
WebSphere

MQ

Using

Java

SC34-6066-02

���

Note!

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

Appendix

J,

“Notices,”

on

page

505.

Third

edition

(January

2004)

This

is

the

third

edition

of

this

book

that

applies

to

WebSphere

MQ.

It

applies

to

the

following

products:

v

IBM

WebSphere

MQ

for

AIX,

Version

5.3

v

IBM

WebSphere

MQ

for

HP-UX,

Version

5.3

v

IBM

WebSphere

MQ

for

iSeries,

Version

5.3

v

IBM

WebSphere

MQ

for

Linux

for

Intel,

Version

5.3

v

IBM

WebSphere

MQ

for

Linux

for

zSeries,

Version

5.3

v

IBM

WebSphere

MQ

for

Solaris,

Version

5.3

v

IBM

WebSphere

MQ

for

Windows,

Version

5.3

v

IBM

WebSphere

MQ

for

z/OS,

Version

5.3

with

fix

pack

6

(CSD06)

or

later,

and

to

any

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

©

Copyright

International

Business

Machines

Corporation

1997,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

Figures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

Tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

About

this

book

.

.

.

.

.

.

.

.

.

. xiii

Who

this

book

is

for

.

.

.

.

.

.

.

.

.

.

. xiii

What

you

need

to

know

to

understand

this

book

xiii

How

to

use

this

book

.

.

.

.

.

.

.

.

.

.

. xiii

Terms

used

in

this

book

.

.

.

.

.

.

.

.

.

. xiv

Summary

of

changes

.

.

.

.

.

.

.

. xv

Changes

for

this

edition

(SC34–6066–02)

.

.

.

.

. xv

Changes

for

the

second

edition

(SC34-6066-01)

.

. xv

Changes

for

the

first

edition

(SC34-6066-00)

.

.

. xv

Part

1.

Guidance

for

users

.

.

.

.

. 1

Chapter

1.

Getting

started

.

.

.

.

.

.

. 3

What

are

WebSphere

MQ

classes

for

Java?

.

.

.

. 3

What

are

WebSphere

MQ

classes

for

Java

Message

Service?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Who

should

use

WebSphere

MQ

Java?

.

.

.

.

.

. 4

Connection

options

.

.

.

.

.

.

.

.

.

.

.

. 4

Client

connection

.

.

.

.

.

.

.

.

.

.

.

. 5

Bindings

connection

.

.

.

.

.

.

.

.

.

.

. 5

Prerequisites

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

Chapter

2.

Installation

.

.

.

.

.

.

.

.

. 9

What

is

installed

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Installation

directories

.

.

.

.

.

.

.

.

.

. 10

Environment

variables

.

.

.

.

.

.

.

.

.

. 10

STEPLIB

configuration

on

z/OS

and

OS/390

.

. 12

Web

server

configuration

.

.

.

.

.

.

.

.

.

. 12

Running

WebSphere

MQ

Java

applications

under

the

Java

2

Security

Manager

.

.

.

.

.

.

.

.

. 13

Chapter

3.

Using

WebSphere

MQ

classes

for

Java

(WebSphere

MQ

base

Java)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Configuring

your

queue

manager

to

accept

client

connections

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

TCP/IP

client

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Verifying

with

the

sample

application

.

.

.

.

. 16

Running

your

own

WebSphere

MQ

base

Java

programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 17

Solving

WebSphere

MQ

base

Java

problems

.

.

. 17

Tracing

the

sample

application

.

.

.

.

.

.

. 17

Error

messages

.

.

.

.

.

.

.

.

.

.

.

. 18

Chapter

4.

Using

WebSphere

MQ

classes

for

Java

Message

Service

(WebSphere

MQ

JMS)

.

.

.

.

.

.

.

. 19

JMS

Postcard

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Setting

up

JMS

Postcard

.

.

.

.

.

.

.

.

. 19

Starting

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Sign-on

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

Sending

a

postcard

.

.

.

.

.

.

.

.

.

.

. 20

JMS

Postcard

configuration

.

.

.

.

.

.

.

. 22

How

JMS

Postcard

works

.

.

.

.

.

.

.

. 22

Post

installation

setup

.

.

.

.

.

.

.

.

.

.

. 25

Additional

setup

for

publish/subscribe

mode

.

. 26

Queues

that

require

authorization

for

non-privileged

users

.

.

.

.

.

.

.

.

.

. 29

Using

the

sample

JMS

applet

to

verify

the

TCP/IP

client

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

Using

the

sample

applet

with

OS/400

.

.

.

. 30

Running

the

sample

applet

.

.

.

.

.

.

.

. 30

Running

the

point-to-point

IVT

.

.

.

.

.

.

.

. 31

Point-to-point

verification

without

JNDI

.

.

.

. 31

Point-to-point

verification

with

JNDI

.

.

.

.

. 32

IVT

error

recovery

.

.

.

.

.

.

.

.

.

.

. 34

The

publish/subscribe

installation

verification

test

35

Publish/subscribe

verification

without

JNDI

.

. 35

Publish/subscribe

verification

with

JNDI

.

.

. 36

PSIVT

error

recovery

.

.

.

.

.

.

.

.

.

. 37

Running

your

own

WebSphere

MQ

JMS

programs

38

Solving

problems

.

.

.

.

.

.

.

.

.

.

.

. 38

Tracing

programs

.

.

.

.

.

.

.

.

.

.

. 38

Logging

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

Chapter

5.

Using

the

WebSphere

MQ

JMS

administration

tool

.

.

.

.

.

.

. 41

Invoking

the

administration

tool

.

.

.

.

.

.

. 41

Configuration

.

.

.

.

.

.

.

.

.

.

.

.

. 42

Using

an

unlisted

InitialContextFactory

.

.

.

. 43

Security

.

.

.

.

.

.

.

.

.

.

.

.

.

. 43

Configuring

for

WebSphere

Application

Server

V3.5

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 44

Administration

commands

.

.

.

.

.

.

.

.

. 44

Manipulating

subcontexts

.

.

.

.

.

.

.

.

. 45

Administering

JMS

objects

.

.

.

.

.

.

.

.

. 45

Object

types

.

.

.

.

.

.

.

.

.

.

.

.

. 45

Verbs

used

with

JMS

objects

.

.

.

.

.

.

.

. 47

Creating

objects

.

.

.

.

.

.

.

.

.

.

.

. 48

Properties

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Property

dependencies

.

.

.

.

.

.

.

.

. 56

The

ENCODING

property

.

.

.

.

.

.

.

. 57

SSL

properties

.

.

.

.

.

.

.

.

.

.

.

. 58

Sample

error

conditions

.

.

.

.

.

.

.

.

. 59

Part

2.

Programming

with

WebSphere

MQ

base

Java

.

.

.

.

. 61

Chapter

6.

Introduction

for

programmers

.

.

.

.

.

.

.

.

.

.

.

. 63

Why

should

I

use

the

Java

interface?

.

.

.

.

.

. 63

©

Copyright

IBM

Corp.

1997,

2004

iii

||
||

The

WebSphere

MQ

classes

for

Java

interface

.

.

. 64

Java

Development

Kit

.

.

.

.

.

.

.

.

.

.

. 64

WebSphere

MQ

classes

for

Java

class

library

.

.

. 65

Chapter

7.

Writing

WebSphere

MQ

base

Java

programs

.

.

.

.

.

.

.

.

.

.

. 67

Should

I

write

applets

or

applications?

.

.

.

.

. 67

Connection

differences

.

.

.

.

.

.

.

.

.

.

. 67

Client

connections

.

.

.

.

.

.

.

.

.

.

. 67

Bindings

mode

.

.

.

.

.

.

.

.

.

.

.

. 68

Defining

which

connection

to

use

.

.

.

.

.

. 68

Specifying

a

range

of

ports

for

client

connections

68

Example

code

fragments

.

.

.

.

.

.

.

.

.

. 69

Example

applet

code

.

.

.

.

.

.

.

.

.

. 69

Example

application

code

.

.

.

.

.

.

.

. 72

Operations

on

queue

managers

.

.

.

.

.

.

.

. 74

Setting

up

the

WebSphere

MQ

environment

.

. 74

Connecting

to

a

queue

manager

.

.

.

.

.

. 75

Accessing

queues

and

processes

.

.

.

.

.

.

. 75

Handling

messages

.

.

.

.

.

.

.

.

.

.

.

. 76

Handling

errors

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Getting

and

setting

attribute

values

.

.

.

.

.

. 78

Multithreaded

programs

.

.

.

.

.

.

.

.

.

. 79

Writing

user

exits

.

.

.

.

.

.

.

.

.

.

.

. 79

Connection

pooling

.

.

.

.

.

.

.

.

.

.

.

. 80

Controlling

the

default

connection

pool

.

.

.

. 81

The

default

connection

pool

and

multiple

components

.

.

.

.

.

.

.

.

.

.

.

.

. 83

Supplying

a

different

connection

pool

.

.

.

. 84

Supplying

your

own

ConnectionManager

.

.

. 85

JTA/JDBC

coordination

using

WebSphere

MQ

base

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 87

Installation

.

.

.

.

.

.

.

.

.

.

.

.

. 87

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

Known

problems

and

limitations

.

.

.

.

.

. 88

Secure

Sockets

Layer

(SSL)

support

.

.

.

.

.

. 89

Enabling

SSL

.

.

.

.

.

.

.

.

.

.

.

.

. 90

Using

the

distinguished

name

of

the

queue

manager

.

.

.

.

.

.

.

.

.

.

.

.

.

. 90

Using

certificate

revocation

lists

.

.

.

.

.

. 91

Supplying

a

customized

SSLSocketFactory

.

.

. 92

Error

handling

when

using

SSL

.

.

.

.

.

.

. 92

Compiling

and

testing

WebSphere

MQ

base

Java

programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 93

Running

WebSphere

MQ

base

Java

applets

.

.

. 93

Running

WebSphere

MQ

base

Java

applications

94

Tracing

WebSphere

MQ

base

Java

programs

.

. 94

Chapter

8.

Environment-dependent

behavior

.

.

.

.

.

.

.

.

.

.

.

.

.

. 95

Core

details

.

.

.

.

.

.

.

.

.

.

.

.

.

. 95

Restrictions

and

variations

for

core

classes

.

.

.

. 96

MQGMO_*

values

.

.

.

.

.

.

.

.

.

.

. 96

MQPMRF_*

values

.

.

.

.

.

.

.

.

.

.

. 96

MQPMO_*

values

.

.

.

.

.

.

.

.

.

.

. 96

MQCNO_FASTPATH_BINDING

.

.

.

.

.

. 96

MQRO_*

values

.

.

.

.

.

.

.

.

.

.

.

. 97

Miscellaneous

differences

with

z/OS

and

OS/390

97

Features

outside

the

core

.

.

.

.

.

.

.

.

.

. 98

MQQueueManager

constructor

option

.

.

.

. 98

MQQueueManager.begin()

method

.

.

.

.

. 98

MQGetMessageOptions

fields

.

.

.

.

.

.

. 98

Distribution

lists

.

.

.

.

.

.

.

.

.

.

.

. 98

MQPutMessageOptions

fields

.

.

.

.

.

.

. 98

MQMD

fields

.

.

.

.

.

.

.

.

.

.

.

.

. 99

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

.

.

.

.

. 101

MQChannelDefinition

.

.

.

.

.

.

.

.

.

. 102

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 102

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 103

MQChannelExit

.

.

.

.

.

.

.

.

.

.

.

. 104

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 104

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 106

MQDistributionList

.

.

.

.

.

.

.

.

.

.

. 107

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 107

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

MQDistributionListItem

.

.

.

.

.

.

.

.

.

. 109

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 109

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 109

MQEnvironment

.

.

.

.

.

.

.

.

.

.

.

. 110

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 110

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 114

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 114

MQException

.

.

.

.

.

.

.

.

.

.

.

.

. 117

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 117

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 118

MQGetMessageOptions

.

.

.

.

.

.

.

.

.

. 119

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 122

MQManagedObject

.

.

.

.

.

.

.

.

.

.

. 123

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 124

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

MQMessage

.

.

.

.

.

.

.

.

.

.

.

.

.

. 126

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 126

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 134

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 134

MQMessageTracker

.

.

.

.

.

.

.

.

.

.

. 144

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 144

MQPoolServices

.

.

.

.

.

.

.

.

.

.

.

. 146

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 146

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 146

MQPoolServicesEvent

.

.

.

.

.

.

.

.

.

. 147

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 147

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 148

MQPoolToken

.

.

.

.

.

.

.

.

.

.

.

.

. 149

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 149

MQProcess

.

.

.

.

.

.

.

.

.

.

.

.

.

. 150

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 150

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 150

MQPutMessageOptions

.

.

.

.

.

.

.

.

.

. 152

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 152

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 154

MQQueue

.

.

.

.

.

.

.

.

.

.

.

.

.

. 155

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 155

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 155

MQQueueManager

.

.

.

.

.

.

.

.

.

.

. 163

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 163

iv

Using

Java

||

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 163

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 166

MQSimpleConnectionManager

.

.

.

.

.

.

. 176

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 176

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 176

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 176

MQC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 179

MQPoolServicesEventListener

.

.

.

.

.

.

.

. 180

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 180

MQConnectionManager

.

.

.

.

.

.

.

.

.

. 181

MQReceiveExit

.

.

.

.

.

.

.

.

.

.

.

.

. 182

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 182

MQSecurityExit

.

.

.

.

.

.

.

.

.

.

.

. 184

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 184

MQSendExit

.

.

.

.

.

.

.

.

.

.

.

.

.

. 186

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 186

ManagedConnection

.

.

.

.

.

.

.

.

.

.

. 188

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 188

ManagedConnectionFactory

.

.

.

.

.

.

.

. 191

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 191

ManagedConnectionMetaData

.

.

.

.

.

.

.

. 193

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 193

Part

3.

Programming

with

WebSphere

MQ

JMS

.

.

.

.

.

.

. 195

Chapter

10.

Writing

WebSphere

MQ

JMS

applications

.

.

.

.

.

.

.

.

.

. 199

The

JMS

model

.

.

.

.

.

.

.

.

.

.

.

.

. 199

Building

a

connection

.

.

.

.

.

.

.

.

.

. 200

Retrieving

the

factory

from

JNDI

.

.

.

.

.

. 200

Using

the

factory

to

create

a

connection

.

.

. 201

Creating

factories

at

runtime

.

.

.

.

.

.

. 201

Choosing

client

or

bindings

transport

.

.

.

. 202

Specifying

a

range

of

ports

for

client

connections

.

.

.

.

.

.

.

.

.

.

.

.

. 203

Obtaining

a

session

.

.

.

.

.

.

.

.

.

.

. 203

Sending

a

message

.

.

.

.

.

.

.

.

.

.

. 204

Setting

properties

with

the

set

method

.

.

.

. 206

Message

types

.

.

.

.

.

.

.

.

.

.

.

. 206

Receiving

a

message

.

.

.

.

.

.

.

.

.

.

. 207

Message

selectors

.

.

.

.

.

.

.

.

.

.

. 207

Asynchronous

delivery

.

.

.

.

.

.

.

.

. 208

Closing

down

.

.

.

.

.

.

.

.

.

.

.

.

. 208

Java

Virtual

Machine

hangs

at

shutdown

.

.

. 209

Handling

errors

.

.

.

.

.

.

.

.

.

.

.

. 209

Exception

listener

.

.

.

.

.

.

.

.

.

.

. 209

User

exits

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

Using

Secure

Sockets

Layer

(SSL)

.

.

.

.

.

.

. 210

SSL

administrative

properties

.

.

.

.

.

.

. 210

Chapter

11.

Writing

WebSphere

MQ

JMS

publish/subscribe

applications

.

. 213

Introduction

.

.

.

.

.

.

.

.

.

.

.

.

.

. 213

Getting

started

with

WebSphere

MQ

JMS

and

publish/subscribe

.

.

.

.

.

.

.

.

.

.

.

. 213

Choosing

a

broker

.

.

.

.

.

.

.

.

.

.

. 213

Setting

up

the

broker

to

run

the

WebSphere

MQ

JMS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 214

Writing

a

simple

publish/subscribe

application

connecting

through

WebSphere

MQ

.

.

.

.

.

. 215

Import

required

packages

.

.

.

.

.

.

.

. 217

Obtain

or

create

JMS

objects

.

.

.

.

.

.

. 217

Publish

messages

.

.

.

.

.

.

.

.

.

.

. 219

Receive

subscriptions

.

.

.

.

.

.

.

.

.

. 219

Close

down

unwanted

resources

.

.

.

.

.

. 219

TopicConnectionFactory

administered

objects

220

Topic

administered

objects

.

.

.

.

.

.

.

. 220

Using

topics

.

.

.

.

.

.

.

.

.

.

.

.

.

. 221

Topic

names

.

.

.

.

.

.

.

.

.

.

.

.

. 221

Creating

topics

at

runtime

.

.

.

.

.

.

.

. 223

Subscriber

options

.

.

.

.

.

.

.

.

.

.

.

. 224

Creating

non-durable

subscribers

.

.

.

.

.

. 224

Creating

durable

subscribers

.

.

.

.

.

.

. 224

Using

message

selectors

.

.

.

.

.

.

.

.

. 224

Suppressing

local

publications

.

.

.

.

.

.

. 225

Combining

the

subscriber

options

.

.

.

.

. 225

Configuring

the

base

subscriber

queue

.

.

.

. 225

Subscription

stores

.

.

.

.

.

.

.

.

.

. 227

Solving

publish/subscribe

problems

.

.

.

.

.

. 229

Incomplete

publish/subscribe

close

down

.

.

. 230

Subscriber

cleanup

utility

.

.

.

.

.

.

.

. 230

Manual

cleanup

.

.

.

.

.

.

.

.

.

.

. 232

Cleanup

from

within

a

program

.

.

.

.

.

. 233

Handling

broker

reports

.

.

.

.

.

.

.

.

. 233

Other

considerations

.

.

.

.

.

.

.

.

.

. 234

Chapter

12.

Writing

WebSphere

MQ

JMS

1.1

applications

.

.

.

.

.

.

.

. 235

The

JMS

1.1

model

.

.

.

.

.

.

.

.

.

.

. 235

Building

a

connection

.

.

.

.

.

.

.

.

.

. 236

Retrieving

a

connection

factory

from

JNDI

.

. 236

Using

a

connection

factory

to

create

a

connection

.

.

.

.

.

.

.

.

.

.

.

.

. 236

Creating

a

connection

factory

at

runtime

.

.

. 237

Obtaining

a

session

.

.

.

.

.

.

.

.

.

.

. 238

Destinations

.

.

.

.

.

.

.

.

.

.

.

.

.

. 239

Sending

a

message

.

.

.

.

.

.

.

.

.

.

. 240

Message

types

.

.

.

.

.

.

.

.

.

.

.

. 241

Receiving

a

message

.

.

.

.

.

.

.

.

.

.

. 241

Creating

durable

topic

subscribers

.

.

.

.

. 242

Message

selectors

.

.

.

.

.

.

.

.

.

.

. 243

Suppressing

local

publications

.

.

.

.

.

.

. 243

Configuring

the

consumer

queue

.

.

.

.

.

. 244

Subscription

stores

.

.

.

.

.

.

.

.

.

. 246

Asynchronous

delivery

.

.

.

.

.

.

.

.

.

. 248

Consumer

cleanup

utility

for

the

publish/subscribe

domain

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 248

Manual

cleanup

.

.

.

.

.

.

.

.

.

.

. 250

Cleanup

from

within

a

program

.

.

.

.

.

. 251

Closing

down

.

.

.

.

.

.

.

.

.

.

.

.

. 252

Java

Virtual

Machine

hangs

at

shutdown

.

.

. 252

Handling

errors

.

.

.

.

.

.

.

.

.

.

.

. 252

Exception

listener

.

.

.

.

.

.

.

.

.

.

. 252

Handling

broker

reports

.

.

.

.

.

.

.

.

. 252

Other

considerations

.

.

.

.

.

.

.

.

.

. 253

User

exits

.

.

.

.

.

.

.

.

.

.

.

.

.

. 253

Using

Secure

Sockets

Layer

(SSL)

.

.

.

.

.

.

. 253

SSL

administrative

properties

.

.

.

.

.

.

. 254

Contents

v

|
||

|
||

|
||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Chapter

13.

JMS

messages

.

.

.

.

. 257

Message

selectors

.

.

.

.

.

.

.

.

.

.

.

. 257

Mapping

JMS

messages

onto

WebSphere

MQ

messages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 261

The

MQRFH2

header

.

.

.

.

.

.

.

.

.

. 262

JMS

fields

and

properties

with

corresponding

MQMD

fields

.

.

.

.

.

.

.

.

.

.

.

. 265

Mapping

JMS

fields

onto

WebSphere

MQ

fields

(outgoing

messages)

.

.

.

.

.

.

.

.

.

. 266

Mapping

WebSphere

MQ

fields

onto

JMS

fields

(incoming

messages)

.

.

.

.

.

.

.

.

.

. 271

Mapping

JMS

to

a

native

WebSphere

MQ

application

.

.

.

.

.

.

.

.

.

.

.

.

. 273

Message

body

.

.

.

.

.

.

.

.

.

.

.

. 273

Chapter

14.

WebSphere

MQ

JMS

Application

Server

Facilities

.

.

.

.

. 277

ASF

classes

and

functions

.

.

.

.

.

.

.

.

. 277

ConnectionConsumer

.

.

.

.

.

.

.

.

.

. 277

Planning

an

application

.

.

.

.

.

.

.

.

. 278

Error

handling

.

.

.

.

.

.

.

.

.

.

.

. 282

Application

server

sample

code

.

.

.

.

.

.

. 283

MyServerSession.java

.

.

.

.

.

.

.

.

.

. 285

MyServerSessionPool.java

.

.

.

.

.

.

.

. 285

MessageListenerFactory.java

.

.

.

.

.

.

. 286

Examples

of

ASF

use

.

.

.

.

.

.

.

.

.

.

. 287

Load1.java

.

.

.

.

.

.

.

.

.

.

.

.

. 287

CountingMessageListenerFactory.java

.

.

.

. 288

ASFClient1.java

.

.

.

.

.

.

.

.

.

.

.

. 289

Load2.java

.

.

.

.

.

.

.

.

.

.

.

.

. 290

LoggingMessageListenerFactory.java

.

.

.

.

. 290

ASFClient2.java

.

.

.

.

.

.

.

.

.

.

.

. 290

TopicLoad.java

.

.

.

.

.

.

.

.

.

.

.

. 291

ASFClient3.java

.

.

.

.

.

.

.

.

.

.

.

. 292

ASFClient4.java

.

.

.

.

.

.

.

.

.

.

.

. 293

ASFClient5.java

.

.

.

.

.

.

.

.

.

.

.

. 294

Chapter

15.

JMS

interfaces

and

classes

.

.

.

.

.

.

.

.

.

.

.

.

.

. 295

Sun

Java

Message

Service

classes

and

interfaces

295

WebSphere

MQ

JMS

classes

.

.

.

.

.

.

.

. 298

BytesMessage

.

.

.

.

.

.

.

.

.

.

.

.

. 300

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 300

Cleanup

*

.

.

.

.

.

.

.

.

.

.

.

.

.

. 308

WebSphere

MQ

constructor

.

.

.

.

.

.

.

. 308

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 308

Connection

.

.

.

.

.

.

.

.

.

.

.

.

.

. 313

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 313

ConnectionConsumer

.

.

.

.

.

.

.

.

.

.

. 318

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 318

ConnectionFactory

.

.

.

.

.

.

.

.

.

.

.

. 319

WebSphere

MQ

constructor

.

.

.

.

.

.

.

. 319

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 319

ConnectionMetaData

.

.

.

.

.

.

.

.

.

.

. 335

WebSphere

MQ

constructor

.

.

.

.

.

.

.

. 335

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 335

DeliveryMode

.

.

.

.

.

.

.

.

.

.

.

.

. 337

Fields

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 337

Destination

.

.

.

.

.

.

.

.

.

.

.

.

.

. 338

WebSphere

MQ

constructors

.

.

.

.

.

.

. 338

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 338

ExceptionListener

.

.

.

.

.

.

.

.

.

.

.

. 340

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 340

MapMessage

.

.

.

.

.

.

.

.

.

.

.

.

. 341

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 341

Message

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 349

Fields

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 349

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 349

MessageConsumer

.

.

.

.

.

.

.

.

.

.

. 363

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 363

MessageListener

.

.

.

.

.

.

.

.

.

.

.

. 366

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 366

MessageProducer

.

.

.

.

.

.

.

.

.

.

.

. 367

WebSphere

MQ

constructors

.

.

.

.

.

.

. 367

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 367

MQQueueEnumeration

*

.

.

.

.

.

.

.

.

. 373

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 373

ObjectMessage

.

.

.

.

.

.

.

.

.

.

.

.

. 374

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 374

Queue

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 375

WebSphere

MQ

constructors

.

.

.

.

.

.

. 375

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 375

QueueBrowser

.

.

.

.

.

.

.

.

.

.

.

.

. 377

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 377

QueueConnection

.

.

.

.

.

.

.

.

.

.

.

. 379

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 379

QueueConnectionFactory

.

.

.

.

.

.

.

.

. 381

WebSphere

MQ

constructor

.

.

.

.

.

.

.

. 381

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 381

QueueReceiver

.

.

.

.

.

.

.

.

.

.

.

.

. 384

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 384

QueueRequestor

.

.

.

.

.

.

.

.

.

.

.

. 385

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 385

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 385

QueueSender

.

.

.

.

.

.

.

.

.

.

.

.

. 387

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 387

QueueSession

.

.

.

.

.

.

.

.

.

.

.

.

. 390

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 390

Session

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 393

Fields

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 393

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 393

StreamMessage

.

.

.

.

.

.

.

.

.

.

.

.

. 405

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 405

TemporaryQueue

.

.

.

.

.

.

.

.

.

.

.

. 413

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 413

TemporaryTopic

.

.

.

.

.

.

.

.

.

.

.

. 414

WebSphere

MQ

constructor

.

.

.

.

.

.

.

. 414

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 414

TextMessage

.

.

.

.

.

.

.

.

.

.

.

.

.

. 415

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 415

Topic

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 416

WebSphere

MQ

constructor

.

.

.

.

.

.

.

. 416

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 416

TopicConnection

.

.

.

.

.

.

.

.

.

.

.

. 420

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 420

TopicConnectionFactory

.

.

.

.

.

.

.

.

.

. 423

WebSphere

MQ

constructor

.

.

.

.

.

.

.

. 423

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 423

TopicPublisher

.

.

.

.

.

.

.

.

.

.

.

.

. 431

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 431

TopicRequestor

.

.

.

.

.

.

.

.

.

.

.

.

. 434

vi

Using

Java

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 434

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 434

TopicSession

.

.

.

.

.

.

.

.

.

.

.

.

.

. 436

WebSphere

MQ

constructor

.

.

.

.

.

.

.

. 436

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 436

TopicSubscriber

.

.

.

.

.

.

.

.

.

.

.

.

. 440

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 440

XAConnection

.

.

.

.

.

.

.

.

.

.

.

.

. 441

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 441

XAConnectionFactory

.

.

.

.

.

.

.

.

.

. 443

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 443

XAQueueConnection

.

.

.

.

.

.

.

.

.

.

. 445

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 445

XAQueueConnectionFactory

.

.

.

.

.

.

.

. 446

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 446

XAQueueSession

.

.

.

.

.

.

.

.

.

.

.

. 448

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 448

XASession

.

.

.

.

.

.

.

.

.

.

.

.

.

. 449

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 449

XATopicConnection

.

.

.

.

.

.

.

.

.

.

. 451

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 451

XATopicConnectionFactory

.

.

.

.

.

.

.

.

. 452

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 452

XATopicSession

.

.

.

.

.

.

.

.

.

.

.

.

. 454

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 454

Part

4.

Appendixes

.

.

.

.

.

.

.

. 455

Appendix

A.

Mapping

between

administration

tool

properties

and

programmable

properties

.

.

.

.

.

. 457

Appendix

B.

Scripts

provided

with

WebSphere

MQ

classes

for

Java

Message

Service

.

.

.

.

.

.

.

.

.

. 461

Appendix

C.

LDAP

schema

definition

for

storing

Java

objects

.

.

.

.

.

.

. 463

Checking

your

LDAP

server

configuration

.

.

. 463

Attribute

definitions

.

.

.

.

.

.

.

.

.

.

. 464

objectClass

definitions

.

.

.

.

.

.

.

.

.

. 465

Server-specific

configuration

details

.

.

.

.

.

. 466

Netscape

Directory

(4.1

and

earlier)

.

.

.

.

. 466

Microsoft

Active

Directory

.

.

.

.

.

.

.

. 466

Sun

Microsystems’

schema

modification

applications

.

.

.

.

.

.

.

.

.

.

.

.

. 467

OS/400

V4R5

Schema

Modification

.

.

.

.

. 467

Appendix

D.

Connecting

to

other

products

.

.

.

.

.

.

.

.

.

.

.

.

. 469

Setting

up

a

publish/subscribe

broker

.

.

.

.

. 469

Transformation

and

routing

with

WebSphere

MQ

Integrator

V2

.

.

.

.

.

.

.

.

.

.

.

.

. 471

Configuring

WebSphere

MQ

JMS

for

a

direct

connection

to

WebSphere

Business

Integration

Event

Broker

Version

5.0

and

WebSphere

Business

Integration

Message

Broker

Version

5.0

.

.

.

.

. 472

Secure

Sockets

Layer

(SSL)

authentication

.

.

. 472

Multicast

.

.

.

.

.

.

.

.

.

.

.

.

.

. 473

HTTP

tunnelling

.

.

.

.

.

.

.

.

.

.

. 473

Connect

via

proxy

.

.

.

.

.

.

.

.

.

.

. 473

Appendix

E.

JMS

JTA/XA

interface

with

WebSphere

Application

Server

V4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 475

Using

the

JMS

interface

with

WebSphere

Application

Server

.

.

.

.

.

.

.

.

.

.

. 475

Administered

objects

.

.

.

.

.

.

.

.

.

. 475

Container-managed

versus

bean-managed

transactions

.

.

.

.

.

.

.

.

.

.

.

.

. 476

Two-phase

commit

versus

one-phase

optimization

.

.

.

.

.

.

.

.

.

.

.

.

. 476

Defining

administered

objects

.

.

.

.

.

.

. 476

Retrieving

administration

objects

.

.

.

.

.

. 476

Samples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 476

Sample1

.

.

.

.

.

.

.

.

.

.

.

.

.

. 477

Sample2

.

.

.

.

.

.

.

.

.

.

.

.

.

. 478

Sample3

.

.

.

.

.

.

.

.

.

.

.

.

.

. 478

Appendix

F.

Using

WebSphere

MQ

Java

in

applets

with

Java

1.2

or

later

. 481

Changing

browser

security

settings

.

.

.

.

.

. 481

Copying

package

class

files

.

.

.

.

.

.

.

.

. 482

Appendix

G.

Information

for

SupportPac

MA1G

.

.

.

.

.

.

.

.

. 483

Environments

supported

by

SupportPac

MA1G

483

Obtaining

and

installing

SupportPac

MA1G

.

.

. 483

Verifying

installation

using

the

sample

program

484

Features

not

provided

by

SupportPac

MA1G

.

.

. 484

Running

WebSphere

MQ

base

Java

applications

under

CICS

Transaction

Server

for

OS/390

.

.

. 485

Restrictions

under

CICS

Transaction

Server

.

.

. 485

Appendix

H.

SSL

CipherSuites

supported

by

WebSphere

MQ

.

.

.

. 487

Appendix

I.

JMS

exception

messages

489

Appendix

J.

Notices

.

.

.

.

.

.

.

. 505

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 506

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 509

Sending

your

comments

to

IBM

.

.

. 517

Contents

vii

||

||

|
||

|

|

|

|

|

|

|

|

|

|

|

|

|

viii

Using

Java

Figures

1.

WebSphere

MQ

classes

for

Java

example

applet

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

2.

WebSphere

MQ

classes

for

Java

example

application

.

.

.

.

.

.

.

.

.

.

.

.

. 73

3.

WebSphere

MQ

classes

for

Java

Message

Service

topic

name

hierarchy

.

.

.

.

.

. 221

4.

How

messages

are

transformed

between

JMS

and

WebSphere

MQ

using

the

MQRFH2

header

.

.

.

.

.

.

.

.

.

.

.

.

.

. 261

5.

How

JMS

messages

are

transformed

to

WebSphere

MQ

messages

(no

MQRFH2

header)

.

.

.

.

.

.

.

.

.

.

.

.

. 273

6.

ServerSessionPool

and

ServerSession

functionality

.

.

.

.

.

.

.

.

.

.

.

. 284

7.

WebSphere

MQ

Integrator

message

flow

470

©

Copyright

IBM

Corp.

1997,

2004

ix

x

Using

Java

Tables

1.

Platforms

and

connection

modes

.

.

.

.

.

. 5

2.

Product

installation

directories

.

.

.

.

.

. 10

3.

Samples

directories

.

.

.

.

.

.

.

.

.

. 10

4.

Sample

CLASSPATH

statements

for

the

product

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

5.

Environment

variables

for

the

product

.

.

. 12

6.

Classes

that

are

tested

by

IVT

.

.

.

.

.

. 34

7.

Administration

verbs

.

.

.

.

.

.

.

.

. 44

8.

Syntax

and

description

of

commands

used

to

manipulate

subcontexts

.

.

.

.

.

.

.

. 45

9.

The

JMS

object

types

that

are

handled

by

the

administration

tool

.

.

.

.

.

.

.

.

.

. 46

10.

Syntax

and

description

of

commands

used

to

manipulate

administered

objects

.

.

.

.

. 47

11.

Property

names

and

valid

values

.

.

.

.

. 49

12.

The

valid

combinations

of

property

and

object

type

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

13.

Character

set

identifiers

.

.

.

.

.

.

.

. 127

14.

Set

methods

on

MQQueueConnectionFactory

202

15.

Property

names

for

queue

and

topic

URIs

205

16.

Symbolic

values

for

queue

properties

206

17.

The

JMS

1.1

domain

independent

interfaces

235

18.

Possible

values

for

NameValueCCSID

field

263

19.

MQRFH2

folders

and

properties

used

by

JMS

263

20.

Property

datatype

values

and

definitions

264

21.

JMS

header

fields

mapping

to

MQMD

fields

265

22.

JMS

properties

mapping

to

MQMD

fields

266

23.

JMS

provider

specific

properties

mapping

to

MQMD

fields

.

.

.

.

.

.

.

.

.

.

. 266

24.

Outgoing

message

field

mapping

.

.

.

.

. 267

25.

Outgoing

message

JMS

property

mapping

267

26.

Outgoing

message

JMS

provider

specific

property

mapping

.

.

.

.

.

.

.

.

.

. 267

27.

Incoming

message

JMS

header

field

mapping

272

28.

Incoming

message

property

mapping

272

29.

Incoming

message

provider

specific

JMS

property

mapping

.

.

.

.

.

.

.

.

.

. 272

30.

Load1

parameters

and

defaults

.

.

.

.

. 288

31.

ASFClient1

parameters

and

defaults

.

.

.

. 289

32.

TopicLoad

parameters

and

defaults

.

.

.

. 291

33.

ASFClient3

parameters

and

defaults

.

.

.

. 292

34.

Summary

of

interfaces

in

package

javax.jms

295

35.

Summary

of

classes

in

package

javax.jms

297

36.

Summary

of

classes

in

package

com.ibm.mq.jms

.

.

.

.

.

.

.

.

.

. 298

37.

Summary

of

classes

in

package

com.ibm.jms

299

38.

Comparison

of

representations

of

property

values

within

the

administration

tool

and

within

programs

.

.

.

.

.

.

.

.

.

. 457

39.

Utilities

supplied

with

WebSphere

MQ

classes

for

Java

Message

Service

.

.

.

.

.

.

.

. 461

40.

Attribute

settings

for

javaCodebase

.

.

.

. 464

41.

Attribute

settings

for

javaClassName

464

42.

Attribute

settings

for

javaClassNames

464

43.

Attribute

settings

for

javaFactory

.

.

.

.

. 465

44.

Attribute

settings

for

javaReferenceAddress

465

45.

Attribute

settings

for

javaSerializedData

465

46.

objectClass

definition

for

javaSerializedObject

465

47.

objectClass

definition

for

javaObject

.

.

.

. 466

48.

objectClass

definition

for

javaContainer

466

49.

objectClass

definition

for

javaNamingReference

.

.

.

.

.

.

.

.

. 466

50.

CipherSpecs

and

matching

CipherSuites

487

©

Copyright

IBM

Corp.

1997,

2004

xi

|
||

|

||

xii

Using

Java

About

this

book

This

book

describes:

v

WebSphere®

MQ

classes

for

Java™,

which

can

be

used

to

access

WebSphere

MQ

systems

v

WebSphere

MQ

classes

for

Java

Message

Service,

which

can

be

used

to

access

both

Java

Message

Service

(JMS)

and

WebSphere

MQ

applications

Note:

Consult

the

README

file

for

information

that

expands

and

corrects

information

in

this

book.

The

README

file

is

installed

with

the

WebSphere

MQ

Java

code

and

can

be

found

in

the

doc

subdirectory.

Who

this

book

is

for

This

information

is

written

for

programmers

who

are

familiar

with

the

procedural

WebSphere

MQ

application

programming

interface

as

described

in

the

WebSphere

MQ

Application

Programming

Guide.

It

shows

how

to

transfer

this

knowledge

to

become

productive

with

the

WebSphere

MQ

Java

programming

interfaces.

What

you

need

to

know

to

understand

this

book

You

need:

v

Knowledge

of

the

Java

programming

language

v

Understanding

of

the

purpose

of

the

message

queue

interface

(MQI)

as

described

in

the

WebSphere

MQ

Application

Programming

Guide

and

the

chapter

about

Call

Descriptions

in

the

WebSphere

MQ

Application

Programming

Reference

v

Experience

of

WebSphere

MQ

programs

in

general,

or

familiarity

with

the

content

of

the

other

WebSphere

MQ

publications

Users

intending

to

use

the

WebSphere

MQ

base

Java

with

CICS®

Transaction

Server

for

OS/390®

also

need

to

be

familiar

with:

v

Customer

Information

Control

System

(CICS)

concepts

v

Using

the

CICS

Java

Application

Programming

Interface

(API)

v

Running

Java

programs

from

within

CICS

Users

intending

to

use

VisualAge®

for

Java

to

develop

OS/390

UNIX®

System

Services

High

Performance

Java

(HPJ)

applications

should

be

familiar

with

the

Enterprise

Toolkit

for

OS/390

(supplied

with

VisualAge

for

Java

Enterprise

Edition

for

OS/390,

Version

2).

How

to

use

this

book

Part

1

of

this

book

tells

you

how

to

use

WebSphere

MQ

base

Java

and

WebSphere

MQ

JMS;

Part

2

helps

programmers

wanting

to

use

WebSphere

MQ

base

Java;

Part

3

helps

programmers

wanting

to

use

WebSphere

MQ

JMS.

First,

read

the

chapters

in

Part

1

that

introduce

you

to

WebSphere

MQ

base

Java

and

WebSphere

MQ

JMS.

Then

use

the

programming

guidance

in

Part

2

or

3

to

understand

how

to

use

the

classes

to

send

and

receive

WebSphere

MQ

messages

in

the

environment

you

want

to

use.

©

Copyright

IBM

Corp.

1997,

2004

xiii

Remember

to

check

the

README

file

installed

with

the

WebSphere

MQ

Java

code

for

later

or

more

specific

information

for

your

environment.

Terms

used

in

this

book

The

term

WebSphere

MQ

base

Java

means

WebSphere

MQ

classes

for

Java.

The

term

WebSphere

MQ

JMS

means

WebSphere

MQ

classes

for

Java

Message

Service.

The

term

WebSphere

MQ

Java

means

WebSphere

MQ

classes

for

Java

and

WebSphere

MQ

classes

for

Java

Message

Service

combined.

The

term

Version

5.3

products

means:

v

WebSphere

MQ

for

AIX®,

Version

5.3

v

WebSphere

MQ

for

HP-UX,

Version

5.3

v

WebSphere

MQ

for

iSeries™,

Version

5.3

v

WebSphere

MQ

for

Linux

for

Intel™,

Version

5.3

v

WebSphere

MQ

for

Linux

for

zSeries™,

Version

5.3

v

WebSphere

MQ

for

Sun

Solaris,

Version

5.3

v

WebSphere

MQ

for

Windows®,

Version

5.3

v

WebSphere

MQ

for

z/OS®,

Version

5.3

The

term

WebSphere

MQ

for

UNIX

systems

means:

v

WebSphere

MQ

for

AIX

v

WebSphere

MQ

for

HP-UX

v

WebSphere

MQ

for

Linux

for

Intel

v

WebSphere

MQ

for

Linux

for

zSeries

v

WebSphere

MQ

for

Sun

Solaris

UNIX

systems

is

also

used

as

a

general

term

for

the

UNIX

platforms.

The

term

WebSphere

MQ

for

Windows

systems

means

WebSphere

MQ

running

on

the

following

Windows

platforms:

v

Windows

NT®

v

Windows

2000

v

Windows

XP

Windows

systems,

or

just

Windows,

is

also

used

as

a

general

term

for

these

Windows

platforms.

How

to

use

this

book

xiv

Using

Java

Summary

of

changes

This

section

describes

changes

in

this

edition

of

WebSphere

MQ

Using

Java.

Changes

since

the

previous

edition

of

the

book

are

marked

by

vertical

lines

to

the

left

of

the

changes.

Changes

for

this

edition

(SC34–6066–02)

This

edition

includes

documentation

to

support

the

following

new

function:

v

An

implementation

of

Version

1.1

of

the

JMS

API

specification

v

Direct

connection

to

a

WebSphere

Business

Integration

Event

Broker

or

WebSphere

Business

Integration

Message

Broker

broker

using:

–

SSL

authentication

–

Multicast

–

HTTP

tunnelling

–

Connect

via

proxy
v

Connecting

to

a

WebSphere

MQ

queue

manager

through

a

firewall

v

Sparse

subscriptions

v

Message

selection

by

the

broker

v

User

defined

prefixes

for

WebSphere

MQ

dynamic

queues

v

Configuring

a

connection

pool

for

an

MQSimpleConnectionManager

object

in

WebSphere

MQ

classes

for

Java

This

edition

also

contains

various

editorial

improvements,

clarifications,

and

corrections.

Changes

for

the

second

edition

(SC34-6066-01)

This

edition

includes

the

following

changes:

v

A

section

listing

JMS

exception

messages.

See

Appendix

I,

“JMS

exception

messages,”

on

page

489.

v

Miscellaneous

corrections

and

clarifications.

Changes

for

the

first

edition

(SC34-6066-00)

This

edition

includes

the

following

changes:

v

Changes

for

–

Integration

with

the

WebSphere

MQ

product

–

JMS

Postcard

–

Secure

Sockets

Layer

(SSL)

support
v

Miscellaneous

corrections

and

clarifications.

©

Copyright

IBM

Corp.

1997,

2004

xv

|

|

|

|
|

|

|

|

|

|

|

|

|

|
|

|
|

|

Changes

xvi

Using

Java

Part

1.

Guidance

for

users

Chapter

1.

Getting

started

.

.

.

.

.

.

.

.

. 3

What

are

WebSphere

MQ

classes

for

Java?

.

.

.

. 3

What

are

WebSphere

MQ

classes

for

Java

Message

Service?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Who

should

use

WebSphere

MQ

Java?

.

.

.

.

.

. 4

Connection

options

.

.

.

.

.

.

.

.

.

.

.

. 4

Client

connection

.

.

.

.

.

.

.

.

.

.

.

. 5

Bindings

connection

.

.

.

.

.

.

.

.

.

.

. 5

Prerequisites

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

Chapter

2.

Installation

.

.

.

.

.

.

.

.

.

.

. 9

What

is

installed

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Installation

directories

.

.

.

.

.

.

.

.

.

. 10

Environment

variables

.

.

.

.

.

.

.

.

.

. 10

STEPLIB

configuration

on

z/OS

and

OS/390

.

. 12

Web

server

configuration

.

.

.

.

.

.

.

.

.

. 12

Running

WebSphere

MQ

Java

applications

under

the

Java

2

Security

Manager

.

.

.

.

.

.

.

.

. 13

Chapter

3.

Using

WebSphere

MQ

classes

for

Java

(WebSphere

MQ

base

Java)

.

.

.

.

.

. 15

Configuring

your

queue

manager

to

accept

client

connections

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

TCP/IP

client

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Verifying

with

the

sample

application

.

.

.

.

. 16

Running

your

own

WebSphere

MQ

base

Java

programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 17

Solving

WebSphere

MQ

base

Java

problems

.

.

. 17

Tracing

the

sample

application

.

.

.

.

.

.

. 17

Error

messages

.

.

.

.

.

.

.

.

.

.

.

. 18

Chapter

4.

Using

WebSphere

MQ

classes

for

Java

Message

Service

(WebSphere

MQ

JMS)

.

. 19

JMS

Postcard

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Setting

up

JMS

Postcard

.

.

.

.

.

.

.

.

. 19

Starting

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Sign-on

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

Sign-on

advanced

options

.

.

.

.

.

.

. 20

Sending

a

postcard

.

.

.

.

.

.

.

.

.

.

. 20

Running

JMS

Postcard

with

one

queue

manager

.

.

.

.

.

.

.

.

.

.

.

.

. 20

Running

JMS

Postcard

with

two

queue

managers

.

.

.

.

.

.

.

.

.

.

.

.

. 21

JMS

Postcard

configuration

.

.

.

.

.

.

.

. 22

JMS

Postcard

default

configuration

.

.

.

. 22

How

JMS

Postcard

works

.

.

.

.

.

.

.

. 22

Starting

up

.

.

.

.

.

.

.

.

.

.

.

. 22

Receiving

messages

.

.

.

.

.

.

.

.

.

. 23

Sending

messages

.

.

.

.

.

.

.

.

.

. 23

How

the

postcards

get

there

.

.

.

.

.

.

. 23

Tidying

up

undeliverable

messages

.

.

.

. 24

Exchanging

messages

between

different

WebSphere

MQ

Postcard

applications

.

.

. 24

Customizing

JMS

Postcard

.

.

.

.

.

.

. 24

Post

installation

setup

.

.

.

.

.

.

.

.

.

.

. 25

Additional

setup

for

publish/subscribe

mode

.

. 26

For

a

broker

running

on

a

remote

queue

manager

.

.

.

.

.

.

.

.

.

.

.

.

. 28

Queues

that

require

authorization

for

non-privileged

users

.

.

.

.

.

.

.

.

.

. 29

Using

the

sample

JMS

applet

to

verify

the

TCP/IP

client

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

Using

the

sample

applet

with

OS/400

.

.

.

. 30

Running

the

sample

applet

.

.

.

.

.

.

.

. 30

Tracing

the

sample

as

an

application

.

.

.

. 31

Running

the

point-to-point

IVT

.

.

.

.

.

.

.

. 31

Point-to-point

verification

without

JNDI

.

.

.

. 31

Point-to-point

verification

with

JNDI

.

.

.

.

. 32

IVT

error

recovery

.

.

.

.

.

.

.

.

.

.

. 34

The

publish/subscribe

installation

verification

test

35

Publish/subscribe

verification

without

JNDI

.

. 35

Publish/subscribe

verification

with

JNDI

.

.

. 36

PSIVT

error

recovery

.

.

.

.

.

.

.

.

.

. 37

Running

your

own

WebSphere

MQ

JMS

programs

38

Solving

problems

.

.

.

.

.

.

.

.

.

.

.

. 38

Tracing

programs

.

.

.

.

.

.

.

.

.

.

. 38

Logging

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

Chapter

5.

Using

the

WebSphere

MQ

JMS

administration

tool

.

.

.

.

.

.

.

.

.

.

. 41

Invoking

the

administration

tool

.

.

.

.

.

.

. 41

Configuration

.

.

.

.

.

.

.

.

.

.

.

.

. 42

Using

an

unlisted

InitialContextFactory

.

.

.

. 43

Security

.

.

.

.

.

.

.

.

.

.

.

.

.

. 43

Configuring

for

WebSphere

Application

Server

V3.5

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 44

Administration

commands

.

.

.

.

.

.

.

.

. 44

Manipulating

subcontexts

.

.

.

.

.

.

.

.

. 45

Administering

JMS

objects

.

.

.

.

.

.

.

.

. 45

Object

types

.

.

.

.

.

.

.

.

.

.

.

.

. 45

Verbs

used

with

JMS

objects

.

.

.

.

.

.

.

. 47

Creating

objects

.

.

.

.

.

.

.

.

.

.

.

. 48

LDAP

naming

considerations

.

.

.

.

.

. 48

Properties

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Property

dependencies

.

.

.

.

.

.

.

.

. 56

The

ENCODING

property

.

.

.

.

.

.

.

. 57

SSL

properties

.

.

.

.

.

.

.

.

.

.

.

. 58

Sample

error

conditions

.

.

.

.

.

.

.

.

. 59

©

Copyright

IBM

Corp.

1997,

2004

1

2

Using

Java

Chapter

1.

Getting

started

This

chapter

gives

an

overview

of

WebSphere

MQ

classes

for

Java

and

WebSphere

MQ

classes

for

Java

Message

Service

and

their

uses.

What

are

WebSphere

MQ

classes

for

Java?

WebSphere

MQ

classes

for

Java

(also

referred

to

as

WebSphere

MQ

base

Java)

allow

a

program

written

in

the

Java

programming

language

to:

v

Connect

to

WebSphere

MQ

as

a

WebSphere

MQ

client

v

Connect

directly

to

a

WebSphere

MQ

server

WebSphere

MQ

base

Java

enables

Java

applets,

applications,

and

servlets

to

issue

calls

and

queries

to

WebSphere

MQ.

This

gives

access

to

mainframe

and

legacy

applications,

typically

over

the

Internet,

without

necessarily

having

any

other

WebSphere

MQ

code

on

the

client

machine.

With

WebSphere

MQ

base

Java,

Internet

users

can

become

true

participants

in

transactions,

rather

than

just

givers

and

receivers

of

information.

What

are

WebSphere

MQ

classes

for

Java

Message

Service?

WebSphere

MQ

classes

for

Java

Message

Service

(also

referred

to

as

WebSphere

MQ

JMS)

is

a

set

of

Java

classes

that

implement

Sun’s

Java

Message

Service

(JMS)

interfaces

to

enable

JMS

programs

to

access

WebSphere

MQ

systems.

This

book

describes

an

implementation

of

Version

1.1

of

the

JMS

API

specification,

which

is

backwards

compatible

with

Version

1.0.2b.

Any

features

of

the

implementation

that

apply

only

to

Version

1.1

of

the

specification,

and

not

to

Version

1.0.2b,

are

clearly

marked.

Both

the

point-to-point

and

publish/subscribe

models

of

JMS

are

supported.

Using

WebSphere

MQ

JMS

as

the

API

to

write

WebSphere

MQ

applications

has

a

number

of

benefits.

Some

advantages

derive

from

JMS

being

an

open

standard

with

multiple

implementations.

Other

advantages

come

from

additional

features

that

are

present

in

WebSphere

MQ

JMS,

but

not

in

WebSphere

MQ

base

Java.

Benefits

arising

from

the

use

of

an

open

standard

include:

v

The

protection

of

investment,

both

in

skills

and

application

code

v

The

availability

of

people

skilled

in

JMS

application

programming

v

The

ability

to

plug

in

different

JMS

implementations

to

fit

different

requirements

Sun’s

Web

site

at

http://java.sun.com

provides

more

information

about

the

benefits

of

the

JMS

API.

The

extra

function

provided

over

WebSphere

MQ

base

Java

includes:

v

Asynchronous

message

delivery.

Messages

can

be

delivered

to

an

application

as

they

arrive,

on

a

separate

thread.

v

Message

selectors.

v

Support

for

publish/subscribe

messaging.

v

Structured,

more

abstract,

message

classes.

Implementation

details

are

left

to

the

JMS

provider.

©

Copyright

IBM

Corp.

1997,

2004

3

|
|
|
|
|

Who

should

use

WebSphere

MQ

Java?

If

your

enterprise

fits

any

of

the

following

scenarios,

you

can

gain

significant

advantage

by

using

WebSphere

MQ

classes

for

Java

and

WebSphere

MQ

classes

for

Java

Message

Service:

v

A

medium

or

large

enterprise

that

is

introducing

intranet-based

client/server

solutions.

Here,

Internet

technology

provides

low

cost

easy

access

to

global

communications;

WebSphere

MQ

connectivity

provides

high

integrity

with

assured

delivery

and

time

independence.

v

A

medium

or

large

enterprise

with

a

need

for

reliable

business-to-business

communications

with

partner

enterprises.

Here

again,

the

Internet

provides

low-cost

easy

access

to

global

communications;

WebSphere

MQ

connectivity

provides

high

integrity

with

assured

delivery

and

time

independence.

v

A

medium

or

large

enterprise

that

wants

to

provide

access

from

the

public

Internet

to

some

of

its

enterprise

applications.

Here,

the

Internet

provides

global

reach

at

a

low

cost;

WebSphere

MQ

connectivity

provides

high

integrity

through

the

queuing

paradigm.

In

addition

to

low

cost,

the

business

can

achieve

improved

customer

satisfaction

through

24

hour

a

day

availability,

fast

response,

and

improved

accuracy.

v

An

Internet

Service

provider,

or

other

Value

Added

Network

provider.

These

companies

can

exploit

the

low

cost

and

easy

communications

provided

by

the

Internet.

They

can

also

add

value

with

the

high

integrity

provided

by

WebSphere

MQ

connectivity.

An

Internet

Service

provider

that

exploits

WebSphere

MQ

can

immediately

acknowledge

receipt

of

input

data

from

a

Web

browser,

guarantee

delivery,

and

provide

an

easy

way

for

the

user

of

the

Web

browser

to

monitor

the

status

of

the

message.

WebSphere

MQ

and

WebSphere

MQ

classes

for

Java

Message

Service

provide

an

excellent

infrastructure

to

access

enterprise

applications

and

develop

complex

Web

applications.

A

service

request

from

a

Web

browser

can

be

queued

then

processed

when

possible,

allowing

a

timely

response

to

be

sent

to

the

end

user,

regardless

of

system

loading.

By

placing

this

queue

close

to

the

user

in

network

terms,

the

load

on

the

network

does

not

impact

the

timeliness

of

the

response.

Also,

the

transactional

nature

of

WebSphere

MQ

messaging

means

that

a

simple

request

from

the

browser

can

be

expanded

safely

into

a

sequence

of

individual

back

end

processes

in

a

transactional

manner.

WebSphere

MQ

classes

for

Java

also

enables

application

developers

to

exploit

the

power

of

the

Java

programming

language

to

create

applets

and

applications

that

can

run

on

any

platform

that

supports

the

Java

runtime

environment.

These

factors

combine

to

reduce

the

development

time

for

multi-platform

WebSphere

MQ

applications

significantly.

Also,

if

there

are

enhancements

to

applets

in

the

future,

end

users

automatically

pick

these

up

as

the

applet

code

is

downloaded.

Connection

options

Programmable

options

allow

WebSphere

MQ

Java

to

connect

to

WebSphere

MQ

in

either

of

the

following

ways:

v

As

a

WebSphere

MQ

client

using

Transmission

Control

Protocol/Internet

Protocol

(TCP/IP)

v

In

bindings

mode,

connecting

directly

to

WebSphere

MQ

Table

1

on

page

5

shows

which

of

these

connection

modes

can

be

used

for

each

platform.

Who

should

use

WebSphere

MQ

Java

4

Using

Java

In

addition,

WebSphere

MQ

JMS

publish/subscribe

applications

can

connect

directly

across

TCP/IP

to

the

IBM®

WebSphere

MQ

Event

Broker

program.

For

more

information

about

this

connection

see

Chapter

11,

“Writing

WebSphere

MQ

JMS

publish/subscribe

applications,”

on

page

213.

Table

1.

Platforms

and

connection

modes

Server

platform

Client

Bindings

Windows

NT

yes

yes

Windows

2000

yes

yes

Windows

XP

yes

yes

AIX

yes

yes

Solaris

(v2.6,

v2.8,

V7,

or

SunOS

v5.6,

v5.7)

yes

yes

OS/400®

yes

yes

HP-UX

yes

yes

OS/390

and

z/OS

no

yes

Linux

on

Intel

yes

yes

Linux

on

zSeries

yes

no

Notes:

1.

HP-UX

Java

bindings

support

is

available

only

for

HP-UXv11

systems

running

the

POSIX

draft

10

pthreaded

version

of

WebSphere

MQ.

2.

On

Linux

on

zSeries,

only

TCP/IP

client

connectivity

is

supported.

The

following

sections

describe

these

options

in

more

detail.

Client

connection

To

use

WebSphere

MQ

Java

as

a

WebSphere

MQ

client,

you

can

install

it

either

on

the

WebSphere

MQ

server

machine,

which

may

also

contain

a

Web

server,

or

on

a

separate

machine.

If

you

install

WebSphere

MQ

Java

on

the

same

machine

as

a

Web

server,

you

can

download

and

run

WebSphere

MQ

client

applications

on

machines

that

do

not

have

WebSphere

MQ

Java

installed

locally.

Wherever

you

choose

to

install

the

client,

you

can

run

it

in

three

different

modes:

From

within

any

Java-enabled

Web

browser

In

this

mode,

the

locations

of

the

WebSphere

MQ

queue

managers

that

can

be

accessed

are

constrained

by

the

security

restrictions

of

the

browser

that

is

used.

Using

an

appletviewer

To

use

this

method,

you

must

have

the

Java

Development

Kit

(JDK™)

or

Java

Runtime

Environment

(JRE)

installed

on

the

client

machine.

As

a

standalone

Java

program

or

in

a

Web

application

server

To

use

this

method,

you

must

have

the

Java

Development

Kit

(JDK)

or

Java

Runtime

Environment

(JRE)

installed

on

the

client

machine.

Bindings

connection

When

used

in

bindings

mode,

WebSphere

MQ

Java

uses

the

Java

Native

Interface

(JNI)

to

call

directly

into

the

existing

queue

manager

API,

rather

than

communicating

through

a

network.

This

provides

better

performance

for

Connections

Chapter

1.

Getting

started

5

WebSphere

MQ

applications

than

using

network

connections.

Unlike

the

client

mode,

applications

that

are

written

using

the

bindings

mode

cannot

be

downloaded

as

applets.

To

use

the

bindings

connection,

you

must

install

WebSphere

MQ

Java

on

the

WebSphere

MQ

server.

Prerequisites

To

run

WebSphere

MQ

base

Java,

you

need

the

following

software:

v

WebSphere

MQ

for

the

server

platform

you

want

to

use.

v

Java

Development

Kit

(JDK)

for

the

server

platform.

v

Java

Development

Kit,

Java

Runtime

Environment

(JRE),

or

Java-enabled

Web

browser

for

client

platforms.

(See

“Client

connection”

on

page

5.)

v

For

z/OS

and

OS/390,

OS/390

Version

2

Release

9

or

higher,

or

z/OS,

with

UNIX

System

Services

(USS).

v

For

OS/400,

the

iSeries

Developer

Kit

for

Java,

5769-JV1,

and

the

Qshell

Interpreter,

OS/400

(5769-SS1)

Option

30.

The

following

list

shows

the

supported

Java

2

Software

Development

Kits

and

Java

Runtime

Environments:

v

IBM

Developer

Kit

for

AIX,

Java

Technology

Edition,

Version

1.3.1

v

IBM

Developer

Kit

for

Linux,

Java

Technology

Edition,

Version

1.3.1

v

IBM

Developer

Kit

for

OS/390,

Java

Technology

Edition,

Version

1.3.1

v

IBM

Developer

Kit

for

Windows,

Java

Technology

Edition,

Version

1.3.0

v

IBM

iSeries

Developer

Kit

for

Java,

Version

1.3

v

HP-UX

SDK,

for

the

Java

platform,

Version

1.3.1

v

Java

2

Standard

Edition,

for

the

Solaris

Operating

Environment,

SDK

1.3.1

To

fully

support

Secure

Socket

Layer

(SSL)

authentication,

you

need

a

Java

Runtime

Environment

at

Version

1.4.0

for

your

platform.

SSL

support

enables

WebSphere

MQ

Java

and

Java

Message

Service

(JMS)

applications

to

benefit

from

secure

connection

to

the

queue

manager,

providing

authentication,

message

integrity,

and

data

encryption.

Check

the

README

file

for

the

latest

information

about

operating

system

levels

this

product

has

been

tested

against.

To

use

the

WebSphere

MQ

JMS

administration

tool

(see

Chapter

5,

“Using

the

WebSphere

MQ

JMS

administration

tool,”

on

page

41),

you

need

one

of

the

following

service

provider

packages,

supplied

with

WebSphere

MQ:

v

Lightweight

Directory

Access

Protocol

(LDAP)

-

ldap.jar,

providerutil.jar.

v

File

system

-

fscontext.jar,

providerutil.jar.

These

packages

provide

the

Java

Naming

and

Directory

Service

(JNDI)

service.

This

is

the

resource

that

stores

physical

representations

of

the

administered

objects.

Users

of

WebSphere

MQ

JMS

probably

use

an

LDAP

server

for

this

purpose,

but

the

tool

also

supports

the

use

of

the

file

system

context

service

provider.

If

you

use

an

LDAP

server,

configure

it

to

store

JMS

objects.

For

information

to

assist

with

this

configuration,

refer

to

Appendix

C,

“LDAP

schema

definition

for

storing

Java

objects,”

on

page

463.

To

use

publish/subscribe

applications,

you

need

one

of

the

following:

v

SupportPac™

MA0C:

MQSeries®

Publish/Subscribe.

You

can

find

this

at:

Connections

6

Using

Java

www.ibm.com/software/ts/mqseries/txppacs/ma0c.html

v

WebSphere

MQ

Integrator

Version

2

v

WebSphere

MQ

Event

Broker

Version

2.1

v

WebSphere

Business

Integration

Message

Broker

Version

5.0

v

WebSphere

Business

Integration

Event

Broker

Version

5.0

To

use

the

XOpen/XA

facilities

of

WebSphere

MQ

JMS

on

OS/400

you

need

a

specific

PTF.

Check

the

README

file

for

further

information.

Prerequisites

Chapter

1.

Getting

started

7

|

|

|

8

Using

Java

Chapter

2.

Installation

This

chapter

tells

you

how

to

install

the

WebSphere

MQ

classes

for

Java

and

WebSphere

MQ

classes

for

Java

Message

Service

code.

What

is

installed

The

latest

versions

of

both

WebSphere

MQ

base

Java

and

WebSphere

MQ

JMS

(together

known

as

WebSphere

MQ

Java)

are

installed

with

WebSphere

MQ.

You

might

need

to

override

default

installation

options

to

make

sure

this

is

done.

Refer

to

the

following

books

for

more

information

about

installing

WebSphere

MQ:

WebSphere

MQ

for

AIX,

V5.3

Quick

Beginnings

WebSphere

MQ

for

HP-UX,

V5.3

Quick

Beginnings

WebSphere

MQ

for

iSeries

V5.3

Quick

Beginnings

WebSphere

MQ

for

Linux,

V5.3

Quick

Beginnings

WebSphere

MQ

for

Sun

Solaris,

Version

5.3

Quick

Beginnings

WebSphere

MQ

for

Windows

NT

and

Windows

2000,

Version

5.3

Quick

Beginnings

WebSphere

MQ

for

z/OS

Program

Directory

WebSphere

MQ

base

Java

is

contained

in

the

following

Java

.jar

files:

com.ibm.mq.jar

This

code

includes

support

for

all

the

connection

options.

com.ibm.mqbind.jar

This

code

supports

only

the

bindings

connection

and

is

not

supplied

or

supported

on

all

platforms.

We

recommend

that

you

do

not

use

it

in

any

new

applications.

WebSphere

MQ

JMS

is

contained

in

the

following

Java

.jar

file:

com.ibm.mqjms.jar

The

following

Java

libraries

from

Sun

Microsystems

are

distributed

with

the

WebSphere

MQ

JMS

product:

connector.jar

Version

1.0

fscontext.jar

Version

1.2

jms.jar

Version

1.1

jndi.jar

Version

1.2.1

(except

for

z/OS

and

OS/390)

ldap.jar

Version

1.2.2

(except

for

z/OS

and

OS/390)

providerutil.jar

Version

1.2

jta.jar

Version

1.0.1

When

installation

is

complete,

files

and

samples

are

installed

in

the

locations

shown

in

“Installation

directories”

on

page

10.

We

also

supply

postcard.jar

for

the

Postcard

application;

see

“JMS

Postcard”

on

page

19.

©

Copyright

IBM

Corp.

1997,

2004

9

|

After

installation,

update

your

environment

variables,

as

shown

in

“Environment

variables.”

Note:

Do

not

install

the

product,

then

subsequently

install

or

reinstall

a

version

of

SupportPac

MA88,

or

your

WebSphere

MQ

Java

support

might

revert

to

an

earlier

level.

Installation

directories

The

WebSphere

MQ

Java

V5.3

files

are

installed

in

the

directories

shown

in

Table

2.

Table

2.

Product

installation

directories

Platform

Directory

AIX

/usr/mqm/java/

z/OS

and

OS/390

install_dir/mqm/java/

iSeries

and

AS/400®

/QIBM/ProdData/mqm/java/

HP-UX

and

Solaris

/opt/mqm/java/

Linux

/opt/mqm/java/

Windows

systems

\Program

Files\IBM\WebSphere

MQ\java

Note:

On

z/OS

and

OS/390,

install_dir

is

the

directory

in

which

you

installed

the

product;

this

is

likely

to

be

/usr/lpp.

Some

sample

programs,

such

as

the

Installation

Verification

Programs

(IVP),

are

supplied.

Table

3

lists

the

directory

path

to

these

on

different

platforms.

WebSphere

MQ

base

Java

samples

are

within

a

subdirectory

base

and

WebSphere

MQ

JMS

samples

are

within

a

subdirectory

jms.

Table

3.

Samples

directories

Platform

Directory

AIX

/usr/mqm/samp/java/

z/OS

and

OS/390

install_dir/mqm/java/samples/

iSeries

and

AS/400

/QIBM/ProdData/mqm/java/samples/

HP-UX

and

Solaris

/opt/mqm/samp/java/

Linux

/opt/mqm/samp/java/

Windows

systems

\Program

Files\IBM\WebSphere

MQ\tools\Java\

Note:

On

z/OS

and

OS/390,

install_dir

is

the

directory

in

which

you

installed

the

product;

this

is

likely

to

be

/usr/lpp.

Environment

variables

After

installation,

update

your

CLASSPATH

environment

variable

to

include

the

WebSphere

MQ

base

Java

code

and

samples

directories.

Table

4

on

page

11

shows

typical

CLASSPATH

settings

for

the

various

platforms.

WebSphere

MQ

Java

uses

other

environment

variables.

Some

are

platform

dependent

and

are

listed

in

Table

5

on

page

12.

MQ_JAVA_INSTALL_PATH

and

MQ_JAVA_DATA_PATH

are

common

across

platforms.

On

Windows

systems,

these

variables

are

automatically

set

by

the

installation

program,

but

on

other

platforms

you

need

to

set

them

manually

to

complete

installation.

What

is

installed

10

Using

Java

MQ_JAVA_INSTALL_PATH

points

to

the

product

installation

directory,

as

shown

in

Table

2

on

page

10.

MQ_JAVA_DATA_PATH

points

to

the

root

directory

for

logging

and

tracing,

and

is

included

so

that

you

can

use

the

same

directory

for

WebSphere

MQ

Java

and

the

base

WebSphere

MQ

product.

Table

4.

Sample

CLASSPATH

statements

for

the

product

Platform

Sample

CLASSPATH

AIX

CLASSPATH=/usr/mqm/java/lib/com.ibm.mq.jar:

/usr/mqm/java/lib/connector.jar:

/usr/mqm/samp/java/base:

HP-UX

and

Solaris

CLASSPATH=/opt/mqm/java/lib/com.ibm.mq.jar:

/opt/mqm/java/lib/connector.jar:

/opt/mqm/samp/java/base:

Windows

systems

CLASSPATH=mq_root_dir1\java\lib\com.ibm.mq.jar;

mq_root_dir\java\lib\connector.jar;

mq_root_dir\tools\java\base\;

mq_root_dir\java\lib\jta.jar;

z/OS

and

OS/390

CLASSPATH=install_dir2/mqm/java/lib/com.ibm.mq.jar:

install_dir/mqm/java/lib/connector.jar:

install_dir/mqm/java/samples/base:

iSeries

and

AS/400

CLASSPATH=/QIBM/ProdData/mqm/java/lib/com.ibm.mq.jar:

/QIBM/ProdData/mqm/java/lib/connector.jar:

/QIBM/ProdData/mqm/java/samples/base:

Linux

CLASSPATH=/opt/mqm/java/lib/com.ibm.mq.jar:

/opt/mqm/java/lib/connector.jar:

/opt/mqm/samp/java/base:

Notes:

1.

mq_root_dir

stands

here

for

the

directory

used

to

install

WebSphere

MQ

on

Windows

systems.

This

is

normally

C:\Program

Files\IBM\WebSphere

MQ\.

2.

install_dir

is

the

directory

in

which

you

installed

the

product

To

use

WebSphere

MQ

JMS,

you

must

include

additional

jar

files

in

the

classpath.

These

are

listed

in

“Post

installation

setup”

on

page

25.

If

there

are

existing

applications

with

a

dependency

on

the

deprecated

bindings

package

com.ibm.mqbind,

you

must

also

add

the

file

com.ibm.mqbind.jar

to

your

classpath.

You

must

update

additional

environment

variables

on

some

platforms,

as

shown

in

Table

5

on

page

12.

Installation

directories

Chapter

2.

Installation

11

Table

5.

Environment

variables

for

the

product

Platform

Environment

variable

AIX

LIBPATH=/usr/mqm/java/lib

HP-UX

SHLIB_PATH=/opt/mqm/java/lib

Solaris

LD_LIBRARY_PATH=/opt/mqm/java/lib

Windows

systems

PATH=install_dir\lib

z/OS

and

OS/390

LIBPATH=install_dir/mqm/java/lib

Linux

LD_LIBRARY_PATH=/opt/mqm/java/lib

Note:

install_dir

is

the

installation

directory

for

the

product

Notes:

1.

To

use

WebSphere

MQ

Bindings

for

Java

on

OS/400,

ensure

that

the

library

QMQMJAVA

is

in

your

library

list.

2.

Ensure

that

you

append

the

WebSphere

MQ

variables

and

do

not

overwrite

any

of

the

existing

system

environment

variables.

If

you

overwrite

existing

system

environment

variables,

the

application

might

fail

during

compilation

or

at

runtime.

STEPLIB

configuration

on

z/OS

and

OS/390

On

z/OS

and

OS/390,

the

STEPLIB

used

at

runtime

must

contain

the

WebSphere

MQ

SCSQAUTH

library.

From

UNIX

System

Services,

you

can

add

this

using

a

line

in

your

.profile

as

shown

below,

replacing

thlqual

with

the

high

level

data

set

qualifier

that

you

chose

when

installing

WebSphere

MQ:

export

STEPLIB=thlqual.SCSQAUTH:$STEPLIB

In

other

environments,

you

typically

need

to

edit

the

startup

JCL

to

include

SCSQAUTH

on

the

STEPLIB

concatenation:

STEPLIB

DD

DSN=thlqual.SCSQAUTH,DISP=SHR

Web

server

configuration

If

you

install

WebSphere

MQ

Java

on

a

Web

server,

you

can

download

and

run

WebSphere

MQ

Java

applications

on

machines

that

do

not

have

WebSphere

MQ

Java

installed

locally.

To

make

the

WebSphere

MQ

Java

files

accessible

to

your

Web

server,

set

up

your

Web

server

configuration

to

point

to

the

directory

where

the

client

is

installed.

Consult

your

Web

server

documentation

for

details

of

how

to

configure

this.

Note:

On

z/OS

and

OS/390,

the

installed

classes

do

not

support

client

connection

and

cannot

be

usefully

downloaded

to

clients.

However,

jar

files

from

another

platform

can

be

transferred

to

z/OS

and

OS/390

and

served

to

clients.

Installation

directories

12

Using

Java

|

Running

WebSphere

MQ

Java

applications

under

the

Java

2

Security

Manager

WebSphere

MQ

Java

can

run

with

the

Java

2

Security

Manager

enabled.

To

successfully

run

applications

with

the

Security

Manager

enabled,

you

must

configure

your

JVM

with

a

suitable

policy

definition

file.

The

simplest

way

to

do

this

is

to

change

the

policy

file

supplied

with

the

JRE.

On

most

systems

this

file

is

stored

in

the

path

lib/security/java.policy,

relative

to

your

JRE

directory.

You

can

edit

policy

files

using

your

preferred

editor

or

the

policytool

program

supplied

with

your

JRE.

You

need

to

give

authority

to

the

com.ibm.mq.jar

and

com.ibm.mqjms.jar

files

so

that

they

can:

v

Create

sockets

(in

client

mode)

v

Load

the

native

library

(in

bindings

mode)

v

Read

various

properties

from

the

environment

The

system

property

os.name

must

be

available

to

the

WebSphere

MQ

Java

classes

when

running

under

the

Java

2

Security

Manager.

Here

is

an

example

of

a

policy

file

entry

that

allows

WebSphere

MQ

Java

to

run

successfully

under

the

default

security

manager.

Replace

the

string

/opt/mqm

in

this

example

with

the

location

where

WebSphere

MQ

Java

is

installed

on

your

system.

grant

codeBase

"file:/opt/mqm/java/lib/com.ibm.mq.jar"

{

permission

java.net.SocketPermission

"*","connect";

permission

java.lang.RuntimePermission

"loadLibrary.*";

};

grant

codeBase

"file:/opt/mqm/java/lib/com.ibm.mqjms.jar"

{

permission

java.util.PropertyPermission

"MQJMS_LOG_DIR","read";

permission

java.util.PropertyPermission

"MQJMS_TRACE_LEVEL","read";

permission

java.util.PropertyPermission

"MQJMS_TRACE_DIR","read";

permission

java.util.PropertyPermission

"MQ_JAVA_INSTALL_PATH","read";

permission

java.util.PropertyPermission

"file.separator","read";

permission

java.util.PropertyPermission

"os.name","read";

permission

java.util.PropertyPermission

"user.name","read";

permission

java.util.PropertyPermission

"com.ibm.mq.jms.cleanup","read";

};

This

example

of

a

policy

file

enables

the

WebSphere

MQ

Java

classes

to

work

correctly

under

the

security

manager,

but

you

might

still

need

to

enable

your

own

code

to

run

correctly

before

your

applications

will

work.

The

sample

code

shipped

with

WebSphere

MQ

Java

has

not

been

specifically

enabled

for

use

with

the

security

manager;

however

the

IVT

tests

run

with

the

above

policy

file

and

the

default

security

manager

in

place.

Running

with

Java

2

Security

Manager

Chapter

2.

Installation

13

|
|

|

14

Using

Java

Chapter

3.

Using

WebSphere

MQ

classes

for

Java

(WebSphere

MQ

base

Java)

This

chapter

tells

you

how

to:

v

Configure

your

system

to

run

the

sample

applet

and

application

programs

to

verify

your

WebSphere

MQ

base

Java

installation.

v

Modify

the

procedures

to

run

your

own

programs.

Remember

to

check

the

README

file

installed

with

the

WebSphere

MQ

Java

code

for

later

or

more

specific

information

for

your

environment.

The

procedures

depend

on

the

connection

option

you

want

to

use.

Follow

the

instructions

in

the

section

that

is

appropriate

for

your

requirements.

Configuring

your

queue

manager

to

accept

client

connections

Use

the

following

procedures

to

configure

your

queue

manager

to

accept

incoming

connection

requests

from

the

clients.

TCP/IP

client

1.

Define

a

server

connection

channel

using

the

following

procedures:

For

the

OS/400

platform:

a.

Start

your

queue

manager

by

using

the

STRMQM

command.

b.

Define

a

sample

channel

called

JAVA.CHANNEL

by

issuing

the

following

command:

CRTMQMCHL

CHLNAME(JAVA.CHANNEL)

CHLTYPE(*SVRCN)

MQMNAME(QMGRNAME)

MCAUSERID(SOMEUSERID)

TEXT(’Sample

channel

for

WebSphere

MQ

classes

for

Java’)

where

QMGRNAME

is

the

name

of

your

queue

manager,

and

SOMEUSERID

is

an

OS/400

user

ID

with

appropriate

authority

to

the

WebSphere

MQ

resources.

For

z/OS

or

OS/390

platforms:

Note:

You

must

have

the

Client

attachment

feature

installed

on

your

target

queue

manager

in

order

to

connect

using

TCP/IP.

a.

Start

your

queue

manager

by

using

the

START

QMGR

command.

b.

Define

a

sample

channel

called

JAVA.CHANNEL

by

issuing

the

following

command:

DEF

CHL(’JAVA.CHANNEL’)

CHLTYPE(SVRCONN)

TRPTYPE(TCP)

DESCR(’Sample

channel

for

WebSphere

MQ

classes

for

Java’)

For

other

platforms:

a.

Start

your

queue

manager

by

using

the

strmqm

command.

b.

Type

the

following

command

to

start

the

runmqsc

program:

runmqsc

[QMNAME]

c.

Define

a

sample

channel

called

JAVA.CHANNEL

by

issuing

the

following

command:

©

Copyright

IBM

Corp.

1997,

2004

15

DEF

CHL(’JAVA.CHANNEL’)

CHLTYPE(SVRCONN)

TRPTYPE(TCP)

MCAUSER(’

’)

+

DESCR(’Sample

channel

for

WebSphere

MQ

classes

for

Java’)

2.

Start

a

listener

program

with

the

following

commands:

For

Windows

NT,

Windows

2000

operating

systems:

Issue

the

command:

runmqlsr

-t

tcp

[-m

QMNAME]

-p

1414

Note:

If

you

use

the

default

queue

manager,

you

can

omit

the

-m

option.

For

UNIX

operating

systems:

Configure

the

inetd

daemon,

so

that

the

inetd

starts

the

WebSphere

MQ

channels.

See

WebSphere

MQ

Clients

for

instructions

on

how

to

do

this.

For

the

OS/400

operating

system:

Issue

the

command:

STRMQMLSR

MQMNAME(QMGRNAME)

where

QMGRNAME

is

the

name

of

your

queue

manager.

For

the

z/OS

or

OS/390

operating

system:

a.

Ensure

your

channel

initiator

is

started.

If

not,

start

it

by

issuing

the

START

CHINIT

command.

b.

Start

the

listener

by

issuing

the

command

START

LISTENER

TRPTYPE(TCP)

PORT(1414)

Verifying

with

the

sample

application

An

installation

verification

program,

MQIVP,

is

supplied

with

WebSphere

MQ

base

Java.

You

can

use

this

application

to

test

all

the

connection

modes

of

WebSphere

MQ

base

Java.

The

program

prompts

for

a

number

of

choices

and

other

data

to

determine

which

connection

mode

you

want

to

verify.

Use

the

following

procedure

to

verify

your

installation:

1.

To

test

a

client

connection:

a.

Configure

your

queue

manager,

as

described

in

“Configuring

your

queue

manager

to

accept

client

connections”

on

page

15.

b.

Carry

out

the

rest

of

this

procedure

on

the

client

machine.

To

test

a

bindings

connection,

carry

out

the

rest

of

this

procedure

on

the

WebSphere

MQ

server

machine.

2.

Change

to

your

samples

directory.

See

Table

3

on

page

10

to

find

where

this

is.

3.

Type:

java

MQIVP

The

program

tries

to:

a.

Connect

to,

and

disconnect

from,

the

named

queue

manager.

b.

Open,

put,

get,

and

close

the

system

default

local

queue.

c.

Return

a

message

if

the

operations

are

successful.
4.

At

the

prompt

(1):

v

To

use

a

TCP/IP

connection,

enter

a

WebSphere

MQ

server

host

name.

v

To

use

native

connection

(bindings

mode),

leave

the

field

blank.

(Do

not

enter

a

name.)

Using

WebSphere

MQ

base

Java

16

Using

Java

Here

is

an

example

of

the

prompts

and

responses

you

might

see.

The

actual

prompts

and

your

responses

depend

on

your

WebSphere

MQ

network.

Please

enter

the

IP

address

of

the

MQ

server

:

ipaddress(1)

Please

enter

the

port

to

connect

to

:

(1414)(2)

Please

enter

the

server

connection

channel

name

:

channelname(2)

Please

enter

the

queue

manager

name

:

qmname

Success:

Connected

to

queue

manager.

Success:

Opened

SYSTEM.DEFAULT.LOCAL.QUEUE

Success:

Put

a

message

to

SYSTEM.DEFAULT.LOCAL.QUEUE

Success:

Got

a

message

from

SYSTEM.DEFAULT.LOCAL.QUEUE

Success:

Closed

SYSTEM.DEFAULT.LOCAL.QUEUE

Success:

Disconnected

from

queue

manager

Tests

complete

-

SUCCESS:

This

MQ

Transport

is

functioning

correctly.

Press

Enter

to

continue

...

Notes:

1.

If

you

choose

server

connection,

you

do

not

see

the

prompts

marked

(2).

2.

On

z/OS

and

OS/390,

leave

the

field

blank

at

prompt

(1).

3.

On

OS/400,

you

can

run

the

command

java

MQIVP

only

from

the

Qshell

interactive

interface

(the

Qshell

is

option

30

of

OS/400,

5769-SS1).

Alternatively,

you

can

run

the

application

by

using

the

CL

command

RUNJVA

CLASS(MQIVP).

4.

To

use

the

WebSphere

MQ

bindings

for

Java

on

OS/400,

you

must

ensure

that

the

library

QMQMJAVA

is

in

your

library

list.

Running

your

own

WebSphere

MQ

base

Java

programs

To

run

your

own

Java

applets

or

applications,

use

the

procedures

described

for

the

verification

programs,

substituting

your

application

name

in

place

of

MQIVP.

For

information

on

writing

WebSphere

MQ

base

Java

applications

and

applets,

see

Part

2,

“Programming

with

WebSphere

MQ

base

Java,”

on

page

61.

Solving

WebSphere

MQ

base

Java

problems

If

a

program

does

not

complete

successfully,

run

the

installation

verification

applet

or

installation

verification

program,

and

follow

the

advice

given

in

the

diagnostic

messages.

Both

of

these

programs

are

described

in

Chapter

3,

“Using

WebSphere

MQ

classes

for

Java

(WebSphere

MQ

base

Java),”

on

page

15.

If

the

problems

continue

and

you

need

to

contact

the

IBM

service

team,

you

might

be

asked

to

turn

on

the

trace

facility.

Refer

to

the

following

sections

for

the

appropriate

procedures

for

your

system.

Tracing

the

sample

application

To

trace

the

MQIVP

program,

enter

the

following:

java

MQIVP

-trace

n

where

n

is

a

number

between

1

and

5,

depending

on

the

level

of

detail

required.

(The

greater

the

number,

the

more

information

is

gathered.)

For

more

information

about

how

to

use

trace,

see

“Tracing

WebSphere

MQ

base

Java

programs”

on

page

94.

Installation

verification

program

Chapter

3.

Using

WebSphere

MQ

classes

for

Java

(WebSphere

MQ

base

Java)

17

Error

messages

Here

are

some

of

the

more

common

error

messages

that

you

might

see:

Unable

to

identify

local

host

IP

address

The

server

is

not

connected

to

the

network.

Connect

the

server

to

the

network

and

retry.

MQRC_ADAPTER_CONN_LOAD_ERROR

If

you

see

this

z/OS

error

,

ensure

that

the

WebSphere

MQ

SCSQANLE

and

SCSQAUTH

datasets

are

in

your

STEPLIB

statement.

Error

messages

18

Using

Java

Chapter

4.

Using

WebSphere

MQ

classes

for

Java

Message

Service

(WebSphere

MQ

JMS)

This

chapter

tells

you

how

to:

v

Set

up

and

use

JMS

Postcard

v

Set

up

your

system

to

use

the

test

and

sample

programs

v

Run

the

point-to-point

Installation

Verification

Test

(IVT)

program

to

verify

your

WebSphere

MQ

classes

for

Java

Message

Service

installation

v

Run

the

sample

publish/subscribe

Installation

Verification

Test

(PSIVT)

program

to

verify

your

publish/subscribe

installation

v

Run

your

own

programs

JMS

Postcard

JMS

Postcard

is

a

simple

way

to

do

the

following:

v

Verify

that

you

have

successfully

installed

WebSphere

MQ

and

WebSphere

MQ

JMS

on

one

computer

and,

optionally,

on

others

as

well

v

Introduce

you

to

messaging

Note:

JMS

Postcard

is

not

supported

on

WebSphere

MQ

for

z/OS

or

WebSphere

MQ

for

iSeries.

Setting

up

JMS

Postcard

To

use

JMS

Postcard,

make

sure

that

the

Java

Messaging

feature

of

WebSphere

MQ

for

Windows

NT

and

Windows

2000

(WebSphere

MQ

JMS)

is

installed.

You

also

need

a

working

Java

Runtime

Environment

(JRE)

at

Java

1.3

level.

Before

you

can

successfully

run

the

JMS

Postcard

application,

define

the

environment

variables

CLASSPATH,

LIBPATH,

MQ_JAVA_INSTALL_PATH,

and

MQ_JAVA_DATA_PATH.

On

Windows

systems

these

variables

are

set

as

part

of

the

install

process.

On

other

platforms

you

must

set

them

yourself.

For

more

information

about

these

variables,

see

“Environment

variables”

on

page

10.

Many

operations

that

the

Postcard

application

carries

out

on

your

behalf

require

the

user

to

be

a

member

of

the

WebSphere

MQ

administrators

group

(mqm).

If

you

are

not

a

member

of

mqm,

get

a

member

of

the

mqm

group

to

set

up

the

default

configuration

on

your

behalf.

See

“JMS

Postcard

default

configuration”

on

page

22.

Starting

To

start

the

JMS

Postcard

application,

run

the

postcard

script.

