extend the uses of report writer beyond output to
"batch" files. They have two chief uses: (a) they allow the output to be sent 1o
any kind of new physical device without changes to the program and (b) they
allow a "back-end" software routine to perform any additional processing on
the output. File handlers are described in a later section (see 5.3 Independent
Report File Handlers) where the supplied file handlers are also listed.

The DUPLICATED, WITH RANDOM PAGE, and WITH PAGE BUFFER features cannot
be implemented at run time by direct output and require a file handler to be
present (although their processing is handled entirely by the run fime system and
not by the file handler itself). So if any of these clauses is present, but no MODE
clause has been coded, the precompiler will assume an implicit MODE PRNT
clause to be present. The same assumption is made if any report associated
with the file has a CODE clause (except when all such reports have a CODE
clause and they are all of the same length), see 2.5 CODE clause.

If the MODE clause is present, or is assumed implicitly for the reasons given in the
preceding paragraph, the following restrictions apply:

a. No record descriptions may follow the FD entry for that file, as you
cannot WRITE directly to a file that is processed by an Independent
Report File Handler, see 5.3 Independent Report File Handlers.

b. The EXTERNAL and GLOBAL attributes have no effect. (Note that a
report may still be GLOBAL, even though its corresponding file is not. Use
of the MODL file handler also allows a report file to be treated as global
(see 5.3.2 Supplied File Handlers).

c. The clauses RESERVE integer-1 AREA(S), PADDING CHARACTER, RECORD
DELIMITER, and PASSWORD of the SELECT...ASSIGN clause and the
clauses BLOCK CONTAINS integer RECORDS, LABEL RECORD(S) IS/ARE
data-name, RECORD IS VARYING..., CODE-SET, and VALUE OF... of the FD
are not processed by the file handler and are freated as documentary
only.

d. No USE AFTER STANDARD ERROR/EXCEPTION PROCEDURE Declarative
section should be coded for the file.

€. The CANCEL and STOP RUN statements cannot be relied on to CLOSE
files implicitly, as allowed under ANS 85 for regular files.

The device-name of the TYPE clause gives the make and model of the output
device, or some other symbolic name. The TYPE clause enables the
precompiler, or the run time system, to select the correct sequence of control
characters to produce the desired special effect on the target device. (See
3.22 STYLE clause.) Apart from the reserved name NONE (meaning that no
particular device is to be assumed) and TEST (a specially reserved name), there
is a set of special character values associated with each device-name and
each of the special effects available from the device. The physical values of
these characters and the method by which they are inserted info the output is

COBOL Report Writer Precompiler Programmer’s Manual

highly machine- and device-dependent, but quite transparent to the program.
Device-names are described in Installation and Operation.

DEFERRED means that any styles used are to be interpreted at run time, rather
than stored explicitly when the program is precompiled. This enables the same
program to operate with a number of different output devices without re-
compilation.

If DEFERRED alone is given, the program will determine the target device at run
time from the operating environment. It is then assumed that there may be an
implicit style at the FD and the RD levels at run time (unless STYLE NONE is
specified) and provision is made for them.

DEFERRED is also implied if PAGE BUFFER is coded, since the page buffer routine
must know which characters are printable and which are control characters.
DEFERRED may also be forced by any particular STYLE if the implementation
decides that the routines required to effect it cannot be included at
precompilation time.

If TYPE is not coded, the precompiler will assume a default device-name,
chosen by the user at customization time, which may be absent, i.e. NONE.

If the device-name is NONE, any STYLE clause applying to this file, other than
NORMAL, will be rejected, whether it is in the corresponding FD, any report
assigned to the file, or in a report group descripfion.

2.2.3 FILE-CONTROL and FD: Operation

1.

If you specify more than one report-name in the same REPORTS ARE clause, you
will be able to generate report data either consecutively or concurrently for the
same file. (REPORT IS and REPORTS ARE are interchangeable, however many
report-names follow.) Tips on creating more than one report concurrently will
be found later (see 5.1.4 Concurrent Reports).

The USING phrase indicates that the file handler is to be passed the parameters
you specify in addition to the parameters normally passed automatically to the
file handler on each call. The addifional parameters will be first in the list of
parameters passed. Only user-written file handlers may employ additional
parameters, and their associated documentation should specify the exact
number and size of the additional parameters required because, unless these
are correct, unpredictable results may occur. Each parameter may be an
identifier or literal or any other item that would normally be allowed in the USING
phrase of a CALL statement, including their additional keywords such as LENGTH
OF, ADDRESS OF, BY CONTENT, or BY REFERENCE.

The DUPLICATED clause indicates that integer-2 copies of the report writer
Report Control Areas are to be created. For example, if you code DUPLICATED
4 TIMES, four copies of PAGE-COUNTER, LINE-COUNTER, control-break areas,
total fields, and other internal registers or locations used by report writer will be
set up under that report-name. Each copy conftrols a totally separate report,

2.2 — Report Files 47

48

10.

passed to a different physical file (although only one FD entry is needed). This
enables you to produce several separate reports that share an identical or
similar layout without having to re-code several similar Report Descriptions.

The WITH PAGE BUFFER clause indicates that the Page Buffer facility is o be
available to the file handler. This enables you to use the SET PAGE TO HOLD /
RELEASE, SET LINE, and SET COLUMN statements (see 4.4 Report Writer SET
statements Report Writer SET Statements) fo build up your page in random
fashion. A full explanation of Independent Report File Handlers and all related
clauses is given in a later part (see 5.3 Independent Report File Handlers).

The WITH RANDOM PAGE clause indicates that the SET LINE and SET COLUMN
statements may be used (see 4.4 Report Writer SET statements) to build up your
page in random fashion. This clause is used when the output device is one
which outputs data page by page rather than line by line (such as a visual
display, or laser or page printer) and can change its "current position" to
anywhere on the page. It is similar to WITH PAGE BUFFER, except that the buffer
is in the device itself rather than in the program.

If you require normal output to a standard file, you may write MODE IS BATCH.
This prevents any use of a file handler. MODE IS BATCH cannof be used if a
DUPLICATED or WITH PAGE BUFFER clause has been coded.

If you do not code a RECORD CONTAINS clause or a BLOCK CONTAINS clause
with the CHARACTERS option, report writer will calculate the logical record
length for the report file from the longest actual line found in all the Report
Descriptions associated with the file (rounded up to a multiple of 4). The length
of the CODE field, where appropriate, and carriage control character are also
added.

If you do code a RECORD CONTAINS clause (or, in its absence, a BLOCK
CONTAINS clause with the CHARACTERS option), the integer specified will be
used as the logical record length for the report file. The same integer, after
subtracting the length of the carriage control character (if the NOADV option is
in effect) and the CODE field, if appropriate, is also used to calculate a
provisional value for the maximum line width for any report associated with the
file (up to the default maximum established on customization), in case you omit
the LINE LIMIT clause in an RD entry.

If you write RECORDING MODE IS V for a standard batch file (one not produced
by a file handler), Report Writer will write variable-length records to your report
file, fruncating them, where possible, immediately after the last field in the line.
This means that in most reports records will be considerably shorter, even after
allowing for the additional record descriptor bytes that precede each record. If
you also coded an optional RECORD CONTAINS clause with the format RECORD
CONTAINS lower-integer TO higher-integer CHARACTERS, the lower-integer is
used as a minimum length for all report records written to the file. Since QSAM
normally requires at least four bytes per record (plus the carriage conftrol byte),
you should write RECORD CONTAINS 4 TO maximum-integer CHARACTERS, or, if
NOADV is in effect, then RECORD CONTAINS 5 TO maximume-integer
CHARACTERS.

If you specify a RECORDING MODE clause for a file that uses an Independent
Report File Handler, the recording mode you specify will be placed in report

COBOL Report Writer Precompiler Programmer’s Manual

224

11.

12.

writer's File Control Area for the report file, and the file handler may choose
whether to act on it or to ignore it. The records passed to a file handler are
always variable-length, irrespective of the RECORDING MODE. The file handler
may process them in this form or output them as fixed-length records. The built-
in PRNT file handler ignores the RECORDING MODE and uses the record format
specified, or implied, at run time.

You may specify EXTERNAL or GLOBAL for a file that has a REPORT(S) clause. It is
not necessary for a report file to be GLOBAL in order for it to have a GLOBAL
report associated with it.

If you write FIRST PAGE NO ADVANCING, the usual form feed is not issued at the
start of the first page after execution of the OPEN for the file. Instead, the
program assumes that the paper is already positioned on line 1 of the page.
This feature is useful for printing on pre-numbered forms when you do not want
the first page to be wasted. (You may also eliminate all form feeds using the
MODE NOPF (see 5.3.2 Supplied File Handlers).) FIRST PAGE WITH ADVANCING
(the normal default) is provided for symmetry.

Compatibility

The MODE, DUPLICATED, WITH PAGE BUFFER, FIRST PAGE NO ADVANCING and STYLE
clauses, and the concept of an Independent Report File Handler are unique to new
Report Writer.

2.2 — Report Files 49

2.3 REPORT SECTION and RD
Each of your Report Descriptions is placed in the REPORT SECTION. The ANS standards,
OS/VS COBOL, and DOS/VS COBOL all require this to be the last SECTION of the DATA
DIVISION, positioned immediately before PROCEDURE DIVISION. However, the
precompiler allows REPORT SECTION to appear anywhere in the DATA DIVISION after
FILE SECTION.
Just as the FILE SECTION conisists of a series of FD entries, each with record descriptions
headed by an 01-level entry to follow, so the REPORT SECTION consists of RD enfries,
each followed by Report Group Descriptions headed by an 01-level enftry.
Your program may produce any number of reports, each with its own Report
Description. Each Report Description consists of an RD entry followed by any number of
Report Group Descriptions (although there are restrictions according to TYPE; see 3.24
TYPE clause). The order in which they are coded is immaterial. If several of the reports
have strong similarities, you should define the report only once and make use of the
DUPLICATED clause.
2.3.1
— Format
[
v
P»—REPORT SECTION. ——report-description-entry—p«
where report-description-entry is defined as follows:
— Format
Pp—RD report-name >
o L1s croear—
| 2 >
I—ALLOW SOURCE SUM CORR clauseJ
| 2 >
I—CODE clauseJ
| 2 >
I—CONTROL clauseJ
| 2 >
I—LINE LIMIT clauseJ
| 2 >
I—PAGE LIMIT clauseJ
(continued over)
50 COBOL Report Writer Precompiler Programmer’s Manual

— Format (continued)

>

> t
STYLE IS style na

me
NORMAL;I_

I—SUM OVERFLOW clauseJ I—OVERFLOW clauseJ

—»>

[
v

P—report-group-description—p»<«

2.3.2 REPORT SECTION and RD: Coding Rules

1.