This

is

supplied

in

the

java/bin

directory

of

the

WebSphere

MQ

installation.

The

first

time

that

you

run

JMS

Postcard,

it

asks

you

to

complete

the

default

configuration,

which

sets

up

a

suitable

queue

manager

to

act

as

mailbox.

See

“JMS

Postcard

default

configuration”

on

page

22.

Whenever

you

start

a

Postcard

application,

you

must

sign

on

and

enter

a

nickname.

(There

are

advanced

options

available

on

the

sign-on

dialog,

see

“Sign-on

advanced

options”

on

page

20

for

details).

©

Copyright

IBM

Corp.

1997,

2004

19

Sign-on

The

sign-on

dialog

has

a

check

box

labelled

Advanced.

Check

this

to

see

the

extended

dialog

where

you

can

choose

which

queue

manager

is

used

by

the

Postcard

program.

Notes:

1.

If

you

have

no

queue

managers

at

all,

or

just

the

default

configuration,

the

checkbox

is

disabled.

2.

Depending

on

what

queue

managers

and

clusters

you

have,

the

checkbox

and

options

are

in

one

of

various

combinations

of

enabled,

disabled,

and

preselected.

Sign-on

advanced

options

Use

default

configuration

as

mailbox

This

is

the

easiest

way

to

use

JMS

Postcard

on

one

or

several

computers.

Make

sure

that

the

default

configuration

is

installed

on

all

the

computers,

that

one

of

them

holds

the

repository,

and

that

all

the

others

use

the

first

one

as

their

repository;

this

puts

them

all

in

the

same

cluster.

Choose

queue

manager

as

mailbox

Use

the

drop-down

list

to

choose

any

one

of

your

local

queue

managers.

If

you

want

to

send

postcards

between

two

queue

managers

(on

one

or

more

computers)

this

way,

make

sure

that

one

of

the

following

conditions

is

true:

v

The

queue

managers

are

in

the

same

cluster

(for

more

information

about

clusters,

see

the

WebSphere

MQ

Queue

Manager

Clusters

book).

v

There

are

explicit

connections

between

the

queue

managers.

Sending

a

postcard

To

send

a

postcard

successfully,

you

need

two

instances

of

the

Postcard

application

with

different

nicknames.

For

example,

suppose

you

start

the

Postcard

application

and

use

the

nickname

Will,

and

then

start

it

again

using

the

nickname

Tim.

Will

can

send

postcards

to

Tim

and

Tim

can

send

postcards

to

Will.

If

Will

and

Tim

are

connected

to

the

same

queue

manager,

see

“Running

JMS

Postcard

with

one

queue

manager.”

If

Tim

is

on

a

different

queue

manager

manager

(on

the

same

or

a

different

computer

from

Will),

see

“Running

JMS

Postcard

with

two

queue

managers”

on

page

21.

When

the

postcard

arrives

successfully,

you

know

that

your

WebSphere

MQ

installation

and

WebSphere

MQ

JMS

are

working

correctly.

For

an

alternative

way

of

verifying

the

installation

of

WebSphere

MQ

JMS,

run

the

IVTRun

application

from

the

command

line.

See

“Running

the

point-to-point

IVT”

on

page

31

for

more

information

about

this.

Running

JMS

Postcard

with

one

queue

manager

If

you

have

already

started

the

Postcard

application

with

a

nickname,

for

example,

Will,

and

you

want

to

send

a

postcard

to

a

second

nickname

on

this

computer,

follow

these

steps:

1.

Move

the

first

Postcard

(Will)

to

one

side

of

your

screen,

then

start

a

second

Postcard

by

running

the

postcard

shell

script

again.

JMS

Postcard

20

Using

Java

2.

Enter

your

second

nickname,

for

example

Tim.

3.

On

Will’s

Postcard

fill

in

the

To

field

with

your

second

nickname,

Tim.

(You

can

leave

the

On

field

empty

and

Postcard

will

fill

it

in

for

you,

or

you

can

type

in

the

queue

manager

name

that

you

see

below

the

Message

box

after

On).

4.

Click

in

the

Message

box,

type

your

message

in,

and

click

the

Send

button.

5.

Look

in

Tim’s

Postcard

to

see

the

message

arrive,

and

double-click

on

it

to

see

the

postcard

itself.

6.

Try

using

Tim

to

send

a

message

back

to

Will.

You

can

do

this

by

selecting

the

message

that

arrived

in

Tim’s

list,

and

clicking

the

Reply

button.

Note:

See

“JMS

Postcard

configuration”

on

page

22

for

advice

about

configuration.

Running

JMS

Postcard

with

two

queue

managers

If

you

have

already

started

JMS

Postcard

with

a

nickname,

for

example

Will,

and

you

want

to

send

a

postcard

to

a

second

nickname

on

a

second

queue

manager

on

this,

or

another,

computer,

follow

these

steps:

1.

Start

the

second

Postcard,

choosing

one

of

the

following:

v

JMS

Postcard

–

On

this

computer,

run

the

postcard

shell

script

again,

then

in

the

sign-on

dialog

check

Advanced

and

select

the

second

queue

manager

you

want

to

use.

–

On

another

computer,

run

the

postcard

shell

script;

or,

on

Windows

systems,

open

WebSphere

MQ

First

Steps

and

click

on

JMS

Postcard.
v

MQI

Postcard

on

Windows

systems:

either

start

from

WebSphere

MQ

First

Steps

(to

use

the

default

configuration),

or

open

the

WebSphere

MQ

Explorer,

right-click

on

the

queue

manager

you

want

to

use

and

click

All

Tasks->Start

a

Postcard...

2.

When

the

sign-on

dialog

appears,

enter

your

second

nickname

(for

example,

Tim).

3.

In

the

Postcard

application

on

Will’s

computer,

fill

in

the

To

field

with

your

second

nickname

(Tim),

and

in

the

On

field

put

the

queue

manager

name

of

the

second

postcard

where

Tim

is.

If

you

don’t

know

this

name,

on

Tim’s

computer

in

the

Postcard

look

below

the

Message

box

after

On:;

alternatively

if

both

queue

managers

are

in

the

default

configuration

cluster,

you

can

just

type

in

the

short

TCP/IP

name

of

Tim’s

computer

and

Postcard

builds

that

into

the

queue

manager

name

in

the

same

way

that

the

task

that

creates

the

default

configuration

does.

4.

Type

your

message,

and

click

Send.

Look

in

Tim’s

Postcard

to

see

the

message

arrive,

and

double-click

on

it

to

see

the

postcard

itself.

5.

Try

sending

a

message

from

Tim’s

computer

back

to

Will.

You

can

do

this

by

selecting

the

message

that

arrived

in

Tim’s

list,

and

clicking

Reply.

Note:

See

“JMS

Postcard

configuration”

on

page

22.

See

also

“How

JMS

Postcard

works”

on

page

22.

JMS

Postcard

Chapter

4.

Using

WebSphere

MQ

classes

for

Java

Message

Service

(WebSphere

MQ

JMS)

21

JMS

Postcard

configuration

The

Postcard

application

needs

a

suitable

queue

manager

to

act

as

mailbox.

See

“JMS

Postcard

default

configuration”

for

the

easiest

way

to

get

one.

You

will

be

prompted

to

install

this

default

configuration

the

first

time

you

start

the

Postcard

application

(see

“Starting”

on

page

19).

Instead

of

using

the

default

configuration,

you

can

also

start

the

Postcard

application

using

any

other

local

queue

manager.

If

you

want

to

send

postcards

to

another

computer,

or

to

other

queue

managers,

the

default

configuration

must

include

the

option

of

being

joined

in

the

same

cluster.

The

other

queue

managers

must

either

be

in

the

same

cluster

or

you

must

create

a

connection

explicitly

between

them.

See

also

“How

JMS

Postcard

works.”

JMS

Postcard

default

configuration

Installing

the

default

configuration

creates

a

special

queue

manager

(with

queues

and

channels),

and

optionally

joins

it

to

a

cluster,

to

enable

you

to

use

the

JMS

Postcard

application

to

verify

your

installation

and

see

messaging

working.

On

WebSphere

MQ

for

Windows

NT

and

Windows

2000,

the

Default

Configuration

Wizard

automatically

opens

when

JMS

Postcard

is

started

and

the

wizard

has

not

already

been

run

on

this

computer.

On

platforms

other

than

Windows

systems,

you

can

also

run

the

DefaultConfiguration

script,

provided

that

there

are

no

existing

queue

managers

on

this

computer.

On

Windows

systems,

run

Default

Configuration

from

First

Steps.

Note:

You

must

be

a

member

of

the

WebSphere

MQ

administrators

group

(mqm)

to

complete

default

configuration

successfully.

If

you

are

not

a

member

of

mqm,

get

a

member

of

the

mqm

group

to

set

up

the

default

configuration

on

your

behalf.

How

JMS

Postcard

works

This

section

tells

you

how

the

JMS

Postcard

works,

including:

v

“Starting

up”

v

“Receiving

messages”

on

page

23

v

“Sending

messages”

on

page

23

v

“How

the

postcards

get

there”

on

page

23

v

“Tidying

up

undeliverable

messages”

on

page

24

v

“Exchanging

messages

between

different

WebSphere

MQ

Postcard

applications”

on

page

24

v

“Customizing

JMS

Postcard”

on

page

24

Starting

up

When

JMS

Postcard

starts,

it

checks

to

see

what

queue

managers

exist

on

this

computer,

and

initializes

the

sign-on

dialog

accordingly.

If

there

are

no

queue

managers

at

all,

it

prompts

you

to

install

the

default

configuration.

JMS

Postcard

uses

the

Java

Message

Service

method

queueConnectionFactory.createQueueConnection()

to

connect

to

the

default

queue

manager.

JMS

Postcard

22

Using

Java

Receiving

messages

All

the

time

JMS

Postcard

is

running,

it

polls

a

queue

called

postcard

for

incoming

messages

from

other

Postcard

applications.

If

there

is

no

queue

called

postcard,

JMS

Postcard

creates

one.

When

JMS

Postcard

starts

running,

it

creates

a

Java

Message

Service

QueueReceiver

object

for

the

local

postcard

queue,

providing

as

a

parameter

a

selector

string

that

filters

the

messages

to

be

received

from

the

queue

by

the

Correlation

Identifier

(CorrelId

field).

The

selector

string

defines

that

the

postcard

client

should

only

receive

messages

where

the

CorrelId

field

matches

the

nickname

of

the

user.

The

words

from

the

message

data

are

then

presented

in

the

JMS

Postcard

window.

Sending

messages

If

you

did

not

enter

a

computer

name

in

the

On:

field,

JMS

Postcard

assumes

that

the

recipient

is

on

the

same

queue

manager.

If

you

entered

a

name,

JMS

Postcard

checks

for

the

existence

of

a

queue

manager

with

this

name,

first

using

the

exact

name

supplied,

and

then

using

a

prefix

in

the

same

format

as

that

created

by

the

default

configuration.

In

both

cases,

it

issues

a

session.createQueue(’postcard’),

and

sets

the

base

queue

manager

name

to

the

string

supplied.

Finally,

it

builds

a

JMS

BytesMessage

from

your

nickname

and

the

words

you

typed

in,

and

runs

queueSender.send(theMessage)

to

put

the

message

onto

the

queue.

How

the

postcards

get

there

When

other

instances

of

Postcard

on

this

computer

use

the

same

queue

manager

and

queue,

the

messages

are

being

put

and

got

from

the

one

queue.

This

does,

however,

verify

that

the

WebSphere

MQ

code

installed

on

this

computer

is

configured

and

working

correctly.

JMS

Postcard

can

only

send

to

another

queue

manager

if

a

connection

to

that

queue

manager

exists.

This

connection

exists

because

either

both

queue

managers

are

members

of

the

same

cluster,

or

you

have

explicitly

created

a

connection

yourself.

JMS

Postcard

can

therefore

assume

that

it

can

connect

to

the

queue

manager,

and

connects

to

it,

opens

the

queue,

and

puts

a

message,

as

already

described,

leaving

all

the

work

of

getting

the

message

there

to

the

WebSphere

MQ

cluster

code.

In

other

words,

JMS

Postcard

uses

only

one

piece

of

code

for

putting

the

message,

and

does

not

need

to

know

whether

the

message

is

going

to

another

computer.

In

JMS

Postcard,

when

session.createSender(’postcard’)

is

called,

the

cluster

code

checks

the

repository

to

find

the

other

queue

manager,

and

to

check

that

the

queue

exists,

and

throws

an

exception

if

this

was

not

possible

for

any

reason.

When

queueSender.send(theMessage)

is

called,

the

cluster

code

opens

a

channel

to

the

other

queue

manager

(creating

it

if

necessary)

and

sends

the

message.

Discard

the

channel

afterwards,

if

the

cluster

optimizing

code

does

not

need

it.

If

the

queue

managers

are

on

different

computers,

that

is

all

handled

by

the

cluster

code.

JMS

Postcard

Chapter

4.

Using

WebSphere

MQ

classes

for

Java

Message

Service

(WebSphere

MQ

JMS)

23

Tidying

up

undeliverable

messages

If

you

sent

a

postcard

message

to

John,

but

never

ran

a

Postcard

application

with

the

nickname

John,

the

message

would

sit

on

the

queue

for

ever.

To

prevent

this,

JMS

Postcard

sets

the

Message

Lifetime

(Expiry)

field

in

the

Message

Descriptor

(MQMD)

to

48

hours.

After

that

time,

the

message

is

discarded,

wherever

it

may

be

(possibly

even

still

in

transmission).

Exchanging

messages

between

different

WebSphere

MQ

Postcard

applications

You

can

exchange

messages

between

all

the

different

types

of

Postcard

application

as

follows:

v

MQI

Postcard

on

WebSphere

MQ

for

Windows

NT

and

Windows

2000.

v

JMS

Postcard

on

Windows

systems

and

other

operating

systems

such

as

UNIX.

v

MQSeries

Postcard

on

previous

versions

of

MQSeries

for

Windows,

with

the

exception

that

it

cannot

receive

messages

from

JMS

Postcard.

v

MQ

Everyplace

Postcard

on

WebSphere

MQ

Everyplace

on

pervasive

devices.

For

this,

a

connection

must

be

explicitly

set

up

between

the

queue

managers.

See

the

WebSphere

MQ

Everyplace

product

documentation

for

further

information.

Customizing

JMS

Postcard

Normally

JMS

Postcard

uses

standard

Java

Swing

settings

for

font

size

and

background

color.

But

if

it

detects

a

postcard.ini

file

on

startup,

JMS

Postcard

uses

settings

specified

in

this

file

instead.

You

can

also

change

the

trace

setting.

Edit

the

sample

file

postcard.ini

in

the

bin

directory

of

the

WebSphere

MQ

classes

for

Java

installation

and

set

your

preferred

settings

for

font

size,

and

screen

foreground

and

background

colors.

Note:

The

precise

use

of

upper

and

lower

case

letters

in

the

keywords,

as

in

the

following

examples,

must

be

strictly

observed

when

you

set

these

properties.

Setting

screen

colors

By

setting

the

Background

and

Foreground

properties,

you

can

change

the

background

and

foreground

colors

of

controls

used

in

the

Postcard

application.

Background=000000

Foreground=FFFFFF

This

example

selects

white

text

on

a

black

background.

The

values

represent

intensity

levels

for

red,

green,

and

blue

colors

using

a

hexadecimal

scale

from

00

to

FF.

Other

examples

of

colors

are

FF0000

(bright

red),

00FF00

(bright

green)

and

0000FF

(bright

blue).

Setting

font

size

MinimumFont=20

This

example

selects

a

minimum

font

size

of

20

points.

Any

value

smaller

than

13

is

ignored.

Using

an

external

browser

for

online

help

WebBrowser=nautilus

This

setting

is

only

applicable

on

non-Windows

systems.

The

internal

browser

used

for

displaying

online

help

information

cannot

be

customized.

This

setting

allows

you

to

identify

an

alternative

browser.

JMS

Postcard

24

Using

Java

Tracing

the

Postcard

application

Trace=1

Set

this

to

start

trace

output.

Note

that

the

trace

output

is

sent

to

the

trc

subdirectory

of

the

directory

defined

by

the

MQ_JAVA_DATA_PATH

system

environment

variable.

If

the

application

cannot

write

to

this

directory,

trace

output

is

directed

to

the

system

console.

You

can

also

use

the

MQJMS_TRACE_LEVEL

parameter

on

the

java

command

line

to

start

tracing.

See

“Tracing

programs”

on

page

38

for

more

about

tracing

applications.

Post

installation

setup

Note:

Remember

to

check

the

README

file

installed

with

the

WebSphere

MQ

Java

programs

for

information

that

may

supersede

this

book.

To

make

all

the

necessary

resources

available

to

WebSphere

MQ

JMS

programs,

you

need

to

update

the

following

system

variables:

Classpath

Successful

operation

of

JMS

programs

requires

a

number

of

Java

packages

to

be

available

to

the

JVM.

You

must

specify

these

on

the

classpath

after

you

have

obtained

and

installed

the

necessary

packages.

Add

the

following

.jar

files

to

the

classpath:

v

com.ibm.mq.jar

v

com.ibm.mqjms.jar

v

connector.jar

v

jms.jar

v

jndi.jar

v

jta.jar

v

providerutil.jar

v

fscontext.jar

v

ldap.jar

Notes:

1.

For

z/OS

and

OS/390,

use

ibmjndi.jar

and

jndi.jar

from

/usr/lpp/ldap/lib

instead

of

jndi.jar

and

ldap.jar.

These

files

are

supplied

with

the

operating

system.

2.

Include

the

java/lib

directory

itself

in

the

classpath

to

access

the

properties

files

used

by

the

base

Java

API.

3.

Include

providerutil.jar,

jndi.jar,

and

either

ldap.jar

or

fscontext.jar

if

you

need

to

access

a

JNDI

namespace.

4.

In

certain

environments,

typically

J2EE

application

servers,

classes

contained

in

these

jars

are

provided

by

the

environment.

In

these

circumstances,

use

the

classes

provided

by

the

environment

instead

of

those

provided

with

WebSphere

MQ.

Environment

variables

There

are

a

number

of

scripts

in

the

bin

subdirectory

of

the

WebSphere

MQ

JMS

installation.

These

are

for

use

as

convenient

shortcuts

for

a

number

of

common

actions.

Many

of

these

scripts

assume

that

the

environment

variables

MQ_JAVA_INSTALL_PATH

and

MQ_JAVA_DATA_PATH

are

JMS

Postcard

Chapter

4.

Using

WebSphere

MQ

classes

for

Java

Message

Service

(WebSphere

MQ

JMS)

25

defined,

pointing

to

the

directory

in

which

WebSphere

MQ

JMS

is

installed

and

a

directory

for

log

and

trace

output,

respectively.

If

you

do

not

set

these

variables,

you

must

edit

the

scripts

in

the

bin

directory

accordingly.

On

Windows

NT,

you

can

set

the

classpath

and

other

environment

variables

by

using

the

Environment

tab

of

System

Properties.

On

Windows

2000

and

Windows

XP,

Environment

is

a

button

on

the

Advanced

tab

of

System

Properties.

On

UNIX,

these

are

normally

set

from

each

user’s

logon

scripts.

On

any

platform,

you

can

use

scripts

to

maintain

different

classpaths

and

other

environment

variables

for

different

projects.

Note:

If

you

are

migrating

from

the

SupportPac

MA88,

be

aware

that

the

connector.jar

is

now

packaged

in

the

java/lib

directory

with

the

other

jar

files,

with

the

following

consequences:

v

You

need

an

entry

for

connector.jar

in

the

classpath,

as

explained

above.

v

If

you

have

previously

implemented

your

own

ConnectionManagers,

as

described

in

“Supplying

your

own

ConnectionManager”

on

page

85,

you

must

replace

references

to

com.ibm.mq.resource

and

com.ibm.mq.resource.spi

with

references

to

javax.resource

and

javax.resource.spi

respectively.

Additional

setup

for

publish/subscribe

mode

Before

you

can

use

the

WebSphere

MQ

JMS

implementation

of

JMS

publish/subscribe,

some

additional

setup

is

required:

v

Ensure

that

you

have

access

to

a

publish/subscribe

broker.

v

Ensure

that

the

broker

is

running.

v

Create

the

WebSphere

MQ

JMS

system

queues.

This

step

is

not

required

for

direct

connection

across

a

TCP/IP

socket

to

a

WebSphere

MQ

Event

Broker

broker.

You

also

need

to

know

publish/subscribe

concepts

as

discussed

in

Chapter

11,

“Writing

WebSphere

MQ

JMS

publish/subscribe

applications,”

on

page

213.

Ensure

that

you

have

access

to

a

publish/subscribe

broker

With

WebSphere

MQ

JMS

you

have

the

choice

of

three

brokers:

v

WebSphere

MQ

with

SupportPac

MA0C

(also

known

as

MQSeries

Publish/Subscribe)

v

WebSphere

MQ

Integrator

V2

v

WebSphere

MQ

Event

Broker

Differences

between

these

brokers

are

discussed

in

Chapter

11,

“Writing

WebSphere

MQ

JMS

publish/subscribe

applications,”

on

page

213.

Read

the

documentation

for

each

broker

for

installation

and

configuration

instructions.

Note:

To

use

broker-based

subscription

stores,

you

must

use

SupportPac

MA0C

or

the

WebSphere

MQ

Event

Broker.

No

other

combination

of

queue

manager

and

broker

supports

this

option.

For

more

information

about

subscription

stores,

see

“Subscription

stores”

on

page

227.

For

information

specific

to

JMS

1.1,

see

“Subscription

stores”

on

page

246.

Setup

26

Using

Java

|
|

Ensure

that

the

broker

is

running

MQSeries

Publish/Subscribe

To

verify

that

the

broker

is

installed

and

running,

use

the

command:

dspmqbrk

-m

MY.QUEUE.MANAGER

where

MY.QUEUE.MANAGER

is

the

name

of

the

queue

manager

on

which

the

broker

is

running.

If

the

broker

is

running,

a

message

similar

to

the

following

is

displayed:

WebSphere

MQ

message

broker

for

queue

manager

MY.QUEUE.MANAGER

running.

If

the

operating

system

reports

that

it

cannot

run

the

dspmqbrk

command,

ensure

that

the

MQSeries

Publish/Subscribe

broker

is

installed

properly.

If

the

operating

system

reports

that

the

broker

is

not

active,

start

it

using

the

command:

strmqbrk

-m

MY.QUEUE.MANAGER

WebSphere

MQ

Integrator

V2

To

verify

that

the

broker

provided

in

WebSphere

MQ

Integrator

V2

is

installed

and

running,

refer

to

the

product

documentation.

The

command

to

start

the

broker

in

WebSphere

MQ

Integrator

V2

is:

mqsistart

MYBROKER

where

MYBROKER

is

the

name

of

the

broker.

WebSphere

MQ

Event

Broker

To

verify

that

the

broker

provided

in

WebSphere

MQ

Event

Broker

is

installed

and

running,

refer

to

the

product

documentation.

The

command

to

start

the

broker

in

WebSphere

MQ

Event

Broker

is:

wmqpsstart

MYBROKER

where

MYBROKER

is

the

name

of

the

broker.

Create

the

WebSphere

MQ

JMS

system

queues

This

does

not

apply

if

you

use

a

direct

connection

across

TCP/IP

to

WebSphere

MQ

Event

Broker.

For

a

publish/subscribe

implementation

to

work

correctly,

you

must

create

a

number

of

system

queues.

A

script

is

supplied,

in

the

bin

subdirectory

of

the

WebSphere

MQ

JMS

installation,

to

assist

with

this

task.

To

use

the

script,

enter

the

following

commands:

Setup

for

publish/subscribe

Chapter

4.

Using

WebSphere

MQ

classes

for

Java

Message

Service

(WebSphere

MQ

JMS)

27

For

iSeries

and

AS/400:

1.

Copy

the

script

from

the

integrated

file

system

to

a

native

file

system

library

using

a

command

similar

to:

CPYFRMSTMF

FROMSTMF(’/QIBM/ProdData/mqm/java/bin/MQJMS_PSQ.mqsc’)

TOMBR(’/QSYS.LIB/QGPL.LIB/QCLSRC.FILE/MQJMS_PSQ.MBR’)

2.

Call

the

script

file

using

STRMQMMQSC:

STRMQMMQSC

SRCMBR(MQJMS_PSQ)

SRCFILE(QGPL/QCLSRC)

For

z/OS

and

OS/390:

1.

Copy

the

script

from

the

HFS

into

a

PDS

using

a

TSO

command

similar

to

OGET

’/usr/lpp/mqm/java/bin/MQJMS_PSQ.mqsc’

’USERID.MQSC(MQJMSPSQ)’

The

PDS

should

be

of

fixed-block

format

with

a

record

length

of

80.

2.

Either

use

the

CSQUTIL

application

to

execute

this

command

script,

or

add

the

script

to

the

CSQINP2

DD

concatenation

in

your

queue

manager’s

started

task

JCL.

In

either

case,

refer

to

the

WebSphere

MQ

for

z/OS

System

Setup

Guide

and

the

WebSphere

MQ

for

z/OS

System

Administration

Guide

for

further

details.

For

other

platforms:

runmqsc

MY.QUEUE.MANAGER

<

MQJMS_PSQ.mqsc

If

an

error

occurs,

check

that

you

typed

the

queue

manager

name

correctly

and

that

the

queue

manager

is

running.

For

a

broker

running

on

a

remote

queue

manager

For

operation

with

a

broker

running

on

a

remote

queue

manager,

further

setup

is

required.

1.

Define

a

transmission

queue

on

the

remote

queue

manager

with

a

queue

name

matching

the

local

queue

manager.

These

names

must

match

for

correct

routing

of

messages

by

WebSphere

MQ.

2.

Define

a

sender

channel

on

the

remote

queue

manager

and

a

receiver

channel

on

the

local

queue

manager.

The

sender

channel

should

use

the

transmission

queue

defined

in

step

1.

3.

Set

up

the

local

queue

manager

for

communication

with

the

remote

broker:

a.

Define

a

local

transmission

queue

with

the

same

name

as

the

queue

manager

running

the

remote

broker.

b.

Define

local

sender

and

remote

receiver

channels

to

the

remote

broker

queue

manager.

The

sender

channel

must

use

the

transmission

queue

defined

in

step

3a.
4.

To

operate

the

remote

broker,

take

the

following

steps:

a.

Start

the

remote

broker

queue

manager.

b.

Start

a

listener

for

the

remote

broker

queue

manager

(TCP/IP

channels).

c.

Start

the

sender

and

receiver

channels

to

the

local

queue

manager.

d.

Start

the

broker

on

the

remote

queue

manager.

An

example

command

is

strmqbrk

-m

MyBrokerMgr

5.

To

operate

the

local

queue

manager

to

communicate

with

the

remote

broker,

take

the

following

steps:

Setup

for

publish/subscribe

28

Using

Java

a.

Start

the

local

queue

manager.

b.

Start

a

listener

for

the

local

queue

manager.

c.

Start

the

sender

and

receiver

channels

to

the

remote

broker

queue

manager.

Queues

that

require

authorization

for

non-privileged

users

Non-privileged

users

need

authorization

granted

to

access

the

queues

used

by

JMS.

For

details

about

access

control

in

WebSphere

MQ,

see

the

chapter

about

protecting

WebSphere

MQ

objects

in

the

WebSphere

MQ

System

Administration

Guide.

For

JMS

point-to-point

mode,

the

access

control

issues

are

similar

to

those

for

the

WebSphere

MQ

classes

for

Java:

v

Queues

that

are

used

by

QueueSender

need

put

authority.

v

Queues

that

are

used

by

QueueReceivers

and

QueueBrowsers

need

get,

inq,

and

browse

authorities.

v

The

QueueSession.createTemporaryQueue

method

needs

access

to

the

model

queue

that

is

defined

in

the

QueueConnectionFactory

temporaryModel

field

(by

default

this

is

SYSTEM.DEFAULT.MODEL.QUEUE).

For

JMS

publish/subscribe

mode,

the

following

system

queues

are

used:

SYSTEM.JMS.ADMIN.QUEUE

SYSTEM.JMS.REPORT.QUEUE

SYSTEM.JMS.MODEL.QUEUE

SYSTEM.JMS.PS.STATUS.QUEUE

SYSTEM.JMS.ND.SUBSCRIBER.QUEUE

SYSTEM.JMS.D.SUBSCRIBER.QUEUE

SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE

SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE

SYSTEM.BROKER.CONTROL.QUEUE

Also,

any

application

that

publishes

messages

needs

access

to

the

STREAM

queue

that

is

specified

in

the

topic

connection

factory

being

used.

The

default

value

for

this

is

SYSTEM.BROKER.DEFAULT.STREAM.

If

you

use

ConnectionConsumer,

additional

authorization

might

be

needed.

Queues

to

be

read

by

the

ConnectionConsumer

must

have

get,

inq

and

browse

authorities.

The

system

dead-letter

queue,

and

any

backout-requeue

queue

or

report

queue

used

by

the

ConnectionConsumer

must

have

put

and

passall

authorities.

Using

the

sample

JMS

applet

to

verify

the

TCP/IP

client

WebSphere

MQ

JMS

includes

an

installation

verification

applet,

test.html.

You

can

use

the

applet

to

verify

the

TCP/IP

connected

client

mode

of

WebSphere

MQ

JMS

except

on

the

z/OS

and

OS/390

platform,

where

the

TCP/IP

connected

client

mode

is

not

supported.

The

standard

security

settings

for

applets

in

Java

1.2

and

higher

require

that

all

referenced

classes

are

loaded

from

the

same

location

as

the

applet

you

want

to

run.

For

information

on

how

to

ensure

that

applets

using

WebSphere

MQ

JMS

work,

see

Appendix

F,

“Using

WebSphere

MQ

Java

in

applets

with

Java

1.2

or

later,”

on

page

481.

Setup

for

publish/subscribe

Chapter

4.

Using

WebSphere

MQ

classes

for

Java

Message

Service

(WebSphere

MQ

JMS)

29

The

applet

connects

to

a

given

queue

manager,

exercises

all

the

WebSphere

MQ

calls,

and

produces

diagnostic

messages

if

there

are

any

failures.

If

the

applet

does

not

complete

successfully,

follow

the

advice

given

in

the

diagnostic

messages

and

run

the

applet

again.

Using

the

sample

applet

with

OS/400

The

OS/400

operating

system

does

not

have

a

native

Graphical

User

Interface

(GUI).

To

run

the

sample

applet,

you

need

to

use

the

Remote

Abstract

Window

Toolkit

for

Java

(AWT),

or

the

Class

Broker

for

Java

(CBJ),

on

graphics

capable

hardware.

Running

the

sample

applet

First

make

sure

that

your

queue

manager

can

accept

client

connections.

For

details

of

this,

see

“Configuring

your

queue

manager

to

accept

client

connections”

on

page

15.

There

are

different

ways

of

running

the

JMS

sample

applet.

Each

has

slightly

different

properties

because

of

the

security

restrictions

on

applets

imposed

by

the

Java

virtual

machine.

Normal

Java

security

settings

cause

the

appletviewer

or

browser

to

ignore

your

system

CLASSPATH,

so

the

WebSphere

MQ

base

Java

and

WebSphere

MQ

JMS

libraries

must

be

present

in

the

same

location

as

the

applet

class

file.

For

further

details

of

applets

and

security

settings,

see

Appendix

F,

“Using

WebSphere

MQ

Java

in

applets

with

Java

1.2

or

later,”

on

page

481.

Running

from

a

web

server

(in

appletviewer

or

in

a

browser):

Invoke

the

applet

using

a

command

line

like

the

following:

appletviewer

http://<web.server.host/jmsapplet>/test.html

or

by

pointing

your

Java

1.3

enabled

browser

at

this

Web

page.

Change

the

string

<web.server.host/jmsapplet>

as

appropriate

to

the

URL

of

the

Web

server

you

are

using.

Running

in

appletviewer

from

the

local

machine:

Invoke

the

applet

using

a

command

line

like

the

following:

appletviewer

test.html

Remember

that

the

WebSphere

MQ

base

Java

and

WebSphere

MQ

JMS

libraries

must

be

present

in

the

same

local

directory

as

the

applet

class

file.

Also,

in

this

case,

the

applet

might

connect

only

to

queue

managers

on

the

local

machine.

Running

the

applet

as

an

application:

Compile

the

applet

using

the

command:

javac

JMSTestApplet.java

Then

run

the

applet

using

the

command:

java

JMSTestApplet

The

JMS

sample

applet

contains

a

main

method

that

allows

the

applet

to

run

as

a

standalone

Java

application.

This

option

requires

the

WebSphere

MQ

base

Java

and

WebSphere

MQ

JMS

libraries

to

be

present

in

the

system

CLASSPATH,

as

for

your

own

Verifying

TCP/IP

client

30

Using

Java

|

|

|

WebSphere

MQ

JMS

applications.

It

allows

you

to

connect

to

any

host

and

queue

manager

to

which

you

have

TCP/IP

access.

Tracing

the

sample

as

an

application

To

trace

the

sample

as

an

application,

alter

the

command

line

parameters

as

shown

below,

in

the

same

way

as

you

would

trace

your

own

JMS

applications:

java

-DMQJMS_TRACE_LEVEL=on

JMSTestApplet

More

details

can

be

found

in

“Tracing

programs”

on

page

38.

Running

the

point-to-point

IVT

This

section

describes

the

point-to-point

installation

verification

test

program

(IVT)

that

is

supplied

with

WebSphere

MQ

JMS.

The

IVT

verifies

the

installation

by

connecting

to

the

default

queue

manager

on

the

local

machine,

using

the

WebSphere

MQ

JMS

in

bindings

mode.

It

then

sends

a

message

to

the

SYSTEM.DEFAULT.LOCAL.QUEUE

queue

and

reads

it

back

again.

You

can

run

the

program

in

one

of

two

possible

modes.

With

JNDI

lookup

of

administered

objects

JNDI

mode

forces

the

program

to

obtain

its

administered

objects

from

a

JNDI

namespace,

which

is

the

expected

operation

of

JMS

client

applications.

(See

“Administering

JMS

objects”

on

page

45

for

a

description

of

administered

objects).

This

invocation

method

has

the

same

prerequisites

as

the

administration

tool

(see

Chapter

5,

“Using

the

WebSphere

MQ

JMS

administration

tool,”

on

page

41).

Without

JNDI

lookup

of

administered

objects

If

you

do

not

want

to

use

JNDI,

you

can

create

the

administered

objects

at

runtime

by

running

the

IVT

in

non-JNDI

mode.

Because

a

JNDI-based

repository

is

relatively

complex

to

set

up,

run

the

IVT

first

without

JNDI.

Point-to-point

verification

without

JNDI

A

script,

named

IVTRun

on

UNIX,

or

IVTRun.bat

on

Windows

systems,

is

provided

to

run

the

IVT.

This

file

is

installed

in

the

bin

subdirectory

of

the

installation.

To

run

the

test

without

JNDI,

issue

the

following

command:

IVTRun

[-t]

-nojndi

[-m

<qmgr>]

For

client

mode,

to

run

the

test

without

JNDI,

issue

the

following

command:

IVTRun

[-t]

-nojndi

-client

-m

<qmgr>

-host

<hostname>

[-port

<port>]

[-channel

<channel>]

where:

-t

turns

tracing

on

(by

default,

tracing

is

off)

qmgr

is

the

name

of

the

queue

manager

to

which

you

want

to

connect

hostname

is

the

host

on

which

the

queue

manager

is

running

port

is

the

TCP/IP

port

on

which

the

queue

manager’s

listener

is

running

(default

1414)

channel

is

the

client

connection

channel

(default

SYSTEM.DEF.SVRCONN)

If

the

test

completes

successfully,

you

should

see

output

similar

to

the

following:

Verifying

TCP/IP

client

Chapter

4.

Using

WebSphere

MQ

classes

for

Java

Message

Service

(WebSphere

MQ

JMS)

31

5648-C60,

5724-B41,

5655-F10

(c)

Copyright

IBM

Corp.

2002.

All

Rights

Reserved.

Websphere

MQ

classes

for

Java(tm)

Message

Service

5.300

Installation

Verification

Test

Creating

a

QueueConnectionFactory

Creating

a

Connection

Creating

a

Session

Creating

a

Queue

Creating

a

QueueSender

Creating

a

QueueReceiver

Creating

a

TextMessage

Sending

the

message

to

SYSTEM.DEFAULT.LOCAL.QUEUE

Reading

the

message

back

again

Got

message:

JMS

Message

class:

jms_text

JMSType:

null

JMSDeliveryMode:

2

JMSExpiration:

0

JMSPriority:

4

JMSMessageID:

ID:414d51204153434152492020202020207cce883c03300020

JMSTimestamp:

1016124013892

JMSCorrelationID:null

JMSDestination:

queue:///SYSTEM.DEFAULT.LOCAL.QUEUE

JMSReplyTo:

null

JMSRedelivered:

false

JMS_IBM_PutDate:20020314

JMSXAppID:java

JMS_IBM_Format:MQSTR

JMS_IBM_PutApplType:6

JMS_IBM_MsgType:8

JMSXUserID:parkiw

JMS_IBM_PutTime:16401390

JMSXDeliveryCount:1

A

simple

text

message

from

the

MQJMSIVT

program

Reply

string

equals

original

string

Closing

QueueReceiver

Closing

QueueSender

Closing

Session

Closing

Connection

IVT

completed

OK

IVT

finished

Point-to-point

verification

with

JNDI

To

run

the

IVT

with

JNDI,

the

LDAP

server

must

be

running

and

must

be

configured

to

accept

Java

objects.

If

the

following

message

occurs,

it

indicates

that

there

is

a

connection

to

the

LDAP

server,

but

that

the

server

is

not

correctly

configured:

Unable

to

bind

to

object

This

message

means

that

either

the

server

is

not

storing

Java

objects,

or

the

permissions

on

the

objects

or

the

suffix

are

not

correct.

See

“Checking

your

LDAP

server

configuration”

on

page

463.

Also,

the

following

administered

objects

must

be

retrievable

from

a

JNDI

namespace:

v

MQQueueConnectionFactory

v

MQQueue

A

script,

named

IVTSetup

on

UNIX,

or

IVTSetup.bat

on

Windows

systems,

is

provided

to

create

these

objects

automatically.

Enter

the

command:

IVTSetup

Point-to-point

IVT

32

Using

Java

The

script

invokes

the

WebSphere

MQ

JMS

Administration

tool

(see

Chapter

5,

“Using

the

WebSphere

MQ

JMS

administration

tool,”

on

page

41)

and

creates

the

objects

in

a

JNDI

namespace.

The

MQQueueConnectionFactory

is

bound

under

the

name

ivtQCF

(for

LDAP,

cn=ivtQCF).

All

the

properties

are

default

values:

TRANSPORT(BIND)

PORT(1414)

HOSTNAME(localhost)

CHANNEL(SYSTEM.DEF.SVRCONN)

VERSION(1)

CCSID(819)

TEMPMODEL(SYSTEM.DEFAULT.MODEL.QUEUE)

QMANAGER()

The

MQQueue

is

bound

under

the

name

ivtQ

(cn=ivtQ).

The

value

of

the

QUEUE

property

becomes

QUEUE(SYSTEM.DEFAULT.LOCAL.QUEUE).

All

other

properties

have

default

values:

PERSISTENCE(APP)

QUEUE(SYSTEM.DEFAULT.LOCAL.QUEUE)

EXPIRY(APP)

TARGCLIENT(JMS)

ENCODING(NATIVE)

VERSION(1)

CCSID(1208)

PRIORITY(APP)

QMANAGER()

Once

the

administered

objects

are

created

in

the

JNDI

namespace,

run

the

IVTRun

(IVTRun.bat

on

Windows

systems)

script

using

the

following

command:

IVTRun

[

-t

]

-url

"<providerURL>"

[

-icf

<initCtxFact>

]

where:

-t

turns

tracing

on

(by

default,

tracing

is

off)

providerURL

Note:

Enclose

the

providerURL

string

in

quotation

marks

(″).
This

is

the

JNDI

location

of

the

administered

objects.

If

the

default

initial

context

factory

is

in

use,

this

is

an

LDAP

URL

of

the

form:

"ldap://hostname.company.com/contextName"

If

a

file

system

service

provider

is

used,

(see

initCtxFact

below),

the

URL

is

of

the

form:

"file://directorySpec"

initCtxFact

is

the

classname

of

the

initial

context

factory.

The

default

is

for

an

LDAP

service

provider,

and

has

the

value:

com.sun.jndi.ldap.LdapCtxFactory

If

a

file

system

service

provider

is

used,

set

this

parameter

to:

com.sun.jndi.fscontext.RefFSContextFactory

If

the

test

completes

successfully,

the

output

is

similar

to

the

non-JNDI

output,

except

that

the

create

QueueConnectionFactory

and

Queue

lines

indicate

retrieval

of

the

object

from

JNDI.

The

following

shows

an

example.

Point-to-point

IVT

Chapter

4.

Using

WebSphere

MQ

classes

for

Java

Message

Service

(WebSphere

MQ

JMS)

33

5648-C60,

5724-B41,

5655-F10

(c)

Copyright

IBM

Corp.

2002.

All

Rights

Reserved.

Websphere

MQ

classes

for

Java(tm)

Message

Service

5.300

Installation

Verification

Test

Using

administered

objects,

please

ensure

that

these

are

available

Retrieving

a

QueueConnectionFactory

from

JNDI

Creating

a

Connection

Creating

a

Session

Retrieving

a

Queue

from

JNDI

Creating

a

QueueSender

Creating

a

QueueReceiver

Creating

a

TextMessage

Sending

the

message

to

SYSTEM.DEFAULT.LOCAL.QUEUE

Reading

the

message

back

again

Got

message:

JMS

Message

class:

jms_text

JMSType:

null

...

...

Although

not

strictly

necessary,

it

is

good

practice

to

remove

objects

that

are

created

by

the

IVTSetup

script

from

the

JNDI

namespace.

A

script

called

IVTTidy

(IVTTidy.bat

on

Windows

systems)

is

provided

for

this

purpose.

IVT

error

recovery

If

the

test

is

not

successful,

note

the

following:

v

For

help

with

any

error

messages

involving

the

classpath,

check

that

your

classpath

is

set

correctly,

as

described

in

“Post

installation

setup”

on

page

25.

v

The

IVT

might

fail

with

a

message

failed

to

create

MQQueueManager,

with

an

additional

message

including

the

number

2059.

This

indicates

that

WebSphere

MQ

failed

to

connect

to

the

default

local

queue

manager

on

the

machine

on

which

you

ran

the

IVT.

Check

that

the

queue

manager

is

running,

and

that

it

is

marked

as

the

default

queue

manager.

v

A

message

failed

to

open

MQ

queue

indicates

that

WebSphere

MQ

connected

to

the

default

queue

manager,

but

could

not

open

the

SYSTEM.DEFAULT.LOCAL.QUEUE.

This

might

indicate

that

either

the

queue

does

not

exist

on

your

default

queue

manager,

or

that

the

queue

is

not

enabled

for

PUT

and

GET.

Add

or

enable

the

queue

for

the

duration

of

the

test.

Table

6

lists

the

classes

that

are

tested

by

IVT,

and

the

package

that

they

come

from:

Table

6.

Classes

that

are

tested

by

IVT

Class

Jar

file

WebSphere

MQ

JMS

classes

com.ibm.mqjms.jar

com.ibm.mq.MQMessage

com.ibm.mq.jar

javax.jms.Message

jms.jar

javax.naming.InitialContext

jndi.jar

javax.resource.cci.Connection

connector.jar

javax.transaction.xa.XAException

jta.jar

com/sun/jndi/toolkit/ComponentDirContext

providerutil.jar

com.sun.jndi.ldap.LdapCtxFactory

ldap.jar

Point-to-point

IVT

34

Using

Java

The

publish/subscribe

installation

verification

test

The

publish/subscribe

installation

verification

test

(PSIVT)

program

is

supplied

only

in

compiled

form.

It

is

in

the

com.ibm.mq.jms

package.

The

test

requires

a

broker

such

as

the

MQSeries

Publish/Subscribe

broker

(SupportPac

MA0C)

or

WebSphere

MQ

Integrator

V2

to

be

installed

and

running.

The

PSIVT

attempts

to:

1.

Create

a

publisher,

p,

publishing

on

the

topic

MQJMS/PSIVT/Information

2.

Create

a

subscriber,

s,

subscribing

on

the

topic

MQJMS/PSIVT/Information

3.

Use

p

to

publish

a

simple

text

message

4.

Use

s

to

receive

a

message

waiting

on

its

input

queue

When

you

run

the

PSIVT,

the

publisher

publishes

the

message,

and

the

subscriber

receives

and

displays

the

message.

The

publisher

publishes

to

the

broker’s

default

stream.

The

subscriber

is

non-durable,

does

not

perform

message

selection,

and

accepts

messages

from

local

connections.

It

performs

a

synchronous

receive,

waiting

a

maximum

of

5

seconds

for

a

message

to

arrive.

You

can

run

the

PSIVT,

like

the

IVT,

in

either

JNDI

mode

or

standalone

mode.

JNDI

mode

uses

JNDI

to

retrieve

a

TopicConnectionFactory

and

a

Topic

from

a

JNDI

namespace.

If

JNDI

is

not

used,

these

objects

are

created

at

runtime.

Publish/subscribe

verification

without

JNDI

A

script

named

PSIVTRun

(PSIVTRun.bat

on

Windows

systems)

is

provided

to

run

PSIVT.

The

file

is

in

the

bin

subdirectory

of

the

installation.

To

run

the

test

without

JNDI,

issue

the

following

command:

PSIVTRun

-nojndi

[-m

<qmgr>]

[-bqm

<broker>]

[-t]

For

client

mode,

to

run

the

test

without

JNDI,

issue

the

following

command:

PSIVTRun

-nojndi

-client

-m

<qmgr>

-host

<hostname>

[-port

<port>]

[-channel

<channel>]

[-bqm

<broker>]

[-t]

where:

-nojndi

indicates

no

JNDI

lookup

of

the

administered

objects

qmgr

is

the

name

of

the

queue

manager

to

which

you

wish

to

connect

hostname

is

the

host

on

which

the

queue

manager

is

running

port

is

the

TCP/IP

port

on

which

the

queue

manager’s

listener

is

running

(default

1414)

channel

is

the

client

connection

channel

(default

SYSTEM.DEF.SVRCONN)

broker

is

the

name

of

the

remote

queue

manager

on

which

the

broker

is

running.

If

this

is

not

specified,

the

value

used

for

qmgr

is

assumed.

-t

turns

tracing

on

(default

is

off)

If

the

test

completes

successfully,

output

is

similar

to

the

following:

5648-C60,

5724-B41,

5655-F10

(c)

Copyright

IBM

Corp.

2002.

All

Rights

Reserved.

Websphere

MQ

classes

for

Java(tm)

Message

Service

5.300

Publish/Subscribe

Installation

Verification

Test

Publish/subscribe

IVT

Chapter

4.

Using

WebSphere

MQ

classes

for

Java

Message

Service

(WebSphere

MQ

JMS)

35

Creating

a

Connection

Creating

a

TopicConnectionFactory

Creating

a

Session

Creating

a

Topic

Creating

a

TopicPublisher

Creating

a

TopicSubscriber

Creating

a

TextMessage

Adding

text

Publishing

the

message

to

topic://MQJMS/PSIVT/Information

Waiting

for

a

message

to

arrive

[5

secs

max]...

Got

message:

JMS

Message

class:

jms_text

JMSType:

null

JMSDeliveryMode:

2

JMSExpiration:

0

JMSPriority:

4

JMSMessageID:

ID:414d51204153434152492020202020207cce883c19230020

JMSTimestamp:

1016124933637

JMSCorrelationID:ID:414d51204153434152492020202020207cce883c09320020

JMSDestination:

topic://MQJMS/PSIVT/Information

JMSReplyTo:

null

JMSRedelivered:

false

JMS_IBM_PutDate:20020314

JMSXAppID:ASCARI

JMS_IBM_Format:MQSTR

JMS_IBM_PutApplType:26

JMS_IBM_MsgType:8

JMSXUserID:parkiw

JMS_IBM_PutTime:16553367

JMSXDeliveryCount:1

A

simple

text

message

from

the

MQJMSPSIVT

program

Reply

string

equals

original

string

Closing

TopicSubscriber

Closing

TopicPublisher

Closing

Session

Closing

Connection

PSIVT

finished

Publish/subscribe

verification

with

JNDI

To

run

the

PSIVT

in

JNDI

mode,

two

administered

objects

must

be

retrievable

from

a

JNDI

namespace:

v

A

TopicConnectionFactory

bound

under

the

name

ivtTCF

v

A

Topic

bound

under

the

name

ivtT

You

can

define

these

objects

by

using

the

WebSphere

MQ

JMS

Administration

Tool

(see

Chapter

5,

“Using

the

WebSphere

MQ

JMS

administration

tool,”

on

page

41)

and

using

the

following

commands:

DEFINE

TCF(ivtTCF)

This

command

defines

the

TopicConnectionFactory.

DEFINE

T(ivtT)

TOPIC(MQJMS/PSIVT/Information)

This

command

defines

the

Topic.

These

definitions

assume

that

a

default

queue

manager,

on

which

the

broker

is

running,

is

available.

For

details

on

configuring

these

objects

to

use

a

non-default

queue

manager,

see

“Administering

JMS

objects”

on

page

45.

These

objects

must

reside

in

a

context

pointed

to

by

the

-url

command-line

parameter

described

below.

Publish/subscribe

IVT

36

Using

Java

To

run

the

test

in

JNDI

mode,

enter

the

following

command:

PSIVTRun

[

-t

]

-url

"<providerURL>"

[

-icf

<initCtxFact>

]

where:

-t

means

turn

tracing

on

(by

default,

tracing

is

off)

providerURL

Note:

Enclose

the

providerURL

string

in

quotation

marks

(″).
This

is

the

JNDI

location

of

the

administered

objects.

If

the

default

initial

context

factory

is

in

use,

this

is

an

LDAP

URL

of

the

form:

"ldap://hostname.company.com/contextName"

If

a

file

system

service

provider

is

used,

(see

initCtxFact

below),

the

URL

is

of

the

form:

"file://directorySpec"

initCtxFact

is

the

classname

of

the

initial

context

factory.

The

default

is

for

an

LDAP

service

provider,

and

has

the

value:

com.sun.jndi.ldap.LdapCtxFactory

If

a

file

system

service

provider

is

used,

set

this

parameter

to:

com.sun.jndi.fscontext.RefFSContextFactory

If

the

test

completes

successfully,

output

is

similar

to

the

non-JNDI

output,

except

that

the

create

QueueConnectionFactory

and

Queue

lines

indicate

retrieval

of

the

object

from

JNDI.

PSIVT

error

recovery

If

the

test

is

not

successful,

note

the

following:

v

The

following

message:

No

broker

response.

Please

ensure

broker

is

running.

indicates

that

the

broker

is

installed

on

the

target

queue

manager,

but

its

control

queue

contains

some

outstanding

messages.

For

instructions

on

how

to

start

it,

see

“Additional

setup

for

publish/subscribe

mode”

on

page

26.

v

If

the

following

message

is

displayed:

Unable

to

connect

to

queue

manager:

<default>

ensure

that

your

WebSphere

MQ

system

has

configured

a

default

queue

manager.

v

If

the

following

message

is

displayed:

Unable

to

connect

to

queue

manager:

...

ensure

that

the

administered

TopicConnectionFactory

that

the

PSIVT

uses

is

configured

with

a

valid

queue

manager

name.

Alternatively,

if

you

used

the

-nojndi

option,

ensure

that

you

supplied

a

valid

queue

manager

(using

the

-m

option).

v

If

the

following

message

is

displayed:

Unable

to

access

broker

control

queue

on

queue

manager:

...

Please

ensure

the

broker

is

installed

on

this

queue

manager

Publish/subscribe

IVT

Chapter

4.

Using

WebSphere

MQ

classes

for

Java

Message

Service

(WebSphere

MQ

JMS)

37

ensure

that

the

administered

TopicConnectionFactory

that

the

PSIVT

uses

is

configured

with

the

name

of

the

queue

manager

on

which

the

broker

is

installed.

If

you

used

the

-nojndi

option,

ensure

that

you

supplied

a

queue

manager

name

(using

the

-m

option).

Running

your

own

WebSphere

MQ

JMS

programs

For

information

about

writing

your

own

WebSphere

MQ

JMS

programs,

see

Part

3,

“Programming

with

WebSphere

MQ

JMS,”

on

page

195.

WebSphere

MQ

JMS

includes

a

utility

file,

runjms

(runjms.bat

on

Windows

systems),

to

help

you

to

run

the

supplied

programs

and

programs

that

you

have

written.

The

utility

provides

default

locations

for

the

trace

and

log

files,

and

enables

you

to

add

any

application

runtime

parameters

that

your

application

needs.

The

supplied

script

assumes

that

the

environment

variable

MQ_JAVA_INSTALL_PATH

is

set

to

the

directory

in

which

WebSphere

MQ

JMS

is

installed.

The

script

also

assumes

that

the

subdirectories

trace

and

log

within

the

directory

pointed

to

by

MQ_JAVA_DATA_PATH

are

used

for

trace

and

log

output,

respectively.

Use

the

following

command

to

run

your

application:

runjms

<classname

of

application>

[application-specific

arguments]

Solving

problems

If

a

program

does

not

complete

successfully,

run

the

installation

verification

program,

which

is

described

in

“Running

the

point-to-point

IVT”

on

page

31,

and

follow

the

advice

given

in

the

diagnostic

messages.

Tracing

programs

The

WebSphere

MQ

JMS

trace

facility

is

provided

to

help

IBM

staff

to

diagnose

customer

problems.

Trace

is

disabled

by

default,

because

the

output

rapidly

becomes

large,

and

is

unlikely

to

be

of

use

in

normal

circumstances.

If

you

are

asked

to

provide

trace

output,

enable

it

by

setting

the

Java

property

MQJMS_TRACE_LEVEL

to

one

of

the

following

values:

on

traces

WebSphere

MQ

JMS

calls

only

base

traces

both

WebSphere

MQ

JMS

calls

and

the

underlying

WebSphere

MQ

base

Java

calls

For

example:

java

-DMQJMS_TRACE_LEVEL=base

MyJMSProg

To

disable

trace,

set

MQJMS_TRACE_LEVEL

to

off.

By

default,

trace

is

output

to

a

file

named

mqjms.trc

in

the

current

working

directory.

You

can

redirect

it

to

a

different

directory

by

using

the

Java

property

MQJMS_TRACE_DIR.

For

example:

java

-DMQJMS_TRACE_LEVEL=base

-DMQJMS_TRACE_DIR=/somepath/tracedir

MyJMSProg

Publish/subscribe

IVT

38

Using

Java

|
|

The

runjms

utility

script

sets

these

properties

by

using

the

environment

variables

MQJMS_TRACE_LEVEL

and

MQ_JAVA_DATA_PATH,

as

follows:

java

-DMQJMS_LOG_DIR=%MQ_JAVA_DATA_PATH%\log

-DMQJMS_TRACE_DIR=%MQ_JAVA_DATA_PATH%\trace

-DMQJMS_TRACE_LEVEL=%MQJMS_TRACE_LEVEL%

%1

%2

%3

%4

%5

%6

%7

%8

%9

This

is

the

default;

change

it

as

required.

Logging

The

WebSphere

MQ

JMS

log

facility

is

provided

to

report

serious

problems,

particularly

those

that

might

indicate

configuration

errors

rather

than

programming

errors.

By

default,

log

output

is

sent

to

the

System.err

stream,

which

usually

appears

on

the

stderr

of

the

console

in

which

the

JVM

is

run.

You

can

redirect

the

output

to

a

file

by

using

a

Java

property

that

specifies

the

new

location,

for

example:

java

-DMQJMS_LOG_DIR=/mydir/forlogs

MyJMSProg

The

utility

script

runjms,

in

the

bin

directory

of

the

WebSphere

MQ

JMS

installation,

sets

this

property

to:

<MQ_JAVA_DATA_PATH>/log

where

MQ_JAVA_DATA_PATH

is

set,

on

Windows

systems,

to

the

path

to

your

WebSphere

MQ

Java

installation.

On

other

platforms

you

need

to

set

this

environment

variable.

When

the

log

is

redirected

to

a

file,

it

is

output

in

a

binary

form.

To

view

the

log,

the

utility

formatLog

(formatLog.bat

on

Windows

systems)

is

provided,

which

converts

the

file

to

plain

text

format.

The

utility

is

stored

in

the

bin

directory

of

your

WebSphere

MQ

JMS

installation.

Run

the

conversion

as

follows:

formatLog

<inputfile>

<outputfile>

Running

WebSphere

MQ

JMS

trace

Chapter

4.

Using

WebSphere

MQ

classes

for

Java

Message

Service

(WebSphere

MQ

JMS)

39

Logging

40

Using

Java

Chapter

5.

Using

the

WebSphere

MQ

JMS

administration

tool

The

administration

tool

enables

administrators

to

define

the

properties

of

eight

types

of

WebSphere

MQ

JMS

object

and

to

store

them

within

a

JNDI

namespace.

Then,

JMS

clients

can

use

JNDI

to

retrieve

these

administered

objects

from

the

namespace

and

use

them.

The

JMS

objects

that

you

can

administer

by

using

the

tool

are:

v

MQConnectionFactory

(JMS

1.1

only)

v

MQQueueConnectionFactory

v

MQTopicConnectionFactory

v

MQQueue

v

MQTopic

v

MQXAConnectionFactory

(JMS

1.1

only)

v

MQXAQueueConnectionFactory

v

MQXATopicConnectionFactory

v

JMSWrapXAQueueConnectionFactory

v

JMSWrapXATopicConnectionFactory

For

details

about

these

objects,

refer

to

“Administering

JMS

objects”

on

page

45.

Note:

JMSWrapXAQueueConnectionFactory

and

JMSWrapXATopicConnectionFactory

are

classes

that

are

specific

to

WebSphere

Application

Server.

They

are

contained

in

the

package

com.ibm.ejs.jms.mq.

The

tool

also

allows

administrators

to

manipulate

directory

namespace

subcontexts

within

the

JNDI.

See

“Manipulating

subcontexts”

on

page

45.

Invoking

the

administration

tool

The

administration

tool

has

a

command

line

interface.

You

can

use

this

interactively,

or

use

it

to

start

a

batch

process.

The

interactive

mode

provides

a

command

prompt

where

you

can

enter

administration

commands.

In

the

batch

mode,

the

command

to

start

the

tool

includes

the

name

of

a

file

that

contains

an

administration

command

script.

To

start

the

tool

in

interactive

mode,

enter

the

command:

JMSAdmin

[-t]

[-v]

[-cfg

config_filename]

where:

-t

Enables

trace

(default

is

trace

off)

-v

Produces

verbose

output

(default

is

terse

output)

-cfg

config_filename

Names

an

alternative

configuration

file

(see

“Configuration”

on

page

42)

A

command

prompt

is

displayed,

which

indicates

that

the

tool

is

ready

to

accept

administration

commands.

This

prompt

initially

appears

as:

InitCtx>

©

Copyright

IBM

Corp.

1997,

2004

41

|

|

indicating

that

the

current

context

(that

is,

the

JNDI

context

to

which

all

naming

and

directory

operations

currently

refer)

is

the

initial

context

defined

in

the

PROVIDER_URL

configuration

parameter

(see

“Configuration”).

As

you

traverse

the

directory

namespace,

the

prompt

changes

to

reflect

this,

so

that

the

prompt

always

displays

the

current

context.

To

start

the

tool

in

batch

mode,

enter

the

command:

JMSAdmin

<test.scp

where

test.scp

is

a

script

file

that

contains

administration

commands

(see

“Administration

commands”

on

page

44).

The

last

command

in

the

file

must

be

the

END

command.

Configuration

Configure

the

administration

tool

with

values

for

the

following

three

properties:

INITIAL_CONTEXT_FACTORY

The

service

provider

that

the

tool

uses.

There

are

three

explicitly

supported

values

for

this

property:

v

com.sun.jndi.ldap.LdapCtxFactory

(for

LDAP)

v

com.sun.jndi.fscontext.RefFSContextFactory

(for

file

system

context)

v

com.ibm.websphere.naming.WsnInitialContextFactory

(to

work

with

WebSphere

Application

Server’s

CosNaming

repository)

On

z/OS

and

OS/390,

com.ibm.jndi.LDAPCtxFactory

is

also

supported

and

provides

access

to

an

LDAP

server.

However,

this

is

incompatible

with

com.sun.jndi.ldap.LdapCtxFactory,

in

that

objects

created

using

one

InitialContextFactory

cannot

be

read

or

modified

using

the

other.

You

can

also

use

an

InitialContextFactory

that

is

not

in

the

list

above.

See

“Using

an

unlisted

InitialContextFactory”

on

page

43

for

more

details.

PROVIDER_URL

The

URL

of

the

session’s

initial

context;

the

root

of

all

JNDI

operations

carried

out

by

the

tool.

Three

forms

of

this

property

are

supported:

v

ldap://hostname/contextname

(for

LDAP)

v

file:[drive:]/pathname

(for

file

system

context)

v

iiop://hostname[:port]

/[?TargetContext=ctx]

(to

access

base

WebSphere

Application

Server

CosNaming

namespace)

SECURITY_AUTHENTICATION

Whether

JNDI

passes

security

credentials

to

your

service

provider.

This

property

is

used

only

when

an

LDAP

service

provider

is

used.

This

property

can

take

one

of

three

values:

v

none

(anonymous

authentication)

v

simple

(simple

authentication)

v

CRAM-MD5

(CRAM-MD5

authentication

mechanism)

If

a

valid

value

is

not

supplied,

the

property

defaults

to

none.

See

“Security”

on

page

43

for

more

details

about

security

with

the

administration

tool.

These

properties

are

set

in

a

configuration

file.

When

you

invoke

the

tool,

you

can

specify

this

configuration

by

using

the

-cfg

command-line

parameter,

as

described

Invoking

the

Administration

tool

42

Using

Java

in

“Invoking

the

administration

tool”

on

page

41.

If

you

do

not

specify

a

configuration

file

name,

the

tool

attempts

to

load

the

default

configuration

file

(JMSAdmin.config).

It

looks

for

this

file

first

in

the

current

directory,

and

then

in

the

<MQ_JAVA_INSTALL_PATH>/bin

directory,

where

<MQ_JAVA_INSTALL_PATH>

is

the

path

to

your

WebSphere

MQ

JMS

installation.

The

configuration

file

is

a

plain-text

file

that

consists

of

a

set

of

key-value

pairs,

separated

by

=.

This

is

shown

in

the

following

example:

#Set

the

service

provider

INITIAL_CONTEXT_FACTORY=com.sun.jndi.ldap.LdapCtxFactory

#Set

the

initial

context

PROVIDER_URL=ldap://polaris/o=ibm_us,c=us

#Set

the

authentication

type

SECURITY_AUTHENTICATION=none

(A

#

in

the

first

column

of

the

line

indicates

a

comment,

or

a

line

that

is

not

used.)

The

installation

comes

with

a

sample

configuration

file

that

is

called

JMSAdmin.config,

and

is

found

in

the

<MQ_JAVA_INSTALL_PATH>/bin

directory.

Edit

this

file

to

suit

the

setup

of

your

system.

Using

an

unlisted

InitialContextFactory

You

can

use

the

administration

tool

to

connect

to

JNDI

contexts

other

than

those

listed

in

“Configuration”

on

page

42

by

using

three

parameters

defined

in

the

JMSAdmin

configuration

file.

To

use

a

different

InitialContextFactory:

1.

Set

the

INITIAL_CONTEXT_FACTORY

property

to

the

required

class

name.

2.

Define

the

behavior

of

the

InitialContextFactory

using

the

USE_INITIAL_DIR_CONTEXT,

NAME_PREFIX

and

NAME_READABILITY_MARKER

properties.

The

settings

for

these

properties

are

described

in

the

sample

configuration

file

comments.

You

do

not

need

to

define

the

three

properties

listed

here,

if

you

use

one

of

the

supported

INITIAL_CONTEXT_FACTORY

values.

However,

you

can

give

them

values

to

override

the

system

defaults.

If

you

omit

one

or

more

of

the

three

InitialContextFactory

properties,

the

administration

tool

provides

suitable

defaults

based

on

the

values

of

the

other

properties.

Security

You

need

to

understand

the

effect

of

the

SECURITY_AUTHENTICATION

property

described

in

“Configuration”

on

page

42.

v

If

you

set

this

parameter

to

none,

JNDI

does

not

pass

any

security

credentials

to

the

service

provider,

and

anonymous

authentication

is

performed.

v

If

you

set

the

parameter

to

either

simple

or

CRAM-MD5,

security

credentials

are

passed

through

JNDI

to

the

underlying

service

provider.

These

security

credentials

are

in

the

form

of

a

user

distinguished

name

(User

DN)

and

password.

If

security

credentials

are

required,

you

are

prompted

for

these

when

the

tool

initializes.

Avoid

this

by

setting

the

PROVIDER_USERDN

and

PROVIDER_PASSWORD

properties

in

the

JMSAdmin

configuration

file.

Configuration

Chapter

5.

Using

the

WebSphere

MQ

JMS

administration

tool

43

Note:

If

you

do

not

use

these

properties,

the

text

typed,

including

the

password,

is

echoed

to

the

screen.

This

may

have

security

implications.

The

tool

does

no

authentication

itself;

the

task

is

delegated

to

the

LDAP

server.

The

LDAP

server

administrator

must

set

up

and

maintain

access

privileges

to

different

parts

of

the

directory.

If

authentication

fails,

the

tool

displays

an

appropriate

error

message

and

terminates.

More

detailed

information

about

security

and

JNDI

is

in

the

documentation

at

Sun’s

Java

web

site

(http://java.sun.com).

Configuring

for

WebSphere

Application

Server

V3.5

For

the

administration

tool

(or

any

client

application

that

needs

to

do

subsequent

lookups)

to

work

with

WebSphere

Application

Server’s

CosNaming

repository,

you

need

the

following

configuration:

v

CLASSPATH

must

include

WebSphere

Application

Server’s

JNDI-related

jar

file,

<WSAppserver>\lib\ujc.jar

v

PATH

must

include

<WSAppserver>\jdk\jre\bin,

where

<WSAppserver>

is

the

install

path

for

WebSphere

Application

Server

Administration

commands

When

the

command

prompt

is

displayed,

the

tool

is

ready

to

accept

commands.

Administration

commands

are

generally

of

the

following

form:

verb

[param]*

where

verb

is

one

of

the

administration

verbs

listed

in

Table

7.

All

valid

commands

consist

of

at

least

one

(and

only

one)

verb,

which

appears

at

the

beginning

of

the

command

in

either

its

standard

or

short

form.

The

parameters

a

verb

can

take

depend

on

the

verb.

For

example,

the

END

verb

cannot

take

any

parameters,

but

the

DEFINE

verb

can

take

any

number

of

parameters.

Details

of

the

verbs

that

take

at

least

one

parameter

are

discussed

in

later

sections

of

this

chapter.

Table

7.

Administration

verbs

Verb

Short

form

Description

ALTER

ALT

Change

at

least

one

of

the

properties

of

a

given

administered

object

DEFINE

DEF

Create

and

store

an

administered

object,

or

create

a

new

subcontext

DISPLAY

DIS

Display

the

properties

of

one

or

more

stored

administered

objects,

or

the

contents

of

the

current

context

DELETE

DEL

Remove

one

or

more

administered

objects

from

the

namespace,

or

remove

an

empty

subcontext

CHANGE

CHG

Alter

the

current

context,

allowing

the

user

to

traverse

the

directory

namespace

anywhere

below

the

initial

context

(pending

security

clearance)

COPY

CP

Make

a

copy

of

a

stored

administered

object,

storing

it

under

an

alternative

name

MOVE

MV

Alter

the

name

under

which

an

administered

object

is

stored

Configuration

44

Using

Java

Table

7.

Administration

verbs

(continued)

Verb

Short

form

Description

END

Close

the

administration

tool

Verb

names

are

not

case-sensitive.

Usually,

to

terminate

commands,

you

press

the

carriage

return

key.

However,

you

can

override

this

by

typing

the

+

symbol

directly

before

the

carriage

return.

This

enables

you

to

enter

multiline

commands,

as

shown

in

the

following

example:

DEFINE

Q(BookingsInputQueue)

+

QMGR(QM.POLARIS.TEST)

+

QUEUE(BOOKINGS.INPUT.QUEUE)

+

PORT(1415)

+

CCSID(437)

Lines

beginning

with

one

of

the

characters

*,

#,

or

/

are

treated

as

comments,

or

lines

that

are

ignored.

Manipulating

subcontexts

Use

the

verbs

CHANGE,

DEFINE,

DISPLAY

and

DELETE

to

manipulate

directory

namespace

subcontexts.

Their

use

is

described

in

Table

8.

Table

8.

Syntax

and

description

of

commands

used

to

manipulate

subcontexts

Command

syntax

Description

DEFINE

CTX(ctxName)

Attempts

to

create

a

new

child

subcontext

of

the

current

context,

having

the

name

ctxName.

Fails

if

there

is

a

security

violation,

if

the

subcontext

already

exists,

or

if

the

name

supplied

is

not

valid.

DISPLAY

CTX

Displays

the

contents

of

the

current

context.

Administered

objects

are

annotated

with

a,

subcontexts

with

[D].

The

Java

type

of

each

object

is

also

displayed.

DELETE

CTX(ctxName)

Attempts

to

delete

the

current

context’s

child

context

having

the

name

ctxName.

Fails

if

the

context

is

not

found,

is

non-empty,

or

if

there

is

a

security

violation.

CHANGE

CTX(ctxName)

Alters

the

current

context,

so

that

it

now

refers

to

the

child

context

having

the

name

ctxName.

One

of

two

special

values

of

ctxName

can

be

supplied:

=UP

moves

to

the

current

context’s

parent

=INIT

moves

directly

to

the

initial

context

Fails

if

the

specified

context

does

not

exist,

or

if

there

is

a

security

violation.

Administering

JMS

objects

This

section

describes

the

eight

types

of

object

that

the

administration

tool

can

handle.

It

includes

details

about

each

of

their

configurable

properties

and

the

verbs

that

can

manipulate

them.

Object

types

Table

9

on

page

46

shows

the

eight

types

of

administered

objects.

The

Keyword

column

shows

the

strings

that

you

can

substitute

for

TYPE

in

the

commands

shown

Administration

commands

Chapter

5.

Using

the

WebSphere

MQ

JMS

administration

tool

45

in

Table

10

on

page

47.

Table

9.

The

JMS

object

types

that

are

handled

by

the

administration

tool

Object

Type

Keyword

Description

MQConnectionFactory1

CF

The

WebSphere

MQ

implementation

of

the

JMS

ConnectionFactory

interface.

This

represents

a

factory

object

for

creating

connections

in

the

both

the

point-to-point

and

publish/subscribe

domains.

MQQueueConnectionFactory

QCF

The

WebSphere

MQ

implementation

of

the

JMS

QueueConnectionFactory

interface.

This

represents

a

factory

object

for

creating

connections

in

the

point-to-point

domain.

MQTopicConnectionFactory

TCF

The

WebSphere

MQ

implementation

of

the

JMS

TopicConnectionFactory

interface.

This

represents

a

factory

object

for

creating

connections

in

the

publish/subscribe

domain.

MQQueue

Q

The

WebSphere

MQ

implementation

of

the

JMS

Queue

interface.

This

represents

a

destination

for

messages

in

the

point-to-point

domain.

MQTopic

T

The

WebSphere

MQ

implementation

of

the

JMS

Topic

interface.

This

represents

a

destination

for

messages

in

the

publish/subscribe

domain.

MQXAConnectionFactory12

XACF

The

WebSphere

MQ

implementation

of

the

JMS

XAConnectionFactory

interface.

This

represents

a

factory

object

for

creating

connections

in

both

the

point-to-point

and

publish/subscribe

domains,

and

where

the

connections

use

the

XA

versions

of

JMS

classes.

MQXAQueueConnectionFactory2

XAQCF

The

WebSphere

MQ

implementation

of

the

JMS

XAQueueConnectionFactory

interface.

This

represents

a

factory

object

for

creating

connections

in

the

point-to-point

domain

that

use

the

XA

versions

of

JMS

classes.

MQXATopicConnectionFactory2

XATCF

The

WebSphere

MQ

implementation

of

the

JMS

XATopicConnectionFactory

interface.

This

represents

a

factory

object

for

creating

connections

in

the

publish/subscribe

domain

that

use

the

XA

versions

of

JMS

classes.

Administering

JMS

objects

46

Using

Java

|||
|
|
|
|
|

|||
|
|
|
|
|
|
|

Table

9.

The

JMS

object

types

that

are

handled

by

the

administration

tool

(continued)

Object

Type

Keyword

Description

JMSWrapXAQueueConnectionFactory3

WSQCF

The

WebSphere

MQ

implementation

of

the

JMS

QueueConnectionFactory

interface.

This

represents

a

factory

object

for

creating

connections

in

the

point-to-point

domain

that

use

the

XA

versions

of

the

JMS

classes

with

a

version

of

WebSphere

Application

Server

before

Version

5.

JMSWrapXATopicConnectionFactory3

WSTCF

The

WebSphere

MQ

implementation

of

the

JMS

TopicConnectionFactory

interface.

This

represents

a

factory

object

for

creating

connections

in

the

publish/subscribe

domain

that

use

the

XA

versions

of

the

JMS

classes

with

a

version

of

WebSphere

Application

Server

before

Version

5.

1.

This

object

type

applies

to

JMS

1.1

only.

2.

These

classes

are

provided

for

use

by

vendors

of

application

servers.

They

are

unlikely

to

be

directly

useful

to

application

programmers.

3.

Use

this

style

of

ConnectionFactory

if

you

want

your

JMS

sessions

to

participate

in

global

transactions

that

are

coordinated

by

a

version

of

WebSphere

Application

Server

before

Version

5.

Verbs

used

with

JMS

objects

You

can

use

the

verbs

ALTER,

DEFINE,

DISPLAY,

DELETE,

COPY,

and

MOVE

to

manipulate

administered

objects

in

the

directory

namespace.

Table

10

summarizes

their

use.

Substitute

TYPE

with

the

keyword

that

represents

the

required

administered

object,

as

listed

in

Table

9

on

page

46.

Table

10.

Syntax

and

description

of

commands

used

to

manipulate

administered

objects

Command

syntax

Description

ALTER

TYPE(name)

[property]*

Attempts

to

update

the

given

administered

object’s

properties

with

the

ones

supplied.

Fails

if

there

is

a

security

violation,

if

the

specified

object

cannot

be

found,

or

if

the

new

properties

supplied

are

not

valid.

DEFINE

TYPE(name)

[property]*

Attempts

to

create

an

administered

object

of

type

TYPE

with

the

supplied

properties,

and

store

it

under

the

name

name

in

the

current

context.

Fails

if

there

is

a

security

violation,

if

the

supplied

name

is

not

valid

or

already

exists,

or

if

the

properties

supplied

are

not

valid.

DISPLAY

TYPE(name)

Displays

the

properties

of

the

administered

object

of

type

TYPE,

bound

under

the

name

name

in

the

current

context.

Fails

if

the

object

does

not

exist,

or

if

there

is

a

security

violation.

DELETE

TYPE(name)

Attempts

to

remove

the

administered

object

of

type

TYPE,

having

the

name

name,

from

the

current

context.

Fails

if

the

object

does

not

exist,

or

if

there

is

a

security

violation.

Administering

JMS

objects

Chapter

5.

Using

the

WebSphere

MQ

JMS

administration

tool

47

|
|
|

|
|

|

|
|

Table

10.

Syntax

and

description

of

commands

used

to

manipulate

administered

objects

(continued)

Command

syntax

Description

COPY

TYPE(nameA)

TYPE(nameB)

Makes

a

copy

of

the

administered

object

of

type

TYPE,

having

the

name

nameA,

naming

the

copy

nameB.

This

all

occurs

within

the

scope

of

the

current

context.

Fails

if

the

object

to

be

copied

does

not

exist,

if

an

object

of

name

nameB

already

exists,

or

if

there

is

a

security

violation.

MOVE

TYPE(nameA)

TYPE(nameB)

Moves

(renames)

the

administered

object

of

type

TYPE,

having

the

name

nameA,

to

nameB.

This

all

occurs

within

the

scope

of

the

current

context.

Fails

if

the

object

to

be

moved

does

not

exist,

if

an

object

of

name

nameB

already

exists,

or

if

there

is

a

security

violation.

Creating

objects

Objects

are

created

and

stored

in

a

JNDI

namespace

using

the

following

command

syntax:

DEFINE

TYPE(name)

[property]*

That

is,

the

DEFINE

verb,

followed

by

a

TYPE(name)

administered

object

reference,

followed

by

zero

or

more

properties

(see

“Properties”

on

page

49).

LDAP

naming

considerations

To

store

your

objects

in

an

LDAP

environment,

you

must

give

them

names

that

comply

with

certain

conventions.

One

of

these

is

that

object

and

subcontext

names

must

include

a

prefix,

such

as

cn=

(common

name),

or

ou=

(organizational

unit).

The

administration

tool

simplifies

the

use

of

LDAP

service

providers

by

allowing

you

to

refer

to

object

and

context

names

without

a

prefix.

If

you

do

not

supply

a

prefix,

the

tool

automatically

adds

a

default

prefix

to

the

name

you

supply.

For

LDAP

this

is

cn=.

You

can

change

the

default

prefix

by

setting

the

NAME_PREFIX

property

in

the

JMSAdmin

configuration

file,

as

described

in

“Using

an

unlisted

InitialContextFactory”

on

page

43.

This

is

shown

in

the

following

example.

InitCtx>

DEFINE

Q(testQueue)

InitCtx>

DISPLAY

CTX

Contents

of

InitCtx

a

cn=testQueue

com.ibm.mq.jms.MQQueue

1

Object(s)

0

Context(s)

1

Binding(s),

1

Administered

Note

that,

although

the

object

name

supplied

(testQueue)

does

not

have

a

prefix,

the

tool

automatically

adds

one

to

ensure

compliance

with

the

LDAP

naming

convention.

Likewise,

submitting

the

command

DISPLAY

Q(testQueue)

also

causes

this

prefix

to

be

added.

Administering

JMS

objects

48

Using

Java

You

might

need

to

configure

your

LDAP

server

to

store

Java

objects.

Information

to

assist

with

this

configuration

is

provided

in

Appendix

C,

“LDAP

schema

definition

for

storing

Java

objects,”

on

page

463.

Properties

A

property

consists

of

a

name-value

pair

in

the

format:

PROPERTY_NAME(property_value)

Property

names

are

not

case-sensitive,

and

are

restricted

to

the

set

of

recognized

names

shown

in

Table

11.

This

table

also

shows

the

valid

property

values

for

each

property.

Table

11.

Property

names

and

valid

values

Property

Short

form

Valid

values

(defaults

in

bold)

BROKERCCDSUBQ1

CCDSUB

v

SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE

v

Any

string

BROKERCCSUBQ

CCSUB

v

SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE

v

Any

string

BROKERCONQ

BCON

Any

string

BROKERDURSUBQ1

BDSUB

v

SYSTEM.JMS.D.SUBSCRIBER.QUEUE

v

Any

string

BROKERPUBQ

BPUB

v

SYSTEM.BROKER.DEFAULT.STREAM

v

Any

string

BROKERQMGR

BQM

Any

string

BROKERSUBQ

BSUB

v

SYSTEM.JMS.ND.SUBSCRIBER.QUEUE

v

Any

string

BROKERVER

BVER

v

V1

-

To

use

the

WebSphere

MQ

broker.

Also

to

use

the

WebSphere

MQ

Integrator

V2

or

WebSphere

MQ

Event

Broker

brokers

in

compatibility

mode.

v

V2

-

To

use

the

WebSphere

MQ

Integrator

V2

or

WebSphere

MQ

Event

Broker

brokers

in

native

mode

CCSID

CCS

Any

positive

integer

CHANNEL

CHAN

Any

string

CLEANUP

CL

v

SAFE

v

ASPROP

v

NONE

v

STRONG

CLEANUPINT

CLINT

v

3600000

v

Any

positive

integer

CLIENTID

CID

Any

string

DESCRIPTION

DESC

Any

string

DIRECTAUTH

DAUTH

v

BASIC

-

No

authentication,

username

authentication,

or

password

authentication

v

CERTIFICATE

-

Public

key

certificate

authentication

ENCODING

ENC

See

“The

ENCODING

property”

on

page

57

Administering

JMS

objects

Chapter

5.

Using

the

WebSphere

MQ

JMS

administration

tool

49

|

|

|||
|
|

Table

11.

Property

names

and

valid

values

(continued)

Property

Short

form

Valid

values

(defaults

in

bold)

EXPIRY

EXP

v

APP

-

Expiry

may

be

defined

by

the

JMS

application.

v

UNLIM

-

No

expiry

occurs.

v

Any

positive

integer

representing

expiry

in

milliseconds.

FAILIFQUIESCE

FIQ

v

Yes

-

Applications

return

from

a

method

call

if

the

queue

manager

has

entered

a

controlled

shutdown.

v

No

-

Applications

continue

to

carry

out

operations

against

a

quiescing

queue

manager,

preventing

that

queue

manager’s

shutdown.

HOSTNAME

HOST

v

localhost

v

Any

string

LOCALADDRESS

LA

v

Not

set

v

A

string

in

the

format:

[ip-addr][(low-port[,high-port])]

Here

are

some

examples:

9.20.4.98

The

channel

binds

to

address

9.20.4.98

locally

9.20.4.98(1000)

The

channel

binds

to

address

9.20.4.98

locally

and

uses

port

1000

9.20.4.98(1000,2000)

The

channel

binds

to

address

9.20.4.98

locally

and

uses

a

port

in

the

range

1000

to

2000

(1000)

The

channel

binds

to

port

1000

locally

(1000,2000)

The

channel

binds

to

a

port

in

the

range

1000

to

2000

locally
You

can

specify

a

host

name

instead

of

an

IP

address.

For

direct

connections,

this

property

applies

only

when

multicast

is

used

and

the

value

of

the

property

must

not

contain

a

port

number.

If

it

does

contain

a

port

number,

the

connection

is

rejected.

Therefore,

the

only

valid

values

of

the

property

are

null,

an

IP

address,

or

a

host

name.

MSGBATCHSZ

MBS

v

10

v

Any

positive

integer

MSGRETENTION

MRET

v

Yes

-

Unwanted

messages

remain

on

the

input

queue

v

No

-

Unwanted

messages

are

dealt

with

according

to

their

disposition

options

MSGSELECTION

MSEL

v

CLIENT

-

Message

selection

is

done

by

the

client.

v

BROKER

-

Message

selection

is

done

by

the

broker.

Administering

JMS

objects

50

Using

Java

|||
|

|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|

|
|
|
|
|
|

|||
|

Table

11.

Property

names

and

valid

values

(continued)

Property

Short

form

Valid

values

(defaults

in

bold)

MULTICAST

MCAST

v

DISABLED

-

Multicast

is

disabled.

This

is

the

default

value

for

ConnectionFactory

and

TopicConnectionFactory

objects.

v

ASCF

-

Same

as

the

setting

for

the

ConnectionFactory

or

TopicConnectionFactory

object.

This

value

is

valid

only

for

Topic

objects,

and

is

the

default

value

for

Topic

objects.

v

RELIABLE

-

Multicast

is

enabled

with

reliable

delivery

only.

v

ENABLED

-

Multicast

is

enabled

if

it

is

available.

Using

this

value

might

provide

a

reliable

multicast

connection

depending

on

the

server

configuration.

v

NOTR

-

As

ENABLED,

but

does

not

provide

a

reliable

multicast

connection.

This

value

is

used

to

enable

multicast

for

legacy

applications.

PERSISTENCE

PER

v

APP

-

Persistence

is

defined

by

the

JMS

application.

v

QDEF

-

Persistence

takes

the

value

of

the

queue

default.

v

PERS

-

Messages

are

persistent.

v

NON

-

Messages

are

non-persistent.

POLLINGINT

PINT

v

5000

v

Any

positive

integer

PORT

v

1414

(for

TRANSPORT

set

to

BIND

or

CLIENT);

1506

(for

TRANSPORT

set

to

DIRECT)

v

Any

positive

integer

PRIORITY

PRI

v

APP

-

Priority

is

defined

by

the

JMS

application.

v

QDEF

-

Priority

takes

the

value

of

the

queue

default.

v

Any

integer

in

the

range

0-9.

PROXYHOSTNAME

PHOST

v

Not

set

v

The

host

name

of

the

proxy

server

PROXYPORT

PPORT

v

443

v

The

port

number

of

the

proxy

server

PUBACKINT

PAI

v

25

v

Any

positive

integer

QMANAGER

QMGR

Any

string

QUEUE

QU

Any

string

RECEXIT

RCX

Any

string

RECEXITINIT

RCXI

Any

string

SECEXIT

SCX

Any

string

SECEXITINIT

SCXI

Any

string

SENDEXIT

SDX

Any

string

SENDXITINIT

SDXI

Any

string

SPARSESUBS

SSUBS

v

NO

-

Subscriptions

receive

frequent

matching

messages.

v

YES

-

Subscriptions

receive

infrequent

matching

messages.

This

value

requires

that

the

subscription

queue

can

be

opened

for

browse.

Administering

JMS

objects

Chapter

5.

Using

the

WebSphere

MQ

JMS

administration

tool

51

|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|||
|

|||
|

|||
|
|
|
|

Table

11.

Property

names

and

valid

values

(continued)

Property

Short

form

Valid

values

(defaults

in

bold)

SSLCIPHERSUITE

SCPHS

v

Not

set

v

See

“SSL

properties”

on

page

58

SSLCRL

SCRL

v

Not

set

v

Space-separated

list

of

LDAP

URLs.