2.

All other DATA DIVISION sections, if present, should precede REPORT SECTION.

Each report-name must be unique and must be the same as one of the report-
names specified in the REPORT clause of one or more FD entries. (If areport-
name appears in more than one FD, the UPON phrase of INITIATE is required, see
4.3 INITIATE statement.) This correspondence is used to determine where the
output is to be written. Each report-name introduced in the FD must match a
report-name of an RD.

The clauses of the RD may be written in any order; the order is not significant.

Each RD entry is followed by at least one Report Group Description. These
define all the report groups (sets of one or more report lines) that may be
produced in the report. They are fully described in the next part (see 3.24 TYPE
clause).

If GLOBAL is specified, the report is available to any program contained in the
current program, in the following senses:

a. AN INITIATE, GENERATE, or TERMINATE for the GLOBAL report-name may
be issued from within a contained program, provided that the
contained program itself does not have a locally-defined report of the
same name. The contained program need not contain a REPORT
SECTION.

b. A GENERATE for any of the DETAIL report groups of the GLOBAL report
may be issued from within a contained program, provided that the
contained program itself does not have a locally-defined report and
DETAIL group with the same names. If a GLOBAL report and a locally-
defined report have different names but share DETAIL groups with the
same name, these may be distinguished as usual by means of the IN/OF
report-name qualifier.

C. The special registers PAGE-COUNTER, LINE-COUNTER, LINE-LIMIT, and
CODE-VALUE of the GLOBAL report, together with any sum-counters,
may be accessed as GLOBAL items. Other report fields are not globally
accessible.

2.3 - REPORT SECTION and RD 51

The CONTROL and SOURCE fields, or any other data items used during the
processing of the GLOBAL report, are those that are accessible to the
containing - not the contained - program. Thus, SOURCE items must normally
also be GLOBAL if you wish to set up values in them and print them from within a
contained program.

If a contained program contains a GLOBAL report with an identical report-
name, this will override the scope of original GLOBAL report until the end of the
contained program. Similarly, a DETAIL group in a GLOBAL report of a
contained program may override an identically-named one in the containing
program.

The program in which the GLOBAL report is defined must receive control at least
once before the report can be accessed, even though it need not itself contain
any procedural statements referring to the GLOBAL report.

6. The STYLE clause causes one or more styles to take effect for the report as a
whole. Usually this means that a certain control sequence will be sent to the
printer just after the INITIATE is executed and another confrol sequence just
before the TERMINATE is executed. If no STYLE clause is coded, an implicit style
for the report may take effect, if this has been defined for the output device.
STYLE NORMAL ensures that no style takes effect at the report level. Full details
are given in the next part (see 3.22 STYLE clause).

The Formats and Rules for the other clauses in the RD are given in the sections that

follow.
2.3.3 Compatibility

1. The following features are provided by new Report Writer only:
] The GLOBAL phrase, and access to GLOBAL reports,
] Use in ANS-85 contained or batched programs,
° The LINE LIMIT clause,
] The ALLOW clause,
° The OVERFLOW and SUM OVERFLOW clauses,
° The STYLE clause.

2. New Report Writer allows several FD's to be associated with a given report-

name, provided that the UPON phrase is used with an INITIATE for the report-
name. It does not write to more than one file simultaneously. If you wish to
continue to write to two files simultaneously, this may be achieved by means of
a file handler that performs a WRITE to each file. See 5.1 Multiple Reports.

See the end of each section for compatibility notes on the other clauses.

52 COBOL Report Writer Precompiler Programmer’s Manual

2.4

241

—— Format

PP—ALLOW—I_—_l——SOURCE SUM CORR—p«

ALLOW clause

This clause enables you to select whether the ANS-68 or the ANS-85 standard rules
should be used for the formation of totals.

NO

24.2

24.3

244

ALLOW Clause: Coding Rules
1. The COBOL Report Writer software, as supplied, assumes:
ALLOW SOURCE NO SUM CORR

because of the setting of the OSVS precompiler option . This default may be
altered permanently by customization, or temporarily by changing the setting of
the OSVS option in the JCL. You will need to code this clause only if you need to
override the normal default, or if your program is to be portable and it is
important to document which standard you are assuming.

ALLOW Clause: Operation

1. ALLOW SOURCE SUM CORR causes SOURCE SUM correlation to take effect
throughout the report. The correlation between SOURCE items in a DETAIL and
SUM clauses in a CONTROL FOOTING group is the main distinguishing feature of
the ANS-68 standard. It is the only important case where the same code may
give different results under the '68 and the '85 standards. OS/VS and DOS/VS
COBOL's built-in Report Writer uses the ANS-68 standard, and this is why the
supplied version has the option OSVS set on, implying SOURCE SUM correlation.
It will be important for you to understand the effect of SOURCE SUM correlation if
your report has:

] more than one DETAIL group, and

] a SUM clause referring to a data item that is defined in a section of your
DATA DIVISION (other than the REPORT SECTION).

For full details, see 3.23 SUM clause.

2. If you code the word NO the effect is reversed.

Compatibility

The ALLOW clause is provided by new Report Writer only. OS/VS and DOS/VS COBOL
always act as though ALLOW SOURCE SUM CORR were assumed.

2.4 - ALLOW 53

2.5

251

>

CODE clause

This clause can be used to prefix non-printable fields to the report records. Such
information is typically of use to de-spooling software and special device handlers.

—— Format

CODE IS
WITH CO

literal >«
DE:| Emnemonic—name—
identifier

252

54

COBDE Clause: Coding Rules

1.

2.

The forms CODE IS and WITH CODE are synonymous.

The CODE clause is not permitted if the associated FD entry is followed by a
record description entry. This is because it would be illogical to WRITE
independently to the file if there is also a CODE. See 2.2.2 Select and FD:
Coding Rules and the rest of this section for further details.

The literal, if coded, must be a non-numeric literal.

If an identifier operand is used, it must represent a group field or a non-edited
alphanumeric elementary field. The associated FD entry for the file must then
have either a BLOCK CONTAINS clause with the CHARACTERS option or a
RECORD CONTAINS clause, or both.

If a mnemonic-name operand is coded, there must be an entry in SPECIAL-
NAMES of the form:

literal IS mnemonic-name

where literal is non-numeric. The value of literal is then used as the CODE value.
If you require compatibility with ANS-68 report writer, one character is the norm.
For ANS-85 compatibility, you should code a two-character literal.

If your report file description has a RECORD or BLOCK CONTAINS integer
CHARACTERS clause and there is no MODE clause after SELECT, the size of the
CODE, plus the maximum line width, must not be greater than the number of
CHARACTERS specified.

Not all RD entries associated with the same report file need have a CODE
clause and all the CODE clauses need not specify an operand of the same
length. However, if the report file does not use a user-written file-handler that
might ascribe some meaning to different lengths of CODE, it may be impossible
to recognize the CODE at the front of each records and decide how long it is.

COBOL Report Writer Precompiler Programmer’s Manual

253

254

CODE Clause: Operation

1.

The presence of a CODE clause implicitly establishes the special register CODE-
VALUE in the Report Control Area. You may alter the contents of CODE-VALUE
at any tfime. If there are several CODE clauses in different RDs within your
program, you must qualify CODE-VALUE by the report-name.

If you do not specify a MODE clause after the SELECT for the corresponding
report file, the value of the CODE is prefixed to every record written by report
writer to the report file. The CODE is placed immediately before the carriage
control character:

CODE

ccc print data ...

FD

RD

If the length of the CODE is not the same for every report being written to the
file, or if some of the reports have no CODE, then a MODE PRNT clause is
assumed in default, causing the built-in PRNT file handler to be invoked.

If you do specify a MODE clause after the SELECT, CODE-VALUE will be passed
to the Independent Report File Handler in the Report Confrol Area. Built-in file-
handlers (PRNT, MODL, NOPF) treat the CODE in the authodox way just
described, but a user-written file handler may interpret CODE-VALUE in any
desired way. Hence, your own user-written file handler may use the CODE
clause for the passing of any additional information that is required by the file
handler but does not necessarily appear in the report line itself. See 5.3
Independent Report File Handlers for more information.

If a literal or mnemonic-name is used, the size of CODE-VALUE is the length of
literal, and CODE-VALUE is preset to the value of literal.

If an identifier is used, the length of CODE-VALUE is the (maximum) record length
given in the RECORD CONTAINS clause, minus the LINE LIMIT. The current value
of identifier is stored in CODE-VALUE at the start of the processing for each
DETAIL or CONTROL HEADING for the report. This does not occur if the current
group is a CONTROL FOQOTING, so as to ensure that only pre-control-break
values will be used. In the following example (assuming ADV is in effect) the
size of CODE-VALUE is 140 minus 132 = 8 bytes, and the field WC-ACCOUNT-REF
is moved to CODE-VALUE at the start of each non-CF body group:

REPORT-FILE
RECORD CONTAINS 140 CHARACTERS
REPORT IS MAIN-ACCOUNTS.

MAIN-ACCOUNTS
LINE LIMIT IS 132
CODE IS WS-ACCOUNT-REF

Compatibility

1.

OS/VS and DOS/VS COBOL allow only the format: WITH CODE mnemonic-name.
The corresponding literal defined in SPECIAL-NAMES must be one character.

2.5-CODE 55

2.6 CONTROL clause

This clause should be coded in your RD if your report has additional lines, such as total
lines and subheadings, that are o be produced upon a change of value in one or
more "key" fields (known as control fields or simply controls).

2.6.1
—— Format

VV—ECONTROL IS >«
CONTROLS AREJ I:RE PORT—
FINAL— v

control-id

2.6.2 CONTROL Clause: Coding Rules

1.

RD

56

As the format shows, you may code either the special keyword REPORT (or its
equivalent, FINAL), or a list of identifiers (control-ids), or both. Commas are
opftional but helpful separators here, but you should code af least one space or
new line between the operands. At least one operand must be coded.

REPORT, if present, must appear first in the list of confrol-ids. You may omit
REPORT even if you refer to it in the Report Description. FINAL is an alternative
name for REPORT.

Each control-id must be REPORT/FINAL or the name of an unedited data item in
the DATA DIVISION of your program. It must not be a special register in the
REPORT SECTION, such as PAGE-COUNTER. You may include qualifiers and
subscripts if necessary. A PICTURE of a control-id should not have a "V" (implied
decimal point) symbol.

You cannot use the same control-id more than once in the same CONTROL
clause (unless a redefinition is used), but you can use the same control-id in
different RDs.

If the OSVS option is in effect, control-ids may be required to be either group
items or unedited alphanumeric or numeric DISPLAY items with a maximum size.
Thus edited items and items with a USAGE of COMPUTATIONAL or INDEX are
prohibited. Details will be found in Installation and Operation. If you would like
to use such an item as a control without restrictions on its format, you can simply
REDEFINE it or use a group level item containing only the item in question:

MONTH-X.

07 MONTH PIC 99 COMP.
next-item ...
CONTROL IS MONTH-X.

COBOL Report Writer Precompiler Programmer’s Manual

6.

It is acceptable for your control fields to overlap. The following usage is
therefore allowed:

03 ACCOUNT-CODE.

BRANCH PIC 99.
FILLER PIC XX.
CONTROLS ARE BRANCH, ACCOUNT-CODE

7. Coding the CONTROL clause enables you to include some additional elements
in your report description, namely:

] You can specify a CONTROL HEADING and/or a CONTROL FOOTING
group for each control-id, if needed. (See 3.24 TYPE clause.)

. You can code PRESENT/ABSENT AFTER clauses (formerly known as
GROUP INDICATE) with any of the conftrol-ids as operand to cause report
fields, lines etc. to appear or disappear after a change in its value. (See
3.17 PRESENT AFTER clause.)

] You can defer the RESETting (zeroing) of a total field until after a change
in a higher control. (See 3.23 SUM clause.)

2.6.3 CONTROL Clause: Operation
1. You code a CONTROL clause when your report has a structure based on

changes in the value of one or more "key" or control fields, whose names you list
in the CONTROL(S) clause. Report writer does not sort your data (fo do that you
could use COBOL SORT) but, assuming that your data is sequenced according
to the control fields, report writer can perform certain actions automatically,
such as the production of a CONTROL FOOTING and a CONTROL HEADING
group when its contents change. It is also possible for a single CONTROL
FOOTING group to be used for more than one level of control. (See 3.24 TYPE
clause.)

In the following diagram, there are two levels of control. Two CONTROL
HEADING groups and one CONTROL FOOTING have been coded. (There is no
CONTROL FOOTING FOR YEAR.) The "boxes" around each of these groups shows
their extent.

We have used some abbreviations in the following code - for example omitting
the SOURCE and TYPE keywords - to save space. To shorten it further, you could
abbreviate CONTROL HEADING FOR YEAR and CONTROL FOOTING FOR YEAR as
CH YEAR and CF YEAR.

2.6 - CONTROL 57

SPORTS CLUB NEW MEMBERS

YEAR: 1991

MONTH: JAN

J.J. CODER
K. ANALYST

JAN TOTAL: 2

MONTH: FEB

C. HACKER
V. PROGRAMMER
J.C. USER

FEB TOTAL: 3

YEAR: 1992

. etc etc ...

. etc etc ...

RD ...
CONTROLS ARE YEAR, MONTH.

01 CONTROL HEADING FOR YEAR.
03 LINE + 2.
05 coL 3 "YEAR:".
05 cCoL + 2 PIC 9(4) YEAR.
01 CONTROL HEADING FOR MONTH.
03 LINE + 1.
05 coL 2 VALUE "MONTH:".
05 COL + 2 PIC XXX MONTH.

Your CONTROL FOOTING may have underlines etc.
Include them all in the CF group!

01 NEW-MEMBER DETAIL.
03

01 CONTROL FOOTING EOR MONTH.
03 !_'INE C9L§ 5 29

03 LINE.
05 coL 2 PIC XXX MONTH.
05 coL + 2 "TOTAL:".
05 coL 20 PIC 7779
COUNT OF NEW-MEMBER.

The preceding diagram illustrates the following important points:

Your CONTROL HEADING and CONTROL FOOTING groups are coded as
separate 0l1-level report groups.

You can lay out CH and CF groups exactly as you like, just as you would
for a DETAIL; report writer imposes no pre-defined format on any groups.

If you need a different CONTROL HEADING at more than one level (YEAR
and MONTH in our example), you must code a new group for each level.
This means that all groups may have different layouts. In this example,
this applies also to the CONTROL FOOTING groups. (However, you can if
you wish use the same group description for both levels by coding TYPE
CF FOR YEAR, MONTH.)

Report writer produces your CONTROL HEADING group at the start of
each new value of the conftrol. Similarly, it produces your CONTROL
FOOTING group at the end of each new value of the control.

COBOL Report Writer Precompiler Programmer’s Manual

e. CONTROL FOOTING groups are produced using the control values that
existed before the control break. (See next item below for a fuller
description of this.)

f. Both the CONTROL HEADING and the CONTROL FOOTING groups are
optional for each control-id. You may code just a CONTROL HEADING
group, or just a CONTROL FOOTING group, or neither.

2. The reserved word REPORT (or FINAL) is a special case representing the highest
possible control. It is not a data-name. Include this as the first of your set of
conftrols if you need special action to be taken once only at the beginning and
end of the report; for example, if you require grand totals to be produced for
the entire report.

3. Report writer keeps an internal copy of the pre-break contents of each control
so that it may detect changes in the controls, known as control breaks. Ignoring
the special case REPORT or FINAL for the moment, whenever your program
issues a GENERATE statement, the CONTROL clause causes report writer to
compare the contents of each control with its contents when the previous
GENERATE was executed. The first control is examined first, then the second and
so on. If no changes are found in any of the controls, no special action is taken.
As soon as a change is found in a confrol, no further controls are examined. A
break in a higher control always implies a break in all the lower controls,
whether their contents have actually changed or not. (Obviously, 1991's
JANUARY is a different month from 1992's JANUARY.) If you have more than one
control, they must therefore have a hierarchy. Here are some examples:

Structure of your data: Format of the CONTROL clause:
MONTH within YEAR CONTROLS ARE YEAR, MONTH
CITY within COUNTY within STATE CONTROLS ARE STATE, COUNTY, CITY

Your control-names must exist somewhere as data-names in the program
outside the REPORT SECTION. For example, if in the last case the data-names in
your file layout are actually written CUST-STATE, CUST-COUNTY, CUST-CITY, then
your CONTROL clause would have to be written: CONTROLS ARE CUST-STATE,
CUST-COUNTY, CUST-CITY.

4, When a control break is detected, if your report has CONTROL FOOTING groups,
each control field is first saved in a temporary holding area and is then
overwritten with the contents it had before the break for the duration of the
production of the CONTROL FOOTINGs. This means that your program will use
the before-the-break contents of any CONTROL field (for example in a SOURCE,
or a PRESENT WHEN]) in the following TYPEs of group:

a. a CONTROL FOOTING;

b. a PAGE HEADING or PAGE FOOTING, when the page advance was
caused by a CONTROL FOOTING;

and in the following situations:

2.6 - CONTROL 59

C. when it is used as a SOURCE or SUM operand, either as it is or as a
subscript or qualifier, or as part of an expression;

d. when it is used as part of a condition;
e. when it appears in a parameter to a FUNCTION;
f. when it is referenced implicitly, that is, via a redefinition, or via a group

field or subordinate field or an intersecting field.

Only control fields exhibit their before-the-break values when referenced at
CONTROL FOOTING time. To obtain the before-the-break value of a field other
than a control field, you should use a Declarative procedure to save its current
value (see 4.7.3 USE BEFORE REPORTING Directive: Operation).

After the lowest-level CONTROL FOOTING has been produced, and before any
CONTROL HEADING or DETAIL groups are output, the current contents of alll
controls are restored . For a full description of the steps, see 4.2 GENERATE
statement.

5. Report writer will not detect a control break unfil your program issues a
GENERATE. If a control field in your input data changes several times but no
GENERATE is issued during that fime, no control breaks will be detected.

6. Your CONTROL identifiers need not be chosen just from ready-made locations in
your input files or database. You may also "manufacture” them in WORKING-
STORAGE. As asimple example, you may wish to print subtotals by quarter,
although your main input gives just the months:

RD ...
CONTROL IS W-QUARTER

COMPUTE W-QUARTER = (F-MONTH-NO + 2) / 3

7. You cannot define more than one CONTROL HEADING or CONTROL FOOTING
for a given control-id in your report. However, cases sometimes occur when you
would like two CONTROL FOOTING report groups for the same level of control.
You may achieve this referring to the same control field under a different name,
as in the following case, where we must have two groups because the second
part begins on a new page:

05 W-ACCT-NO-1 PIC X(6).
05 W-ACCT-NO-2 REDEFINES W-ACCT-NO-1 PIC X(6).

REPORT SECTION.
D) o
CONTROLS ARE W-ACCT-NO-1 W-ACCT-NO-2

01 GRP-A TYPE CF FOR W-ACCT-NO-2.
03 LINE + 3.

01 GRP-B TYPE CF FOR W-ACCT-NO-1.
03 LINE NEXT PAGE.

COBOL Report Writer Precompiler Programmer’s Manual

10.