See

“SSL

properties”

on

page

58

SSLPEERNAME

SPEER

v

Not

set

v

See

“SSL

properties”

on

page

58

STATREFRESHINT

SRI

v

60000

v

Any

positive

integer

SUBSTORE

SS

v

MIGRATE

v

QUEUE

v

BROKER

SYNCPOINTALLGETS

SPAG

v

No

v

Yes

TARGCLIENT

TC

v

JMS

-

The

target

of

the

message

is

a

JMS

application.

v

MQ

-

The

target

of

the

message

is

a

non-JMS

WebSphere

MQ

application.

TEMPMODEL

TM

Any

string

TEMPQPREFIX

TQP

Any

string

TOPIC

TOP

Any

string

TRANSPORT

TRAN

v

BIND

-

For

a

bindings

connection

v

CLIENT

-

For

a

client

connection

v

DIRECT

-

For

a

direct

connection

to

a

WebSphere

MQ

Event

Broker,

WebSphere

Business

Integration

Event

Broker,

or

WebSphere

Business

Integration

Message

Broker

broker

v

DIRECTHTTP

-

For

a

direct

connection

using

HTTP

tunnelling.

USECONNPOOLING

UCP

v

Yes

v

No

Notes:

1.

In

certain

environments,

specifying

the

same

queue

name

for

the

BROKERCCDSUBQ

and

BROKERDURSUBQ

properties

of

an

MQTopic

object

can

cause

a

JMSException

to

be

thrown.

You

are

advised,

therefore,

to

specify

different

queue

names

for

these

properties.

Many

of

the

properties

are

relevant

only

to

a

specific

subset

of

the

object

types.

Table

12

on

page

53

shows

for

each

property

which

object

types

are

valid,

and

gives

a

brief

description

of

each

property.

The

object

types

are

identified

using

keywords;

refer

to

Table

9

on

page

46

for

an

explanation

of

these.

Numbers

refer

to

notes

at

the

end

of

the

table.

See

also

“Property

dependencies”

on

page

56.

Appendix

A,

“Mapping

between

administration

tool

properties

and

programmable

properties,”

on

page

457

shows

the

relationship

between

properties

set

by

the

tool

and

programmable

properties.

Administering

JMS

objects

52

Using

Java

|||

|

|
|

Table

12.

The

valid

combinations

of

property

and

object

type

Property

CF1

QCF

TCF

Q

T

XACF1

WSQCF

XAQCF

WSTCF

XATCF

Description

BROKERCCDSUBQ

Y

The

name

of

the

queue

from

which

durable

subscription

messages

are

retrieved

for

a

ConnectionConsumer

BROKERCCSUBQ

Y

Y

Y

Y

The

name

of

the

queue

from

which

non-durable

subscription

messages

are

retrieved

for

a

ConnectionConsumer

BROKERCONQ

Y

Y

Y

Y

Broker’s

control

queue

name

BROKERDURSUBQ

Y

The

name

of

the

queue

from

which

durable

subscription

messages

are

retrieved

BROKERPUBQ

Y

Y

Y

Y

The

name

of

the

broker

input

queue

(stream

queue)

BROKERQMGR

Y

Y

Y

Y

The

queue

manager

on

which

the

broker

is

running

BROKERSUBQ

Y

Y

Y

Y

The

name

of

the

queue

from

which

non-durable

subscription

messages

are

retrieved

BROKERVER

Y2

Y2

Y

Y

Y

The

version

of

the

broker

being

used

CCSID

Y

Y

Y

Y

Y

The

coded-character-set-ID

to

be

used

on

connections

CHANNEL

Y

Y

Y

The

name

of

the

client

connection

channel

being

used

CLEANUP

Y

Y

Y

Y

Cleanup

Level

for

BROKER

or

MIGRATE

Subscription

Stores

CLEANUPINT

Y

Y

Y

Y

The

interval

between

background

executions

of

the

publish/subscribe

cleanup

utility

CLIENTID

Y2

Y

Y2

Y

Y

Y

A

string

identifier

for

the

client

DESCRIPTION

Y2

Y

Y2

Y

Y

Y

Y

Y

A

description

of

the

stored

object

DIRECTAUTH

Y

Y

To

enable

SSL

authentication

for

a

direct

connection

3

ENCODING

Y

Y

The

encoding

scheme

used

for

this

destination

EXPIRY

Y

Y

The

period

after

which

messages

at

a

destination

expire

HOSTNAME4

Y2

Y

Y2

The

name

of

the

host

on

which

the

queue

manager

or

WebSphere

MQ

Event

Broker

broker

resides.

A

dotted-decimal

TCP/IP

address

can

also

be

used.

LOCALADDRESS

Y

Y

Y

The

range

of

local

ports

to

be

used

when

making

a

connection

to

a

WebSphere

MQ

queue

manager

MSGBATCHSZ

Y

Y

Y

Y

Y

Y

The

maximum

number

of

messages

to

be

taken

from

a

queue

in

one

packet

when

using

asynchronous

message

delivery

Administering

JMS

objects

Chapter

5.

Using

the

WebSphere

MQ

JMS

administration

tool

53

||

||||||||
|
|
|
|

||||||||||
|
|

||||||||||
|
|
|

||||||||||

||||||||||
|
|

||||||||||
|

||||||||||
|

||||||||||
|
|

||||||||||

||||||||||
|

||||||||||
|

||||||||||
|

||||||||||
|
|

||||||||||

||||||||||

||||||||||
|

||||||||||
|

||||||||||
|

||||||||||
|
|
|
|

||||||||||
|
|

||||||||||
|
|
|

Table

12.

The

valid

combinations

of

property

and

object

type

(continued)

Property

CF1

QCF

TCF

Q

T

XACF1

WSQCF

XAQCF

WSTCF

XATCF

Description

MSGRETENTION

Y

Y

Y

Y

Whether

or

not

the

connection

consumer

keeps

unwanted

messages

on

the

input

queue

MSGSELECTION

Y

Y

Y

Y

Determines

whether

message

selection

is

done

by

the

JMS

client

or

by

the

broker.

If

TRANSPORT

has

the

value

DIRECT,

message

selection

is

always

done

by

the

broker

and

the

value

of

MSGSELECTION

is

ignored.

Message

selection

by

the

broker

is

not

supported

when

BROKERVER

has

the

value

V1.

MULTICAST

Y

Y

Y

To

enable

multicast

on

a

direct

connection3

PERSISTENCE

Y

Y

The

persistence

of

messages

sent

to

a

destination

POLLINGINT

Y

Y

Y

Y

Y

Y

The

interval,

in

milliseconds,

between

scans

of

all

receivers

during

asynchronous

message

delivery

PORT4

Y2

Y

Y2

The

port

on

which

the

queue

manager

or

broker

listens

PRIORITY

Y

Y

The

priority

for

messages

sent

to

a

destination

PROXYHOSTNAME

Y

Y

The

host

name

of

the

proxy

server

for

a

direct

connection3

PROXYPORT

Y

Y

The

port

number

of

the

proxy

server

for

a

direct

connection3

PUBACKINT

Y

Y

Y

Y

The

interval,

in

number

of

messages,

between

publish

requests

that

require

acknowledgement

from

the

broker

QMANAGER

Y

Y

Y

Y

Y

Y

Y

The

name

of

the

queue

manager

to

connect

to

QUEUE

Y

The

underlying

name

of

the

queue

representing

this

destination

RECEXIT

Y

Y

Y

The

fully-qualified

class

name

of

the

receive

exit

being

used

RECEXITINIT

Y

Y

Y

The

receive

exit

initialization

string

SECEXIT

Y

Y

Y

The

fully-qualified

class

name

of

the

security

exit

being

used

SECEXITINIT

Y

Y

Y

The

security

exit

initialization

string

SENDEXIT

Y

Y

Y

The

fully-qualified

class

name

of

the

send

exit

being

used

SENDEXITINIT

Y

Y

Y

The

send

exit

initialization

string

SPARSESUBS

Y

Y

Y

Y

Controls

the

message

retrieval

policy

of

a

TopicSubscriber

object

SSLCIPHERSUITE

Y

Y

Y

The

cipher

suite

to

use

for

SSL

connection

Administering

JMS

objects

54

Using

Java

|

||||||||
|
|
|
|

||||||||||
|
|

||||||||||
|
|
|
|
|
|
|
|

||||||||||
|

||||||||||
|

||||||||||
|
|

||||||||||
|

||||||||||
|

||||||||||
|

||||||||||
|

||||||||||
|
|

||||||||||
|

||||||||||
|

||||||||||
|

||||||||||

||||||||||
|

||||||||||

||||||||||
|

||||||||||

||||||||||
|

||||||||||
|

Table

12.

The

valid

combinations

of

property

and

object

type

(continued)

Property

CF1

QCF

TCF

Q

T

XACF1

WSQCF

XAQCF

WSTCF

XATCF

Description

SSLCRL

Y

Y

Y

CRL

servers

to

check

for

SSL

certificate

revocation

SSLPEERNAME

Y

Y

Y

For

SSL,

a

distinguished

name

skeleton

that

must

match

that

provided

by

the

queue

manager

STATREFRESHINT

Y

Y

Y

Y

The

interval,

in

milliseconds,

between

transactions

to

refresh

publish/subscribe

status

SUBSTORE

Y

Y

Y

Y

Where

WebSphere

MQ

JMS

should

store

persistent

data

relating

to

active

subscriptions

SYNCPOINTALLGETS

Y

Y

Y

Y

Y

Y

Whether

all

gets

should

be

performed

under

syncpoint

TARGCLIENT5

Y

Y

Whether

the

WebSphere

MQ

RFH2

format

is

used

to

exchange

information

with

target

applications

TEMPMODEL

Y

Y

Y

Y

The

name

of

the

model

queue

from

which

temporary

queues

are

created

TEMPQPREFIX

Y

Y

Y

Y

The

prefix

that

is

used

to

form

the

name

of

a

WebSphere

MQ

dynamic

queue.

The

rules

for

forming

the

prefix

are

the

same

as

those

for

forming

the

contents

of

the

DynamicQName

field

in

a

WebSphere

MQ

object

descriptor,

structure

MQOD,

but

the

last

non

blank

character

must

be

an

asterisk.

If

no

value

is

specified

for

the

property,

the

value

used

is

CSQ.*

on

z/OS

and

AMQ.*

on

the

other

platforms.

TOPIC

Y

The

underlying

name

of

the

topic

representing

this

destination

TRANSPORT4

Y2

Y

Y2

Y6

Y6

Y6

Whether

connections

use

the

WebSphere

MQ

bindings,

a

client

connection,

or

WebSphere

MQ

Event

Broker.

USECONNPOOLING

Y

Y

Y

Y

Y

Y

Whether

to

use

connection

pooling

Administering

JMS

objects

Chapter

5.

Using

the

WebSphere

MQ

JMS

administration

tool

55

|

||||||||
|
|
|
|

||||||||||
|

||||||||||
|
|

||||||||||
|
|

||||||||||
|
|

||||||||||
|

||||||||||
|
|

||||||||||
|

||||||||||
|
|
|
|
|
|
|
|
|
|
|

||||||||||
|

||||||||||
|
|
|

||||||||||

Table

12.

The

valid

combinations

of

property

and

object

type

(continued)

Property

CF1

QCF

TCF

Q

T

XACF1

WSQCF

XAQCF

WSTCF

XATCF

Description

Notes:

1.

This

object

type

applies

to

JMS

1.1

only.

2.

Only

the

BROKERVER,

CLIENTID,

DESCRIPTION,

HOSTNAME,

PORT,

and

TRANSPORT

properties

are

supported

for

a

TopicConnectionFactory

object,

or

a

JMS

1.1

domain

independent

ConnectionFactory

object,

when

connecting

directly

to

WebSphere

MQ

Event

Broker

over

TCP/IP.

3.

See

Appendix

D,

“Connecting

to

other

products,”

on

page

469.

4.

HOSTNAME,

PORT,

and

TRANSPORT

are

also

used

to

identify

if

you

are

connecting

to

WebSphere

MQ

Event

Broker

and

the

broker’s

IP

hostname

and

listening

port.

For

more

information

about

using

WebSphere

MQ

Event

Broker,

see

Chapter

11,

“Writing

WebSphere

MQ

JMS

publish/subscribe

applications,”

on

page

213.

5.

The

TARGCLIENT

property

indicates

whether

the

WebSphere

MQ

RFH2

format

is

used

to

exchange

information

with

target

applications.

The

MQJMS_CLIENT_JMS_COMPLIANT

constant

indicates

that

the

RFH2

format

is

used

to

send

information.

Applications

that

use

WebSphere

MQ

JMS

understand

the

RFH2

format.

Set

the

MQJMS_CLIENT_JMS_COMPLIANT

constant

when

you

exchange

information

with

a

target

WebSphere

MQ

JMS

application.

The

MQJMS_CLIENT_NONJMS_MQ

constant

indicates

that

the

RFH2

format

is

not

used

to

send

information.

Typically,

this

value

is

used

for

an

existing

WebSphere

MQ

application

(that

is,

one

that

does

not

handle

RFH2).

6.

For

XACF,

XAQCF,

XATCF,

WSQCF,

and

WSTCF

objects,

only

the

BIND

transport

type

is

allowed.

Property

dependencies

Some

properties

have

dependencies

on

each

other.

This

might

mean

that

it

is

meaningless

to

supply

a

property

unless

another

property

is

set

to

a

particular

value.

The

specific

property

groups

where

this

can

occur

are

v

Client

properties

v

Properties

for

connecting

to

WebSphere

MQ

Event

Broker

v

Exit

initialization

strings

Client

properties

Some

properties

are

only

relevant

to

a

connection

with

the

TRANSPORT

property

set

to

the

value

CLIENT.

If

this

property

is

not

explicitly

set

on

a

connection

factory

to

one

of

the

values

CLIENT

or

DIRECT,

the

transport

used

on

connections

provided

by

the

factory

is

WebSphere

MQ

Bindings.

Consequently,

none

of

the

client

properties

on

this

connection

factory

can

be

configured.

These

are:

v

HOST

v

PORT

v

CHANNEL

v

CCSID

v

RECEXIT

v

RECEXITINIT

v

SECEXIT

v

SECEXITINIT

v

SENDEXIT

v

SENDEXITINIT

v

SSLCIPHERSUITE

Administering

JMS

objects

56

Using

Java

|

||||||||
|
|
|
|

|

|

|
|
|

|

|
|

|
|

|
|

|
|
|
|

|
|

|
|

v

SSLCRL

v

SSLPEERNAME

It

is

an

error

to

set

any

of

these

properties

without

setting

the

TRANSPORT

property

to

CLIENT

(or,

for

some,

DIRECT;

see

“Properties

for

connecting

to

WebSphere

MQ

Event

Broker”).

Properties

for

connecting

to

WebSphere

MQ

Event

Broker

The

only

properties

used

with

a

direct

connection

to

WebSphere

MQ

Event

Broker

are

BROKERVER,

CLIENTID,

DESCRIPTION,

HOSTNAME,

PORT,

and

TRANSPORT.

The

default

values

for

PORT

and

BROKERVER

are

set

by

the

definition

of

TRANSPORT:

1.

Defining

a

connection

factory

with

TRANSPORT

as

CLIENT

sets:

v

BROKERVER

to

V1

v

PORT

to

1414
2.

Defining

a

connection

factory

with

TRANSPORT

as

DIRECT

sets:

v

BROKERVER

to

V2

v

PORT

to

1506

If

you

explicitly

set

the

value

of

PORT

or

BROKERVER,

a

later

change

to

the

value

of

TRANSPORT

does

not

override

your

choices.

Exit

initialization

strings

Do

not

set

any

of

the

exit

initialization

strings

without

supplying

the

corresponding

exit

name.

The

exit

initialization

properties

are:

v

RECEXITINIT

v

SECEXITINIT

v

SENDEXITINIT

For

example,

specifying

RECEXITINIT(myString)

without

specifying

RECEXIT(some.exit.classname)

causes

an

error.

The

ENCODING

property

The

valid

values

that

the

ENCODING

property

can

take

are

constructed

from

three

sub-properties:

integer

encoding

Either

normal

or

reversed

decimal

encoding

Either

normal

or

reversed

floating-point

encoding

IEEE

normal,

IEEE

reversed,

or

z/OS.

The

ENCODING

is

expressed

as

a

three-character

string

with

the

following

syntax:

{N|R}{N|R}{N|R|3}

In

this

string:

v

N

denotes

normal

v

R

denotes

reversed

v

3

denotes

z/OS

v

The

first

character

represents

integer

encoding

v

The

second

character

represents

decimal

encoding

v

The

third

character

represents

floating-point

encoding

This

provides

a

set

of

twelve

possible

values

for

the

ENCODING

property.

Administering

JMS

objects

Chapter

5.

Using

the

WebSphere

MQ

JMS

administration

tool

57

There

is

an

additional

value,

the

string

NATIVE,

which

sets

appropriate

encoding

values

for

the

Java

platform.

The

following

examples

show

valid

combinations

for

ENCODING:

ENCODING(NNR)

ENCODING(NATIVE)

ENCODING(RR3)

SSL

properties

When

you

specify

TRANSPORT(CLIENT),

you

can

enable

Secure

Sockets

Layer

(SSL)

encrypted

communication

using

the

SSLCIPHERSUITE

property.

Set

this

property

to

a

valid

CipherSuite

provided

by

your

JSSE

provider;

it

must

match

the

CipherSpec

named

on

the

SVRCONN

channel

named

by

the

CHANNEL

property.

However,

CipherSpecs

(as

specified

on

the

SVRCONN

channel)

and

CipherSuites

(as

specified

on

ConnectionFactory

objects)

use

different

naming

schemes

to

represent

the

same

SSL

encryption

algorithms.

If

a

recognized

CipherSpec

name

is

specified

on

the

SSLCIPHERSUITE

property,

JMSAdmin

issues

a

warning

and

maps

the

CipherSpec

to

its

equivalent

CipherSuite.

See

Appendix

H,

“SSL

CipherSuites

supported

by

WebSphere

MQ,”

on

page

487

for

a

list

of

CipherSpecs

recognized

by

WebSphere

MQ

and

JMSAdmin.

The

SSLPEERNAME

matches

the

format

of

the

SSLPEER

parameter,

which

can

be

set

on

channel

definitions.

It

is

a

list

of

attribute

name

and

value

pairs

separated

by

commas

or

semicolons.

For

example:

SSLPEERNAME(CN=QMGR.*,

OU=IBM,

OU=WEBSPHERE)

The

set

of

names

and

values

makes

up

a

distinguished

name.

For

more

details

about

distinguished

names

and

their

use

with

WebSphere

MQ,

see

the

WebSphere

MQ

Security

book.

The

example

given

checks

the

identifying

certificate

presented

by

the

server

at

connect-time.

For

the

connection

to

succeed,

the

certificate

must

have

a

Common

Name

beginning

QMGR.,

and

must

have

at

least

two

Organizational

Unit

names,

the

first

of

which

is

IBM

and

the

second

WEBSPHERE.

Checking

is

case-insensitive.

If

SSLPEERNAME

is

not

set,

no

such

checking

is

performed.

SSLPEERNAME

is

ignored

if

SSLCIPHERSUITE

is

not

specified.

The

SSLCRL

property

specifies

zero

or

more

CRL

(Certificate

Revocation

List)

servers.

Use

of

this

property

requires

a

JVM

at

Java

2

v1.4.

This

is

a

space-delimited

list

of

entries

of

the

form:

ldap://hostname:[port]

optionally

followed

by

a

single

/.

If

port

is

omitted,

the

default

LDAP

port

of

389

is

assumed.

At

connect-time,

the

SSL

certificate

presented

by

the

server

is

checked

against

the

specified

CRL

servers.

See

the

WebSphere

MQ

Security

book

for

more

about

CRL

security.

If

SSLCRL

is

not

set,

no

such

checking

is

performed.

SSLCRL

is

ignored

if

SSLCIPHERSUITE

is

not

specified.

Administering

JMS

objects

58

Using

Java

Sample

error

conditions

The

following

are

examples

of

the

error

conditions

that

might

arise

when

creating

an

object:

CipherSpec

mapped

to

CipherSuite

InitCtx/cn=Trash>

DEFINE

QCF(testQCF)

SSLCIPHERSUITE(RC4_MD5_US)

WARNING:

Converting

CipherSpec

RC4_MD5_US

to

CipherSuite

SSL_RSA_WITH_RC4_128_MD5

Invalid

property

for

object

InitCtx/cn=Trash>

DEFINE

QCF(testQCF)

PRIORITY(4)

Unable

to

create

a

valid

object,

please

check

the

parameters

supplied

Invalid

property

for

a

QCF:

PRI

Invalid

type

for

property

value

InitCtx/cn=Trash>

DEFINE

QCF(testQCF)

CCSID(english)

Unable

to

create

a

valid

object,

please

check

the

parameters

supplied

Invalid

value

for

CCS

property:

English

Property

clash

-

client/bindings

InitCtx/cn=Trash>

DEFINE

QCF(testQCF)

HOSTNAME(polaris.hursley.ibm.com)

Unable

to

create

a

valid

object,

please

check

the

parameters

supplied

Invalid

property

in

this

context:

Client-bindings

attribute

clash

Property

clash

-

Exit

initialization

InitCtx/cn=Trash>

DEFINE

QCF(testQCF)

SECEXITINIT(initStr)

Unable

to

create

a

valid

object,

please

check

the

parameters

supplied

Invalid

property

in

this

context:

ExitInit

string

supplied

without

Exit

string

Property

value

outside

valid

range

InitCtx/cn=Trash>

DEFINE

Q(testQ)

PRIORITY(12)

Unable

to

create

a

valid

object,

please

check

the

parameters

supplied

Invalid

value

for

PRI

property:

12

Unknown

property

InitCtx/cn=Trash>

DEFINE

QCF(testQCF)

PIZZA(ham

and

mushroom)

Unable

to

create

a

valid

object,

please

check

the

parameters

supplied

Unknown

property:

PIZZA

The

following

are

examples

of

error

conditions

that

might

arise

on

Windows

when

looking

up

JNDI

administered

objects

from

a

JMS

client.

If

your

JMS

application

is

running

in

a

WebSphere

Application

Server

environment,

these

error

conditions

might

occur

only

if

you

are

using

a

version

of

WebSphere

Application

Server

before

Version

5.

1.

If

you

are

using

the

WebSphere

JNDI

provider,

com.ibm.websphere.naming.WsnInitialContextFactory,

you

must

use

a

forward

slash

(/)

to

access

administered

objects

defined

in

sub-contexts;

for

example,

jms/MyQueueName.

If

you

use

a

backslash

(\),

an

InvalidNameException

is

thrown.

2.

If

you

are

using

the

Sun

JNDI

provider,

com.sun.jndi.fscontext.RefFSContextFactory,

you

must

use

a

backslash

(\)

to

access

administered

objects

defined

in

sub-contexts;

for

example,

ctx1\\fred.

If

you

use

a

forward

slash

(/),

a

NameNotFoundException

is

thrown.

Administering

JMS

objects

Chapter

5.

Using

the

WebSphere

MQ

JMS

administration

tool

59

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

Administering

JMS

objects

60

Using

Java

Part

2.

Programming

with

WebSphere

MQ

base

Java

Chapter

6.

Introduction

for

programmers

.

.

. 63

Why

should

I

use

the

Java

interface?

.

.

.

.

.

. 63

The

WebSphere

MQ

classes

for

Java

interface

.

.

. 64

Java

Development

Kit

.

.

.

.

.

.

.

.

.

.

. 64

WebSphere

MQ

classes

for

Java

class

library

.

.

. 65

Chapter

7.

Writing

WebSphere

MQ

base

Java

programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

Should

I

write

applets

or

applications?

.

.

.

.

. 67

Connection

differences

.

.

.

.

.

.

.

.

.

.

. 67

Client

connections

.

.

.

.

.

.

.

.

.

.

. 67

Bindings

mode

.

.

.

.

.

.

.

.

.

.

.

. 68

Defining

which

connection

to

use

.

.

.

.

.

. 68

Specifying

a

range

of

ports

for

client

connections

68

Example

code

fragments

.

.

.

.

.

.

.

.

.

. 69

Example

applet

code

.

.

.

.

.

.

.

.

.

. 69

Example

application

code

.

.

.

.

.

.

.

. 72

Operations

on

queue

managers

.

.

.

.

.

.

.

. 74

Setting

up

the

WebSphere

MQ

environment

.

. 74

Connecting

to

a

queue

manager

.

.

.

.

.

. 75

Accessing

queues

and

processes

.

.

.

.

.

.

. 75

Handling

messages

.

.

.

.

.

.

.

.

.

.

.

. 76

Handling

errors

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Getting

and

setting

attribute

values

.

.

.

.

.

. 78

Multithreaded

programs

.

.

.

.

.

.

.

.

.

. 79

Writing

user

exits

.

.

.

.

.

.

.

.

.

.

.

. 79

Connection

pooling

.

.

.

.

.

.

.

.

.

.

.

. 80

Controlling

the

default

connection

pool

.

.

.

. 81

The

default

connection

pool

and

multiple

components

.

.

.

.

.

.

.

.

.

.

.

.

. 83

Supplying

a

different

connection

pool

.

.

.

. 84

Supplying

your

own

ConnectionManager

.

.

. 85

JTA/JDBC

coordination

using

WebSphere

MQ

base

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 87

Installation

.

.

.

.

.

.

.

.

.

.

.

.

. 87

Installation

on

Windows

systems

.

.

.

.

. 87

Installation

on

other

platforms

.

.

.

.

.

. 87

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

Known

problems

and

limitations

.

.

.

.

.

. 88

Secure

Sockets

Layer

(SSL)

support

.

.

.

.

.

. 89

Enabling

SSL

.

.

.

.

.

.

.

.

.

.

.

.

. 90

Using

the

distinguished

name

of

the

queue

manager

.

.

.

.

.

.

.

.

.

.

.

.

.

. 90

Using

certificate

revocation

lists

.

.

.

.

.

. 91

Supplying

a

customized

SSLSocketFactory

.

.

. 92

Error

handling

when

using

SSL

.

.

.

.

.

.

. 92

Compiling

and

testing

WebSphere

MQ

base

Java

programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 93

Running

WebSphere

MQ

base

Java

applets

.

.

. 93

Running

WebSphere

MQ

base

Java

applications

94

Tracing

WebSphere

MQ

base

Java

programs

.

. 94

Chapter

8.

Environment-dependent

behavior

.

. 95

Core

details

.

.

.

.

.

.

.

.

.

.

.

.

.

. 95

Restrictions

and

variations

for

core

classes

.

.

.

. 96

MQGMO_*

values

.

.

.

.

.

.

.

.

.

.

. 96

MQPMRF_*

values

.

.

.

.

.

.

.

.

.

.

. 96

MQPMO_*

values

.

.

.

.

.

.

.

.

.

.

. 96

MQCNO_FASTPATH_BINDING

.

.

.

.

.

. 96

MQRO_*

values

.

.

.

.

.

.

.

.

.

.

.

. 97

Miscellaneous

differences

with

z/OS

and

OS/390

97

Features

outside

the

core

.

.

.

.

.

.

.

.

.

. 98

MQQueueManager

constructor

option

.

.

.

. 98

MQQueueManager.begin()

method

.

.

.

.

. 98

MQGetMessageOptions

fields

.

.

.

.

.

.

. 98

Distribution

lists

.

.

.

.

.

.

.

.

.

.

.

. 98

MQPutMessageOptions

fields

.

.

.

.

.

.

. 98

MQMD

fields

.

.

.

.

.

.

.

.

.

.

.

.

. 99

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

.

.

.

.

.

.

.

.

.

. 101

MQChannelDefinition

.

.

.

.

.

.

.

.

.

. 102

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 102

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 103

MQChannelExit

.

.

.

.

.

.

.

.

.

.

.

. 104

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 104

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 106

MQDistributionList

.

.

.

.

.

.

.

.

.

.

. 107

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 107

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

MQDistributionListItem

.

.

.

.

.

.

.

.

.

. 109

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 109

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 109

MQEnvironment

.

.

.

.

.

.

.

.

.

.

.

. 110

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 110

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 114

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 114

MQException

.

.

.

.

.

.

.

.

.

.

.

.

. 117

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 117

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 118

MQGetMessageOptions

.

.

.

.

.

.

.

.

.

. 119

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 122

MQManagedObject

.

.

.

.

.

.

.

.

.

.

. 123

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 124

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

MQMessage

.

.

.

.

.

.

.

.

.

.

.

.

.

. 126

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 126

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 134

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 134

MQMessageTracker

.

.

.

.

.

.

.

.

.

.

. 144

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 144

MQPoolServices

.

.

.

.

.

.

.

.

.

.

.

. 146

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 146

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 146

MQPoolServicesEvent

.

.

.

.

.

.

.

.

.

. 147

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 147

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 148

MQPoolToken

.

.

.

.

.

.

.

.

.

.

.

.

. 149

©

Copyright

IBM

Corp.

1997,

2004

61

||

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 149

MQProcess

.

.

.

.

.

.

.

.

.

.

.

.

.

. 150

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 150

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 150

MQPutMessageOptions

.

.

.

.

.

.

.

.

.

. 152

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 152

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 154

MQQueue

.

.

.

.

.

.

.

.

.

.

.

.

.

. 155

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 155

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 155

MQQueueManager

.

.

.

.

.

.

.

.

.

.

. 163

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 163

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 163

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 166

MQSimpleConnectionManager

.

.

.

.

.

.

. 176

Variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 176

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 176

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 176

MQC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 179

MQPoolServicesEventListener

.

.

.

.

.

.

.

. 180

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 180

MQConnectionManager

.

.

.

.

.

.

.

.

.

. 181

MQReceiveExit

.

.

.

.

.

.

.

.

.

.

.

.

. 182

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 182

MQSecurityExit

.

.

.

.

.

.

.

.

.

.

.

. 184

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 184

MQSendExit

.

.

.

.

.

.

.

.

.

.

.

.

.

. 186

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 186

ManagedConnection

.

.

.

.

.

.

.

.

.

.

. 188

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 188

ManagedConnectionFactory

.

.

.

.

.

.

.

. 191

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 191

ManagedConnectionMetaData

.

.

.

.

.

.

.

. 193

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 193

62

Using

Java

Chapter

6.

Introduction

for

programmers

This

chapter

contains

general

information

for

programmers.

For

more

detailed

information

about

writing

programs,

see

Chapter

7,

“Writing

WebSphere

MQ

base

Java

programs,”

on

page

67.

Why

should

I

use

the

Java

interface?

The

WebSphere

MQ

classes

for

Java

programming

interface

makes

the

many

benefits

of

Java

available

to

you

as

a

developer

of

WebSphere

MQ

applications:

v

The

Java

programming

language

is

easy

to

use.

There

is

no

need

for

header

files,

pointers,

structures,

unions,

and

operator

overloading.

Programs

written

in

Java

are

easier

to

develop

and

debug

than

their

C

and

C++

equivalents.

v

Java

is

object-oriented.

The

object-oriented

features

of

Java

are

comparable

to

those

of

C++,

but

there

is

no

multiple

inheritance.

Instead,

Java

uses

the

concept

of

an

interface.

v

Java

is

inherently

distributed.

The

Java

class

libraries

contain

a

library

of

routines

for

coping

with

TCP/IP

protocols

like

HTTP

and

FTP.

Java

programs

can

access

URLs

as

easily

as

accessing

a

file

system.

v

Java

is

robust.

Java

puts

a

lot

of

emphasis

on

early

checking

for

possible

problems,

dynamic

(runtime)

checking,

and

the

elimination

of

situations

that

are

error

prone.

Java

uses

a

concept

of

references

that

eliminates

the

possibility

of

overwriting

memory

and

corrupting

data.

v

Java

is

secure.

Java

is

intended

to

be

run

in

networked

or

distributed

environments,

and

a

lot

of

emphasis

has

been

placed

on

security.

Java

programs

cannot

overrun

their

runtime

stack

and

cannot

corrupt

memory

outside

their

process

space.

When

Java

programs

are

downloaded

from

the

Internet,

they

cannot

even

read

or

write

local

files.

v

Java

programs

are

portable.

There

are

no

implementation-dependent

aspects

of

the

Java

specification.

The

Java

compiler

generates

an

architecture-neutral

object

file

format.

The

compiled

code

is

executable

on

many

processors,

as

long

as

the

Java

runtime

system

is

present.

If

you

write

your

application

using

WebSphere

MQ

classes

for

Java,

users

can

download

the

Java

byte

codes

(called

applets)

for

your

program

from

the

Internet.

Users

can

then

run

these

applets

on

their

own

machines.

This

means

that

users

with

access

to

your

Web

server

can

load

and

run

your

application

with

no

prior

installation

needed

on

their

machines.

When

an

update

to

the

program

is

required,

you

update

the

copy

on

the

Web

server.

The

next

time

that

users

access

the

applet,

they

automatically

receive

the

latest

version.

This

can

significantly

reduce

the

costs

involved

in

installing

and

updating

traditional

client

applications

where

a

large

number

of

desktops

are

involved.

©

Copyright

IBM

Corp.

1997,

2004

63

If

you

place

your

applet

on

a

Web

server

that

is

accessible

outside

the

corporate

firewall,

anyone

on

the

Internet

can

download

and

use

your

application.

This

means

that

you

can

get

messages

into

your

WebSphere

MQ

system

from

anywhere

on

the

Internet.

This

opens

the

door

to

building

a

whole

new

set

of

Internet

accessible

service,

support,

and

electronic

commerce

applications.

The

WebSphere

MQ

classes

for

Java

interface

The

procedural

WebSphere

MQ

application

programming

interface

is

built

around

the

following

verbs:

MQBACK,

MQBEGIN,

MQCLOSE,

MQCMIT,

MQCONN,

MQCONNX,

MQDISC,

MQGET,

MQINQ,

MQOPEN,

MQPUT,

MQPUT1,

MQSET

These

verbs

all

take,

as

a

parameter,

a

handle

to

the

WebSphere

MQ

object

on

which

they

are

to

operate.

Because

Java

is

object-oriented,

the

Java

programming

interface

turns

this

round.

Your

program

consists

of

a

set

of

WebSphere

MQ

objects,

which

you

act

upon

by

calling

methods

on

those

objects.

When

you

use

the

procedural

interface,

you

disconnect

from

a

queue

manager

by

using

the

call

MQDISC(Hconn,

CompCode,

Reason),

where

Hconn

is

a

handle

to

the

queue

manager.

In

the

Java

interface,

the

queue

manager

is

represented

by

an

object

of

class

MQQueueManager.

You

disconnect

from

the

queue

manager

by

calling

the

disconnect()

method

on

that

class.

//

declare

an

object

of

type

queue

manager

MQQueueManager

queueManager=new

MQQueueManager();

...

//

do

something...

...

//

disconnect

from

the

queue

manager

queueManager.disconnect();

Java

Development

Kit

Before

you

can

compile

any

applets

or

applications

that

you

write,

you

must

have

access

to

a

Java

Development

Kit

(JDK)

for

your

development

platform.

The

JDK

contains

all

the

standard

Java

classes,

variables,

constructors,

and

interfaces

on

which

the

WebSphere

MQ

classes

for

Java

classes

depend.

It

also

contains

the

tools

required

to

compile

and

run

the

applets

and

programs

on

each

supported

platform.

You

can

download

IBM

Developer

Kits

for

Java

from

the

IBM

Software

Download

Catalog,

which

is

available

on

the

World

Wide

Web

at

location:

http://www.ibm.com/developerworks/java

To

compile

Java

applications

on

the

iSeries

and

AS/400

platforms,

you

must

first

install:

v

The

AS/400

Developer

Kit

for

Java,

5769-JV1

v

The

Qshell

Interpreter,

OS/400

(5769-SS1)

Option

30

Advantages

of

Java

64

Using

Java

WebSphere

MQ

classes

for

Java

class

library

WebSphere

MQ

classes

for

Java

is

a

set

of

Java

classes

that

enable

Java

applets

and

applications

to

interact

with

WebSphere

MQ.

The

following

classes

are

provided:

v

MQChannelDefinition

v

MQChannelExit

v

MQDistributionList

v

MQDistributionListItem

v

MQEnvironment

v

MQException

v

MQGetMessageOptions

v

MQManagedObject

v

MQMessage

v

MQMessageTracker

v

MQPoolServices

v

MQPoolServicesEvent

v

MQPoolToken

v

MQPutMessageOptions

v

MQProcess

v

MQQueue

v

MQQueueManager

v

MQSimpleConnectionManager

The

following

Java

interfaces

are

provided:

v

MQC

v

MQPoolServicesEventListener

v

MQReceiveExit

v

MQSecurityExit

v

MQSendExit

Implementation

of

the

following

Java

interfaces

is

also

provided.

However,

these

interfaces

are

not

intended

for

direct

use

by

applications:

v

MQConnectionManager

v

javax.resource.spi.ManagedConnection

v

javax.resource.spi.ManagedConnectionFactory

v

javax.resource.spi.ManagedConnectionMetaData

In

Java,

a

package

is

a

mechanism

for

grouping

sets

of

related

classes

together.

The

WebSphere

MQ

classes

and

interfaces

are

shipped

as

a

Java

package

called

com.ibm.mq.

To

include

the

WebSphere

MQ

classes

for

Java

package

in

your

program,

add

the

following

line

at

the

top

of

your

source

file:

import

com.ibm.mq.*;

WebSphere

MQ

base

Java

class

library

Chapter

6.

Introduction

for

programmers

65

WebSphere

MQ

base

Java

class

library

66

Using

Java

Chapter

7.

Writing

WebSphere

MQ

base

Java

programs

To

use

WebSphere

MQ

classes

for

Java

to

access

WebSphere

MQ

queues,

you

write

Java

programs

that

contain

calls

that

put

messages

onto,

and

get

messages

from,

WebSphere

MQ

queues.

The

programs

can

take

the

form

of

Java

applets,

Java

servlets,

or

Java

applications.

This

chapter

provides

information

to

assist

with

writing

Java

applets,

servlets,

and

applications

to

interact

with

WebSphere

MQ

systems.

For

details

of

individual

classes,

see

Chapter

9,

“The

WebSphere

MQ

base

Java

classes

and

interfaces,”

on

page

101.

Should

I

write

applets

or

applications?

Whether

you

write

applets,

servlets,

or

applications

depends

on

the

connection

that

you

want

to

use

and

from

where

you

want

to

run

the

programs.

The

main

differences

between

applets,

servlets,

and

applications

are:

v

Applets

are

run

with

an

applet

viewer

or

in

a

Web

browser,

servlets

are

run

in

a

Web

application

server,

and

applications

are

run

standalone.

v

Applets

can

be

downloaded

from

a

Web

server

to

a

Web

browser

machine,

but

applications

and

servlets

are

not.

v

Applets

run

with

additional

security

rules

limiting

what

they

can

do.

See

Appendix

F,

“Using

WebSphere

MQ

Java

in

applets

with

Java

1.2

or

later,”

on

page

481

for

more

information

about

this.

The

following

general

rules

apply:

v

If

you

want

to

run

your

programs

from

machines

that

do

not

have

WebSphere

MQ

classes

for

Java

installed

locally,

write

applets.

v

The

native

bindings

mode

of

WebSphere

MQ

classes

for

Java

does

not

support

applets.

Therefore,

if

you

want

to

use

your

programs

in

all

connection

modes,

including

the

native

bindings

mode,

write

servlets

or

applications.

Connection

differences

The

way

you

program

for

WebSphere

MQ

classes

for

Java

has

some

dependencies

on

the

connection

modes

you

want

to

use.

Client

connections

When

WebSphere

MQ

classes

for

Java

is

used

as

a

client,

it

is

similar

to

the

WebSphere

MQ

C

client,

but

has

the

following

differences:

v

It

supports

only

TCP/IP.

v

It

does

not

support

connection

tables.

v

It

does

not

read

any

WebSphere

MQ

environment

variables

at

startup.

v

Information

that

would

be

stored

in

a

channel

definition

and

in

environment

variables

is

stored

in

a

class

called

Environment.

Alternatively,

this

information

can

be

passed

as

parameters

when

the

connection

is

made.

v

Error

and

exception

conditions

are

written

to

a

log

specified

in

the

MQException

class.

The

default

error

destination

is

the

Java

console.

©

Copyright

IBM

Corp.

1997,

2004

67

The

WebSphere

MQ

classes

for

Java

clients

do

not

support

the

MQBEGIN

verb

or

fast

bindings.

For

general

information

on

WebSphere

MQ

clients,

see

the

WebSphere

MQ

Clients

book.

Bindings

mode

The

bindings

mode

of

WebSphere

MQ

classes

for

Java

differs

from

the

client

modes

in

the

following

ways:

v

Most

of

the

parameters

provided

by

the

MQEnvironment

class

are

ignored

v

The

bindings

support

the

MQBEGIN

verb

and

fast

bindings

into

the

WebSphere

MQ

queue

manager

Note:

WebSphere

MQ

for

iSeries

and

WebSphere

MQ

for

z/OS

do

not

support

the

use

of

MQBEGIN

to

initiate

global

units

of

work

that

are

coordinated

by

the

queue

manager.

Defining

which

connection

to

use

The

connection

is

determined

by

the

setting

of

variables

in

the

MQEnvironment

class.

MQEnvironment.properties

This

can

contain

the

following

key/value

pairs:

v

For

client

and

bindings

connections:

MQC.TRANSPORT_PROPERTY,

MQC.TRANSPORT_MQSERIES

MQEnvironment.hostname

Set

the

value

of

this

variable

follows:

v

For

client

connections,

set

this

to

the

host

name

of

the

WebSphere

MQ

server

to

which

you

want

to

connect

v

For

bindings

mode,

set

this

to

null

Specifying

a

range

of

ports

for

client

connections

If

a

JMS

application

attempts

to

connect

to

a

WebSphere

MQ

queue

manager

in

client

mode,

a

firewall

might

allow

only

those

connections

that

originate

from

specified

ports

or

a

range

of

ports.

In

this

situation,

you

can

specify

a

port,

or

a

range

of

points,

that

the

application

can

bind

to.

You

can

do

this

in

either

of

the

following

ways:

v

You

can

add

a

key-value

pair

to

the

properties

variable

in

the

MQEnvironment

class.

The

relevant

key

is

MQC.LOCAL_ADDRESS_PROPERTY.

Here

is

an

example:

(MQEnvironment.properties).put(MQC.LOCAL_ADDRESS_PROPERTY,

"9.20.0.1(2000,3000)");

v

You

can

set

the

localAddressSetting

variable

in

the

MQEnvironment

class.

Here

is

an

example:

MQEnvironment.localAddressSetting

=

"9.20.0.1(2000,3000)";

In

each

of

these

examples,

when

the

application

connects

to

a

queue

manager

subsequently,

the

application

binds

to

a

local

IP

address

and

port

number

in

the

range

9.20.0.1(2000)

to

9.20.0.1(3000).

Connection

errors

might

occur

if

you

restrict

the

range

of

ports.

If

an

error

occurs,

an

MQException

is

thrown

containing

the

WebSphere

MQ

reason

code,

MQRC_Q_MGR_NOT_AVAILABLE.

An

error

might

occur

if

all

the

ports

in

the

Connection

differences

68

Using

Java

|

|
|
|
|
|

|
|
|

|
|

|
|

|

|
|
|

|
|
|

specified

range

are

in

use,

or

if

a

specified

IP

address,

host

name,

or

port

number

is

not

valid;

a

negative

port

number,

for

example.

Example

code

fragments

This

section

includes

two

example

code

fragments;

Figure

1

on

page

70

and

Figure

2

on

page

73.

Each

one

uses

a

particular

connection

and

includes

notes

to

describe

the

changes

needed

to

use

alternative

connections.

Example

applet

code

The

following

code

fragment

demonstrates

an

applet

that

uses

a

TCP/IP

connection

to:

1.

Connect

to

a

queue

manager

2.

Put

a

message

onto

SYSTEM.DEFAULT.LOCAL.QUEUE

3.

Get

the

message

back

Connection

differences

Chapter

7.

Writing

WebSphere

MQ

base

Java

programs

69

|
|

//

===

//

//

Licensed

Materials

-

Property

of

IBM

//

//

5639-C34

//

//

(c)

Copyright

IBM

Corp.

1995,2002

//

//

===

//

WebSphere

MQ

Client

for

Java

sample

applet

//

//

This

sample

runs

as

an

applet

using

the

appletviewer

and

HTML

file,

//

using

the

command

:-

//

appletviewer

MQSample.html

//

Output

is

to

the

command

line,

NOT

the

applet

viewer

window.

//

//

Note.

If

you

receive

WebSphere

MQ

error

2

reason

2059

and

you

are

sure

your

//

WebSphere

MQ

and

TCP/IP

setup

is

correct,

//

you

should

click

on

the

"Applet"

selection

in

the

Applet

viewer

window

//

select

properties,

and

change

"Network

access"

to

unrestricted.

import

com.ibm.mq.*;

//

Include

the

WebSphere

MQ

classes

for

Java

package

public

class

MQSample

extends

java.applet.Applet

{

private

String

hostname

=

"your_hostname";

//

define

the

name

of

your

//

host

to

connect

to

private

String

channel

=

"server_channel";

//

define

name

of

channel

//

for

client

to

use

//

Note.

assumes

WebSphere

MQ

Server

//

is

listening

on

the

default

//

TCP/IP

port

of

1414

private

String

qManager

=

"your_Q_manager";

//

define

name

of

queue

//

manager

object

to

//

connect

to.

private

MQQueueManager

qMgr;

//

define

a

queue

manager

object

//

When

the

class

is

called,

this

initialization

is

done

first.

public

void

init()

{

//

Set

up

WebSphere

MQ

environment

MQEnvironment.hostname

=

hostname;

//

Could

have

put

the

//

hostname

&

channel

MQEnvironment.channel

=

channel;

//

string

directly

here!

MQEnvironment.properties.put(MQC.TRANSPORT_PROPERTY,//Set

TCP/IP

or

server

MQC.TRANSPORT_MQSERIES);//Connection

}

//

end

of

init

Figure

1.

WebSphere

MQ

classes

for

Java

example

applet

(Part

1

of

3)

Example

code

70

Using

Java

public

void

start()

{

try

{

//

Create

a

connection

to

the

queue

manager

qMgr

=

new

MQQueueManager(qManager);

//

Set

up

the

options

on

the

queue

we

wish

to

open...

//

Note.

All

WebSphere

MQ

Options

are

prefixed

with

MQC

in

Java.

int

openOptions

=

MQC.MQOO_INPUT_AS_Q_DEF

|

MQC.MQOO_OUTPUT

;

//

Now

specify

the

queue

that

we

wish

to

open,

and

the

open

options...

MQQueue

system_default_local_queue

=

qMgr.accessQueue("SYSTEM.DEFAULT.LOCAL.QUEUE",

openOptions);

//

Define

a

simple

WebSphere

MQ

message,

and

write

some

text

in

UTF

format..

MQMessage

hello_world

=

new

MQMessage();

hello_world.writeUTF("Hello

World!");

//

specify

the

message

options...

MQPutMessageOptions

pmo

=

new

MQPutMessageOptions();

//

accept

the

defaults,

//

same

as

//

MQPMO_DEFAULT

//

constant

//

put

the

message

on

the

queue

system_default_local_queue.put(hello_world,pmo);

//

get

the

message

back

again...

//

First

define

a

WebSphere

MQ

message

buffer

to

receive

the

message

into..

MQMessage

retrievedMessage

=

new

MQMessage();

retrievedMessage.messageId

=

hello_world.messageId;

//

Set

the

get

message

options..

MQGetMessageOptions

gmo

=

new

MQGetMessageOptions();

//

accept

the

defaults

//

same

as

//

MQGMO_DEFAULT

//

get

the

message

off

the

queue..

system_default_local_queue.get(retrievedMessage,

gmo);

//

And

prove

we

have

the

message

by

displaying

the

UTF

message

text

String

msgText

=

retrievedMessage.readUTF();

System.out.println("The

message

is:

"

+

msgText);

//

Close

the

queue

system_default_local_queue.close();

//

Disconnect

from

the

queue

manager

qMgr.disconnect();

}

//

If

an

error

has

occurred

in

the

above,

try

to

identify

what

went

wrong.

//

Was

it

a

WebSphere

MQ

error?

Figure

1.

WebSphere

MQ

classes

for

Java

example

applet

(Part

2

of

3)

Example

code

Chapter

7.

Writing

WebSphere

MQ

base

Java

programs

71

Example

application

code

The

following

code

fragment

demonstrates

an

application

that

uses

bindings

mode

to:

1.

Connect

to

a

queue

manager

2.

Put

a

message

onto

SYSTEM.DEFAULT.LOCAL.QUEUE

3.

Get

the

message

back

again

catch

(MQException

ex)

{

System.out.println("A

WebSphere

MQ

error

occurred

:

Completion

code

"

+

ex.completionCode

+

"

Reason

code

"

+

ex.reasonCode);

}

//

Was

it

a

Java

buffer

space

error?

catch

(java.io.IOException

ex)

{

System.out.println("An

error

occurred

whilst

writing

to

the

message

buffer:

"

+

ex);

}

}

//

end

of

start

}

//

end

of

sample

Figure

1.

WebSphere

MQ

classes

for

Java

example

applet

(Part

3

of

3)

Example

code

72

Using

Java

//

==

//

Licensed

Materials

-

Property

of

IBM

//

5639-C34

//

(c)

Copyright

IBM

Corp.

1995,

2002

//

==

//

WebSphere

MQ

classes

for

Java

sample

application

//

//

This

sample

runs

as

a

Java

application

using

the

command

:-

java

MQSample

import

com.ibm.mq.*;

//

Include

the

WebSphere

MQ

classes

for

Java

package

public

class

MQSample

{

private

String

qManager

=

"your_Q_manager";

//

define

name

of

queue

//

manager

to

connect

to.

private

MQQueueManager

qMgr;

//

define

a

queue

manager

//

object

public

static

void

main(String

args[])

{

new

MQSample();

}

public

MQSample()

{

try

{

//

Create

a

connection

to

the

queue

manager

qMgr

=

new

MQQueueManager(qManager);

//

Set

up

the

options

on

the

queue

we

wish

to

open...

//

Note.

All

WebSphere

MQ

Options

are

prefixed

with

MQC

in

Java.

int

openOptions

=

MQC.MQOO_INPUT_AS_Q_DEF

|

MQC.MQOO_OUTPUT

;

//

Now

specify

the

queue

that

we

wish

to

open,

//

and

the

open

options...

MQQueue

system_default_local_queue

=

qMgr.accessQueue("SYSTEM.DEFAULT.LOCAL.QUEUE",

openOptions);

//

Define

a

simple

WebSphere

MQ

message,

and

write

some

text

in

UTF

format..

MQMessage

hello_world

=

new

MQMessage();

hello_world.writeUTF("Hello

World!");

//

specify

the

message

options...

MQPutMessageOptions

pmo

=

new

MQPutMessageOptions();

//

accept

the

//

defaults,

//

same

as

MQPMO_DEFAULT

Figure

2.

WebSphere

MQ

classes

for

Java

example

application

(Part

1

of

2)

Example

code

Chapter

7.

Writing

WebSphere

MQ

base

Java

programs

73

Operations

on

queue

managers

This

section

describes

how

to

connect

to,

and

disconnect

from,

a

queue

manager

using

WebSphere

MQ

classes

for

Java.

Setting

up

the

WebSphere

MQ

environment

Note:

This

step

is

not

necessary

when

using

WebSphere

MQ

classes

for

Java

in

bindings

mode.

In

that

case,

go

directly

to

“Connecting

to

a

queue

manager”

on

page

75.

Before

you

use

the

client

connection

to

connect

to

a

queue

manager,

you

must

set

up

the

MQEnvironment.

The

C

based

WebSphere

MQ

clients

rely

on

environment

variables

to

control

the

behavior

of

the

MQCONN

call.

Because

Java

applets

have

no

access

to

environment

variables,

the

Java

programming

interface

includes

a

class

MQEnvironment.

This

class

allows

you

to

specify

the

following

details

that

are

to

be

used

during

the

connection

attempt:

//

put

the

message

on

the

queue

system_default_local_queue.put(hello_world,pmo);

//

get

the

message

back

again...

//

First

define

a

WebSphere

MQ

message

buffer

to

receive

the

message

into..

MQMessage

retrievedMessage

=

new

MQMessage();

retrievedMessage.messageId

=

hello_world.messageId;

//

Set

the

get

message

options...

MQGetMessageOptions

gmo

=

new

MQGetMessageOptions();

//

accept

the

defaults

//

same

as

MQGMO_DEFAULT

//

get

the

message

off

the

queue...

system_default_local_queue.get(retrievedMessage,

gmo);

//

And

prove

we

have

the

message

by

displaying

the

UTF

message

text

String

msgText

=

retrievedMessage.readUTF();

System.out.println("The

message

is:

"

+

msgText);

//

Close

the

queue...

system_default_local_queue.close();

//

Disconnect

from

the

queue

manager

qMgr.disconnect();

}

//

If

an

error

has

occurred

in

the

above,

try

to

identify

what

went

wrong

//

Was

it

a

WebSphere

MQ

error?

catch

(MQException

ex)

{

System.out.println("A

WebSphere

MQ

error

occurred

:

Completion

code

"

+

ex.completionCode

+

"

Reason

code

"

+

ex.reasonCode);

}

//

Was

it

a

Java

buffer

space

error?

catch

(java.io.IOException

ex)

{

System.out.println("An

error

occurred

whilst

writing

to

the

message

buffer:

"

+

ex);

}

}

}

//

end

of

sample

Figure

2.

WebSphere

MQ

classes

for

Java

example

application

(Part

2

of

2)

Queue

manager

operations

74

Using

Java

v

Channel

name

v

Host

name

v

Port

number

v

User

ID

v

Password

To

specify

the

channel

name

and

host

name,

use

the

following

code:

MQEnvironment.hostname

=

"host.domain.com";

MQEnvironment.channel

=

"java.client.channel";

This

is

equivalent

to

an

MQSERVER

environment

variable

setting

of:

"java.client.channel/TCP/host.domain.com".

By

default,

the

Java

clients

attempt

to

connect

to

a

WebSphere

MQ

listener

at

port

1414.

To

specify

a

different

port,

use

the

code:

MQEnvironment.port

=

nnnn;

The

user

ID

and

password

default

to

blanks.

To

specify

a

non-blank

user

ID

or

password,

use

the

code:

MQEnvironment.userID

=

"uid";

//

equivalent

to

env

var

MQ_USER_ID

MQEnvironment.password

=

"pwd";

//

equivalent

to

env

var

MQ_PASSWORD

Connecting

to

a

queue

manager

You

are

now

ready

to

connect

to

a

queue

manager

by

creating

a

new

instance

of

the

MQQueueManager

class:

MQQueueManager

queueManager

=

new

MQQueueManager("qMgrName");

To

disconnect

from

a

queue

manager,

call

the

disconnect()

method

on

the

queue

manager:

queueManager.disconnect();

If

you

call

the

disconnect

method,

all

open

queues

and

processes

that

you

have

accessed

through

that

queue

manager

are

closed.

However,

it

is

good

programming

practice

to

close

these

resources

explicitly

when

you

finish

using

them.

To

do

this,

use

the

close()

method.

The

commit()

and

backout()

methods

on

a

queue

manager

replace

the

MQCMIT

and

MQBACK

calls

that

are

used

with

the

procedural

interface.

Accessing

queues

and

processes

To

access

queues

and

processes,

use

the

MQQueueManager

class.

The

MQOD

(object

descriptor

structure)

is

collapsed

into

the

parameters

of

these

methods.

For

example,

to

open

a

queue

on

a

queue

manager

called

queueManager,

use

the

following

code:

MQQueue

queue

=

queueManager.accessQueue("qName",

MQC.MQOO_OUTPUT,

"qMgrName",

"dynamicQName",

"altUserId");

The

options

parameter

is

the

same

as

the

Options

parameter

in

the

MQOPEN

call.

The

accessQueue

method

returns

a

new

object

of

class

MQQueue.

Queue

manager

operations

Chapter

7.

Writing

WebSphere

MQ

base

Java

programs

75

When

you

have

finished

using

the

queue,

use

the

close()

method

to

close

it,

as

in

the

following

example:

queue.close();

With

WebSphere

MQ

classes

for

Java,

you

can

also

create

a

queue

by

using

the

MQQueue

constructor.

The

parameters

are

exactly

the

same

as

for

the

accessQueue

method,

with

the

addition

of

a

queue

manager

parameter.

For

example:

MQQueue

queue

=

new

MQQueue(queueManager,

"qName",

MQC.MQOO_OUTPUT,

"qMgrName",

"dynamicQName",

"altUserId");

Constructing

a

queue

object

in

this

way

enables

you

to

write

your

own

subclasses

of

MQQueue.

To

access

a

process,

use

the

accessProcess

method

in

place

of

accessQueue.

This

method

does

not

have

a

dynamic

queue

name

parameter,

because

this

does

not

apply

to

processes.

The

accessProcess

method

returns

a

new

object

of

class

MQProcess.

When

you

have

finished

using

the

process

object,

use

the

close()

method

to

close

it,

as

in

the

following

example:

process.close();

With

WebSphere

MQ

classes

for

Java,

you

can

also

create

a

process

by

using

the

MQProcess

constructor.

The

parameters

are

exactly

the

same

as

for

the

accessProcess

method,

with

the

addition

of

a

queue

manager

parameter.

Constructing

a

process

object

in

this

way

enables

you

to

write

your

own

subclasses

of

MQProcess.

Handling

messages

Put

messages

onto

queues

using

the

put()

method

of

the

MQQueue

class.

You

get

messages

from

queues

using

the

get()

method

of

the

MQQueue

class.

Unlike

the

procedural

interface,

where

MQPUT

and

MQGET

put

and

get

arrays

of

bytes,

the

Java

programming

language

puts

and

gets

instances

of

the

MQMessage

class.

The

MQMessage

class

encapsulates

the

data

buffer

that

contains

the

actual

message

data,

together

with

all

the

MQMD

(message

descriptor)

parameters

that

describe

that

message.

To

build

a

new

message,

create

a

new

instance

of

the

MQMessage

class,

and

use

the

writeXXX

methods

to

put

data

into

the

message

buffer.

When

the

new

message

instance

is

created,

all

the

MQMD

parameters

are

automatically

set

to

their

default

values,

as

defined

in

the

WebSphere

MQ

Application

Programming

Reference.

The

put()

method

of

MQQueue

also

takes

an

instance

of

the

MQPutMessageOptions

class

as

a

parameter.

This

class

represents

the

MQPMO

structure.

The

following

example

creates

a

message

and

puts

it

onto

a

queue:

//

Build

a

new

message

containing

my

age

followed

by

my

name

MQMessage

myMessage

=

new

MQMessage();

myMessage.writeInt(25);

String

name

=

"Charlie

Jordan";

Queue

and

process

access

76

Using

Java

myMessage.writeInt(name.length());

myMessage.writeBytes(name);

//

Use

the

default

put

message

options...

MQPutMessageOptions

pmo

=

new

MQPutMessageOptions();

//

put

the

message!

queue.put(myMessage,pmo);

The

get()

method

of

MQQueue

returns

a

new

instance

of

MQMessage,

which

represents

the

message

just

taken

from

the

queue.

It

also

takes

an

instance

of

the

MQGetMessageOptions

class

as

a

parameter.

This

class

represents

the

MQGMO

structure.

You

do

not

need

to

specify

a

maximum

message

size,

because

the

get()

method

automatically

adjusts

the

size

of

its

internal

buffer

to

fit

the

incoming

message.

Use

the

readXXX

methods

of

the

MQMessage

class

to

access

the

data

in

the

returned

message.

The

following

example

shows

how

to

get

a

message

from

a

queue:

//

Get

a

message

from

the

queue

MQMessage

theMessage

=

new

MQMessage();

MQGetMessageOptions

gmo

=

new

MQGetMessageOptions();

queue.get(theMessage,gmo);

//

has

default

values

//

Extract

the

message

data

int

age

=

theMessage.readInt();

int

strLen

=

theMessage.readInt();

byte[]

strData

=

new

byte[strLen];

theMessage.readFully(strData,0,strLen);

String

name

=

new

String(strData,0);

You

can

alter

the

number

format

that

the

read

and

write

methods

use

by

setting

the

encoding

member

variable.

You

can

alter

the

character

set

to

use

for

reading

and

writing

strings

by

setting

the

characterSet

member

variable.

See

“MQMessage”

on

page

126

for

more

details.

Note:

The

writeUTF()

method

of

MQMessage

automatically

encodes

the

length

of

the

string

as

well

as

the

Unicode

bytes

it

contains.

When

your

message

will

be

read

by

another

Java

program

(using

readUTF()),

this

is

the

simplest

way

to

send

string

information.

Handling

errors

Methods

in

the

Java

interface

do

not

return

a

completion

code

and

reason

code.

Instead,

they

throw

an

exception

whenever

the

completion

code

and

reason

code

resulting

from

a

WebSphere

MQ

call

are

not

both

zero.

This

simplifies

the

program

logic

so

that

you

do

not

have

to

check

the

return

codes

after

each

call

to

WebSphere

MQ.

You

can

decide

at

which

points

in

your

program

you

want

to

deal

with

the

possibility

of

failure.

At

these

points,

you

can

surround

your

code

with

try

and

catch

blocks,

as

in

the

following

example:

try

{

myQueue.put(messageA,putMessageOptionsA);

myQueue.put(messageB,putMessageOptionsB);

}

catch

(MQException

ex)

{

Message

handling

Chapter

7.

Writing

WebSphere

MQ

base

Java

programs

77

//

This

block

of

code

is

only

executed

if

one

of

//

the

two

put

methods

gave

rise

to

a

non-zero

//

completion

code

or

reason

code.

System.out.println("An

error

occurred

during

the

put

operation:"

+

"CC

=

"

+

ex.completionCode

+

"RC

=

"

+

ex.reasonCode);

System.out.println("Cause

exception:"

+

ex.getCause()

);

}

The

WebSphere

MQ

call

reason

codes

reported

back

in

Java

exceptions

are

documented

in

a

chapter

called

“Return

Codes”

in

the

WebSphere

MQ

Application

Programming

Reference.

Sometimes

the

reason

code

does

not

convey

all

details

associated

with

the

error.

This

can

occur

if

WebSphere

MQ

uses

services

provided

by

another

product

(for

example,

a

JSSE

implementation)

that

throws

a

java.lang.Exception

to

WebSphere

MQ

Java.

In

this

case,

the

method

MQException.getCause()

retrieves

the

underlying

java.lang.Exception

that

caused

the

error.

Getting

and

setting

attribute

values

For

many

of

the

common

attributes,

the

classes

MQManagedObject,

MQQueue,

MQProcess,

and

MQQueueManager

contain

getXXX()

and

setXXX()

methods.

These

methods

allow

you

to

get

and

set

their

attribute

values.

Note

that

for

MQQueue,

the

methods

work

only

if

you

specify

the

appropriate

inquire

and

set

flags

when

you

open

the

queue.

For

less

common

attributes,

the

MQQueueManager,

MQQueue,

and

MQProcess

classes

all

inherit

from

a

class

called

MQManagedObject.

This

class

defines

the

inquire()

and

set()

interfaces.

When

you

create

a

new

queue

manager

object

by

using

the

new

operator,

it

is

automatically

opened

for

inquire.

When

you

use

the

accessProcess()

method

to

access

a

process

object,

that

object

is

automatically

opened

for

inquire.

When

you

use

the

accessQueue()

method

to

access

a

queue

object,

that

object

is

not

automatically

opened

for

either

inquire

or

set

operations.

This

is

because

adding

these

options

automatically

can

cause

problems

with

some

types

of

remote

queues.

To

use

the

inquire,

set,

getXXX,

and

setXXX

methods

on

a

queue,

you

must

specify

the

appropriate

inquire

and

set

flags

in

the

openOptions

parameter

of

the

accessQueue()

method.

The

inquire

and

set

methods

take

three

parameters:

v

selectors

array

v

intAttrs

array

v

charAttrs

array

You

do

not

need

the

SelectorCount,

IntAttrCount,

and

CharAttrLength

parameters

that

are

found

in

MQINQ,

because

the

length

of

an

array

in

Java

is

always

known.

The

following

example

shows

how

to

make

an

inquiry

on

a

queue:

//

inquire

on

a

queue

final

static

int

MQIA_DEF_PRIORITY

=

6;

final

static

int

MQCA_Q_DESC

=

2013;

final

static

int

MQ_Q_DESC_LENGTH

=

64;

int[]

selectors

=

new

int[2];

int[]

intAttrs

=

new

int[1];

byte[]

charAttrs

=

new

byte[MQ_Q_DESC_LENGTH]

selectors[0]

=

MQIA_DEF_PRIORITY;

Error

handling

78

Using

Java

|

|

selectors[1]

=

MQCA_Q_DESC;

queue.inquire(selectors,intAttrs,charAttrs);

System.out.println("Default

Priority

=

"

+

intAttrs[0]);

System.out.println("Description

:

"

+

new

String(charAttrs,0));

Multithreaded

programs

Multithreaded

programs

are

hard

to

avoid

in

Java.

Consider

a

simple

program

that

connects

to

a

queue

manager

and

opens

a

queue

at

startup.

The

program

displays

a

single

button

on

the

screen.

When

a

user

presses

that

button,

the

program

fetches

a

message

from

the

queue.

The

Java

runtime

environment

is

inherently

multithreaded.

Therefore,

your

application

initialization

occurs

in

one

thread,

and

the

code

that

executes

in

response

to

the

button

press

executes

in

a

separate

thread

(the

user

interface

thread).

With

the

C

based

WebSphere

MQ

client,

this

would

cause

a

problem,

because

handles

cannot

be

shared

across

multiple

threads.

WebSphere

MQ

classes

for

Java

relaxes

this

constraint,

allowing

a

queue

manager

object

(and

its

associated

queue

and

process

objects)

to

be

shared

across

multiple

threads.

The

implementation

of

WebSphere

MQ

classes

for

Java

ensures

that,

for

a

given

connection

(MQQueueManager

object

instance),

all

access

to

the

target

WebSphere

MQ

queue

manager

is

synchronized.

A

thread

that

wants

to

issue

a

call

to

a

queue

manager

is

blocked

until

all

other

calls

in

progress

for

that

connection

are

complete.

If

you

require

simultaneous

access

to

the

same

queue

manager

from

multiple

threads

within

your

program,

create

a

new

MQQueueManager

object

for

each

thread

that

requires

concurrent

access.

(This

is

equivalent

to

issuing

a

separate

MQCONN

call

for

each

thread.)

Writing

user

exits

WebSphere

MQ

classes

for

Java

allows

you

to

provide

your

own

send,

receive,

and

security

exits.

To

implement

an

exit,

you

define

a

new

Java

class

that

implements

the

appropriate

interface.

Three

exit

interfaces

are

defined

in

the

WebSphere

MQ

package:

v

MQSendExit

v

MQReceiveExit

v

MQSecurityExit

Note:

User

exits

are

supported

for

client

connections

only;

they

are

not

supported

for

bindings

connections.

Any

SSL

encryption

defined

for

a

connection

is

performed

after

the

send

exit

has

been

invoked.

Similarly,

decryption

is

performed

before

the

receive

or

security

exits

are

invoked.

The

following

sample

defines

a

class

that

implements

all

three:

class

MyMQExits

implements

MQSendExit,

MQReceiveExit,

MQSecurityExit

{

//

This

method

comes

from

the

send

exit

public

byte[]

sendExit(MQChannelExit

channelExitParms,

MQChannelDefinition

channelDefParms,

Using

attribute

values

Chapter

7.

Writing

WebSphere

MQ

base

Java

programs

79

byte

agentBuffer[])

{

//

fill

in

the

body

of

the

send

exit

here

}

//

This

method

comes

from

the

receive

exit

public

byte[]

receiveExit(MQChannelExit

channelExitParms,

MQChannelDefinition

channelDefParms,

byte

agentBuffer[])

{

//

fill

in

the

body

of

the

receive

exit

here

}

//

This

method

comes

from

the

security

exit

public

byte[]

securityExit(MQChannelExit

channelExitParms,

MQChannelDefinition

channelDefParms,

byte

agentBuffer[])

{

//

fill

in

the

body

of

the

security

exit

here

}

}

Each

exit

is

passed

an

MQChannelExit

and

an

MQChannelDefinition

object

instance.

These

objects

represent

the

MQCXP

and

MQCD

structures

defined

in

the

procedural

interface.

For

a

Send

exit,

the

agentBuffer

parameter

contains

the

data

that

is

about

to

be

sent.

For

a

Receive

exit

or

a

Security

exit,

the

agentBuffer

parameter

contains

the

data

that

has

just

been

received.

You

do

not

need

a

length

parameter,

because

the

expression

agentBuffer.length

indicates

the

length

of

the

array.

For

the

Send

and

Security

exits,

your

exit

code

should

return

the

byte

array

that

you

want

to

send

to

the

server.

For

a

Receive

exit,

your

exit

code

must

return

the

modified

data

that

you

want

WebSphere

MQ

classes

for

Java

to

interpret.

The

simplest

possible

exit

body

is:

{

return

agentBuffer;

}

If

your

program

is

to

run

as

a

downloaded

Java

applet,

the

security

restrictions

that

apply

mean

that

you

cannot

read

or

write

any

local

files.

If

your

exit

needs

a

configuration

file,

you

can

place

the

file

on

the

Web

and

use

the

java.net.URL

class

to

download

it

and

examine

its

contents.

Connection

pooling

WebSphere

MQ

classes

for

Java

provides

additional

support

for

applications

that

deal

with

multiple

connections

to

WebSphere

MQ

queue

managers.

When

a

connection

is

no

longer

required,

instead

of

destroying

it,

it

can

be

pooled

and

later

reused.

This

can

provide

a

substantial

performance

enhancement

for

applications

and

middleware

that

connect

serially

to

arbitrary

queue

managers.

WebSphere

MQ

provides

a

default

connection

pool.

Applications

can

activate

or

deactivate

this

connection

pool

by

registering

and

deregistering

tokens

through

the

MQEnvironment

class.

If

the

pool

is

active

when

WebSphere

MQ

base

Java

constructs

an

MQQueueManager

object,

it

searches

this

default

pool

and

reuses

Writing

user

exits

80

Using

Java

any

suitable

connection.

When

an

MQQueueManager.disconnect()

call

occurs,

the

underlying

connection

is

returned

to

the

pool.

Alternatively,

applications

can

construct

an

MQSimpleConnectionManager

connection

pool

for

a

particular

use.

Then,

the

application

can

either

specify

that

pool

during

construction

of

an

MQQueueManager

object,

or

pass

that

pool

to

MQEnvironment

for

use

as

the

default

connection

pool.

To

prevent

connections

from

using

too

much

resource,

you

can

limit

the

total

number

of

connections

that

an

MQSimpleConnectionManager

object

can

handle,

and

you

can

limit

the

size

of

the

connection

pool.

Setting

limits

is

useful

if

there

are

conflicting

demands

for

connections

within

a

JVM.

By

default,

the

getMaxConnections()

method

returns

the

value

zero,

which

means

that

there

is

no

limit

to

the

number

of

connections

that

the

MQSimpleConnectionManager

object

can

handle.

You

can

set

a

limit

by

using

the

setMaxConnections()

method.

If

you

set

a

limit

and

the

limit

is

reached,

a

request

for

a

further

connection

might

cause

an

MQException

to

be

thrown,

with

a

reason

code

of

MQRC_MAX_CONNS_LIMIT_REACHED.

Also,

WebSphere

MQ

base

Java

provides

a

partial

implementation

of

the

Java

2

Platform

Enterprise

Edition

(J2EE)

Connector

Architecture.

Applications

running

under

a

Java

2

v1.3

JVM

with

JAAS

1.0

(Java

Authentication

and

Authorization

Service)

can

provide

their

own

connection

pool

by

implementing

the

javax.resource.spi.ConnectionManager

interface.

Again,

this

interface

can

be

specified

on

the

MQQueueManager

constructor,

or

specified

as

the

default

connection

pool.

Controlling

the

default

connection

pool

Consider

the

following

example

application,

MQApp1:

import

com.ibm.mq.*;

public

class

MQApp1

{

public

static

void

main(String[]

args)

throws

MQException

{

for

(int

i=0;

i<args.length;

i++)

{

MQQueueManager

qmgr=new

MQQueueManager(args[i]);

:

:

(do

something

with

qmgr)

:

qmgr.disconnect();

}

}

}

MQApp1

takes

a

list

of

local

queue

managers

from

the

command

line,

connects

to

each

in

turn,

and

performs

some

operation.

However,

when

the

command

line

lists

the

same

queue

manager

many

times,

it

is

more

efficient

to

connect

only

once,

and

to

reuse

that

connection

many

times.

WebSphere

MQ

base

Java

provides

a

default

connection

pool

that

you

can

use

to

do

this.

To

enable

the

pool,

use

one

of

the

MQEnvironment.addConnectionPoolToken()

methods.

To

disable

the

pool,

use

MQEnvironment.removeConnectionPoolToken().

The

following

example

application,

MQApp2,

is

functionally

identical

to

MQApp1,

but

connects

only

once

to

each

queue

manager.

Connection

pooling

Chapter

7.

Writing

WebSphere

MQ

base

Java

programs

81

|
|
|
|

|
|
|
|
|
|

import

com.ibm.mq.*;

public

class

MQApp2

{

public

static

void

main(String[]

args)

throws

MQException

{

MQPoolToken

token=MQEnvironment.addConnectionPoolToken();

for

(int

i=0;

i<args.length;

i++)

{

MQQueueManager

qmgr=new

MQQueueManager(args[i]);

:

:

(do

something

with

qmgr)

:

qmgr.disconnect();

}

MQEnvironment.removeConnectionPoolToken(token);

}

}

The

first

bold

line

activates

the

default

connection

pool

by

registering

an

MQPoolToken

object

with

MQEnvironment.

The

MQQueueManager

constructor

now

searches

this

pool

for

an

appropriate

connection

and

only

creates

a

connection

to

the

queue

manager

if

it

cannot

find

an

existing

one.

The

qmgr.disconnect()

call

returns

the

connection

to

the

pool

for

later

reuse.

These

API

calls

are

the

same

as

the

sample

application

MQApp1.

The

second

highlighted

line

deactivates

the

default

connection

pool,

which

destroys

any

queue

manager

connections

stored

in

the

pool.

This

is

important

because

otherwise

the

application

would

terminate

with

a

number

of

live

queue

manager

connections

in

the

pool.

This

situation

could

cause

errors

that

would

appear

in

the

queue

manager

logs.

The

default

connection

pool

stores

a

maximum

of

ten

unused

connections,

and

keeps

unused

connections

active

for

a

maximum

of

five

minutes.

The

application

can

alter

this

(for

details,

see

“Supplying

a

different

connection

pool”

on

page

84).

Instead

of

using

MQEnvironment

to

supply

an

MQPoolToken,

the

application

can

construct

its

own:

MQPoolToken

token=new

MQPoolToken();

MQEnvironment.addConnectionPoolToken(token);

Some

applications

or

middleware

vendors

provide

subclasses

of

MQPoolToken

in

order

to

pass

information

to

a

custom

connection

pool.

They

can

be

constructed

and

passed

to

addConnectionPoolToken()

in

this

way

so

that

extra

information

can

be

passed

to

the

connection

pool.

Connection

pooling

82

Using

Java

The

default

connection

pool

and

multiple

components

MQEnvironment

holds

a

static

set

of

registered

MQPoolToken

objects.

To

add

or

remove

MQPoolTokens

from

this

set,

use

the

following

methods:

v

MQEnvironment.addConnectionPoolToken()

v

MQEnvironment.removeConnectionPoolToken()

An

application

might

consist

of

many

components

that

exist

independently

and

perform

work

using

a

queue

manager.

In

such

an

application,

each

component

should

add

an

MQPoolToken

to

the

MQEnvironment

set

for

its

lifetime.

For

example,

the

example

application

MQApp3

creates

ten

threads

and

starts

each

one.

Each

thread

registers

its

own

MQPoolToken,

waits

for

a

length

of

time,

then

connects

to

the

queue

manager.

After

the

thread

disconnects,

it

removes

its

own

MQPoolToken.

The

default

connection

pool

remains

active

while

there

is

at

least

one

token

in

the

set

of

MQPoolTokens,

so

it

will

remain

active

for

the

duration

of

this

application.

The

application

does

not

need

to

keep

a

master

object

in

overall

control

of

the

threads.

import

com.ibm.mq.*;

public

class

MQApp3

{

public

static

void

main(String[]

args)

{

for

(int

i=0;

i<10;

i++)

{

MQApp3_Thread

thread=new

MQApp3_Thread(i*60000);

thread.start();

}

}

}

class

MQApp3_Thread

extends

Thread

{

long

time;

public

MQApp3_Thread(long

time)

{

this.time=time;

}

public

synchronized

void

run()

{

MQPoolToken

token=MQEnvironment.addConnectionPoolToken();

try

{

wait(time);

MQQueueManager

qmgr=new

MQQueueManager("my.qmgr.1");

:

:

(do

something

with

qmgr)

:

qmgr.disconnect();

}

catch

(MQException

mqe)

{System.err.println("Error

occurred!");}

catch

(InterruptedException

ie)

{}

MQEnvironment.removeConnectionPoolToken(token);

}

}

Connection

pooling

Chapter

7.

Writing

WebSphere

MQ

base

Java

programs

83

Supplying

a

different

connection

pool

This

section

describes

how

to

use

the

class

com.ibm.mq.MQSimpleConnectionManager

to

supply

a

different

connection

pool.

This

class

provides

basic

facilities

for

connection

pooling,

and

applications

can

use

this

class

to

customize

the

behavior

of

the

pool.

Once

it

is

instantiated,

an

MQSimpleConnectionManager

can

be

specified

on

the

MQQueueManager

constructor.

The

MQSimpleConnectionManager

then

manages

the

connection

that

underlies

the

constructed

MQQueueManager.

If

the

MQSimpleConnectionManager

contains

a

suitable

pooled

connection,

that

connection

is

reused

and

returned

to

the

MQSimpleConnectionManager

after

an

MQQueueManager.disconnect()

call.

The

following

code

fragment

demonstrates

this

behavior:

MQSimpleConnectionManager

myConnMan=new

MQSimpleConnectionManager();

myConnMan.setActive(MQSimpleConnectionManager.MODE_ACTIVE);

MQQueueManager

qmgr=new

MQQueueManager("my.qmgr.1",

myConnMan);

:

:

(do

something

with

qmgr)

:

qmgr.disconnect();

MQQueueManager

qmgr2=new

MQQueueManager("my.qmgr.1",

myConnMan);

:

:

(do

something

with

qmgr2)

:

qmgr2.disconnect();

myConnMan.setActive(MQSimpleConnectionManager.MODE_INACTIVE);

The

connection

that

is

forged

during

the

first

MQQueueManager

constructor

is

stored

in

myConnMan

after

the

qmgr.disconnect()

call.

The

connection

is

then

reused

during

the

second

call

to

the

MQQueueManager

constructor.

The

second

line

enables

the

MQSimpleConnectionManager.

The

last

line

disables

MQSimpleConnectionManager,

destroying

any

connections

held

in

the

pool.

An

MQSimpleConnectionManager

is,

by

default,

in

MODE_AUTO,

which

is

described

later

in

this

section.

An

MQSimpleConnectionManager

allocates

connections

on

a

most-recently-used

basis,

and

destroys

connections

on

a

least-recently-used

basis.

By

default,

a

connection

is

destroyed

if

it

has

not

been

used

for

five

minutes,

or

if

there

are

more

than

ten

unused

connections

in

the

pool.

You

can

alter

these

values

using:

v

MQSimpleConnectionManager.setTimeout()

v

MQSimpleConnectionManager.setHighThreshold()

You

can

also

set

up

an

MQSimpleConnectionManager

for

use

as

the

default

connection

pool,

to

be

used

when

no

Connection

Manager

is

supplied

on

the

MQQueueManager

constructor.

Connection

pooling

84

Using

Java

The

following

application

demonstrates

this:

import

com.ibm.mq.*;

public

class

MQApp4

{

public

static

void

main(String

[]args)

{

MQSimpleConnectionManager

myConnMan=new

MQSimpleConnectionManager();

myConnMan.setActive(MQSimpleConnectionManager.MODE_AUTO);

myConnMan.setTimeout(3600000);

myConnMan.setMaxConnections(75);

myConnMan.setMaxUnusedConnections(50);

MQEnvironment.setDefaultConnectionManager(myConnMan);

MQApp3.main(args);

}

}

The

bold

lines

create

and

configure

an

MQSimpleConnectionManager

object.

The

configuration

does

the

following:

v

Ends

connections

that

are

not

used

for

an

hour

v

Limits

the

number

of

connections

managed

by

myConnMan

to

75

v

Limits

the

number

of

unused

connections

in

the

pool

to

50

v

Sets

MODE_AUTO,

which

is

the

default.

This

means

that

the

pool

is

active

only

if

it

is

the

default

connection

manager,

and

there

is

at

least

one

token

in

the

set

of

MQPoolTokens

held

by

MQEnvironment.

The

new

MQSimpleConnectionManager

is

then

set

as

the

default

connection

manager.

In

the

last

line,

the

application

calls

MQApp3.main().

This

runs

a

number

of

threads,

where

each

thread

uses

WebSphere

MQ

independently.

These

threads

use

myConnMan

when

they

forge

connections.

Supplying

your

own

ConnectionManager

Under

Java

2

v1.3,

with

JAAS

1.0

installed,

applications

and

middleware

providers

can

provide

alternative

implementations

of

connection

pools.

WebSphere

MQ

base

Java

provides

a

partial

implementation

of

the

J2EE

Connector

Architecture.

Implementations

of

javax.resource.spi.ConnectionManager

can

either

be

used

as

the

default

Connection

Manager

or

be

specified

on

the

MQQueueManager

constructor.

WebSphere

MQ

base

Java

complies

with

the

Connection

Management

contract

of

the

J2EE

Connector

Architecture.

Read

this

section

in

conjunction

with

the

Connection

Management

contract

of

the

J2EE

Connector

Architecture

(refer

to

Sun’s

Web

site

at

http://java.sun.com).

The

ConnectionManager

interface

defines

only

one

method:

package

javax.resource.spi;

public

interface

ConnectionManager

{

Object

allocateConnection(ManagedConnectionFactory

mcf,

ConnectionRequestInfo

cxRequestInfo);

}

The

MQQueueManager

constructor

calls

allocateConnection

on

the

appropriate

ConnectionManager.

It

passes

appropriate

implementations

of

ManagedConnectionFactory

and

ConnectionRequestInfo

as

parameters

to

describe

the

connection

required.

Connection

pooling

Chapter

7.

Writing

WebSphere

MQ

base

Java

programs

85

|
|

|

|

|

|

The

ConnectionManager

searches

its

pool

for

a

javax.resource.spi.ManagedConnection

object

that

has

been

created

with

identical

ManagedConnectionFactory

and

ConnectionRequestInfo

objects.

If

the

ConnectionManager

finds

any

suitable

ManagedConnection

objects,

it

creates

a

java.util.Set

that

contains

the

candidate

ManagedConnections.

Then,

the

ConnectionManager

calls

the

following:

ManagedConnection

mc=mcf.matchManagedConnections(connectionSet,

subject,

cxRequestInfo);

The

WebSphere

MQ

implementation

of

ManagedConnectionFactory

ignores

the

subject

parameter.

This

method

selects

and

returns

a

suitable

ManagedConnection

from

the

set,

or

returns

null

if

it

does

not

find

a

suitable

ManagedConnection.

If

there

is

not

a

suitable

ManagedConnection

in

the

pool,

the

ConnectionManager

can

create

one

by

using:

ManagedConnection

mc=mcf.createManagedConnection(subject,

cxRequestInfo);

Again,

the

subject

parameter

is

ignored.

This

method

connects

to

a

WebSphere

MQ

queue

manager

and

returns

an

implementation

of

javax.resource.spi.ManagedConnection

that

represents

the

newly-forged

connection.

Once

the

ConnectionManager

has

obtained

a

ManagedConnection

(either

from

the

pool

or

freshly

created),

it

creates

a

connection

handle

using:

Object

handle=mc.getConnection(subject,

cxRequestInfo);

This

connection

handle

can

be

returned

from

allocateConnection().

A

ConnectionManager

must

register

an

interest

in

the

ManagedConnection

through:

mc.addConnectionEventListener()

The

ConnectionEventListener

is

notified

if

a

severe

error

occurs

on

the

connection,

or

when

MQQueueManager.disconnect()

is

called.

When

MQQueueManager.disconnect()

is

called,

the

ConnectionEventListener

can

do

either

of

the

following:

v

Reset

the

ManagedConnection

using

the

mc.cleanup()

call,

then

return

the

ManagedConnection

to

the

pool

v

Destroy

the

ManagedConnection

using

the

mc.destroy()

call

If

the

ConnectionManager

is

the

default

ConnectionManager,

it

can

also

register

an

interest

in

the

state

of

the

MQEnvironment-managed

set

of

MQPoolTokens.

To

do

so,

first

construct

an

MQPoolServices

object,

then

register

an

MQPoolServicesEventListener

object

with

the

MQPoolServices

object:

MQPoolServices

mqps=new

MQPoolServices();

mqps.addMQPoolServicesEventListener(listener);

The

listener

is

notified

when

an

MQPoolToken

is

added

or

removed

from

the

set,

or

when

the

default

ConnectionManager

changes.

The

MQPoolServices

object

also

provides

a

way

to

query

the

current

size

of

the

set

of

MQPoolTokens.

Connection

pooling

86

Using

Java

JTA/JDBC

coordination

using

WebSphere

MQ

base

Java

WebSphere

MQ

base

Java

supports

the

MQQueueManager.begin()

method,

which

allows

WebSphere

MQ

to

act

as

a

coordinator

for

a

database

which

provides

a

JDBC

2

compliant

driver.

Currently

this

support

is

available

on

Solaris,

AIX,

and

Windows

systems

with

Oracle

or

DB2

databases.

Installation

In

order

to

use

the

XA-JTA

support,

you

must

use

the

special

JTA

switch

library.

The

method

for

using

this

library

varies

depending

on

whether

you

are

using

Windows

systems

or

one

of

the

other

platforms.