Here, the two controls W-ACCT-NO-1 and W-ACCT-NO-2 are physically the
same field. Consequently, there will be a break in the higher control whenever
there is a break in the lower control, and the two CONTROL FOOTING groups,
GRP-A and GRP-B, will always appear together in that order.

Report writer will consider a control break to have taken place if there is any
change in the bit-pattern of the confrol field. For example, if the field is packed
decimal (COMPUTATIONAL-3), a value of (hex) 123C and (hex) 123F will be
considered different, even though they both represent the same numeric value.
If this property is undesirable, your program should MOVE such a field to a
DISPLAY field and use the DISPLAY field as the conftrol field.

If your program has several Report Descriptions, each report is processed
independently of the others. You can decide separately for each report
whether it will have a CONTROL clause and which confrols to specify. When
you issue a GENERATE for a report that has conftrols, report writer examines the
controls for that report only, ignoring all the others.

Non-Hierarchical Conftrol Structures.

In some report structures, there may appear to be controls which are in parallel
rather than hierarchical arrangement. For example:

Department #

\
/ N\
Student Id. Teacher Id.

The organization of records in your file might be:

Department A:
STUDENT record #1
STUDENT record #2
STUDENT record #3
...etc ...

TEACHER record #1

TEACHER record #2

TEACHER record #3

...etc ...
Department B:

...etc ..

As you see, there is no hierarchical relationship between STUDENTs and
TEACHERs. You might wish to print a CONTROL FOOTING group for the STUDENT
records in each Department and a CONTROL FOOTING group of quite different
appearance for the STUDENT records. To achieve this you must regard the two
different CONTROL FOOTING groups as different versions of the same CONTROL
FOOTING and use a PRESENT WHEN clause to distinguish them (see 3.18). Make
the STUDENT-TEACHER indicator an extra lower control. Here is a skeleton
solution:

2.6 - CONTROL 61

2.6.4

62

RD ACADEMIC-LIST ...
CONTROLS ARE DEPARTMENT-NO STU-TEA-FLAG.

01 CF FOR STU-TEA-FLAG.

03 PRESENT WHEN STU-TEA-FLAG = "S".

05 LINE + 2 ... <layout for STUDENTs>
03 PRESENT WHEN STU-TEA-FLAG = "T".

05 LINE + 2 ... <layout for TEACHERs>

11. There may be other purposes for specifying an item as a control. You might
include it for the following reasons:

a. To trigger a PRESENT AFTER clause (or a GROUP INDICATE clause), or The
RESET Phrase of the SUM clause.

b. To force a control break even though a lower control has not changed.
You might want to output just monthly totals over several years' data. If
you then declare MONTH as a control you must include YEAR too as a
higher control, because it is quite possible for JANUARY 1991 to be
followed immediately by JANUARY 1992 if you happen to have no data
for FEBRUARY to DECEMBER 1991. (Note: in this example, you could also
solve the problem by having just one control, YEAR-MONTH, if they are
contiguous.)

C. Because you may want to use the field as a SOURCE at CONTROL
FOOTING time and you want to obtain the previous value of the field.
(See item 4 above.) For example, you might have both CUSTOMER-
NUMBER and CUSTOMER-NAME. By making CUSTOMER-NAME a control
field following CUSTOMER-NUMBER (the "true" control field), you can be
sure that you will see only the pre-break values of CUSTOMER-NAME at
Control Footing time.

d. For documentary purposes. The lowest-level controls need not be used
at all'in the program.

e. If the program's SPECIAL-NAMES paragraph contains an ALPHABET
clause, you may need to use the NOXCAL option to ensure that the
specified collating sequence is used. See Installation and Operation.

Compatibility

1. The use of REPORT as an alternative to FINAL is unique to new Report Writer.

2. Only new Report Writer allows control fields to overlap.

3. Only new Report Writer forbids the use of a COMPUTATIONAL item as a
CONTROL field under certain circumstances. New Report Writer regards two
instances of a COMP-3 confrol to be different if their sign is hex C in one case
and hex F in the other, even though all the remaining digits may be equal.

4. Only new Report Writer checks that all the control-ids in a given CONTROL

clause are different.

COBOL Report Writer Precompiler Programmer’s Manual

2.7 LINE LIMIT clause

This clause indicates the maximum number of columns likely to be required for the
longest line of your report. It enables report writer to check that all of your report fields
appear within the limits of the report line, and to warn you if there is any danger of data
being lost beyond the right-hand extremity of the lines.

2.7.1
—— Format

Pr—ILINE LIMIT IS—[integer—_|—><
identifier

2.7.2 LINE LIMIT Clause: Coding Rules

1.

The value coded gives the maximum line width, in other words the greatest
number of print columns required for your report. You may simply enter the

column width of your printer, for example: LINE LIMIT IS 132 or, if your report is
clearly designed to take up less than this number of columns, use that value
instead. Do not allow for the carriage control character.

The identifier form of the clause is used if you wish the width of your report line to
assume different values at different times. This form of the clause takes effect
only when you use either the REPEATED clause (see 3.19), or the WRAP clause
(see 3.28). The identifier must be an unedited numeric field.

If the FD entry for the corresponding report file contains a BLOCK or RECORD
CONTAINS integer CHARACTERS clause (other than BLOCK CONTAINS 0
CHARACTERS), the value of integer, after allowing for the carriage conftrol
character (if the NOADV option is in effect), and the size of any CODE field,
must not be less the LINE LIMIT, or its default value (see item 3 in the section
below).

2.7.3 LINE LIMIT Clause: Operation

1.

If any report field extends beyond the maximum line width given in your LINE
LIMIT clause, report writer will signal a fault, either at compile time or, if that is not
foreseeable, at run time.

If you use the identifier form of the clause, report writer evaluates its contents
dynamically af INITIATE time and uses that as the value for the clause. For the
purpose of checking the validity of COLUMN numbers, it will use the default
maximum value described below. The value set up by the identifier is used at
run time for the following purposes:

a. to vary the number of REPEATED groups that may be placed side-by-side
(see 3.19 REPEATED clause),

b. as one means of adjusting the right margin when the WRAP clause is
used to produce line wrap round (see 3.28 WRAP clause),

2.7 = LINE LIMIT 63

2.7.4

64

C. to check for (illegal) line overflow in variable-position report fields when
the WRAP clause is not used.

If you omit the LINE LIMIT clause, report writer will assume a default value of the
maximum line width. This is set to 256 in the report writer software as supplied
but this default may be changed by customization to any lesser value (see
Installation and Operation).

The LINE LIMIT need not be the same as logical record length of the report file.
The latter is established from the computed maximum length of the lines of the
report, or from the RECORD or BLOCK CONTAINS clauses if present (see 2.2.3
FILE-CONTROL and FD: Operation).

An internal special register with the reserved name LINE-LIMIT is established in
the Report Control Area, containing the value specified in the LINE LIMIT clause,
or its default value.

Compatibility

The LINE LIMIT clause is unique to new Report Writer. OS/VS and DOS/VS COBOL
do not perform checks on the feasibility of COLUMN numbers.

COBOL Report Writer Precompiler Programmer’s Manual

2.8

OVERFLOW clauses

The OVERFLOW clause tells report writer how to protect your program from arithmetic
errors, such as zero divide, that would cause an elementary COBOL program to fail.
The SUM OVERFLOW clause fells report writer what action to take if a total field
overflows - an event which is more likely fo happen than with other report fields. It may
be difficult to estimate the number of digits needed for totals, since this will depend on
the number and content of items to be accumulated into the totals. Use these clauses
if you need to change the standard action.

2.8.1
— Format a
»»— OVERFLOW PROCEDURE IS OMITTED >«
STANDARD
REPLACE BY literal-1—
STOP literal-2
— Format b
»»>— SUM OVERFLOW PROCEDURE IS OMITTED >«
STANDARD
REPLACE BY literal-1—
STOP literal-2
2.8.2 OVERFLOW Clause: Coding Rules

1. The OVERFLOW (format a) and SUM OVERFLOW clauses (format b) are distinct
clauses and you may choose a different option for each.

2. If your program contains no SUM clauses, the SUM OVERFLOW clause is not
required. Similarly, if your program has no clauses of the form SOURCE
arithmetic-expression , the OVERFLOW clause is not required. In either case, the
clause may nevertheless be coded and it then has no effect.

3. Use the OMITTED option if your report uses arithmetic expressions or has a SUM
clause respectively but there is no likelihood of a size error.

4, Use the REPLACE BY option if your report may be sensitive to improbable values
in the user's data and you would like to show on the report exactly where errors
have occurred. REPLACE BY can be followed by either a numeric or a non-
numeric literal-1, whatever the PICTURE of your report field.

5. Use the STOP option only if SUM or arithmetic overflow is extremely unlikely but

potentially damaging and you are content for your program to execute an
"emergency" COBOL STOP in such a case.

2.8 - OVERFLOW 65

2.8.3

66

OVERFLOW Clause: Operation

1.

05

The OVERFLOW clause takes effect if your program contains clauses of the form
SOURCE arithmetic-expression. On each occasion that the expression is
evaluated a check may be made in case the result is too large for the report
field. Also, if any expression involves a division step there could be a zero divide
error, such as FIELD-A / FIELD-B when FIELD-B contains zero.

The SUM OVERFLOW clause takes effect if your program contains a SUM clause.
On each addition, a check may be performed for size error. This clause does
not affect any of the other functions of the SUM clause, such as the resetting
(zeroing) of the totals. The default in each case is STANDARD (see below).

If you choose the OMITTED option the effect is as follows:

OVERFLOW: Report writer will not perform any checks for arithmetic overflow.
This will save a small overhead on the evaluation of expressions. If a size error
occurs, then at best your report field will have some high-order digits fruncated.
If a zero divide error occurs, your program will fail at run time.

SUM OVERFLOW: Report writer will not perform any checks for SUM overflow. This
will save a small overhead on totalling. If a size error occurs, at least one top
digit will be truncated and lost from the total field.

If you choose the STANDARD option, the effect is as follows:

OVERFLOW: Report writer will always check for size error, or zero divide, when it
evaluates each SOURCE expression. If this happens, your report field will be
blank and a run time error 10 will be indicated.

SUM OVERFLOW: Report writer will check for size error on each addition intfo a
total field. If this happens, arun time error 11 will be indicated. No adding will
take place into your total field and you will obtain the total up to the point just
after the last valid addition.

If you code the REPLACE BY opftion, the effect is as follows:

OVERFLOW: Report writer will check for a size error or zero divide and, if this
occurs, it will place your specified literal-1 in the SOURCE report field instead of
the erroneous value.

SUM OVERFLOW: Report writer will check for a size error and, if this occurs, it will
place your specified literal-1 in the SUM report field instead of the erroneous
value.

In either case, if you choose a numeric literal-1, this value will be stored
according to the rules of the MOVE statement. If you choose a non-numeric
literal-1, the literal will be stored, as for a MOVE, in your report field, treated as
though it were redefined as an unedited alphanumeric field (PIC X...). For
example, if overflow occurs and your report field is defined as:

coL 20 PIC 2ZZ9.99 SOURCE NUM-ORDERED * UNIT-PRICE.

COBOL Report Writer Precompiler Programmer’s Manual

2.8.4

and your RD contains the clause: OVERFLOW PROCEDURE IS REPLACE BY ZERO,
the following will appear:

and if your RD contains the clause: OVERFLOW PROCEDURE IS REPLACE BY ALL
"?", the following will appear:

6. If you code the STOP option, report writer will execute a COBOL STOP literal-2 as
soon as an error is detected.

Compatibility
The OVERFLOW and SUM OVERFLOW clauses are unique to new Report Writer. The SUM

OVERFLOW IS OMITTED option emulates the effect of OS/VS and DOS/VS COBOL's built-
in Report Writer.

2.8 - OVERFLOW 67

2.9 PAGE LIMIT clause
The PAGE LIMIT clause should be coded if your report is to be divided info pages. It also
allows you to sub-divide the page into regions for the headings, main data, and
footings.
29.1
— Format
>> >
I—HEADING IS integer—lJ
| 2 >
l—FIRST DETAIL——— IS integer—2J
=
BODY GROUP—
| 2 |_ >
LAST DETAIL IS integer—3ﬁ—‘
—[EQ L@ CONTROL HEADING -[identifier—l
CE
| 2 >
LAST CONTROL FOOTING IS integer—él—‘l—‘
CF LEPLUil—integer—S
BODY GROUP +
FOOTING
»—PAGE integer-6)
I:LIMIT I1S— I:LINE—
LIMITS ARE— LINES—
2.9.2 PAGE LIMIT Clause: Coding Rules

1. The format above gives you choices of keywords, and in each case the
different keywords have the same meaning. Traditionally, the sub-clauses were
referred to as the HEADING , FIRST DETAIL, LAST DETAIL, and FOOTING phrases.
We also usually refer to the whole clause as the PAGE LIMIT clause, even though
the word LIMIT is optional.

2. Each of the sub-clauses is optional, but none of the first four sub-clauses may be
present without the PAGE LIMIT sub-clause. You may code the sub-clauses in
any order , and they may appear anywhere in the RD statement. The order
shown follows a natural progression from the top to the bottom of the page and
is therefore recommended for maximum lucidity.

3. The values of integer-1, integer-2, integer-3, and integer-4 (if you code their sub-
clauses), and integer-6 represent the start and finish points of various regions of
your page, working down from the top to the bottom. Ensure that the regions
start and finish in the order shown in the diagram below (see 2.9.3). Any two
infegers may be equal. Allintegers must lie between 1 and 9999 inclusive.

68 COBOL Report Writer Precompiler Programmer’s Manual

If you use the identifier form of the LAST DETAIL sub-clause, the identifier used
must be an unedited numeric field and its value at every generation of your
report must lie between the FIRST DETAIL and LAST CONTROL FOOTING positions,
inclusive.

By using the + integer-5 form of the LAST CONTROL FOOTING sub-clause, you
specify the extra lines to be made available to CONTROL FOOTING groups.
Ensure that you cannot exceed the PAGE LIMIT: that is, the LAST DETAIL value
(identifier-1 or integer-3) + the LAST CF offset (integer-5) must be not greater
than the PAGE LIMIT (integer-6).

The FIRST four PAGE LIMIT sub-clauses may all be omitted. Here are some
guidelines on their use:

a. HEADING is never required. However, if your report has a PAGE
HEADING that begins with a relative LINE, you may use HEADING as an
anchor point for the start of that group.

b. FIRST DETAIL should be coded if you have a PAGE HEADING group,
especially one that might vary in depth, and you want the body of the
page to follow at a fixed position underneath it.

C. LAST DETAIL should be coded if you have a PAGE FOOTING group and
want the body of the page to end short of the line preceding it orif you
want to use LAST DETAIL in conjunction with LAST CF as described in the
next paragraph. Use the LAST DETAIL identifier form if you want to vary
the logical page depth dynamically.

d. LAST CF (or LAST CONTROL FOOTING, or FOOTING) should be coded if
you have CONTROL FOOTING groups and want to leave some space
before the PAGE FOOTING begins. (If the OSVS option is not in effect,
this may be provided automatically - see item 7 in the next section
below.)

If you omit the PAGE LIMIT clause, your report will consist of one continuous
stream of output without page breaks. Your Report Group Descriptions will then
not be able to contain absolute LINE (see 3.10 LINE clause), or NEXT GROUP (see
3.13 NEXT GROUP clause), PAGE HEADING and FOOTING groups, or any form of
any clause that makes use of the keyword PAGE.

2.9 - PAGE LIMIT 69

2.9.3 PAGE LIMIT Clause: Operation

1. The PAGE LIMIT clause enables report writer to assign regions to your page. The
following diagram shows how the various regions are mapped onto your page:

Regions of the Page

<« Top of physical
/177777777 //// optional blank space //////////// page (logical LINE 1)
PAGE < HEADING integer-1
HEADING reserved for PH
DETAIL and CONTROL HEADING groups < FIRST DETAIL
v integer-2
V¥V CONTROL FOOTING groups
body M M reserved for
of v v body groups
page v v (CH,DE,CF)
v v
v v
v <« LAST DETAIL
v infeger-3
for CF only
PAGE <« FOOTING (=LAST CF)
FOOTING intfeger-4
reserved for PF
////////////// optional blank space ////////////
< PAGE LIMIT
< Bottom of physical page

Each of your groups will be checked to fit into its appropriate region. (The
REPORT HEADING and REPORT FOOTING groups are special cases.) The fitting of
groups on the page is described in detail in the next part (see 3.10 LINE clause).

2. If you code a HEADING sub-clause, its value will be used in the case where you
have a PAGE HEADING or a REPORT HEADING group whose first LINE clause is
relative . Those groups will then be positioned relative to the value of HEADING
minus 1. (Compare the different rule for the positioning of a relative first LINE
clause in a body group af FIRST DETAIL, see 3.10 LINE clause.)

3. The region between FIRST DETAIL and LAST CONTROL FOOTING inclusive is the
body of the page. Apart from the optional REPORT HEADING and REPORT
FOOTING groups, which may appear anywhere on the page, only body groups
(CONTROL HEADING, DETAIL, and CONTROL FOOTING) will appear in this region.
However, if a PAGE HEADING group encroaches into the FIRST DETAIL position, a
diagnostic message (096) will be issued and the first body group will appear
immediately after the PAGE HEADING group (as though the FIRST DETAIL were
absent - see below).

70 COBOL Report Writer Precompiler Programmer’s Manual

4. CONTROL HEADING and DETAIL groups are not allowed to appear below the
LAST DETAIL position. If LAST DETAIL is above LAST CONTROL FOOTING, your
CONTROL FOOTING groups will thereby have exira space available to them.
This extra space reduces the likelihood of the displeasing effect that results
when they are forced to the top of a page. (See 3.10 LINE clause for more
details.) You can imply this spacing by making LAST DETAIL fall short of PAGE
LIMIT (or short of the line before the PAGE FOOTING if you have one). An
alternative way to indicate this extra space is to code: LAST CONTROL FOOTING
IS +integer-5.

5. If you code the identifier form of the LAST DETAIL sub-clause, report writer will
take the contents of the identifier at the start of each GENERATE and use that as
the value for the sub-clause.

6. If you use the relative form of the LAST CONTROL FOOTING sub-clause (with +),
the number of lines you specify will be added to the LAST DETAIL value to give
the LAST CONTROL FOOTING value. For example: LAST CONTROL FOOTING + 3
specifies that 3 extra lines are to be available during the page fit for CONTROL
FOOTING groups, regardless of any variations in an idenfifier operand of LAST
DETAIL.

7. If you omit any of the first four optional sub-clauses, and report writer needs their
values, it will infer default values according to the following rules:

no HEADING: =1; that is, the top of the logical page.

no FIRST DETAIL: a. |If thereis no PAGE HEADING, the value of HEADING is the
default; hence, if HEADING is allowed to default to 1, the
body of the report will begin at the top of the page.

b. If there is a PAGE HEADING, then the line immediately
following the PAGE HEADING group, that is, the body of the
report, will start immediately after the PAGE HEADING. |If
your PAGE HEADING varies in size, you may deliberately omit
FIRST DETAIL, and the body of your page will adjust itself to
take up all the space available.

no LAST DETAIL: a. |Ifthereis a LAST CONTROL FOOTING (other than the + form),
LAST DETAIL takes the same value, that is, all your body
groups will be allowed to come down to the LAST CONTROL
FOOTING position.

b. If thereis a LAST CONTROL FOOTING with the + integer-5
form, then (first line of the PAGE FOOTING) - 1 - integer-5 is
used; that is, report writer will use as much of the page as
possible, allowing for any PAGE FOOTING, and leave integer-
5 exira lines for the CONTROL FOOTING group(s).

c. Ifthereis no LAST CONTROL FOOQOTING, then the same default
is used as for LAST CONTROL FOOTING (see next).