Installation

on

Windows

systems

On

Windows

systems,

the

new

XA

library

is

supplied

as

a

complete

DLL.

The

name

of

this

DLL

is

jdbcxxx.dll

where

xxx

indicates

the

database

for

which

the

switch

library

has

been

compiled.

This

library

is

in

the

java/lib/jdbc

directory

of

your

WebSphere

MQ

base

Java

installation.

Installation

on

other

platforms

The

switch

file

is

supplied

as

an

object

file

that

you

must

link

yourself

using

the

supplied

makefile.

This

is

necessary

because

certain

libraries

required

by

the

switch

library

might

be

in

different

locations

on

different

systems.

Because

the

switch

library

is

loaded

by

the

queue

manager,

which

runs

in

a

setuid

environment,

you

cannot

use

the

dynamic

library

path

variable

to

locate

these

libraries.

You

therefore

need

to

put

the

full

path

names

to

these

libraries

in

the

switch

library

itself.

The

object

files

are

called

jdbcxxx.o

where

xxx

indicates

which

database

the

object

file

is

for.

When

linked,

a

switch

file

called

jdbcxxx

is

produced;

add

this

to

the

qm.ini

file

in

the

same

manner

as

the

standard

switch

libraries.

To

create

the

switch

library,

go

into

the

java/lib/jdbc

subdirectory

of

your

WebSphere

MQ

base

Java

installation

and

run

make

with

your

target

database

as

a

parameter.

Currently

supported

targets

for

XA-JTA

are

oracle

and

db2.

For

example:

make

db2

The

makefiles

are

set

up

to

link

against

the

databases

and

JDKs

in

their

standard

installed

location.

The

exception

to

this

is

Oracle,

which

can

be

installed

anywhere

on

the

system.

The

makefile

uses

Oracle’s

ORACLE_HOME

environment

variable

to

link

the

library

correctly.

If

your

JDK

is

in

a

non-standard

location,

you

can

override

the

default

directory

with

the

JAVA_HOME

definition:

make

JAVA_HOME=/usr/my_jdk13

oracle

The

above

command

produces

a

switch

file

named

jdbcora,

which

is

used

in

the

same

way

as

a

standard

switch

library,

including

using

the

same

XAOpenString.

If

you

have

previously

configured

an

XAResourceManager

in

your

qm.ini,

replace

the

SwitchFile

line

with

a

reference

to

the

new

JTA-specific

switch

file.

If

you

have

not

previously

used

an

XA

switch

file,

refer

to

the

WebSphere

MQ

System

Administration

Guide

for

of

configuring

the

XAResourceManager

stanza

for

different

databases,

remembering

to

replace

the

standard

switch

file

with

the

Java-specific

one.

Once

you

have

updated

the

qm.ini,

restart

the

queue

manager.

Ensure

that

all

appropriate

database

environment

variables

have

been

set

before

calling

strmqm.

JTA/JDBC

coordination

Chapter

7.

Writing

WebSphere

MQ

base

Java

programs

87

Usage

The

basic

sequence

of

API

calls

for

a

user

application

is:

qMgr

=

new

MQQueueManager("QM1")

Connection

con

=

qMgr.getJDBCConnection(

xads

);

qMgr.begin()

<

Perform

MQ

and

DB

operations

to

be

grouped

in

a

unit

of

work

>

qMgr.commit()

or

qMgr.backout();

con.close()

qMgr.disconnect()

xads

in

the

getJDBCConnection

call

is

a

database-specific

implementation

of

the

XADataSource

interface,

which

defines

the

details

of

the

database

to

connect

to.

See

the

documentation

for

your

database

to

determine

how

to

create

an

appropriate

XADataSource

object

to

pass

into

getJDBCConnection.

You

also

need

to

update

your

CLASSPATH

with

the

appropriate

database-specific

jar

files

for

performing

JDBC

work.

If

you

need

to

connect

to

multiple

databases,

you

might

have

to

call

getJDBCConnection

several

times

to

perform

the

transaction

across

several

different

connections.

There

are

two

forms

of

the

getJDBCConnection,

reflecting

the

two

forms

of

XADataSource.getXAConnection:

public

java.sql.Connection

getJDBCConnection(javax.sql.XADataSource

xads)

throws

MQException,

SQLException,

Exception

public

java.sql.Connection

getJDBCConnection(XADataSource

dataSource,

String

userid,

String

password)

throws

MQException,

SQLException,

Exception

These

methods

declare

Exception

in

their

throws

clauses

to

avoid

problems

with

the

JVM

verifier

for

customers

who

are

not

using

the

JTA

functionality.

The

actual

exception

thrown

is

javax.transaction.xa.XAException.

which

requires

the

jta.jar

file

to

be

added

to

the

classpath

for

programs

that

did

not

previously

require

it.

Known

problems

and

limitations

Because

this

support

makes

calls

to

JDBC

drivers,

the

implementation

of

those

JDBC

drivers

can

have

significant

impact

on

the

system

behavior.

In

particular,

tested

JDBC

drivers

behave

differently

when

the

database

is

shut

down

while

an

application

is

running.

Always

avoid

abruptly

shutting

down

a

database

while

there

are

applications

holding

open

connections

to

it.

Oracle

8.1.7

Calling

the

JDBC

Connection.close()

method

after

MQQueueManager.disconnect()

generates

an

SQLException.

Either

call

Connection.close()

before

MQQueueManager.disconnect(),

or

omit

the

call

to

Connection.close().

DB2®

Sometimes

DB2

returns

a

SQL0805N

error.

This

problem

can

be

resolved

with

the

following

CLP

command:

DB2

bind

@db2cli.lst

blocking

all

grant

public

Refer

to

the

DB2

documentation

for

more

information.

JTA/JDBC

coordination

88

Using

Java

Solaris

and

JDK

1.3

When

running

on

Solaris

with

JDK

1.3,

attempting

to

start

the

queue

manager

from

a

user

ID

other

than

root

or

mqm

is

likely

to

fail

to

load

the

jdbcora

switch

file

with

the

following

message

being

put

to

the

error

log:

AMQ6175:

The

system

could

not

dynamically

load

the

library

/opt/mqm/java/lib/jdbcora.

The

error

message

was

ld.so.1:

amqzxma0:

fatal:

libverify.so:

open

failed:

No

such

file

or

directory.

The

Queue

Manager

will

continue

without

this

module.

The

problem

arises

because

of

a

dependency

between

two

libraries

in

JDK1.3

that

cannot

be

resolved

by

the

dynamic

linker

when

the

invoking

program

has

the

setuid

bit

set

(as

strmqm

does).

Under

these

circumstances,

start

the

queue

manager

from

the

mqm

user

ID;

if

this

is

not

practical,

make

a

symbolic

link

for

libverify

into

/usr/lib.

For

example:

ln

-s

/usr/j2se/jre/lib/sparc/libverify.so

/usr/lib/libverify.so

Solaris

and

multiple

XAResourceManager

stanzas

When

attempting

to

use

multiple

XAResourceManager

stanzas

on

any

given

queue

manager

on

Solaris,

the

commit

call

might

fail.

Treat

this

as

an

unsupported

combination;

it

does

not

affect

queue

managers

with

a

single

XAResourceManager

stanza.

Windows

systems

The

JDBC

libraries

supplied

with

WebSphere

MQ

Java

(jdbcdb2.dll

and

jdbcora.dll)

have

a

dependency

on

jvm.dll,

which

is

supplied

with

the

JVM.

However,

depending

on

the

JVM

used,

this

DLL

might

be

in

a

subdirectory

that

is

not

on

the

path;

for

example,

jre/bin/classic/jvm.dll.

If

jvm.dll

cannot

be

found

when

the

queue

manager

starts,

the

queue

manager

produces

a

message

like

the

following

(this

example

is

for

DB2):

AMQ6174:

The

library

C:\Program

Files\IBM\MQSeries\Java\lib\jdbc\jdbcdb2.dll

was

not

found.

The

queue

manager

will

continue

without

this

module.

In

fact,

the

file

not

found

is

jvm.dll.

The

solution

is

to

either

copy

jvm.dll

to

somewhere

already

on

the

path

or

update

the

path

to

include

the

location

of

jvm.dll.

Secure

Sockets

Layer

(SSL)

support

WebSphere

MQ

base

Java

client

applications

and

WebSphere

MQ

JMS

connections

using

TRANSPORT(CLIENT)

support

Secure

Sockets

Layer

(SSL)

encryption.

SSL

provides

communication

encryption,

authentication,

and

message

integrity.

It

is

typically

used

to

secure

communications

between

any

two

peers

on

the

Internet

or

within

an

intranet.

WebSphere

MQ

classes

for

Java

uses

Java

Secure

Socket

Extension

(JSSE)

to

handle

SSL

encryption,

and

so

requires

a

JSSE

provider.

J2SE

v1.4

JVMs

have

a

JSSE

provider

built

in.

Details

of

how

to

manage

and

store

certificates

can

vary

from

provider

to

provider.

For

information

about

this,

refer

to

your

JSSE

provider’s

documentation.

This

section

assumes

that

your

JSSE

provider

is

correctly

installed

and

configured,

and

that

suitable

certificates

have

been

installed

and

made

available

to

your

JSSE

provider.

JTA/JDBC

coordination

Chapter

7.

Writing

WebSphere

MQ

base

Java

programs

89

Enabling

SSL

SSL

is

supported

only

for

client

connections.

To

enable

SSL,

you

must

specify

the

CipherSuite

to

use

when

communicating

with

the

queue

manager,

and

this

must

match

the

CipherSpec

set

on

the

target

channel.

Additionally,

the

named

CipherSuite

must

be

supported

by

your

JSSE

provider.

However,

CipherSuites

are

distinct

from

CipherSpecs

and

so

have

different

names.

Appendix

H,

“SSL

CipherSuites

supported

by

WebSphere

MQ,”

on

page

487

contains

a

table

mapping

the

CipherSpecs

supported

by

WebSphere

MQ

to

their

equivalent

CipherSuites

as

known

to

JSSE.

To

enable

SSL,

specify

the

CipherSuite

using

the

sslCipherSuite

static

member

variable

of

MQEnvironment.

The

following

example

attaches

to

a

SVRCONN

channel

named

SECURE.SVRCONN.CHANNEL,

which

has

been

set

up

to

require

SSL

with

a

CipherSpec

of

RC4_MD5_EXPORT:

MQEnvironment.hostname

=

"your_hostname";

MQEnvironment.channel

=

"SECURE.SVRCONN.CHANNEL";

MQEnvironment.sslCipherSuite

=

"SSL_RSA_EXPORT_WITH_RC4_40_MD5";

MQQueueManager

qmgr

=

new

MQQueueManager("your_Q_manager");

Note

that,

although

the

channel

has

a

CipherSpec

of

RC4_MD5_EXPORT,

the

Java

application

must

specify

a

CipherSuite

of

SSL_RSA_EXPORT_WITH_RC4_40_MD5.

For

more

information

about

CipherSpecs

and

CipherSuites,

see

the

WebSphere

MQ

Security

book.

See

Appendix

H,

“SSL

CipherSuites

supported

by

WebSphere

MQ,”

on

page

487

for

a

list

of

mappings

between

CipherSpecs

and

CipherSuites.

The

sslCipherSuite

property

can

also

be

set

using

the

MQC.SSL_CIPHER_SUITE_PROPERTY

in

the

Hash

table

of

connection

properties.

To

successfully

connect

using

SSL,

the

JSSE

TrustStore

must

be

set

up

with

Certificate

Authority

root

certificates

from

which

the

certificate

presented

by

the

queue

manager

can

be

authenticated.

Similarly,

if

SSLClientAuth

on

the

SVRCONN

channel

has

been

set

to

MQSSL_CLIENT_AUTH_REQUIRED,

the

JSSE

KeyStore

must

contain

an

identifying

certificate

that

is

trusted

by

the

queue

manager.

Using

the

distinguished

name

of

the

queue

manager

The

queue

manager

identifies

itself

using

an

SSL

certificate,

which

contains

a

Distinguished

Name

(DN).

A

WebSphere

MQ

Java

client

application

can

use

this

DN

to

ensure

that

it

is

communicating

with

the

correct

queue

manager.

A

DN

pattern

is

specified

using

the

sslPeerName

variable

of

MQEnvironment.

For

example,

setting:

MQEnvironment.sslPeerName

=

"CN=QMGR.*,

OU=IBM,

OU=WEBSPHERE";

allows

the

connection

to

succeed

only

if

the

queue

manager

presents

a

certificate

with

a

Common

Name

beginning

QMGR.,

and

at

least

two

Organizational

Unit

names,

the

first

of

which

must

be

IBM

and

the

second

WEBSPHERE.

The

sslPeerName

property

can

also

be

set

using

the

MQC.SSL_PEER_NAME_PROPERTY

in

the

hash

table

of

connection

properties.

For

more

information

about

distinguished

names,

refer

to

WebSphere

MQ

Security.

If

sslPeerName

is

set,

connections

succeed

only

if

it

is

set

to

a

valid

pattern

and

the

queue

manager

presents

a

matching

certificate.

SSL

support

90

Using

Java

Using

certificate

revocation

lists

A

certificate

revocation

list

(CRL)

is

a

set

of

certificates

that

have

been

revoked,

either

by

the

issuing

Certificate

Authority

or

by

the

local

organization.

CRLs

are

typically

hosted

on

LDAP

servers.

With

Java

2

v1.4,

a

CRL

server

can

be

specified

at

connect-time

and

the

certificate

presented

by

the

queue

manager

is

checked

against

the

CRL

before

the

connection

is

allowed.

For

more

information

about

certificate

revocation

lists

and

WebSphere

MQ,

see

WebSphere

MQ

Security.

Note:

To

use

a

CertStore

successfully

with

a

CRL

hosted

on

an

LDAP

server,

make

sure

that

your

Java

Software

Development

Kit

(SDK)

is

compatible

with

the

CRL.

Some

SDKs

require

that

the

CRL

conforms

to

RFC

2587,

which

defines

a

schema

for

LDAP

v2.

Most

LDAP

v3

servers

use

RFC

2256

instead.

The

CRLs

to

use

are

specified

through

the

java.security.cert.CertStore

class.

Refer

to

documentation

on

this

class

for

full

details

of

how

to

obtain

instances

of

CertStore.

To

create

a

CertStore

based

on

an

LDAP

server,

first

create

an

LDAPCertStoreParameters

instance,

initialized

with

the

server

and

port

settings

to

use.

For

example:

import

java.security.cert.*;

CertStoreParameters

csp

=

new

LDAPCertStoreParameters("crl_server",

389);

Having

created

a

CertStoreParameters

instance,

use

the

static

constructor

on

CertStore

to

create

a

CertStore

of

type

LDAP:

CertStore

cs

=

CertStore.getInstance("LDAP",

csp);

Other

CertStore

types

(for

example,

Collection)

are

also

supported.

Commonly

there

are

several

CRL

servers

set

up

with

identical

CRL

information

to

give

redundancy.

Once

you

have

a

CertStore

object

for

each

of

these

CRL

servers,

place

them

all

in

a

suitable

Collection.

The

following

example

shows

the

CertStore

objects

placed

in

an

ArrayList:

import

java.util.ArrayList;

Collection

crls

=

new

ArrayList();

crls.add(cs);

This

Collection

can

be

set

into

the

MQEnvironment

static

variable,

sslCertStores,

before

connecting

to

enable

CRL

checking:

MQEnvironment.sslCertStores

=

crls;

The

certificate

presented

by

the

queue

manager

when

a

connection

is

being

set

up

is

validated

as

follows:

1.

The

first

CertStore

object

in

the

Collection

identified

by

sslCertStores

is

used

to

identify

a

CRL

server.

2.

An

attempt

is

made

to

contact

the

CRL

server.

3.

If

the

attempt

is

successful,

the

server

is

searched

for

a

match

for

the

certificate.

a.

If

the

certificate

is

found

to

be

revoked,

the

search

process

is

over

and

the

connection

request

fails

with

reason

code

MQRC_SSL_CERTIFICATE_REVOKED.

b.

If

the

certificate

is

not

found,

the

search

process

is

over

and

the

connection

is

allowed

to

proceed.
4.

If

the

attempt

to

contact

the

server

is

unsuccessful,

the

next

CertStore

object

is

used

to

identify

a

CRL

server

and

the

process

repeats

from

step

2.

If

this

was

the

last

CertStore

in

the

Collection,

or

if

the

Collection

contains

no

CertStore

objects,

the

search

process

has

failed

and

the

connection

request

fails

with

reason

code

MQRC_SSL_CERT_STORE_ERROR.

SSL

support

Chapter

7.

Writing

WebSphere

MQ

base

Java

programs

91

The

Collection

object

determines

the

order

in

which

CertStores

are

used.

The

Collection

of

CertStores

can

also

be

set

using

the

MQC.SSL_CERT_STORE_PROPERTY.

As

a

convenience,

this

property

also

allows

a

single

CertStore

to

be

specified

without

needing

to

be

a

member

of

a

Collection.

If

sslCertStores

is

set

to

null,

no

CRL

checking

is

performed.

This

property

is

ignored

if

sslCipherSuite

is

not

set.

Supplying

a

customized

SSLSocketFactory

Different

JSSE

implementations

can

provide

different

features.

For

example,

a

specialized

JSSE

implementation

could

allow

configuration

of

a

particular

model

of

encryption

hardware.

Additionally,

some

JSSE

providers

allow

customization

of

KeyStores

and

TrustStores

by

program,

or

allow

the

choice

of

identity

certificate

from

the

KeyStore

to

be

altered.

In

JSSE,

all

these

customizations

are

abstracted

into

a

factory

class,

javax.net.ssl.SSLSocketFactory.

Refer

to

your

JSSE

documentation

for

details

of

how

to

create

a

customized

SSLSocketFactory

implementation.

The

details

vary

from

provider

to

provider,

but

a

typical

sequence

of

steps

might

be:

1.

Create

an

SSLContext

object

using

a

static

method

on

SSLContext

2.

Initialize

this

SSLContext

with

appropriate

KeyManagers

and

TrustManager

implementations

(created

from

their

own

factory

classes)

3.

Create

an

SSLSocketFactory

from

the

SSLContext

When

you

have

an

SSLSocketFactory

object,

set

the

MQEnvironment.sslSocketFactory

to

the

customized

factory

object.

For

example:

javax.net.ssl.SSLSocketFactory

sf

=

sslContext.getSocketFactory();

MQEnvironment.sslSocketFactory

=

sf;

WebSphere

MQ

classes

for

Java

then

use

this

SSLSocketFactory

to

connect

to

the

WebSphere

MQ

queue

manager.

This

property

can

also

be

set

using

the

MQC.SSL_SOCKET_FACTORY_PROPERTY.

If

sslSocketFactory

is

set

to

null,

the

JVM’s

default

SSLSocketFactory

is

used.

This

property

is

ignored

if

sslCipherSuite

is

not

set.

Error

handling

when

using

SSL

The

following

reason

codes

can

be

issued

by

WebSphere

MQ

classes

for

Java

when

connecting

to

a

queue

manager

using

SSL:

MQRC_SSL_NOT_ALLOWED

The

sslCipherSuite

property

was

set,

but

bindings

connect

was

used.

Only

client

connect

supports

SSL.

MQRC_JSSE_ERROR

The

JSSE

provider

reported

an

error

that

could

not

be

handled

by

WebSphere

MQ.

This

could

be

caused

by

a

configuration

problem

with

JSSE,

or

because

the

certificate

presented

by

the

queue

manager

could

not

be

validated.

The

exception

produced

by

JSSE

can

be

retrieved

using

the

getCause()

method

on

MQException.

MQRC_SSL_PEER_NAME_MISMATCH

The

DN

pattern

specified

in

the

sslPeerName

property

did

not

match

the

DN

presented

by

the

queue

manager.

SSL

support

92

Using

Java

MQRC_SSL_PEER_NAME_ERROR

The

DN

pattern

specified

in

the

sslPeerName

property

was

not

valid.

MQRC_UNSUPPORTED_CIPHER_SUITE

The

CipherSuite

named

in

sslCipherSuite

was

not

recognized

by

the

JSSE

provider.

A

full

list

of

CipherSuites

supported

by

the

JSSE

provider

can

be

obtained

by

a

program

using

the

SSLSocketFactory.getSupportedCipherSuites()

method.

A

list

of

CipherSuites

that

can

be

used

to

communicate

with

WebSphere

MQ

can

be

found

in

Appendix

H,

“SSL

CipherSuites

supported

by

WebSphere

MQ,”

on

page

487.

MQRC_SSL_CERTIFICATE_REVOKED

The

certificate

presented

by

the

queue

manager

was

found

in

a

CRL

specified

with

the

sslCertStores

property.

Update

the

queue

manager

to

use

trusted

certificates.

MQRC_SSL_CERT_STORE_ERROR

None

of

the

supplied

CertStores

could

be

searched

for

the

certificate

presented

by

the

queue

manager.

The

MQException.getCause()

method

returns

the

error

that

occurred

while

searching

the

first

CertStore

attempted.

If

the

causal

exception

is

NoSuchElementException,

ClassCastException,

or

NullPointerException,

check

that

the

Collection

specified

on

the

sslCertStores

property

contains

at

least

one

valid

CertStore

object.

Compiling

and

testing

WebSphere

MQ

base

Java

programs

Before

compiling

WebSphere

MQ

base

Java

programs,

you

must

ensure

that

your

WebSphere

MQ

classes

for

Java

installation

directory

is

in

your

CLASSPATH

environment

variable,

as

described

in

Chapter

2,

“Installation,”

on

page

9.

To

compile

a

class

called

MyClass.java,

use

the

command:

javac

MyClass.java

Running

WebSphere

MQ

base

Java

applets

If

you

write

an

applet

(subclass

of

java.applet.Applet),

you

must

create

an

HTML

file

referencing

your

class

before

you

can

run

it.

A

sample

HTML

file

might

look

as

follows:

<html>

<body>

<applet

code="MyClass.class"

width=200

height=400>

</applet>

</body>

</html>

Run

your

applet

either

by

loading

this

HTML

file

into

a

Java-enabled

Web

browser,

or

by

using

the

appletviewer

that

comes

with

the

Java

Development

Kit

(JDK).

To

use

the

applet

viewer,

enter

the

command:

appletviewer

myclass.html

SSL

support

Chapter

7.

Writing

WebSphere

MQ

base

Java

programs

93

Running

WebSphere

MQ

base

Java

applications

If

you

write

an

application

(a

class

that

contains

a

main()

method),

using

either

the

client

or

the

bindings

mode,

run

your

program

using

the

Java

interpreter.

Use

the

command:

java

MyClass

Note:

The

.class

extension

is

omitted

from

the

class

name.

Tracing

WebSphere

MQ

base

Java

programs

WebSphere

MQ

base

Java

includes

a

trace

facility,

which

you

can

use

to

produce

diagnostic

messages

if

you

suspect

that

there

might

be

a

problem

with

the

code.

(You

normally

need

to

use

this

facility

only

at

the

request

of

IBM

service.)

Tracing

is

controlled

by

the

enableTracing

and

disableTracing

methods

of

the

MQEnvironment

class.

For

example:

MQEnvironment.enableTracing(2);

//

trace

at

level

2

...

//

these

commands

will

be

traced

MQEnvironment.disableTracing();

//

turn

tracing

off

again

The

trace

is

written

to

the

Java

console

(System.err).

If

your

program

is

an

application,

or

if

you

run

it

from

your

local

disk

using

the

appletviewer

command,

you

can

also

redirect

the

trace

output

to

a

file

of

your

choice.

The

following

code

fragment

shows

an

example

of

how

to

redirect

the

trace

output

to

a

file

called

myapp.trc:

import

java.io.*;

try

{

FileOutputStream

traceFile

=

new

FileOutputStream("myapp.trc");

MQEnvironment.enableTracing(2,traceFile);

}

catch

(IOException

ex)

{

//

couldn’t

open

the

file,

//

trace

to

System.err

instead

MQEnvironment.enableTracing(2);

}

There

are

five

different

levels

of

tracing:

1.

Provides

entry,

exit,

and

exception

tracing

2.

Provides

parameter

information

in

addition

to

1

3.

Provides

transmitted

and

received

WebSphere

MQ

headers

and

data

blocks

in

addition

to

2

4.

Provides

transmitted

and

received

user

message

data

in

addition

to

3

5.

Provides

tracing

of

methods

in

the

Java

Virtual

Machine

in

addition

to

4

To

trace

methods

in

the

Java

Virtual

Machine

with

trace

level

5:

v

For

an

application,

run

it

by

issuing

the

command

java_g

(instead

of

java)

v

For

an

applet,

run

it

by

issuing

the

command

appletviewer_g

(instead

of

appletviewer)

Note:

java_g

is

not

supported

on

OS/400,

but

similar

function

is

provided

by

using

OPTION(*VERBOSE)

on

the

RUNJVA

command.

Running

WebSphere

MQ

base

Java

applications

94

Using

Java

Chapter

8.

Environment-dependent

behavior

WebSphere

MQ

classes

for

Java

allow

you

to

create

applications

that

can

run

against

different

versions

of

WebSphere

MQ

and

MQSeries.

This

chapter

describes

the

behavior

of

the

Java

classes

dependent

on

these

different

versions.

WebSphere

MQ

classes

for

Java

provides

a

core

of

classes,

which

provide

consistent

function

and

behavior

in

all

the

environments.

Features

outside

this

core

depend

on

the

capability

of

the

queue

manager

to

which

the

application

is

connected.

Except

where

noted

here,

the

behavior

exhibited

is

as

described

in

the

Application

Programming

Reference

book

appropriate

to

the

queue

manager.

Core

details

WebSphere

MQ

classes

for

Java

contains

the

following

core

set

of

classes,

which

can

be

used

in

all

environments

with

only

the

minor

variations

listed

in

“Restrictions

and

variations

for

core

classes”

on

page

96.

v

MQEnvironment

v

MQException

v

MQGetMessageOptions

Excluding:

–

MatchOptions

–

GroupStatus

–

SegmentStatus

–

Segmentation
v

MQManagedObject

Excluding:

–

inquire()

–

set()
v

MQMessage

Excluding:

–

groupId

–

messageFlags

–

messageSequenceNumber

–

offset

–

originalLength
v

MQPoolServices

v

MQPoolServicesEvent

v

MQPoolServicesEventListener

v

MQPoolToken

v

MQPutMessageOptions

Excluding:

–

knownDestCount

–

unknownDestCount

–

invalidDestCount

–

recordFields
v

MQProcess

v

MQQueue

v

MQQueueManager

©

Copyright

IBM

Corp.

1997,

2004

95

Excluding:

–

begin()

–

accessDistributionList()
v

MQSimpleConnectionManager

v

MQC

Notes:

1.

Some

constants

are

not

included

in

the

core

(see

“Restrictions

and

variations

for

core

classes”

for

details);

do

not

use

them

in

completely

portable

programs.

2.

Some

platforms

do

not

support

all

connection

modes.

On

these

platforms,

you

can

use

only

the

core

classes

and

options

that

relate

to

the

supported

modes.

(See

Table

1

on

page

5.)

Restrictions

and

variations

for

core

classes

The

core

classes

generally

behave

consistently

across

all

environments,

even

if

the

equivalent

MQI

calls

normally

have

environment

differences.

The

behavior

is

as

if

a

Windows

or

UNIX

WebSphere

MQ

queue

manager

is

used,

except

for

the

following

minor

restrictions

and

variations.

MQGMO_*

values

The

following

MQGMO_*

values

are

not

supported

by

all

queue

managers,

and

their

use

might

throw

MQException

from

an

MQQueue.get():

MQGMO_SYNCPOINT_IF_PERSISTENT

MQGMO_MARK_SKIP_BACKOUT

MQGMO_BROWSE_MSG_UNDER_CURSOR

MQGMO_LOCK

MQGMO_UNLOCK

MQGMO_LOGICAL_ORDER

MQGMO_COMPLETE_MESSAGE

MQGMO_ALL_MSGS_AVAILABLE

MQGMO_ALL_SEGMENTS_AVAILABLE

Additionally,

MQGMO_SET_SIGNAL

is

not

supported

when

used

from

Java.

MQPMRF_*

values

These

are

used

only

when

putting

messages

to

a

distribution

list,

and

are

supported

only

by

queue

managers

supporting

distribution

lists.

For

example,

z/OS

and

OS/390

queue

managers

do

not

support

distribution

lists.

MQPMO_*

values

The

following

MQPMO_*

values

are

not

supported

by

all

queue

managers,

and

their

use

might

throw

MQException

from

an

MQQueue.put()

or

an

MQQueueManager.put():

MQPMO_NEW_MESSAGE_ID

MQPMO_NEW_CORREL_ID

MQPMO_LOGICAL_ORDER

MQCNO_FASTPATH_BINDING

This

value

is

ignored

on

queue

managers

that

do

not

support

it,

or

when

using

a

TCP/IP

client

connection.

Core

details

96

Using

Java

MQRO_*

values

The

following

report

options

can

be

set

but

are

ignored

by

some

queue

managers.

This

can

affect

applications

connected

to

a

queue

manager

that

honors

the

report

options

when

the

report

message

is

generated

by

a

remote

queue

manager

that

does

not.

Avoid

relying

on

these

options

if

there

is

a

possibility

that

a

queue

manager

involved

does

not

support

them.

MQRO_EXCEPTION_WITH_FULL_DATA

MQRO_EXPIRATION_WITH_FULL_DATA

MQRO_COA_WITH_FULL_DATA

MQRO_COD_WITH_FULL_DATA

MQRO_DISCARD_MSG

Miscellaneous

differences

with

z/OS

and

OS/390

Message

priority

When

a

message

is

put

with

a

priority

greater

than

MaxPriority,

a

z/OS

or

OS/390

queue

manager

rejects

the

put

with

MQCC_FAILED

and

MQRC_PRIORITY_ERROR.

Other

platforms

complete

the

put

with

MQCC_WARNING

and

MQRC_PRIORITY_EXCEEDS_MAXIMUM,

and

treat

the

message

as

if

it

were

put

with

MaxPriority.

BackoutCount

A

z/OS

or

OS/390

queue

manager

returns

a

maximum

BackoutCount

of

255,

even

if

the

message

has

been

backed

out

more

than

255

times.

Default

dynamic

queue

prefix

When

connected

to

a

z/OS

or

OS/390

queue

manager

using

a

bindings

connection,

the

default

dynamic

queue

prefix

is

CSQ.*.

Otherwise,

the

default

dynamic

queue

prefix

is

AMQ.*.

MQQueueManager

constructor

Client

connect

is

not

supported

on

z/OS

and

OS/390.

Attempting

to

connect

with

client

options

results

in

an

MQException

with

MQCC_FAILED

and

MQRC_ENVIRONMENT_ERROR.

The

MQQueueManager

constructor

might

also

fail

with

MQRC_CHAR_CONVERSION_ERROR

(if

it

fails

to

initialize

conversion

between

the

IBM-1047

and

ISO8859-1

code

pages),

or

MQRC_UCS2_CONVERSION_ERROR

(if

it

fails

to

initialize

conversion

between

the

queue

manager’s

code

page

and

Unicode).

If

your

application

fails

with

one

of

these

reason

codes,

ensure

that

the

National

Language

Resources

component

of

Language

Environment®

is

installed,

and

ensure

that

the

correct

conversion

tables

are

available.

Conversion

tables

for

Unicode

are

installed

as

part

of

the

OS/390

C/C++

optional

feature.

See

the

OS/390:

C/C++

Programming

Guide

(SC09-2362)

for

more

information

about

enabling

UCS-2

conversions.

Restrictions

Chapter

8.

Environment-dependent

behavior

97

Features

outside

the

core

The

WebSphere

MQ

classes

for

Java

contain

the

following

functions

that

are

specifically

designed

to

use

API

extensions

that

are

not

supported

by

all

queue

managers.

This

section

describes

how

they

behave

when

using

a

queue

manager

that

does

not

support

them.

MQQueueManager

constructor

option

The

MQQueueManager

constructor

includes

an

optional

integer

argument.

This

maps

onto

the

MQI’s

MQCNO

options

field,

and

is

used

to

switch

between

normal

and

fast

path

connection.

This

extended

form

of

the

constructor

is

accepted

in

all

environments,

provided

that

the

only

options

used

are

MQCNO_STANDARD_BINDING

or

MQCNO_FASTPATH_BINDING.

Any

other

options

cause

the

constructor

to

fail

with

MQRC_OPTIONS_ERROR.

The

fast

path

option

MQC.MQCNO_FASTPATH_BINDING

is

honored

only

when

with

a

bindings

connection

to

a

queue

manager

that

supports

it.

In

other

environments,

it

is

ignored.

MQQueueManager.begin()

method

This

can

be

used

only

against

a

WebSphere

MQ

queue

manager

on

UNIX

or

Windows

systems

in

bindings

mode.

Otherwise,

it

fails

with

MQRC_ENVIRONMENT_ERROR.

See

“JTA/JDBC

coordination

using

WebSphere

MQ

base

Java”

on

page

87

for

more

details.

MQGetMessageOptions

fields

When

using

a

queue

manager

that

does

not

support

the

Version

2

MQGMO

structure,

leave

the

following

fields

set

to

their

default

values:

GroupStatus

SegmentStatus

Segmentation

Also,

the

MatchOptions

field

support

only

MQMO_MATCH_MSG_ID

and

MQMO_MATCH_CORREL_ID.

If

you

put

unsupported

values

into

these

fields,

the

subsequent

MQQueue.get()

fail

with

MQRC_GMO_ERROR.

If

the

queue

manager

does

not

support

the

Version

2

MQGMO

structure,

these

fields

are

not

updated

after

a

successful

MQQueue.get().

Distribution

lists

The

following

classes

are

used

to

create

distribution

lists:

MQDistributionList

MQDistributionListItem

MQMessageTracker

You

can

create

and

populate

MQDistributionLists

and

MQDistributionListItems

in

any

environment,

but

not

all

queue

managers

allow

you

to

open

an

MQDistributionList.

In

particular,

z/OS

and

OS/390

queue

managers

do

not

support

distribution

lists.

Attempting

to

open

an

MQDistributionList

when

using

such

a

queue

manager

results

in

MQRC_OD_ERROR.

MQPutMessageOptions

fields

Four

fields

in

the

MQPMO

are

rendered

as

the

following

member

variables

in

the

MQPutMessageOptions

class:

knownDestCount

Features

outside

the

core

98

Using

Java

unknownDestCount

invalidDestCount

recordFields

These

fields

are

primarily

intended

for

use

with

distribution

lists.

However,

a

queue

manager

that

supports

distribution

lists

also

fills

in

the

DestCount

fields

after

an

MQPUT

to

a

single

queue.

For

example,

if

the

queue

resolves

to

a

local

queue,

knownDestCount

is

set

to

1

and

the

other

two

count

fields

are

set

to

0.

If

the

queue

manager

does

not

support

distribution

lists,

these

values

are

simulated

as

follows:

v

If

the

put()

succeeds,

unknownDestCount

is

set

to

1,

and

the

others

are

set

to

0.

v

If

the

put()

fails,

invalidDestCount

is

set

to

1,

and

the

others

are

set

to

0.

The

recordFields

variable

is

used

with

distribution

lists.

A

value

can

be

written

into

recordFields

at

any

time,

regardless

of

the

environment.

It

is

ignored

if

the

MQPutMessageOptions

object

is

used

on

a

subsequent

MQQueue.put()

or

MQQueueManager.put(),

rather

than

MQDistributionList.put().

MQMD

fields

The

following

MQMD

fields

are

largely

concerned

with

message

segmentation:

GroupId

MsgSeqNumber

Offset

MsgFlags

OriginalLength

If

an

application

sets

any

of

these

MQMD

fields

to

values

other

than

their

defaults,

and

then

does

a

put()

or

get()

on

a

queue

manager

that

does

not

support

these,

the

put()

or

get()

raises

an

MQException

with

MQRC_MD_ERROR.

A

successful

put()

or

get()

with

such

a

queue

manager

always

leaves

the

MQMD

fields

set

to

their

default

values.

Do

not

send

a

grouped

or

segmented

message

to

a

Java

application

that

runs

against

a

queue

manager

that

does

not

support

message

grouping

and

segmentation.

If

a

Java

application

attempts

to

get()

a

message

from

a

queue

manager

that

does

not

support

these

fields,

and

the

physical

message

to

be

retrieved

is

part

of

a

group

of

segmented

messages

(that

is,

it

has

non-default

values

for

the

MQMD

fields),

it

is

retrieved

without

error.

However,

the

MQMD

fields

in

the

MQMessage

are

not

updated,

the

MQMessage

format

property

is

set

to

MQFMT_MD_EXTENSION,

and

the

true

message

data

is

prefixed

with

an

MQMDE

structure

that

contains

the

values

for

the

new

fields.

Features

outside

the

core

Chapter

8.

Environment-dependent

behavior

99

100

Using

Java

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

This

chapter

describes

all

the

WebSphere

MQ

classes

for

Java

classes

and

interfaces.

It

includes

details

of

the

variables,

constructors,

and

methods

in

each

class

and

interface.

The

following

classes

are

described:

v

MQChannelDefinition

v

MQChannelExit

v

MQDistributionList

v

MQDistributionListItem

v

MQEnvironment

v

MQException

v

MQGetMessageOptions

v

MQManagedObject

v

MQMessage

v

MQMessageTracker

v

MQPoolServices

v

MQPoolServicesEvent

v

MQPoolToken

v

MQPutMessageOptions

v

MQProcess

v

MQQueue

v

MQQueueManager

v

MQSimpleConnectionManager

The

following

interfaces

are

described:

v

MQC

v

MQPoolServicesEventListener

v

MQConnectionManager

v

MQReceiveExit

v

MQSecurityExit

v

MQSendExit

v

ManagedConnection

v

ManagedConnectionFactory

v

ManagedConnectionMetaData

©

Copyright

IBM

Corp.

1997,

2004

101

MQChannelDefinition

public

class

MQChannelDefinition

extends

Object

Use

the

MQChannelDefinition

class

to

pass

information

concerning

the

connection

to

the

queue

manager

to

the

send,

receive,

and

security

exits.

Note:

This

class

does

not

apply

when

connecting

directly

to

WebSphere

MQ

in

bindings

mode.

Variables

channelName

public

String

channelName

The

name

of

the

channel

through

which

the

connection

is

established.

connectionName

public

String

connectionName

The

TCP/IP

hostname

of

the

machine

on

which

the

queue

manager

resides.

maxMessageLength

public

int

maxMessageLength

The

maximum

length

of

message

that

can

be

sent

to

the

queue

manager.

queueManagerName

public

String

queueManagerName

The

name

of

the

queue

manager

to

which

the

connection

is

made.

receiveUserData

public

String

receiveUserData

A

storage

area

for

the

receive

exit

to

use.

Information

placed

here

is

preserved

across

invocations

of

the

receive

exit,

and

is

also

available

to

the

send

and

security

exits.

remotePassword

public

String

remotePassword

The

password

used

to

establish

the

connection.

remoteUserId

public

String

remoteUserId

The

user

id

used

to

establish

the

connection.

securityUserData

public

String

securityUserData

A

storage

area

for

the

security

exit

to

use.

Information

placed

here

is

preserved

across

invocations

of

the

security

exit,

and

is

also

available

to

the

send

and

receive

exits.

sendUserData

public

String

sendUserData

java.lang.Object

│

└─

com.ibm.mq.MQChannelDefinition

MQChannelDefinition

102

Using

Java

A

storage

area

for

the

send

exit

to

use.

Information

placed

here

is

preserved

across

invocations

of

the

send

exit,

and

is

also

available

to

the

security

and

receive

exits.

sslPeerName

public

String

sslPeerName

If

SSL

is

used

to

encrypt

data

on

the

wire,

this

is

set

to

the

Distinguished

Name

presented

by

the

queue

manager

during

connection.

If

SSL

is

not

used,

it

is

left

at

null.

Constructors

MQChannelDefinition

public

MQChannelDefinition()

MQChannelDefinition

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

103

MQChannelExit

public

class

MQChannelExit

extends

Object

This

class

defines

context

information

passed

to

the

send,

receive,

and

security

exits

when

they

are

invoked.

The

exit

must

set

the

exitResponse

member

variable

to

indicate

what

action

the

WebSphere

MQ

Client

for

Java

should

take

next.

Note:

This

class

does

not

apply

when

connecting

directly

to

WebSphere

MQ

in

bindings

mode.

Variables

MQXCC_CLOSE_CHANNEL

public

final

static

int

MQXCC_CLOSE_CHANNEL

MQXCC_OK

public

final

static

int

MQXCC_OK

MQXCC_SUPPRESS_FUNCTION

public

final

static

int

MQXCC_SUPPRESS_FUNCTION

MQXCC_SEND_AND_REQUEST_SEC_MSG

public

final

static

int

MQXCC_SEND_AND_REQUEST_SEC_MSG

MQXCC_SEND_SEC_MSG

public

final

static

int

MQXCC_SEND_SEC_MSG

MQXCC_SUPPRESS_EXIT

public

final

static

int

MQXCC_SUPPRESS_EXIT

MQXR_INIT

public

final

static

int

MQXR_INIT

MQXR_INIT_SEC

public

final

static

int

MQXR_INIT_SEC

MQXR_SEC_MSG

public

final

static

int

MQXR_SEC_MSG

MQXR_TERM

public

final

static

int

MQXR_TERM

MQXR_XMIT

public

final

static

int

MQXR_XMIT

MQXT_CHANNEL_SEC_EXIT

public

final

static

int

MQXT_CHANNEL_SEC_EXIT

MQXT_CHANNEL_SEND_EXIT

public

final

static

int

MQXT_CHANNEL_SEND_EXIT

MQXT_CHANNEL_RCV_EXIT

public

final

static

int

MQXT_CHANNEL_RCV_EXIT

capabilityFlags

public

static

final

int

capabilityFlags

java.lang.Object

│

└─

com.ibm.mq.MQChannelExit

MQChannelExit

104

Using

Java

Indicates

the

capability

of

the

queue

manager.

Only

the

MQC.MQCF_DIST_LISTS

flag

is

supported.

exitID

public

int

exitID

The

type

of

exit

that

has

been

invoked.

For

an

MQSecurityExit

this

is

always

MQXT_CHANNEL_SEC_EXIT;

for

an

MQSendExit

this

is

always

MQXT_CHANNEL_SEND_EXIT;

for

an

MQReceiveExit

this

is

always

MQXT_CHANNEL_RCV_EXIT.

exitReason

public

int

exitReason

The

reason

for

invoking

the

exit.

Possible

values

are:

MQXR_INIT

Exit

initialization;

called

after

the

channel

connection

conditions

have

been

negotiated,

but

before

any

security

flows

have

been

sent.

MQXR_INIT_SEC

Indicates

that

the

exit

is

to

initiate

the

security

dialog

with

the

queue

manager.

MQXR_SEC_MSG

Indicates

to

the

security

exit

that

a

security

message

has

been

received

from

the

queue

manager.

MQXR_TERM

Exit

termination;

called

after

the

disconnect

flows

have

been

sent

but

before

the

socket

connection

is

destroyed.

MQXR_XMIT

For

a

send

exit,

indicates

that

data

is

to

be

transmitted

to

the

queue

manager.

For

a

receive

exit,

indicates

that

data

has

been

received

from

the

queue

manager.

exitResponse

public

int

exitResponse

Set

by

the

exit

to

indicate

the

action

that

WebSphere

MQ

classes

for

Java

should

take

next.

Valid

values

are:

MQXCC_CLOSE_CHANNEL

Set

by

any

exit

to

indicate

that

the

connection

to

the

queue

manager

should

be

closed.

MQXCC_OK

Set

by

the

security

exit

to

indicate

that

security

exchanges

are

complete.

Set

by

send

exit

to

indicate

that

the

returned

data

is

to

be

transmitted

to

the

queue

manager.

Set

by

the

receive

exit

to

indicate

that

the

returned

data

is

available

for

processing

by

the

WebSphere

MQ

Client

for

Java.

MQXCC_SEND_AND_REQUEST_SEC_MSG

Set

by

the

security

exit

to

indicate

that

the

returned

data

is

to

be

transmitted

to

the

queue

manager,

and

that

a

response

is

expected

from

the

queue

manager.

MQChannelExit

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

105

MQXCC_SEND_SEC_MSG

Set

by

the

security

exit

to

indicate

that

the

returned

data

is

to

be

transmitted

to

the

queue

manager,

and

that

no

response

is

expected.

MQXCC_SUPPRESS_EXIT

Set

by

any

exit

to

indicate

that

it

should

no

longer

be

called.

MQXCC_SUPPRESS_FUNCTION

Set

by

the

security

exit

to

indicate

that

communications

with

the

queue

manager

should

be

shut

down.

exitUserArea

public

byte

exitUserArea[]

A

storage

area

available

for

the

exit

to

use.

Any

data

placed

in

the

exitUserArea

is

preserved

by

the

WebSphere

MQ

Client

for

Java

across

exit

invocations

with

the

same

exitID.

(That

is,

the

send,

receive,

and

security

exits

each

have

their

own,

independent,

user

areas.)

fapLevel

public

static

final

int

fapLevel

The

negotiated

Format

and

Protocol

(FAP)

level.

maxSegmentLength

public

int

maxSegmentLength

The

maximum

length

for

any

one

transmission

to

a

queue

manager.

If

the

exit

returns

data

that

is

to

be

sent

to

the

queue

manager,

the

length

of

the

returned

data

must

not

exceed

this

value.

Constructors

MQChannelExit

public

MQChannelExit()

MQChannelExit

106

Using

Java

MQDistributionList

public

class

MQDistributionList

extends

MQManagedObject

(See

page

123.)

Create

an

MQDistributionList

using

the

MQDistributionList

constructor

or

the

accessDistributionList

method

for

MQQueueManager.

A

distribution

list

represents

a

set

of

open

queues

to

which

messages

can

be

sent

using

a

single

call

to

the

put()

method.

(See

″Distribution

lists″

in

the

WebSphere

MQ

Application

Programming

Guide.)

Constructors

MQDistributionList

public

MQDistributionList(MQQueueManager

qMgr,

MQDistributionListItem[]

litems,

int

openOptions,

String

alternateUserId)

throws

MQException

qMgr

is

the

queue

manager

where

the

list

is

to

be

opened.

litems

are

the

items

to

be

included

in

the

distribution

list.

See

“accessDistributionList”

on

page

166

for

details

of

the

remaining

parameters.

Methods

getFirstDistributionListItem

public

MQDistributionListItem

getFirstDistributionListItem()

Returns

the

first

item

in

the

distribution

list,

or

null

if

the

list

is

empty.

getInvalidDestinationCount

public

int

getInvalidDestinationCount()

Returns

the

number

of

items

in

the

distribution

list

that

failed

to

open

successfully.

getValidDestinationCount

public

int

getValidDestinationCount()

Returns

the

number

of

items

in

the

distribution

list

that

were

opened

successfully.

put

public

synchronized

void

put(MQMessage

message,

MQPutMessageOptions

putMessageOptions

)

throws

MQException

Puts

a

message

to

the

queues

on

the

distribution

list.

java.lang.Object

│

└─

com.ibm.mq.MQManagedObject

│

└─

com.ibm.mq.MQDistributionList

MQDistributionList

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

107

Parameters

message

An

input/output

parameter

containing

the

message

descriptor

information

and

the

returned

message

data.

putMessageOptions

Options

that

control

the

action

of

MQPUT.

(See

“MQPutMessageOptions”

on

page

152

for

details.)

Throws

MQException

if

the

put

fails.

MQDistributionList

108

Using

Java

MQDistributionListItem

public

class

MQDistributionListItem

extends

MQMessageTracker

(See

page

144.)

An

MQDistributionListItem

represents

a

single

item

(queue)

within

a

distribution

list.

Variables

completionCode

public

int

completionCode

The

completion

code

resulting

from

the

last

operation

on

this

item.

If

this

was

the

construction

of

an

MQDistributionList,

the

completion

code

relates

to

the

opening

of

the

queue.

If

it

was

a

put

operation,

the

completion

code

relates

to

the

attempt

to

put

a

message

onto

this

queue.

The

initial

value

is

0.

queueManagerName

public

String

queueManagerName

The

name

of

the

queue

manager

on

which

the

queue

is

defined.

The

initial

value

is

″″.

queueName

public

String

queueName

The

name

of

a

queue

you

want

to

use

with

a

distribution

list.

This

cannot

be

the

name

of

a

model

queue.

The

initial

value

is

″″.

reasonCode

public

int

reasonCode

The

reason

code

resulting

from

the

last

operation

on

this

item.

If

this

was

the

construction

of

an

MQDistributionList,

the

reason

code

relates

to

the

opening

of

the

queue.

If

it

was

a

put

operation,

the

reason

code

relates

to

the

attempt

to

put

a

message

onto

this

queue.

The

initial

value

is

0.

Constructors

MQDistributionListItem

public

MQDistributionListItem()

Construct

a

new

MQDistributionListItem

object.

java.lang.Object

│

└─

com.ibm.mq.MQMessageTracker

│

└─

com.ibm.mq.MQDistributionListItem

MQDistributionListItem

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

109

MQEnvironment

public

class

MQEnvironment

extends

Object

Note:

All

the

methods

and

attributes

of

this

class

apply

to

the

WebSphere

MQ

classes

for

Java

client

connections,

but

only

enableTracing,

disableTracing,

properties,

and

version_notice

apply

to

bindings

connections.

MQEnvironment

contains

static

member

variables

that

control

the

environment

in

which

an

MQQueueManager

object

(and

its

corresponding

connection

to

WebSphere

MQ)

is

constructed.

Values

set

in

the

MQEnvironment

class

take

effect

when

the

MQQueueManager

constructor

is

called,

so

set

the

values

in

the

MQEnvironment

class

before

you

construct

an

MQQueueManager

instance.

Variables

Note:

Variables

marked

with

*

do

not

apply

when

connecting

directly

to

WebSphere

MQ

in

bindings

mode.

CCSID*

public

static

int

CCSID

The

CCSID

used

by

the

client.

Changing

this

value

affects

the

way

that

the

queue

manager

you

connect

to

translates

information

in

the

WebSphere

MQ

headers.

All

data

in

WebSphere

MQ

headers

is

drawn

from

the

invariant

part

of

the

ASCII

codeset,

except

for

the

data

in

the

applicationIdData

and

the

putApplicationName

fields

of

the

MQMessage

class.

(See

“MQMessage”

on

page

126.)

If

you

avoid

using

characters

from

the

variant

part

of

the

ASCII

codeset

for

these

two

fields,

you

are

then

safe

to

change

the

CCSID

from

819

to

any

other

ASCII

codeset.

If

you

change

the

client’s

CCSID

to

be

the

same

as

that

of

the

queue

manager

to

which

you

are

connecting,

you

gain

a

performance

benefit

at

the

queue

manager

because

it

does

not

attempt

to

translate

the

message

headers.

The

default

value

is

819.

channel*

public

static

String

channel

The

name

of

the

channel

to

connect

to

on

the

target

queue

manager.

You

must

set

this

member

variable,

or

the

corresponding

property,

before

constructing

an

MQQueueManager

instance

for

use

in

client

mode.

java.lang.Object

│

└─

com.ibm.mq.MQEnvironment

MQEnvironment

110

Using

Java

hostname*

public

static

String

hostname

The

TCP/IP

hostname

of

the

machine

on

which

the

WebSphere

MQ

server

resides.

If

the

hostname

is

not

set,

and

no

overriding

properties

are

set,

bindings

mode

is

used

to

connect

to

the

local

queue

manager.

localAddressSetting*

public

static

String

localAddressSetting

The

local

address,

including

a

range

of

ports,

that

is

used

when

connecting

to

a

WebSphere

MQ

queue

manager

through

a

firewall.

The

format

of

a

local

address

is

[ip-addr][(low-port[,high-port])].

Here

are

some

examples:

9.20.4.98

The

channel

binds

to

address

9.20.4.98

locally

9.20.4.98(1000)

The

channel

binds

to

address

9.20.4.98

locally

and

uses

port

1000

9.20.4.98(1000,2000)

The

channel

binds

to

address

9.20.4.98

locally

and

uses

a

port

in

the

range

1000

to

2000

(1000)

The

channel

binds

to

port

1000

locally

(1000,2000)

The

channel

binds

to

a

port

in

the

range

1000

to

2000

locally

You

can

specify

a

host

name

instead

of

an

IP

address.

The

variable

is

initialized

from

a

system

property

called

com.ibm.mq.localAddress

when

you

start

the

JVM.

The

default

value

is

null.

password*

public

static

String

password

Equivalent

to

the

WebSphere

MQ

environment

variable

MQ_PASSWORD.

If

a

security

exit

is

not

defined

for

this

client,

the

value

of

password

is

transmitted

to

the

server

and

is

available

to

the

server

security

exit

when

it

is

invoked.

Use

the

value

to

verify

the

identity

of

the

WebSphere

MQ

client.

The

default

value

is

″″.

port*

public

static

int

port

The

port

to

connect

to.

This

is

the

port

on

which

the

WebSphere

MQ

server

is

listening

for

incoming

connection

requests.

The

default

value

is

1414.

properties

public

static

java.util.Hashtable

properties

A

set

of

key/value

pairs

defining

the

WebSphere

MQ

environment.

This

hash

table

allows

you

to

set

environment

properties

as

key/value

pairs

rather

than

as

individual

variables.

The

properties

can

also

be

passed

as

a

Hashtable

in

a

parameter

on

the

MQQueueManager

constructor.

Properties

passed

on

the

constructor

take

precedence

over

values

set

with

this

properties

variable,

but

they

are

otherwise

interchangeable.

The

order

of

precedence

of

finding

properties

is:

1.

properties

parameter

on

MQQueueManager

constructor

2.

MQEnvironment.properties

3.

Other

MQEnvironment

variables

MQEnvironment

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

111

|
|

|
|
|

|
|

|
|

|
|
|

||

|
|

|
|
|

4.

Constant

default

values

The

possible

key/value

pairs

are

shown

in

the

following

table:

Key

Value

MQC.CCSID_PROPERTY

Integer

(overrides

MQEnvironment.CCSID)

MQC.CHANNEL_PROPERTY

String

(overrides

MQEnvironment.channel)

MQC.CONNECT_OPTIONS_PROPERTY

Integer,

defaults

to

MQC.MQCNO_NONE

MQC.HOST_NAME_PROPERTY

String

(overrides

MQEnvironment.hostname)

MQC.LOCAL_ADDRESS_PROPERTY

String

(overrides

MQEnvironment.localAddressSetting)

MQC.ORB_PROPERTY

org.omg.CORBA.ORB

(optional)

MQC.PASSWORD_PROPERTY

String

(overrides

MQEnvironment.password)

MQC.PORT_PROPERTY

Integer

(overrides

MQEnvironment.port)

MQC.RECEIVE_EXIT_PROPERTY

MQReceiveExit

(overrides

MQEnvironment.receiveExit)

MQC.SECURITY_EXIT_PROPERTY

MQSecurityExit

(overrides

MQEnvironment.securityExit)

MQC.SEND_EXIT_PROPERTY

MQSendExit

(overrides

MQEnvironment.sendExit)

MQC.SSL_CERT_STORE_PROPERTY

java.util.Collection,

or

java.security.cert.CertStore

(overrides

MQEnvironment.sslCertStores)

MQC.SSL_CIPHER_SUITE_PROPERTY

String

(overrides

MQEnvironment.sslCipherSuite)

MQC.SSL_PEER_NAME_PROPERTY

String

(overrides

MQEnvironment.sslPeerName)

MQC.SSL_SOCKET_FACTORY_PROPERTY

javax.net.ssl.SSLSocketFactory

(overrides

MQEnvironment.sslSocketFactory)

MQC.TRANSPORT_PROPERTY

MQC.TRANSPORT_MQSERIES_BINDINGS

or

MQC.TRANSPORT_MQSERIES_CLIENT

or

MQC.TRANSPORT_MQSERIES

(the

default,

which

selects

bindings

or

client,

based

on

the

value

of

hostname.)

MQC.USER_ID_PROPERTY

String

(overrides

MQEnvironment.userID.)

receiveExit*

public

static

MQReceiveExit

receiveExit

A

receive

exit

allows

you

to

examine,

and

possibly

alter,

data

received

from

a

queue

manager.

It

is

normally

used

in

conjunction

with

a

corresponding

send

exit

at

the

queue

manager.

To

provide

your

own

receive

exit,

define

a

class

that

implements

the

MQReceiveExit

interface,

and

assign

receiveExit

to

an

instance

of

that

class.

Otherwise,

you

can

leave

receiveExit

set

to

null,

in

which

case

no

receive

exit

is

called.

See

also

“MQReceiveExit”

on

page

182.

MQEnvironment

112

Using

Java

||
|

securityExit*

public

static

MQSecurityExit

securityExit

A

security

exit

allows

you

to

customize

the

security

flows

that

occur

when

an

attempt

is

made

to

connect

to

a

queue

manager.

To

provide

your

own

security

exit,

define

a

class

that

implements

the

MQSecurityExit

interface,

and

assign

securityExit

to

an

instance

of

that

class.

Otherwise,

you

can

leave

securityExit

set

to

null,

in

which

case

no

security

exit

is

called.

See

also

“MQSecurityExit”

on

page

184.

sendExit*

public

static

MQSendExit

sendExit

A

send

exit

allows

you

to

examine,

and

possibly

alter,

the

data

sent

to

a

queue

manager.

It

is

normally

used

in

conjunction

with

a

corresponding

receive

exit

at

the

queue

manager.

To

provide

your

own

send

exit,

define

a

class

that

implements

the

MQSendExit

interface,

and

assign

sendExit

to

an

instance

of

that

class.

Otherwise,

you

can

leave

sendExit

set

to

null,

in

which

case

no

send

exit

is

called.

See

also

“MQSendExit”

on

page

186.

sslCertStores*

public

static

java.util.Collection

sslCertStores

A

Collection

of

CertStore

objects

used

for

certificate

revocation

checking.

Use

of

this

variable

requires

a

JVM

at

Java

2

v1.4

or

later.

If

sslCipherSuite

is

set,

this

variable

can

be

used

to

ensure

that

the

queue

manager’s

certificate

has

not

become

revoked.

Each

CertStore

in

the

Collection

represents

an

identical

copy

of

the

certificate

revocation

list

(CRL).

For

more

information

on

the

behaviour

of

sslCertStores,

refer

to

“Using

certificate

revocation

lists”

on

page

91.

If

set

to

null

(default),

the

certificate

presented

by

the

queue

manager

is

not

checked

against

any

certificate

revocation

list.

This

variable

is

ignored

if

sslCipherSuite

is

null.

sslCipherSuite*

public

static

String

sslCipherSuite

If

set,

SSL

is

enabled

for

the

connection.

Set

the

sslCipherSuite

to

the

CipherSuite

name

matching

the

CipherSpec

set

on

the

SVRCONN

channel.

If

set

to

null

(default),

no

SSL

encryption

is

performed.

sslPeerName*

public

static

String

sslPeerName

A

distinguished

name

pattern.

If

sslCipherSuite

is

set,

this

variable

can

be

used

to

ensure

the

correct

queue

manager

is

used.

For

a

description

of

the

format

for

this

value,

see

“Using

the

distinguished

name

of

the

queue

manager”

on

page

90.

If

set

to

null

(default),

no

checking

of

the

queue

manager’s

DN

is

performed.

This

variable

is

ignored

if

sslCipherSuite

is

null.

MQEnvironment

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

113

sslSocketFactory*

public

static

javax.net.ssl.SSLSocketFactory

sslSocketFactory

The

factory

to

use

when

connecting

with

SSL

encryption.

If

sslCipherSuite

is

set,

this

variable

can

be

used

to

customize

all

aspects

of

the

SSL

connection.

For

more

information

on

constructing

and

customizing

SSLSocketFactory

instances,

refer

to

your

JSSE

provider;

for

information

regarding

the

use

of

this

variable,

refer

to

“Supplying

a

customized

SSLSocketFactory”

on

page

92.

If

set

to

null

(default)

and

SSL

encryption

is

requested,

the

default

SSLSocketFactory

is

used.

This

variable

is

ignored

if

sslCipherSuite

is

null.

userID*

public

static

String

userID

Equivalent

to

the

WebSphere

MQ

environment

variable

MQ_USER_ID.

If

a

security

exit

is

not

defined

for

this

client,

the

value

of

userID

is

transmitted

to

the

server

and

is

available

to

the

server

security

exit

when

it

is

invoked.

Use

the

value

to

verify

the

identity

of

the

WebSphere

MQ

client.

The

default

value

is

″″.

version_notice

public

final

static

String

version_notice

The

current

version

of

WebSphere

MQ

classes

for

Java.

Constructors

MQEnvironment

public

MQEnvironment()

Methods

addConnectionPoolToken

public

static

void

addConnectionPoolToken(MQPoolToken

token)

Adds

the

supplied

MQPoolToken

to

the

set

of

tokens.

A

default

ConnectionManager

can

use

this

as

a

hint;

typically,

it

is

enabled

only

while

there

is

at

least

one

token

in

the

set.

Parameters:

token

The

MQPoolToken

to

add

to

the

set

of

tokens.

addConnectionPoolToken

public

static

MQPoolToken

addConnectionPoolToken()

Constructs

an

MQPoolToken

and

adds

it

to

the

set

of

tokens.

The

MQPoolToken

is

returned

to

the

application

to

be

passed

later

into

removeConnectionPoolToken().

MQEnvironment

114

Using

Java

disableTracing

public

static

void

disableTracing()

Turns

off

the

WebSphere

MQ

Client

for

Java

trace

facility.

enableTracing

public

static

void

enableTracing(int

level)

Turns

on

the

WebSphere

MQ

Client

for

Java

trace

facility.

Parameters

level

The

level

of

tracing

required,

from

1

to

5

(5

being

the

most

detailed).

enableTracing

public

static

void

enableTracing(int

level,

OutputStream

stream)

Turns

on

the

WebSphere

MQ

Client

for

Java

trace

facility.

Parameters:

level

The

level

of

tracing

required,

from

1

to

5

(5

being

the

most

detailed).

stream

The

stream

to

which

the

trace

is

written.

getDefaultConnectionManager

public

static

javax.resource.spi.ConnectionManager

getDefaultConnectionManager()

Returns

the

default

ConnectionManager.

If

the

default

ConnectionManager

is

actually

an

MQConnectionManager,

returns

null.

getVersionNotice()

public

static

final

String

getVersionNotice()

Returns

the

current

version

of

the

WebSphere

MQ

base

Java.

removeConnectionPoolToken

public

static

void

removeConnectionPoolToken(MQPoolToken

token)

Removes

the

specified

MQPoolToken

from

the

set

of

tokens.

If

that

MQPoolToken

is

not

in

the

set,

there

is

no

action.

Parameters:

token

The

MQPoolToken

to

remove

from

the

set

of

tokens.

setDefaultConnectionManager

public

static

void

setDefaultConnectionManager(

MQConnectionManager

cxManager)

Sets

the

supplied

MQConnectionManager

to

be

the

default

ConnectionManager.

The

default

ConnectionManager

is

used

when

there

is

no

ConnectionManager

specified

on

the

MQQueueManager

constructor.

This

method

also

empties

the

set

of

MQPoolTokens.

Parameters:

cxManager

The

MQConnectionManager

to

be

the

default

ConnectionManager.

MQEnvironment

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

115

setDefaultConnectionManager

public

static

void

setDefaultConnectionManager

(javax.resource.spi.ConnectionManager

cxManager)

Sets

the

default

ConnectionManager,

and

empties

the

set

of

MQPoolTokens.

The

default

ConnectionManager

is

used

when

there

is

no

ConnectionManager

specified

on

the

MQQueueManager

constructor.

This

method

requires

a

JVM

at

Java

2

v1.3

or

later,

with

JAAS

1.0

or

later

installed.

Parameters:

cxManager

The

default

ConnectionManager

(which

implements

the

javax.resource.spi.ConnectionManager

interface).

MQEnvironment

116

Using

Java

MQException

public

class

MQException

extends

Exception

An

MQException

is

thrown

whenever

a

WebSphere

MQ

error

occurs.

You

can

change

the

output

stream

for

the

exceptions

that

are

logged

by

setting

the

value

of

MQException.log.

The

default

value

is

System.err.

This

class

contains

definitions

of

completion

code

and

error

code

constants.

Constants

beginning

MQCC_

are

WebSphere

MQ

completion

codes,

and

constants

beginning

MQRC_

are

WebSphere

MQ

reason

codes.

The

WebSphere

MQ

Application

Programming

Reference

contains

a

full

description

of

these

errors

and

their

probable

causes.

Variables

completionCode

public

int

completionCode

WebSphere

MQ

completion

code

giving

rise

to

the

error.

The

possible

values

are:

v

MQException.MQCC_WARNING

v

MQException.MQCC_FAILED

exceptionSource

public

Object

exceptionSource

The

object

instance

that

threw

the

exception.

You

can

use

this

as

part

of

your

diagnostics

when

determining

the

cause

of

an

error.

log

public

static

java.io.outputStreamWriter

log

Stream

to

which

exceptions

are

logged.

(The

default

is

System.err.)

If

you

set

this

to

null,

no

logging

occurs.

reasonCode

public

int

reasonCode

WebSphere

MQ

reason

code

describing

the

error.

For

a

full

explanation

of

the

reason

codes,

refer

to

the

WebSphere

MQ

Application

Programming

Reference.

Constructors

MQException

public

MQException(int

completionCode,

int

reasonCode,

Object

source)

Construct

a

new

MQException

object.

Parameters

java.lang.Object

│

└─

java.lang.Throwable

│

└─

java.lang.Exception

│

└─

com.ibm.mq.MQException

MQException

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

117

completionCode

The

WebSphere

MQ

completion

code.

reasonCode

The

WebSphere

MQ

reason

code.

source

The

object

in

which

the

error

occurred.

Methods

getCause

public

Throwable

getCause()

Returns

the

cause

of

this

MQException,

or

null

if

the

cause

is

nonexistent

or

unknown.

Note

that

this

method

is

available

on

MQException

even

under

JVMs

before

Java

2

v1.4.

initCause

public

Throwable

initCause(Throwable

cause)

Initializes

the

cause

of

this

MQException

to

the

specified

value.

Throws

IllegalArgumentException

if

the

cause

is

this

MQException

or

IllegalStateException

if

the

cause

has

already

been

set.

Returns

this

MQException.

Note

that

this

method

is

available

on

MQException

even

under

JVMs

before

Java

2

v1.4.

Applications

do

not

normally

use

this

method.

MQException

118

Using

Java

MQGetMessageOptions

public

class

MQGetMessageOptions

extends

Object

This

class

contains

options

that

control

the

behavior

of

MQQueue.get().

Note:

The

behavior

of

some

of

the

options

available

in

this

class

depends

on

the

environment

in

which

they

are

used.

These

elements

are

marked

with

a

*.

See

Chapter

8,

“Environment-dependent

behavior,”

on

page

95

for

details.

Variables

groupStatus*

public

char

groupStatus

This

is

an

output

field

that

indicates

whether

the

retrieved

message

is

in

a

group,

and

if

it

is,

whether

it

is

the

last

in

the

group.

Possible

values

are:

MQC.MQGS_LAST_MSG_IN_GROUP

Message

is

the

last

in

the

group.

This

is

also

the

value

returned

if

the

group

consists

of

only

one

message.

MQC.MQGS_MSG_IN_GROUP

Message

is

in

a

group,

but

is

not

the

last

in

the

group.

MQC.MQGS_NOT_IN_GROUP

Message

is

not

in

a

group.

matchOptions*

public

int

matchOptions

Selection

criteria

that

determine

which

message

is

retrieved.

The

following

match

options

can

be

set:

MQC.MQMO_MATCH_CORREL_ID

Correlation

id

to

be

matched.

MQC.MQMO_MATCH_GROUP_ID

Group

id

to

be

matched.

MQC.MQMO_MATCH_MSG_ID

Message

id

to

be

matched.

MQC.MQMO_MATCH_MSG_SEQ_NUMBER

Match

message

sequence

number.

MQC.MQMO_NONE

No

matching

required.

options

public

int

options

Options

that

control

the

action

of

MQQueue.get.

Any

or

none

of

the

following

values

can

be

specified.

If

more

than

one

option

is

required,

the

values

can

be

added

together

or

combined

using

the

bitwise

OR

operator.

MQC.MQGMO_ACCEPT_TRUNCATED_MSG

Allow

truncation

of

message

data.

java.lang.Object

│

└─

com.ibm.mq.MQGetMessageOptions

MQGetMessageOptions

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

119

MQC.MQGMO_BROWSE_FIRST

Browse

from

start

of

queue.

MQC.MQGMO_BROWSE_MSG_UNDER_CURSOR*

Browse

message

under

browse

cursor.

MQC.MQGMO_BROWSE_NEXT

Browse

from

the

current

position

in

the

queue.

MQC.MQGMO_CONVERT

Request

the

application

data

to

be

converted,

to

conform

to

the

characterSet

and

encoding

attributes

of

the

MQMessage,

before

the

data

is

copied

into

the

message

buffer.

Because

data

conversion

is

also

applied

as

the

data

is

retrieved

from

the

message

buffer,

applications

do

not

usually

set

this

option.

Using

this

option

can

cause

problems

when

converting

from

single

byte

character

sets

to

double

byte

character

sets.

Instead,

do

the

conversion

using

the

readString,

readLine,

and

writeString

methods

after

the

message

has

been

delivered.

MQC.MQGMO_FAIL_IF_QUIESCING

Fail

if

the

queue

manager

is

quiescing.

MQC.MQGMO_LOCK*

Lock

the

message

that

is

browsed.

MQC.MQGMO_MARK_SKIP_BACKOUT*

Allow

a

unit

of

work

to

be

backed

out

without

reinstating

the

message

on

the

queue.

MQC.MQGMO_MSG_UNDER_CURSOR

Get

message

under

browse

cursor.

MQC.MQGMO_NONE

No

other

options

have

been

specified;

all

options

assume

their

default

values.

MQC.MQGMO_NO_SYNCPOINT

Get

message

without

syncpoint

control.

MQC.MQGMO_NO_WAIT

Return

immediately

if

there

is

no

suitable

message.

MQC.MQGMO_SYNCPOINT

Get

the

message

under

syncpoint

control;

the

message

is

marked

as

being

unavailable

to

other

applications,

but

it

is

deleted

from

the

queue

only

when

the

unit

of

work

is

committed.

The

message

is

made

available

again

if

the

unit

of

work

is

backed

out.

MQC.MQGMO_SYNCPOINT_IF_PERSISTENT*

Get

message

with

syncpoint

control

if

message

is

persistent.

MQC.MQGMO_UNLOCK*

Unlock

a

previously

locked

message.

MQC.MQGMO_WAIT

Wait

for

a

message

to

arrive.

Segmenting

and

grouping

WebSphere

MQ

messages

can

be

sent

or

received

as

a

single

entity,

can

be

split

into

several

segments

for

sending

and

receiving,

and

can

also

be

linked

to

other

messages

in

a

group.

MQGetMessageOptions

120

Using

Java

Each

piece

of

data

that

is

sent

is

known

as

a

physical

message,

which

can

be

a

complete

logical

message,

or

a

segment

of

a

longer

logical

message.

Each

physical

message

usually

has

a

different

MsgId.

All

the

segments

of

a

single

logical

message

have

the

same

groupId

value

and

MsgSeqNumber

value,

but

the

Offset

value

is

different

for

each

segment.

The

Offset

field

gives

the

offset

of

the

data

in

the

physical

message

from

the

start

of

the

logical

message.

The

segments

usually

have

different

MsgId

values,

because

they

are

individual

physical

messages.

Logical

messages

that

form

part

of

a

group

have

the

same

groupId

value,

but

each

message

in

the

group

has

a

different

MsgSeqNumber

value.

Messages

in

a

group

can

also

be

segmented.

The

following

options

can

be

used

for

dealing

with

segmented

or

grouped

messages:

MQC.MQGMO_ALL_MSGS_AVAILABLE*

Retrieve

messages

from

a

group

only

when

all

the

messages

in

the

group

are

available.

MQC.MQGMO_ALL_SEGMENTS_AVAILABLE*

Retrieve

the

segments

of

a

logical

message

only

when

all

the

segments

in

the

group

are

available.

MQC.MQGMO_COMPLETE_MSG*

Retrieve

only

complete

logical

messages.

MQC.MQGMO_LOGICAL_ORDER*

Return

messages

in

groups,

and

segments

of

logical

messages,

in

logical

order.

resolvedQueueName

public

String

resolvedQueueName

This

is

an

output

field

that

the

queue

manager

sets

to

the

local

name

of

the

queue

from

which

the

message

was

retrieved.

This

is

different

from

the

name

used

to

open

the

queue

if

an

alias

queue

or

model

queue

was

opened.

segmentation*

public

char

segmentation

This

is

an

output

field

that

indicates

whether

or

not

segmentation

is

allowed

for

the

retrieved

message.

Possible

values

are:

MQC.MQSEG_INHIBITED

Segmentation

not

allowed.

MQC.MQSEG_ALLOWED

Segmentation

allowed.

segmentStatus*

public

char

segmentStatus

This

is

an

output

field

that

indicates

whether

the

retrieved

message

is

a

segment

of

a

logical

message.

If

the

message

is

a

segment,

the

flag

indicates

whether

or

not

it

is

the

last

segment.

Possible

values

are:

MQC.MQSS_LAST_SEGMENT

Message

is

the

last

segment

of

the

logical

message.

This

is

also

the

value

returned

if

the

logical

message

consists

of

only

one

segment.

MQGetMessageOptions

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

121

MQC.MQSS_NOT_A_SEGMENT

Message

is

not

a

segment.

MQC.MQSS_SEGMENT

Message

is

a

segment,

but

is

not

the

last

segment

of

the

logical

message.

waitInterval

public

int

waitInterval

The

maximum

time

(in

milliseconds)

that

an

MQQueue.get

call

waits

for

a

suitable

message

to

arrive

(used

in

conjunction

with

MQC.MQGMO_WAIT).

A

value

of

MQC.MQWI_UNLIMITED

indicates

that

an

unlimited

wait

is

required.

Constructors

MQGetMessageOptions

public

MQGetMessageOptions()

Construct

a

new

MQGetMessageOptions

object

with

options

set

to

MQC.MQGMO_NO_WAIT,

a

wait

interval

of

zero,

and

a

blank

resolved

queue

name.

MQGetMessageOptions

122

Using

Java

MQManagedObject

public

class

MQManagedObject

extends

Object

MQManagedObject

is

a

superclass

for

MQQueueManager,

MQQueue,

and

MQProcess.

It

provides

the

ability

to

inquire

and

set

attributes

of

these

resources.

Variables

alternateUserId

public

String

alternateUserId

The

alternate

user

ID

(if

any)

specified

when

this

resource

was

opened.

Setting

this

attribute

has

no

effect.

closeOptions

public

int

closeOptions

Set

this

attribute

to

control

the

way

the

resource

is

closed.

The

default

value

is

MQC.MQCO_NONE,

and

this

is

the

only

permissible

value

for

all

resources

other

than

permanent

dynamic

queues,

and

temporary

dynamic

queues

that

are

being

accessed

by

the

objects

that

created

them.

For

these

queues,

the

following

additional

values

are

permissible:

MQC.MQCO_DELETE

Delete

the

queue

if

there

are

no

messages.

MQC.MQCO_DELETE_PURGE

Delete

the

queue,

purging

any

messages

on

it.

connectionReference

public

MQQueueManager

connectionReference

The

queue

manager

to

which

this

resource

belongs.

Setting

this

attribute

has

no

effect.

isOpen

public

boolean

isOpen

Indicates

whether

this

resource

is

currently

open.

This

attribute

is

deprecated

and

setting

it

has

no

effect.

name

public

String

name

The

name

of

this

resource

(either

the

name

supplied

on

the

access

method,

or

the

name

allocated

by

the

queue

manager

for

a

dynamic

queue).

Setting

this

attribute

has

no

effect.

openOptions

public

int

openOptions

The

options

specified

when

this

resource

was

opened.

Setting

this

attribute

has

no

effect.

java.lang.Object

│

└─

com.ibm.mq.MQManagedObject

MQManagedObject

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

123

Constructors

MQManagedObject

protected

MQManagedObject()

Constructor

method.

Methods

close

public

synchronized

void

close()

Throws

MQException.

Closes

the

object.

No

further

operations

against

this

resource

are

permitted

after

this

method

has

been

called.

To

change

the

behavior

of

the

close

method,

set

the

closeOptions

attribute.

Throws

MQException

if

the

WebSphere

MQ

call

fails.

getDescription

public

String

getDescription()

Throws

MQException.

Returns

the

description

of

this

resource

as

held

at

the

queue

manager.

If

this

method

is

called

after

the

resource

has

been

closed,

an

MQException

is

thrown.

inquire

public

void

inquire(int

selectors[],

int

intAttrs[],

byte

charAttrs[])

Throws

MQException.

Returns

an

array

of

integers

and

a

set

of

character

strings

containing

the

attributes

of

an

object

(queue,

process,

or

queue

manager).

The

attributes

to

be

queried

are

specified

in

the

selectors

array.

Refer

to

the

WebSphere

MQ

Application

Programming

Reference

for

details

of

the

permissible

selectors

and

their

corresponding

integer

values.

Many

of

the

more

common

attributes

can

be

queried

using

the

getXXX()

methods

defined

in

MQManagedObject,

MQQueue,

MQQueueManager,

and

MQProcess.

Parameters

selectors

Integer

array

identifying

the

attributes

with

values

to

be

inquired

on.

intAttrs

The

array

in

which

the

integer

attribute

values

are

returned.

Integer

attribute

values

are

returned

in

the

same

order

as

the

integer

attribute

selectors

in

the

selectors

array.

MQManagedObject

124

Using

Java

charAttrs

The

buffer

in

which

the

character

attributes

are

returned,

concatenated.

Character

attributes

are

returned

in

the

same

order

as

the

character

attribute

selectors

in

the

selectors

array.

The

length

of

each

attribute

string

is

fixed

for

each

attribute.

Throws

MQException

if

the

inquire

fails.

isOpen

public

boolean

isOpen()

Returns

the

value

of

the

isOpen

variable.

set

public

synchronized

void

set(int

selectors[],

int

intAttrs[],

byte

charAttrs[])

Throws

MQException.

Sets

the

attributes

defined

in

the

selector’s

vector.

The

attributes

to

be

set

are

specified

in

the

selectors

array.

Refer

to

the

WebSphere

MQ

Application

Programming

Reference

for

details

of

the

permissible

selectors

and

their

corresponding

integer

values.

Some

queue

attributes

can

be

set

using

the

setXXX()

methods

defined

in

MQQueue.

Parameters

selectors

Integer

array

identifying

the

attributes

with

values

to

be

set.

intAttrs

The

array

of

integer

attribute

values

to

be

set.

These

values

must

be

in

the

same

order

as

the

integer

attribute

selectors

in

the

selectors

array.

charAttrs

The

buffer

in

which

the

character

attributes

to

be

set

are

concatenated.

These

values

must

be

in

the

same

order

as

the

character

attribute

selectors

in

the

selectors

array.

The

length

of

each

character

attribute

is

fixed.

Throws

MQException

if

the

set

fails.

MQManagedObject

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

125

MQMessage

public

class

MQMessage

implements

DataInput,

DataOutput

MQMessage

represents

both

the

message

descriptor

and

the

data

for

a

WebSphere

MQ

message.

There

is

group

of

readXXX

methods

for

reading

data

from

a

message,

and

a

group

of

writeXXX

methods

for

writing

data

into

a

message.

The

format

of

numbers

and

strings

used

by

these

read

and

write

methods

can

be

controlled

by

the

encoding

and

characterSet

member

variables.

The

remaining

member

variables

contain

control

information

that

accompanies

the

application

message

data

when

a

message

travels

between

sending

and

receiving

applications.

The

application

can

set

values

into

the

member

variable

before

putting

a

message

to

a

queue

and

can

read

values

after

retrieving

a

message

from

a

queue.

Variables

accountingToken

public

byte

accountingToken[]

Part

of

the

identity

context

of

the

message;

it

allows

an

application

to

charge

for

work

done

as

a

result

of

the

message.

The

default

value

is

MQC.MQACT_NONE.

applicationIdData

public

String

applicationIdData

Part

of

the

identity

context

of

the

message;

it

is

information

that

is

defined

by

the

application

suite,

and

can

be

used

to

provide

additional

information

about

the

message

or

its

originator.

The

default

value

is

″″.

applicationOriginData

public

String

applicationOriginData

Information

defined

by

the

application

that

can

be

used

to

provide

additional

information

about

the

origin

of

the

message.

The

default

value

is

″″.

backoutCount

public

int

backoutCount

A

count

of

the

number

of

times

the

message

has

previously

been

returned

by

an

MQQueue.get()

call

as

part

of

a

unit

of

work,

and

subsequently

backed

out.

The

default

value

is

zero.

characterSet

public

int

characterSet

The

coded

character

set

identifier

of

character

data

in

the

application

message

data.

The

behavior

of

the

readString,

readLine,

and

writeString

methods

is

altered

accordingly.

java.lang.Object

│

└─

com.ibm.mq.MQMessage

MQMessage

126

Using

Java

The

default

value

for

this

field

is

MQC.MQCCSI_Q_MGR.

If

the

default

value

is

used,

CharacterSet

819

(iso-8859-1/latin/ibm819)

is

assumed.

The

character

set

values

you

can

use

depend

upon

the

JVM

you

use.

Table

13

shows

coded

character

set

identifiers

and

the

characterSet

values

to

use:

Table

13.

Character

set

identifiers

characterSet

Description

37

ibm037

437

ibm437

/

PC

Original

500

ibm500

819

iso-8859-1

/

latin1

/

ibm819

1200

Unicode

1208

UTF-8

273

ibm273

277

ibm277

278

ibm278

280

ibm280

284

ibm284

285

ibm285

297

ibm297

420

ibm420

424

ibm424

737

ibm737

/

PC

Greek

775

ibm775

/

PC

Baltic

813

iso-8859-7

/

greek

/

ibm813

838

ibm838

850

ibm850

/

PC

Latin

1

852

ibm852

/

PC

Latin

2

855

ibm855

/

PC

Cyrillic

856

ibm856

857

ibm857

/

PC

Turkish

860

ibm860

/

PC

Portuguese

861

ibm861

/

PC

Icelandic

862

ibm862

/

PC

Hebrew

863

ibm863

/

PC

Canadian

French

864

ibm864

/

PC

Arabic

865

ibm865

/

PC

Nordic

866

ibm866

/

PC

Russian

868

ibm868

869

ibm869

/

PC

Modern

Greek

870

ibm870

871

ibm871

874

ibm874

875

ibm875

912

iso-8859-2

/

latin2

/

ibm912

913

iso-8859-3

/

latin3

/

ibm913

914

iso-8859-4

/

latin4

/

ibm914

915

iso-8859-5

/

cyrillic

/

ibm915

916

iso-8859-8

/

hebrew

/

ibm916

918

ibm918

920

iso-8859-9

/

latin5

/

ibm920

921

ibm921

922

ibm922

930

ibm930

932

PC

Japanese

MQMessage

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

127

Table

13.

Character

set

identifiers

(continued)

characterSet

Description

933

ibm933

935

ibm935

937

ibm937

939

ibm939

942

ibm942

948

ibm948

949

ibm949

950

ibm950

/

Big

5

Traditional

Chinese

954

EUCJIS

964

ibm964

/

CNS

11643

Traditional

Chinese

970

ibm970

1006

ibm1006

1025

ibm1025

1026

ibm1026

1089

iso-8859-6

/

arabic

/

ibm1089

1097

ibm1097

1098

ibm1098

1112

ibm1112

1122

ibm1122

1123

ibm1123

1124

ibm1124

1250

Windows

Latin

2

1251

Windows

Cyrillic

1252

Windows

Latin

1

1253

Windows

Greek

1254

Windows

Turkish

1255

Windows

Hebrew

1256

Windows

Arabic

1257

Windows

Baltic

1258

Windows

Vietnamese

1381

ibm1381

1383

ibm1383

2022

JIS

5601

ksc-5601

Korean

33722

ibm33722

correlationId

public

byte

correlationId[]

For

an

MQQueue.get()

call,

the

correlation

identifier

of

the

message

to

be

retrieved.

Normally

the

queue

manager

returns

the

first

message

with

a

message

identifier

and

correlation

identifier

that

match

those

specified.

The

special

value

MQC.MQCI_NONE

allows

any

correlation

identifier

to

match.

For

an

MQQueue.put()

call,

this

specifies

the

correlation

identifier

to

use.

The

default

value

is

MQC.MQCI_NONE.

encoding

public

int

encoding

MQMessage

128

Using

Java

The

representation

used

for

numeric

values

in

the

application

message

data;

this

applies

to

binary,

packed

decimal,

and

floating

point

data.

The

behavior

of

the

read

and

write

methods

for

these

numeric

formats

is

altered

accordingly.

The

following

encodings

are

defined

for

binary

integers:

MQC.MQENC_INTEGER_NORMAL

Big-endian

integers,

as

in

Java

MQC.MQENC_INTEGER_REVERSED

Little-endian

integers,

as

used

by

PCs.

The

following

encodings

are

defined

for

packed-decimal

integers:

MQC.MQENC_DECIMAL_NORMAL

Big-endian

packed-decimal,

as

used

by

z/OS.

MQC.MQENC_DECIMAL_REVERSED

Little-endian

packed-decimal.

The

following

encodings

are

defined

for

floating-point

numbers:

MQC.MQENC_FLOAT_IEEE_NORMAL

Big-endian

IEEE

floats,

as

in

Java.

MQC.MQENC_FLOAT_IEEE_REVERSED

Little-endian

IEEE

floats,

as

used

by

PCs.

MQC.MQENC_FLOAT_S390

z/OS

format

floating

points.

Construct

a

value

for

the

encoding

field

by

adding

together

one

value

from

each

of

these

three

sections

(or

using

the

bitwise

OR

operator).

The

default

value

is:

MQC.MQENC_INTEGER_NORMAL

|

MQC.MQENC_DECIMAL_NORMAL

|

MQC.MQENC_FLOAT_IEEE_NORMAL

For

convenience,

this

value

is

also

represented

by

MQC.MQENC_NATIVE.