2.9 - PAGE LIMIT /1

no LAST CONTROL a.

FOOTING:

If the OSVS option is in effect and there is a LAST
DETAIL, this value is also used for the LAST CONTROL
FOOTING. In all other cases:

If there is no PAGE FOOTING, then the PAGE LIMIT is used;
that is, your CONTROL FOOTING groups will be allowed to
come down to the bottom of the page. (If you use the
identifier form of LAST DETAIL, there is an exception to this
rule: LAST CONTROL FOOTING will be the same as LAST
DETAIL.)

If there is a PAGE FOOTING group, then the last line before
the PAGE FOOTING is used. (If the PAGE FOOTING is a
relative group, this is calculated by placing the last line of
the PAGE FOOTING at the PAGE LIMIT.) Note that this default
action differs from ANS COBOL, where LAST CONTROL
FOOTING defaults to LAST DETAIL, if you specify it. This
extension has the advantage that the LAST CONTROL
FOOTING sub-clause can be omitted in most cases without
misalignment of CONTROL FOOTING groups or wastage of
space at the bottom of the page.

8. The following examples show some possible forms of this clause:

a. PAGE LIMIT 60.

This form is valid for all situations because of the defaults. All your body groups
will fit between your PAGE HEADING (or line 1 in its absence) and your PAGE
FOQOTING (orline 60 in its absence).

b. FIRST DE 5
LAST CF +3

PAGE LIMIT 60.

This reserves lines 1-4 for the PAGE HEADING and, if your report has no PAGE
HEADING, they will be left blank. Your CONTROL FOOTING groups may come
down to the line before any PAGE FOOTING, or line 60 if there is no PAGE
FOOTING, but CONTROL HEADING and DETAIL groups must end 3 lines before

that point.

C. LAST DETAIL WS-PAGE-SIZE

PAGE LIMIT 60.

Here the value of WS-PAGE-SIZE will be used as the lower limit for all body groups
(since the identifier form of LAST DETAIL causes LAST CONTROL FOOTING to
default fo LAST DETAIL instead of to PAGE LIMIT).

72 COBOL Report Writer Precompiler Programmer’s Manual

294

Compatibility

1.

The alternative spellings DE for DETAIL, FIRST BODY GROUP for FIRST DETAIL, LAST
DETAIL OR CONTROL HEADING / CH, LAST CONTROL FOOTING / CF, and LAST
BODY GROUP are unigue to new Report Writer.

The concept that each keyword may introduce a clause in its own right is
unique to new Report Writer. OS/VS and DOS/VS COBOL require the keyword
PAGE to appear first and do not allow different phrases of the PAGE LIMIT clause
to be separated by another clause.

OS/VS and DOS/VS COBOL require the keyword LINE or LINES.

The defaults assumed by OS/VS and DOS/VS COBOL are not sufficient to allow
omission of the clauses in most cases as they are with new Report Writer. Where
new Report Writer's defaults are different from those of OS/VS COBOL and
DOS/VS, no undetectable incompatibility will result, because in these cases the
different defaults assumed by OS/VS and DOS/VS COBOL cause compilation
errors.

2.9 - PAGE LIMIT 73

This part describes in detail every aspect of the Report Group Descriptions that follow
your RD enftry in the REPORT SECTION. After the next section, the sections are in
alphabetical order for easy reference.

If you are migrating older programs written using OS/VS or DOS/VS COBOL's built-in
Report Writer, you should refer to the Compatibility paragraph at the end of each
section, which points out any new Report Writer features that these compilers do not
accept.

3 — Report Group Descriptions 75

3.1

3.1.1

3.1.2

Introducing Report Groups

What is a Report Group?

A report group is an uninterrupted block of report lines, from zero up to any number.
With the exception of MULTIPLE PAGE groups (see 3.12 MULTIPLE PAGE clause), the lines
in a report group are always together on the same page and are generated in a single
operation. Of the seven TYPEs, all but the DETAIL groups are produced automatically.
Your program issues at least one GENERATE statement for each DETAIL group (or for the
report as a whole), and any other groups that you have defined are automatically
generated in the correct positions relative to the DETAILS, depending on their TYPE.

Your RD entry may be followed by any number of Report Group Descriptions, but there
is a limit fo the number each TYPE other than DETAIL. Each Report Group Descripfion
begins with a 01 level-number entry in the A-margin.

More information about report groups follows or may be found later in this part (see 3.24
TYPE clause).

Report Groups: Keyword Table

The following table lists the major report writer keywords that may appear in a Report
Group Description, with a summary of their purposes. The third and fourth columns tell
you whether or not the item is provided by IBM's OS/VS and DOS/VS COBOL and, if so,
whether COBOL Report Writer extends the facilities. The clauses may be found, listed in
alphabetical order by keyword, following this section.

If you wish to remain compatible with OS/VS or DOS/VS COBOL, you should avoid the
new keywords and the extensions to the old ones, possibly by using the opftion
described in Installation and Operation to restrict your use of extended features. You
will find additional information on this subject in the Compatibility paragraph at the end
of each section.

3.1 = Introducing Report Groups 77

Report Groups: Keyword Table
0S/VS |Extensions to 0S/VS and DOS/VS
Keyword Purpose DOS/VS | COBOL
COBOL?

TYPE Indicates whether yes = TYPE keyword optional

(0l-level |group is produced o optional FOR/ON with CH/CF

only ...) automatically, = CH FOR control OR PAGE form
(PH, PF, CH, CF, RH, o no TYPE = TYPE DETAIL
RF) or GENERATEd o multiple CONTROL FOOTING
explicitly (DE)

NEXT GROUP | Provides extra yes o= PLUS can be written +
vertical space o optional words BODY and
between groups DE OR CH

o optional ON before NEXT PAGE

GROUP Gives lowest per- no

LIMIT missible position
for body group

MULTIPLE Allows a group no

PAGE to span several
pages

REPEATED Repeats body no
groups side-by-
side across page

LINE Specifies vertical yes o PLUS can be written +

(allowed position o multiple form

at all o LINE alone = LINE PLUS 1

levels...) s LINE PLUS ZERO = LINE PLUS O

s LINE without subordinate

COLUMNs gives blank line
o absolute may follow relative

if group starts with absolute
s RH/RF or body groups may

occupy several pages

OCCURS Indicates repeat- no
ing item

VARY ING Defines internal no
counter for use
as subscript, etc.

PRESENT/ Gives condition no

ABSENT for printing or

WHEN skipping item

/8

COBOL Report Writer Precompiler Programmer’s Manual

0S/VS

Extensions to 0S/VS and DOS/VS

Keyword Purpose DOS/VS | COBOL
COoBOL?

PRESENT/ Specifies intern- no
ABSENT al condition for
AFTER printing/skipping
GROUP Simple form of yes = may be used at group level
INDICATE PRESENT AFTER
BLANK Causes zero value yes = allowed at group level
WHEN ZERO |to be spaces
JUSTIFIED |Changes alignment yes = allowed at group level

rules for alpha-

numeric fields
SIGN Changes output no o LEADING literal TRAILING

convention for literal format for user-

"S" PICTURE symbol specified "signs"
WRAP Allows data to no

"wrap round" onto

continuation lines
STYLE Invokes a special no

printer property
USAGE Documentary yes o DISPLAY-1 for DBCS items
COLUMN Specifies horiz- yes = may be shortened to COL
(element- |ontal position s relative form (+ or PLUS)
ary level o CENTER and RIGHT options
only ...) s multiple format

s allowed alone as dummy entry

PICTURE Gives format in yes o left-shift symbols <...> for

which field is to variable left alignment

be presented s optional when VALUE "literal"

s general insertion characters

SOURCE Specifies field yes = SOURCE keyword optional

whose contents
are to appear
in report item

o arithmetic-expression format

o ROUNDED phrase

@ SUM or COUNT term may be
used as operand

s multiple format

s multiple-choice format

3.1 = Introducing Report Groups 79

0S/VS

Extensions to 0S/VS and DOS/VS

Keyword Purpose DOS/VS | COBOL
CoBOL?
VALUE Specifies fixed yes = VALUE keyword optional
value for report s multiple format
item s assumes default PICTURE
FUNCTION Specifies run time no
routine to provide
contents of item
SUM Indicates total- yes o optional word OF after SUM
ling of specified s arithmetic-expression format
item(s) ° may be used as term in
SOURCE expression
s allowed in non-CF groups
= may refer to SOURCE/VALUE
s ROUNDED phrase
s ANS-74/85 method (no SOURCE SUM
correlation) available
s automatic check for overflow
s > 1 SUM clause in entry ok
COUNT Counts appearances no
of item(s)
PAGE—/ Special registers yes s need not be qualified in REPORT
L INE- for page numbe¥ & SECTIQN/DECLARATIVES
COUNTER vertical position o adding to LINE-COUNTER creates
gap on page
COLUMN- Special register no
COUNTER for horizontal
position
80 COBOL Report Writer Precompiler Programmer’s Manual

3.

2

Coding Report Group Descriptions

A Report Group Description is a REPORT SECTION data structure beginning with an 01-
level enfry and including any number of lower entries. It may consist of the 01-level
report group entry only. You may code any number of Report Group Descriptions after

your RD entry.

3.2.1
—— Format

[
v

> report-group-entry —p<d

where report-group-entry is defined as follows:

—— Format
Pp—Ilevel —number >
|——data—name—-| L—TYPE clause——|
" T TT TT g
NEXT GROUP clause- LGROUP LIMIT clause-d LREPEATED clause
> >
|——LINE clauseJ |-—COLUMN clauseJ |-—PICTURE clauseJ
> >
L——_fgggggg clause L_ _J
—VALUE clause ROUNDED
[
v |
SUM clause
COUNT clause—-| |-—RESET phrase—-|
—FUNCTION clause
> >
PRESENT/ABSENT WHEN clause
PRESENT/ABSENT AFTER clause—
GROUP INDICATE clause
multiple-choice (see below)—
" T] I
WITH-I_——l—WRAP clause LﬁMULTIPLE PAGE clause
NO NO
> >
|——OCCURS clauseJ L—VARYING clauseJ |-—SIGN clauseJ
(Continued over)
3.2 - Coding Report Group Descriptionss 81

—— Format (continued)

>

"1 1T 1T]
BLANK WHEN ZERO clause- LJUSTIFIED clause-d LUSAGE clause

—>

| 2
I—STYLE clauseJ

where multiple-choice is defined as follows:

—— Format

| 2 SOURCE clause— PRESENT AFTER clause_—|—>
—EVALUE clause

FUNCTION clause-

PRESENT WHEN clause

3.2.2

82

Report Groups: Coding Rules

1.

Level-numbers are used, as in any DATA DIVISION record, to establish a
hierarchy of group levels above the elementary level. The level-number at the
start of each report group must be 01. (It may be written without the leading 0,
but we shall still refer to it as the 01-level.) Choose your lower level-numbers
exactly as you would for any other COBOL logical record. (Note that OS/VS and
DOS/VS COBOL Report Writer uses the TYPE, LINE, and COLUMN clauses
themselves, rather than the level-numbers, to establish hierarchy.)

You need not place data-names on your report group entries except in the
following cases, where they are required:

a. On the 01-level entry of a DETAIL group, or any other group that may be
referred to in the USE BEFORE REPORTING header of a Declarative
SECTION (see 4.7 USE BEFORE REPORTING directive). When a data-name
is used atf the 01-level, it gives a name to the entire report group and is
called the report-group-name or group-name. The group-name must
be unique within an RD, but you may re-use the name in another RD.

b. On a numeric entry referred to in a SUM clause or term. (See 3.23 SUM
clause.)
C. On any entry at any level that is referred to in a COUNT clause or term.

(See 3.6 COUNT clause.)
In all other cases it is preferable to omit data-names since an unnecessary data-
name may mislead the program-reader into thinking that it is referred to in one
of the ways above. It may also impede the precompiler's optimization.

Data-names may be DBCS.

The following general-purpose DATA DIVISION clauses can be used in a report
group. The first four may be used at both group and elementary levels (not the

COBOL Report Writer Precompiler Programmer’s Manual

01 -level in the case of OCCURS). PICTURE and VALUE are allowed only at the
elementary level.

BLANK WHEN ZERO
JUST/JUSTIFIED
OCCURS

SIGN

PIC/PICTURE
VALUE/VALUES

but the following cannot be used in a report group:

any USAGE other than DISPLAY, such as COMPUTATIONAL
REDEFINES

SYNCHRONIZED/SYNC

RENAMES

88-level entries

In addition to the general DATA DIVISION clauses, report groups may contain
special-purpose clauses that describe the position and contents of fields. The
first four clauses, TYPE, NEXT GROUP, GROUP LIMIT, and REPEATED, can appear
only at the Ol-level. The special-purpose clauses are:

TYPE indicates the type of group

NEXT GROUP creates extra space between groups

GROUP LIMIT gives a special lower limit for the group

REPEATED places groups side-by-side

LINE gives the vertical position

MULTIPLE PAGE enables a report group to span several

pages

COLUMN gives the horizontal position

SOURCE used to capture a data field by name

SUM used to produce a total

COUNT used to produce a count

FUNCTION invokes a special formatting routine

WRAP allows data fo continue on a new line

VARYING provides counters for a repeating entry

STYLE produces special printer effects

PRESENT/ABSENT controls whether or not an item, line

WHEN/AFTER or group is output

GROUP INDICATE an older form of PRESENT AFTER

4. The clauses PICTURE, COLUMN, SOURCE, VALUE, SUM, COUNT, and FUNCTION
can appear only af the elementary level.

5. For every entry with a COLUMN clause, there must be a LINE clause either at the

same level as or at a higher level. If a given report line contains only one
elementary field (and provided the entry is not a multiple-choice entry, see 3.18
PRESENT WHEN clause), you may combine the LINE and the COLUMN clauses in
the same enftry, for instance:

3.2 - Coding Report Group Descriptionss 83

84

03 LINE 5 coL 60 VALUE "QUARTERLY REPORT".

There is no limit to the number of elementary fields a report line may contain. If
the report line contains several elementary fields, you must code all the
COLUMN entries within the line at a lower level than the LINE entry, for example:

03 LINE 5.
05 coL 60 VALUE "QUARTERLY REPORT".
05 coL 90 VALUE "1997".

Not all the COLUMN clauses within a LINE need be at the same level, since some
or all elementary entries might be contained within non-LINE group entries; for

example:
03 LINE 5.
05 coL 60 VALUE "QUARTERLY REPORT".
05 PRESENT WHEN YEAR NOT = SPACES.
07 coL 90 VALUE "YEAR:".
07 COoL +2 PIC X(4) SOURCE YEAR.

A LINE clause must not be subordinate to another LINE clause. (If this rule is
violated, the nested LINE entries will be treated as though they were defined at
the same level as the first.)

If a given report group contains several lines, you must give all the LINE entries in
that group a level-number other than 01. If the group contains only a single
report line, you may code the LINE clause in the 01-level entry; for instance:

01 ORDER-LINE TYPE DE LINE + 1.

05

You may choose only one of five clauses: SOURCE, VALUE, SUM, COUNT, and
FUNCTION to supply the contents of an elementary item automatically, bearing
in mind that (a) SOURCE or VALUE can be repeated several times in a multiple-
choice entry (see 3.18.5 The Multiple-Choice Form), and (b) SUM (see 3.23 SUM
clause) or COUNT (see 3.6 COUNT clause) can be used as special operators in
terms in an arithmetic expression (see 3.21 SOURCE clause).

If there is no SOURCE, VALUE, SUM/COUNT, or FUNCTION clause in an
elementary item, the following conditions must be met:

a. The entry must have a data-name (following the level-number).
b. The entry must have a COLUMN clause.
C. If the COLUMN clause is relative, the item must have a fixed horizontall

position (that is, it must follow an item with a fixed end-column, unless it is
first in the line).

d. The item must have a PICTURE with none of the features that are unique
to the REPORT SECTION (that is, "<" or ">" symbols or general insertion
characters). Report writer will then expect you to fill in the report field
independently with some COBOL procedural statement.

COBOL Report Writer Precompiler Programmer’s Manual

3.2.3

As an example, in the following case
R-PRIOR-CUST-NO coL 20 PIC 9(7).

the only way this item can receive a value is through a COBOL MOVE, ADD,
ACCEPT, or other procedural statement, which is outside the scope of report
writer and is left to you. Report writer will ensure that the report field is not
overwritten by any other field, so any value stored in the item R-PRIOR-CUST-NO
will remain there and will appear whenever the enclosing group is produced.

Note that you should not attempt to change the value of a group field, such as
areport line, in this way.

10. You may code the clauses of any report group entry in any order, except in the
case of a multiple-choice entry, where each SOURCE, VALUE, or FUNCTION
operand is immediately followed by WHEN condition. Details of this
combination are given later (see 3.17 PRESENT AFTER clause).

11. However, you may code the SUM clause more than once in the same entry.
You may also code a SOURCE, VALUE, or FUNCTION clause and its associated
PRESENT/ABSENT WHEN/AFTER clause more than once in a mulfiple-choice entry.
All other clauses may appear no more than once in an enfry.

Compatibility

1. The COUNT, GROUP LIMIT, VARYING, PRESENT/ABSENT WHEN/AFTER, FUNCTION,
REPEATED, MULTIPLE PAGE, STYLE, and WRAP clauses are provided by new
Report Writer only.

2. Only new Report Writer allows the SIGN clause in the REPORT SECTION.

3. Only new Report Writer allows the BLANK WHEN ZERO and JUSTIFIED clauses in a
group entry.

4, OS/VS and DOS/VS COBOL do not use level-numbers, apart from 01-level, to
establish hierarchy and rely instead on the keywords TYPE, LINE, and COLUMN.

5. 0OS/VS and DOS/VS COBOL allow just three hierarchic levels within the Report
Group descriptions.

6. OS/VS and DOS/VS COBOL do not permit REPORT SECTION entries to be the

subject of non-Report Writer procedural statements.

3.2 - Coding Report Group Descriptionss 85

3.3 BLANK WHEN ZERO clause

This causes a field with zero contents to be blanked out.

3.3.1
—— Format

»p—BLANK WHEN ZERO—P«

3.3.2 BLANK WHEN ZERO Clause: Coding Rules

If you code BLANK WHEN ZERO in an elementary eniry, the entry must have a numeric
PICTURE. If you code it in a group level entry, it applies to all the numeric elementary
entries within the group. (This clause is usually referred to as the BLANK WHEN ZERO
clause, even though the word WHEN is opfional.)

3.3.3 BLANK WHEN ZERO Clause: Operation

BLANK WHEN ZERO causes a numeric field to be replaced entirely by spaces if its value
is zero. For example:

| 1,009.50 19.27 20.90 160.00 |

05 coL 1 PIC z,277.99 BLANK WHEN ZERO
OCCURS 4 STEP 10 VARYING RW-X SOURCE WS-VAL (RW-X).

You may use BLANK WHEN ZERO even if your field is not in a fixed position. It is also
permitted with a variable-length field (PICTURE symbol "<"), in which case a zero value
in a variable part has a length of zero.

3.34 Compatibility

Only new Report Writer allows this clause at the group as well as the elementary level.

86 COBOL Report Writer Precompiler Programmer’s Manual

3.4 COLUMN clause
The COLUMN clause specifies the horizontal positioning of a field in the report line.
3.4.1
— Format
»p— COLUMN NUMBER: IS >
COL NUMBERSJ LEFT——m I—AREJ
COLUMNS CENTER—
COLS CENTRE—
RIGHT—
|
v
> PLUS integer-1—1T—%»<
L
integer-2
3.4.2 COLUMN Clause: Coding Rules

1.