This

setting

causes

writeInt()

to

write

a

big-endian

integer,

and

readInt()

to

read

a

big-endian

integer.

If

you

set

the

flag

MQC.MQENC_INTEGER_REVERSED

flag

instead,

writeInt()

writes

a

little-endian

integer,

and

readInt()

reads

a

little-endian

integer.

A

loss

in

precision

can

occur

when

converting

from

IEEE

format

floating

points

to

zSeries®

format

floating

points.

expiry

public

int

expiry

An

expiry

time

expressed

in

tenths

of

a

second,

set

by

the

application

that

puts

the

message.

After

a

message’s

expiry

time

has

elapsed,

it

is

eligible

to

be

discarded

by

the

queue

manager.

If

the

message

specified

one

of

the

MQC.MQRO_EXPIRATION

flags,

a

report

is

generated

when

the

message

is

discarded.

The

default

value

is

MQC.MQEI_UNLIMITED,

meaning

that

the

message

never

expires.

feedback

public

int

feedback

MQMessage

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

129

Used

with

a

message

of

type

MQC.MQMT_REPORT

to

indicate

the

nature

of

the

report.

The

following

feedback

codes

are

defined

by

the

system:

v

MQC.MQFB_EXPIRATION

v

MQC.MQFB_COA

v

MQC.MQFB_COD

v

MQC.MQFB_QUIT

v

MQC.MQFB_PAN

v

MQC.MQFB_NAN

v

MQC.MQFB_DATA_LENGTH_ZERO

v

MQC.MQFB_DATA_LENGTH_NEGATIVE

v

MQC.MQFB_DATA_LENGTH_TOO_BIG

v

MQC.MQFB_BUFFER_OVERFLOW

v

MQC.MQFB_LENGTH_OFF_BY_ONE

v

MQC.MQFB_IIH_ERROR

Application-defined

feedback

values

in

the

range

MQC.MQFB_APPL_FIRST

to

MQC.MQFB_APPL_LAST

can

also

be

used.

The

default

value

of

this

field

is

MQC.MQFB_NONE,

indicating

that

no

feedback

is

provided.

format

public

String

format

A

format

name

used

by

the

sender

of

the

message

to

indicate

the

nature

of

the

data

in

the

message

to

the

receiver.

You

can

use

your

own

format

names,

but

names

beginning

with

the

letters

MQ

have

meanings

that

are

defined

by

the

queue

manager.

The

queue

manager

built-in

formats

are:

MQC.MQFMT_ADMIN

Command

server

request/reply

message.

MQC.MQFMT_COMMAND_1

Type

1

command

reply

message.

MQC.MQFMT_COMMAND_2

Type

2

command

reply

message.

MQC.MQFMT_DEAD_LETTER_HEADER

Dead-letter

header.

MQC.MQFMT_EVENT

Event

message.

MQC.MQFMT_NONE

No

format

name.

MQC.MQFMT_PCF

User-defined

message

in

programmable

command

format.

MQC.MQFMT_STRING

Message

consisting

entirely

of

characters.

MQC.MQFMT_TRIGGER

Trigger

message

MQC.MQFMT_XMIT_Q_HEADER

Transmission

queue

header.

The

default

value

is

MQC.MQFMT_NONE.

MQMessage

130

Using

Java

groupId

public

byte[]

groupId

A

byte

string

that

identifies

the

message

group

to

which

the

physical

message

belongs.

The

default

value

is

MQC.MQGI_NONE.

messageFlags

public

int

messageFlags

Flags

controlling

the

segmentation

and

status

of

a

message.

messageId

public

byte

messageId[]

For

an

MQQueue.get()

call,

this

field

specifies

the

message

identifier

of

the

message

to

be

retrieved.

Normally,

the

queue

manager

returns

the

first

message

with

a

message

identifier

and

correlation

identifier

that

match

those

specified.

The

special

value

MQC.MQMI_NONE

allows

any

message

identifier

to

match.

For

an

MQQueue.put()

call,

this

specifies

the

message

identifier

to

use.

If

MQC.MQMI_NONE

is

specified,

the

queue

manager

generates

a

unique

message

identifier

when

the

message

is

put.

The

value

of

this

member

variable

is

updated

after

the

put,

to

indicate

the

message

identifier

that

was

used.

The

default

value

is

MQC.MQMI_NONE.

messageSequenceNumber

public

int

messageSequenceNumber

The

sequence

number

of

a

logical

message

within

a

group.

messageType

public

int

messageType

Indicates

the

type

of

the

message.

The

following

values

are

currently

defined

by

the

system:

v

MQC.MQMT_DATAGRAM

v

MQC.MQMT_REPLY

v

MQC.MQMT_REPORT

v

MQC.MQMT_REQUEST

Application-defined

values

can

also

be

used,

in

the

range

MQC.MQMT_APPL_FIRST

to

MQC.MQMT_APPL_LAST.

The

default

value

of

this

field

is

MQC.MQMT_DATAGRAM.

offset

public

int

offset

In

a

segmented

message,

the

offset

of

data

in

a

physical

message

from

the

start

of

a

logical

message.

originalLength

public

int

originalLength

The

original

length

of

a

segmented

message.

persistence

public

int

persistence

Message

persistence.

The

following

values

are

defined:

v

MQC.MQPER_NOT_PERSISTENT

MQMessage

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

131

v

MQC.MQPER_PERSISTENT

v

MQC.MQPER_PERSISTENCE_AS_Q_DEF

The

default

value

is

MQC.MQPER_PERSISTENCE_AS_Q_DEF,

which

takes

the

persistence

for

the

message

from

the

default

persistence

attribute

of

the

destination

queue.

priority

public

int

priority

The

message

priority.

The

special

value

MQC.MQPRI_PRIORITY_AS_Q_DEF

can

also

be

set

in

outbound

messages,

in

which

case

the

priority

for

the

message

is

taken

from

the

default

priority

attribute

of

the

destination

queue.

The

default

value

is

MQC.MQPRI_PRIORITY_AS_Q_DEF.

putApplicationName

public

String

putApplicationName

The

name

of

the

application

that

put

the

message.

The

default

value

is

″″.

putApplicationType

public

int

putApplicationType

The

type

of

application

that

put

the

message.

This

can

be

a

system-defined

or

user-defined

value.

The

following

values

are

defined

by

the

system:

v

MQC.MQAT_AIX

v

MQC.MQAT_CICS

v

MQC.MQAT_DOS

v

MQC.MQAT_IMS

v

MQC.MQAT_MVS

v

MQC.MQAT_OS2

v

MQC.MQAT_OS400

v

MQC.MQAT_QMGR

v

MQC.MQAT_UNIX

v

MQC.MQAT_WINDOWS

v

MQC.MQAT_JAVA

The

default

value

is

the

special

value

MQC.MQAT_NO_CONTEXT,

which

indicates

that

no

context

information

is

present

in

the

message.

putDateTime

public

GregorianCalendar

putDateTime

The

time

and

date

that

the

message

was

put.

replyToQueueManagerName

public

String

replyToQueueManagerName

The

name

of

the

queue

manager

to

which

reply

or

report

messages

should

be

sent.

The

default

value

is

″″.

If

the

value

is

″″

on

an

MQQueue.put()

call,

the

QueueManager

fills

in

the

value.

replyToQueueName

public

String

replyToQueueName

MQMessage

132

Using

Java

The

name

of

the

message

queue

to

which

the

application

that

issued

the

get

request

for

the

message

should

send

MQC.MQMT_REPLY

and

MQC.MQMT_REPORT

messages.

The

default

value

is

″″.

report

public

int

report

A

report

is

a

message

about

another

message.

This

member

variable

enables

the

application

sending

the

original

message

to

specify

which

report

messages

are

required,

whether

the

application

message

data

is

to

be

included

in

them,

and

how

to

set

the

message

and

correlation

identifiers

in

the

report

or

reply.

Any,

all,

or

none

of

the

following

report

types

can

be

requested:

v

Exception

v

Expiration

v

Confirm

on

arrival

v

Confirm

on

delivery

For

each

type,

only

one

of

the

three

corresponding

values

below

should

be

specified,

depending

on

whether

the

application

message

data

is

to

be

included

in

the

report

message.

Note:

Values

marked

with

**

in

the

following

list

are

not

supported

by

z/OS™

queue

managers;

do

not

use

them

if

your

application

is

likely

to

access

a

z/OS

queue

manager,

regardless

of

the

platform

on

which

the

application

is

running.

The

valid

values

are:

v

MQC.MQRO_COA

v

MQC.MQRO_COA_WITH_DATA

v

MQC.MQRO_COA_WITH_FULL_DATA**

v

MQC.MQRO_COD

v

MQC.MQRO_COD_WITH_DATA

v

MQC.MQRO_COD_WITH_FULL_DATA**

v

MQC.MQRO_EXCEPTION

v

MQC.MQRO_EXCEPTION_WITH_DATA

v

MQC.MQRO_EXCEPTION_WITH_FULL_DATA**

v

MQC.MQRO_EXPIRATION

v

MQC.MQRO_EXPIRATION_WITH_DATA

v

MQC.MQRO_EXPIRATION_WITH_FULL_DATA**

You

can

specify

one

of

the

following

to

control

how

the

message

Id

is

generated

for

the

report

or

reply

message:

v

MQC.MQRO_NEW_MSG_ID

v

MQC.MQRO_PASS_MSG_ID

You

can

specify

one

of

the

following

to

control

how

the

correlation

Id

of

the

report

or

reply

message

is

to

be

set:

v

MQC.MQRO_COPY_MSG_ID_TO_CORREL_ID

v

MQC.MQRO_PASS_CORREL_ID

You

can

specify

one

of

the

following

to

control

the

disposition

of

the

original

message

when

it

cannot

be

delivered

to

the

destination

queue:

v

MQC.MQRO_DEAD_LETTER_Q

v

MQC.MQRO_DISCARD_MSG

**

MQMessage

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

133

If

no

report

options

are

specified,

the

default

is:

MQC.MQRO_NEW_MSG_ID

|

MQC.MQRO_COPY_MSG_ID_TO_CORREL_ID

|

MQC.MQRO_DEAD_LETTER_Q

You

can

specify

one

or

both

of

the

following

to

request

that

the

receiving

application

sends

a

positive

action

or

negative

action

report

message.

v

MQRO_PAN

v

MQRO_NAN

userId

public

String

userId

Part

of

the

identity

context

of

the

message;

it

identifies

the

user

that

originated

this

message.

The

default

value

is

″″.

Constructors

MQMessage

public

MQMessage()

Creates

a

new

message

with

default

message

descriptor

information

and

an

empty

message

buffer.

Methods

clearMessage

public

void

clearMessage()

Throws

IOException.

Discards

any

data

in

the

message

buffer

and

set

the

data

offset

back

to

zero.

getDataLength

public

int

getDataLength()

Throws

MQException.

The

number

of

bytes

of

message

data

remaining

to

be

read.

getDataOffset

public

int

getDataOffset()

Throws

IOException.

Returns

the

current

cursor

position

within

the

message

data

(the

point

at

which

read

and

write

operations

take

effect).

getMessageLength

public

int

getMessageLength

Throws

IOException.

The

number

of

bytes

of

message

data

in

this

MQMessage

object.

getTotalMessageLength

public

int

getTotalMessageLength()

MQMessage

134

Using

Java

The

total

number

of

bytes

in

the

message

as

stored

on

the

message

queue

from

which

this

message

was

retrieved.

When

an

MQQueue.get()

method

fails

with

a

message-truncated

error

code,

this

method

tells

you

the

total

size

of

the

message

on

the

queue.

See

also

“MQQueue.get”

on

page

156.

getVersion

public

int

getVersion()

Returns

the

version

of

the

structure

in

use.

readBoolean

public

boolean

readBoolean()

Throws

IOException.

Reads

a

(signed)

byte

from

the

current

position

in

the

message

buffer.

readChar

public

char

readChar()

Throws

IOException,

EOFException.

Reads

a

Unicode

character

from

the

current

position

in

the

message

buffer.

readDecimal2

public

short

readDecimal2()

Throws

IOException,

EOFException.

Reads

a

2-byte

packed

decimal

number

(-999

to

999).

The

behavior

of

this

method

is

controlled

by

the

value

of

the

encoding

member

variable.

A

value

of

MQC.MQENC_DECIMAL_NORMAL

reads

a

big-endian

packed

decimal

number;

a

value

of

MQC.MQENC_DECIMAL_REVERSED

reads

a

little-endian

packed

decimal

number.

readDecimal4

public

int

readDecimal4()

Throws

IOException,

EOFException.

Reads

a

4-byte

packed

decimal

number

(-9999999

to

9999999).

The

behavior

of

this

method

is

controlled

by

the

value

of

the

encoding

member

variable.

A

value

of

MQC.MQENC_DECIMAL_NORMAL

reads

a

big-endian

packed

decimal

number;

a

value

of

MQC.MQENC_DECIMAL_REVERSED

reads

a

little-endian

packed

decimal

number.

readDecimal8

public

long

readDecimal8()

Throws

IOException,

EOFException.

Reads

an

8-byte

packed

decimal

number

(-999999999999999

to

999999999999999).

The

behavior

of

this

method

is

controlled

by

the

encoding

member

variable.

A

value

of

MQC.MQENC_DECIMAL_NORMAL

reads

a

big-endian

packed

decimal

number;

a

value

of

MQC.MQENC_DECIMAL_REVERSED

reads

a

little-endian

packed

decimal

number.

MQMessage

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

135

readDouble

public

double

readDouble()

Throws

IOException,

EOFException.

Reads

a

double

from

the

current

position

in

the

message

buffer.

The

value

of

the

encoding

member

variable

determines

the

behavior

of

this

method.

Values

of

MQC.MQENC_FLOAT_IEEE_NORMAL

and

MQC.MQENC_FLOAT_IEEE_REVERSED

read

IEEE

standard

doubles

in

big-endian

and

little-endian

formats

respectively.

A

value

of

MQC.MQENC_FLOAT_S390

reads

a

System/390

format

floating

point

number.

readFloat

public

float

readFloat()

Throws

IOException,

EOFException.

Reads

a

float

from

the

current

position

in

the

message

buffer.

The

value

of

the

encoding

member

variable

determines

the

behavior

of

this

method.

Values

of

MQC.MQENC_FLOAT_IEEE_NORMAL

and

MQC.MQENC_FLOAT_IEEE_REVERSED

read

IEEE

standard

floats

in

big-endian

and

little-endian

formats

respectively.

A

value

of

MQC.MQENC_FLOAT_S390

reads

a

System/390

format

floating

point

number.

readFully

public

void

readFully(byte

b[])

Throws

Exception,

EOFException.

Fills

the

byte

array

b

with

data

from

the

message

buffer.

readFully

public

void

readFully(byte

b[],

int

off,

int

len)

Throws

IOException,

EOFException.

Fills

len

elements

of

the

byte

array

b

with

data

from

the

message

buffer,

starting

at

offset

off.

readInt

public

int

readInt()

Throws

IOException,

EOFException.

Reads

an

integer

from

the

current

position

in

the

message

buffer.

The

value

of

the

encoding

member

variable

determines

the

behavior

of

this

method.

MQMessage

136

Using

Java

A

value

of

MQC.MQENC_INTEGER_NORMAL

reads

a

big-endian

integer;

a

value

of

MQC.MQENC_INTEGER_REVERSED

reads

a

little-endian

integer.

readInt2

public

short

readInt2()

Throws

IOException,

EOFException.

Synonym

for

readShort(),

provided

for

cross-language

WebSphere

MQ

API

compatibility.

readInt4

public

int

readInt4()

Throws

IOException,

EOFException.

Synonym

for

readInt(),

provided

for

cross-language

WebSphere

MQ

API

compatibility.

readInt8

public

long

readInt8()

Throws

IOException,

EOFException.

Synonym

for

readLong(),

provided

for

cross-language

WebSphere

MQ

API

compatibility.

readLine

public

String

readLine()

Throws

IOException.

Converts

from

the

codeset

identified

in

the

characterSet

member

variable

to

Unicode,

and

then

reads

in

a

line

that

has

been

terminated

by

\n,

\r,

\r\n,

or

EOF.

readLong

public

long

readLong()

Throws

IOException,

EOFException.

Reads

a

long

from

the

current

position

in

the

message

buffer.

The

value

of

the

encoding

member

variable

determines

the

behavior

of

this

method.

A

value

of

MQC.MQENC_INTEGER_NORMAL

reads

a

big-endian

long;

a

value

of

MQC.MQENC_INTEGER_REVERSED

reads

a

little-endian

long.

readObject

public

Object

readObject()

Throws

OptionalDataException,

ClassNotFoundException,

IOException.

Reads

an

object

from

the

message

buffer.

The

class

of

the

object,

the

signature

of

the

class,

and

the

value

of

the

non-transient

and

non-static

fields

of

the

class

are

all

read.

readShort

MQMessage

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

137

public

short

readShort()

Throws

IOException,

EOFException.

Reads

a

short

from

the

current

position

in

the

message

buffer.

The

value

of

the

encoding

member

variable

determines

the

behavior

of

this

method.

A

value

of

MQC.MQENC_INTEGER_NORMAL

reads

a

big-endian

short;

a

value

of

MQC.MQENC_INTEGER_REVERSED

reads

a

little-endian

short.

readString

public

String

readString(int

length)

Throws

IOException,

EOFException.

Reads

a

string

in

the

codeset

identified

by

the

characterSet

member

variable,

and

convert

it

into

Unicode.

Parameters:

length

The

number

of

characters

to

read

(which

may

differ

from

the

number

of

bytes

according

to

the

codeset,

because

some

codesets

use

more

than

one

byte

per

character).

readUInt2

public

int

readUInt2()

Throws

IOException,

EOFException.

Synonym

for

readUnsignedShort(),

provided

for

cross-language

WebSphere

MQ

API

compatibility.

readUnsignedByte

public

int

readUnsignedByte()

Throws

IOException,

EOFException.

Reads

an

unsigned

byte

from

the

current

position

in

the

message

buffer.

readUnsignedShort

public

int

readUnsignedShort()

Throws

IOException,

EOFException.

Reads

an

unsigned

short

from

the

current

position

in

the

message

buffer.

The

value

of

the

encoding

member

variable

determines

the

behavior

of

this

method.

A

value

of

MQC.MQENC_INTEGER_NORMAL

reads

a

big-endian

unsigned

short;

a

value

of

MQC.MQENC_INTEGER_REVERSED

reads

a

little-endian

unsigned

short.

readUTF

public

String

readUTF()

Throws

IOException.

MQMessage

138

Using

Java

Reads

a

UTF

string,

prefixed

by

a

2-byte

length

field,

from

the

current

position

in

the

message

buffer.

resizeBuffer

public

void

resizeBuffer(int

size)

Throws

IOException.

A

hint

to

the

MQMessage

object

about

the

size

of

buffer

that

might

be

required

for

subsequent

get

operations.

If

the

message

currently

contains

message

data,

and

the

new

size

is

less

than

the

current

size,

the

message

data

is

truncated.

seek

public

void

seek(int

pos)

Throws

IOException.

Moves

the

cursor

to

the

absolute

position

in

the

message

buffer

given

by

pos.

Subsequent

reads

and

writes

act

at

this

position

in

the

buffer.

Throws

EOFException

if

pos

is

outside

the

message

data

length.

setDataOffset

public

void

setDataOffset(int

offset)

Throws

IOException.

Moves

the

cursor

to

the

absolute

position

in

the

message

buffer.

This

method

is

a

synonym

for

seek(),

and

is

provided

for

cross-language

compatibility

with

the

other

WebSphere

MQ

APIs.

setVersion

public

void

setVersion(int

version)

Specifies

which

version

of

the

structure

to

use.

Possible

values

are:

v

MQC.MQMD_VERSION_1

v

MQC.MQMD_VERSION_2

You

do

not

need

to

call

this

method

unless

you

want

to

force

the

client

to

use

a

version

1

structure

when

connected

to

a

queue

manager

that

is

capable

of

handling

version

2

structures.

In

all

other

situations,

the

client

determines

the

correct

version

of

the

structure

to

use

by

querying

the

queue

manager’s

capabilities.

skipBytes

public

int

skipBytes(int

n)

Throws

IOException,

EOFException.

Moves

forward

n

bytes

in

the

message

buffer.

This

method

blocks

until

one

of

the

following

occurs:

v

All

the

bytes

are

skipped

v

The

end

of

message

buffer

is

detected

v

An

exception

is

thrown

Returns

the

number

of

bytes

skipped,

which

is

always

n.

MQMessage

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

139

write

public

void

write(int

b)

Throws

IOException.

Writes

a

byte

into

the

message

buffer

at

the

current

position.

write

public

void

write(byte

b[])

Throws

IOException.

Writes

an

array

of

bytes

into

the

message

buffer

at

the

current

position.

write

public

void

write(byte

b[],

int

off,

int

len)

Throws

IOException.

Writes

a

series

of

bytes

into

the

message

buffer

at

the

current

position.

len

bytes

are

written,

taken

from

offset

off

in

the

array

b.

writeBoolean

public

void

writeBoolean(boolean

v)

Throws

IOException.

Writes

a

boolean

into

the

message

buffer

at

the

current

position.

writeByte

public

void

writeByte(int

v)

Throws

IOException.

Writes

a

byte

into

the

message

buffer

at

the

current

position.

writeBytes

public

void

writeBytes(String

s)

Throws

IOException.

Writes

the

string

to

the

message

buffer

as

a

sequence

of

bytes.

Each

character

in

the

string

is

written

in

sequence

by

discarding

its

high

eight

bits.

writeChar

public

void

writeChar(int

v)

Throws

IOException.

Writes

a

Unicode

character

into

the

message

buffer

at

the

current

position.

writeChars

public

void

writeChars(String

s)

Throws

IOException.

MQMessage

140

Using

Java

Writes

a

string

as

a

sequence

of

Unicode

characters

into

the

message

buffer

at

the

current

position.

writeDecimal2

public

void

writeDecimal2(short

v)

Throws

IOException.

Writes

a

2-byte

packed

decimal

format

number

into

the

message

buffer

at

the

current

position.

The

value

of

the

encoding

member

variable

determines

the

behavior

of

this

method.

A

value

of

MQC.MQENC_DECIMAL_NORMAL

writes

a

big-endian

packed

decimal;

a

value

of

MQC.MQENC_DECIMAL_REVERSED

writes

a

little-endian

packed

decimal.

Parameters

v

can

be

in

the

range

-999

to

999.

writeDecimal4

public

void

writeDecimal4(int

v)

Throws

IOException.

Writes

a

4-byte

packed

decimal

format

number

into

the

message

buffer

at

the

current

position.

The

value

of

the

encoding

member

variable

determines

the

behavior

of

this

method.

A

value

of

MQC.MQENC_DECIMAL_NORMAL

writes

a

big-endian

packed

decimal;

a

value

of

MQC.MQENC_DECIMAL_REVERSED

writes

a

little-endian

packed

decimal.

Parameters

v

can

be

in

the

range

-9999999

to

9999999.

writeDecimal8

public

void

writeDecimal8(long

v)

Throws

IOException.

Writes

an

8-byte

packed

decimal

format

number

into

the

message

buffer

at

the

current

position.

The

value

of

the

encoding

member

variable

determines

the

behavior

of

this

method.

A

value

of

MQC.MQENC_DECIMAL_NORMAL

writes

a

big-endian

packed

decimal;

a

value

of

MQC.MQENC_DECIMAL_REVERSED

writes

a

little-endian

packed

decimal.

Parameters:

v

can

be

in

the

range

-999999999999999

to

999999999999999.

writeDouble

public

void

writeDouble(double

v)

Throws

IOException

MQMessage

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

141

Writes

a

double

into

the

message

buffer

at

the

current

position.

The

value

of

the

encoding

member

variable

determines

the

behavior

of

this

method.

Values

of

MQC.MQENC_FLOAT_IEEE_NORMAL

and

MQC.MQENC_FLOAT_IEEE_REVERSED

write

IEEE

standard

floats

in

big-endian

and

little-endian

formats

respectively.

A

value

of

MQC.MQENC_FLOAT_S390

writes

a

System/390

format

floating

point

number.

Note

that

the

range

of

IEEE

doubles

is

greater

than

the

range

of

S/390®

double

precision

floating

point

numbers,

so

very

large

numbers

cannot

be

converted.

writeFloat

public

void

writeFloat(float

v)

Throws

IOException.

Writes

a

float

into

the

message

buffer

at

the

current

position.

The

value

of

the

encoding

member

variable

determines

the

behavior

of

this

method.

Values

of

MQC.MQENC_FLOAT_IEEE_NORMAL

and

MQC.MQENC_FLOAT_IEEE_REVERSED

write

IEEE

standard

floats

in

big-endian

and

little-endian

formats

respectively.

A

value

of

MQC.MQENC_FLOAT_S390

writes

a

System/390

format

floating

point

number.

writeInt

public

void

writeInt(int

v)

Throws

IOException.

Writes

an

integer

into

the

message

buffer

at

the

current

position.

The

value

of

the

encoding

member

variable

determines

the

behavior

of

this

method.

A

value

of

MQC.MQENC_INTEGER_NORMAL

writes

a

big-endian

integer;

a

value

of

MQC.MQENC_INTEGER_REVERSED

writes

a

little-endian

integer.

writeInt2

public

void

writeInt2(int

v)

Throws

IOException.

Synonym

for

writeShort(),

provided

for

cross-language

WebSphere

MQ

API

compatibility.

writeInt4

public

void

writeInt4(int

v)

Throws

IOException.

Synonym

for

writeInt(),

provided

for

cross-language

WebSphere

MQ

API

compatibility.

writeInt8

public

void

writeInt8(long

v)

MQMessage

142

Using

Java

Throws

IOException.

Synonym

for

writeLong(),

provided

for

cross-language

WebSphere

MQ

API

compatibility.

writeLong

public

void

writeLong(long

v)

Throws

IOException.

Writes

a

long

into

the

message

buffer

at

the

current

position.

The

value

of

the

encoding

member

variable

determines

the

behavior

of

this

method.

A

value

of

MQC.MQENC_INTEGER_NORMAL

writes

a

big-endian

long;

a

value

of

MQC.MQENC_INTEGER_REVERSED

writes

a

little-endian

long.

writeObject

public

void

writeObject(Object

obj)

Throws

IOException.

Writes

the

specified

object

to

the

message

buffer.

The

class

of

the

object,

the

signature

of

the

class,

and

the

values

of

the

non-transient

and

non-static

fields

of

the

class

and

all

its

supertypes

are

all

written.

writeShort

public

void

writeShort(int

v)

Throws

IOException.

Writes

a

short

into

the

message

buffer

at

the

current

position.

The

value

of

the

encoding

member

variable

determines

the

behavior

of

this

method.

A

value

of

MQC.MQENC_INTEGER_NORMAL

writes

a

big-endian

short;

a

value

of

MQC.MQENC_INTEGER_REVERSED

writes

a

little-endian

short.

writeString

public

void

writeString(String

str)

Throws

IOException.

Writes

a

string

into

the

message

buffer

at

the

current

position,

converting

it

to

the

codeset

identified

by

the

characterSet

member

variable.

writeUTF

public

void

writeUTF(String

str)

Throws

IOException.

Writes

a

UTF

string,

prefixed

by

a

2-byte

length

field,

into

the

message

buffer

at

the

current

position.

MQMessage

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

143

MQMessageTracker

public

abstract

class

MQMessageTracker

extends

Object

Note:

You

can

use

this

class

only

when

connected

to

a

WebSphere

MQ

queue

manager.

This

class

is

inherited

by

MQDistributionListItem

(on

page

109)

where

it

is

used

to

tailor

message

parameters

for

a

given

destination

in

a

distribution

list.

Variables

accountingToken

public

byte

accountingToken[]

Part

of

the

identity

context

of

the

message.

It

allows

an

application

to

charge

for

work

done

as

a

result

of

the

message.

The

default

value

is

MQC.MQACT_NONE.

correlationId

public

byte

correlationId[]

The

correlation

identifier

to

use

when

the

message

is

put.

The

default

value

is

MQC.MQCI_NONE.

feedback

public

int

feedback

Used

with

a

message

of

type

MQC.MQMT_REPORT

to

indicate

the

nature

of

the

report.

The

following

feedback

codes

are

defined

by

the

system:

v

MQC.MQFB_BUFFER_OVERFLOW

v

MQC.MQFB_COA

v

MQC.MQFB_COD

v

MQC.MQFB_DATA_LENGTH_NEGATIVE

v

MQC.MQFB_DATA_LENGTH_TOO_BIG

v

MQC.MQFB_DATA_LENGTH_ZERO

v

MQC.MQFB_EXPIRATION

v

MQC.MQFB_IIH_ERROR

v

MQC.MQFB_LENGTH_OFF_BY_ONE

v

MQC.MQFB_NAN

v

MQC.MQFB_NONE

v

MQC.MQFB_PAN

v

MQC.MQFB_QUIT

Application-defined

feedback

values

in

the

range

MQC.MQFB_APPL_FIRST

to

MQC.MQFB_APPL_LAST

can

also

be

used.

The

default

value

of

this

field

is

MQC.MQFB_NONE,

indicating

that

no

feedback

is

provided.

groupId

public

byte[]

groupId

java.lang.Object

│

└─

com.ibm.mq.MQMessageTracker

MQMessageTracker

144

Using

Java

A

byte

string

that

identifies

the

message

group

to

which

the

physical

message

belongs.

The

default

value

is

MQC.MQGI_NONE.

messageId

public

byte

messageId[]

The

message

identifier

to

use

when

the

message

is

put.

If

MQC.MQMI_NONE

is

specified,

the

queue

manager

generates

a

unique

message

identifier

when

the

message

is

put.

The

value

of

this

member

variable

is

updated

after

the

put

to

indicate

the

message

identifier

that

was

used.

The

default

value

is

MQC.MQMI_NONE.

MQMessageTracker

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

145

MQPoolServices

public

class

MQPoolServices

extends

Object

Note:

Normally,

applications

do

not

use

this

class.

The

MQPoolServices

class

can

be

used

by

implementations

of

ConnectionManager

that

are

intended

for

use

as

the

default

ConnectionManager

for

WebSphere

MQ

connections.

A

ConnectionManager

can

construct

an

MQPoolServices

object

and,

through

it,

register

a

listener.

This

listener

receives

events

that

relate

to

the

set

of

MQPoolTokens

that

MQEnvironment

manages.

The

ConnectionManager

can

use

this

information

to

perform

any

necessary

startup

or

cleanup

work.

See

also

“MQPoolServicesEvent”

on

page

147

and

“MQPoolServicesEventListener”

on

page

180.

Constructors

MQPoolServices

public

MQPoolServices()

Construct

a

new

MQPoolServices

object.

Methods

addMQPoolServicesEventListener

public

void

addMQPoolServicesEventListener

(MQPoolServicesEventListener

listener)

Adds

an

MQPoolServicesEventListener.

The

listener

receives

an

event

whenever

a

token

is

added

or

removed

from

the

set

of

MQPoolTokens

that

MQEnvironment

controls,

or

whenever

the

default

ConnectionManager

changes.

getTokenCount

public

int

getTokenCount()

Returns

the

number

of

MQPoolTokens

that

are

currently

registered

with

MQEnvironment.

removeMQPoolServicesEventListener

public

void

removeMQPoolServicesEventListener

(MQPoolServicesEventListener

listener)

Removes

an

MQPoolServicesEventListener.

java.lang.Object

│

└─

com.ibm.mq.MQPoolServices

MQPoolServices

146

Using

Java

MQPoolServicesEvent

Note:

Normally,

applications

do

not

use

this

class.

An

MQPoolServicesEvent

is

generated

whenever

an

MQPoolToken

is

added

to,

or

removed

from,

the

set

of

tokens

that

MQEnvironment

controls.

An

event

is

also

generated

when

the

default

ConnectionManager

is

changed.

See

also

“MQPoolServices”

on

page

146

and

“MQPoolServicesEventListener”

on

page

180.

Variables

DEFAULT_POOL_CHANGED

public

static

final

int

DEFAULT_POOL_CHANGED

The

event

ID

used

when

the

default

ConnectionManager

changes.

ID

protected

int

ID

The

event

ID.

Valid

values

are:

TOKEN_ADDED

TOKEN_REMOVED

DEFAULT_POOL_CHANGED

TOKEN_ADDED

public

static

final

int

TOKEN_ADDED

The

event

ID

used

when

an

MQPoolToken

is

added

to

the

set.

TOKEN_REMOVED

public

static

final

int

TOKEN_REMOVED

The

event

ID

used

when

an

MQPoolToken

is

removed

from

the

set.

token

protected

MQPoolToken

token

The

token.

When

the

event

ID

is

DEFAULT_POOL_CHANGED,

this

is

null.

Constructors

MQPoolServicesEvent

public

MQPoolServicesEvent(Object

source,

int

eid)

Constructs

an

MQPoolServicesEvent

based

on

the

event

ID.

MQPoolServicesEvent

public

MQPoolServicesEvent(Object

source,

int

eid,

MQPoolToken

token)

Constructs

an

MQPoolServicesEvent

based

on

the

event

ID

and

the

token.

java.lang.Object

│

└─

java.util.EventObject

│

└─

com.ibm.mq.MQPoolServicesEvent

MQPoolServicesEvent

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

147

Methods

getId

public

int

getId()

Gets

the

event

ID.

Returns

The

event

ID,

with

one

of

the

following

values:

DEFAULT_POOL_CHANGED

TOKEN_ADDED

TOKEN_REMOVED

getToken

public

MQPoolToken

getToken()

Returns

the

token

that

was

added

to,

or

removed

from,

the

set.

If

the

event

ID

is

DEFAULT_POOL_CHANGED,

this

is

null.

MQPoolServicesEvent

148

Using

Java

MQPoolToken

public

class

MQPoolToken

extends

Object

Use

an

MQPoolToken

to

enable

the

default

connection

pool.

MQPoolTokens

are

registered

with

the

MQEnvironment

class

before

an

application

component

connects

to

WebSphere

MQ.

Later,

they

are

deregistered

when

the

component

has

finished

using

WebSphere

MQ.

Typically,

the

default

ConnectionManager

is

active

while

the

set

of

registered

MQPoolTokens

is

not

empty.

MQPoolToken

provides

no

methods

or

variables.

ConnectionManager

providers

can

choose

to

extend

MQPoolToken

so

that

hints

can

be

passed

to

the

ConnectionManager.

See

“MQEnvironment.addConnectionPoolToken”

on

page

114

and

“MQEnvironment.removeConnectionPoolToken”

on

page

115.

Constructors

MQPoolToken

public

MQPoolToken()

Construct

a

new

MQPoolToken

object.

java.lang.Object

│

└─

com.ibm.mq.MQPoolToken

MQPoolToken

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

149

MQProcess

public

class

MQProcess

extends

MQManagedObject.

(See

page

123.)

MQProcess

provides

inquire

operations

for

WebSphere

MQ

processes.

Constructors

MQProcess

public

MQProcess(MQQueueManager

qMgr,

String

processName,

int

openOptions,

String

queueManagerName,

String

alternateUserId)

throws

MQException

Access

a

process

on

the

queue

manager

qMgr.

See

accessProcess

in

the

“MQQueueManager”

on

page

163

for

details

of

the

remaining

parameters.

Methods

close

public

synchronized

void

close()

Throws

MQException.

Overrides

“MQManagedObject.close”

on

page

124.

getApplicationId

public

String

getApplicationId()

A

character

string

that

identifies

the

application

to

be

started.

This

information

is

for

use

by

a

trigger

monitor

application

that

processes

messages

on

the

initiation

queue;

the

information

is

sent

to

the

initiation

queue

as

part

of

the

trigger

message.

Throws

MQException

if

you

call

this

method

after

you

have

closed

the

process.

getApplicationType

public

int

getApplicationType()

Throws

MQException

(see

page

117).

Identifies

the

nature

of

the

program

to

be

started

in

response

to

the

receipt

of

a

trigger

message.

The

application

type

can

take

any

value,

but

the

following

values

are

recommended

for

standard

types:

v

MQC.MQAT_AIX

v

MQC.MQAT_CICS

v

MQC.MQAT_DOS

v

MQC.MQAT_IMS

v

MQC.MQAT_MVS

v

MQC.MQAT_OS2

java.lang.Object

│

└─

com.ibm.mq.MQManagedObject

│

└─

com.ibm.mq.MQProcess

MQProcess

150

Using

Java

v

MQC.MQAT_OS400

v

MQC.MQAT_UNIX

v

MQC.MQAT_WINDOWS

v

MQC.MQAT_WINDOWS_NT

v

MQC.MWQAT_USER_FIRST

(lowest

value

for

user-defined

application

type)

v

MQC.MQAT_USER_LAST

(highest

value

for

user-defined

application

type)

getEnvironmentData

public

String

getEnvironmentData()

Throws

MQException.

A

string

containing

environment-related

information

pertaining

to

the

application

to

be

started.

getUserData

public

String

getUserData()

Throws

MQException.

A

string

containing

user

information

relevant

to

the

application

to

be

started.

MQProcess

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

151

MQPutMessageOptions

public

class

MQPutMessageOptions

extends

Object

This

class

contains

options

that

control

the

behavior

of

MQQueue.put().

Note:

The

behavior

of

some

of

the

options

available

in

this

class

depends

on

the

environment

in

which

they

are

used.

These

elements

are

marked

with

a

*.

See

Chapter

8,

“Environment-dependent

behavior,”

on

page

95

for

more

details.

Variables

contextReference

public

MQQueue

ContextReference

An

input

field

that

indicates

the

source

of

the

context

information.

If

the

options

field

includes

MQC.MQPMO_PASS_IDENTITY_CONTEXT,

or

MQC.MQPMO_PASS_ALL_CONTEXT,

set

this

field

to

refer

to

the

MQQueue

from

which

to

take

the

context

information.

The

initial

value

of

this

field

is

null.

invalidDestCount

*

public

int

invalidDestCount

An

output

field

set

by

the

queue

manager

to

the

number

of

messages

that

could

not

be

sent

to

queues

in

a

distribution

list.

The

count

includes

queues

that

failed

to

open

as

well

as

queues

that

were

opened

successfully,

but

for

which

the

put

operation

failed.

This

field

is

also

set

when

opening

a

single

queue

that

is

not

part

of

a

distribution

list.

knownDestCount

*

public

int

knownDestCount

An

output

field

set

by

the

queue

manager

to

the

number

of

messages

that

the

current

call

has

sent

successfully

to

queues

that

resolve

to

local

queues.

This

field

is

also

set

when

opening

a

single

queue

that

is

not

part

of

a

distribution

list.

options

public

int

options

Options

that

control

the

action

of

MQQueue.put.

Any

or

none

of

the

following

values

can

be

specified.

If

more

than

one

option

is

required,

the

values

can

be

added

together

or

combined

using

the

bitwise

OR

operator.

MQC.MQPMO_DEFAULT_CONTEXT

Associate

default

context

with

the

message.

MQC.MQPMO_FAIL_IF_QUIESCING

Fail

if

the

queue

manager

is

quiescing.

MQC.MQPMO_LOGICAL_ORDER*

Put

logical

messages

and

segments

in

message

groups

into

their

logical

order.

java.lang.Object

│

└─

com.ibm.mq.MQPutMessageOptions

MQPutMessageOptions

152

Using

Java

MQC.MQPMO_NEW_CORREL_ID*

Generate

a

new

correlation

id

for

each

sent

message.

MQC.MQPMO_NEW_MSG_ID*

Generate

a

new

message

id

for

each

sent

message.

MQC.MQPMO_NONE

No

options

specified.

Do

not

use

in

conjunction

with

other

options.

MQC.MQPMO_NO_CONTEXT

No

context

is

to

be

associated

with

the

message.

MQC.MQPMO_NO_SYNCPOINT

Put

a

message

without

syncpoint

control.

Note

that,

if

the

syncpoint

control

option

is

not

specified,

a

default

of

no

syncpoint

is

assumed.

This

applies

to

all

supported

platforms.

MQC.MQPMO_PASS_ALL_CONTEXT

Pass

all

context

from

an

input

queue

handle.

MQC.MQPMO_PASS_IDENTITY_CONTEXT

Pass

identity

context

from

an

input

queue

handle.

MQC.MQPMO_SET_ALL_CONTEXT

Set

all

context

from

the

application.

MQC.MQPMO_SET_IDENTITY_CONTEXT

Set

identity

context

from

the

application.

MQC.MQPMO_SYNCPOINT

Put

a

message

with

syncpoint

control.

The

message

is

not

visible

outside

the

unit

of

work

until

the

unit

of

work

is

committed.

If

the

unit

of

work

is

backed

out,

the

message

is

deleted.

recordFields

*

public

int

recordFields

Flags

indicating

which

fields

are

to

be

customized

in

each

queue

when

putting

a

message

to

a

distribution

list.

One

or

more

of

the

following

flags

can

be

specified:

MQC.MQPMRF_ACCOUNTING_TOKEN

Use

the

accountingToken

attribute

in

the

MQDistributionListItem.

MQC.MQPMRF_CORREL_ID

Use

the

correlationId

attribute

in

the

MQDistributionListItem.

MQC.MQPMRF_FEEDBACK

Use

the

feedback

attribute

in

the

MQDistributionListItem.

MQC.MQPMRF_GROUP_ID

Use

the

groupId

attribute

in

the

MQDistributionListItem.

MQC.MQPMRF_MSG_ID

Use

the

messageId

attribute

in

the

MQDistributionListItem.

The

special

value

MQC.MQPMRF_NONE

indicates

that

no

fields

are

to

be

customized.

resolvedQueueManagerName

public

String

resolvedQueueManagerName

An

output

field

set

by

the

queue

manager

to

the

name

of

the

queue

manager

that

owns

the

queue

specified

by

the

remote

queue

name.

This

MQPutMessageOptions

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

153

might

be

different

from

the

name

of

the

queue

manager

from

which

the

queue

was

accessed

if

the

queue

is

a

remote

queue.

resolvedQueueName

public

String

resolvedQueueName

An

output

field

that

is

set

by

the

queue

manager

to

the

name

of

the

queue

on

which

the

message

is

placed.

This

might

be

different

from

the

name

used

to

open

the

queue

if

the

opened

queue

was

an

alias

or

model

queue.

unknownDestCount

*

public

int

unknownDestCount

An

output

field

set

by

the

queue

manager

to

the

number

of

messages

that

the

current

call

has

sent

successfully

to

queues

that

resolve

to

remote

queues.

This

field

is

also

set

when

opening

a

single

queue

that

is

not

part

of

a

distribution

list.

Constructors

MQPutMessageOptions

public

MQPutMessageOptions()

Construct

a

new

MQPutMessageOptions

object

with

no

options

set,

and

a

blank

resolvedQueueName

and

resolvedQueueManagerName.

MQPutMessageOptions

154

Using

Java

MQQueue

public

class

MQQueue

extends

MQManagedObject.

(See

page

123.)

MQQueue

provides

inquire,

set,

put,

and

get

operations

for

WebSphere

MQ

queues.

The

inquire

and

set

capabilities

are

inherited

from

MQ.MQManagedObject.

See

also

“MQQueueManager.accessQueue”

on

page

168.

Constructors

MQQueue

public

MQQueue(MQQueueManager

qMgr,

String

queueName,

int

openOptions,

String

queueManagerName,

String

dynamicQueueName,

String

alternateUserId

)

throws

MQException

Access

a

queue

on

the

queue

manager

qMgr.

See

“MQQueueManager.accessQueue”

on

page

168

for

details

of

the

remaining

parameters.

Methods

close

public

synchronized

void

close()

Throws

MQException.

Overrides

“MQManagedObject.close”

on

page

124.

get

public

synchronized

void

get(MQMessage

message,

MQGetMessageOptions

getMessageOptions,

int

MaxMsgSize)

Throws

MQException.

Retrieves

a

message

from

the

queue,

up

to

a

maximum

specified

message

size.

This

method

takes

an

MQMessage

object

as

a

parameter.

It

uses

some

of

the

fields

in

the

object

as

input

parameters,

in

particular

the

messageId

and

correlationId,

so

it

is

important

to

ensure

that

these

are

set

as

required.

(See

“Message”

on

page

349.)

If

the

get

fails,

the

MQMessage

object

is

unchanged.

If

it

succeeds,

the

message

descriptor

(member

variables)

and

message

data

portions

of

the

MQMessage

are

completely

replaced

with

the

message

descriptor

and

message

data

from

the

incoming

message.

java.lang.Object

│

└─

com.ibm.mq.MQManagedObject

│

└─

com.ibm.mq.MQQueue

MQQueue

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

155

All

calls

to

WebSphere

MQ

from

a

given

MQQueueManager

are

synchronous.

Therefore,

if

you

perform

a

get

with

wait,

all

other

threads

using

the

same

MQQueueManager

are

blocked

from

making

further

WebSphere

MQ

calls

until

the

get

completes.

If

you

need

multiple

threads

to

access

WebSphere

MQ

simultaneously,

each

thread

must

create

its

own

MQQueueManager

object.

Parameters

message

An

input/output

parameter

containing

the

message

descriptor

information

and

the

returned

message

data.

getMessageOptions

Options

controlling

the

action

of

the

get.

(See

“MQGetMessageOptions”

on

page

119.)

Using

option

MQC.MQGMO_CONVERT

might

result

in

an

exception

with

reason

code

MQException.MQRC_CONVERTED_STRING_TOO_BIG

when

converting

from

single

byte

character

codes

to

double

byte

codes.

In

this

case,

the

message

is

copied

into

the

buffer

but

remains

encoded

using

its

original

character

set.

MaxMsgSize

The

largest

message

this

call

can

receive.

If

the

message

on

the

queue

is

larger

than

this

size,

one

of

two

things

occurs:

1.

If

the

MQC.MQGMO_ACCEPT_TRUNCATED_MSG

flag

is

set

in

the

options

member

variable

of

the

MQGetMessageOptions

object,

the

message

is

filled

with

as

much

of

the

message

data

as

will

fit

in

the

specified

buffer

size,

and

an

exception

is

thrown

with

completion

code

MQException.MQCC_WARNING

and

reason

code

MQException.MQRC_TRUNCATED_MSG_ACCEPTED.

2.

If

the

MQC.MQGMO_ACCEPT_TRUNCATED_MSG

flag

is

not

set,

the

message

is

left

on

the

queue

and

an

MQException

is

raised

with

completion

code

MQException.MQCC_WARNING

and

reason

code

MQException.MQRC_TRUNCATED_MSG_FAILED.

Throws

MQException

if

the

get

fails.

get

public

synchronized

void

get(MQMessage

message,

MQGetMessageOptions

getMessageOptions)

Throws

MQException.

Retrieves

a

message

from

the

queue,

regardless

of

the

size

of

the

message.

For

large

messages,

the

get

method

might

have

to

issue

two

calls

to

WebSphere

MQ

on

your

behalf,

one

to

establish

the

required

buffer

size

and

one

to

get

the

message

data

itself.

This

method

takes

an

MQMessage

object

as

a

parameter.

It

uses

some

of

the

fields

in

the

object

as

input

parameters,

in

particular

the

messageId

and

correlationId,

so

it

is

important

to

ensure

that

these

are

set

as

required.

(See

“Message”

on

page

349.)

MQQueue

156

Using

Java

If

the

get

fails,

the

MQMessage

object

is

unchanged.

If

it

succeeds,

the

message

descriptor

(member

variables)

and

message

data

portions

of

the

MQMessage

are

completely

replaced

with

the

message

descriptor

and

message

data

from

the

incoming

message.

All

calls

to

WebSphere

MQ

from

a

given

MQQueueManager

are

synchronous.

Therefore,

if

you

perform

a

get

with

wait,

all

other

threads

using

the

same

MQQueueManager

are

blocked

from

making

further

WebSphere

MQ

calls

until

the

get

completes.

If

you

need

multiple

threads

to

access

WebSphere

MQ

simultaneously,

each

thread

must

create

its

own

MQQueueManager

object.

Parameters

message

An

input/output

parameter

containing

the

message

descriptor

information

and

the

returned

message

data.

getMessageOptions

Options

controlling

the

action

of

the

get.

(See

“MQGetMessageOptions”

on

page

119

for

details.)

Throws

MQException

if

the

get

fails.

get

public

synchronized

void

get(MQMessage

message)

A

simplified

version

of

the

get

method

previously

described.

Parameters

MQMessage

An

input/output

parameter

containing

the

message

descriptor

information

and

the

returned

message

data.

This

method

uses

a

default

instance

of

MQGetMessageOptions

to

do

the

get.

The

message

option

used

is

MQGMO_NOWAIT.

getCreationDateTime

public

GregorianCalendar

getCreationDateTime()

Throws

MQException.

The

date

and

time

that

this

queue

was

created.

getQueueType

public

int

getQueueType()

Throws

MQException

Returns

The

type

of

this

queue

with

one

of

the

following

values:

v

MQC.MQQT_ALIAS

v

MQC.MQQT_LOCAL

v

MQC.MQQT_REMOTE

v

MQC.MQQT_CLUSTER

getCurrentDepth

public

int

getCurrentDepth()

MQQueue

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

157

Throws

MQException.

Gets

the

number

of

messages

currently

on

the

queue.

This

value

is

incremented

during

a

put

call,

and

during

backout

of

a

get

call.

It

is

decremented

during

a

non-browse

get

and

during

backout

of

a

put

call.

getDefinitionType

public

int

getDefinitionType()

Throws

MQException.

How

the

queue

was

defined.

Returns

One

of

the

following:

v

MQC.MQQDT_PREDEFINED

v

MQC.MQQDT_PERMANENT_DYNAMIC

v

MQC.MQQDT_TEMPORARY_DYNAMIC

getInhibitGet

public

int

getInhibitGet()

Throws

MQException.

Whether

get

operations

are

allowed

for

this

queue.

Returns

The

possible

values

are:

v

MQC.MQQA_GET_INHIBITED

v

MQC.MQQA_GET_ALLOWED

getInhibitPut

public

int

getInhibitPut()

Throws

MQException.

Whether

put

operations

are

allowed

for

this

queue.

Returns

One

of

the

following:

v

MQC.MQQA_PUT_INHIBITED

v

MQC.MQQA_PUT_ALLOWED

getMaximumDepth

public

int

getMaximumDepth()

Throws

MQException.

The

maximum

number

of

messages

that

can

exist

on

the

queue

at

any

one

time.

An

attempt

to

put

a

message

to

a

queue

that

already

contains

this

many

messages

fails

with

reason

code

MQException.MQRC_Q_FULL.

getMaximumMessageLength

public

int

getMaximumMessageLength()

Throws

MQException.

MQQueue

158

Using

Java

The

maximum

length

of

the

application

data

that

can

exist

in

each

message

on

this

queue.

An

attempt

to

put

a

message

larger

than

this

value

fails

with

reason

code

MQException.MQRC_MSG_TOO_BIG_FOR_Q.

getOpenInputCount

public

int

getOpenInputCount()

Throws

MQException.

The

number

of

handles

that

are

currently

valid

for

removing

messages

from

the

queue.

This

is

the

total

number

of

such

handles

known

to

the

local

queue

manager,

not

just

those

created

by

the

WebSphere

MQ

classes

for

Java

(using

accessQueue).

getOpenOutputCount

public

int

getOpenOutputCount()

Throws

MQException.

The

number

of

handles

that

are

currently

valid

for

adding

messages

to

the

queue.

This

is

the

total

number

of

such

handles

known

to

the

local

queue

manager,

not

just

those

created

by

the

WebSphere

MQ

classes

for

Java

(using

accessQueue).

getShareability

public

int

getShareability()

Throws

MQException.

Whether

the

queue

can

be

opened

for

input

multiple

times.

Returns

One

of

the

following:

v

MQC.MQQA_SHAREABLE

v

MQC.MQQA_NOT_SHAREABLE

getTriggerControl

public

int

getTriggerControl()

Throws

MQException.

Whether

trigger

messages

are

written

to

an

initiation

queue,

to

start

an

application

to

service

the

queue.

Returns

The

possible

values

are:

v

MQC.MQTC_OFF

v

MQC.MQTC_ON

getTriggerData

public

String

getTriggerData()

Throws

MQException.

The

free-format

data

that

the

queue

manager

inserts

into

the

trigger

message

when

a

message

arriving

on

this

queue

causes

a

trigger

message

to

be

written

to

the

initiation

queue.

getTriggerDepth

MQQueue

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

159

public

int

getTriggerDepth()

Throws

MQException.

The

number

of

messages

that

have

to

be

on

the

queue

before

a

trigger

message

is

written

when

trigger

type

is

set

to

MQC.MQTT_DEPTH.

getTriggerMessagePriority

public

int

getTriggerMessagePriority()

Throws

MQException.

The

message

priority

below

which

messages

do

not

contribute

to

the

generation

of

trigger

messages

(that

is,

the

queue

manager

ignores

these

messages

when

deciding

whether

to

generate

a

trigger).

A

value

of

zero

causes

all

messages

to

contribute

to

the

generation

of

trigger

messages.

getTriggerType

public

int

getTriggerType()

Throws

MQException.

The

conditions

under

which

trigger

messages

are

written

as

a

result

of

messages

arriving

on

this

queue.

Returns

The

possible

values

are:

v

MQC.MQTT_NONE

v

MQC.MQTT_FIRST

v

MQC.MQTT_EVERY

v

MQC.MQTT_DEPTH

put

public

synchronized

void

put(MQMessage

message,

MQPutMessageOptions

putMessageOptions)

Throws

MQException.

Places

a

message

onto

the

queue.

Note:

For

simplicity

and

performance,

if

you

want

to

put

just

a

single

message

to

a

queue,

use

the

put()

method

on

your

MQQueueManager

object.

For

this

you

do

not

need

to

have

an

MQQueue

object.

See

“MQQueueManager.put”

on

page

174.

This

method

takes

an

MQMessage

object

as

a

parameter.

The

message

descriptor

properties

of

this

object

can

be

altered

as

a

result

of

this

method.

The

values

that

they

have

immediately

after

the

completion

of

this

method

are

the

values

that

were

put

onto

the

WebSphere

MQ

queue.

Modifications

to

the

MQMessage

object

after

the

put

has

completed

do

not

affect

the

actual

message

on

the

WebSphere

MQ

queue.

A

put

updates

the

messageId

and

correlationId.

Consider

this

when

making

further

calls

to

put/get

using

the

same

MQMessage

object.

Also,

calling

put

does

not

clear

the

message

data,

so:

MQQueue

160

Using

Java

msg.writeString("a");

q.put(msg,pmo);

msg.writeString("b");

q.put(msg,pmo);

puts

two

messages.

The

first

contains

a

and

the

second

ab.

Parameters

message

Message

Buffer

containing

the

Message

Descriptor

data

and

message

to

be

sent.

putMessageOptions

Options

controlling

the

action

of

the

put.

(See

“MQPutMessageOptions”

on

page

152)

Throws

MQException

if

the

put

fails.

put

public

synchronized

void

put(MQMessage

message)

A

simplified

version

of

the

put

method

previously

described.

Parameters

MQMessage

Message

Buffer

containing

the

Message

Descriptor

data

and

message

to

be

sent.

This

method

uses

a

default

instance

of

MQPutMessageOptions

to

do

the

put.

setInhibitGet

public

void

setInhibitGet(int

inhibit)

Throws

MQException.

Controls

whether

get

operations

are

allowed

for

this

queue.

The

permissible

values

are:

v

MQC.MQQA_GET_INHIBITED

v

MQC.MQQA_GET_ALLOWED

setInhibitPut

public

void

setInhibitPut(int

inhibit)

Throws

MQException.

Controls

whether

put

operations

are

allowed

for

this

queue.

The

permissible

values

are:

v

MQC.MQQA_PUT_INHIBITED

v

MQC.MQQA_PUT_ALLOWED

setTriggerControl

public

void

setTriggerControl(int

trigger)

Throws

MQException.

MQQueue

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

161

Controls

whether

trigger

messages

are

written

to

an

initiation

queue

to

start

an

application

to

service

the

queue.

The

permissible

values

are:

v

MQC.MQTC_OFF

v

MQC.MQTC_ON

setTriggerData

public

void

setTriggerData(String

data)

Throws

MQException.

Sets

the

free-format

data

that

the

queue

manager

inserts

into

the

trigger

message

when

a

message

arriving

on

this

queue

causes

a

trigger

message

to

be

written

to

the

initiation

queue.

The

maximum

permissible

length

of

the

string

is

given

by

MQC.MQ_TRIGGER_DATA_LENGTH.

setTriggerDepth

public

void

setTriggerDepth(int

depth)

Throws

MQException.

Sets

the

number

of

messages

that

have

to

be

on

the

queue

before

a

trigger

message

is

written

when

trigger

type

is

set

to

MQC.MQTT_DEPTH.

setTriggerMessagePriority

public

void

setTriggerMessagePriority(int

priority)

Throws

MQException.

Sets

the

message

priority

below

which

messages

do

not

contribute

to

the

generation

of

trigger

messages

(that

is,

the

queue

manager

ignores

these

messages

when

deciding

whether

a

trigger

should

be

generated).

A

value

of

zero

causes

all

messages

to

contribute

to

the

generation

of

trigger

messages.

setTriggerType

public

void

setTriggerType(int

type)

Throws

MQException.

Sets

the

conditions

under

which

trigger

messages

are

written

as

a

result

of

messages

arriving

on

this

queue.

The

possible

values

are:

v

MQC.MQTT_NONE

v

MQC.MQTT_FIRST

v

MQC.MQTT_EVERY

v

MQC.MQTT_DEPTH

MQQueue

162

Using

Java

MQQueueManager

public

class

MQQueueManager

extends

MQManagedObject.

(See

page

123.)

Note:

The

behavior

of

some

of

the

options

available

in

this

class

depends

on

the

environment

in

which

they

are

used.

These

elements

are

marked

with

a

*.

See

Chapter

8,

“Environment-dependent

behavior,”

on

page

95

for

details.

Variables

isConnected

public

boolean

isConnected

True

if

the

connection

to

the

queue

manager

is

still

open.

Constructors

MQQueueManager

public

MQQueueManager(String

queueManagerName)

Throws

MQException.

Creates

a

connection

to

the

named

queue

manager.

Note:

When

using

WebSphere

MQ

classes

for

Java,

the

hostname,

channel

name,

and

port

to

use

during

the

connection

request

are

specified

in

the

MQEnvironment

class.

This

must

be

done

before

calling

this

constructor.

The

following

example

shows

a

connection

to

a

queue

manager

MYQM,

running

on

a

machine

with

hostname

fred.mq.com.

MQEnvironment.hostname

=

"fred.mq.com";

//

host

to

connect

to

MQEnvironment.port

=

1414;

//

port

to

connect

to.

//

If

I

don’t

set

this,

//

it

defaults

to

1414

//

(the

default

WebSphere

MQ

port)

MQEnvironment.channel

=

"channel.name";

//

the

CASE-SENSITIVE

//

name

of

the

//

SVR

CONN

channel

on

//

the

queue

manager

MQQueueManager

qMgr

=

new

MQQueueManager("MYQM");

If

the

queue

manager

name

is

left

blank

(null

or

″″),

a

connection

is

made

to

the

default

queue

manager.

See

also

“MQEnvironment”

on

page

110.

java.lang.Object

│

└─

com.ibm.mq.MQManagedObject

│

└─

com.ibm.mq.MQQueueManager

MQQueueManager

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

163

MQQueueManager

public

MQQueueManager(String

queueManagerName,

MQConnectionManager

cxManager)

Throws

MQException.

Connects

to

the

specified

Queue

Manager,

using

the

properties

in

MQEnvironment.

The

specified

MQConnectionManager

manages

the

connection.

MQQueueManager

public

MQQueueManager(String

queueManagerName,

ConnectionManager

cxManager)

Throws

MQException.

Connects

to

the

specified

Queue

Manager,

using

the

properties

in

MQEnvironment.

The

specified

ConnectionManager

manages

the

connection.

If

the

value

of

cxManager

is

null,

then

the

default

ConnectionManger

is

used.

This

constructor

requires

a

JVM

at

at

least

Java

2

v1.3,

with

at

least

JAAS

1.0

installed.

MQQueueManager

public

MQQueueManager(String

queueManagerName,

int

options)

Throws

MQException.

This

version

of

the

constructor

is

intended

for

use

only

in

bindings

mode.

It

uses

the

extended

connection

API

(MQCONNX)

to

connect

to

the

queue

manager.

The

options

parameter

allows

you

to

choose

fast

or

normal

bindings.

Possible

values

are:

v

MQC.MQCNO_FASTPATH_BINDING

for

fast

bindings

*.

v

MQC.MQCNO_STANDARD_BINDING

for

normal

bindings.

MQQueueManager

public

MQQueueManager(String

queueManagerName,

int

options,

MQConnectionManager

cxManager)

Throws

MQException.

Performs

an

MQCONNX,

passing

the

supplied

options.

The

specified

MQConnectionManager

manages

the

connection.

MQQueueManager

public

MQQueueManager(String

queueManagerName,

int

options,

ConnectionManager

cxManager)

Throws

MQException.

Performs

an

MQCONNX,

passing

the

supplied

options.

The

specified

ConnectionManager

manages

the

connection.

MQQueueManager

164

Using

Java

|
|

This

constructor

requires

a

JVM

at

at

least

Java

2

v1.3,

with

at

least

JAAS

1.0

installed.

MQQueueManager

public

MQQueueManager(String

queueManagerName,

java.util.Hashtable

properties)

The

properties

parameter

takes

a

series

of

key/value

pairs

that

describe

the

WebSphere

MQ

environment

for

this

particular

queue

manager.

These

properties,

where

specified,

override

the

values

set

by

the

MQEnvironment

class,

and

allow

the

individual

properties

to

be

set

on

a

queue

manager

by

queue

manager

basis.

See

“MQEnvironment.properties”

on

page

111.

MQQueueManager

public

MQQueueManager(String

queueManagerName,

Hashtable

properties,

MQConnectionManager

cxManager)

Throws

MQException.

This

constructor

connects

to

the

named

Queue

Manager,

using

the

supplied

hash

table

of

properties

to

override

those

in

MQEnvironment.

The

specified

MQConnectionManager

manages

the

connection.

MQQueueManager

public

MQQueueManager(String

queueManagerName,

Hashtable

properties,

ConnectionManager

cxManager)

Throws

MQException.

Connects

to

the

named

Queue

Manager,

using

the

supplied

hash

table

of

properties

to

override

those

in

MQEnvironment.

The

specified

ConnectionManager

manages

the

connection.

This

constructor

requires

a

JVM

at

at

least

Java

2

v1.3,

with

at

least

JAAS

1.0

installed.

MQQueueManager

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

165

Methods

accessDistributionList

public

synchronized

MQDistributionList

accessDistributionList

(MQDistributionListItem[]

litems,

int

openOptions,

String

alternateUserId)

Throws

MQException.

Parameters

litems

The

items

to

be

included

in

the

distribution

list.

openOptions

Options

that

control

the

opening

of

the

distribution

list.

alternateUserId

If

MQOO_ALTERNATE_USER_AUTHORITY

is

specified

in

the

openOptions

parameter,

specifies

the

alternate

user

identifier

that

is

used

to

check

the

authorization

for

the

open.

If

MQOO_ALTERNATE_USER_AUTHORITY

is

not

specified,

this

parameter

can

be

left

blank

(or

null).

Returns

A

newly-created

MQDistributionList,

which

is

open

and

ready

for

put

operations.

Throws

MQException

if

the

open

fails.

See

also

“MQQueueManager.accessQueue”

on

page

168.

accessDistributionList

This

is

a

simplified

version

of

the

AccessDistributionList

method

previously

described.

public

synchronized

MQDistributionList

accessDistributionList

(MQDistributionListItem[]

litems,

int

openOptions)

Throws

MQException.

Parameters

litems

The

items

to

be

included

in

the

distribution

list.

openOptions

Options

that

control

the

opening

of

the

distribution

list.

See

the

full

description

of

“accessDistributionList”

above

for

details

of

the

other

parameters.

alternateUserId

is

set

to

″″.

MQQueueManager

166

Using

Java

accessProcess

public

synchronized

MQProcess

accessProcess

(String

processName,

int

openOptions,

String

queueManagerName,

String

alternateUserId)

Throws

MQException.

Establishes

access

to

a

WebSphere

MQ

process

on

this

queue

manager

to

inquire

about

the

process

attributes.

Parameters

processName

Name

of

process

to

open.

openOptions

Options

that

control

the

opening

of

the

process.

Inquire

is

automatically

added

to

the

options

specified,

so

there

is

no

need

to

specify

it

explicitly.

Valid

options

are:

MQC.MQOO_ALTERNATE_USER_AUTHORITY

Validate

with

the

specified

user

ID

MQC.MQOO_FAIL_IF_QUIESCING

Fail

if

the

queue

manager

is

quiescing

If

more

than

one

option

is

required,

the

values

can

be

added

together

or

combined

using

the

bitwise

OR

operator.

See

the

WebSphere

MQ

Application

Programming

Reference

for

a

fuller

description

of

these

options.

queueManagerName

Name

of

the

queue

manager

on

which

the

process

is

defined.

Applications

should

leave

this

parameter

blank

or

null.

alternateUserId

If

MQOO_ALTERNATE_USER_AUTHORITY

is

specified

in

the

openOptions

parameter,

this

parameter

specifies

the

alternate

user

identifier

that

is

used

to

check

the

authorization

for

the

open.

If

MQOO_ALTERNATE_USER_AUTHORITY

is

not

specified,

this

parameter

can

be

left

blank

(or

null).

accessProcess

This

is

a

simplified

version

of

the

AccessProcess

method

previously

described.

public

synchronized

MQProcess

accessProcess

(String

processName,

int

openOptions)

MQQueueManager

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

167

Parameters

processName

The

name

of

the

process

to

open.

openOptions

Options

that

control

the

opening

of

the

process.

See

the

full

description

of

“accessProcess”

on

page

167

above

for

details

of

the

other

options.

queueManagerName

and

alternateUserId

are

set

to

″″.

accessQueue

public

synchronized

MQQueue

accessQueue

(String

queueName,

int

openOptions,

String

queueManagerName,

String

dynamicQueueName,

String

alternateUserId)

Throws

MQException.

Establishes

access

to

a

WebSphere

MQ

queue

on

this

queue

manager

to

get

or

browse

messages,

put

messages,

inquire

about

the

attributes

of

the

queue

or

set

the

attributes

of

the

queue.

If

the

queue

named

is

a

model

queue,

a

dynamic

local

queue

is

created.

The

name

of

the

created

queue

can

be

determined

from

the

name

attribute

of

the

returned

MQQueue

object.

Parameters

queueName

Name

of

queue

to

open.

openOptions

Options

that

control

the

opening

of

the

queue.

Valid

options

are:

MQC.MQOO_ALTERNATE_USER_AUTHORITY

Validate

with

the

specified

user

identifier.

MQC.MQOO_BIND_AS_QDEF

Use

default

binding

for

queue.

MQC.MQOO_BIND_NOT_FIXED

Do

not

bind

to

a

specific

destination.

MQC.MQOO_BIND_ON_OPEN

Bind

handle

to

destination

when

queue

is

opened.

MQC.MQOO_BROWSE

Open

to

browse

message.

MQC.MQOO_FAIL_IF_QUIESCING

Fail

if

the

queue

manager

is

quiescing.

MQC.MQOO_INPUT_AS_Q_DEF

Open

to

get

messages

using

queue-defined

default.

MQC.MQOO_INPUT_SHARED

Open

to

get

messages

with

shared

access.

MQQueueManager

168

Using

Java

MQC.MQOO_INPUT_EXCLUSIVE

Open

to

get

messages

with

exclusive

access.

MQC.MQOO_INQUIRE

Open

for

inquiry

-

required

if

you

wish

to

query

properties.

MQC.MQOO_OUTPUT

Open

to

put

messages.

MQC.MQOO_PASS_ALL_CONTEXT

Allow

all

context

to

be

passed.

MQC.MQOO_PASS_IDENTITY_CONTEXT

Allow

identity

context

to

be

passed.

MQC.MQOO_SAVE_ALL_CONTEXT

Save

context

when

message

retrieved*.

MQC.MQOO_SET

Open

to

set

attributes.

MQC.MQOO_SET_ALL_CONTEXT

Allows

all

context

to

be

set.

MQC.MQOO_SET_IDENTITY_CONTEXT

Allows

identity

context

to

be

set.

If

more

than

one

option

is

required,

the

values

can

be

added

together

or

combined

using

the

bitwise

OR

operator.

See

the

WebSphere

MQ

Application

Programming

Reference

for

a

fuller

description

of

these

options.

queueManagerName

Name

of

the

queue

manager

on

which

the

queue

is

defined.

A

name

that

is

entirely

blank

or

null

denotes

the

queue

manager

to

which

this

MQQueueManager

object

is

connected.

dynamicQueueName

This

parameter

is

ignored

unless

queueName

specifies

the

name

of

a

model

queue.

If

it

does,

this

parameter

specifies

the

name

of

the

dynamic

queue

to

be

created.

A

blank

or

null

name

is

not

valid

if

queueName

specifies

the

name

of

a

model

queue.

If

the

last

non-blank

character

in

the

name

is

an

asterisk

(*),

the

queue

manager

replaces

the

asterisk

with

a

string

of

characters

that

guarantees

that

the

name

generated

for

the

queue

is

unique

on

this

queue

manager.

alternateUserId

If

MQOO_ALTERNATE_USER_AUTHORITY

is

specified

in

the

openOptions

parameter,

this

parameter

specifies

the

alternate

user

identifier

that

is

used

to

check

the

authorization

for

the

open.

If

MQOO_ALTERNATE_USER_AUTHORITY

is

not

specified,

this

parameter

can

be

left

blank

(or

null).

Returns

MQQueue

that

has

been

successfully

opened.

Throws

MQException

if

the

open

fails.

MQQueueManager

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

169

accessQueue

public

synchronized

MQQueue

accessQueue

(String

queueName,

int

openOptions)

Throws

MQException

if

you

call

this

method

after

disconnecting

from

the

queue

manager.

Parameters

queueName

Name

of

queue

to

open

openOptions

Options

that

control

the

opening

of

the

queue

See

the

description

of

“MQQueueManager.accessQueue”

on

page

168

for

details

of

the

parameters.

For

this

version

of

the

method,

queueManagerName,

dynamicQueueName,

and

alternateUserId

are

set

to

″″.

Returns

MQProcess

that

has

been

successfully

opened.

Throws

MQException

if

the

open

fails.

backout

public

synchronized

void

backout()

Throws

MQException.

Calling

this

method

indicates

to

the

queue

manager

that

all

the

message

gets

and

puts

that

have

occurred

since

the

last

syncpoint

are

to

be

backed

out.

Messages

put

as

part

of

a

unit

of

work

(with

the

MQC.MQPMO_SYNCPOINT

flag

set

in

the

options

field

of

MQPutMessageOptions)

are

deleted;

messages

retrieved

as

part

of

a

unit

of

work

(with

the

MQC.MQGMO_SYNCPOINT

flag

set

in

the

options

field

of

MQGetMessageOptions)

are

reinstated

on

the

queue.

See

also

the

description

of

the

commit

method.

begin*

(bindings

connection

only)

public

synchronized

void

begin()

Throws

MQException.

This

method

is

supported

only

by

the

WebSphere

MQ

classes

for

Java

in

bindings

mode.

It

signals

to

the

queue

manager

that

a

new

unit

of

work

is

starting.

For

a

complete

description

of

using

this

method,

see

“JTA/JDBC

coordination

using

WebSphere

MQ

base

Java”

on

page

87.

Do

not

use

this

method

for

applications

that

use

local

one-phase

transactions.

MQQueueManager

170

Using

Java

commit

public

synchronized

void

commit()

Throws

MQException.

Calling

this

method

indicates

to

the

queue

manager

that

the

application

has

reached

a

syncpoint,

and

that

all

the

message

gets

and

puts

that

have

occurred

since

the

last

syncpoint

are

to

be

made

permanent.

Messages

put

as

part

of

a

unit

of

work

(with

the

MQC.MQPMO_SYNCPOINT

flag

set

in

the

options

field

of

MQPutMessageOptions)

are

made

available

to

other

applications.

Messages

retrieved

as

part

of

a

unit

of

work

(with

the

MQC.MQGMO_SYNCPOINT

flag

set

in

the

options

field

of

MQGetMessageOptions)

are

deleted.

See

also

the

description

of

the

backout

method.

disconnect

public

synchronized

void

disconnect()

Throws

MQException.

Terminates

the

connection

to

the

queue

manager.

All

open

queues

and

processes

accessed

by

this

queue

manager

are

closed,

and

become

unusable.

When

you

have

disconnected

from

a

queue

manager,

the

only

way

to

reconnect

is

to

create

a

new

MQQueueManager

object.

Normally,

any

work

performed

as

part

of

a

unit

of

work

is

committed.

However,

if

this

connection

is

managed

by

a

ConnectionManager,

rather

than

an

MQConnectionManager,

the

unit

of

work

might

be

rolled

back.

getCharacterSet

public

int

getCharacterSet()

Throws

MQException.

Returns

the

CCSID

(Coded

Character

Set

Identifier)

of

the

queue

manager’s

codeset.

This

defines

the

character

set

used

by

the

queue

manager

for

all

character

string

fields

in

the

application

programming

interface.

Throws

MQException

if

you

call

this

method

after

disconnecting

from

the

queue

manager.

getCommandInputQueueName

public

String

getCommandInputQueueName()

Throws

MQException.

Returns

the

name

of

the

command

input

queue

defined

on

the

queue

manager.

This

is

a

queue

to

which

applications

can

send

commands,

if

authorized

to

do

so.

Throws

MQException

if

you

call

this

method

after

disconnecting

from

the

queue

manager.

MQQueueManager

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

171

getCommandLevel

public

int

getCommandLevel()

Throws

MQException.

Indicates

the

level

of

system

control

commands

supported

by

the

queue

manager.

The

set

of

system

control

commands

that

correspond

to

a

particular

command

level

varies

according

to

the

architecture

of

the

platform

on

which

the

queue

manager

is

running.

See

the

WebSphere

MQ

documentation

for

your

platform

for

further

details.

Throws

MQException

if

you

call

this

method

after

disconnecting

from

the

queue

manager.

Returns

One

of

the

MQC.MQCMDL_LEVEL_xxx

constants

getDistributionListCapable

public

boolean

getDistributionListCapable()

Indicates

whether

the

queue

manager

supports

distribution

lists.

getJDBCConnection

public

java.sql.Connection

getJDBCConnection(XADataSource

dataSource,

String

userid,

String

password)

throws

MQException,

SQLException,

Exception

Returns

a

Connection

object

for

use

with

the

JTA-JDBC

support.

This

method

declares

Exception

in

its

throws

clause

to

avoid

problems

with

the

JVM

verifier

for

customers

who

are

not

using

the

JTA

functionality.

The

actual

exception

thrown

is

javax.transaction.xa.XAException,

which

requires

the

jta.jar

file

to

be

added

to

the

classpath

for

programs

that

did

not

previously

require

it.

Parameters

dataSource

A

database-specific

implementation

of

the

XADataSource

interface

that

defines

the

details

of

the

database

to

connect

to.

See

the

documentation

for

your

database

to

determine

how

to

create

an

appropriate

XADataSource

object

to

pass

into

getJDBCConnection.

userid

The

user

ID

to

use

for

this

connection

to

the

database.

This

is

passed

to

the

underlying

XADataSource.getXAConnection

method.

password

The

password

to

use

for

this

connection

to

the

database.

This

is

passed

to

the

underlying

XADataSource.getXAConnection

method.

MQQueueManager

172

Using

Java

getJDBCConnection

public

java.sql.Connection

getJDBCConnection(javax.sql.XADataSource

xads)

throws

MQException,

SQLException,

Exception

Returns

a

Connection

object

for

use

with

the

JTA-JDBC

support.

This

method

declares

Exception

in

its

throws

clause

to

avoid

problems

with

the

JVM

verifier

for

customers

who

are

not

using

the

JTA

functionality.

The

actual

exception

thrown

is

javax.transaction.xa.XAException,

which

requires

the

jta.jar

file

to

be

added

to

the

classpath

for

programs

that

did

not

previously

require

it.

Parameters

xads

A

database-specific

implementation

of

the

XADataSource

interface

that

defines

the

details

of

the

database

to

connect

to.

See

the

documentation

for

your

database

to

determine

how

to

create

an

appropriate

XADataSource

object

to

pass

into

getJDBCConnection.

getMaximumMessageLength

public

int

getMaximumMessageLength()

Throws

MQException.

Returns

the

maximum

length

of

a

message

(in

bytes)

that

can

be

handled

by

the

queue

manager.

No

queue

can

be

defined

with

a

maximum

message

length

greater

than

this.

Throws

MQException

if

you

call

this

method

after

disconnecting

from

the

queue

manager.

getMaximumPriority

public

int

getMaximumPriority()

Throws

MQException.

Returns

the

maximum

message

priority

supported

by

the

queue

manager.

Priorities

range

from

zero

(lowest)

to

this

value.

Throws

MQException

if

you

call

this

method

after

disconnecting

from

the

queue

manager.

getSyncpointAvailability

public

int

getSyncpointAvailability()

Throws

MQException.

Indicates

whether

the

queue

manager

supports

units

of

work

and

syncpointing

with

the

MQQueue.get

and

MQQueue.put

methods.

MQQueueManager

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

173

Returns

v

MQC.MQSP_AVAILABLE

if

syncpointing

is

available.

v

MQC.MQSP_NOT_AVAILABLE

if

syncpointing

is

not

available.

Throws

MQException

if

you

call

this

method

after

disconnecting

from

the

queue

manager.

isConnected

public

boolean

isConnected()

Returns

the

value

of

the

isConnected

variable.

put

public

synchronized

void

put(String

qName,

String

qmName,

MQMessage

msg,

MQPutMessageOptions

pmo,

String

altUserId)

Throws

MQException.

Places

a

single

message

onto

a

queue

without

having

to

create

an

MQQueue

object

first.

The

qName

(queue

name)

and

qmName

(queue

manager

name)

parameters

identify

where

the

message

is

placed.

If

the

queue

is

a

model

queue,

an

MQException

is

thrown.

In

other

respects,

this

method

behaves

like

the

put

method

on

the

MQQueue

object.

It

is

an

implementation

of

the

MQPUT1

MQI

call.

See

“MQQueue.put”

on

page

160.

Parameters

qName

The

name

of

the

queue

onto

which

to

place

the

message.

qmName

The

name

of

the

queue

manager

on

which

the

queue

is

defined.

msg

The

message

to

send.

pmo

Options

controlling

the

actions

of

the

put.

See

“MQPutMessageOptions”

on

page

152

for

more

details.

altUserid

Specifies

an

alternative

user

identifier

used

to

check

authorization

when

placing

the

message

on

a

queue.

If

you

do

not

specify

MQPMO_ALTERNATE_USER,

this

parameter

is

ignored.

put

public

synchronized

void

put(String

qName,

String

qmName,

MQMessage

msg,

MQPutMessageOptions

pmo)

Throws

MQException.

Places

a

single

message

onto

a

queue

without

having

to

create

an

MQQueue

object

first.

MQQueueManager

174

Using

Java

This

version

of

the

method

allows

you

to

omit

the

altUserid

parameter.

See

the

fully-specified

method

(“MQQueueManager.put”

on

page

174)

for

details

of

the

parameters.

put

public

synchronized

void

put(String

qName,

String

qmName,

MQMessage

msg)

Throws

MQException.

Places

a

single

message

onto

a

queue

without

having

to

create

an

MQQueue

object

first.

This

version

of

the

method

allows

you

to

omit

the

put

message

options

(pmo)

and

altUserid

parameters.

See

the

fully-specified

method

(“MQQueueManager.put”

on

page

174)

for

details

of

the

parameters.

put

public

synchronized

void

put(String

qName,

MQMessage

msg,

MQPutMessageOptions

pmo)

Throws

MQException.

Places

a

single

message

onto

a

queue

without

having

to

create

an

MQQueue

object

first.

This

version

of

the

method

allows

you

to

omit

the

qmName

and

altUserid

parameters.

See

the

fully-specified

method

(“MQQueueManager.put”

on

page

174)

for

details

of

the

parameters.

put

public

synchronized

void

put(String

qName,

MQMessage

msg)

Throws

MQException.

Places

a

single

message

onto

a

queue

without

having

to

create

an

MQQueue

object

first.

This

version

of

the

method

allows

you

to

omit

the

qmName,

put

message

options

(pmo),

and

altUserid

parameters.

See

the

fully-specified

method

(“MQQueueManager.put”

on

page

174)

for

details

of

the

parameters.

MQQueueManager

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

175

MQSimpleConnectionManager

public

class

MQSimpleConnectionManager

implements

MQConnectionManager

(See

page

181.)

An

MQSimpleConnectionManager

provides

basic

connection

pooling

function.

You

can

use

an

MQSimpleConnectionManager

either

as

the

default

Connection

Manager,

or

as

a

parameter

to

an

MQQueueManager

constructor.

When

an

MQQueueManager

is

constructed,

the

most

recently

used

connection

in

the

pool

is

used.

Connections

are

destroyed

by

a

separate

thread

when

they

are

unused

for

a

specified

period,

when

there

are

more

than

a

specified

number

of

unused

connections

in

the

pool,

or

when

the

maximum

number

of

connections

has

been

reached

and

room

must

be

made

for

new

connections.

You

can

specify

the

timeout

period,

the

maximum

number

of

managed

connections,

and

the

maximum

number

of

unused

connections.

Variables

MODE_ACTIVE

public

static

final

int

MODE_ACTIVE.

See

“setActive”

on

page

177.

MODE_AUTO

public

static

final

int

MODE_AUTO.

See

“setActive”

on

page

177.

MODE_INACTIVE

public

static

final

int

MODE_INACTIVE.

See

“setActive”

on

page

177.

Constructors

MQSimpleConnectionManager

public

MQSimpleConnectionManager()

Constructs

an

MQSimpleConnectionManager.

Methods

getActive

public

int

getActive()

Gets

the

mode

of

the

connection

pool.

Returns

The

current

active

mode

of

the

connection

pool,

with

one

of

the

following

values

(see

“setActive”

on

page

177):

MODE_ACTIVE

MODE_AUTO

MODE_INACTIVE

getHighThreshold

(deprecated)

public

int

getHighThreshold()

java.lang.Object

com.ibm.mq.MQConnectionManager

│

│

└─

com.ibm.mq.MQSimpleConnectionManager

MQSimpleConnectionManager

176

Using

Java

|
|
|

|

Do

not

use

this

method

in

new

applications.

It

performs

the

same

function

as

getMaxUnusedConnections

and

returns

the

maximum

number

of

unused

connections

in

the

pool.

getMaxConnections

public

int

getMaxConnections()

Returns

the

maximum

number

of

connections

managed

by

the

connection

manager.

getMaxUnusedConnections

public

int

getMaxUnusedConnections()

Returns

the

maximum

number

of

unused

connections

in

the

pool.

getTimeout

public

long

getTimeout()

Returns

the

timeout

value.

setActive

public

void

setActive(int

mode)

Sets

the

active

mode

of

the

connection

pool.

Parameters

mode

The

required

active

mode

of

the

connection

pool.

Valid

values

are:

MODE_ACTIVE

The

connection

pool

is

always

active.

When

MQQueueManager.disconnect()

is

called,

the

underlying

connection

is

pooled

and

potentially

reused

the

next

time

that

an

MQQueueManager

object

is

constructed.

Connections

are

destroyed

by

a

separate

thread

if

they

are

unused

for

longer

than

the

timeout

period,

if

the

number

of

unused

connections

in

the

pool

exceeds

the

value

set

by

setMaxUnusedConnections(),

or

if

room

must

be

made

for

a

new

connection.

MODE_AUTO

The

connection

pool

is

active

while

the

connection

manager

is

the

default

connection

manager

and

there

is

at

least

one

token

in

the

set

of

MQPoolToken

objects

held

by

the

MQEnvironment

object.

This

is

the

default

mode.

MODE_INACTIVE

The

connection

pool

is

always

inactive.

When

this

mode

is

entered,

the

pool

of

connections

to

WebSphere

MQ

is

cleared.

When

MQQueueManager.disconnect()

is

called,

the

connection

that

underlies

any

active

MQQueueManager

object

ends.

setHighThreshold

(deprecated)

public

void

setHighThreshold(int

threshold)

Do

not

use

this

method

in

new

applications.

It

performs

the

same

function

as

setMaxUnusedConnections

and

sets

the

maximum

number

of

unused

connections

in

the

pool.

Parameters

threshold

The

maximum

number

of

unused

connections

in

the

pool.

MQSimpleConnectionManager

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

177

|
|
|

|
|

|
|

|
|

|

|
|
|
|

|

|
|
|

setMaxConnections

public

void

setMaxConnections(int

maxConnections)

Sets

the

maximum

number

of

connections

to

be

managed.

To

prevent

this

number

from

being

exceeded,

the

oldest

unused

connection

in

the

pool

might

be

destroyed

or

a

request

for

a

new

connection

might

be

refused.

If

the

latter

event

occurs,

an

MQException

is

thrown

with

reason

code

MQRC_MAX_CONNS_LIMIT_REACHED.

Parameters

maxConnections

The

maximum

number

of

connections

in

the

pool.

setMaxUnusedConnections

public

void

setMaxUnusedConnections(int

maxUnusedConnections)

Sets

the

maximum

number

of

unused

connections

in

the

pool.

To

prevent

this

number

from

being

exceeded,

the

oldest

unused

connection

in

the

pool

is

destroyed.

Parameters

maxUnusedConnections

The

maximum

number

of

unused

connections

in

the

pool.

setTimeout

public

void

setTimeout(long

timeout)

Sets

the

timeout

value,

where

connections

that

remain

unused

for

this

length

of

time

are

destroyed

by

a

separate

thread.

Parameters

timeout

The

value

of

the

timeout

in

milliseconds.

MQSimpleConnectionManager

178

Using

Java

|
|

|
|
|
|
|

|

|
|

|
|

|
|
|

|

|
|

MQC

public

interface

MQC

extends

Object

The

MQC

interface

defines

all

the

constants

used

by

the

WebSphere

MQ

Java

programming

interface

(except

for

completion

code

constants

and

error

code

constants).

To

refer

to

one

of

these

constants

from

within

your

programs,

prefix

the

constant

name

with

MQC..

For

example,

you

can

set

the

close

options

for

a

queue

as

follows:

MQQueue

queue;

...

queue.closeOptions

=

MQC.MQCO_DELETE;

//

delete

the

//

queue

when

//

it

is

closed

...

A

full

description

of

these

constants

is

in

the

WebSphere

MQ

Application

Programming

Reference.

Completion

code

and

error

code

constants

are

defined

in

the

MQException

class.

See

“MQException”

on

page

117.

MQC

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

179

MQPoolServicesEventListener

public

interface

MQPoolServicesEventListener

extends

Object

Note:

Normally,

applications

do

not

use

this

interface.

MQPoolServicesEventListener

is

for

implementation

by

providers

of

default

ConnectionManagers.

When

an

MQPoolServicesEventListener

is

registered

with

an

MQPoolServices

object,

the

event

listener

receives

an

event

whenever

an

MQPoolToken

is

added

to,

or

removed

from,

the

set

of

MQPoolTokens

that

MQEnvironment

manages.

It

also

receives

an

event

whenever

the

default

ConnectionManager

changes.

See

also

“MQPoolServices”

on

page

146

and

“MQPoolServicesEvent”

on

page

147.

Methods

defaultConnectionManagerChanged

public

void

defaultConnectionManagerChanged(MQPoolServicesEvent

event)

Called

when

the

default

ConnectionManager

is

set.

The

set

of

MQPoolTokens

is

cleared.

tokenAdded

public

void

tokenAdded(MQPoolServicesEvent

event)

Called

when

an

MQPoolToken

is

added

to

the

set.

tokenRemoved

public

void

tokenRemoved(MQPoolServicesEvent

event)

Called

when

an

MQPoolToken

is

removed

from

the

set.

MQPoolServicesEventListener

180

Using

Java

MQConnectionManager

This

is

a

private

interface

that

cannot

be

implemented

by

applications.

WebSphere

MQ

classes

for

Java

supplies

an

implementation

of

this

interface

(MQSimpleConnectionManager),

which

you

can

specify

on

the

MQQueueManager

constructor,

or

through

MQEnvironment.setDefaultConnectionManager.

See

“MQSimpleConnectionManager”

on

page

176.

Applications

or

middleware

that

want

to

provide

their

own

ConnectionManager

must

implement

javax.resource.spi.ConnectionManager.

This

requires

Java

2

v1.3

with

JAAS

1.0

installed.

MQConnectionManager

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

181

MQReceiveExit

public

interface

MQReceiveExit

extends

Object

The

receive

exit

interface

allows

you

to

examine

and

possibly

alter

the

data

received

from

the

queue

manager

by

the

WebSphere

MQ

classes

for

Java.

Note:

This

interface

does

not

apply

when

connecting

directly

to

WebSphere

MQ

in

bindings

mode.

To

provide

your

own

receive

exit,

define

a

class

that

implements

this

interface.

Create

a

new

instance

of

your

class

and

assign

the

MQEnvironment.receiveExit

variable

to

it

before

constructing

your

MQQueueManager

object.

For

example:

Methods

receiveExit

public

abstract

byte[]

receiveExit(MQChannelExit

channelExitParms,

MQChannelDefinition

channelDefinition,

byte

agentBuffer[])

The

receive

exit

method

that

your

class

must

provide.

This

method

is

invoked

whenever

the

WebSphere

MQ

classes

for

Java

receives

some

data

from

the

queue

manager.

Parameters

channelExitParms

Contains

information

regarding

the

context

in

which

the

exit

is

being

invoked.

The

exitResponse

member

variable

is

an

output

parameter

that

you

use

to

tell

the

WebSphere

MQ

classes

for

Java

what

action

to

take

next.

See

“MQChannelExit”

on

page

104

for

further

details.

channelDefinition

Contains

details

of

the

channel

through

which

all

communications

with

the

queue

manager

take

place.

agentBuffer

If

the

channelExitParms.exitReason

is

MQChannelExit.MQXR_XMIT,

agentBuffer

contains

the

data

received

from

the

queue

manager;

otherwise

agentBuffer

is

null.

//

in

MyReceiveExit.java

class

MyReceiveExit

implements

MQReceiveExit

{

//

you

must

provide

an

implementation

//

of

the

receiveExit

method

public

byte[]

receiveExit(

MQChannelExit

channelExitParms,

MQChannelDefinition

channelDefinition,

byte[]

agentBuffer)

{

//

your

exit

code

goes

here...

}

}

//

in

your

main

program...

MQEnvironment.receiveExit

=

new

MyReceiveExit();

...

//

other

initialization

MQQueueManager

qMgr

=

new

MQQueueManager("");

MQReceiveExit

182

Using

Java

Returns

If

the

exit

response

code

(in

channelExitParms)

is

set

so

that

the

WebSphere

MQ

classes

for

Java

can

now

process

the

data

(MQXCC_OK),

your

receive

exit

method

must

return

the

data

to

be

processed.

The

simplest

receive

exit,

therefore,

consists

of

the

single

line

return

agentBuffer;.

See

also:

v

“MQC”

on

page

179

v

“MQChannelDefinition”

on

page

102

MQReceiveExit

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

183

MQSecurityExit

public

interface

MQSecurityExit

extends

Object

The

security

exit

interface

allows

you

to

customize

the

security

flows

that

occur

when

an

attempt

is

made

to

connect

to

a

queue

manager.

Note:

This

interface

does

not

apply

when

connecting

directly

to

WebSphere

MQ

in

bindings

mode.

To

provide

your

own

security

exit,

define

a

class

that

implements

this

interface.

Create

a

new

instance

of

your

class

and

assign

the

MQEnvironment.securityExit

variable

to

it

before

constructing

your

MQQueueManager

object.

For

example:

Methods

securityExit

public

abstract

byte[]

securityExit(MQChannelExit

channelExitParms,

MQChannelDefinition

channelDefinition,

byte

agentBuffer[])

The

security

exit

method

that

your

class

must

provide.

Parameters

channelExitParms

Contains

information

regarding

the

context

in

which

the

exit

is

being

invoked.

The

exitResponse

member

variable

is

an

output

parameter

that

you

use

to

tell

the

WebSphere

MQ

Client

for

Java

what

action

to

take

next.

See

the

“MQChannelExit”

on

page

104

for

further

details.

channelDefinition

Contains

details

of

the

channel

through

which

all

communications

with

the

queue

manager

take

place.

agentBuffer

If

the

channelExitParms.exitReason

is

MQChannelExit.MQXR_SEC_MSG,

agentBuffer

contains

the

security

message

received

from

the

queue

manager;

otherwise

agentBuffer

is

null.

//

in

MySecurityExit.java

class

MySecurityExit

implements

MQSecurityExit

{

//

you

must

provide

an

implementation

//

of

the

securityExit

method

public

byte[]

securityExit(

MQChannelExit

channelExitParms,

MQChannelDefinition

channelDefinition,

byte[]

agentBuffer)

{

//

your

exit

code

goes

here...

}

}

//

in

your

main

program...

MQEnvironment.securityExit

=

new

MySecurityExit();

...

//

other

initialization

MQQueueManager

qMgr

=

new

MQQueueManager("");

MQSecurityExit

184

Using

Java

Returns

If

the

exit

response

code

(in

channelExitParms)

is

set

so

that

a

message

is

to

be

transmitted

to

the

queue

manager,

your

security

exit

method

must

return

the

data

to

be

transmitted.

See

also:

v

“MQC”

on

page

179

v

“MQChannelDefinition”

on

page

102

MQSecurityExit

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

185

MQSendExit

public

interface

MQSendExit

extends

Object

The

send

exit

interface

allows

you

to

examine

and

possibly

alter

the

data

sent

to

the

queue

manager

by

the

WebSphere

MQ

Client

for

Java.

Note:

This

interface

does

not

apply

when

connecting

directly

to

WebSphere

MQ

in

bindings

mode.

To

provide

your

own

send

exit,

define

a

class

that

implements

this

interface.

Create

a

new

instance

of

your

class

and

assign

the

MQEnvironment.sendExit

variable

to

it

before

constructing

your

MQQueueManager

object.

For

example:

Methods

sendExit

public

abstract

byte[]

sendExit(MQChannelExit

channelExitParms,

MQChannelDefinition

channelDefinition,

byte

agentBuffer[])

The

send

exit

method

that

your

class

must

provide.

This

method

is

invoked

whenever

the

WebSphere

MQ

classes

for

Java

wishes

to

transmit

some

data

to

the

queue

manager.

Parameters

channelExitParms

Contains

information

regarding

the

context

in

which

the

exit

is

being

invoked.

The

exitResponse

member

variable

is

an

output

parameter

that

you

use

to

tell

the

WebSphere

MQ

classes

for

Java

what

action

to

take

next.

See

“MQChannelExit”

on

page

104

for

further

details.

channelDefinition

Contains

details

of

the

channel

through

which

all

communications

with

the

queue

manager

take

place.

agentBuffer

If

the

channelExitParms.exitReason

is

MQChannelExit.MQXR_XMIT,

agentBuffer

contains

the

data

to

be

transmitted

to

the

queue

manager;

otherwise

agentBuffer

is

null.

//

in

MySendExit.java

class

MySendExit

implements

MQSendExit

{

//

you

must

provide

an

implementation

of

the

sendExit

method

public

byte[]

sendExit(

MQChannelExit

channelExitParms,

MQChannelDefinition

channelDefinition,

byte[]

agentBuffer)

{

//

your

exit

code

goes

here...

}

}

//

in

your

main

program...

MQEnvironment.sendExit

=

new

MySendExit();

...

//

other

initialization

MQQueueManager

qMgr

=

new

MQQueueManager("");

MQSendExit

186

Using

Java

Returns

If

the

exit

response

code

(in

channelExitParms)

is

set

so

that

a

message

is

to

be

transmitted

to

the

queue

manager

(MQXCC_OK),

your

send

exit

method

must

return

the

data

to

be

transmitted.

The

simplest

send

exit,

therefore,

consists

of

the

single

line

return

agentBuffer;.

See

also:

v

“MQC”

on

page

179

v

“MQChannelDefinition”

on

page

102

MQSendExit

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

187

ManagedConnection

public

interface

javax.resource.spi.ManagedConnection

Note:

Normally,

applications

do

not

use

this

class;

it

is

intended

for

use

by

implementations

of

ConnectionManager.

WebSphere

MQ

classes

for

Java

provides

an

implementation

of

ManagedConnection

that

is

returned

from

ManagedConnectionFactory.createManagedConnection.

This

object

represents

a

connection

to

a

WebSphere

MQ

Queue

Manager.

For

more

details

about

this

interface,

see

the

J2EE

Connector

Architecture

specification

(refer

to

Sun’s

Web

site

at

http://java.sun.com).

Methods

addConnectionEventListener

public

void

addConnectionEventListener(ConnectionEventListener

listener)

Adds

a

ConnectionEventListener

to

the

ManagedConnection

instance.

The

listener

is

notified

if

a

severe

error

occurs

on

the

ManagedConnection,

or

when

MQQueueManager.disconnect()

is

called

on

a

connection

handle

that

is

associated

with

this

ManagedConnection.

The

listener

is

not

notified

about

local

transaction

events

(see

“getLocalTransaction”

on

page

189).

associateConnection

public

void

associateConnection(Object

connection)

Throws

ResourceException.

WebSphere

MQ

classes

for

Java

does

not

currently

support

this

method.

A

javax.resource.NotSupportedException

is

thrown.

cleanup

public

void

cleanup()

Throws

ResourceException.

Closes

all

open

connection

handles,

and

resets

the

physical

connection

to

an

initial

state

ready

to

be

pooled.

Any

pending

local

transaction

is

rolled

back.

For

more

details,

see

“getLocalTransaction”

on

page

189.

destroy

public

void

destroy()

Throws

ResourceException.

Destroys

the

physical

connection

to

the

WebSphere

MQ

Queue

Manager.

Any

pending

local

transaction

is

committed.

For

more

details,

see

“getLocalTransaction”

on

page

189.

getConnection

public

Object

getConnection(javax.security.auth.Subject

subject,

ConnectionRequestInfo

cxRequestInfo)

Throws

ResourceException.

ManagedConnection

188

Using

Java

Creates

a

new

connection

handle

for

the

physical

connection

represented

by

the

ManagedConnection

object.

For

WebSphere

MQ

classes

for

Java,

this

returns

an

MQQueueManager

object.

The

ConnectionManager

normally

returns

this

object

from

allocateConnection.

The

subject

parameter

is

ignored.

If

the

cxRequestInfo

parameter

is

not

suitable,

a

ResourceException

is

thrown.

Multiple

connection

handles

can

be

used

simultaneously

for

each

single

ManagedConnection.

getLocalTransaction

public

LocalTransaction

getLocalTransaction()

Throws

ResourceException.

WebSphere

MQ

classes

for

Java

does

not

currently

support

this

method.

A

javax.resource.NotSupportedException

is

thrown.

Currently,

a

ConnectionManager

cannot

manage

the

WebSphere

MQ

local

transaction,

and

registered

ConnectionEventListeners

are

not

informed

about

events

relating

to

the

local

transaction.

When

cleanup()

occurs,

any

ongoing

unit

of

work

is

rolled

back.

When

destroy()

occurs,

any

ongoing

unit

of

work

is

committed.

Existing

API

behavior

is

that

an

ongoing

unit

of

work

is

committed

at

MQQueueManager.disconnect().

This

existing

behavior

is

preserved

only

when

an

MQConnectionManager

(rather

than

a

ConnectionManager)

manages

the

connection.

getLogWriter

public

java.io.PrintWriter

getLogWriter()

Throws

ResourceException.

Returns

the

log

writer

for

this

ManagedConnection.

WebSphere

MQ

classes

for

Java

does

not

currently

use

the

log

writer.

See

“MQException.log”

on

page

117

for

more

information

about

logging.

getMetaData

public

ManagedConnectionMetaData

getMetaData()

Throws

ResourceException.

Gets

the

meta

data

information

for

the

underlying

Queue

Manager.

See

“ManagedConnectionMetaData”

on

page

193.

getXAResource

public

javax.transaction.xa.XAResource

getXAResource()

Throws

ResourceException.

WebSphere

MQ

classes

for

Java

does

not

currently

support

this

method.

A

javax.resource.NotSupportedException

is

thrown.

removeConnectionEventListener

public

void

removeConnectionEventListener(ConnectionEventListener

listener)

Removes

a

registered

ConnectionEventListener.

ManagedConnection

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

189

setLogWriter

public

void

setLogWriter(java.io.PrintWriter

out)

Throws

ResourceException.

Sets

the

log

writer

for

this

ManagedConnection.

When

a

ManagedConnection

is

created,

it

inherits

the

log

writer

from

its

ManagedConnectionFactory.

WebSphere

MQ

classes

for

Java

does

not

currently

use

the

log

writer.

See

“MQException.log”

on

page

117

for

more

information

about

logging.

ManagedConnection

190

Using

Java

ManagedConnectionFactory

public

interface

javax.resource.spi.ManagedConnectionFactory

Note:

Normally,

applications

do

not

use

this

class;

it

is

intended

for

use

by

implementations

of

ConnectionManager.

WebSphere

MQ

classes

for

Java

provides

an

implementation

of

this

interface

to

ConnectionManagers.

A

ManagedConnectionFactory

is

used

to

construct

ManagedConnections

and

to

select

suitable

ManagedConnections

from

a

set

of

candidates.

For

more

details

about

this

interface,

see

the

J2EE

Connector

Architecture

specification

(refer

to

Sun’s

Web

site

at

http://java.sun.com).

Methods

createConnectionFactory

public

Object

createConnectionFactory()

Throws

ResourceException.

WebSphere

MQ

classes

for

Java

does

not

currently

support

the

createConnectionFactory

methods.

This

method

throws

a

javax.resource.NotSupportedException.

createConnectionFactory

public

Object

createConnectionFactory(ConnectionManager

cxManager)

Throws

ResourceException.

WebSphere

MQ

classes

for

Java

does

not

currently

support

the

createConnectionFactory

methods.

This

method

throws

a

javax.resource.NotSupportedException.

createManagedConnection

public

ManagedConnection

createManagedConnection

(javax.security.auth.Subject

subject,

ConnectionRequestInfo

cxRequestInfo)

Throws

ResourceException.

Creates

a

new

physical

connection

to

a

WebSphere

MQ

Queue

Manager,

and

returns

a

ManagedConnection

object

that

represents

this

connection.

WebSphere

MQ

ignores

the

subject

parameter.

equals

public

boolean

equals(Object

other)

Checks

whether

this

ManagedConnectionFactory

is

equal

to

another

ManagedConnectionFactory.

Returns

true

if

both

ManagedConnectionFactories

describe

the

same

target

Queue

Manager.

getLogWriter

public

java.io.PrintWriter

getLogWriter()

Throws

ResourceException.

Returns

the

log

writer

for

this

ManagedConnectionFactory.

ManagedConnectionFactory

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

191

WebSphere

MQ

classes

for

Java

does

not

currently

use

the

log

writer.

See

“MQException.log”

on

page

117

for

more

information

about

logging.

hashCode

public

int

hashCode()

Returns

the

hash

code

for

this

ManagedConnectionFactory.

matchManagedConnection

public

ManagedConnection

matchManagedConnection

(java.util.Set

connectionSet,

javax.security.auth.Subject

subject,

ConnectionRequestInfo

cxRequestInfo)

Throws

ResourceException.

Searches

the

supplied

set

of

candidate

ManagedConnections

for

an

appropriate

ManagedConnection.

Returns

either

null,

or

a

suitable

ManagedConnection

from

the

set

that

meets

the

criteria

for

connection.

setLogWriter

public

void

setLogWriter(java.io.PrintWriter

out)

Throws

ResourceException.

Sets

the

log

writer

for

this

ManagedConnectionFactory.

When

a

ManagedConnection

is

created,

it

inherits

the

log

writer

from

its

ManagedConnectionFactory.

WebSphere

MQ

classes

for

Java

does

not

currently

use

the

log

writer.

See

“MQException.log”

on

page

117

for

more

information

about

logging.

ManagedConnectionFactory

192

Using

Java

ManagedConnectionMetaData

public

interface

javax.resource.spi.ManagedConnectionMetaData

Note:

Normally,

applications

do

not

use

this

interface;

it

is

intended

for

use

by

implementations

of

ConnectionManager.

A

ConnectionManager

can

use

this

interface

to

retrieve

meta

data

that

is

related

to

an

underlying

physical

connection

to

a

Queue

Manager.

An

implementation

of

this

interface

is

returned

from

ManagedConnection.getMetaData().

For

more

details

about

this

interface,

see

the

J2EE

Connector

Architecture

specification

(refer

to

Sun’s

Web

site

at

http://java.sun.com).

Methods

getEISProductName

public

String

getEISProductName()

Throws

ResourceException.

Returns

IBM

WebSphere

MQ.

getMaxConnections

public

int

getMaxConnections()

Throws

ResourceException.

Returns

0.

getProductVersion

public

String

getProductVersion()

Throws

ResourceException.

Returns

a

string

that

describes

the

command

level

of

the

WebSphere

MQ

queue

manager

to

which

the

ManagedConnection

is

connected.

getUserName

public

String

getUserName()

Throws

ResourceException.

If

the

ManagedConnection

represents

a

client

connection

to

a

queue

manager,

this

returns

the

user

ID

used

for

the

connection.

Otherwise,

it

returns

an

empty

string.

ManagedConnectionMetaData

Chapter

9.

The

WebSphere

MQ

base

Java

classes

and

interfaces

193

ManagedConnectionMetaData

194

Using

Java

Part

3.

Programming

with

WebSphere

MQ

JMS

Chapter

10.

Writing

WebSphere

MQ

JMS

applications

.

.

.

.

.

.

.

.

.

.

.

.

. 199

The

JMS

model

.

.

.

.

.

.

.

.

.

.

.

.

. 199

Building

a

connection

.

.

.

.

.

.

.

.

.

. 200

Retrieving

the

factory

from

JNDI

.

.

.

.

.

. 200

Using

the

factory

to

create

a

connection

.

.

. 201

Creating

factories

at

runtime

.

.

.

.

.

.

. 201

Starting

the

connection

.

.

.

.

.

.

.

. 201

Choosing

client

or

bindings

transport

.

.

.

. 202

Specifying

a

range

of

ports

for

client

connections

.

.

.

.

.

.

.

.

.

.

.

.

. 203

Obtaining

a

session

.

.

.

.

.

.

.

.

.

.

. 203

Sending

a

message

.

.

.

.

.

.

.

.

.

.

. 204

Setting

properties

with

the

set

method

.

.

.

. 206

Message

types

.

.

.

.

.

.

.

.

.

.

.

. 206

Receiving

a

message

.

.

.

.

.

.

.

.

.

.

. 207

Message

selectors

.

.

.

.

.

.

.

.

.

.

. 207

Asynchronous

delivery

.

.

.

.

.

.

.

.

. 208

Closing

down

.

.

.

.

.

.

.

.

.

.

.

.

. 208

Java

Virtual

Machine

hangs

at

shutdown

.

.

. 209

Handling

errors

.

.

.

.

.

.

.

.

.

.

.

. 209

Exception

listener

.

.

.

.

.

.

.

.

.

.

. 209

User

exits

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

Using

Secure

Sockets

Layer

(SSL)

.

.

.

.

.

.

. 210

SSL

administrative

properties

.

.

.

.

.

.

. 210

SSLCIPHERSUITE

object

property

.

.

.

. 210

SSLPEERNAME

object

property

.

.

.

.

. 210

SSLCERTSTORES

object

property

.

.

.

.

. 211

SSLSocketFactory

object

property

.

.

.

.

. 212

Chapter

11.

Writing

WebSphere

MQ

JMS

publish/subscribe

applications

.

.

.

.

.

.

. 213

Introduction

.

.

.

.

.

.

.

.

.

.

.

.

.

. 213

Getting

started

with

WebSphere

MQ

JMS

and

publish/subscribe

.

.

.

.

.

.

.

.

.

.

.

. 213

Choosing

a

broker

.

.

.

.

.

.

.

.

.

.

. 213

Setting

up

the

broker

to

run

the

WebSphere

MQ

JMS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 214

Connecting

to

your

broker

using

WebSphere

MQ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 214

Connecting

to

your

broker

directly

.

.

.

. 215

Writing

a

simple

publish/subscribe

application

connecting

through

WebSphere

MQ

.

.

.

.

.

. 215

Import

required

packages

.

.

.

.

.

.

.

. 217

Obtain

or

create

JMS

objects

.

.

.

.

.

.

. 217

Publish

messages

.

.

.

.

.

.

.

.

.

.

. 219

Receive

subscriptions

.

.

.

.

.

.

.

.

.

. 219

Close

down

unwanted

resources

.

.

.

.

.

. 219

TopicConnectionFactory

administered

objects

220

Topic

administered

objects

.

.

.

.

.

.

.

. 220

Using

topics

.

.

.

.

.

.

.

.

.

.

.

.

.

. 221

Topic

names

.

.

.

.

.

.

.

.

.

.

.

.

. 221

Creating

topics

at

runtime

.

.

.

.

.

.

.

. 223

Subscriber

options

.

.

.

.

.

.

.

.

.

.

.

. 224

Creating

non-durable

subscribers

.

.

.

.

.

. 224

Creating

durable

subscribers

.

.

.

.

.

.

. 224

Using

message

selectors

.

.

.

.

.

.

.

.

. 224

Suppressing

local

publications

.

.

.

.

.

.

. 225

Combining

the

subscriber

options

.

.

.

.

. 225

Configuring

the

base

subscriber

queue

.

.

.

. 225

Default

configuration

.

.

.

.

.

.

.

.

. 226

Configuring

non-durable

subscribers

.

.

. 226

Configuring

durable

subscribers

.

.

.

.

. 226

Subscription

stores

.

.

.

.

.

.

.

.

.

. 227

Migration

and

coexistence

considerations

.

. 229

Solving

publish/subscribe

problems

.

.

.

.

.

. 229

Incomplete

publish/subscribe

close

down

.

.

. 230

Subscriber

cleanup

utility

.

.

.

.

.

.

.

. 230

Manual

cleanup

.

.

.

.

.

.

.

.

.

.

. 232

Cleanup

from

within

a

program

.

.

.

.

.

. 233

Handling

broker

reports

.

.

.

.

.

.

.

.

. 233

Other

considerations

.

.

.

.

.

.

.

.

.

. 234

Chapter

12.

Writing

WebSphere

MQ

JMS

1.1

applications

.

.

.

.

.

.

.

.

.

.

.

.

. 235

The

JMS

1.1

model

.

.

.

.

.

.

.

.

.

.

. 235

Building

a

connection

.

.

.

.

.

.

.

.

.

. 236

Retrieving

a

connection

factory

from

JNDI

.

. 236

Using

a

connection

factory

to

create

a

connection

.

.

.

.

.

.

.

.

.

.

.

.

. 236

Creating

a

connection

factory

at

runtime

.

.

. 237

Starting

the

connection

.

.

.

.

.

.

.

. 237

Specifying

a

range

of

ports

for

client

connections

.

.

.

.

.

.

.

.

.

.

.

. 237

Obtaining

a

session

.

.

.

.

.

.

.

.

.

.

. 238

Destinations

.

.

.

.

.

.

.

.

.

.

.

.

.

. 239

Sending

a

message

.

.

.

.

.

.

.

.

.

.

. 240

Message

types

.

.

.

.

.

.

.

.

.

.

.

. 241

Receiving

a

message

.

.

.

.

.

.

.

.

.

.

. 241

Creating

durable

topic

subscribers

.

.

.

.

. 242

Message

selectors

.

.

.

.

.

.

.

.

.

.

. 243

Suppressing

local

publications

.

.

.

.

.

.

. 243

Configuring

the

consumer

queue

.

.

.

.

.

. 244

Default

configuration

.

.

.

.

.

.

.

.

. 244

Configuring

nondurable

message

consumers

244

Configuring

durable

topic

subscribers

.

.

. 245

Subscription

stores

.

.

.

.

.

.

.

.

.

. 246

Migration

and

coexistence

considerations

.

. 247

Asynchronous

delivery

.

.

.

.

.

.

.

.

.

. 248

Consumer

cleanup

utility

for

the

publish/subscribe

domain

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 248

Manual

cleanup

.

.

.

.

.

.

.

.

.

.

. 250

Cleanup

from

within

a

program

.

.

.

.

.

. 251

Closing

down

.

.

.

.

.

.

.

.

.

.

.

.

. 252

Java

Virtual

Machine

hangs

at

shutdown

.

.

. 252

Handling

errors

.

.

.

.

.

.

.

.

.

.

.

. 252

Exception

listener

.

.

.

.

.

.

.

.

.

.

. 252

Handling

broker

reports

.

.

.

.

.

.

.

.

. 252

Other

considerations

.

.

.

.

.

.

.

.

.

. 253

User

exits

.

.

.

.

.

.

.

.

.

.

.

.

.

. 253

Using

Secure

Sockets

Layer

(SSL)

.

.

.

.

.

.

. 253

SSL

administrative

properties

.

.

.

.

.

.

. 254

©

Copyright

IBM

Corp.

1997,

2004

195

|
||

|
||

|
||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

SSLCIPHERSUITE

object

property

.

.

.

. 254

SSLPEERNAME

object

property

.

.

.

.

. 254

SSLCERTSTORES

object

property

.

.

.

.

. 255

SSLSocketFactory

object

property

.

.

.

.

. 256

Chapter

13.

JMS

messages

.

.

.

.

.

.

.

. 257

Message

selectors

.

.

.

.

.

.

.

.

.

.

.

. 257

Mapping

JMS

messages

onto

WebSphere

MQ

messages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 261

The

MQRFH2

header

.

.

.

.

.

.

.

.

.

. 262

JMS

fields

and

properties

with

corresponding

MQMD

fields

.

.

.

.

.

.

.

.

.

.

.

. 265

Mapping

JMS

fields

onto

WebSphere

MQ

fields

(outgoing

messages)

.

.

.

.

.

.

.

.

.

. 266

Mapping

JMS

header

fields

at

send()

or

publish()

.

.

.

.

.

.

.

.

.

.

.

.

. 268

Mapping

JMS

property

fields

.

.

.

.

.

. 269

Mapping

JMS

provider-specific

fields

.

.

. 270

Mapping

WebSphere

MQ

fields

onto

JMS

fields

(incoming

messages)

.

.

.

.

.

.

.

.

.

. 271

Mapping

JMS

to

a

native

WebSphere

MQ

application

.

.

.

.

.

.

.

.

.

.

.

.

. 273

Message

body

.

.

.

.

.

.

.

.

.

.

.

. 273

Chapter

14.

WebSphere

MQ

JMS

Application

Server

Facilities

.

.

.

.

.

.

.

.

.

.

.

. 277

ASF

classes

and

functions

.

.

.

.

.

.

.

.

. 277

ConnectionConsumer

.

.

.

.

.

.

.

.

.

. 277

Planning

an

application

.

.

.

.

.

.

.

.

. 278

General

principles

for

point-to-point

messaging

.

.

.

.

.

.

.

.

.

.

.

. 278

General

principles

for

publish/subscribe

messaging

.

.

.

.

.

.

.

.

.

.

.

. 279

Handling

poison

messages

.

.

.

.

.

.

. 280

Removing

messages

from

the

queue

.

.

.

. 281

Error

handling

.

.

.

.

.

.

.

.

.

.

.

. 282

Recovering

from

error

conditions

.

.

.

.

. 282

Reason

and

feedback

codes

.

.

.

.

.

.

. 283

Application

server

sample

code

.

.

.

.

.

.

. 283

MyServerSession.java

.

.

.

.

.

.

.

.

.

. 285

MyServerSessionPool.java

.

.

.

.

.

.

.

. 285

MessageListenerFactory.java

.

.

.

.

.

.

. 286

Examples

of

ASF

use

.

.

.

.

.

.

.

.

.

.

. 287

Load1.java

.

.

.

.

.

.

.

.

.

.

.

.

. 287

CountingMessageListenerFactory.java

.

.

.

. 288

ASFClient1.java

.

.

.

.

.

.

.

.

.

.

.

. 289

Load2.java

.

.

.

.

.

.

.

.

.

.

.

.

. 290

LoggingMessageListenerFactory.java

.

.

.

.

. 290

ASFClient2.java

.

.

.

.

.

.

.

.

.

.

.

. 290

TopicLoad.java

.

.

.

.

.

.

.

.

.

.

.

. 291

ASFClient3.java

.

.

.

.

.

.

.

.

.

.

.

. 292

ASFClient4.java

.

.

.

.

.

.

.

.

.

.

.

. 293

ASFClient5.java

.

.

.

.

.

.

.

.

.

.

.

. 294

Chapter

15.

JMS

interfaces

and

classes

.

.

. 295

Sun

Java

Message

Service

classes

and

interfaces

295

WebSphere

MQ

JMS

classes

.

.

.

.

.

.

.

. 298

BytesMessage

.

.

.

.

.

.

.

.

.

.

.

.

. 300

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 300

Cleanup

*

.

.

.

.

.

.

.

.

.

.

.

.

.

. 308

WebSphere

MQ

constructor

.

.

.

.

.

.

.

. 308

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 308

Connection

.

.

.

.

.

.

.

.

.

.

.

.

.

. 313

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 313

ConnectionConsumer

.

.

.

.

.

.

.

.

.

.

. 318

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 318

ConnectionFactory

.

.

.

.

.

.

.

.

.

.

.

. 319

WebSphere

MQ

constructor

.

.

.

.

.

.

.

. 319

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 319

ConnectionMetaData

.

.

.

.

.

.

.

.

.

.

. 335

WebSphere

MQ

constructor

.

.

.

.

.

.

.

. 335

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 335

DeliveryMode

.

.

.

.

.

.

.

.

.

.

.

.

. 337

Fields

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 337

Destination

.

.

.

.

.

.

.

.

.

.

.

.

.

. 338

WebSphere

MQ

constructors

.

.

.

.

.

.

. 338

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 338

ExceptionListener

.

.

.

.

.

.

.

.

.

.

.

. 340

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 340

MapMessage

.

.

.

.

.

.

.

.

.

.

.

.

. 341

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 341

Message

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 349

Fields

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 349

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 349

MessageConsumer

.

.

.

.

.

.

.

.

.

.

. 363

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 363

MessageListener

.

.

.

.

.

.

.

.

.

.

.

. 366

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 366

MessageProducer

.

.

.

.

.

.

.

.

.

.

.

. 367

WebSphere

MQ

constructors

.

.

.

.

.

.

. 367

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 367

MQQueueEnumeration

*

.

.

.

.

.

.

.

.

. 373

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 373

ObjectMessage

.

.

.

.

.

.

.

.

.

.

.

.

. 374

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 374

Queue

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 375

WebSphere

MQ

constructors

.

.

.

.

.

.

. 375

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 375

QueueBrowser

.

.

.

.

.

.

.

.

.

.

.

.

. 377

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 377

QueueConnection

.

.

.

.

.

.

.

.

.

.

.

. 379

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 379

QueueConnectionFactory

.

.

.

.

.

.

.

.

. 381

WebSphere

MQ

constructor

.

.

.

.

.

.

.

. 381

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 381

QueueReceiver

.

.

.

.

.

.

.

.

.

.

.

.

. 384

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 384

QueueRequestor

.

.

.

.

.

.

.

.

.

.

.

. 385

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 385

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 385

QueueSender

.

.

.

.

.

.

.

.

.

.

.

.

. 387

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 387

QueueSession

.

.

.

.

.

.

.

.

.

.

.

.

. 390

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 390

Session

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 393

Fields

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 393

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 393

StreamMessage

.

.

.

.

.

.

.

.

.

.

.

.

. 405

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 405

TemporaryQueue

.

.

.

.

.

.

.

.

.

.

.

. 413

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 413

TemporaryTopic

.

.

.

.

.

.

.

.

.

.

.

. 414

196

Using

Java

||
||
||
||

WebSphere

MQ

constructor

.

.

.

.

.

.

.

. 414

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 414

TextMessage

.

.

.

.

.

.

.

.

.

.

.

.

.

. 415

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 415

Topic

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 416

WebSphere

MQ

constructor

.

.

.

.

.

.

.

. 416

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 416

TopicConnection

.

.

.

.

.

.

.

.

.

.

.

. 420

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 420

TopicConnectionFactory

.

.

.

.

.

.

.

.

.

. 423

WebSphere

MQ

constructor

.

.

.

.

.

.

.

. 423

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 423

TopicPublisher

.

.

.

.

.

.

.

.

.

.

.

.

. 431

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 431

TopicRequestor

.

.

.

.

.

.

.

.

.

.

.

.

. 434

Constructors

.

.

.

.

.

.

.

.

.

.

.

.

. 434

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 434

TopicSession

.

.

.

.

.

.

.

.

.

.

.

.

.

. 436

WebSphere

MQ

constructor

.

.

.

.

.

.

.

. 436

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 436

TopicSubscriber

.

.

.

.

.

.

.

.

.

.

.

.

. 440

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 440

XAConnection

.

.

.

.

.

.

.

.

.

.

.

.

. 441

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 441

XAConnectionFactory

.

.

.

.

.

.

.

.

.

. 443

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 443

XAQueueConnection

.

.

.

.

.

.

.

.

.

.

. 445

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 445

XAQueueConnectionFactory

.

.

.

.

.

.

.

. 446

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 446

XAQueueSession

.

.

.

.

.

.

.

.

.

.

.

. 448

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 448

XASession

.

.

.

.

.

.

.

.

.

.

.

.

.

. 449

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 449

XATopicConnection

.

.

.

.

.

.

.

.

.

.

. 451

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 451

XATopicConnectionFactory

.

.

.

.

.

.

.

.

. 452

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 452

XATopicSession

.

.

.

.

.

.

.

.

.

.

.

.

. 454

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 454

Part

3.

Programming

with

WebSphere

MQ

JMS

197

|

|

|

|

198

Using

Java

Chapter

10.

Writing

WebSphere

MQ

JMS

applications

This

chapter

provides

information

to

help

with

writing

WebSphere

MQ

JMS

applications.

It

gives

a

brief

introduction

to

the

JMS

model,

and

detailed

information

on

programming

some

common

tasks

that

application

programs

are

likely

to

need

to

perform.

The

JMS

model

JMS

defines

a

generic

view

of

a

message

passing

service.

The

generic

JMS

model

is

based

around

the

following

interfaces

that

are

defined

in

Sun’s

javax.jms

package:

Connection

Provides

access

to

the

underlying

transport,

and

is

used

to

create

Sessions.

Session

Provides

a

context

for

producing

and

consuming

messages,

including

the

methods

used

to

create

MessageProducers

and

MessageConsumers.

MessageProducer

Used

to

send

messages.

MessageConsumer

Used

to

receive

messages.

A

Connection

is

thread

safe,

but

Sessions,

MessageProducers,

and

MessageConsumers

are

not.

The

recommended

strategy

is

to

use

one

Session

per

application

thread.

In

WebSphere

MQ

terms:

Connection

Provides

a

scope

for

temporary

queues.

Also,

it

provides

a

place

to

hold

the

parameters

that

control

how

to

connect

to

WebSphere

MQ.

Examples

of

these

parameters

are

the

name

of

the

queue

manager,

and

the

name

of

the

remote

host

if

you

use

the

WebSphere

MQ

Java

client

connectivity.

Session

Contains

an

HCONN

and

therefore

defines

a

transactional

scope.

MessageProducer

and

MessageConsumer

Contain

an

HOBJ

that

defines

a

particular

queue

for

writing

to

or

reading

from.

Note

that

normal

WebSphere

MQ

rules

apply:

v

Only

a

single

operation

can

be

in

progress

per

HCONN

at

any

given

time.

Therefore,

the

MessageProducers

or

MessageConsumers

associated

with

a

Session

cannot

be

called

concurrently.

This

is

consistent

with

the

JMS

restriction

of

a

single

thread

per

Session.

v

PUTs

can

use

remote

queues,

but

GETs

can

only

be

applied

to

queues

on

the

local

queue

manager.

The

generic

JMS

interfaces

are

subclassed

into

more

specific

versions

for

point-to-point

and

publish/subscribe

behavior.

The

point-to-point

versions

are:

©

Copyright

IBM

Corp.

1997,

2004

199

|

|

|

v

QueueConnection

v

QueueSession

v

QueueSender

v

QueueReceiver

When

using

JMS,

always

write

application

programs

that

use

only

references

to

the

interfaces

in

javax.jms.

All

vendor-specific

information

is

encapsulated

in

implementations

of:

v

QueueConnectionFactory

v

TopicConnectionFactory

v

Queue

v

Topic

These

are

known

as

administered

objects,

that

is,

objects

that

can

be

built

using

a

vendor-supplied

administration

tool

and

stored

in

a

JNDI

namespace.

A

JMS

application

can

retrieve

these

objects

from

the

namespace

and

use

them

without

needing

to

know

which

vendor

provided

the

implementation.

Building

a

connection

Connections

are

not

created

directly,

but

are

built

using

a

connection

factory.

Factory

objects

can

be

stored

in

a

JNDI

namespace,

insulating

the

JMS

application

from

provider-specific

information.

Details

of

how

to

create

and

store

factory

objects

are

in

Chapter

5,

“Using

the

WebSphere

MQ

JMS

administration

tool,”

on

page

41.

If

you

do

not

have

a

JNDI

namespace

available,

see

“Creating

factories

at

runtime”

on

page

201.

Retrieving

the

factory

from

JNDI

To

retrieve

an

object

from

a

JNDI

namespace,

set

up

an

initial

context,

as

shown

in

this

fragment

taken

from

the

IVTRun

sample

file:

import

javax.jms.*;

import

javax.naming.*;

import

javax.naming.directory.*;

.

.

.

java.util.Hashtable

environment

=

new

java.util.Hashtable();

environment.put(Context.INITIAL_CONTEXT_FACTORY,

icf);

environment.put(Context.PROVIDER_URL,

url);

Context

ctx

=

new

InitialDirContext(

environment

);

where:

icf

defines

a

factory

class

for

the

initial

context

url

defines

a

context

specific

URL

For

more

details

about

JNDI

usage,

see

Sun’s

JNDI

documentation.

Note:

Some

combinations

of

the

JNDI

packages

and

LDAP

service

providers

can

result

in

an

LDAP

error

84.

To

resolve

the

problem,

insert

the

following

line

before

the

call

to

InitialDirContext.

environment.put(Context.REFERRAL,

"throw");

JMS

model

200

Using

Java

Once

an

initial

context

is

obtained,

objects

are

retrieved

from

the

namespace

by

using

the

lookup()

method.

The

following

code

retrieves

a

QueueConnectionFactory

named

ivtQCF

from

an

LDAP-based

namespace:

QueueConnectionFactory

factory;

factory

=

(QueueConnectionFactory)ctx.lookup("cn=ivtQCF");

Using

the

factory

to

create

a

connection

The

createQueueConnection()

method

on

the

factory

object

is

used

to

create

a

Connection,

as

shown

in

the

following

code:

QueueConnection

connection;

connection

=

factory.createQueueConnection();

Creating

factories

at

runtime

If

a

JNDI

namespace

is

not

available,

it

is

possible

to

create

factory

objects

at

runtime.

However,

using

this

method

reduces

the

portability

of

the

JMS

application

because

it

requires

references

to

WebSphere

MQ

specific

classes.

The

following

code

creates

a

QueueConnectionFactory

with

all

default

settings:

factory

=

new

com.ibm.mq.jms.MQQueueConnectionFactory();

(You

can

omit

the

com.ibm.mq.jms.

prefix

if

you

import

the

com.ibm.mq.jms

package

instead.)

A

connection

created

from

the

above

factory

uses

the

Java

bindings

to

connect

to

the

default

queue

manager

on

the

local

machine.

The

set

methods

shown

in

Table

14

on

page

202

can

be

used

to

customize

the

factory

with

WebSphere

MQ

specific

information.

The

only

way

to

create

a

TopicConnectionFactory

object

at

runtime

is

to

construct

it

using

the

MQTopicConnectionFactory

constructor.

For

example:

MQTopicConnectionFactory

fact

=

new

MQTopicConnectionFactory();

This

creates

a

default

TopicConnectionFactory

object

with

the

bindings

transportType

and

all

other

default

settings.

It

is

possible

to

change

the

transportType

for

the

TopicConnectionFactory

using

its

setTransportType()

method.

For

example:

fact.setTransportType(JMSC.MQJMS_TP_BINDINGS_MQ);

//

Bindings

mode

fact.setTransportType(JMSC.MQJMS_TP_CLIENT_MQ_TCPIP);

//

Client

mode

fact.setTransportType(JMSC.MQJMS_TP_DIRECT_TCPIP);

//

Direct

TCP/IP

mode

The

full

JMS

TopicConnectionFactory

interface

has

been

implemented.

Refer

to

“TopicConnectionFactory”

on

page

423

for

more

details.

Note

that

certain

combinations

of

property

settings

are

not

valid

for

TopicConnectionFactory

objects.

See

“Properties”

on

page

49

for

more

details.

Starting

the

connection

The

JMS

specification

defines

that

connections

should

be

created

in

the

stopped

state.

Until

the

connection

starts,

MessageConsumers

that

are

associated

with

the

connection

cannot

receive

any

messages.

To

start

the

connection,

issue

the

following

command:

connection.start();

Building

a

connection

Chapter

10.

Writing

WebSphere

MQ

JMS

applications

201

Table

14.

Set

methods

on

MQQueueConnectionFactory

Method

Description

setCCSID(int)

Used

to

set

the

MQEnvironment.CCSID

property

setChannel(String)

The

name

of

the

channel

for

a

client

connection

setFailIfQuiesce(int)

Defines

the

behavior

an

application

exhibits

when

making

calls

(for

example,

send

and

receive)

against

a

quiescing

queue

manager.

The

options

are:

v

JMSC.MQJMS_FIQ_NO

v

JMSC.MQJMS_FIQ_YES

(the

default)

setHostName(String)

The

name

of

the

host

for

a

client

connection

setPort(int)

The

port

for

a

client

connection

setQueueManager(String)

The

name

of

the

queue

manager

setTemporaryModel(String)

The

name

of

a

model

queue

used

to

generate

a

temporary

destination

as

a

result

of

a

call

to

QueueSession.createTemporaryQueue().

Make

this

the

name

of

a

temporary

dynamic

queue,

rather

than

a

permanent

dynamic

queue.

setTempQPrefix(String)

The

prefix

that

is

used

to

form

the

name

of

a

WebSphere

MQ

dynamic

queue.

setTransportType(int)

How

to

connect

to

WebSphere

MQ.

The

options

are:

v

JMSC.MQJMS_TP_BINDINGS_MQ

(the

default)

v

JMSC.MQJMS_TP_CLIENT_MQ_TCPIP

JMSC

is

in

the

package

com.ibm.mq.jms

setReceiveExit(String)

setSecurityExit(String)

setSendExit(String)

setReceiveExitInit(String)

setSecurityExitInit(String)

setSendExitInit(String)

Allow

the

use

of

the

send,

receive,

and

security

exits

provided

by

the

underlying

WebSphere

MQ

Classes

for

Java.

The

set*Exit

methods

take

the

name

of

a

class

that

implements

the

relevant

exit

methods.

(See

the

WebSphere

MQ

product

documentation

for

details.)

The

class

must

implement

a

constructor

with

a

single

String

parameter.

This

string

provides

any

initialization

data

required

by

the

exit,

and

is

set

to

the

value

provided

in

the

corresponding

set*ExitInit

method.

Choosing

client

or

bindings

transport

WebSphere

MQ

JMS

can

communicate

with

WebSphere

MQ

using

either

the

client

or

bindings

transports.

(However,

client

transport

is

not

supported

on

the

z/OS

and

OS/390

platforms.)

If

you

use

the

Java

bindings,

the

JMS

application

and

the

WebSphere

MQ

queue

manager

must

be

located

on

the

same

machine.

If

you

use

the

client,

the

queue

manager

can

be

on

a

different

machine

from

the

application.

The

contents

of

the

connection

factory

object

determine

which

transport

to

use.

Chapter

5,

“Using

the

WebSphere

MQ

JMS

administration

tool,”

on

page

41

describes

how

to

define

a

factory

object

for

use

with

client

or

bindings

transport.

The

following

code

fragment

illustrates

how

you

can

define

the

transport

within

an

application:

String

HOSTNAME

=

"machine1";

String

QMGRNAME

=

"machine1.QM1";

String

CHANNEL

=

"SYSTEM.DEF.SVRCONN";

factory

=

new

MQQueueConnectionFactory();

Building

a

connection

202

Using

Java

||
|

factory.setTransportType(JMSC.MQJMS_TP_CLIENT_MQ_TCPIP);

factory.setQueueManager(QMGRNAME);

factory.setHostName(HOSTNAME);

factory.setChannel(CHANNEL);

Specifying

a

range

of

ports

for

client

connections

If

a

JMS

application

attempts

to

connect

to

a

WebSphere

MQ

queue

manager

in

client

mode,

a

firewall

might

allow

only

those

connections

that

originate

from

specified

ports

or

a

range

of

ports.

In

this

situation,

you

can

use

the

LOCALADDRESS

property

of

a

QueueConnectionFactory

or

TopicConnectionFactory

object

to

specify

a

port,

or

a

range

of

points,

that

the

application

can

bind

to.

You

can

set

the

LOCALADDRESS

property

by

using

the

WebSphere

MQ

JMS

administration

tool,

or

by

calling

the

setLocalAddress()

method

in

a

JMS

application.

Here

is

an

example

of

setting

the

property

from

within

an

application:

mqConnectionFactory.setLocalAddress("9.20.0.1(2000,3000)");

When

the

application

connects

to

a

queue

manager

subsequently,

the

application

binds

to

a

local

IP

address

and

port

number

in

the

range

9.20.0.1(2000)

to

9.20.0.1(3000).

Connection

errors

might

occur

if

you

restrict

the

range

of

ports.

If

an

error

occurs,

a

JMSException

is

thrown

with

an

embedded

MQException

that

contains

the

WebSphere

MQ

reason

code,

MQRC_Q_MGR_NOT_AVAILABLE.

An

error

might

occur

if

all

the

ports

in

the

specified

range

are

in

use,

or

if

the

LOCALADDRESS

property

contains

an

IP

address,

host

name,

or

port

number

that

is

not

valid;

a

negative

port

number,

for

example.

Because

the

WebSphere

MQ

JMS

client

might

create

connections

other

than

those

required

by

an

application,

always

consider

specifying

a

range

of

ports.

In

general,

every

Session

created

by

an

application

requires

one

port

and

the

WebSphere

MQ

JMS

client

might

require

three

additional

ports.

If

a

connection

error

does

occur,

increase

the

range

of

ports.

JMS

connection

pooling

might

have

an

effect

on

the

speed

at

which

ports

can

be

reused.

As

a

result,

a

connection

error

might

occur

while

ports

are

being

freed.

Obtaining

a

session

Once

a

connection

is

made,

use

the

createQueueSession

method

on

the

QueueConnection

to

obtain

a

session.

The

method

takes

two

parameters:

1.

A

boolean

that

determines

whether

the

session

is

transacted

or

non-transacted.

2.

A

parameter

that

determines

the

acknowledge

mode.

Building

a

connection

Chapter

10.

Writing

WebSphere

MQ

JMS

applications

203

|

|
|
|
|
|
|

|
|
|

|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

The

simplest

case

is

that

of

the

non-transacted

session

with

AUTO_ACKNOWLEDGE,

as

shown

in

the

following

code

fragment:

QueueSession

session;

boolean

transacted

=

false;

session

=

connection.createQueueSession(transacted,

Session.AUTO_ACKNOWLEDGE);

Note:

A

connection

is

thread

safe,

but

sessions

(and

objects

that

are

created

from

them)

are

not.

The

recommended

practice

for

multithreaded

applications

is

to

use

a

separate

session

for

each

thread.

Sending

a

message

Messages

are

sent

using

a

MessageProducer.

For

point-to-point

this

is

a

QueueSender

that

is

created

using

the

createSender

method

on

QueueSession.

A

QueueSender

is

normally

created

for

a

specific

queue,

so

that

all

messages

sent

using

that

sender

are

sent

to

the

same

destination.

The

destination

is

specified

using

a

Queue

object.

Queue

objects

can

be

either

created

at

runtime,

or

built

and

stored

in

a

JNDI

namespace.

Queue

objects

are

retrieved

from

JNDI

in

the

following

way:

Queue

ioQueue;

ioQueue

=

(Queue)ctx.lookup(

qLookup

);

WebSphere

MQ

JMS

provides

an

implementation

of

Queue

in

com.ibm.mq.jms.MQQueue.

It

contains

properties

that

control

the

details

of

WebSphere

MQ

specific

behavior,

but

in

many

cases

it

is

possible

to

use

the

default

values.

JMS

defines

a

standard

way

to

specify

the

destination

that

minimizes

the

WebSphere

MQ

specific

code

in

the

application.

This

mechanism

uses

the

QueueSession.createQueue

method,

which

takes

a

string

parameter

describing

the

destination.

The

string

itself

is

still

in

a

vendor-specific

format,

but

this

is

a

more

flexible

approach

than

directly

referring

to

the

vendor

classes.

WebSphere

MQ

JMS

accepts

two

forms

for

the

string

parameter

of

createQueue().

v

The

first

is

the

name

of

the

WebSphere

MQ

queue,

as

illustrated

in

the

following

fragment

taken

from

the

IVTRun

program

in

the

samples

directory:

public

static

final

String

QUEUE

=

"SYSTEM.DEFAULT.LOCAL.QUEUE"

;

.

.

.

ioQueue

=

session.createQueue(

QUEUE

);

v

The

second,

and

more

powerful,

form

is

based

on

uniform

resource

identifiers

(URIs).

This

form

allows

you

to

specify

remote

queues

(queues

on

a

queue

manager

other

than

the

one

to

which

you

are

connected).

It

also

allows

you

to

set

the

other

properties

contained

in

a

com.ibm.mq.jms.MQQueue

object.

The

URI

for

a

queue

begins

with

the

sequence

queue://,

followed

by

the

name

of

the

queue

manager

on

which

the

queue

resides.

This

is

followed

by

a

further

/,

the

name

of

the

queue,

and

optionally,

a

list

of

name-value

pairs

that

set

the

remaining

Queue

properties.

For

example,

the

URI

equivalent

of

the

previous

example

is:

ioQueue

=

session.createQueue("queue:///SYSTEM.DEFAULT.LOCAL.QUEUE");

The

name

of

the

queue

manager

is

omitted.

This

is

interpreted

as

the

queue

manager

to

which

the

owning

QueueConnection

is

connected

at

the

time

when

the

Queue

object

is

used.

Obtaining

a

session

204

Using

Java

Note:

When

sending

a

message

to

a

cluster,

leave

the

Queue

Manager

field

in

the

JMS

Queue

object

blank.

This

enables

an

MQOPEN

to

be

performed

in

BIND_NOT_FIXED

mode,

which

allows

the

queue

manager

to

be

determined.

Otherwise

an

exception

is

returned

reporting

that

the

queue

object

cannot

be

found.

This

applies

when

using

JNDI

or

defining

queues

at

runtime.

The

following

example

connects

to

queue

Q1

on

queue

manager

HOST1.QM1,

and

causes

all

messages

to

be

sent

as

non-persistent

and

priority

5:

ioQueue

=

session.createQueue("queue://HOST1.QM1/Q1?persistence=1&priority=5");

The

following

is

an

example

of

creating

a

topic

URI:

session.createTopic("topic://Sport/Football/Results?multicast=7");

Table

15

lists

the

names

that

can

be

used

in

the

name-value

part

of

the

URI.

A

disadvantage

of

this

format

is

that

it

does

not

support

symbolic

names

for

the

values,

so

where

appropriate,

the

table

also

indicates

special

values,

which

might

change.

(See

“Setting

properties

with

the

set

method”

on

page

206

for

an

alternative

way

of

setting

properties.)

Table

15.

Property

names

for

queue

and

topic

URIs

Property

Description

Values

CCSID

Character

set

of

the

destination

integers

-

valid

values

listed

in

base

WebSphere

MQ

documentation

encoding

How

to

represent

numeric

fields

An

integer

value

as

described

in

the

base

WebSphere

MQ

documentation

expiry

Lifetime

of

the

message

in

milliseconds

0

for

unlimited,

positive

integers

for

timeout

(ms)

multicast

Sets

multicast

mode

for

direct

connections

-1=ASCF,

0=DISABLED,

3=NOTR,

5=RELIABLE,

7=ENABLED

persistence

Whether

the

message

should

be

hardened

to

disk

1=non-persistent,

2=persistent,

-1=QDEF,

-2=APP

priority

Priority

of

the

message

0

through

9,

-1=QDEF,

-2=APP

targetClient

Whether

the

receiving

application

is

JMS

compliant

0=JMS,

1=MQ

The

special

values

are:

QDEF

Determine

the

property

from

the

configuration

of

the

WebSphere

MQ

queue.

APP

The

JMS

application

can

control

this

property.

Once

the

Queue

object

is

obtained

(either

using

createQueue

as

above

or

from

JNDI),

it

must

be

passed

into

the

createSender

method

to

create

a

QueueSender:

QueueSender

queueSender

=

session.createSender(ioQueue);

The

resulting

queueSender

object

is

used

to

send

messages

by

using

the

send

method:

queueSender.send(outMessage);

Sending

a

message

Chapter

10.

Writing

WebSphere

MQ

JMS

applications

205

|

|

|

||
|
|
|

Setting

properties

with

the

set

method

You

can

set

Queue

properties

by

first

creating

an

instance

of

com.ibm.mq.jms.MQQueue

using

the

default

constructor.

Then

you

can

fill

in

the

required

values

by

using

public

set

methods.

This

method

means

that

you

can

use

symbolic

names

for

the

property

values.

However,

because

these

values

are

vendor-specific,

and

are

embedded

in

the

code,

the

applications

become

less

portable.

The

following

code

fragment

shows

the

setting

of

a

queue

property

with

a

set

method.

com.ibm.mq.jms.MQQueue

q1

=

new

com.ibm.mq.jms.MQQueue();

q1.setBaseQueueManagerName("HOST1.QM1");

q1.setBaseQueueName("Q1");

q1.setPersistence(DeliveryMode.NON_PERSISTENT);

q1.setPriority(5);

Table

16

shows

the

symbolic

property

values

that

are

supplied

with

WebSphere

MQ

JMS

for

use

with

the

set

methods.

Table

16.

Symbolic

values

for

queue

properties

Property

Admin

tool

keyword

Values

expiry

UNLIM

APP

JMSC.MQJMS_EXP_UNLIMITED

JMSC.MQJMS_EXP_APP

priority

APP

QDEF

JMSC.MQJMS_PRI_APP

JMSC.MQJMS_PRI_QDEF

persistence

APP

QDEF

PERS

NON

JMSC.MQJMS_PER_APP

JMSC.MQJMS_PER_QDEF

JMSC.MQJMS_PER_PER

JMSC.MQJMS_PER_NON

targetClient

JMS

MQ

JMSC.MQJMS_CLIENT_JMS_COMPLIANT

JMSC.MQJMS_CLIENT_NONJMS_MQ

encoding

Integer(N)

Integer(R)

Decimal(N)

Decimal(R)

Float(N)

Float(R)

Native

JMSC.MQJMS_ENCODING_INTEGER_NORMAL

JMSC.MQJMS_ENCODING_INTEGER_REVERSED

JMSC.MQJMS_ENCODING_DECIMAL_NORMAL

JMSC.MQJMS_ENCODING_DECIMAL_REVERSED

JMSC.MQJMS_ENCODING_FLOAT_IEEE_NORMAL

JMSC.MQJMS_ENCODING_FLOAT_IEEE_REVERSED

JMSC.MQJMS_ENCODING_NATIVE

multicast

ASCF

DISABLED

NOTR

RELIABLE

ENABLED

JMSC.MQJMS_MULTICAST_AS_CF

JMSC.MQJMS_MULTICAST_DISABLED

JMSC.MQJMS_MULTICAST_NOT_RELIABLE

JMSC.MQJMS_MULTICAST_RELIABLE

JMSC.MQJMS_MULTICAST_ENABLED

See

“The

ENCODING

property”

on

page

57

for

a

discussion

of

encoding.

Message

types

JMS

provides

several

message

types,

each

of

which

embodies

some

knowledge

of

its

content.

To

avoid

referring

to

the

vendor-specific

class

names

for

the

message

types,

methods

are

provided

on

the

Session

object

for

message

creation.

In

the

sample

program,

a

text

message

is

created

in

the

following

manner:

Sending

a

message

206

Using

Java

||
|
|
|
|

|
|
|
|
|

System.out.println(

"Creating

a

TextMessage"

);

TextMessage

outMessage

=

session.createTextMessage();

System.out.println("Adding

Text");

outMessage.setText(outString);

The

message

types

that

can

be

used

are:

v

BytesMessage

v

MapMessage

v

ObjectMessage

v

StreamMessage

v

TextMessage

Details

of

these

types

are

in

Chapter

15,

“JMS

interfaces

and

classes,”

on

page

295.

Receiving

a

message

Messages

are

received

using

a

QueueReceiver.

This

is

created

from

a

Session

by

using

the

createReceiver()

method.

This

method

takes

a

Queue

parameter

that

defines

from

where

the

messages

are

received.

See

“Sending

a

message”

on

page

204

for

details

of

how

to

create

a

Queue

object.

The

sample

program

creates

a

receiver

and

reads

back

the

test

message

with

the

following

code:

QueueReceiver

queueReceiver

=

session.createReceiver(ioQueue);

Message

inMessage

=

queueReceiver.receive(1000);

The

parameter

in

the

receive

call

is

a

timeout

in

milliseconds.

This

parameter

defines

how

long

the

method

should

wait

if

there

is

no

message

available

immediately.

You

can

omit

this

parameter,

in

which

case,

the

call

blocks

indefinitely.

If

you

do

not

want

any

delay,

use

the

receiveNoWait()

method.

The

receive

methods

return

a

message

of

the

appropriate

type.

For

example,

if

a

TextMessage

is

put

on

a

queue,

when

the

message

is

received

the

object

that

is

returned

is

an

instance

of

TextMessage.

To

extract

the

content

from

the

body

of

the

message,

it

is

necessary

to

cast

from

the

generic

Message

class

(which

is

the

declared

return

type

of

the

receive

methods)

to

the

more

specific

subclass,

such

as

TextMessage.

If

the

received

message

type

is

not

known,

you

can

use

the

instanceof

operator

to

determine

which

type

it

is.

It

is

good

practice

always

to

test

the

message

class

before

casting,

so

that

unexpected

errors

can

be

handled

gracefully.

The

following

code

illustrates

the

use

of

instanceof,

and

extraction

of

the

content

from

a

TextMessage:

if

(inMessage

instanceof

TextMessage)

{

String

replyString

=

((TextMessage)

inMessage).getText();

.

.

.

}

else

{

//

Print

error

message

if

Message

was

not

a

TextMessage.

System.out.println("Reply

message

was

not

a

TextMessage");

}

Message

selectors

JMS

provides

a

mechanism

to

select

a

subset

of

the

messages

on

a

queue

so

that

this

subset

is

returned

by

a

receive

call.

When

creating

a

QueueReceiver,

you

can

Sending

a

message

Chapter

10.

Writing

WebSphere

MQ

JMS

applications

207

provide

a

string

that

contains

an

SQL

(Structured

Query

Language)

expression

to

determine

which

messages

to

retrieve.

The

selector

can

refer

to

fields

in

the

JMS

message

header

as

well

as

fields

in

the

message

properties

(these

are

effectively

application-defined

header

fields).

Details

of

the

header

field

names,

as

well

as

the

syntax

for

the

SQL

selector,

are

in

Chapter

13,

“JMS

messages,”

on

page

257.

The

following

example

shows

how

to

select

for

a

user-defined

property

named

myProp:

queueReceiver

=

session.createReceiver(ioQueue,

"myProp

=

’blue’");

Note:

The

JMS

specification

does

not

permit

the

selector

associated

with

a

receiver

to

be

changed.

Once

a

receiver

is

created,

the

selector

is

fixed

for

the

lifetime

of

that

receiver.

This

means

that,

if

you

require

different

selectors,

you

must

create

new

receivers.

Asynchronous

delivery

An

alternative

to

making

calls

to

QueueReceiver.receive()

is

to

register

a

method

that

is

called

automatically

when

a

suitable

message

is

available.

The

following

fragment

illustrates

the

mechanism:

import

javax.jms.*;

public

class

MyClass

implements

MessageListener

{

//

The

method

that

will

be

called

by

JMS

when

a

message

//

is

available.

public

void

onMessage(Message

message)

{

System.out.println("message

is

"+message);

//

application

specific

processing

here

.

.

.

}

}

.

.

.

//

In

Main

program

(possibly

of

some

other

class)

MyClass

listener

=

new

MyClass();

queueReceiver.setMessageListener(listener);

//

main

program

can

now

continue

with

other

application

specific

//

behavior.

Note:

Use

of

asynchronous

delivery

with

a

QueueReceiver

marks

the

entire

Session

as

asynchronous.

It

is

an

error

to

make

an

explicit

call

to

the

receive

methods

of

a

QueueReceiver

that

is

associated

with

a

Session

that

is

using

asynchronous

delivery.

Closing

down

Garbage

collection

alone

cannot

release

all

WebSphere

MQ

resources

in

a

timely

manner,

especially

if

the

application

needs

to

create

many

short-lived

JMS

objects

at

the

Session

level

or

lower.

It

is

therefore

important

to

call

the

close()

methods

of

the

various

classes

(QueueConnection,

QueueSession,

QueueSender,

and

QueueReceiver)

when

the

resources

are

no

longer

required.

Receiving

a

message

208

Using

Java

Java

Virtual

Machine

hangs

at

shutdown

If

an

application

using

WebSphere

MQ

JMS

finishes

without

calling

Connection.close(),

some

JVMs

appear

to

hang.

If

this

problem

occurs,

either

edit

the

application

to

include

a

call

to

Connection.close(),

or

terminate

the

JVM

using

the

Ctrl-C

keys.

Handling

errors

Any

runtime

errors

in

a

JMS

application

are

reported

by

exceptions.

The

majority

of

methods

in

JMS

throw

JMSExceptions

to

indicate

errors.

It

is

good

programming

practice

to

catch

these

exceptions

and

display

them

on

a

suitable

output.

A

JMSException

can

contain

a

further

exception

embedded

in

it.

For

JMS,

this

can

be

a

valuable

way

to

pass

important

detail

from

the

underlying

transport.

In

the

case

of

WebSphere

MQ

JMS,

when

WebSphere

MQ

raises

an

MQException,

this

exception

is

usually

included

as

the

embedded

exception

in

a

JMSException.

The

implementation

of

JMSException

does

not

include

the

embedded

exception

in

the

output

of

its

toString()

method.

Therefore,

it

is

necessary

to

check

explicitly

for

an

embedded

exception

and

print

it

out,

as

shown

in

the

following

fragment:

try

{

.

.

code

which

may

throw

a

JMSException

.

}

catch

(JMSException

je)

{

System.err.println("caught

"+je);

Exception

e

=

je.getLinkedException();

if

(e

!=

null)

{

System.err.println("linked

exception:

"+e);

}

}

Exception

listener

For

asynchronous

message

delivery,

the

application

code

cannot

catch

exceptions

raised

by

failures

to

receive

messages.

This

is

because

the

application

code

does

not

make

explicit

calls

to

receive()

methods.

To

cope

with

this

situation,

it

is

possible

to

register

an

ExceptionListener,

which

is

an

instance

of

a

class

that

implements

the

onException()

method.

When

a

serious

error

occurs,

this

method

is

called

with

the

JMSException

passed

as

its

only

parameter.

Further

details

are

in

Sun’s

JMS

documentation.

User

exits

WebSphere

MQ

JMS

allows

you

to

code

and

use

implementations

of

the

WebSphere

MQ

base

Java

send,

receive,

and

security

exits.

For

WebSphere

MQ

JMS,

ensure

that

your

exit

has

a

constructor

that

takes

a

single

string

argument.

See

the

description

of

exit-related

set

methods

in

Table

14

on

page

202

and

“Property

dependencies”

on

page

56.

Closing

down

Chapter

10.

Writing

WebSphere

MQ

JMS

applications

209

Using

Secure

Sockets

Layer

(SSL)

WebSphere

MQ

base

Java

client

applications

and

WebSphere

MQ

JMS

connections

using

TRANSPORT(CLIENT)

support

Secure

Sockets

Layer

(SSL)

encryption.

SSL

provides

communication

encryption,

authentication,

and

message

integrity.

It

is

typically

used

to

secure

communications

between

any

two

peers

on

the

Internet

or

within

an

intranet.

WebSphere

MQ

classes

for

Java

uses

Java

Secure

Socket

Extension

(JSSE)

to

handle

SSL

encryption,

and

so

requires

a

JSSE

provider.

J2SE

v1.4

JVMs

have

a

JSSE

provider

built

in.

Details

of

how

to

manage

and

store

certificates

can

vary

from

provider

to

provider.

For

information

about

this,

refer

to

your

JSSE

provider’s

documentation.

This

section

assumes

that

your

JSSE

provider

is

correctly

installed

and

configured,

and

that

suitable

certificates

have

been

installed

and

made

available

to

your

JSSE

provider.

SSL

administrative

properties

This

section

introduces

the

SSL

administrative

properties,

as

follows:

v

“SSLCIPHERSUITE

object

property”

v

“SSLPEERNAME

object

property”

v

“SSLCERTSTORES

object

property”

on

page

211

v

“SSLSocketFactory

object

property”

on

page

212

SSLCIPHERSUITE

object

property

To

enable

SSL

encryption

on

a

ConnectionFactory,

use

JMSAdmin

to

set

the

SSLCIPHERSUITE

property

to

a

CipherSuite

supported

by

your

JSSE

provider.

This

must

match

the

CipherSpec

set

on

the

target

channel.

However,

CipherSuites

are

distinct

from

CipherSpecs

and

so

have

different

names.

Appendix

H,

“SSL

CipherSuites

supported

by

WebSphere

MQ,”

on

page

487

contains

a

table

mapping

the

CipherSpecs

supported

by

WebSphere

MQ

to

their

equivalent

CipherSuites

as

known

to

JSSE.

Additionally,

the

named

CipherSuite

must

be

supported

by

your

JSSE

provider.

For

more

information

about

CipherSpecs

and

CipherSuites

with

WebSphere

MQ,

see

the

WebSphere

MQ

Security

book.

For

example,

to

set

a

QueueConnectionFactory

to

connect

to

an

SSL-enabled

SVRCONN

channel

using

a

CipherSpec

of

RC4_MD5_EXPORT,

issue

the

following

command

to

JMSAdmin:

ALTER

QCF(my.qcf)

SSLCIPHERSUITE(SSL_RSA_EXPORT_WITH_RC4_40_MD5)

This

can

also

be

set

from

a

program,

using

the

setSSLCipherSuite()

method

on

MQConnectionFactory.

For

convenience,

if

a

CipherSpec

is

specified

on

the

SSLCIPHERSUITE

property,

JMSAdmin

attempts

to

map

the

CipherSpec

to

an

appropriate

CipherSuite

and

issues

a

warning.

This

attempt

to

map

is

not

made

if

the

property

is

specified

by

a

program.

SSLPEERNAME

object

property

A

JMS

application

can

ensure

that

it

has

connected

to

the

correct

queue

manager,

by

specifying

a

distinguished

name

(DN)

pattern.

The

connection

succeeds

only

if

Using

SSL

210

Using

Java

the

queue

manager

presents

a

DN

that

matches

the

pattern.

For

more

details

of

the

format

of

this

pattern,

refer

to

WebSphere

MQ

Security

or

the

WebSphere

MQ

Script

(MQSC)

Command

Reference.

The

DN

is

set

using

the

SSLPEERNAME

property

of

ConnectionFactory.

For

example,

the

following

JMSAdmin

command

sets

the

ConnectionFactory

to

expect

the

queue

manager

to

identify

itself

with

a

Common

Name

beginning

QMGR.

with

at

least

two

Organizational

Unit

names,

the

first

of

which

must

be

IBM

and

the

second

WEBSPHERE:

ALTER

QCF(my.qcf)

SSLPEERNAME(CN=QMGR.*,

OU=IBM,

OU=WEBSPHERE)

Checking

is

case-insensitive,

and

semicolons

can

be

used

in

place

of

the

commas.

This

can

also

be

set

from

a

program,

using

the

setSSLPeerName()

method

on

MQConnectionFactory.

If

this

property

is

not

set,

no

checking

is

performed

on

the

Distinguished

Name

supplied

by

the

queue

manager.

This

property

is

ignored

if

no

CipherSuite

is

set.

SSLCERTSTORES

object

property

It

is

common

to

use

a

certificate

revocation

list

(CRL)

to

manage

revocation

of

certificates

that

have

become

untrusted.

These

are

typically

hosted

on

LDAP

servers;

JMS

allows

an

LDAP

server

to

be

specified

for

CRL

checking

under

Java

2

v1.4

or

later.

The

following

JMSAdmin

example

directs

JMS

to

use

a

CRL

hosted

on

an

LDAP

server

named

crl1.ibm.com:

ALTER

QCF(my.qcf)

SSLCRL(ldap://crl1.ibm.com)

Note:

To

use

a

CertStore

successfully

with

a

CRL

hosted

on

an

LDAP

server,

make

sure

that

your

Java

Software

Development

Kit

(SDK)

is

compatible

with

the

CRL.

Some

SDKs

require

that

the

CRL

conforms

to

RFC

2587,

which

defines

a

schema

for

LDAP

v2.

Most

LDAP

v3

servers

use

RFC

2256

instead.

If

your

LDAP

server

is

not

running

on

the

default

port

of

389,

the

port

can

be

specified

by

appending

a

colon

and

the

port

number

to

the

host

name.

If

the

certificate

presented

by

the

queue

manager

is

present

in

the

CRL

hosted

on

crl1.ibm.com,

the

connection

does

not

complete.

To

avoid

single-point-of-failure,

JMS

allows

multiple

LDAP

servers

to

be

supplied,

by

supplying

a

space-delimited

list

of

LDAP

servers.

For

example:

ALTER

QCF(my.qcf)

SSLCRL(ldap://crl1.ibm.com

ldap://crl2.ibm.com)

When

multiple

LDAP

servers

are

specified,

JMS

tries

each

one

in

turn

until

it

finds

a

server

with

which

it

can

successfully

verify

the

queue

manager’s

certificate.

Each

server

must

contain

identical

information.

A

string

of

this

format

can

be

supplied

by

a

program

on

the

MQConnectionFactory.setSSLCertStores()

method.

Alternatively,

the

application

can

create

one

or

more

java.security.cert.CertStore

objects,

place

these

in

a

suitable

Collection

object,

and

supply

this

Collection

to

the

setSSLCertStores()

method.

In

this

way,

the

application

can

customize

CRL

checking.

Refer

to

your

JSSE

documentation

for

details

on

constructing

and

using

CertStore

objects.

The

certificate

presented

by

the

queue

manager

when

a

connection

is

being

set

up

is

validated

as

follows:

1.

The

first

CertStore

object

in

the

Collection

identified

by

sslCertStores

is

used

to

identify

a

CRL

server.

2.

An

attempt

is

made

to

contact

the

CRL

server.

3.

If

the

attempt

is

successful,

the

server

is

searched

for

a

match

for

the

certificate.

Using

SSL

Chapter

10.

Writing

WebSphere

MQ

JMS

applications

211

a.

If

the

certificate

is

found

to

be

revoked,

the

search

process

is

over

and

the

connection

request

fails

with

reason

code

MQRC_SSL_CERTIFICATE_REVOKED.

b.

If

the

certificate

is

not

found,

the

search

process

is

over

and

the

connection

is

allowed

to

proceed.
4.

If

the

attempt

to

contact

the

server

is

unsuccessful,

the

next

CertStore

object

is

used

to

identify

a

CRL

server

and

the

process

repeats

from

step

2.

If

this

was

the

last

CertStore

in

the

Collection,

or

if

the

Collection

contains

no

CertStore

objects,

the

search

process

has

failed

and

the

connection

request

fails

with

reason

code

MQRC_SSL_CERT_STORE_ERROR.

The

Collection

object

determines

the

order

in

which

CertStores

are

used.

If

your

application

uses

setSSLCertStores()

to

set

a

Collection

of

CertStore

objects,

the

MQConnectionFactory

can

no

longer

be

bound

into

a

JNDI

namespace.

Attempting

to

do

so

causes

an

exception.

If

the

sslCertStores

property

is

not

set,

no

revocation

checking

is

performed

on

the

certificate

provided

by

the

queue

manager.

This

property

is

ignored

if

no

CipherSuite

is

set.

SSLSocketFactory

object

property

You

might

want

to

customize

other

aspects

of

the

SSL

connection

for

an

application.

For

example,

you

might

want

to

initialize

cryptographic

hardware

or

change

the

KeyStore

and

TrustStore

in

use.

To

do

this,

the

application

must

first

create

a

javax.net.ssl.SSLSocketFactory

instance

customized

accordingly.

Refer

to

your

JSSE

documentation

for

information

on

how

to

do

this,

as

the

customizable

features

vary

from

provider

to

provider.

Once

a

suitable

SSLSocketFactory

has

been

obtained,

use

the

MQConnectionFactory.setSSLSocketFactory()

method

to

configure

JMS

to

use

the

customized

SSLSocketFactory.

If

your

application

uses

setSSLSocketFactory()

to

set

a

customized

SSLSocketFactory,

the

MQConnectionFactory

can

no

longer

be

bound

into

a

JNDI

namespace.

Attempting

to

do

so

causes

an

exception.

If

this

property

is

not

set,

the

default

SSLSocketFactory

is

used;

refer

to

your

JSSE

documentation

for

details

on

the

behavior

of

the

default

SSLSocketFactory.

This

property

is

ignored

if

no

CipherSuite

is

set.

Important:

Do

not

assume

that

use

of

the

SSL

properties

ensures

security

when

the

ConnectionFactory

is

retrieved

from

a

JNDI

namespace

that

is

not

itself

secure.

Specifically,

the

standard

LDAP

implementation

of

JNDI

is

not

secure;

an

attacker

can

imitate

the

LDAP

server,

misleading

a

JMS

application

into

connecting

to

the

wrong

server

without

noticing.

With

suitable

security

arrangements

in

place,

other

implementations

of

JNDI

(such

as

the

fscontext

implementation)

are

secure.

Using

SSL

212

Using

Java

Chapter

11.

Writing

WebSphere

MQ

JMS

publish/subscribe

applications

You

can

write

applications

with

WebSphere

MQ

JMS

using

two

programming

models:

v

Point-to-point

v

Publish/subscribe

This

section

considers

publish/subscribe

and

how

publish/subscribe

messaging

is

implemented

in

WebSphere

MQ

JMS.

Introduction

With

publish/subscribe

messaging,

one

message

producer

can

send

messages

to

many

message

consumers

at

one

time.

The

message

producer

need

know

nothing

about

the

consumers

receiving

its

messages,

it

needs

to

know

only

about

the

common

destination.

Similarly,

the

message

consumers

need

to

know

only

about

the

common

destination.

This

common

destination

is

called

a

topic.

A

message

producer

that

sends

messages

to

a

topic

is

a

publisher

and

a

message

consumer

that

receives

messages

from

a

topic

is

a

subscriber.

A

message

consumer

receives

messages

on

all

topics

to

which

it

has

subscribed.

To

receive

messages

from

a

topic,

a

message

consumer

must

first

subscribe

to

that

topic.

All

messages

sent

to

a

topic

are

forwarded

to

all

the

message

consumers

subscribed

to

that

topic

at

that

time.

Each

consumer

receives

its

own

copy

of

each

message.

JMS

clients

can

establish

durable

subscriptions

that

allow

consumers

to

disconnect

and

later

reconnect

and

collect

messages

published

while

they

were

disconnected.

The

connection

between

messages

issued

by

publishers

and

the

subscribers

is

made,

in

WebSphere

MQ,

by

the

publish/subscribe

broker.

The

broker

(sometimes

referred

to

as

the

message

broker)

has

a

record

of

all

the

subscribers

registered

to

a

topic.

When

a

message

is

published

to

a

topic,

the

broker

manages

the

forwarding

of

that

message

to

the

topic’s

subscribers.

To

run

a

WebSphere

MQ

JMS

publish/subscribe

application,

you

must

be

able

to

connect

to

a

message

broker.

Getting

started

with

WebSphere

MQ

JMS

and

publish/subscribe

Before

you

can

start

developing

publish/subscribe

applications,

you

need

to

choose

the

broker

to

use

and

set

that

broker

up

to

run

the

WebSphere

MQ

JMS.

Choosing

a

broker

WebSphere

MQ

offers

a

choice

of

three

brokers:

v

The

MQSeries

Publish/Subscribe

broker

uses

WebSphere

MQ

and

a

SupportPac.

The

SupportPac

MA0C

is

available

for

download

from:

http://www.ibm.com/software/ts/mqseries/txppacs

©

Copyright

IBM

Corp.

1997,

2004

213

|

|

|

|

If

you

want

to

use

the

broker-based

subscription

store,

you

must

use

WebSphere

MQ

with

the

MQSeries

Publish/Subscribe

broker.

No

other

combination

of

queue

manager

and

broker

supports

this

store.

v

WebSphere

MQ

Integrator

provides

a

broker

that

can

be

run

in

one

of

two

modes.

Compatibility

mode,

which

provides

a

broker

of

equivalent

functionality

to

the

MQSeries

Publish/Subscribe

broker;

and

native

mode,

which

provides

additional

functionality.

WebSphere

MQ

JMS

can

connect

to

WebSphere

MQ

Integrator

in

native

mode

with

JMS

Version

5.2.1

and

later.

With

earlier

JMS

versions,

it

can

connect

to

WebSphere

MQ

Integrator

in

compatibility

mode

only.

v

WebSphere

MQ

Event

Broker

Version

2.1,

WebSphere

Business

Integration

Event

Broker

Version

5.0,

and

WebSphere

Business

Integration

Message

Broker

Version

5.0

each

provide

a

broker

that

can

be

connected

to

in

two

different

ways:

Using

message

queues

and

WebSphere

MQ

With

this

connection,

you

can

run

the

broker

in

either

compatibility

mode

or

native

mode.

Directly

using

a

TCP/IP

socket

With

this

connection,

you

can

run

the

broker

only

in

native

mode.

Also

there

is

no

support

for:

–

Persistent

messages

–

Transacted

messages

–

Durable

subscriptions

This

has

implications

for

the

implementation

of

the

JMS

specification

for

direct

connections

to

the

WebSphere

MQ

Event

Broker:

–

Because

there

are

no

persistent

messages,

JMSDeliveryMode

is

always

NON_PERSISTENT

and

JMSExpiration

has

no

meaning

on

messages

received

on

direct

connections.

–

Because

there

are

no

transacted

messages,

JMSRedelivered

has

no

meaning

on

messages

received

on

direct

connections.

Refer

to

Chapter

15,

“JMS

interfaces

and

classes,”

on

page

295

for

specific

information

on

each

publish

and

subscribe

interface.

Setting

up

the

broker

to

run

the

WebSphere

MQ

JMS

Broker

setup

depends

on

the

broker

you

intend

to

use

and

how

you

intend

to

use

it.

Each

broker

provides

its

own

documentation

describing

installation

and

setup.

However,

for

convenience

and

because

of

WebSphere

MQ

JMS

requirements,

some

setup

instructions

are

given

here.

Connecting

to

your

broker

using

WebSphere

MQ

This

section

applies

to

the

MQSeries

Publish/Subscribe

broker

and

the

broker

in

WebSphere

MQ

Integrator.

It

also

applies

to

the

WebSphere

MQ

Event

Broker

when

you

choose

to

connect

to

it

using

WebSphere

MQ.

Each

broker

requires

its

own

queue

manager.

Refer

to

the

broker’s

documentation

regarding

installation

and

setup.

For

the

WebSphere

MQ

JMS

publish/subscribe

implementation

to

work

correctly,

a

number

of

system

queues

must

be

created

on

the

queue

manager

on

which

the

broker

is

running.

Create

these

message

queues

on

each

queue

manager

for

each

broker

you

want

to

run

WebSphere

MQ

JMS.

WebSphere

MQ

JMS

provides

a

script

that

creates

these

queues

(see

“Create

the

WebSphere

MQ

JMS

system

queues”

on

page

27).

Getting

started

with

publish/subscribe

214

Using

Java

|
|
|

Run

the

script

to

create

the

system

queues.

If

you

are

using

the

MQSeries

Publish/Subscribe

broker,

your

broker

is

now

fully

configured.

To

check

that

the

broker

is

correctly

configured,

run

the

publish/subscribe

verification

as

described

in

“Publish/subscribe

verification

without

JNDI”

on

page

35.

If

you

are

using

the

broker

provided

by

WebSphere

MQ

Integrator

or

WebSphere

MQ

Event

Broker,

configure

a

publish/subscribe

message

flow

in

the

broker

for

messages

to

be

correctly

routed.

The

method

for

creating

the

required

message

flow

is

similar

in

both

cases.

Refer

to

Appendix

D,

“Connecting

to

other

products,”

on

page

469

for

details.

Connecting

to

your

broker

directly

This

is

possible

only

when

you

use

the

broker

provided

in

WebSphere

MQ

Event

Broker,

WebSphere

Business

Integration

Event

Broker,

or

WebSphere

Business

Integration

Message

Broker.

Because

the

connection

to

this

broker

is

made

directly,

no

system

queues

are

required.

However,

you

must

set

up

a

publish/subscribe

message

flow

in

the

broker

for

messages

to

be

correctly

routed.

Refer

to

Appendix

D,

“Connecting

to

other

products,”

on

page

469

for

details.

Writing

a

simple

publish/subscribe

application

connecting

through

WebSphere

MQ

This

section

provides

a

walkthrough

of

a

simple

WebSphere

MQ

JMS

application.

Here

is

the

complete

example.

Individual

sections

are

discussed

after.

/**

*

Basic

pub/sub

example

*

*

A

TopicConnectionFactory

object

is

retrieved

from

LDAP;

this

is

used

*

to

create

a

TopicConnection.

The

TopicConnection

is

used

to

create

*

a

TopicSession,

which

creates

two

publishers

and

two

subscribers.

*

Both

publishers

subscribe

to

a

topic;

both

subscribers

then

receive.

*/

import

javax.jms.*;

//

JMS

interfaces

import

javax.naming.*;

//

Used

for

JNDI

lookup

of

import

javax.naming.directory.*;

//

administered

objects

import

java.io.*;

//

Java

IO

classes

import

java.util.*;

//

Java

Util

classes

class

PubSubSample

{

//

using

LDAP

String

icf

=

"com.sun.jndi.ldap.LdapCtxFactory";

//

initial

context

factory

String

url

=

"ldap://server.company.com/o=company_us,c=us";

//url

private

String

tcfLookup

=

"cn=testTCF";

//

TopicConnectionFactory

(TCF)

lookup

private

String

tLookup

=

"cn=testT";

//

topic

lookup

//

Pub/Sub

objects

used

by

this

program

private

TopicConnectionFactory

fact

=

null;

private

Topic

topic

=

null;

public

static

void

main(String

args[])

{

//

Initialise

JNDI

properties

Hashtable

env

=

new

Hashtable();

env.put(

Context.INITIAL_CONTEXT_FACTORY,

icf

);

env.put(

Context.PROVIDER_URL,

url

);

env.put(

Context.REFERRAL,

"throw"

);

Getting

started

with

publish/subscribe

Chapter

11.

Writing

WebSphere

MQ

JMS

publish/subscribe

applications

215

|
|

Context

ctx

=

null;

try

{

System.out.print(

"Initialising

JNDI...

"

);

ctx

=

new

InitialDirContext(

env

);

System.out.println(

"Done!"