2.

COLUMN with no operands is shorthand for COLUMN + 1.

For every entry with a COLUMN clause, there must be a LINE clause at the same
or a higher level. So you may write:

05 LINE 5 coL 20 VALUE "TITLE PAGE".

provided that there are no other entries within LINE 5. If the line has two or more
fields, you must then create a new level, as with:

05 LINE 6.
07 coL 5 VALUE "REPORT XYZ".
07 coL 72 VALUE "ANNUAL RETURNS".

If you code a COLUMN entry at the same level as the preceding LINE:

05 LINE 6 coL 5 VALUE "REPORT XYZ".
05 coL 72 VALUE "ANNUAL RETURNS".

then Report Writer will diagnose this as invalid but will allow it as stated.

COLUMN may be the only clause in an entry. The result is a blank field whose
only purpose is to shift the current horizontal position (COLUMN-COUNTER) to the
right. A blank field (absolute or relative) occupies one column's width in
addition fo the usual spacing for the COLUMN. It is therefore equivalent to
coding a VALUE consisting of a single space alongside the COLUMN clause
(although doing so would be less efficient). For example, COL + 4 coded alone
in an entry shifts the current horizontal position four (not three) columns right.
(See the discussion in the next section).

3.4 - COLUMN 87

4, The size of your item is calculated from the PICTURE clause or the size of the
VALUE "literal", and is used in combination with your COLUMN clause to check
that: (a) the line width is not exceeded (see 2.7 LINE LIMIT clause and, if you are
using automatic line wrap, see 3.28 WRAP clause), and (b) no two items overlap
(unless they both carry a PRESENT AFTER clause). If two or more items overlap in
whole orin part, report writer will diagnose this as invalid but will allow the
COLUMN positions and field sizes as coded. The later-coded entry will then
overwrite the earlier-coded entry at run time by the number of overlapping
columns and data will be lost. No run time error occurs.

5. Within each LINE, any absolute COLUMN numbers should be in ascending order,
after the evaluation of any PRESENT WHEN clause (see 3.18) and any PRESENT
AFTER clause (see 3.17). If this rule is broken, report writer will issue a Warning
(message 250) but will allow the COLUMN positions as coded.

6. The RIGHT and CENTER phrases cannot be coded with the + (relative) form of
this clause.
7. You may write "+" with or without a space on either side.
3.4.3 COLUMN Clause: Operation
1. The COLUMN clause positions your elementary field horizontally. Here is a list of
the options:
a. COLUMN + integer-1. This is the relative form. It indicates that the

horizontal position within the line is to be moved integer column positions
from the last character of the preceding field to the first character of this
field. Note that the "gap" before the field will be one less than the value
of the integer. For example:

COLUMN + 1 ="no gap"
COLUMN + 2 ="one space before field", and so on.

If you use COLUMN + integer in the first field of a line, it is treated as
though you had written the absolute form, COLUMN integer-1, since the
initial value of the horizontal position is zero.

b. COLUMN integer-2. This is the absolute form. It indicates that the left-
hand column of the field must appear on that fixed position within the
line. Remember that the first column in the line is COLUMN 1. LINE LIMIT
is the highest possible value of integer.

C. COLUMNS integer-1 integer-2 ... This is the multiple form of the clause. It
reduces your coding effort by including several operands in the same
clause. The relative multiple form, COLUMNS + integer, + integer ..., is
also allowed and you may combine both forms in the same clause.
Multiple COLUMNS are described in more detail below (see 3.4.4 Multiple
COLUMNS Clause).

d. COLUMN RIGHT and COLUMN CENTER are used if you wish to specify the
right-hand or center position of the field as alternative anchoring points,
to save you the effort of "counting out" the length of the field to establish
its left-hand column when you already know its center point or right-
hand column. COLUMN LEFT, the normal alignment, is provided for
syntactic completeness.

88 COBOL Report Writer Precompiler Programmer’s Manual

If you specify COLUMN CENTER and the field is an even number of
column positions wide, the extra character position goes to the right of
the central column. The following example shows the allowable
alternatives for a six-character field starting in column 1:

LONDON
T
COLUMN 1 COLUMN RIGHT 6

COLUMN CENTER 3

You will get a ragged left-hand side in the case of COLUMN RIGHT and
centralization with ragged left and right , in the case of COLUMN CENTER.
By successively generating the following entry on different lines with
different values

05 COL RIGHT 15 PIC 9<9(6) SOURCE POPULATION-COUNT.

you will obtain

1

234
56789
8765432

1 columnright 15

The following, generated several times with a different CITY:
COL CENTER 20

"LONDON" WHEN CITY = "L'
"BATH" WHEN CITY = "B"
"GLASGOW" WHEN CITY = "G"
"KINGSTON UPON HULL" WHEN CITY = "H"

gives you, for example,

LONDON

BATH
GLASGOW

KINGSTON UPON HULL

1 column center 20

Note that RIGHT and CENTER may also be used with the multiple format
of the COLUMN clause discussed in 3.4.4 Multiple COLUMNS Clause).

The CENTER or RIGHT option is required if you need to center or right-
align a variable-length field - (see "<" and ">" symbols) for full details. The
output in the box above could also have been produced using a
SOURCE item thus:

05 COL CENTER 20 PIC <X(20) SOURCE CITY-NAME.

3.4 - COLUMN 89

2. If an elementary item has no COLUMN clause then, if the OSVS precompiler
option is in effect or a data-name is present, the item will not appear in the
report. It is then termed an unprintable item. Unprintable items are used chiefly
for summing in the following cases:

a. For Subtotalling and SOURCE SUM Correlation (see 3.23.5). A SOURCE
clause may be written as an unprintable item because a SUM of a
certain data item is required but its individual values are not:

01 DUMMY-DETAIL TYPE DE.
05 PIC 9(6) SOURCE IS WS-PAY. *> unprintable
01 TYPE CF
03 LINE ...
05 coL 22 PIC z(6)9 SUM WS-PAY.
b. For rolling forward of certain values into totals. This is report writer

principal way of forming totals. This time the unprintable item has a
data-name and the data-name is summed:

01 DUMMY-DETAIL TYPE DE.
05 R-PAY PIC 9(6) SOURCE IS WS-PAY.
01 TYPE CF
03 LINE ...
05 coL 22 PIC z(6)9 SUM OF R-PAY.
C. For forming totals that are not printed directly but used indirectly:
01 TYPE CF ...
05 R-PAY PIC 9(7) SUM OF WS-PAY.
05 R-TAX PIC 9(7) SUM OF WS-TAX.
05 coL 22 PIC 7z(6)9 SOURCE R-PAY - R-TAX.

Further examples may be found in SUM Clause.

3. If the precompiler option OSVS is not in effect, and any elementary entry
beneath the LINE level has no COLUMN clause, then COLUMN + 1 is assumed for
the entry, provided that the level-number is not followed by a data-name. Thus,
you could omit both COLUMN clauses in the following fragment:

05 LINE 1.

07 coL 1 VALUE "REPORT ".
07 coL 8 PIC XXX SOURCE REPORT-IDENT.
3.44 Multiple COLUMNS Clause

You may use the multiple form of the COLUMN clause by placing several integer or +
integer terms after the keyword. This reduces the effort needed to code several
adjacent entries that have a similar format. Note the following points:

1. A multiple COLUMNS clause is functionally equivalent to an ordinary COLUMN
clause used in conjunction with an OCCURS clause (see 3.14); for example:

a. You may use VARYING to vary a counter that is used as a subscript in a
SOURCE clause.

90 COBOL Report Writer Precompiler Programmer’s Manual

b. You may use a simple (single-operand) VALUE, SOURCE, SUM, or
FUNCTION clause to place the same value repeatedly in each instance
of the field.

C. You may use a multiple VALUE or SOURCE clause to place a different
value in each instance of the field.

d. You may place a data-name at the start of the entry and SUM the dato-
name in another entry o produce a total of the instances or
occurrences collectively or individually. (To form individual totals, there
must be another multiple or occurring COLUMN clause in the entry with
the SUM clause.)

2. Unlike the method of repetition using the OCCURS clause, the intervals between
the entries defined by a multiple COLUMNS clause need not be regular.

3. Your multiple COLUMNS clause will be syntactically correct if it would be correct
when written as a series of separate COLUMN entries.

4, Here are some examples of the multiple COLUMNS clause:
*This places the Titeral in all 3 column positions:
05 coLs 9 21 36 VALUE "------- "

*This gives you WVAL (1) WVAL (2) and wvAL (3) in the 3
*right-hand positions:
05 COLUMNS RIGHT 21 31 42 PIC 77779
VARYING R-SUB SOURCE WVAL (R-SUB).

*This illustrates the combining of absolute and relative positions:
05 COLUMN NUMBERS ARE 6 +3 +3

5. The following diagram and corresponding code illustrates the usefulness of the
multiple COLUMNS clause:

SPORTS EQUIPMENT COMPANY: WAGES SUMMARY

AREA BASIC PAY OVERTIME COMMISSION TOTAL
NORTH $1,420,000 $600,000 $150,500 $2,170,500
EAST $2,100,000 $850,000 $220,000 $3,170,000

01 TYPE PH.
03 LINE 1 COL CENTER 28 "SPORTS EQUIPMENT COMPANY: WAGES SUMMARY".

03 LINE 2 COLS RIGHT 4 19 33 47 62 VALUES
"AREA" "BASIC PAY" "OVERTIME" "COMMISSION" "TOTAL ",
03 LINE 4 OCCURS 4 STEP 1 VARYING AREA-NO.
05 coL 1 "NORTH" "EAST" "SOUTH" "WEST".
05 R-PAY COLS RIGHT 19 33 47 PIC $$%,$%%,%$%9 SOURCES
BASIC-PAY O