);

}

catch

(

NamingException

nx

)

{

System.out.println(

"ERROR:

"

+

nx

);

System.exit(-1);

}

//

Lookup

TCF

try

{

System.out.print(

"Obtaining

TCF

from

JNDI...

"

);

fact

=

(TopicConnectionFactory)ctx.lookup(

tcfLookup

);

System.out.println(

"Done!"

);

}

catch

(

NamingException

nx

)

{

System.out.println(

"ERROR:

"

+

nx

);

System.exit(-1);

}

//

Lookup

Topic

try

{

System.out.print(

"Obtaining

topic

T

from

JNDI...

"

);

topic

=

(Topic)ctx.lookup(

tLookup

);

System.out.println(

"Done!"

);

}

catch

(

NamingException

nx

)

{

System.out.println(

"ERROR:

"

+

nx

);

System.exit(-1);

}

try

{

ctx.close();

}

catch

(

NamingException

nx

)

{

//

Just

ignore

an

exception

on

closing

the

context

}

try

{

//

Create

connection

TopicConnection

conn

=

fact.createTopicConnection();

//

Start

connection

conn.start();

//

Session

TopicSession

sess

=

conn.createTopicSession(false,

Session.AUTO_ACKNOWLEDGE);

//

Create

a

topic

dynamically

Topic

t

=

sess.createTopic("myTopic");

//

Publisher

TopicPublisher

pub

=

sess.createPublisher(t);

//

Subscriber

TopicSubscriber

sub

=

sess.createSubscriber(t);

//

Publisher

TopicPublisher

pubA

=

sess.createPublisher(topic);

//

Subscriber

TopicSubscriber

subA

=

sess.createSubscriber(topic);

//

Publish

"Hello

World"

TextMessage

hello

=

sess.createTextMessage();

hello.setText("Hello

World");

pub.publish(hello);

hello.setText("Hello

World

2");

pubA.publish(hello);

Writing

publish/subscribe

application

216

Using

Java

//

Receive

message

TextMessage

m

=

(TextMessage)

sub.receive();

System.out.println("Message

Text

=

"

+

m.getText());

m

=

(TextMessage)

subA.receive();

System.out.println("Message

Text

=

"

+

m.getText());

//

Close

publishers

and

subscribers

pub.close();

pubA.close();

sub.close();

subA.close();

//

Close

session

and

connection

sess.close();

conn.close();

System.exit(0);

}

catch

(

JMSException

je

)

{

System.out.println("ERROR:

"

+

je);

System.out.println("LinkedException:

"

+

je.getLinkedException());

System.exit(-1);

}

}

}

Import

required

packages

The

import

statements

for

an

application

using

WebSphere

MQ

classes

for

Java

Message

Service

must

include

at

least

the

following:

import

javax.jms.*;

//

JMS

interfaces

import

javax.naming.*;

//

Used

for

JNDI

lookup

of

import

javax.naming.directory.*;

//

administered

objects

Obtain

or

create

JMS

objects

The

next

step

is

to

obtain

or

create

a

number

of

JMS

objects:

1.

Obtain

a

TopicConnectionFactory

2.

Create

a

TopicConnection

3.

Create

a

TopicSession

4.

Obtain

a

Topic

from

JNDI

5.

Create

TopicPublishers

and

TopicSubscribers

Many

of

these

processes

are

similar

to

those

that

are

used

for

point-to-point,

as

shown

in

the

following:

Obtain

a

TopicConnectionFactory

The

preferred

way

to

do

this

is

to

use

JNDI

lookup,

to

maintain

portability

of

the

application

code.

The

following

code

initializes

a

JNDI

context:

String

icf

=

"com.sun.jndi.ldap.LdapCtxFactory";

//

initial

context

factory

String

url

=

"ldap://server.company.com/o=company_us,c=us";

//

url

//

Initialise

JNDI

properties

Java.util.Hashtable

env

=

new

Hashtable();

env.put(

Context.INITIAL_CONTEXT_FACTORY,

icf

);

env.put(

Context.PROVIDER_URL,

url

);

env.put(

Context.REFERRAL,

"throw"

);

Context

ctx

=

null;

try

{

Writing

publish/subscribe

application

Chapter

11.

Writing

WebSphere

MQ

JMS

publish/subscribe

applications

217

System.out.print(

"Initialising

JNDI...

"

);

ctx

=

new

InitialDirContext(

env

);

System.out.println(

"Done!"

);

}

catch

(

NamingException

nx

)

{

System.out.println(

"ERROR:

"

+

nx

);

System.exit(-1);

}

Note:

Change

the

icf

and

url

variables

to

suit

your

installation

and

your

JNDI

service

provider.

The

properties

required

by

JNDI

initialization

are

in

a

Hashtable,

which

is

passed

to

the

InitialDirContext

constructor.

If

this

connection

fails,

an

exception

is

thrown

to

indicate

that

the

administered

objects

required

later

in

the

application

are

not

available.

Obtain

a

TopicConnectionFactory

using

a

lookup

key

that

the

administrator

has

defined:

//

LOOKUP

TCF

try

{

System.out.print(

"Obtaining

TCF

from

JNDI...

"

);

fact

=

(TopicConnectionFactory)ctx.lookup(

tcfLookup

);

System.out.println(

"Done!"

);

}

catch

(

NamingException

nx

)

{

System.out.println(

"ERROR:

"

+

nx

);

System.exit(-1);

}

If

a

JNDI

namespace

is

not

available,

you

can

create

a

TopicConnectionFactory

at

runtime.

You

create

a

new

com.ibm.mq.jms.MQTopicConnectionFactory

as

described

in

“Creating

factories

at

runtime”

on

page

201.

Create

a

TopicConnection

This

is

created

from

the

TopicConnectionFactory

object.

Connections

are

always

initialized

in

a

stop

state

and

must

be

started

with

the

following

code:

//

create

connection

TopicConnection

conn

=

fact.createTopicConnection();

//start

connection

conn.start();

Create

a

TopicSession

This

is

created

using

the

TopicConnection.

This

method

takes

two

parameters:

one

to

signify

whether

the

session

is

transacted,

and

one

to

specify

the

acknowledgement

mode:

TopicSession

sess

=

conn.createTopicSession(false,

Session.AUTO_ACKNOWLEDGE);

Obtain

a

Topic

This

object

can

be

obtained

from

JNDI,

for

use

with

TopicPublishers

and

TopicSubscribers

that

are

created

later.

The

following

code

retrieves

a

Topic:

Topic

topic

=

null;

try

{

System.out.print(

"Obtaining

topic

T

from

JNDI...

"

);

topic

=

(Topic)ctx.lookup(

tLookup

);

System.out.println(

"Done!"

);

}

Writing

publish/subscribe

application

218

Using

Java

catch

(

NamingException

nx

)

{

System.out.println(

"ERROR:

"

+

nx

);

System.exit(-1);

}

If

a

JNDI

namespace

is

not

available,

you

can

create

a

Topic

at

runtime,

as

described

in

“Creating

topics

at

runtime”

on

page

223.

The

following

code

creates

a

Topic

at

runtime:

//

topic

Topic

t

=

sess.createTopic("myTopic");

Create

consumers

and

producers

of

publications

Depending

on

the

nature

of

the

JMS

client

application

that

you

write,

a

subscriber,

a

publisher,

or

both

must

be

created.

Use

the

createPublisher

and

createSubscriber

methods

as

follows:

//

publisher

TopicPublisher

pub

=

sess.createPublisher(t);

//

subscriber

TopicSubscriber

sub

=

sess.createSubscriber(t);

//

publisher

TopicPublisher

pubA

=

sess.createPublisher(topic);

//

subscriber

TopicSubscriber

subA

=

sess.createSubscriber(topic);

Publish

messages

The

TopicPublisher

object,

pub,

is

used

to

publish

messages,

rather

like

a

QueueSender

is

used

in

the

point-to-point

domain.

The

following

fragment

creates

a

TextMessage

using

the

session,

and

then

publishes

the

message:

//

publish

"hello

world"

TextMessage

hello

=

sess.createTextMessage();

hello.setText("Hello

World");

pub.publish(hello);

hello.setText("Hello

World

2");

pubA.publish(hello);

Receive

subscriptions

Subscribers

must

be

able

to

read

the

subscriptions

that

are

delivered

to

them,

as

in

the

following

code:

//

receive

message

TextMessage

m

=

(TextMessage)

sub.receive();

System.out.println("Message

Text

=

"

+

m.getText());

m

=

(TextMessage)

subA.receive();

System.out.println("Message

Text

=

"

+

m.getText());

This

fragment

of

code

performs

a

get-with-wait,

which

means

that

the

receive

call

blocks

until

a

message

is

available.

Alternative

versions

of

the

receive

call

are

available

(such

as

receiveNoWait).

For

details,

see

“TopicSubscriber”

on

page

440.

Close

down

unwanted

resources

It

is

important

to

free

up

all

the

resources

used

by

the

application

when

it

terminates.

Use

the

close()

method

on

objects

that

can

be

closed

(publishers,

subscribers,

sessions,

and

connections):

//

close

publishers

and

subscribers

pub.close();

pubA.close();

sub.close();

subA.close();

Writing

publish/subscribe

application

Chapter

11.

Writing

WebSphere

MQ

JMS

publish/subscribe

applications

219

sess.close();

//

close

session

and

connection

sess.close();

conn.close();

TopicConnectionFactory

administered

objects

In

the

example,

the

TopicConnectionFactory

object

is

obtained

from

JNDI

name

space.

The

TopicConnectionFactory

in

this

case

is

an

administered

object

that

has

been

created

and

administered

using

the

JMSAdmin

tool.

Use

this

method

of

obtaining

TopicConnectionFactory

objects

because

it

ensures

code

portability.

The

TopicConnectionFactory

in

the

example

is

testTCF

in

JMSAdmin.

Create

testTCF

in

JMSAdmin

before

running

the

application.

You

must

also

create

a

Topic

in

JMSAdmin;

see

“Topic

administered

objects.”

To

create

a

TopicConnectionFactory

object,

invoke

the

JMSAdmin

tool,

as

described

in

“Invoking

the

administration

tool”

on

page

41,

and

execute

one

of

the

following

commands,

depending

on

the

type

of

connection

you

want

to

make

to

the

broker:

Bindings

connection

InitCtx>

def

tcf(testTCF)

transport(bind)

or,

because

this

is

the

default

transport

type

for

TopicConnectionFactory

objects:

InitCtx>

def

tcf(testTCF)

This

creates

a

TopicConnectionFactory

with

default

settings

for

bindings

transport,

connecting

to

the

default

queue

manager.

Client

connection

InitCtx>

def

tcf(testTCF)

transport(client)

This

creates

a

TopicConnectionFactory

with

default

settings

for

the

client

transport

type,

connecting

to

localhost,

on

port

1414,

using

channel

SYSTEM.DEF.SVRCONN.

Direct

TCP/IP

connection

to

WebSphere

MQ

Event

Broker

InitCtx>

def

tcf(testTCF)

transport(direct)

This

creates

a

TopicConnectionFactory

to

make

direct

connections

to

a

WebSphere

MQ

Event

Broker,

connecting

to

localhost

on

port

1506.

Topic

administered

objects

In

the

example,

one

of

the

Topic

objects

has

been

obtained

from

JNDI

name

space.

This

Topic

is

an

administered

object

that

has

been

created

and

administered

in

the

JMSAdmin

tool.

Use

this

method

of

obtaining

Topic

objects

because

it

ensures

code

portability.

To

run

the

example

application

above,

create

the

Topic

called

testT

in

JMSAdmin

before

running

the

application.

To

create

a

Topic

object,

invoke

the

JMSAdmin

tool,

as

described

in

“Invoking

the

administration

tool”

on

page

41,

and

execute

one

of

the

following

commands,

depending

on

the

type

of

connection

you

want

to

make

to

the

broker:

Compatibility

mode,

or

MQSeries

Publish/Subscribe

(SupportPac

MA0C)

Writing

publish/subscribe

application

220

Using

Java

InitCtx>

def

t(testT)

bver(V1)

topic(test/topic)

Native

mode,

or

direct

to

WebSphere

MQ

Event

Broker

InitCtx>

def

t(testT)

bver(V2)

topic(test/topic)

Using

topics

This

section

discusses

the

use

of

JMS

Topic

objects

in

WebSphere

MQ

classes

for

Java

Message

Service

applications.

Topic

names

This

section

describes

the

use

of

topic

names

within

WebSphere

MQ

classes

for

Java

Message

Service.

Note:

The

JMS

specification

does

not

specify

exact

details

about

the

use

and

maintenance

of

topic

hierarchies.

Therefore,

this

area

can

vary

from

one

provider

to

the

next.

Topic

names

in

WebSphere

MQ

JMS

are

arranged

in

a

tree-like

hierarchy,

an

example

of

which

is

shown

in

Figure

3.

In

a

topic

name,

levels

in

the

tree

are

separated

by

the

/

character.

This

means

that

the

Signings

node

in

Figure

3

is

identified

by

the

topic

name:

Sport/Football/Spurs/Signings

A

powerful

feature

of

the

topic

system

in

WebSphere

MQ

classes

for

Java

Message

Service

is

the

use

of

wildcards.

These

allow

subscribers

to

subscribe

to

more

than

one

topic

at

a

time.

Different

brokers

use

different

wildcard

characters

and

different

rules

for

their

substitution.

Use

the

broker

version

property

of

the

topic

(BROKERVER)

to

define

which

type

of

wildcards

apply.

Note:

The

broker

version

of

a

topic

must

match

the

broker

version

of

the

topic

connection

factory

you

are

using.

Broker

Version

1

wildcards

The

*

wildcard

matches

zero

or

more

characters;

the

?

wildcard

matches

a

single

character.

Sport

Spurs Arsenal

Rugby Football Tennis

Results Signings Results

Figure

3.

WebSphere

MQ

classes

for

Java

Message

Service

topic

name

hierarchy

Writing

publish/subscribe

application

Chapter

11.

Writing

WebSphere

MQ

JMS

publish/subscribe

applications

221

If

a

subscriber

subscribes

to

the

topic

represented

by

the

following

topic

name:

Sport/Football/*/Results

it

receives

publications

on

topics

including:

v

Sport/Football/Spurs/Results

v

Sport/Football/Arsenal/Results

If

the

subscription

topic

is:

Sport/Football/Spurs/*

it

receives

publications

on

topics

including:

v

Sport/Football/Spurs/Results

v

Sport/Football/Spurs/Signings

If

the

subscription

topic

is:

Sport/Football/*

it

receives

publications

on

topics

including:

v

Sport/Football/Arsenal/Results

v

Sport/Football/Spurs/Results

v

Sport/Football/Spurs/Signings

Broker

Version

2

wildcards

The

#

wildcard

matches

multiple

levels

in

a

topic;

the

+

wildcard

matches

a

single

level.

These

wildcards

can

be

used

only

to

stand

for

complete

levels

within

a

topic;

that

is

they

can

be

preceded

only

by

/

or

start-of-string,

and

they

can

be

followed

only

by

/

or

end-of-string.

If

a

subscriber

subscribes

to

the

topic

represented

by

the

following

topic

name:

Sport/Football/+/Results

it

receives

publications

on

topics

including:

v

Sport/Football/Spurs/Results

v

Sport/Football/Arsenal/Results

If

a

subscriber

subscribes

to

the

topic

represented

by

the

following

topic

name:

Sport/#/Results

it

receives

publications

on

topics

including:

v

Sport/Football/Spurs/Results

v

Sport/Football/Arsenal/Results

Although

Sport/Football/Spur?/Results

works

with

broker

Version

1,

there

is

no

equivalent

for

broker

Version

2,

which

does

not

support

single

character

substitutions.

There

is

no

need

to

administer

the

topic

hierarchies

that

you

use

on

the

broker-side

of

your

system

explicitly.

When

the

first

publisher

or

subscriber

on

a

given

topic

comes

into

existence,

the

broker

automatically

creates

the

state

of

the

topics

currently

being

published

on,

and

subscribed

to.

Using

topics

222

Using

Java

Unicode

characters

are

supported.

Note:

A

publisher

cannot

publish

on

a

topic

whose

name

contains

wildcards.

Creating

topics

at

runtime

There

are

four

ways

to

create

Topic

objects

at

runtime:

1.

Construct

a

topic

using

the

one-argument

MQTopic

constructor

2.

Construct

a

topic

using

the

default

MQTopic

constructor,

and

then

call

the

setBaseTopicName(..)

method

3.

Use

the

session’s

createTopic(..)

method

4.

Use

the

session’s

createTemporaryTopic()

method

Method

1:

Using

MQTopic(..)

This

method

requires

a

reference

to

the

WebSphere

MQ

implementation

of

the

JMS

Topic

interface,

and

therefore

renders

the

code

non-portable.

The

constructor

takes

one

argument,

which

must

be

a

uniform

resource

identifier

(URI).

For

WebSphere

MQ

classes

for

Java

Message

Service

Topics,

this

must

be

of

the

form:

topic://TopicName[?property=value[&property=value]*]

For

further

details

on

URIs

and

the

permitted

name-value

pairs,

see

“Sending

a

message”

on

page

204.

The

following

code

creates

a

topic

for

non-persistent,

priority

5

messages:

//

Create

a

Topic

using

the

one-argument

MQTopic

constructor

String

tSpec

=

"Sport/Football/Spurs/Results?persistence=1&priority=5";

Topic

rtTopic

=

new

MQTopic(

"topic://"

+

tSpec

);

Method

2:

Using

MQTopic(),

then

setBaseTopicName(..)

This

method

uses

the

default

MQTopic

constructor,

and

therefore

renders

the

code

non-portable.

After

the

object

is

created,

set

the

baseTopicName

property

using

the

setBaseTopicName

method,

passing

in

the

required

topic

name.

Note:

The

topic

name

used

here

is

the

non-URI

form,

and

cannot

include

name-value

pairs.

Set

these

by

using

the

set

methods,

as

described

in

“Setting

properties

with

the

set

method”

on

page

206.

The

following

code

uses

this

method

to

create

a

topic:

//

Create

a

Topic

using

the

default

MQTopic

constructor

Topic

rtTopic

=

new

MQTopic();

//

Set

the

object

properties

using

the

setter

methods

((MQTopic)rtTopic).setBaseTopicName(

"Sport/Football/Spurs/Results"

);

((MQTopic)rtTopic).setPersistence(1);

((MQTopic)rtTopic).setPriority(5);

Method

3:

Using

session.createTopic(..)

You

can

also

create

a

Topic

object

using

the

createTopic

method

of

TopicSession,

which

takes

a

topic

URI

as

follows:

//

Create

a

Topic

using

the

session

factory

method

Topic

rtTopic

=

session.createTopic(

"topic://Sport/Football/Spurs/Results"

);

Although

the

createTopic

method

is

in

the

JMS

specification,

the

format

of

the

string

argument

is

vendor-specific.

Therefore,

using

this

method

might

make

your

code

non-portable.

Using

topics

Chapter

11.

Writing

WebSphere

MQ

JMS

publish/subscribe

applications

223

|

Method

4:

Using

session.createTemporaryTopic()

A

TemporaryTopic

is

a

Topic

that

can

be

consumed

only

by

subscribers

that

are

created

by

the

same

TopicConnection.

A

TemporaryTopic

is

created

as

follows:

//

Create

a

TemporaryTopic

using

the

session

factory

method

Topic

rtTopic

=

session.createTemporaryTopic();

Subscriber

options

There

are

a

number

of

different

ways

to

use

JMS

subscribers.

This

section

describes

some

examples

of

their

use.

JMS

provides

two

types

of

subscribers:

Non-durable

subscribers

These

subscribers

receive

messages

on

their

chosen

topic,

only

if

the

messages

are

published

while

the

subscriber

is

active.

Durable

subscribers

These

subscribers

receive

all

the

messages

published

on

a

topic,

including

those

that

are

published

while

the

subscriber

is

inactive.

Creating

non-durable

subscribers

The

subscriber

created

in

“Create

consumers

and

producers

of

publications”

on

page

218

is

non-durable

and

is

created

with

the

following

code:

//

Create

a

subscriber,

subscribing

on

the

given

topic

TopicSubscriber

sub

=

session.createSubscriber(

topic

);

Creating

durable

subscribers

Durable

subscribers

cannot

be

configured

with

a

direct

connection

to

WebSphere

MQ

Event

Broker.

Creating

a

durable

subscriber

is

very

similar

to

creating

a

non-durable

subscriber,

but

you

must

also

provide

a

name

that

uniquely

identifies

the

subscriber:

//

Create

a

durable

subscriber,

supplying

a

uniquely-identifying

name

TopicSubscriber

sub

=

session.createDurableSubscriber(

topic,

"D_SUB_000001"

);

Non-durable

subscribers

automatically

deregister

themselves

when

their

close()

method

is

called

(or

when

they

fall

out

of

scope).

However,

if

you

want

to

terminate

a

durable

subscription,

you

must

explicitly

notify

the

system.

To

do

this,

use

the

session’s

unsubscribe()

method

and

pass

in

the

unique

name

that

created

the

subscriber:

//

Unsubscribe

the

durable

subscriber

created

above

session.unsubscribe(

"D_SUB_000001"

);

A

durable

subscriber

is

created

at

the

queue

manager

specified

in

the

MQTopicConnectionFactory

queue

manager

parameter.

If

there

is

a

subsequent

attempt

to

create

a

durable

subscriber

with

the

same

name

at

a

different

queue

manager,

a

new

and

completely

independent

durable

subscriber

is

returned.

Using

message

selectors

You

can

use

message

selectors

to

filter

out

messages

that

do

not

satisfy

given

criteria.

For

details

about

message

selectors,

see

“Message

selectors”

on

page

207.

Message

selectors

are

associated

with

a

subscriber

as

follows:

Using

topics

224

Using

Java

//

Associate

a

message

selector

with

a

non-durable

subscriber

String

selector

=

"company

=

’IBM’";

TopicSubscriber

sub

=

session.createSubscriber(

topic,

selector,

false

);

You

can

control

whether

the

JMS

client

or

the

broker

performs

message

filtering

by

setting

the

MessageSelection

property

on

the

TopicConnectionFactory.

If

the

broker

is

capable

of

performing

message

selection,

it

is

generally

preferable

to

let

the

broker

do

it

because

it

reduces

the

number

of

messages

sent

to

your

client.

However,

if

the

broker

is

very

heavily

loaded,

it

might

be

preferable

to

let

the

client

perform

message

selection

instead.

Suppressing

local

publications

You

can

create

a

subscriber

that

ignores

publications

that

are

published

on

the

subscriber’s

own

connection.

Set

the

third

parameter

of

the

createSubscriber

call

to

true,

as

follows:

//

Create

a

non-durable

subscriber

with

the

noLocal

option

set

TopicSubscriber

sub

=

session.createSubscriber(

topic,

null,

true

);

Combining

the

subscriber

options

You

can

combine

the

subscriber

variations,

so

that

you

can

create

a

durable

subscriber

that

applies

a

selector

and

ignores

local

publications.

The

following

code

fragment

shows

the

use

of

the

combined

options:

//

Create

a

durable,

noLocal

subscriber

with

a

selector

applied

String

selector

=

"company

=

’IBM’";

TopicSubscriber

sub

=

session.createDurableSubscriber(

topic,

"D_SUB_000001",

selector,

true

);

Configuring

the

base

subscriber

queue

Subscriber

queues

cannot

be

configured

for

a

direct

connection

to

WebSphere

MQ

Event

Broker.

There

are

two

ways

in

which

you

can

configure

subscribers:

v

Multiple

queue

approach

Each

subscriber

has

an

exclusive

queue

assigned

to

it,

from

which

it

retrieves

all

its

messages.

JMS

creates

a

new

queue

for

each

subscriber.

This

is

the

only

approach

available

with

WebSphere

MQ

JMS

V1.1.

v

Shared

queue

approach

A

subscriber

uses

a

shared

queue,

from

which

it,

and

other

subscribers,

retrieve

their

messages.

This

approach

requires

only

one

queue

to

serve

multiple

subscribers.

This

is

the

default

approach

used

with

WebSphere

MQ

JMS.

You

can

choose

which

approach

to

use,

and

configure

which

queues

to

use.

In

general,

the

shared

queue

approach

gives

a

modest

performance

advantage.

For

systems

with

a

high

throughput,

there

are

also

large

architectural

and

administrative

advantages,

because

of

the

significant

reduction

in

the

number

of

queues

required.

In

some

situations,

there

are

still

good

reasons

for

using

the

multiple

queue

approach:

v

The

theoretical

physical

capacity

for

message

storage

is

greater.

A

WebSphere

MQ

queue

cannot

hold

more

than

640000

messages,

and

in

the

shared

queue

approach,

this

must

be

divided

between

all

the

subscribers

that

share

the

queue.

This

issue

is

more

significant

for

durable

subscribers,

because

Subscriber

options

Chapter

11.

Writing

WebSphere

MQ

JMS

publish/subscribe

applications

225

|
|
|
|
|
|

the

lifetime

of

a

durable

subscriber

is

usually

much

longer

than

that

of

a

non-durable

subscriber.

Therefore,

more

messages

might

accumulate

for

a

durable

subscriber.

v

External

administration

of

subscription

queues

is

easier.

For

certain

application

types,

administrators

might

want

to

monitor

the

state

and

depth

of

particular

subscriber

queues.

This

task

is

much

simpler

when

there

is

one

to

one

mapping

between

a

subscriber

and

a

queue.

Default

configuration

The

default

configuration

uses

the

following

shared

subscription

queues:

v

SYSTEM.JMS.ND.SUBSCRIBER.QUEUE

for

non-durable

subscriptions

v

SYSTEM.JMS.D.SUBSCRIBER.QUEUE

for

durable

subscriptions

These

are

created

for

you

when

you

run

the

MQJMS_PSQ.MQSC

script.

If

required,

you

can

specify

alternative

physical

queues.

You

can

also

change

the

configuration

to

use

the

multiple

queue

approach.

Configuring

non-durable

subscribers

You

can

set

the

non-durable

subscriber

queue

name

property

in

either

of

the

following

ways:

v

Use

the

WebSphere

MQ

JMS

administration

tool

(for

JNDI

retrieved

objects)

to

set

the

BROKERSUBQ

property

v

Use

the

setBrokerSubQueue()

method

in

your

program

For

non-durable

subscriptions,

the

queue

name

you

provide

should

start

with

the

following

characters:

SYSTEM.JMS.ND.

To

select

a

shared

queue

approach,

specify

an

explicit

queue

name,

where

the

named

queue

is

the

one

to

use

for

the

shared

queue.

The

queue

that

you

specify

must

already

physically

exist

before

you

create

the

subscription.

To

select

the

multiple

queue

approach,

specify

a

queue

name

that

ends

with

the

*

character.

Subsequently,

each

subscriber

that

is

created

with

this

queue

name

creates

an

appropriate

dynamic

queue,

for

exclusive

use

by

that

particular

subscriber.

MQ

JMS

uses

its

own

internal

model

queue

to

create

such

queues.

Therefore,

with

the

multiple

queue

approach,

all

required

queues

are

created

dynamically.

When

you

use

the

multiple

queue

approach,

you

cannot

specify

an

explicit

queue

name.

However,

you

can

specify

the

queue

prefix.

This

enables

you

to

create

different

subscriber

queue

domains.

For

example,

you

could

use:

SYSTEM.JMS.ND.MYDOMAIN.*

The

characters

that

precede

the

*

character

are

used

as

the

prefix,

so

that

all

dynamic

queues

that

are

associated

with

this

subscription

have

queue

names

that

start

with

SYSTEM.JMS.ND.MYDOMAIN.

Configuring

durable

subscribers

As

discussed

earlier,

there

might

still

be

good

reasons

to

use

the

multiple

queue

approach

for

durable

subscriptions.

Durable

subscriptions

are

likely

to

have

a

longer

life

span,

so

it

is

possible

that

a

large

number

of

unretrieved

messages

could

accumulate

on

the

queue.

Subscriber

options

226

Using

Java

Therefore,

the

durable

subscriber

queue

name

property

is

set

in

the

Topic

object

(that

is,

at

a

more

manageable

level

than

TopicConnectionFactory).

This

enables

you

to

specify

a

number

of

different

subscriber

queue

names,

without

needing

to

re-create

multiple

objects

starting

from

the

TopicConnectionFactory.

You

can

set

the

durable

subscriber

queue

name

in

either

of

the

following

ways:

v

Use

the

WebSphere

MQ

JMS

administration

tool

(for

JNDI

retrieved

objects)

to

set

the

BROKERDURSUBQ

property

v

Use

the

setBrokerDurSubQueue()

method

in

your

program:

//

Set

the

MQTopic

durable

subscriber

queue

name

using

//

the

multi-queue

approach

sportsTopic.setBrokerDurSubQueue("SYSTEM.JMS.D.FOOTBALL.*");

Once

the

Topic

object

is

initialized,

it

is

passed

into

the

TopicSession

createDurableSubscriber()

method

to

create

the

specified

subscription:

//

Create

a

durable

subscriber

using

our

earlier

Topic

TopicSubscriber

sub

=

new

session.createDurableSubscriber

(sportsTopic,

"D_SUB_SPORT_001");

For

durable

subscriptions,

the

queue

name

you

provide

must

start

with

the

following

characters:

SYSTEM.JMS.D.

To

select

a

shared

queue

approach,

specify

an

explicit

queue

name,

where

the

named

queue

is

the

one

to

use

for

the

shared

queue.

The

queue

that

you

specify

must

already

physically

exist

before

you

create

the

subscription.

To

select

the

multiple

queue

approach,

specify

a

queue

name

that

ends

with

the

*

character.

Subsequently,

each

subscriber

that

is

created

with

this

queue

name

creates

an

appropriate

dynamic

queue,

for

exclusive

use

by

that

subscriber.

MQ

JMS

uses

its

own

internal

model

queue

to

create

such

queues.

Therefore,

with

the

multiple

queue

approach,

all

required

queues

are

created

dynamically.

When

you

use

the

multiple

queue

approach,

you

cannot

specify

an

explicit

queue

name.

However,

you

can

specify

the

queue

prefix.

This

enables

you

to

create

different

subscriber

queue

domains.

For

example,

you

could

use:

SYSTEM.JMS.D.MYDOMAIN.*

The

characters

that

precede

the

*

character

are

used

as

the

prefix,

so

that

all

dynamic

queues

that

are

associated

with

this

subscription

have

queue

names

that

start

with

SYSTEM.JMS.D.MYDOMAIN.

You

cannot

change

the

queue

used

by

a

durable

subscriber.

To

do

so,

for

example

to

move

from

the

multiple

queue

approach

to

the

single

queue

approach,

first

delete

the

old

subscriber

(using

the

unsubscribe()

method)

and

create

the

subscription

again

from

new.

This

removes

any

unconsumed

messages

on

the

durable

subscription.

Subscription

stores

There

is

no

subscription

store

with

a

direct

connection

to

WebSphere

MQ

Event

Broker.

WebSphere

MQ

JMS

maintains

a

persistent

store

of

subscription

information,

used

to

resume

durable

subscriptions

and

cleanup

after

failed

non-durable

subscribers.

This

information

can

be

managed

by

the

publish/subscribe

broker.

Subscriber

options

Chapter

11.

Writing

WebSphere

MQ

JMS

publish/subscribe

applications

227

See

the

README

provided

with

WebSphere

MQ

JMS

for

information

about

suitable

levels

of

queue

manager

and

broker.

The

choice

of

subscription

store

is

based

on

the

SUBSTORE

property

of

the

TopicConnectionFactory.

This

takes

one

of

three

values:

QUEUE,

BROKER,

or

MIGRATE.

SUBSTORE(QUEUE)

Subscription

information

is

stored

on

SYSTEM.JMS.ADMIN.QUEUE

and

SYSTEM.JMS.PS.STATUS.QUEUE

on

the

local

queue

manager.

WebSphere

MQ

JMS

maintains

an

extra

connection

for

a

long-running

transaction

used

to

detect

failed

subscribers.

There

is

a

connection

to

each

queue

manager

in

use.

In

a

busy

system,

this

might

cause

the

queue

manager

logs

to

fill

up,

resulting

in

errors

from

both

the

queue

manager

and

its

applications.

If

you

experience

these

problems,

the

system

administrator

can

add

extra

log

files

or

datasets

to

the

queue

manager.

Alternatively,

reduce

the

STATREFRESHINT

property

on

the

TopicConnectionFactory.

This

causes

the

long-running

transaction

to

be

refreshed

more

frequently,

allowing

the

logs

to

reset

themselves.

After

a

non-durable

subscriber

has

failed:

v

Information

is

left

on

the

two

SYSTEM.JMS

queues,

which

allows

a

later

JMS

application

to

clean

up

after

the

failed

subscriber.

See

“Subscriber

cleanup

utility”

on

page

230

for

more

information.

v

Messages

continue

to

be

delivered

to

the

subscriber

until

a

later

JMS

application

is

executed.

SUBSTORE(QUEUE)

is

provided

for

compatibility

with

versions

of

MQSeries

JMS.

SUBSTORE(BROKER)

Subscription

information

is

stored

by

the

publish/subscribe

broker

used

by

the

application.

This

option

requires

recent

levels

of

queue

manager

and

publish/subscribe

broker.

See

the

README

provided

with

WebSphere

MQ

JMS

for

information

about

suitable

levels

of

queue

manager

and

broker.

This

subscription

store

requires

recent

levels

of

both

queue

manager

and

publish/subscribe

broker.

It

is

designed

to

provide

improved

resilience.

When

a

non-durable

subscriber

fails,

the

subscription

is

deregistered

from

the

broker

as

soon

as

possible.

The

broker

adds

a

response

to

this

deregistration

onto

the

SYSTEM.JMS.REPORT.QUEUE,

which

is

used

to

clean

up

after

the

failed

subscriber.

With

SUBSTORE(BROKER),

a

separate

cleanup

thread

is

run

regularly

in

the

background

of

each

JMS

publish/subscribe

application.

Cleanup

is

run

once

every

10

minutes

by

default,

but

you

can

change

this

using

the

CLEANUPINT

property

on

the

TopicConnectionFactory.

To

customize

the

actions

performed

by

cleanup,

use

the

CLEANUP

property

on

the

TopicConnectionFactory.

See

“Subscriber

cleanup

utility”

on

page

230

for

more

information

about

the

different

behaviors

of

cleanup

with

SUBSTORE(BROKER).

SUBSTORE(MIGRATE)

MIGRATE

is

the

default

value

for

SUBSTORE.

Subscriber

options

228

Using

Java

This

option

dynamically

selects

the

queue-based

or

broker-based

subscription

store

based

on

the

levels

of

queue

manager

and

publish/subscribe

broker

installed.

If

both

queue

manager

and

broker

are

capable

of

supporting

SUBSTORE(BROKER),

this

behaves

as

SUBSTORE(BROKER);

otherwise

it

behaves

as

SUBSTORE(QUEUE).

Additionally,

SUBSTORE(MIGRATE)

transfers

durable

subscription

information

from

the

queue-based

subscription

store

to

the

broker-based

store.

This

provides

an

easy

migration

path

from

older

versions

of

WebSphere

MQ

JMS,

WebSphere

MQ,

and

publish/subscribe

broker.

This

migration

occurs

the

first

time

the

durable

subscription

is

opened

when

both

queue

manager

and

broker

are

capable

of

supporting

the

broker-based

subscription

store.

Only

information

relating

to

the

subscription

being

opened

is

migrated;

information

relating

to

other

subscriptions

is

left

in

the

queue-based

subscription

store.

Migration

and

coexistence

considerations

Except

when

SUBSTORE(MIGRATE)

is

used,

the

two

subscription

stores

are

entirely

independent.

A

durable

subscription

is

created

in

the

store

specified

by

the

TopicConnectionFactory.

If

there

is

a

subsequent

attempt

to

create

a

durable

subscriber

with

the

same

name

and

ClientID

but

with

the

other

subscription

store,

a

new

durable

subscription

is

created.

When

a

connection

uses

SUBSTORE(MIGRATE),

subscription

information

is

automatically

transferred

from

the

queue-based

subscription

store

to

the

broker-based

subscription

store

when

createDurableSubscriber()

is

called.

If

a

durable

subscription

with

matching

name

and

ClientID

already

exists

in

the

broker-based

subscription

store,

this

migration

cannot

complete

and

an

exception

is

thrown

from

createDurableSubscriber().

Once

a

subscription

has

been

migrated,

it

is

important

not

to

access

the

subscription

from

an

application

using

an

older

version

of

WebSphere

MQ

JMS,

or

an

application

running

with

SUBSTORE(QUEUE).

This

would

create

a

subscription

in

the

queue-based

subscription

store,

and

prevent

an

application

running

with

SUBSTORE(MIGRATE)

from

using

the

subscription.

To

recover

from

this

situation,

either

use

SUBSTORE(BROKER)

from

your

application

or

unsubscribe

from

the

subscription

with

SUBSTORE(QUEUE).

For

SUBSTORE(BROKER)

to

function,

or

for

SUBSTORE(MIGRATE)

to

use

the

broker-based

subscription

store,

suitable

versions

of

both

queue

manager

and

broker

need

to

be

available

to

WebSphere

MQ

JMS.

Refer

to

the

README

for

information

regarding

suitable

levels.

Solving

publish/subscribe

problems

This

section

describes

some

problems

that

can

occur

when

you

develop

JMS

client

applications

that

use

the

publish/subscribe

domain.

It

discusses

problems

that

are

specific

to

the

publish/subscribe

domain.

Refer

to

“Handling

errors”

on

page

209

and

“Solving

problems”

on

page

38

for

more

general

troubleshooting

guidance.

Subscriber

options

Chapter

11.

Writing

WebSphere

MQ

JMS

publish/subscribe

applications

229

Incomplete

publish/subscribe

close

down

It

is

important

that

JMS

client

applications

surrender

all

external

resources

when

they

terminate.

To

do

this,

call

the

close()

method

on

all

objects

that

can

be

closed

once

they

are

no

longer

required.

For

the

publish/subscribe

domain,

these

objects

are:

v

TopicConnection

v

TopicSession

v

TopicPublisher

v

TopicSubscriber

The

WebSphere

MQ

classes

for

Java

Message

Service

implementation

eases

this

task

by

using

a

cascading

close.

With

this

process,

a

call

to

close

on

a

TopicConnection

results

in

calls

to

close

on

each

of

the

TopicSessions

it

created.

This

in

turn

results

in

calls

to

close

on

all

TopicSubscribers

and

TopicPublishers

the

sessions

created.

To

ensure

the

proper

release

of

external

resources,

call

connection.close()

for

each

of

the

connections

that

an

application

creates.

There

are

some

circumstances

where

this

close

procedure

might

not

complete.

These

include:

v

Loss

of

a

WebSphere

MQ

client

connection

v

Unexpected

application

termination

In

these

circumstances,

the

close()

is

not

called,

and

external

resources

remain

open

on

the

terminated

application’s

behalf.

The

main

consequences

of

this

are:

Broker

state

inconsistency

The

WebSphere

MQ

Message

Broker

might

contain

registration

information

for

subscribers

and

publishers

that

no

longer

exist.

This

means

that

the

broker

might

continue

forwarding

messages

to

subscribers

that

will

never

receive

them.

Subscriber

messages

and

queues

remain

Part

of

the

subscriber

deregistration

procedure

is

the

removal

of

subscriber

messages.

If

appropriate,

the

underlying

WebSphere

MQ

queue

that

was

used

to

receive

subscriptions

is

also

removed.

If

normal

closure

has

not

occurred,

these

messages

and

queues

remain.

If

there

is

broker

state

inconsistency,

the

queues

continue

to

fill

up

with

messages

that

will

never

be

read.

Additionally,

if

the

broker

resides

on

a

queue

manager

other

than

the

application’s

local

queue

manager,

correct

operation

of

WebSphere

MQ

JMS

depends

on

the

communication

channels

between

the

two

queue

managers.

If

these

channels

fail

for

any

reason,

problems

such

as

the

above

can

occur

until

the

channels

restart.

When

diagnosing

problems

relating

to

channels,

be

careful

not

to

lose

WebSphere

MQ

JMS

control

messages

on

the

transmission

queue.

Subscriber

cleanup

utility

To

avoid

the

problems

associated

with

non-graceful

closure

of

subscriber

objects,

WebSphere

MQ

JMS

includes

a

subscriber

cleanup

utility

that

attempts

to

detect

any

earlier

WebSphere

MQ

JMS

publish/subscribe

problems

that

could

have

resulted

from

other

applications.

This

utility

runs

transparently

in

the

background

and

should

not

affect

other

WebSphere

MQ

JMS

operations.

If

a

large

number

of

problems

are

detected

against

a

given

queue

manager,

you

might

see

some

performance

degradation

while

resources

are

cleaned

up.

Publish/subscribe

problems

230

Using

Java

Note:

Close

all

subscriber

objects

gracefully

whenever

possible,

to

avoid

a

buildup

of

subscriber

problems.

The

exact

behavior

of

the

utility

depends

on

the

subscription

store

in

use:

Subscriber

cleanup

with

SUBSTORE(QUEUE)

When

using

the

queue-based

subscription

store,

cleanup

runs

on

a

queue

manager

when

the

first

TopicConnection

to

use

that

physical

queue

manager

initializes.

If

all

the

TopicConnections

on

a

given

queue

manager

close,

when

the

next

TopicConnection

initializes

for

that

queue

manager,

the

utility

runs

again.

The

cleanup

utility

uses

information

found

on

the

SYSTEM.JMS.ADMIN.QUEUE

and

SYSTEM.JMS.PS.STATUS.QUEUE

to

detect

previously

failed

subscribers.

If

any

are

found,

it

cleans

up

associated

resources

by

deregistering

the

subscriber

from

the

broker,

and

cleaning

up

any

unconsumed

messages

or

temporary

queues

associated

with

the

subscription.

Subscriber

cleanup

with

SUBSTORE(BROKER)

With

the

broker-based

subscription

store,

cleanup

runs

regularly

on

a

background

thread

while

there

is

an

open

TopicConnection

to

a

particular

physical

queue

manager.

One

instance

of

the

cleanup

thread

is

created

for

each

physical

queue

manager

to

which

a

TopicConnection

exists

within

the

JVM.

The

cleanup

utility

uses

information

found

on

the

SYSTEM.JMS.REPORT.QUEUE

(typically

responses

from

the

publish/subscribe

broker)

to

remove

unconsumed

messages

and

temporary

queues

associated

with

a

failed

subscriber.

It

can

be

a

few

seconds

after

the

subscriber

fails

before

the

cleanup

routine

can

remove

the

messages

and

queues.

Two

properties

on

the

TopicConnectionFactory

control

behavior

of

this

cleanup

thread:

CLEANUP

and

CLEANUPINT.

CLEANUPINT

determines

how

often

(in

milliseconds)

cleanup

is

executed

against

any

given

queue

manager.

CLEANUP

takes

one

of

four

possible

values:

CLEANUP(SAFE)

This

is

the

default

value.

The

cleanup

thread

tries

to

remove

unconsumed

subscription

messages

or

temporary

queues

for

failed

subscriptions.

This

mode

of

cleanup

does

not

interfere

with

the

operation

of

other

JMS

applications.

CLEANUP(STRONG)

The

cleanup

thread

performs

as

CLEANUP(SAFE),

but

also

clears

the

SYSTEM.JMS.REPORT.QUEUE

of

any

unrecognized

messages.

This

mode

of

cleanup

can

interfere

with

the

operation

of

JMS

applications

running

with

later

versions

of

WebSphere

MQ

JMS.

If

multiple

JMS

applications

are

using

the

same

queue

manager,

but

using

different

versions

of

WebSphere

MQ

JMS,

only

clients

using

the

most

recent

version

of

WebSphere

MQ

JMS

must

use

this

option.

CLEANUP(NONE)

In

this

special

mode,

no

cleanup

is

performed,

and

no

cleanup

Publish/subscribe

problems

Chapter

11.

Writing

WebSphere

MQ

JMS

publish/subscribe

applications

231

thread

exists.

Additionally,

if

the

application

is

using

the

single-queue

approach,

unconsumed

messages

can

be

left

on

the

queue.

This

option

can

be

useful

if

the

application

is

distant

from

the

queue

manager,

and

especially

if

it

only

publishes

rather

than

subscribes.

However,

one

application

must

clean

up

the

queue

manager

to

deal

with

any

unconsumed

messages.

This

can

be

a

JMS

application

with

CLEANUP(SAFE)

or

CLEANUP(STRONG),

or

the

manual

cleanup

utility

described

in

“Manual

cleanup.”

CLEANUP(ASPROP)

The

style

of

cleanup

to

use

is

determined

by

the

system

property

com.ibm.mq.jms.cleanup,

which

is

queried

at

JVM

startup.

This

property

can

be

set

on

the

Java

command-line

using

the

-D

option,

to

NONE,

SAFE,

or

STRONG.

Any

other

value

causes

an

exception.

If

not

set,

the

property

defaults

to

SAFE.

This

allows

easy

JVM-wide

change

to

the

cleanup

level

without

updating

every

TopicConnectionFactory

used

by

the

system.

This

is

useful

for

applications

or

application

servers

that

use

multiple

TopicConnectionFactory

objects.

Where

multiple

TopicConnections

exist

within

a

JVM

against

the

same

queue

manager,

but

with

differing

values

for

CLEANUP

and

CLEANUPINT,

the

following

rules

are

used

to

determine

behavior:

1.

A

TopicConnection

with

CLEANUP(NONE)

does

not

attempt

to

clean

up

immediately

after

its

subscription

has

closed.

However,

if

another

TopicConnection

is

using

SAFE

or

STRONG

cleanup,

the

cleanup

thread

eventually

cleans

up

after

the

subscription.

2.

If

any

TopicConnection

is

using

STRONG

Cleanup,

the

cleanup

thread

operates

at

STRONG

level.

Otherwise,

if

any

TopicConnection

uses

SAFE

Cleanup,

the

cleanup

thread

operates

at

SAFE

level.

Otherwise,

there

is

no

cleanup

thread.

3.

The

smallest

value

of

CLEANUPINT

for

those

TopicConnections

with

SAFE

or

STRONG

Cleanup

is

used.

Manual

cleanup

If

you

use

the

broker-based

subscription

store,

you

can

operate

cleanup

manually

from

the

command-line.

The

syntax

for

bindings

attach

is:

Cleanup

[-m

<qmgr>]

[-r

<interval>]

[SAFE

|

STRONG

|

FORCE

|

NONDUR]

[-t]

or,

for

client

attach:

Cleanup

-client

[-m

<qmgr>]

-host

<hostname>

[-port

<port>]

[-channel

<channel>]

[-r

<interval>]

[SAFE

|

STRONG

|

FORCE

|

NONDUR]

[-t]

Where:

v

qmgr,

hostname,

port,

and

channel

determine

connection

settings

for

the

queue

manager

to

clean

up.

v

-r

sets

the

interval

between

executions

of

cleanup,

in

minutes.

If

not

set,

cleanup

is

performed

once.

v

-t

enables

tracing,

to

the

mqjms.trc

file.

v

SAFE,

STRONG,

FORCE,

and

NONDUR

set

the

cleanup

level,

as

follows:

Publish/subscribe

problems

232

Using

Java

–

SAFE

and

STRONG

cleanup

behave

like

the

CLEANUP(SAFE)

and

CLEANUP(STRONG)

options

discussed

in

“Subscriber

cleanup

utility”

on

page

230.

–

FORCE

cleanup

behaves

like

STRONG

Cleanup.

However,

STRONG

cleanup

leaves

messages

that

could

not

be

processed

on

the

SYSTEM.JMS.REPORT.QUEUE;

FORCE

cleanup

removes

all

messages

even

if

it

encounters

an

error

during

processing.

Warning

This

is

a

dangerous

option

that

can

leave

an

inconsistent

state

between

the

queue

manager

and

the

broker.

It

cannot

be

run

while

any

WebSphere

MQ

JMS

publish/subscribe

application

is

running

against

the

queue

manager;

doing

so

causes

the

cleanup

utility

to

abort.

–

NONDUR

behaves

like

FORCE

cleanup.

After

clearing

the

SYSTEM.JMS.REPORT.QUEUE,

it

attempts

to

remove

any

remaining

unconsumed

messages

sent

to

non-durable

subscribers.

If

the

queue

manager’s

command

server

is

running

on

any

queue

beginning

SYSTEM.JMS.ND.*,

messages

are

cleared

and

the

queue

itself

might

be

deleted.

Otherwise,

only

SYSTEM.JMS.ND.SUBSCRIBER.QUEUE

and

SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE

are

cleared

of

messages.

Cleanup

from

within

a

program

You

can

use

a

programming

interface

to

the

cleanup

routines

for

use

with

SUBSTORE(BROKER),

through

the

class

com.ibm.mq.jms.Cleanup.

Instances

of

this

class

have

getter/setter

methods

for

each

of

the

connection

properties;

and

also

for

the

cleanup

level

and

interval.

It

exposes

two

methods:

cleanup()

Executes

cleanup

once

run()

Runs

cleanup

at

intervals

determined

by

the

properties

of

the

cleanup

object

This

class

allows

complete

customization

of

publish/subscribe

Cleanup,

but

it

is

intended

for

use

by

system

administration

programs

rather

than

application

programs.

For

more

details,

refer

to

“Cleanup

*”

on

page

308.

Handling

broker

reports

The

WebSphere

MQ

JMS

implementation

uses

report

messages

from

the

broker

to

confirm

registration

and

deregistration

commands.

These

reports

are

normally

consumed

by

the

WebSphere

MQ

classes

for

Java

Message

Service

implementation,

but

under

some

error

conditions,

they

might

remain

on

the

queue.

These

messages

are

sent

to

the

SYSTEM.JMS.REPORT.QUEUE

queue

on

the

local

queue

manager.

A

Java

application,

PSReportDump,

is

supplied

with

WebSphere

MQ

classes

for

Java

Message

Service,

which

dumps

the

contents

of

this

queue

in

plain

text

format.

The

information

can

then

be

analyzed,

either

by

you,

or

by

IBM

support

staff.

You

can

also

use

the

application

to

clear

the

queue

of

messages

after

a

problem

is

diagnosed

or

fixed.

Publish/subscribe

problems

Chapter

11.

Writing

WebSphere

MQ

JMS

publish/subscribe

applications

233

The

compiled

form

of

the

tool

is

installed

in

the

<MQ_JAVA_INSTALL_PATH>/bin

directory.

To

invoke

the

tool,

change

to

this

directory,

then

use

the

following

command:

java

PSReportDump

[-m

queueManager]

[-clear]

where:

-m

queueManager

The

name

of

the

queue

manager

to

use

-clear

Clear

the

queue

of

messages

after

dumping

its

contents

Attention:

Do

not

use

this

option

if

you

are

using

the

broker-based

subscription

store.

Instead,

run

the

manual

cleanup

utility

at

FORCE

level.

Output

is

sent

to

the

screen,

or

you

can

redirect

it

to

a

file.

Other

considerations

If

a

large

number

of

JMS

clients

connect

directly

to

a

WebSphere

MQ

Event

Broker

broker

on

Windows,

and

the

connections

happen

almost

simultaneously,

a

java.net.BindException

address

in

use

exception

might

be

thrown

in

response

to

a

TopicConnection

call.

You

can

try

to

avoid

this

by

catching

the

exception

and

retrying,

or

by

pacing

the

connections.

Publish/subscribe

problems

234

Using

Java

|

|
|
|
|
|

Chapter

12.

Writing

WebSphere

MQ

JMS

1.1

applications

This

chapter

provides

information

to

help

you

write

WebSphere

MQ

JMS

1.1

applications.

It

covers

information

similar

to

that

provided

in

Chapter

10,

“Writing

WebSphere

MQ

JMS

applications,”

on

page

199

and

Chapter

11,

“Writing

WebSphere

MQ

JMS

publish/subscribe

applications,”

on

page

213,

but

from

a

JMS

1.1

perspective.

The

JMS

1.1

model

You

can

write

a

JMS

application

using

two

styles

of

messaging:

v

Point-to-point

v

Publish/subscribe

These

styles

of

messaging

are

also

referred

to

as

messaging

domains

and

you

can

combine

both

styles

of

messaging

in

one

application.

With

versions

of

JMS

before

JMS

1.1,

programming

for

the

point-to-point

domain

uses

one

set

of

interfaces

and

methods,

and

programming

for

the

publish/subscribe

domain

uses

another

set.

The

two

sets

are

similar,

but

separate.

With

JMS

1.1,

you

can

use

a

common

set

of

interfaces

and

methods

that

support

both

messaging

domains.

The

common

interfaces

provide

a

domain

independent

view

of

each

messaging

domain.

Table

17

lists

the

JMS

1.1

domain

independent

interfaces

and

their

corresponding

domain

specific

interfaces.

Table

17.

The

JMS

1.1

domain

independent

interfaces

Domain

independent

interfaces

Domain

specific

interfaces

for

the

point-to-point

domain

Domain

specific

interfaces

for

the

publish/subscribe

domain

ConnectionFactory

QueueConnectionFactory

TopicConnectionFactory

Connection

QueueConnection

TopicConnection

Destination

Queue

Topic

Session

QueueSession

TopicSession

MessageProducer

QueueSender

TopicPublisher

MessageConsumer

QueueReceiver

QueueBrowser

TopicSubscriber

JMS

1.1

retains

all

the

domain

specific

interfaces

in

JMS

1.0.2b,

and

so

existing

applications

can

still

use

these

interfaces.

For

new

applications,

however,

consider

using

the

JMS

1.1

domain

independent

interfaces.

In

the

WebSphere

MQ

JMS

implementation

of

JMS

1.1,

the

administered

objects

are

the

following:

v

ConnectionFactory

v

Queue

v

Topic

Destination

is

an

abstract

superclass

of

Queue

and

Topic,

and

so

an

instance

of

Destination

is

either

a

Queue

or

a

Topic

object.

The

domain

independent

interfaces

©

Copyright

IBM

Corp.

1997,

2004

235

|

|

|
|
|
|
|

|
|

|

|

|

|
|

|
|
|
|
|
|
|

||

|
|
|
|
|

|
|
|

|||

|||

|||

|||

|||

||
|
|

|

|
|
|

|
|

|

|

|

|
|

treat

a

queue

or

a

topic

as

a

destination.

The

messaging

domain

for

a

MessageConsumer

or

a

MessageProducer

object

is

determined

by

whether

the

destination

is

a

queue

or

a

topic.

Building

a

connection

Connections

are

not

created

directly,

but

are

built

using

a

connection

factory.

ConnectionFactory

objects

can

be

stored

in

a

JNDI

namespace,

insulating

the

JMS

application

from

provider

specific

information.

For

information

about

how

to

create

and

store

ConnectionFactory

objects,

see

Chapter

5,

“Using

the

WebSphere

MQ

JMS

administration

tool,”

on

page

41.

Retrieving

a

connection

factory

from

JNDI

To

retrieve

a

ConnectionFactory

object

from

a

JNDI

namespace,

you

must

first

set

up

an

initial

context

as

shown

in

the

following

code:

import

javax.jms.*;

import

javax.naming.*;

import

javax.naming.directory.*;

.

.

.

java.util.Hashtable

environment

=

new

java.util.Hashtable();

environment.put(Context.INITIAL_CONTEXT_FACTORY,

icf);

environment.put(Context.PROVIDER_URL,

url);

Context

ctx

=

new

InitialDirContext(

environment

);

In

this

code:

icf

Defines

a

factory

class

for

the

initial

context

url

Defines

a

context

specific

URL

For

more

details

about

using

a

JNDI

namespace,

see

Sun’s

JNDI

documentation.

Note:

Some

combinations

of

the

JNDI

packages

and

LDAP

service

providers

can

result

in

an

LDAP

error

84.

To

resolve

the

problem,

insert

the

following

line

before

the

call

to

InitialDirContext:

environment.put(Context.REFERRAL,

"throw");

After

an

initial

context

is

obtained,

you

can

retrieve

a

ConnectionFactory

object

from

the

JNDI

namespace

by

using

the

lookup()

method.

The

following

code

retrieves

a

ConnectionFactory

object

named

CF

from

an

LDAP

based

namespace:

ConnectionFactory

factory;

factory

=

(ConnectionFactory)ctx.lookup("cn=CF");

Using

a

connection

factory

to

create

a

connection

You

can

use

the

createConnection()

method

on

a

ConnectionFactory

object

to

create

a

Connection

object,

as

shown

in

the

following

example:

Connection

connection;

connection

=

factory.createConnection();

Both

QueueConnectionFactory

and

TopicConnectionFactory

inherit

the

createConnection()

method

from

ConnectionFactory.

You

can

therefore

use

createConnection()

to

create

a

domain

specific

object,

as

shown

in

the

following

code:

The

JMS

1.1

model

236

Using

Java

|
|
|

|
|

|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|

|

||

||

|

|
|
|

|

|
|
|

|
|

|

|
|

|
|

|
|
|
|

QueueConnectionFactory

QCF;

Connection

connection;

connection

=

QCF.createConnection();

This

code

creates

a

QueueConnection

object.

An

application

can

now

perform

a

domain

independent

operation

on

this

object,

or

an

operation

that

is

applicable

only

to

the

point-to-point

domain.

If

the

application

attempts

to

perform

an

operation

that

is

applicable

only

to

the

publish/subscribe

domain,

an

IllegalStateException

is

thrown

with

the

message

MQJMS1112:

JMS

1.1

Invalid

operation

for

a

domain

specific

object.

This

is

because

the

connection

was

created

from

a

domain

specific

connection

factory.

Creating

a

connection

factory

at

runtime

If

a

JNDI

namespace

is

not

available,

it

is

possible

to

create

a

ConnectionFactory

object

at

runtime.

However,

using

this

method

reduces

the

portability

of

a

JMS

application

because

the

application

must

then

include

references

to

WebSphere

MQ

specific

classes.

The

following

code

creates

a

ConnectionFactory

object

with

all

the

default

settings:

factory

=

new

com.ibm.mq.jms.MQConnectionFactory();

The

default

transport

type

is

bindings.

You

can

change

the

transport

type

for

a

connection

factory

by

using

the

setTransportType()

method.

Here

are

some

examples:

fact.setTransportType(JMSC.MQJMS_TP_BINDINGS_MQ);

//

Bindings

mode

fact.setTransportType(JMSC.MQJMS_TP_CLIENT_MQ_TCPIP);

//

Client

mode

fact.setTransportType(JMSC.MQJMS_TP_DIRECT_TCPIP);

//

Direct

TCP/IP

mode

For

information

about

transport

types

in

each

of

the

specific

messaging

domains,

see

“Choosing

client

or

bindings

transport”

on

page

202,

for

the

point-to-point

domain,

and

“TopicConnectionFactory

administered

objects”

on

page

220,

for

the

publish/subscribe

domain.

Note

that

you

cannot

use

the

point-to-point

style

of

messaging

if

the

transport

type

is

direct.

If

an

application

uses

Connection

and

Session

objects

that

are

created

from

a

ConnectionFactory

object

whose

transport

type

is

direct,

the

application

can

perform

only

publish/subscribe

operations.

A

ConnectionFactory

object

has

the

same

properties

as

those

of

a

QueueConnectionFactory

object

and

a

TopicConnectionFactory

object

combined.

However,

certain

combinations

of

property

settings

are

not

valid

for

a

ConnectionFactory

object.

See

“Properties”

on

page

49

for

more

details.

Starting

the

connection

The

JMS

specification

states

that

a

connection

is

created

in

the

stopped

state.

Until

the

connection

starts,

a

message

consumer

that

is

associated

with

the

connection

cannot

receive

any

messages.

To

start

the

connection,

issue

the

following

command:

connection.start();

Specifying

a

range

of

ports

for

client

connections

If

a

JMS

application

attempts

to

connect

to

a

WebSphere

MQ

queue

manager

in

client

mode,

a

firewall

might

allow

only

those

connections

that

originate

from

specified

ports

or

a

range

of

ports.

In

this

situation,

you

can

use

the

Building

a

connection

Chapter

12.

Writing

WebSphere

MQ

JMS

1.1

applications

237

|
|
|

|
|
|
|
|
|
|

|

|
|
|
|

|

|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|

|
|
|
|

LOCALADDRESS

property

of

a

ConnectionFactory,

QueueConnectionFactory,

or

TopicConnectionFactory

object

to

specify

a

port,

or

a

range

of

points,

that

the

application

can

bind

to.

You

can

set

the

LOCALADDRESS

property

by

using

the

WebSphere

MQ

JMS

administration

tool,

or

by

calling

the

setLocalAddress()

method

in

a

JMS

application.

Here

is

an

example

of

setting

the

property

from

within

an

application:

mqConnectionFactory.setLocalAddress("9.20.0.1(2000,3000)");

When

the

application

connects

to

a

queue

manager

subsequently,

the

application

binds

to

a

local

IP

address

and

port

number

in

the

range

9.20.0.1(2000)

to

9.20.0.1(3000).

Connection

errors

might

occur

if

you

restrict

the

range

of

ports.

If

an

error

occurs,

a

JMSException

is

thrown

with

an

embedded

MQException

that

contains

the

WebSphere

MQ

reason

code,

MQRC_Q_MGR_NOT_AVAILABLE.

An

error

might

occur

if

all

the

ports

in

the

specified

range

are

in

use,

or

if

the

LOCALADDRESS

property

contains

an

IP

address,

host

name,

or

port

number

that

is

not

valid;

a

negative

port

number,

for

example.

Because

the

WebSphere

MQ

JMS

client

might

create

connections

other

than

those

required

by

an

application,

always

consider

specifying

a

range

of

ports.

In

general,

every

Session

created

by

an

application

requires

one

port

and

the

WebSphere

MQ

JMS

client

might

require

three

additional

ports.

If

a

connection

error

does

occur,

increase

the

range

of

ports.

JMS

connection

pooling,

which

is

used

by

default,

might

have

an

effect

on

the

speed

at

which

ports

can

be

reused.

As

a

result,

a

connection

error

might

occur

while

ports

are

being

freed.

Obtaining

a

session

After

a

connection

is

made,

use

the

createSession()

method

on

the

Connection

object

to

obtain

a

session.

The

method

has

two

parameters:

1.

A

boolean

parameter

that

determines

whether

the

session

is

transacted

or

non-transacted.

2.

A

parameter

that

determines

the

acknowledge

mode.

The

simplest

case

is

obtaining

a

non-transacted

session

with

an

acknowledge

mode

of

AUTO_ACKNOWLEDGE,

as

shown

in

the

following

code:

Session

session;

.

.

.

boolean

transacted

=

false;

session

=

connection.createSession(transacted,

Session.AUTO_ACKNOWLEDGE);

Note:

A

connection

is

thread

safe,

but

sessions

(and

the

objects

that

are

created

from

them)

are

not.

The

recommended

practice

for

multithreaded

applications

is

to

use

a

separate

session

for

each

thread.

Building

a

connection

238

Using

Java

|
|
|

|
|
|

|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|

|
|

|

|
|

|
|
|
|
|
|

|
|
|

Destinations

The

Destination

interface

is

the

abstract

superclass

of

Queue

and

Topic.

In

the

WebSphere

MQ

JMS

implementation

of

JMS

1.1,

Queue

and

Topic

objects

encapsulate

addresses

in

WebSphere

MQ

and

the

broker.

For

example,

a

Queue

object

encapsulates

the

name

of

a

WebSphere

MQ

queue.

For

information

about

using

Queue

objects

in

the

point-to-point

domain,

see

“Sending

a

message”

on

page

204

and,

for

information

about

using

Topic

objects

in

the

publish/subscribe

domain,

see

“Using

topics”

on

page

221.

The

following

is

a

overview

from

a

domain

independent

perspective.

Queue

and

Topic

objects

are

retrieved

from

a

JNDI

namespace

in

the

following

way:

Queue

ioQueue;

ioQueue

=

(Queue)ctx.lookup(

qLookup

);

.

.

.

Topic

ioTopic;

ioTopic

=

(Topic)ctx.lookup(

tLookup

);

The

WebSphere

MQ

JMS

implementation

of

Queue

and

Topic

interfaces

are

in

the

com.ibm.mq.jms.MQQueue

and

com.ibm.qm.jms.MQTopic

classes

respectively.

These

classes

contain

properties

that

control

the

behavior

of

WebSphere

MQ

and

the

broker

but,

in

many

cases,

it

is

possible

to

use

the

default

values.

As

well

as

being

able

to

administer

Queue

and

Topic

objects

in

a

JNDI

namespace,

JMS

defines

a

standard

way

of

specifying

a

destination

at

runtime

that

minimizes

the

WebSphere

MQ

specific

code

in

the

application.

This

mechanism

uses

the

Session.createQueue()

and

Session.createTopic()

methods,

which

take

a

string

parameter

that

specifies

the

destination.

The

string

is

still

in

a

provider

specific

format,

but

this

approach

is

more

flexible

than

referring

directly

to

the

provider

classes.

WebSphere

MQ

JMS

accepts

two

forms

for

the

string

parameter

of

createQueue():

v

The

first

is

the

name

of

a

WebSphere

MQ

queue:

public

static

final

String

QUEUE

=

"SYSTEM.DEFAULT.LOCAL.QUEUE"

;

.

.

.

ioQueue

=

session.createQueue(

QUEUE

);

v

The

second,

and

more

powerful,

form

is

a

uniform

resource

identifier

(URI).

This

form

allows

you

to

specify

a

remote

queue,

which

is

a

queue

on

a

queue

manager

other

than

the

one

to

which

you

are

connected.

It

also

allows

you

to

set

the

other

properties

of

a

com.ibm.mq.jms.MQQueue

object.

The

URI

for

a

queue

begins

with

the

sequence

queue://,

followed

by

the

name

of

the

queue

manager

on

which

the

queue

resides.

This

is

followed

by

a

further

forward

slash

(/),

the

name

of

the

queue,

and,

optionally,

a

list

of

name-value

pairs

that

set

the

remaining

queue

properties.

For

example,

the

URI

equivalent

of

the

previous

example

is

the

following:

ioQueue

=

session.createQueue("queue:///SYSTEM.DEFAULT.LOCAL.QUEUE");

The

name

of

the

queue

manager

is

omitted.

This

is

interpreted

to

mean

as

the

queue

manager

to

which

the

owning

Connection

object

is

connected

at

the

time

when

the

Queue

object

is

used.

Destinations

Chapter

12.

Writing

WebSphere

MQ

JMS

1.1

applications

239

|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|

|
|
|

Note:

When

sending

a

message

to

a

cluster,

leave

the

queue

manager

field

in

the

Queue

object

blank.

This

enables

an

MQOPEN

call

to

be

performed

in

BIND_NOT_FIXED

mode,

which

allows

the

queue

manager

to

be

determined.

Otherwise

an

exception

is

returned

reporting

that

the

Queue

object

cannot

be

found.

This

applies

when

using

JNDI

or

defining

a

queue

at

runtime.

WebSphere

MQ

JMS

accepts

a

topic

URI

for

the

string

parameter

of

createTopic(),

as

shown

in

the

following

example:

Topic

topic

=

session.createTopic(

"topic://Sport/Football/Spurs/Results"

);

Although

the

createTopic()

method

is

in

the

JMS

specification,

the

format

of

the

string

argument

is

provider

specific.

Therefore,

using

this

method

can

make

your

code

non-portable.

Other

ways

of

creating

a

Topic

object

at

runtime

are

as

follows:

Using

MQTopic(..)

This

way

requires

a

reference

to

the

WebSphere

MQ

JMS

implementation

of

the

Topic

interface,

and

therefore

renders

the

code

non-portable.

The

constructor

takes

one

argument,

which

must

be

a

URI.

For

a

WebSphere

MQ

JMS

topic,

this

must

be

of

the

form:

topic://TopicName[?property=value[&property=value]*]

For

example,

the

following

code

creates

a

topic

for

nonpersistent

messages

with

a

priority

of

5:

//

Create

a

Topic

using

the

one-argument

MQTopic

constructor

String

tSpec

=

"Sport/Football/Spurs/Results?persistence=1&priority=5";

Topic

rtTopic

=

new

MQTopic(

"topic://"

+

tSpec

);

Using

MQTopic(),

then

setBaseTopicName(..)

This

way

uses

the

default

MQTopic

constructor,

and

therefore

renders

the

code

non-portable.

Here

is

an

example:

//

Create

a

Topic

using

the

default

MQTopic

constructor

Topic

rtTopic

=

new

MQTopic();

.

.

.

//

Set

the

object

properties

using

the

setter

methods

((MQTopic)rtTopic).setBaseTopicName(

"Sport/Football/Spurs/Results"

);

((MQTopic)rtTopic).setPersistence(1);

((MQTopic)rtTopic).setPriority(5);

Using

session.createTemporaryTopic()

A

temporary

topic

is

created

by

a

session,

and

only

message

consumers

created

by

the

same

session

can

consume

messages

from

the

topic.

A

TemporaryTopic

object

is

created

as

follows:

//

Create

a

TemporaryTopic

using

the

session

factory

method

Topic

rtTopic

=

session.createTemporaryTopic();

Sending

a

message

An

application

sends

messages

using

a

MessageProducer

object.

A

MessageProducer

object

is

normally

created

for

a

specific

destination

so

that

all

messages

sent

using

that

message

producer

are

sent

to

the

same

destination.

The

destination

is

specified

using

either

a

Queue

or

a

Topic

object.

Queue

and

Topic

objects

can

be

created

at

runtime,

or

built

and

stored

in

a

JNDI

namespace,

as

described

in

“Destinations”

on

page

239.

Destinations

240

Using

Java

|
|
|
|
|
|

|
|

|

|
|
|

|

|
|
|

|
|

|

|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|

|
|
|
|
|
|

After

a

Queue

or

a

Topic

object

is

obtained,

an

application

can

pass

the

object

to

the

createProducer()

method

to

create

a

MessageProducer

object,

as

shown

in

the

following

example:

MessageProducer

messageProducer

=

session.createProducer(ioDestination);

The

parameter

ioDestination

can

be

either

a

Queue

or

a

Topic

object.

The

application

can

then

use

the

send()

method

on

the

MessageProducer

object

to

send

messages.

Here

is

an

example:

messageProducer.send(outMessage);

You

can

use

the

send()

method

to

send

messages

in

either

messaging

domain.

The

nature

of

the

destination

determines

the

actual

domain

used.

However,

TopicPublisher,

the

sub-interface

for

MessageProducer

that

is

specific

to

the

publish/subscribe

domain,

uses

a

publish()

method

instead.

An

application

can

create

a

MessageProducer

object

with

no

specified

destination.

In

this

case,

the

application

must

specify

the

destination

in

the

send()

method.

Message

types

JMS

provides

several

message

types,

each

of

which

embodies

some

knowledge

of

its

content.

To

avoid

referring

to

the

provider

specific

class

names

for

the

message

types,

methods

for

creating

messages

are

provided

on

a

Session

object.

For

example,

a

text

message

can

be

created

in

the

following

manner:

System.out.println(

"Creating

a

TextMessage"

);

TextMessage

outMessage

=

session.createTextMessage();

System.out.println("Adding

Text");

outMessage.setText(outString);

Here

are

the

message

types

you

can

use:

v

BytesMessage

v

MapMessage

v

ObjectMessage

v

StreamMessage

v

TextMessage

Details

of

these

types

are

in

Chapter

15,

“JMS

interfaces

and

classes,”

on

page

295.

Receiving

a

message

An

application

receives

messages

using

a

MessageConsumer

object.

The

application

creates

a

MessageConsumer

object

by

using

the

createConsumer()

method

on

a

Session

object.

This

method

has

a

destination

parameter

that

defines

where

the

messages

are

received

from.

See

“Destinations”

on

page

239

for

details

of

how

to

create

a

destination,

which

is

either

a

Queue

or

a

Topic

object.

In

the

point-to-point

domain,

the

following

code

creates

a

MessageConsumer

object

and

then

uses

the

object

to

receive

a

message:

MessageConsumer

messageConsumer

=

session.createConsumer(ioQueue);

Message

inMessage

=

messageConsumer.receive(1000);

The

parameter

on

the

receive()

call

is

a

timeout

in

milliseconds.

This

parameter

defines

how

long

the

method

must

wait

if

no

message

is

available

immediately.

Sending

a

message

Chapter

12.

Writing

WebSphere

MQ

JMS

1.1

applications

241

|
|
|

|

|

|
|

|

|
|
|
|

|
|

|

|
|
|

|

|
|
|
|

|

|

|

|

|

|

|

|
|

|
|
|
|
|

|
|

|
|

|
|

You

can

omit

this

parameter;

in

which

case,

the

call

blocks

until

a

suitable

message

arrives.

If

you

do

not

want

any

delay,

use

the

receiveNoWait()

method.

The

receive()

methods

return

a

message

of

the

appropriate

type.

For

example,

suppose

a

text

message

is

put

on

a

queue.

When

the

message

is

received,

the

object

that

is

returned

is

an

instance

of

TextMessage.

To

extract

the

content

from

the

body

of

the

message,

it

is

necessary

to

cast

from

the

generic

Message

class

(which

is

the

declared

return

type

of

the

receive()

methods)

to

the

more

specific

subclass,

such

as

TextMessage.

If

the

received

message

type

is

not

known,

you

can

use

the

instanceof

operator

to

determine

which

type

it

is.

It

is

good

practice

always

to

test

the

message

class

before

casting

so

that

unexpected

errors

can

be

handled

gracefully.

The

following

code

uses

the

instanceof

operator

and

shows

how

to

extract

the

content

of

a

text

message:

if

(inMessage

instanceof

TextMessage)

{

String

replyString

=

((TextMessage)

inMessage).getText();

.

.

.

}

else

{

//

Print

error

message

if

Message

was

not

a

TextMessage.

System.out.println("Reply

message

was

not

a

TextMessage");

}

JMS

provides

two

types

of

message

consumer:

Nondurable

message

consumer

A

nondurable

message

consumer

receives

messages

from

its

chosen

destination

only

if

the

messages

are

available

while

the

consumer

is

active.

In

the

point-to-point

domain,

whether

a

consumer

receives

messages

that

are

sent

while

the

consumer

is

inactive

depends

on

how

WebSphere

MQ

is

configured

to

support

that

consumer.

In

the

publish/subscribe

domain,

a

consumer

does

not

receive

messages

that

are

sent

while

the

consumer

is

inactive.

Durable

topic

subscriber

A

durable

topic

consumer

receives

all

the

messages

sent

to

a

destination,

including

those

sent

while

the

consumer

is

inactive.

The

following

sections

describe

how

to

create

a

durable

topic

subscriber,

and

how

to

configure

WebSphere

MQ

and

the

broker

to

support

either

type

of

message

consumer.

Creating

durable

topic

subscribers

You

cannot

create

a

durable

topic

subscriber

if

the

transport

type

is

direct.

Durable

topic

subscribers

are

used

when

an

application

needs

to

receive

messages

that

are

published

even

while

the

application

is

inactive.

Creating

a

durable

topic

subscriber

is

very

similar

to

creating

a

nondurable

message

consumer,

but

you

must

also

provide

a

name

that

uniquely

identifies

the

subscription,

as

in

the

following

example:

//

Create

a

durable

subscriber,

supplying

a

uniquely-identifying

name

TopicSubscriber

sub

=

session.createDurableSubscriber(

topic,

"D_SUB_000001"

);

Receiving

a

message

242

Using

Java

|
|

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|

|
|
|

|
|
|

|

|

|
|
|
|
|

|
|

A

durable

topic

subscriber

is

created

for

the

queue

manager

specified

by

the

QMANAGER

property

of

the

MQTopicConnectionFactory

object.

If

there

is

a

subsequent

attempt

to

create

a

durable

topic

subscriber

with

the

same

name

for

a

different

queue

manager,

a

new

and

completely

independent

durable

topic

subscriber

is

returned.

Nondurable

message

consumers

in

the

publish/subscribe

domain

automatically

deregister

themselves

when

their

close()

method

is

called,

or

when

they

fall

out

of

scope.

However,

if

you

want

to

terminate

a

durable

subscription,

you

must

explicitly

notify

the

broker.

To

do

this,

use

the

unsubscribe()

method

of

the

session

and

pass

in

the

name

that

uniquely

identifies

the

subscription:

//

Unsubscribe

the

durable

subscriber

created

above

session.unsubscribe(

"D_SUB_000001"

);

Message

selectors

JMS

allows

an

application

to

specify

that

only

messages

that

satisfy

certain

criteria

are

returned

by

successive

receive()

calls.

When

creating

a

MessageConsumer

object,

you

can

provide

a

string

that

contains

an

SQL

(Structured

Query

Language)

expression,

which

determines

which

messages

are

retrieved.

This

SQL

expression

is

called

a

selector.

The

selector

can

refer

to

fields

in

the

JMS

message

header

as

well

as

fields

in

the

message

properties

(these

are

effectively

application

defined

header

fields).

Details

of

the

header

field

names,

as

well

as

the

syntax

for

an

SQL

selector,

are

in

Chapter

13,

“JMS

messages,”

on

page

257.

The

following

example

shows

how

to

select

messages

based

on

a

user

defined

property

called

myProp:

messageConsumer

=

session.createConsumer(ioQueue,

"myProp

=

’blue’");

Note:

The

JMS

specification

does

not

permit

the

selector

associated

with

a

message

consumer

to

be

changed.

After

a

message

consumer

is

created,

the

selector

is

fixed

for

the

lifetime

of

that

consumer.

This

means

that,

if

you

require

different

selectors,

you

must

create

new

message

consumers.

In

the

publish/subscribe

domain,

you

can

control

whether

the

JMS

client

or

the

broker

performs

message

filtering

by

setting

the

MSGSELECTION

property

on

the

ConnectionFactory

object.

If

the

broker

is

capable

of

performing

message

selection,

it

is

generally

preferable

to

let

the

broker

do

it

because

it

reduces

the

amount

of

work

done

by

the

client.

However,

if

the

broker

is

very

heavily

loaded,

it

might

be

preferable

to

let

the

client

perform

message

selection

instead.

Suppressing

local

publications

You

can

create

a

message

consumer

that

ignores

publications

published

on

the

consumer’s

own

connection.

To

do

this,

set

the

third

parameter

on

the

createConsumer()

call

to

true,

as

shown

in

the

following

example:

//

Create

a

nondurable

message

consumer

with

the

noLocal

option

set

MessageConsumer

con

=

session.createConsumer(

topic,

null,

true

);

The

example

that

follows

shows

how

to

create

a

durable

topic

subscriber

that

applies

a

selector

and

ignores

local

publications:

//

Create

a

durable,

noLocal

subscriber

with

a

selector

applied

String

selector

=

"company

=

’IBM’";

TopicSubscriber

sub

=

session.createDurableSubscriber(

topic,

"D_SUB_000001",

selector,

true

);

Receiving

a

message

Chapter

12.

Writing

WebSphere

MQ

JMS

1.1

applications

243

|
|
|
|
|

|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|

|
|

|

|
|
|
|

|
|
|
|
|
|

|

|
|
|

|
|

|
|

|
|
|
|

Configuring

the

consumer

queue

You

cannot

configure

a

consumer

queue

if

the

transport

type

is

direct.

In

the

publish/subscribe

messaging

domain,

you

can

configure

message

consumers

in

two

ways:

v

The

multiple

queue

approach.

Each

consumer

has

its

own

exclusive

queue

and

retrieves

all

its

messages

from

this

queue.

JMS

creates

a

new

queue

for

each

consumer.

v

The

shared

queue

approach.

Each

consumer

retrieves

its

messages

from

a

queue

that

is

shared

with

other

consumers.

This

approach

requires

only

one

queue

to

serve

multiple

consumers.

It

is

the

default

approach

used

with

WebSphere

MQ

JMS.

You

can

choose

which

approach

to

use,

and

configure

which

queues

to

use.

In

general,

there

is

a

modest

performance

advantage

if

you

use

the

shared

queue

approach.

For

systems

with

a

high

throughput,

there

are

also

large

system

management

and

administrative

advantages

because

of

the

significant

reduction

in

the

number

of

queues

required.

In

some

situations,

however,

there

are

good

reasons

for

using

the

multiple

queue

approach:

v

In

theory,

you

can

store

more

messages.

A

WebSphere

MQ

queue

cannot

hold

more

than

640000

messages

and

so,

in

the

shared

queue

approach,

the

total

number

of

messages

for

all

the

message

consumers

that

share

the

queue

cannot

exceed

this

limit.

This

issue

is

more

significant

for

durable

topic

subscribers,

because

the

lifetime

of

a

durable

topic

subscriber

is

usually

much

longer

than

that

of

a

nondurable

message

consumer.

Therefore,

more

messages

might

accumulate

for

a

durable

subscriber.

v

The

WebSphere

MQ

administration

of

consumer

queues

is

easier.

For

certain

applications,

an

administrator

might

want

to

monitor

the

state

and

depth

of

particular

consumer

queues.

This

task

is

much

simpler

when

each

consumer

has

its

own

queue.

Default

configuration

The

default

WebSphere

MQ

JMS

configuration

for

the

publish/subscribe

domain

uses

the

following

shared

consumer

queues:

v

SYSTEM.JMS.ND.SUBSCRIBER.QUEUE

for

nondurable

message

consumers

v

SYSTEM.JMS.D.SUBSCRIBER.QUEUE

for

durable

topic

subscribers

These

are

created

for

you

when

you

run

the

MQJMS_PSQ.MQSC

script.

If

required,

you

can

specify

alternative

WebSphere

MQ

queues.

You

can

also

change

the

configuration

to

use

the

multiple

queue

approach.

Configuring

nondurable

message

consumers

You

can

specify

the

name

of

the

consumer

queue

for

nondurable

message

consumers

in

either

of

the

following

ways:

v

Use

the

WebSphere

MQ

JMS

administration

tool

to

set

the

BROKERSUBQ

property.

v

Use

the

setBrokerSubQueue()

method

in

your

application.

The

queue

name

you

provide

must

start

with

the

following

characters:

SYSTEM.JMS.ND.

Receiving

a

message

244

Using

Java

|

|

|
|

|

|
|

|

|
|
|

|

|
|
|
|

|
|

|

|
|
|
|
|
|

|

|
|
|

|
|
|

|

|

|

|
|

|
|
|

|
|

|

|

|

To

use

the

shared

queue

approach,

specify

the

complete

name

of

the

shared

queue.

The

queue

must

exist

before

you

can

create

a

subscription.

To

use

the

multiple

queue

approach,

specify

a

queue

name

that

ends

with

an

asterisk

(*).

Subsequently,

when

an

application

creates

a

nondurable

message

consumer

specifying

this

queue

name,

WebSphere

MQ

JMS

creates

a

temporary

dynamic

queue

for

exclusive

use

by

that

consumer.

With

the

multiple

queue

approach,

therefore,

all

the

required

queues

are

created

dynamically.

If

you

use

the

multiple

queue

approach,

you

cannot

specify

the

complete

name

of

a

queue,

only

a

prefix.

This

allows

you

to

create

different

domains

of

consumer

queues.

For

example,

you

can

use:

SYSTEM.JMS.ND.MYDOMAIN.*

The

characters

that

precede

the

asterisk

(*)

are

used

as

the

prefix,

so

that

all

dynamic

queues

for

nondurable

message

consumers

specifying

this

prefix

have

queue

names

that

start

with

SYSTEM.JMS.ND.MYDOMAIN.

Configuring

durable

topic

subscribers

As

stated

previously,

there

might

still

be

good

reasons

to

use

the

multiple

queue

approach

for

durable

topic

subscribers.

Durable

topic

subscribers

are

likely

to

have

a

longer

life

span,

and

so

it

is

possible

for

a

large

number

of

messages

for

a

durable

subscriber

to

accumulate

on

a

queue.

The

name

of

the

consumer

queue

for

a

durable

topic

subscriber

is

a

property

of

a

Topic

object.

This

allows

you

to

specify

a

number

of

different

consumer

queue

names

without

having

to

create

multiple

objects

starting

from

a

ConnectionFactory

object.

You

can

specify

the

name

of

the

consumer

queue

for

durable

topic

subscribers

in

either

of

the

following

ways:

v

Use

the

WebSphere

MQ

JMS

administration

tool

to

set

the

BROKERDURSUBQ

property.

v

Use

the

setBrokerDurSubQueue()

method

in

your

application.

The

queue

name

you

provide

must

start

with

the

following

characters:

SYSTEM.JMS.D.

To

use

the

shared

queue

approach,

specify

the

complete

name

of

the

shared

queue.

The

queue

must

exist

before

you

can

create

a

subscription.

To

use

the

multiple

queue

approach,

specify

a

queue

name

that

ends

with

an

asterisk

(*).

Subsequently,

when

an

application

creates

a

durable

topic

subscriber

specifying

this

queue

name,

WebSphere

MQ

JMS

creates

a

permanent

dynamic

queue

for

exclusive

use

by

that

subscriber.

With

the

multiple

queue

approach,

therefore,

all

the

required

queues

are

created

dynamically.

Here

is

an

example

of

using

the

multiple

queue

approach:

//

Set

the

MQTopic

durable

subscriber

queue

name

using

//

the

multi-queue

approach

sportsTopic.setBrokerDurSubQueue("SYSTEM.JMS.D.FOOTBALL.*");

After

the

Topic

object

is

initialized,

it

can

be

passed

into

the

createDurableSubscriber()

method

of

a

Session

object

to

create

a

durable

topic

subscriber:

Receiving

a

message

Chapter

12.

Writing

WebSphere

MQ

JMS

1.1

applications

245

|
|

|
|
|
|
|

|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|

|
|

|
|

|

|

|

|
|

|
|
|
|
|

|

|
|
|

|
|
|

//

Create

a

durable

subscriber

using

our

earlier

Topic

TopicSubscriber

sub

=

session.createDurableSubscriber(sportsTopic,

"D_SUB_SPORT_001");

If

you

use

the

multiple

queue

approach,

you

cannot

specify

the

complete

name

of

a

queue,

only

a

prefix.

This

allows

you

to

create

different

domains

of

consumer

queues.

For

example,

you

can

use:

SYSTEM.JMS.D.MYDOMAIN.*

The

characters

that

precede

the

asterisk

(*)

are

used

as

the

prefix,

so

that

all

dynamic

queues

for

durable

topic

subscribers

specifying

this

prefix

have

queue

names

that

start

with

SYSTEM.JMS.D.MYDOMAIN.

You

cannot

change

the

consumer

queue

of

a

durable

topic

subscriber.

If,

for

example,

you

want

to

move

from

the

multiple

queue

approach

to

the

single

queue

approach,

you

must

first

delete

the

old

subscriber

using

the

unsubscribe()

method

and

then

create

a

new

subscriber.

Deleting

the

old

subscriber

also

deletes

any

unconsumed

messages

for

that

subscriber.

Subscription

stores

A

subscription

store

is

not

used

if

the

transport

type

is

direct.

When

an

application

creates

a

message

consumer

in

the

publish/subscribe

domain,

information

about

the

subscription

is

created

at

the

same

time.

WebSphere

MQ

JMS

maintains

a

persistent

store

of

subscription

information

called

a

subscription

store.

A

subscription

store

is

used

to

reopen

durable

topic

subscribers

and

to

clean

up

after

a

nondurable

message

consumer

fails.

A

subscription

store

can

be

managed

by

the

local

queue

manager

or

by

the

publish/subscribe

broker.

The

SUBSTORE

property

of

a

ConnectionFactory

object

determines

the

location

of

a

subscription

store.

SUBSTORE

has

three

possible

values:

SUBSTORE(QUEUE)

Subscription

information

is

stored

in

the

queues,

SYSTEM.JMS.ADMIN.QUEUE

and

SYSTEM.JMS.PS.STATUS.QUEUE,

on

the

local

queue

manager.

WebSphere

MQ

JMS

maintains

an

extra

connection

to

each

queue

manager

used

by

applications.

This

connection

is

used

to

detect

an

application

that

fails

and

to

clean

up

after

the

application.

In

a

busy

system,

this

might

cause

the

queue

manager

logs

to

fill

up

resulting

in

errors

from

both

the

queue

manager

and

the

applications

connected

to

it.

If

you

experience

these

problems,

the

system

administrator

can

add

extra

log

files

or

data

sets

to

the

queue

manager.

Alternatively,

you

can

reduce

the

STATREFRESHINT

property

of

the

ConnectionFactory

object.

This

causes

the

long

running

transaction

to

be

refreshed

more

frequently

allowing

the

logs

to

reset

themselves.

After

a

nondurable

message

consumer

fails,

the

following

occurs:

v

Subscription

information

related

to

the

failed

consumer

remains

on

the

two

queues

implementing

the

subscription

store.

This

information

can

be

removed

by

a

cleanup

utility

supplied

with

WebSphere

MQ

JMS.

See

“Consumer

cleanup

utility

for

the

publish/subscribe

domain”

on

page

248

for

more

information.

v

Messages

continue

to

be

delivered

to

the

consumer

until

the

cleanup

utility

runs.

Receiving

a

message

246

Using

Java

|
|
|

|
|
|

|

|
|
|

|
|
|
|
|

|

|

|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|

|
|

This

option

is

provided

for

compatibility

with

versions

of

MQSeries

JMS.

SUBSTORE(BROKER)

Subscription

information

is

stored

by

the

publish/subscribe

broker

used

by

the

application,

not

in

WebSphere

MQ

queues.

This

means

that,

if

a

JMS

client

fails,

the

broker

can

clean

up

the

resources

associated

with

the

JMS

client

without

having

to

wait

for

the

JMS

client

to

reconnect.

See

the

README

provided

with

WebSphere

MQ

JMS

for

information

about

which

release

levels

of

WebSphere

MQ

and

the

broker

support

this

option.

If

a

nondurable

message

consumer

fails,

the

subscription

is

de-registered

from

the

broker

as

soon

as

possible.

In

response

to

the

de-registration,

the

broker

puts

a

report

message

on

the

queue,

SYSTEM.JMS.REPORT.QUEUE.

This

message

is

used

to

clean

up

after

the

failed

consumer.

If

you

use

this

option,

a

separate

cleanup

thread

is

run

in

the

background.

By

default,

the

cleanup

utility

runs

once

every

10

minutes,

but

you

can

change

this

interval

by

setting

the

CLEANUPINT

property

of

the

ConnectionFactory

object.

To

customize

the

actions

performed

by

the

cleanup

utility,

use

the

CLEANUP

property

of

the

ConnectionFactory

object.

For

more

information

about

how

the

cleanup

utility

works,

see

“Consumer

cleanup

utility

for

the

publish/subscribe

domain”

on

page

248.

SUBSTORE(MIGRATE)

This

is

the

default

value.

This

option

dynamically

selects

a

queue

based

or

a

broker

based

subscription

store

depending

on

the

release

levels

of

WebSphere

MQ

and

the

publish/subscribe

broker

that

are

installed.

If

both

WebSphere

MQ

and

the

broker

are

capable

of

supporting

the

SUBSTORE(BROKER)

option,

this

option

behaves

like

the

SUBSTORE(BROKER)

option;

otherwise,

it

behaves

like

the

SUBSTORE(QUEUE)

option.

If

this

option

behaves

like

the

SUBSTORE(BROKER)

option,

the

option

additionally

migrates

durable

subscription

information

from

the

queue

based

subscription

store

to

the

broker

based

store.

This

migration

occurs

the

first

time

a

durable

subscription

is

opened

when

both

WebSphere

MQ

and

the

broker

are

capable

of

supporting

a

broker

based

subscription

store.

Only

information

related

to

the

subscription

being

opened

is

migrated.

Information

related

to

other

subscriptions

is

left

in

the

queue

based

subscription

store.

This

option

therefore

provides

an

easy

migration

path

from

older

versions

of

WebSphere

MQ

JMS,

WebSphere

MQ,

and

the

publish/subscribe

broker.

Migration

and

coexistence

considerations

Except

when

the

SUBSTORE(MIGRATE)

option

is

used,

a

queue

based

subscription

store

and

a

broker

based

subscription

store

are

entirely

independent.

A

durable

subscription

is

created

in

the

subscription

store

specified

by

the

ConnectionFactory

object.

If

there

is

a

subsequent

attempt

to

create

a

durable

subscription

with

the

same

name

and

ClientID,

but

with

the

other

subscription

store,

a

new

durable

subscription

is

created.

When

a

connection

uses

the

SUBSTORE(MIGRATE)

option,

subscription

information

is

automatically

migrated

from

the

queue

based

subscription

store

to

the

broker

based

subscription

store

when

the

application

calls

the

createDurableSubscriber()

method.

If

a

durable

subscription

with

a

matching

name

and

ClientID

already

exists

in

the

broker

based

subscription

store,

the

migration

cannot

complete

and

an

exception

is

thrown

by

the

createDurableSubscriber()

call.

Receiving

a

message

Chapter

12.

Writing

WebSphere

MQ

JMS

1.1

applications

247

|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

After

a

subscription

is

migrated,

it

is

important

not

to

access

the

subscription

from

an

application

using

an

older

version

of

WebSphere

MQ

JMS,

or

from

an

application

running

with

the

SUBSTORE(QUEUE)

option.

Doing

either

of

these

creates

a

subscription

in

the

queue

based

subscription

store

and

prevents

an

application

running

with

the

SUBSTORE(MIGRATE)

option

from

using

the

subscription.

To

recover

from

this

situation

if

it

occurs,

run

your

application

with

the

SUBSTORE(BROKER)

option,

or

unsubscribe

from

the

subscription

that

is

held

in

the

queue

based

subscription

store.

Asynchronous

delivery

An

application

can

call

the

MessageConsumer.receive()

method

to

receive

messages.

As

an

alternative,

an

application

can

register

a

method

that

is

called

automatically

when

a

suitable

message

is

available.

This

is

called

asynchronous

delivery

of

messages.

The

following

code

illustrates

the

mechanism:

import

javax.jms.*;

public

class

MyClass

implements

MessageListener

{

//

The

method

that

will

be

called

by

JMS

when

a

message

//

is

available.

public

void

onMessage(Message

message)

{

System.out.println("message

is

"+message);

//

application

specific

processing

here

.

.

.

}

}

.

.

.

//

In

Main

program

(possibly

of

some

other

class)

MyClass

listener

=

new

MyClass();

messageConsumer.setMessageListener(listener);

//

main

program

can

now

continue

with

other

application

specific

//

behavior.

Note:

Using

asynchronous

delivery

with

a

message

consumer

marks

the

entire

session

as

using

asynchronous

delivery.

An

application

cannot

call

the

receive()

methods

of

a

message

consumer

if

the

message

consumer

is

associated

with

a

session

that

is

using

asynchronous

delivery.

Consumer

cleanup

utility

for

the

publish/subscribe

domain

To

avoid

the

problems

associated

with

message

consumer

objects

in

the

publish/subscribe

domain

not

closing

gracefully,

WebSphere

MQ

JMS

supplies

a

consumer

cleanup

utility

that

attempts

to

clean

up

the

resources

associated

with

a

consumer

that

has

failed.

This

utility

runs

in

the

background

and

does

not

affect

other

WebSphere

MQ

JMS

operations.

If

the

utility

detects

a

large

number

of

problems

associated

with

a

given

queue

manager,

you

might

see

some

performance

degradation

while

resources

are

being

cleaned

up.

Note:

Whenever

possible,

close

all

message

consumer

objects

gracefully

to

avoid

an

accumulation

of

these

types

of

problems.

Receiving

a

message

248

Using

Java

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|

|
|

If

applications

use

the

domain

independent

classes,

the

cleanup

utility

is

invoked

only

if

the

applications

perform

publish/subscribe

operations,

such

as

creating

a

Topic

object,

or

creating

a

MessageConsumer

object

with

a

Topic

object

retrieved

from

a

JNDI

namespace.

This

is

to

prevent

the

cleanup

utility

from

being

invoked

in

an

environment

in

which

applications

are

performing

only

point-to-point

operations.

The

exact

behavior

of

the

cleanup

utility

depends

on

where

the

subscription

store

is

located:

Queue

based

subscription

store

For

a

queue

based

subscription

store,

the

cleanup

utility

runs

against

a

queue

manager

when

the

first

Connection

object

to

use

that

queue

manager

initializes.

If

all

the

Connection

objects

that

use

a

given

queue

manager

close,

the

utility

runs

again

only

when

the

next

Connection

object

to

use

that

queue

manager

initializes.

The

cleanup

utility

uses

the

information

in

the

queues,

SYSTEM.JMS.ADMIN.QUEUE

and

SYSTEM.JMS.PS.STATUS.QUEUE,

to

detect

nondurable

message

consumers

that

have

failed

previously.

If

it

finds

a

failed

consumer,

the

utility

cleans

up

the

resources

associated

with

the

consumer

by

de-registering

the

consumer

from

the

broker

and

deleting

its

consumer

queue,

provided

it

is

not

a

shared

queue,

and

any

unconsumed

messages

on

the

queue.

Broker

based

subscription

store

For

a

broker

based

subscription

store,

the

cleanup

utility

runs

at

regular

intervals

on

a

background

thread

while

there

is

at

least

one

Connection

object

that

uses

a

given

queue

manager.

One

cleanup

thread

is

created

for

each

queue

manager

for

which

a

Connection

object

exists

within

the

JVM.

The

cleanup

utility

uses

information

in

the

queue,

SYSTEM.JMS.REPORT.QUEUE

(the

messages

in

this

queue

are

typically

report

messages

from

the

publish/subscribe

broker),

to

perform

any

necessary

cleanup.

This

might

involve

deleting

consumer

queues

and

unconsumed

messages

that

are

no

longer

required.

Two

properties

of

a

ConnectionFactory

object

control

the

behavior

of

the

cleanup

thread:

CLEANUPINT

and

CLEANUP.

CLEANUPINT

determines

how

often,

in

milliseconds,

the

cleanup

utility

is

run

against

any

given

queue

manager.

CLEANUP

has

four

possible

values:

CLEANUP(SAFE)

This

is

the

default

value.

The

cleanup

thread

tries

to

delete

any

consumer

queues

and

unconsumed

messages

that

are

no

longer

required.

This

mode

of

cleanup

does

not

interfere

with

the

operation

of

other

JMS

applications.

CLEANUP(STRONG)

The

cleanup

thread

performs

like

the

CLEANUP(SAFE)

option,

but

it

also

deletes

any

messages

on

the

queue,

SYSTEM.JMS.REPORT.QUEUE,

that

it

does

not

recognize.

This

mode

of

cleanup

can

interfere

with

the

operation

of

JMS

applications

running

with

later

versions

of

WebSphere

MQ

JMS.

If

multiple

JMS

applications

are

using

the

same

queue

manager,

but

Publish/subscribe

domain

consumer

cleanup

utility

Chapter

12.

Writing

WebSphere

MQ

JMS

1.1

applications

249

|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|

using

different

versions

of

WebSphere

MQ

JMS,

only

applications

using

the

most

recent

version

of

WebSphere

MQ

JMS

must

use

this

option.

CLEANUP(NONE)

In

this

special

mode,

no

cleanup

is

performed,

and

consumer

queues

and

unconsumed

messages

that

are

no

longer

required

are

not

deleted.

This

option

can

be

useful

if

the

application

and

the

queue

manager

are

on

a

different

systems,

especially

if

the

application

only

sends

messages

and

does

not

receive

them.

At

some

time,

however,

cleanup

must

be

initiated

to

delete

consumer

queues

and

unconsumed

messages

that

are

no

longer

required.

This

can

be

done

by

a

JMS

application

that

uses

a

ConnectionFactory

object

with

the

property

CLEANUP(SAFE)

or

CLEANUP(STRONG),

or

by

using

the

manual

cleanup

utility,

which

is

described

in

“Manual

cleanup.”

CLEANUP(ASPROP)

The

mode

of

cleanup

is

determined

by

the

system

property

com.ibm.mq.jms.cleanup,

which

is

queried

when

the

JVM

starts.

This

property

can

be

set

on

the

Java

command

line

by

using

the

-D

option.

Its

value

can

be

SAFE,

STRONG,

or

NONE.

Any

other

value

causes

an

exception.

If

the

property

not

set,

its

value

defaults

to

SAFE.

This

option

allows

you

to

change

the

mode

of

cleanup

within

an

entire

JVM

without

having

to

update

every

ConnectionFactory

object.

This

is

useful

for

applications

or

application

servers

that

use

multiple

ConnectionFactory

objects.

If

multiple

Connection

objects

for

the

same

queue

manager

exist

within

a

JVM,

but

the

Connection

objects

use

different

values

for

the

CLEANUPINT

and

CLEANUP

properties,

the

following

rules

determine

the

behavior

of

the

cleanup

utility:

1.

If

a

Connection

object

using

the

CLEANUP(NONE)

option

fails,

cleanup

does

not

run.

The

cleanup

thread

eventually

runs,

however,

if

another

Connection

object

is

using

the

CLEANUP(SAFE)

or

CLEANUP(STRONG)

option.

2.

If

any

Connection

object

is

using

the

CLEANUP(STRONG)

option,

the

cleanup

thread

operates

in

STRONG

mode.

Otherwise,

if

any

Connection

object

is

using

the

CLEANUP(SAFE)

option,

the

cleanup

thread

operates

in

SAFE

mode.

Otherwise,

there

is

no

cleanup

thread.

3.

The

cleanup

utility

runs

at

intervals

determined

by

the

smallest

value

of

the

CLEANUPINT

property

of

those

Connections

that

are

using

the

CLEANUP(SAFE)

or

CLEANUP(STRONG)

option.

Manual

cleanup

If

you

use

a

broker

based

subscription

store,

you

can

operate

the

cleanup

utility

manually

from

the

command

line.

Here

is

the

syntax

of

the

command:

For

a

bindings

connection:

Cleanup

[-m

<qmgr>]

[-r

<interval>]

[SAFE

|

STRONG

|

FORCE

|

NONDUR]

[-t]

For

a

client

connection:

Publish/subscribe

domain

consumer

cleanup

utility

250

Using

Java

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|

|
|

|

|
|

|
|

Cleanup

-client

[-m

<qmgr>]

-host

<hostname>

[-port

<port>]

[-channel

<channel>]

[-r

<interval>]

[SAFE

|

STRONG

|

FORCE

|

NONDUR]

[-t]

The

parameters

of

the

command

are

as

follows:

v

qmgr,

hostname,

port,

and

channel

enable

the

cleanup

utility

to

connect

to

a

queue

manager.

v

-r

sets

the

interval,

in

minutes,

between

each

run

of

the

cleanup

utility.

If

the

parameter

is

not

set,

the

cleanup

utility

runs

once

only.

v

-t

enables

tracing.

The

output

is

sent

to

the

file

mqjms.trc.

v

SAFE,

STRONG,

FORCE,

or

NONDUR

sets

the

cleanup

level

as

follows:

–

SAFE

and

STRONG

behave

like

the

CLEANUP(SAFE)

and

CLEANUP(STRONG)

modes

discussed

in

“Consumer

cleanup

utility

for

the

publish/subscribe

domain”

on

page

248.

–

FORCE

behaves

like

STRONG

mode.

But,

whereas

STRONG

mode

leaves

any

messages

that

cannot

be

processed

on

the

queue,

SYSTEM.JMS.REPORT.QUEUE,

FORCE

mode

deletes

all

the

messages

even

if

it

encounters

an

error

during

processing.

Warning

This

is

a

dangerous

mode

that

can

leave

an

inconsistent

state

between

the

queue

manager

and

the

broker.

You

cannot

run

the

cleanup

utility

in

this

mode

while

any

WebSphere

MQ

JMS

publish/subscribe

applications

are

connected

to

the

queue

manager.

If

you

try

to

do

so,

the

cleanup

utility

ends.

–

NONDUR

behaves

like

FORCE

mode

but,

in

addition,

this

mode

deletes

all

the

messages

on

queues

whose

names

begin

with

the

characters

SYSTEM.JMS.ND.

To

do

this

successfully,

the

command

server

of

the

queue

manager

must

be

running.

Cleanup

from

within

a

program

You

can

use

a

programming

interface

to

invoke

the

cleanup

utility

that

is

used

with

a

broker

based

subscription

store.

Instances

of

the

class

com.ibm.mq.jms.Cleanup

have

getter

and

setter

methods

for

each

of

the

properties

that

are

used

to

connect

to

a

queue

manager,

and

also

for

the

cleanup

level

and

cleanup

interval.

It

exposes

two

additional

methods:

cleanup()

Executes

the

cleanup

utility

once

only.

run()

Runs

cleanup

at

intervals

determined

by

cleanup

interval

property.

This

class

allows

complete

customization

of

the

publish/subscribe

cleanup

utility,

but

it

is

intended

for

use

by

system

administration

programs

rather

than

application

programs.

For

more

details,

see

“Cleanup

*”

on

page

308.

Publish/subscribe

domain

consumer

cleanup

utility

Chapter

12.

Writing

WebSphere

MQ

JMS

1.1

applications

251

|
|
|

|

|
|

|
|

|

|

|
|
|

|
|
|
|
|

|
|
|
|
|
||||

|
|
|
|

|

|
|
|
|
|

|
|

||

|
|
|

|

Closing

down

Garbage

collection

alone

cannot

release

all

WebSphere

MQ

resources

in

a

timely

manner,

especially

if

an

application

creates

many

short

lived

JMS

objects

at

the

session

level

or

lower.

It

is

therefore

important

for

an

application

to

call

the

appropriate

close()

method

to

close

a

Connection,

Session,

MessageConsumer,

or

MessageProducer

object

when

it

is

no

longer

required.

Java

Virtual

Machine

hangs

at

shutdown

If

an

application

using

WebSphere

MQ

JMS

finishes

without

calling

Connection.close(),

some

JVMs

appear

to

hang.

If

this

problems

occurs,

you

can

end

the

JVM

by

entering

Ctrl-C.

To

avoid

the

problem

in

the

future,

consider

modifying

the

application

to

include

a

call

to

Connection.close().

Handling

errors

Any

runtime

errors

in

a

JMS

application

are

reported

by

exceptions.

The

majority

of

JMS

methods

throw

a

JMSException

to

indicate

an

error.

It

is

good

programming

practice

to

catch

these

exceptions

and

display

them

on

a

suitable

output

device.

A

JMSException

can

contain

a

further

exception

embedded

within

it.

For

JMS,

this

can

be

a

valuable

way

to

pass

important

information

about

the

error

from

the

underlying

transport.

In

the

case

of

WebSphere

MQ

JMS,

an

MQException

is

thrown

in

WebSphere

MQ

base

Java

whenever

an

error

occurs

in

WebSphere

MQ,

and

this

exception

is

usually

included

as

the

embedded

exception

in

a

JMSException.

The

implementation

of

JMSException

does

not

include

the

embedded

exception

in

the

output

of

its

toString()

method.

Therefore,

you

must

check

explicitly

for

an

embedded

exception

and

print

it

out,

as

shown

in

the

following

example:

try

{

.

.

code

which

may

throw

a

JMSException

.

}

catch

(JMSException

je)

{

System.err.println("caught

"+je);

Exception

e

=

je.getLinkedException();

if

(e

!=

null)

{

System.err.println("linked

exception:

"+e);

}

}

Exception

listener

For

asynchronous

message

delivery,

the

application

code

cannot

catch

exceptions

raised

by

failures

to

receive

messages.

This

is

because

the

application

code

does

not

make

explicit

calls

to

receive()

methods.

To

cope

with

this

situation,

you

can

register

an

ExceptionListener,

which

is

an

instance

of

a

class

that

implements

the

onException()

method.

When

a

serious

error

occurs,

this

method

is

called

with

the

JMSException

passed

as

its

only

parameter.

Further

details

are

in

Sun’s

JMS

documentation.

Handling

broker

reports

The

WebSphere

MQ

JMS

implementation

uses

report

messages

from

the

broker

to

confirm

whether

registration

and

de-registration

requests

have

been

successful.

These

report

messages

are

sent

to

the

queue,

SYSTEM.JMS.REPORT.QUEUE,

on

Closing

down

252

Using

Java

|
|

|
|
|
|
|

|

|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|

|
|
|

the

local

queue

manager

and

are

normally

consumed

by

the

WebSphere

MQ

JMS.

Under

some

error

conditions,

however,

they

might

remain

on

the

queue.

WebSphere

MQ

JMS

supplies

a

Java

application,

PSReportDump,

which

dumps

the

contents

of

the

queue,

SYSTEM.JMS.REPORT.QUEUE,

in

plain

text

format.

The

information

in

the

dump

can

be

analyzed

by

you

or

by

IBM

support

staff.

You

can

also

use

the

application

to

delete

all

the

messages

in

the

queue

after

a

problem

is

diagnosed

or

fixed.

The

compiled

form

of

the

application

is

in

the

<MQ_JAVA_INSTALL_PATH>/bin

directory.

To

start

the

application,

change

to

this

directory

and

use

the

following

command:

java

PSReportDump

[-m

queueManager]

[-clear]

where:

-m

queueManager

is

the

name

of

the

queue

manager

to

use

-clear

causes

all

the

messages

on

the

queue

to

be

deleted

after

their

contents

have

been

dumped

Attention:

Do

not

use

this

option

if

you

are

using

a

broker

based

subscription

store.

Instead,

run

the

manual

cleanup

utility

in

FORCE

mode.

The

output

from

the

application

is

sent

to

the

screen,

or

you

can

redirect

it

to

a

file.

Other

considerations

If

a

large

number

of

JMS

clients

connect

directly

to

a

WebSphere

MQ

Event

Broker

broker

on

Windows,

and

the

connections

happen

almost

simultaneously,

a

java.net.BindException

address

in

use

exception

might

be

thrown

in

response

to

a

request

to

connect

to

the

broker.

You

can

try

to

avoid

this

by

catching

the

exception

and

retrying,

or

by

pacing

the

connections.

User

exits

WebSphere

MQ

JMS

allows

you

to

implement

send,

receive,

and

security

exits

using

interfaces

supplied

by

WebSphere

MQ

base

Java.

For

WebSphere

MQ

JMS,

ensure

that

your

exit

has

a

constructor

that

takes

a

single

string

argument.

See

the

description

of

exit

related

set

methods

in

Table

14

on

page

202

and

“Property

dependencies”

on

page

56.

Using

Secure

Sockets

Layer

(SSL)

WebSphere

MQ

base

Java

client

applications

and

WebSphere

MQ

JMS

connections

using

TRANSPORT(CLIENT)

support

Secure

Sockets

Layer

(SSL)

encryption.

SSL

provides

communication

encryption,

authentication,

and

message

integrity.

It

is

typically

used

to

secure

communications

between

any

two

peers

on

the

Internet

or

within

an

intranet.

WebSphere

MQ

classes

for

Java

uses

Java

Secure

Socket

Extension

(JSSE)

to

handle

SSL

encryption,

and

so

requires

a

JSSE

provider.

J2SE

v1.4

JVMs

have

a

JSSE

provider

built

in.

Details

of

how

to

manage

and

store

certificates

can

vary

from

provider

to

provider.

For

information

about

this,

refer

to

your

JSSE

provider’s

documentation.

Handling

errors

Chapter

12.

Writing

WebSphere

MQ

JMS

1.1

applications

253

|
|

|
|
|
|
|

|
|
|

|

|

|
|

||
|

|
|

|
|

|

|
|
|
|
|

|
|

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|

This

section

assumes

that

your

JSSE

provider

is

correctly

installed

and

configured,

and

that

suitable

certificates

have

been

installed

and

made

available

to

your

JSSE

provider.

SSL

administrative

properties

This

section

introduces

the

SSL

administrative

properties,

as

follows:

v

“SSLCIPHERSUITE

object

property”

v

“SSLPEERNAME

object

property”

v

“SSLCERTSTORES

object

property”

on

page

255

v

“SSLSocketFactory

object

property”

on

page

256

SSLCIPHERSUITE

object

property

To

enable

SSL

encryption

on

a

ConnectionFactory

object,

use

JMSAdmin

to

set

the

SSLCIPHERSUITE

property

to

a

CipherSuite

supported

by

your

JSSE

provider.

This

must

match

the

CipherSpec

set

on

the

target

channel.

However,

CipherSuites

are

distinct

from

CipherSpecs

and

so

have

different

names.

Appendix

H,

“SSL

CipherSuites

supported

by

WebSphere

MQ,”

on

page

487

contains

a

table

mapping

the

CipherSpecs

supported

by

WebSphere

MQ

to

their

equivalent

CipherSuites

as

known

to

JSSE.

Additionally,

the

named

CipherSuite

must

be

supported

by

your

JSSE

provider.

For

more

information

about

CipherSpecs

and

CipherSuites

with

WebSphere

MQ,

see

the

WebSphere

MQ

Security

book.

For

example,

to

set

up

a

ConnectionFactory

object

that

can

be

used

to

create

a

connection

over

an

SSL

enabled

MQI

channel

with

a

CipherSpec

of

RC4_MD5_EXPORT,

issue

the

following

command

to

JMSAdmin:

ALTER

CF(my.cf)

SSLCIPHERSUITE(SSL_RSA_EXPORT_WITH_RC4_40_MD5)

This

can

also

be

set

from

an

application,

using

the

setSSLCipherSuite()

method

on

an

MQConnectionFactory

object.

For

convenience,

if

a

CipherSpec

is

specified

on

the

SSLCIPHERSUITE

property,

JMSAdmin

attempts

to

map

the

CipherSpec

to

an

appropriate

CipherSuite

and

issues

a

warning.

This

attempt

to

map

is

not

made

if

the

property

is

specified

by

an

application.

SSLPEERNAME

object

property

A

JMS

application

can

ensure

that

it

connects

to

the

correct

queue

manager

by

specifying

a

distinguished

name

(DN)

pattern.

The

connection

succeeds

only

if

the

queue

manager

presents

a

DN

that

matches

the

pattern.

For

more

details

of

the

format

of

this

pattern,

refer

to

WebSphere

MQ

Security

or

the

WebSphere

MQ

Script

(MQSC)

Command

Reference.

The

DN

is

set

using

the

SSLPEERNAME

property

of

a

ConnectionFactory

object.

For

example,

the

following

JMSAdmin

command

sets

a

ConnectionFactory

object

to

expect

the

queue

manager

to

identify

itself

with

a

Common

Name

beginning

with

the

characters

QMGR.,

and

with

at

least

two

Organizational

Unit

names,

the

first

of

which

must

be

IBM

and

the

second

WEBSPHERE:

ALTER

CF(my.cf)

SSLPEERNAME(CN=QMGR.*,

OU=IBM,

OU=WEBSPHERE)

Checking

is

not

case

sensitive

and

semicolons

can

be

used

in

place

of

commas.

This

can

also

be

set

from

an

application

using

the

setSSLPeerName()

method

on

an

MQConnectionFactory

object.

If

this

property

is

not

set,

no

checking

is

performed

on

the

Distinguished

Name

supplied

by

the

queue

manager.

This

property

is

ignored

if

no

CipherSuite

is

set.

Using

SSL

254

Using

Java

|
|
|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|

SSLCERTSTORES

object

property

It

is

common

to

use

a

certificate

revocation

list

(CRL)

to

identify

certificates

that

are

no

longer

trusted.

CRLs

are

typically

hosted

on

LDAP

servers.

JMS

allows

an

LDAP

server

to

be

specified

for

CRL

checking

under

Java

2

v1.4

or

later.

The

following

JMSAdmin

example

directs

JMS

to

use

a

CRL

hosted

on

an

LDAP

server

named

crl1.ibm.com:

ALTER

CF(my.cf)

SSLCRL(ldap://crl1.ibm.com)

Note:

To

use

a

CertStore

successfully

with

a

CRL

hosted

on

an

LDAP

server,

make

sure

that

your

Java

Software

Development

Kit

(SDK)

is

compatible

with

the

CRL.

Some

SDKs

require

that

the

CRL

conforms

to

RFC

2587,

which

defines

a

schema

for

LDAP

v2.

Most

LDAP

v3

servers

use

RFC

2256

instead.

If

your

LDAP

server

is

not

running

on

the

default

port

of

389,

the

port

can

be

specified

by

appending

a

colon

(:)

and

the

port

number

to

the

host

name.

If

the

certificate

presented

by

the

queue

manager

is

present

in

the

CRL

hosted

on

crl1.ibm.com,

the

connection

does

not

complete.

To

avoid

a

single

point

of

failure,

JMS

allows

multiple

LDAP

servers

to

be

supplied

by

supplying

a

list

of

LDAP

servers

delimited

by

the

space

character.

Here

is

an

example:

ALTER

CF(my.cf)

SSLCRL(ldap://crl1.ibm.com

ldap://crl2.ibm.com)

When

multiple

LDAP

servers

are

specified,

JMS

tries

each

one

in

turn

until

it

finds

a

server

with

which

it

can

successfully

verify

the

queue

manager’s

certificate.

Each

server

must

contain

identical

information.

A

string

in

this

format

can

be

supplied

by

an

application

on

the

MQConnectionFactory.setSSLCertStores()

method.

Alternatively,

the

application

can

create

one

or

more

java.security.cert.CertStore

objects,

place

these

in

a

suitable

Collection

object,

and

supply

this

Collection

object

to

the

setSSLCertStores()

method.

In

this

way,

the

application

can

customize

CRL

checking.

Refer

to

your

JSSE

documentation

for

details

on

constructing

and

using

CertStore

objects.

The

certificate

presented

by

the

queue

manager

when

a

connection

is

being

set

up

is

validated

as

follows:

1.

The

first

CertStore

object

in

the

Collection

identified

by

sslCertStores

is

used

to

identify

a

CRL

server.

2.

An

attempt

is

made

to

contact

the

CRL

server.

3.

If

the

attempt

is

successful,

the

server

is

searched

for

a

match

for

the

certificate.

a.

If

the

certificate

is

found

to

be

revoked,

the

search

process

is

over

and

the

connection

request

fails

with

reason

code

MQRC_SSL_CERTIFICATE_REVOKED.

b.

If

the

certificate

is

not

found,

the

search

process

is

over

and

the

connection

is

allowed

to

proceed.
4.

If

the

attempt

to

contact

the

server

is

unsuccessful,

the

next

CertStore

object

is

used

to

identify

a

CRL

server

and

the

process

repeats

from

step

2.

If

this

was

the

last

CertStore

in

the

Collection,

or

if

the

Collection

contains

no

CertStore

objects,

the

search

process

has

failed

and

the

connection

request

fails

with

reason

code

MQRC_SSL_CERT_STORE_ERROR.

The

Collection

object

determines

the

order

in

which

CertStores

are

used.

If

your

application

uses

setSSLCertStores()

to

set

a

Collection

of

CertStore

objects,

the

MQConnectionFactory

can

no

longer

be

bound

into

a

JNDI

namespace.

Attempting

to

do

so

causes

an

exception.

If

the

sslCertStores

property

is

not

set,

no

Using

SSL

Chapter

12.

Writing

WebSphere

MQ

JMS

1.1

applications

255

|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|

|
|

|
|

|

|

|
|
|

|
|

|
|

|
|
|

|

|
|
|

revocation

checking

is

performed

on

the

certificate

provided

by

the

queue

manager.

This

property

is

ignored

if

no

CipherSuite

is

set.

SSLSocketFactory

object

property

You

might

want

to

customize

other

aspects

of

the

SSL

connection

for

an

application.

For

example,

you

might

want

to

initialize

cryptographic

hardware

or

change

the

KeyStore

and

TrustStore

in

use.

To

do

this,

the

application

must

first

create

a

javax.net.ssl.SSLSocketFactory

object

that

is

customized

accordingly.

Refer

to

your

JSSE

documentation

for

information

on

how

to

do

this,

as

the

customizable

features

vary

from

provider

to

provider.

After

a

suitable

SSLSocketFactory

object

is

obtained,

use

the

MQConnectionFactory.setSSLSocketFactory()

method

to

configure

JMS

to

use

the

customized

SSLSocketFactory

object.

If

your

application

uses

the

setSSLSocketFactory()

method

to

set

a

customized

SSLSocketFactory

object,

the

MQConnectionFactory

object

can

no

longer

be

bound

into

a

JNDI

namespace.

Attempting

to

do

so

causes

an

exception.

If

this

property

is

not

set,

the

default

SSLSocketFactory

object

is

used.

Refer

to

your

JSSE

documentation

for

details

on

the

behavior

of

the

default

SSLSocketFactory

object.

This

property

is

ignored

if

no

CipherSuite

is

set.

Important:

Do

not

assume

that

the

use

of

the

SSL

properties

ensures

security

when

a

ConnectionFactory

object

is

retrieved

from

a

JNDI

namespace

that

is

not

itself

secure.

Specifically,

the

standard

LDAP

implementation

of

JNDI

is

not

secure.

An

attacker

can

imitate

the

LDAP

server,

misleading

a

JMS

application

into

connecting

to

the

wrong

server

without

noticing.

With

suitable

security

arrangements

in

place,

other

implementations

of

JNDI

(such

as

the

fscontext

implementation)

are

secure.

Using

SSL

256

Using

Java

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

Chapter

13.

JMS

messages

JMS

messages

are

composed

of

the

following

parts:

Header

All

messages

support

the

same

set

of

header

fields.

Header

fields

contain

values

that

are

used

by

both

clients

and

providers

to

identify

and

route

messages.

Properties

Each

message

contains

a

built-in

facility

to

support

application-defined

property

values.

Properties

provide

an

efficient

mechanism

to

filter

application-defined

messages.

Body

JMS

defines

several

types

of

message

body

that

cover

the

majority

of

messaging

styles

currently

in

use.

JMS

defines

five

types

of

message

body:

Stream

A

stream

of

Java

primitive

values.

It

is

filled

and

read

sequentially.

Map

A

set

of

name-value

pairs,

where

names

are

strings

and

values

are

Java

primitive

types.

The

entries

can

be

accessed

sequentially

or

randomly

by

name.

The

order

of

the

entries

is

undefined.

Text

A

message

containing

a

java.util.String.

Object

a

message

that

contains

a

serializable

Java

object

Bytes

A

stream

of

uninterpreted

bytes.

This

message

type

is

for

literally

encoding

a

body

to

match

an

existing

message

format.

The

JMSCorrelationID

header

field

is

used

to

link

one

message

with

another.

It

typically

links

a

reply

message

with

its

requesting

message.

JMSCorrelationID

can

hold

a

provider-specific

message

ID,

an

application-specific

String,

or

a

provider-native

byte[]

value.

Message

selectors

A

message

contains

a

built-in

facility

to

support

application-defined

property

values.

In

effect,

this

provides

a

mechanism

to

add

application-specific

header

fields

to

a

message.

Properties

allow

an

application,

using

message

selectors,

to

have

a

JMS

provider

select

or

filter

messages

on

its

behalf,

using

application-specific

criteria.

Application-defined

properties

must

obey

the

following

rules:

v

Property

names

must

obey

the

rules

for

a

message

selector

identifier.

v

Property

values

can

be

boolean,

byte,

short,

int,

long,

float,

double,

and

string.

v

The

JMSX

and

JMS_

name

prefixes

are

reserved.

Property

values

are

set

before

sending

a

message.

When

a

client

receives

a

message,

the

message

properties

are

read-only.

If

a

client

attempts

to

set

properties

at

this

point,

a

MessageNotWriteableException

is

thrown.

If

clearProperties

is

called,

the

properties

can

now

be

both

read

from,

and

written

to.

©

Copyright

IBM

Corp.

1997,

2004

257

A

property

value

might

duplicate

a

value

in

a

message’s

body.

JMS

does

not

define

a

policy

for

what

should

or

should

not

be

made

into

a

property.

However,

application

developers

must

be

aware

that

JMS

providers

probably

handle

data

in

a

message’s

body

more

efficiently

than

data

in

a

message’s

properties.

For

best

performance,

applications

must

use

message

properties

only

when

they

need

to

customize

a

message’s

header.

The

primary

reason

for

doing

this

is

to

support

customized

message

selection.

A

JMS

message

selector

allows

a

client

to

specify

the

messages

that

it

is

interested

in

by

using

the

message

header.

Only

messages

whose

headers

match

the

selector

are

delivered.

Message

selectors

cannot

refer

to

message

body

values.

A

message

selector

matches

a

message

when

the

selector

evaluates

to

true

when

the

message’s

header

field

and

property

values

are

substituted

for

their

corresponding

identifiers

in

the

selector.

A

message

selector

is

a

String,

whose

syntax

is

based

on

a

subset

of

the

SQL92

conditional

expression

syntax.

The

order

in

which

a

message

selector

is

evaluated

is

from

left

to

right

within

a

precedence

level.

You

can

use

parentheses

to

change

this

order.

Predefined

selector

literals

and

operator

names

are

written

here

in

upper

case;

however,

they

are

not

case-sensitive.

A

selector

can

contain:

v

Literals

–

A

string

literal

is

enclosed

in

single

quotes.

A

doubled

single

quote

represents

a

single

quote.

Examples

are

’literal’

and

’literal’’s’.

Like

Java

string

literals,

these

use

the

Unicode

character

encoding.

–

An

exact

numeric

literal

is

a

numeric

value

without

a

decimal

point,

such

as

57,

-957,

and

+62.

Numbers

in

the

range

of

Java

long

are

supported.

–

An

approximate

numeric

literal

is

a

numeric

value

in

scientific

notation,

such

as

7E3

or

-57.9E2,

or

a

numeric

value

with

a

decimal,

such

as

7.,

-95.7,

or

+6.2.

Numbers

in

the

range

of

Java

double

are

supported.

–

The

boolean

literals

TRUE

and

FALSE.
v

Identifiers:

–

An

identifier

is

an

unlimited

length

sequence

of

Java

letters

and

Java

digits,

the

first

of

which

must

be

a

Java

letter.

A

letter

is

any

character

for

which

the

method

Character.isJavaLetter

returns

true.

This

includes

_

and

$.

A

letter

or

digit

is

any

character

for

which

the

method

Character.isJavaLetterOrDigit

returns

true.

–

Identifiers

cannot

be

the

names

NULL,

TRUE,

or

FALSE.

–

Identifiers

cannot

be

NOT,

AND,

OR,

BETWEEN,

LIKE,

IN,

or

IS.

–

Identifiers

are

either

header

field

references

or

property

references.

–

Identifiers

are

case-sensitive.

–

Message

header

field

references

are

restricted

to:

-

JMSDeliveryMode

-

JMSPriority

-

JMSMessageID

-

JMSTimestamp

-

JMSCorrelationID

Message

selectors

258

Using

Java

-

JMSType

JMSMessageID,

JMSTimestamp,

JMSCorrelationID,

and

JMSType

values

can

be

null,

and

if

so,

are

treated

as

a

NULL

value.

–

Any

name

beginning

with

JMSX

is

a

JMS-defined

property

name.

–

Any

name

beginning

with

JMS_

is

a

provider-specific

property

name.

–

Any

name

that

does

not

begin

with

JMS

is

an

application-specific

property

name.

If

there

is

a

reference

to

a

property

that

does

not

exist

in

a

message,

its

value

is

NULL.

If

it

does

exist,

its

value

is

the

corresponding

property

value.
v

White

space

is

the

same

as

it

is

defined

for

Java:

space,

horizontal

tab,

form

feed,

and

line

terminator.

v

Expressions:

–

A

selector

is

a

conditional

expression.

A

selector

that

evaluates

to

true

matches;

a

selector

that

evaluates

to

false

or

unknown

does

not

match.

–

Arithmetic

expressions

are

composed

of

themselves,

arithmetic

operations,

identifiers

(whose

value

is

treated

as

a

numeric

literal),

and

numeric

literals.

–

Conditional

expressions

are

composed

of

themselves,

comparison

operations,

and

logical

operations.
v

Standard

bracketing

(),

to

set

the

order

in

which

expressions

are

evaluated,

is

supported.

v

Logical

operators

in

precedence

order:

NOT,

AND,

OR.

v

Comparison

operators:

=,

>,

>=,

<,

<=,

<>

(not

equal).

–

Only

values

of

the

same

type

can

be

compared.

One

exception

is

that

it

is

valid

to

compare

exact

numeric

values

and

approximate

numeric

values.

(The

type

conversion

required

is

defined

by

the

rules

of

Java

numeric

promotion.)

If

there

is

an

attempt

to

compare

different

types,

the

selector

is

always

false.

–

String

and

boolean

comparison

is

restricted

to

=

and

<>.

Two

strings

are

equal

only

if

they

contain

the

same

sequence

of

characters.
v

Arithmetic

operators

in

precedence

order:

–

+,

-

unary.

–

*,

/,

multiplication,

and

division.

–

+,

-,

addition,

and

subtraction.

–

Arithmetic

operations

on

a

NULL

value

are

not

supported.

If

they

are

attempted,

the

complete

selector

is

always

false.

–

Arithmetic

operations

must

use

Java

numeric

promotion.
v

arithmetic-expr1

[NOT]

BETWEEN

arithmetic-expr2

and

arithmetic-expr3

comparison

operator:

–

Age

BETWEEN

15

and

19

is

equivalent

to

age

>=

15

AND

age

<=

19.

–

Age

NOT

BETWEEN

15

and

19

is

equivalent

to

age

<

15

OR

age

>

19.

–

If

any

of

the

expressions

of

a

BETWEEN

operation

are

NULL,

the

value

of

the

operation

is

false.

If

any

of

the

expressions

of

a

NOT

BETWEEN

operation

are

NULL,

the

value

of

the

operation

is

true.
v

identifier

[NOT]

IN

(string-literal1,

string-literal2,...)

comparison

operator

where

identifier

has

a

String

or

NULL

value.

–

Country

IN

(’UK’,

’US’,

’France’)

is

true

for

’UK’

and

false

for

’Peru’.

It

is

equivalent

to

the

expression

(Country

=

’UK’)

OR

(Country

=

’US’)

OR

(Country

=

’France’).

–

Country

NOT

IN

(’UK’,

’US’,

’France’)

is

false

for

’UK’

and

true

for

’Peru’.

It

is

equivalent

to

the

expression

NOT

((Country

=

’UK’)

OR

(Country

=

’US’)

OR

(Country

=

’France’)).

Message

selectors

Chapter

13.

JMS

messages

259

–

If

the

identifier

of

an

IN

or

NOT

IN

operation

is

NULL,

the

value

of

the

operation

is

unknown.
v

identifier

[NOT]

LIKE

pattern-value

[ESCAPE

escape-character]

comparison

operator,

where

identifier

has

a

string

value.

pattern-value

is

a

string

literal,

where

_

stands

for

any

single

character

and

%

stands

for

any

sequence

of

characters

(including

the

empty

sequence).

All

other

characters

stand

for

themselves.

The

optional

escape-character

is

a

single

character

string

literal,

whose

character

is

used

to

escape

the

special

meaning

of

the

_

and

%

in

pattern-value.

–

phone

LIKE

’12%3’

is

true

for

123

and

12993

and

false

for

1234.

–

word

LIKE

’l_se’

is

true

for

lose

and

false

for

loose.

–

underscored

LIKE

’_%’

ESCAPE

’\’

is

true

for

_foo

and

false

for

bar.

–

phone

NOT

LIKE

’12%3’

is

false

for

123

and

12993

and

true

for

1234.

–

If

the

identifier

of

a

LIKE

or

NOT

LIKE

operation

is

NULL,

the

value

of

the

operation

is

unknown.
v

identifier

IS

NULL

comparison

operator

tests

for

a

null

header

field

value,

or

a

missing

property

value.

–

prop_name

IS

NULL.
v

identifier

IS

NOT

NULL

comparison

operator

tests

for

the

existence

of

a

non-null

header

field

value

or

a

property

value.

–

prop_name

IS

NOT

NULL.

The

following

message

selector

selects

messages

with

a

message

type

of

car,

color

of

blue,

and

weight

greater

than

2500

lbs:

"JMSType

=

’car’

AND

color

=

’blue’

AND

weight

>

2500"

As

noted

above,

property

values

can

be

NULL.

The

evaluation

of

selector

expressions

that

contain

NULL

values

is

defined

by

SQL

92

NULL

semantics.

The

following

is

a

brief

description

of

these

semantics:

v

SQL

treats

a

NULL

value

as

unknown.

v

Comparison

or

arithmetic

with

an

unknown

value

always

yields

an

unknown

value.

v

The

IS

NULL

and

IS

NOT

NULL

operators

convert

an

unknown

value

into

the

respective

TRUE

and

FALSE

values.

Although

SQL

supports

fixed

decimal

comparison

and

arithmetic,

JMS

message

selectors

do

not.

This

is

why

exact

numeric

literals

are

restricted

to

those

without

a

decimal.

It

is

also

why

there

are

numerics

with

a

decimal

as

an

alternate

representation

for

an

approximate

numeric

value.

SQL

comments

are

not

supported.

Message

selectors

260

Using

Java

Mapping

JMS

messages

onto

WebSphere

MQ

messages

This

section

describes

how

the

JMS

message

structure

that

is

described

in

the

first

part

of

this

chapter

is

mapped

onto

a

WebSphere

MQ

message.

It

is

of

interest

to

programmers

who

want

to

transmit

messages

between

JMS

and

traditional

WebSphere

MQ

applications.

It

is

also

of

interest

to

people

who

want

to

manipulate

messages

transmitted

between

two

JMS

applications,

for

example,

in

a

message

broker

implementation.

This

section

does

not

apply

when

you

use

a

direct

connection

to

WebSphere

MQ

Event

Broker.

WebSphere

MQ

messages

are

composed

of

three

components:

v

The

WebSphere

MQ

Message

Descriptor

(MQMD)

v

A

WebSphere

MQ

MQRFH2

header

v

The

message

body.

The

MQRFH2

is

optional,

and

its

inclusion

in

an

outgoing

message

is

governed

by

a

flag

in

the

JMS

Destination

class.

You

can

set

this

flag

using

the

WebSphere

MQ

JMS

administration

tool.

Because

the

MQRFH2

carries

JMS-specific

information,

always

include

it

in

the

message

when

the

sender

knows

that

the

receiving

destination

is

a

JMS

application.

Normally,

omit

the

MQRFH2

when

sending

a

message

directly

to

a

non-JMS

application.

This

is

because

such

an

application

does

not

expect

an

MQRFH2

in

its

WebSphere

MQ

message.

Figure

4

shows

how

the

structure

of

a

JMS

message

is

transformed

to

a

WebSphere

MQ

message

and

back

again:

The

structures

are

transformed

in

two

ways:

Mapping

Where

the

MQMD

includes

a

field

that

is

equivalent

to

the

JMS

field,

the

JMS

field

is

mapped

onto

the

MQMD

field.

Additional

MQMD

fields

are

exposed

as

JMS

properties,

because

a

JMS

application

might

need

to

get

or

set

these

fields

when

communicating

with

a

non-JMS

application.

Copying

Where

there

is

no

MQMD

equivalent,

a

JMS

header

field

or

property

is

passed,

possibly

transformed,

as

a

field

inside

the

MQRFH2.

MappingMapping

Copying Copying

JMS Message

JMS Client

Header

Data

Properties

JMS Client

JMS Message

Header

Data

Properties

WebSphere MQ
Message

Other Data

MQMD

RFH2

Data

Figure

4.

How

messages

are

transformed

between

JMS

and

WebSphere

MQ

using

the

MQRFH2

header

Mapping

JMS

messages

Chapter

13.

JMS

messages

261

The

MQRFH2

header

This

section

describes

the

MQRFH

Version

2

header,

which

carries

JMS-specific

data

that

is

associated

with

the

message

content.

The

MQRFH2

Version

2

is

an

extensible

header,

and

can

also

carry

additional

information

that

is

not

directly

associated

with

JMS.

However,

this

section

covers

only

its

use

by

JMS.

There

are

two

parts

of

the

header,

a

fixed

portion

and

a

variable

portion.

Fixed

portion

The

fixed

portion

is

modelled

on

the

standard

WebSphere

MQ

header

pattern

and

consists

of

the

following

fields:

StrucId

(MQCHAR4)

Structure

identifier.

Must

be

MQRFH_STRUC_ID

(value:

“RFH

”)

(initial

value).

MQRFH_STRUC_ID_ARRAY

(value:

“R”,“F”,“H”,“

”)

is

also

defined

in

the

usual

way.

Version

(MQLONG)

Structure

version

number.

Must

be

MQRFH_VERSION_2

(value:

2)

(initial

value).

StrucLength

(MQLONG)

Total

length

of

MQRFH2,

including

the

NameValueData

fields.

The

value

set

into

StrucLength

must

be

a

multiple

of

4

(the

data

in

the

NameValueData

fields

can

be

padded

with

space

characters

to

achieve

this).

Encoding

(MQLONG)

Data

encoding.

Encoding

of

any

numeric

data

in

the

portion

of

the

message

following

the

MQRFH2

(the

next

header,

or

the

message

data

following

this

header).

CodedCharSetId

(MQLONG)

Coded

character

set

identifier.

Representation

of

any

character

data

in

the

portion

of

the

message

following

the

MQRFH2

(the

next

header,

or

the

message

data

following

this

header).

Format

(MQCHAR8)

Format

name.

Format

name

for

the

portion

of

the

message

following

the

MQRFH2.

Flags

(MQLONG)

Flags.

MQRFH_NO_FLAGS

=0.

No

flags

set.

NameValueCCSID

(MQLONG)

The

coded

character

set

identifier

(CCSID)

for

the

NameValueData

character

strings

contained

in

this

header.

The

NameValueData

can

be

coded

in

a

character

set

that

differs

from

the

other

character

strings

that

are

contained

in

the

header

(StrucID

and

Format).

Mapping

JMS

messages

262

Using

Java

If

the

NameValueCCSID

is

a

2-byte

Unicode

CCSID

(1200,

13488,

or

17584),

the

byte

order

of

the

Unicode

is

the

same

as

the

byte

ordering

of

the

numeric

fields

in

the

MQRFH2.

(For

example,

Version,

StrucLength,

and

NameValueCCSID

itself.)

The

NameValueCCSID

takes

values

from

the

following

table:

Table

18.

Possible

values

for

NameValueCCSID

field

Value

Meaning

1200

UCS2

open-ended

1208

UTF8

13488

UCS2

2.0

subset

17584

UCS2

2.1

subset

(includes

Euro

symbol)

Variable

portion

The

variable

portion

follows

the

fixed

portion.

The

variable

portion

contains

a

variable

number

of

MQRFH2

folders.

Each

folder

contains

a

variable

number

of

elements

or

properties.

Folders

group

together

related

properties.

The

MQRFH2

headers

created

by

JMS

can

contain

up

to

three

folders:

The

<mcd>

folder

This

contains

properties

that

describe

the

shape

or

format

of

the

message.

For

example,

the

Msd

property

identifies

the

message

as

being

Text,

Bytes,

Stream,

Map,

Object,

or

null.

This

folder

is

always

present

in

a

JMS

MQRFH2.

The

<jms>

folder

This

is

used

to

transport

JMS

header

fields,

and

JMSX

properties

that

cannot

be

fully

expressed

in

the

MQMD.

This

folder

is

always

present

in

a

JMS

MQRFH2.

The

<usr>

folder

This

is

used

to

transport

any

application-defined

properties

associated

with

the

message.

This

folder

is

only

present

if

the

application

has

set

some

application-defined

properties.

Table

19

shows

a

full

list

of

property

names.

Table

19.

MQRFH2

folders

and

properties

used

by

JMS

JMS

field

name

Java

type

MQRFH2

folder

name

Property

name

Type/values

JMSDestination

Destination

jms

Dst

string

JMSExpiration

long

jms

Exp

i8

JMSPriority

int

jms

Pri

i4

JMSDeliveryMode

int

jms

Dlv

i4

JMSCorrelationID

String

jms

Cid

string

JMSReplyTo

Destination

jms

Rto

string

JMSTimestamp

long

jms

Tms

i8

JMSType

String

mcd

Type,

Set,

Fmt

string

JMSXGroupID

String

jms

Gid

string

JMSXGroupSeq

int

jms

Seq

i4

xxx

(user

defined)

Any

usr

xxx

any

Mapping

JMS

messages

Chapter

13.

JMS

messages

263

Table

19.

MQRFH2

folders

and

properties

used

by

JMS

(continued)

JMS

field

name

Java

type

MQRFH2

folder

name

Property

name

Type/values

mcd

Msd

jms_none

jms_text

jms_bytes

jms_map

jms_stream

jms_object

The

syntax

used

to

express

the

properties

in

the

variable

portion

is

as

follows:

NameValueLength

(MQLONG)

Length

in

bytes

of

the

NameValueData

string

that

immediately

follows

this

length

field

(it

does

not

include

its

own

length).

The

value

set

into

NameValueLength

is

always

a

multiple

of

4

(the

NameValueData

field

is

padded

with

space

characters

to

achieve

this).

NameValueData

(MQCHARn)

A

single

character

string,

whose

length

in

bytes

is

given

by

the

preceding

NameValueLength

field.

It

contains

a

folder

holding

a

sequence

of

properties.

Each

property

is

a

name/type/value

triplet,

contained

within

an

XML

element

whose

name

is

the

folder

name,

as

follows:

<foldername>

triplet1

triplet2

.....

tripletn

</foldername>

The

closing

</foldername>

tag

can

be

followed

by

spaces

as

padding

characters.

Each

triplet

is

encoded

using

an

XML-like

syntax:

<name

dt=’datatype’>value</name>

The

dt=’datatype’

element

is

optional

and

is

omitted

for

many

properties,

because

the

datatype

is

predefined.

If

it

is

included,

one

or

more

space

characters

must

be

included

before

the

dt=

tag.

name

is

the

name

of

the

property;

see

Table

19

on

page

263.

datatype

must

match,

after

folding,

one

of

the

literal

datatype

values

in

Table

20.

value

is

a

string

representation

of

the

value

to

be

conveyed,

using

the

definitions

in

Table

20.

A

null

value

is

encoded

using

the

following

syntax:

<name

dt="DataType"

xsi:nil="true"></name>

Do

not

use

xsi:nil="false".

Table

20.

Property

datatype

values

and

definitions

Datatype

value

Definition

string

Any

sequence

of

characters

excluding

<

and

&

boolean

The

character

0

or

1

(1

=

″true″)

Mapping

JMS

messages

264

Using

Java

Table

20.

Property

datatype

values

and

definitions

(continued)

Datatype

value

Definition

bin.hex

Hexadecimal

digits

representing

octets

i1

A

number,

expressed

using

digits

0..9,

with

optional

sign

(no

fractions

or

exponent).

Must

lie

in

the

range

-128

to

127

inclusive

i2

A

number,

expressed

using

digits

0..9,

with

optional

sign

(no

fractions

or

exponent).

Must

lie

in

the

range

-32768

to

32767

inclusive

i4

A

number,

expressed

using

digits

0..9,

with

optional

sign

(no

fractions

or

exponent).

Must

lie

in

the

range

-2147483648

to

2147483647

inclusive

i8

A

number,

expressed

using

digits

0..9,

with

optional

sign

(no

fractions

or

exponent).

Must

lie

in

the

range

-9223372036854775808

to

92233720368547750807

inclusive

int

A

number,

expressed

using

digits

0..9,

with

optional

sign

(no

fractions

or

exponent).

Must

lie

in

the

same

range

as

i8.

This

can

be

used

in

place

of

one

of

the

i*

types

if

the

sender

does

not

want

to

associate

a

particular

precision

with

the

property

r4

Floating

point

number,

magnitude

<=

3.40282347E+38,

>=

1.175E-37

expressed

using

digits

0..9,

optional

sign,

optional

fractional

digits,

optional

exponent

r8

Floating

point

number,

magnitude

<=

1.7976931348623E+308,

>=

2.225E-307

expressed

using

digits

0..9,

optional

sign,

optional

fractional

digits,

optional

exponent

A

string

value

can

contain

spaces.

You

must

use

the

following

escape

sequences

in

a

string

value:

&

for

the

&

character

<

for

the

<

character

You

can

use

the

following

escape

sequences,

but

they

are

not

required:

>

for

the

>

character

'

for

the

’

character

"

for

the

"

character

JMS

fields

and

properties

with

corresponding

MQMD

fields

Table

21

lists

the

JMS

header

fields

and

Table

22

on

page

266

lists

the

JMS

properties

that

are

mapped

directly

to

MQMD

fields.

Table

23

on

page

266

lists

the

provider

specific

properties

and

the

MQMD

fields

that

they

are

mapped

to.

Table

21.

JMS

header

fields

mapping

to

MQMD

fields

JMS

header

field

Java

type

MQMD

field

C

type

JMSDeliveryMode

int

Persistence

MQLONG

JMSExpiration

long

Expiry

MQLONG

JMSPriority

int

Priority

MQLONG

JMSMessageID

String

MessageID

MQBYTE24

JMSTimestamp

long

PutDate

PutTime

MQCHAR8

MQCHAR8

JMSCorrelationID

String

CorrelId

MQBYTE24

Mapping

JMS

messages

Chapter

13.

JMS

messages

265

Table

22.

JMS

properties

mapping

to

MQMD

fields

JMS

property

Java

type

MQMD

field

C

type

JMSXUserID

String

UserIdentifier

MQCHAR12

JMSXAppID

String

PutApplName

MQCHAR28

JMSXDeliveryCount

int

BackoutCount

MQLONG

JMSXGroupID

String

GroupId

MQBYTE24

JMSXGroupSeq

int

MsgSeqNumber

MQLONG

Table

23.

JMS

provider

specific

properties

mapping

to

MQMD

fields

JMS

provider

specific

property

Java

type

MQMD

field

C

type

JMS_IBM_Report_Exception

int

Report

MQLONG

JMS_IBM_Report_Expiration

int

Report

MQLONG

JMS_IBM_Report_COA

int

Report

MQLONG

JMS_IBM_Report_COD

int

Report

MQLONG

JMS_IBM_Report_PAN

int

Report

MQLONG

JMS_IBM_Report_NAN

int

Report

MQLONG

JMS_IBM_Report_Pass_Msg_ID

int

Report

MQLONG

JMS_IBM_Report_Pass_Correl_ID

int

Report

MQLONG

JMS_IBM_Report_Discard_Msg

int

Report

MQLONG

JMS_IBM_MsgType

int

MsgType

MQLONG

JMS_IBM_Feedback

int

Feedback

MQLONG

JMS_IBM_Format

String

Format

MQCHAR8

JMS_IBM_PutApplType

int

PutApplType

MQLONG

JMS_IBM_Encoding

int

Encoding

MQLONG

JMS_IBM_Character_Set

String

CodedCharacterSetId

MQLONG

JMS_IBM_PutDate

String

PutDate

MQCHAR8

JMS_IBM_PutTime

String

PutTime

MQCHAR8

JMS_IBM_Last_Msg_In_Group

boolean

MsgFlags

MQLONG

Mapping

JMS

fields

onto

WebSphere

MQ

fields

(outgoing

messages)

Table

24

on

page

267

shows

how

the

JMS

header

fields

are

mapped

into

MQMD/RFH2

fields

at

send()

or

publish()

time.

Table

25

on

page

267

shows

how

JMS

properties

and

Table

26

on

page

267

shows

how

JMS

provider

specific

properties

are

mapped

to

MQMD

fields

at

send()

or

publish()

time,

For

fields

marked

Set

by

Message

Object,

the

value

transmitted

is

the

value

held

in

the

JMS

message

immediately

before

the

send()

or

publish()

operation.

The

value

in

the

JMS

message

is

left

unchanged

by

the

operation.

For

fields

marked

Set

by

Send

Method,

a

value

is

assigned

when

the

send()

or

publish()

is

performed

(any

value

held

in

the

JMS

message

is

ignored).

The

value

in

the

JMS

message

is

updated

to

show

the

value

used.

Mapping

JMS

messages

266

Using

Java

Fields

marked

as

Receive-only

are

not

transmitted

and

are

left

unchanged

in

the

message

by

send()

or

publish().

Table

24.

Outgoing

message

field

mapping

JMS

header

field

name

MQMD

field

used

for

transmission

Header

Set

by

JMSDestination

MQRFH2

Send

Method

JMSDeliveryMode

Persistence

MQRFH2

Send

Method

JMSExpiration

Expiry

MQRFH2

Send

Method

JMSPriority

Priority

MQRFH2

Send

Method

JMSMessageID

MessageID

Send

Method

JMSTimestamp

PutDate/PutTime

Send

Method

JMSCorrelationID

CorrelId

MQRFH2

Message

Object

JMSReplyTo

ReplyToQ/ReplyToQMgr

MQRFH2

Message

Object

JMSType

MQRFH2

Message

Object

JMSRedelivered

Receive-only

Table

25.

Outgoing

message

JMS

property

mapping

JMS

property

name

MQMD

field

used

for

transmission

Header

Set

by

JMSXUserID

UserIdentifier

Send

Method

JMSXAppID

PutApplName

Send

Method

JMSXDeliveryCount

Receive-only

JMSXGroupID

GroupId

MQRFH2

Message

Object

JMSXGroupSeq

MsgSeqNumber

MQRFH2

Message

Object

Table

26.

Outgoing

message

JMS

provider

specific

property

mapping

JMS

provider

specific

property

name

MQMD

field

used

for

transmission

Header

Set

by

JMS_IBM_Report_Exception

Report

Message

Object

JMS_IBM_Report_Expiration

Report

Message

Object

JMS_IBM_Report_COA/COD

Report

Message

Object

JMS_IBM_Report_NAN/PAN

Report

Message

Object

JMS_IBM_Report_Pass_Msg_ID

Report

Message

Object

JMS_IBM_Report_Pass_Correl_ID

Report

Message

Object

JMS_IBM_Report_Discard_Msg

Report

Message

Object

JMS_IBM_MsgType

MsgType

Message

Object

JMS_IBM_Feedback

Feedback

Message

Object

JMS_IBM_Format

Format

Message

Object

JMS_IBM_PutApplType

PutApplType

Send

Method

JMS_IBM_Encoding

Encoding

Message

Object

JMS_IBM_Character_Set

CodedCharacterSetId

Message

Object

JMS_IBM_PutDate

PutDate

Send

Method

JMS_IBM_PutTime

PutTime

Send

Method

Mapping

JMS

messages

Chapter

13.

JMS

messages

267

Table

26.

Outgoing

message

JMS

provider

specific

property

mapping

(continued)

JMS

provider

specific

property

name

MQMD

field

used

for

transmission

Header

Set

by

JMS_IBM_Last_Msg_In_Group

MsgFlags

Message

Object

Mapping

JMS

header

fields

at

send()

or

publish()

The

following

notes

relate

to

the

mapping

of

JMS

fields

at

send()

or

publish():

JMSDestination

to

MQRFH2

This

is

stored

as

a

string

that

serializes

the

salient

characteristics

of

the

destination

object,

so

that

a

receiving

JMS

can

reconstitute

an

equivalent

destination

object.

The

MQRFH2

field

is

encoded

as

URI

(see

“uniform

resource

identifiers”

on

page

204

for

details

of

the

URI

notation).

JMSReplyTo

to

MQMD

ReplyToQ,

ReplyToQMgr,

MQRFH2

The

queue

and

queue

manager

name

are

copied

to

the

MQMD

ReplyToQ

and

ReplyToQMgr

fields

respectively.

The

destination

extension

information

(other

useful

details

that

are

kept

in

the

destination

object)

is

copied

into

the

MQRFH2

field.

The

MQRFH2

field

is

encoded

as

a

URI

(see

“uniform

resource

identifiers”

on

page

204

for

details

of

the

URI

notation).

JMSDeliveryMode

to

MQMD

Persistence

The

JMSDeliveryMode

value

is

set

by

the

send()

or

publish()

Method

or

MessageProducer,

unless

the

Destination

Object

overrides

it.

The

JMSDeliveryMode

value

is

mapped

to

the

MQMD

Persistence

field

as

follows:

v

JMS

value

PERSISTENT

is

equivalent

to

MQPER_PERSISTENT

v

JMS

value

NON_PERSISTENT

is

equivalent

to

MQPER_NOT_PERSISTENT

If

the

MQQueue

persistence

property

is

not

set

to

JMSC.MQJMS_PER_QDEF,

the

delivery

mode

value

is

also

encoded

in

the

MQRFH2.

JMSExpiration

to/from

MQMD

Expiry,

MQRFH2

JMSExpiration

stores

the

time

to

expire

(the

sum

of

the

current

time

and

the

time

to

live),

whereas

MQMD

stores

the

time

to

live.

Also,

JMSExpiration

is

in

milliseconds,

but

MQMD.expiry

is

in

centiseconds.

v

If

the

send()

method

sets

an

unlimited

time

to

live,

MQMD

Expiry

is

set

to

MQEI_UNLIMITED,

and

no

JMSExpiration

is

encoded

in

the

MQRFH2.

v

If

the

send()

method

sets

a

time

to

live

that

is

less

than

214748364.7

seconds

(about

7

years),

the

time

to

live

is

stored

in

MQMD.

Expiry,

and

the

expiration

time

(in

milliseconds),

are

encoded

as

an

i8

value

in

the

MQRFH2.

v

If

the

send()

method

sets

a

time

to

live

greater

than

214748364.7

seconds,

MQMD.Expiry

is

set

to

MQEI_UNLIMITED.

The

true

expiration

time

in

milliseconds

is

encoded

as

an

i8

value

in

the

MQRFH2.

JMSPriority

to

MQMD

Priority

Directly

map

JMSPriority

value

(0-9)

onto

MQMD

priority

value

(0-9).

If

JMSPriority

is

set

to

a

non-default

value,

the

priority

level

is

also

encoded

in

the

MQRFH2.

JMSMessageID

from

MQMD

MessageID

All

messages

sent

from

JMS

have

unique

message

identifiers

assigned

by

Mapping

JMS

messages

268

Using

Java

WebSphere

MQ.

The

value

assigned

is

returned

in

the

MQMD

messageId

field

after

the

MQPUT

call,

and

is

passed

back

to

the

application

in

the

JMSMessageID

field.

The

WebSphere

MQ

messageId

is

a

24-byte

binary

value,

whereas

the

JMSMessageID

is

a

string.

The

JMSMessageID

is

composed

of

the

binary

messageId

value

converted

to

a

sequence

of

48

hexadecimal

characters,

prefixed

with

the

characters

ID:.

JMS

provides

a

hint

that

can

be

set

to

disable

the

production

of

message

identifiers.

This

hint

is

ignored,

and

a

unique

identifier

is

assigned

in

all

cases.

Any

value

that

is

set

into

the

JMSMessageId

field

before

a

send()

is

overwritten.

JMSTimestamp

to

MQRFH2

During

a

send,

the

JMSTimestamp

field

is

set

according

to

the

JVM’s

clock.

This

value

is

set

into

the

MQRFH2.

Any

value

that

is

set

into

the

JMSTimestamp

field

before

a

send()

is

overwritten.

See

also

the

JMS_IBM_PutDate

and

JMS_IBM_PutTime

properties.

JMSType

to

MQRFH2

This

string

is

set

into

the

MQRFH2

mcd.Type

field.

If

it

is

in

URI

format,

it

can

also

affect

mcd.Set

and

mcd.Fmt

fields.

See

also

Appendix

D,

“Connecting

to

other

products,”

on

page

469.

JMSCorrelationID

to

MQMD

CorrelId,

MQRFH2

The

JMSCorrelationID

can

hold

one

of

the

following:

A

provider

specific

message

ID

This

is

a

message

identifier

from

a

message

previously

sent

or

received,

and

so

should

be

a

string

of

48

hexadecimal

digits

that

are

prefixed

with

ID:.

The

prefix

is

removed,

the

remaining

characters

are

converted

into

binary,

and

then

they

are

set

into

the

MQMD

CorrelId

field.

No

CorrelId

value

is

encoded

in

the

MQRFH2.

A

provider-native

byte[]

value

The

value

is

copied

into

the

MQMD

CorrelId

field

-

padded

with

nulls,

or

truncated

to

24

bytes

if

necessary.

No

CorrelId

value

is

encoded

in

the

MQRFH2.

An

application-specific

string

The

value

is

copied

into

the

MQRFH2.

The

first

24

bytes

of

the

string,

in

UTF8

format,

are

written

into

the

MQMD

CorrelID.

Mapping

JMS

property

fields

These

notes

refer

to

the

mapping

of

JMS

property

fields

in

WebSphere

MQ

messages:

JMSXUserID

from

MQMD

UserIdentifier

JMSXUserID

is

set

on

return

from

send

call.

JMSXAppID

from

MQMD

PutApplName

JSMXAppID

is

set

on

return

from

send

call.

JMSXGroupID

to

MQRFH2

(point-to-point)

For

point-to-point

messages,

the

JMSXGroupID

is

copied

into

the

MQMD

GroupID

field.

If

the

JMSXGroupID

starts

with

the

prefix

ID:,

it

is

converted

into

binary.

Otherwise,

it

is

encoded

as

a

UTF8

string.

The

value

is

padded

or

truncated

if

necessary

to

a

length

of

24

bytes.

The

MQMF_MSG_IN_GROUP

flag

is

set.

JMSXGroupID

to

MQRFH2

(publish/subscribe)

For

publish/subscribe

messages,

the

JMSXGroupID

is

copied

into

the

MQRFH2

as

a

string.

Mapping

JMS

messages

Chapter

13.

JMS

messages

269

JMSXGroupSeq

MQMD

MsgSeqNumber

(point-to-point)

For

point-to-point

messages,

the

JMSXGroupSeq

is

copied

into

the

MQMD

MsgSeqNumber

field.

The

MQMF_MSG_IN_GROUP

flag

is

set.

JMSXGroupSeq

MQMD

MsgSeqNumber

(publish/subscribe)

For

publish/subscribe

messages,

the

JMSXGroupSeq

is

copied

into

the

MQRFH2

as

an

i4.

Mapping

JMS

provider-specific

fields

The

following

notes

refer

to

the

mapping

of

JMS

Provider

specific

fields

into

WebSphere

MQ

messages:

JMS_IBM_Report_<name>

to

MQMD

Report

A

JMS

application

can

set

the

MQMD

Report

options,

using

the

following

JMS_IBM_Report_XXX

properties.

The

single

MQMD

is

mapped

to

several

JMS_IBM_Report_XXX

properties.

The

application

must

set

the

value

of

these

properties

to

the

standard

WebSphere

MQ

MQRO_

constants

(included

in

com.ibm.mq.MQC).

So,

for

example,

to

request

COD

with

full

Data,

the

application

must

set

JMS_IBM_Report_COD

to

the

value

MQC.MQRO_COD_WITH_FULL_DATA.

JMS_IBM_Report_Exception

MQRO_EXCEPTION

or

MQRO_EXCEPTION_WITH_DATA

or

MQRO_EXCEPTION_WITH_FULL_DATA

JMS_IBM_Report_Expiration

MQRO_EXPIRATION

or

MQRO_EXPIRATION_WITH_DATA

or

MQRO_EXPIRATION_WITH_FULL_DATA

JMS_IBM_Report_COA

MQRO_COA

or

MQRO_COA_WITH_DATA

or

MQRO_COA_WITH_FULL_DATA

JMS_IBM_Report_COD

MQRO_COD

or

MQRO_COD_WITH_DATA

or

MQRO_COD_WITH_FULL_DATA

JMS_IBM_Report_PAN

MQRO_PAN

JMS_IBM_Report_NAN

MQRO_NAN

JMS_IBM_Report_Pass_Msg_ID

MQRO_PASS_MSG_ID

JMS_IBM_Report_Pass_Correl_ID

MQRO_PASS_CORREL_ID

JMS_IBM_Report_Discard_Msg

MQRO_DISCARD_MSG

JMS_IBM_MsgType

to

MQMD

MsgType

Value

maps

directly

onto

MQMD

MsgType.

If

the

application

has

not

set

Mapping

JMS

messages

270

Using

Java

an

explicit

value

of

JMS_IBM_MsgType,

a

default

value

is

used.

This

default

value

is

determined

as

follows:

v

If

JMSReplyTo

is

set

to

a

WebSphere

MQ

queue

destination,

MSGType

is

set

to

the

value

MQMT_REQUEST

v

If

JMSReplyTo

is

not

set,

or

is

set

to

anything

other

than

a

WebSphere

MQ

queue

destination,

MsgType

is

set

to

the

value

MQMT_DATAGRAM

JMS_IBM_Feedback

to

MQMD

Feedback

Value

maps

directly

onto

MQMD

Feedback.

JMS_IBM_Format

to

MQMD

Format

Value

maps

directly

onto

MQMD

Format.

JMS_IBM_Encoding

to

MQMD

Encoding

If

set,

this

property

overrides

the

numeric

encoding

of

the

Destination

Queue

or

Topic.

JMS_IBM_Character_Set

to

MQMD

CodedCharacterSetId

If

set,

this

property

overrides

the

coded

character

set

property

of

the

Destination

Queue

or

Topic.

JMS_IBM_PutDate

from

MQMD

PutDate

The

value

of

this

property

is

set,

during

send,

directly

from

the

PutDate

field

in

the

MQMD.

Any

value

that

is

set

into

the

JMS_IBM_PutDate

property

before

a

send

is

overwritten.

This

field

is

a

String

of

eight

characters,

in

the

WebSphere

MQ

Date

format

of

YYYYMMDD.

This

property

can

be

used

in

conjunction

with

the

JMS_IBM_PutTime

property

to

determine

the

time

the

message

was

put

according

to

the

queue

manager.

JMS_IBM_PutTime

from

MQMD

PutTime

The

value

of

this

property

is

set,

during

send,

directly

from

the

PutTime

field

in

the

MQMD.

Any

value

that

is

set

into

the

JMS_IBM_PutTime

property

before

a

send

is

overwritten.

This

field

is

a

String

of

eight

characters,

in

the

WebSphere

MQ

Time

format

of

HHMMSSTH.

This

property

can

be

used

in

conjunction

with

the

JMS_IBM_PutDate

property

to

determine

the

time

the

message

was

put

according

to

the

queue

manager.

JMS_IBM_Last_Msg_In_Group

to

MQMD

MsgFlags

For

point-to-point

messaging,

this

boolean

value

maps

to

the

MQMF_LAST_MSG_IN_GROUP

flag

in

the

MQMD

MsgFlags

field.

It

is

normally

used

in

conjunction

with

the

JMSXGroupID

and

JMSXGroupSeq

properties

to

indicate

to

a

legacy

WebSphere

MQ

application

that

this

is

the

last

message

in

a

group.

This

property

is

ignored

for

publish/subscribe

messaging.

Mapping

WebSphere

MQ

fields

onto

JMS

fields

(incoming

messages)

Table

27

on

page

272

shows

how

JMS

header

fields

and

Table

28

on

page

272

shows

how

JMS

property

fields

are

mapped

into

MQMD/MQRFH2

fields

at

send()

or

publish()

time.

Table

29

on

page

272

shows

how

JMS

provider

specific

properties

are

mapped.

Mapping

JMS

messages

Chapter

13.

JMS

messages

271

Table

27.

Incoming

message

JMS

header

field

mapping

JMS

header

field

name

MQMD

field

retrieved

from

MQRFH2

field

retrieved

from

JMSDestination

jms.Dst

JMSDeliveryMode

Persistence1

jms.Dlv1

JMSExpiration

jms.Exp

JMSPriority

Priority

JMSMessageID

MessageID

JMSTimestamp

PutDate1

PutTime1

jms.Tms1

JMSCorrelationID

CorrelId1

jms.Cid1

JMSReplyTo

ReplyToQ1

ReplyToQMgr1

jms.Rto1

JMSType

mcd.Type,

mcd.Set,

mcd.Fmt

JMSRedelivered

BackoutCount

Notes:

1.

For

properties

that

can

have

values

retrieved

from

the

MQRFH2

or

the

MQMD,

if

both

are

available,

the

setting

in

the

MQRFH2

is

used.

Table

28.

Incoming

message

property

mapping

JMS

property

name

MQMD

field

retrieved

from

MQRFH2

field

retrieved

from

JMSXUserID

UserIdentifier

JMSXAppID

PutApplName

JMSXDeliveryCount

BackoutCount

JMSXGroupID

GroupId1

jms.Gid1

JMSXGroupSeq

MsgSeqNumber1

jms.Seq1

Notes:

1.

For

properties

that

can

have

values

retrieved

from

the

MQRFH2

or

the

MQMD,

if

both

are

available,

the

setting

in

the

MQRFH2

is

used.

Table

29.

Incoming

message

provider

specific

JMS

property

mapping

JMS

property

name

MQMD

field

retrieved

from

MQRFH2

field

retrieved

from

JMS_IBM_Report_Exception

Report

JMS_IBM_Report_Expiration

Report

JMS_IBM_Report_COA

Report

JMS_IBM_Report_COD

Report

JMS_IBM_Report_PAN

Report

JMS_IBM_Report_NAN

Report

JMS_IBM_Report_

Pass_Msg_ID

Report

JMS_IBM_Report_Pass_Correl_ID

Report

JMS_IBM_Report_Discard_Msg

Report

Mapping

JMS

messages

272

Using

Java

Table

29.

Incoming

message

provider

specific

JMS

property

mapping

(continued)

JMS

property

name

MQMD

field

retrieved

from

MQRFH2

field

retrieved

from

JMS_IBM_MsgType

MsgType

JMS_IBM_Feedback

Feedback

JMS_IBM_Format

Format

JMS_IBM_PutApplType

PutApplType

JMS_IBM_Encoding

1

Encoding

JMS_IBM_Character_Set

1

CodedCharacterSetId

JMS_IBM_PutDate

PutDate

JMS_IBM_PutTime

PutTime

JMS_IBM_Last_Msg_In_Group

MsgFlags

1.

Only

set

if

the

incoming

message

is

a

Bytes

Message.

Mapping

JMS

to

a

native

WebSphere

MQ

application

This

section

describes

what

happens

if

you

send

a

message

from

a

JMS

client

application

to

a

traditional

WebSphere

MQ

application

with

no

knowledge

of

MQRFH2

headers.

Figure

5

shows

the

mapping.

The

administrator

indicates

that

the

JMS

client

is

communicating

with

such

an

application

by

setting

the

WebSphere

MQ

destination’s

TargetClient

value

to

JMSC.MQJMS_CLIENT_NONJMS_MQ.

This

indicates

that

no

MQRFH2

field

is

to

be

produced.

Note

that

if

this

is

not

done,

the

receiving

application

must

be

able

to

handle

the

MQRFH2

field.

The

mapping

from

JMS

to

MQMD

targeted

at

a

native

WebSphere

MQ

application

is

the

same

as

mapping

from

JMS

to

MQMD

targeted

at

a

true

JMS

client.

If

JMS

receives

a

WebSphere

MQ

message

with

the

MQMD

format

field

set

to

other

than

MQFMT_RFH2,

data

is

being

received

from

a

non-JMS

application.

If

the

format

is

MQFMT_STRING,

the

message

is

received

as

a

JMS

text

message.

Otherwise,

it

is

received

as

a

JMS

bytes

message.

Because

there

is

no

MQRFH2,

only

those

JMS

properties

that

are

transmitted

in

the

MQMD

can

be

restored.

Message

body

This

section

discusses

the

encoding

of

the

message

body

itself.

The

encoding

depends

on

the

type

of

JMS

message:

Mapping Mapping

Mapping Mapping

Copying Copying

WebSphere MQ
Message

Traditional WebSphere MQ Application

Data

MQMD

JMS Message

JMS Client

Header

Data

Properties

JMS Client

JMS Message

Header

Data

Properties

Figure

5.

How

JMS

messages

are

transformed

to

WebSphere

MQ

messages

(no

MQRFH2

header)

Mapping

JMS

messages

Chapter

13.

JMS

messages

273

ObjectMessage

is

an

object

serialized

by

the

Java

Runtime

in

the

normal

way.

TextMessage

is

an

encoded

string.

For

an

outgoing

message,

the

string

is

encoded

in

the

character

set

given

by

the

destination

object.

This

defaults

to

UTF8

encoding

(the

UTF8

encoding

starts

with

the

first

character

of

the

message;

there

is

no

length

field

at

the

start).

It

is,

however,

possible

to

specify

any

other

character

set

supported

by

WebSphere

MQ

Java.

Such

character

sets

are

used

mainly

when

you

send

a

message

to

a

non-JMS

application.

If

the

character

set

is

a

double-byte

set

(including

UTF16),

the

destination

object’s

integer

encoding

specification

determines

the

order

of

the

bytes.

An

incoming

message

is

interpreted

using

the

character

set

and

encoding

that

are

specified

in

the

message

itself.

These

specifications

are

in

the

last

WebSphere

MQ

header

(or

MQMD

if

there

are

no

headers).

For

JMS

messages,

the

last

header

is

usually

the

MQRFH2.

BytesMessage

is,

by

default,

a

sequence

of

bytes

as

defined

by

the

JMS

1.0.2

specification

and

associated

Java

documentation.

For

an

outgoing

message

that

was

assembled

by

the

application

itself,

the

destination

object’s

encoding

property

can

be

used

to

override

the

encodings

of

integer

and

floating

point

fields

contained

in

the

message.

For

example,

you

can

request

that

floating

point

values

are

stored

in

S/390

rather

than

IEEE

format).

An

incoming

message

is

interpreted

using

the

numeric

encoding

specified

in

the

message

itself.

This

specification

is

in

the

rightmost

WebSphere

MQ

header

(or

MQMD

if

there

are

no

headers).

For

JMS

messages,

the

rightmost

header

is

usually

the

MQRFH2.

If

a

BytesMessage

is

received,

and

is

re-sent

without

modification,

its

body

is

transmitted

byte

for

byte,

as

it

was

received.

The

destination

object’s

encoding

property

has

no

effect

on

the

body.

The

only

string-like

entity

that

can

be

sent

explicitly

in

a

BytesMessage

is

a

UTF8

string.

This

is

encoded

in

Java

UTF8

format,

and

starts

with

a

2-byte

length

field.

The

destination

object’s

character

set

property

has

no

effect

on

the

encoding

of

an

outgoing

BytesMessage.

The

character

set

value

in

an

incoming

WebSphere

MQ

message

has

no

effect

on

the

interpretation

of

that

message

as

a

JMS

BytesMessage.

Non-Java

applications

are

unlikely

to

recognize

the

Java

UTF8

encoding.

Therefore,

for

a

JMS

application

to

send

a

BytesMessage

that

contains

text

data,

the

application

itself

must

convert

its

strings

to

byte

arrays,

and

write

these

byte

arrays

into

the

BytesMessage.

MapMessage

is

a

string

containing

a

set

of

XML

name/type/value

triplets,

encoded

as:

<map><elementName1

dt=’datatype’>value</elementName1>

<elementName2

dt=’datatype’>value</elementName2>.....

</map>

where

datatype

can

take

one

of

the

values

described

in

Table

20

on

page

264,

and

string

is

the

default

datatype,

so

dt=’string’

is

omitted.

The

character

set

used

to

encode

or

interpret

the

XML

string

that

makes

up

the

MapMessage

body

is

determined

following

the

rules

that

apply

to

a

TextMessage.

Mapping

JMS

messages

274

Using

Java

StreamMessage

is

like

a

map,

but

without

element

names:

<stream><elt

dt=’datatype’>value</elt>

<elt

dt=’datatype’>value</elt>.....</stream>

Every

element

is

sent

using

the

same

tag

name

(elt).

The

default

type

is

string,

so

dt=’string’

is

omitted

for

string

elements.

The

character

set

used

to

encode

or

interpret

the

XML

string

that

makes

up

the

StreamMessage

body

is

determined

following

the

rules

that

apply

to

a

TextMessage.

The

MQRFH2.format

field

is

set

as

follows:

MQFMT_NONE

for

ObjectMessage,

BytesMessage,

or

messages

with

no

body.

MQFMT_STRING

for

TextMessage,

StreamMessage,

or

MapMessage.

Mapping

JMS

messages

Chapter

13.

JMS

messages

275

Mapping

JMS

messages

276

Using

Java

Chapter

14.

WebSphere

MQ

JMS

Application

Server

Facilities

WebSphere

MQ

JMS

supports

the

Application

Server

Facilities

(ASF)

that

are

specified

in

the

Java

Message

Service

1.0.2

specification

(see

Sun’s

Java

Web

site

at

http://java.sun.com).

This

specification

identifies

three

roles

within

this

programming

model:

v

The

JMS

provider

supplies

ConnectionConsumer

and

advanced

Session

functionality.

v

The

application

server

supplies

ServerSessionPool

and

ServerSession

functionality.

v

The

client

application

uses

the

functionality

that

the

JMS

provider

and

application

server

supply.

This

chapter

does

not

apply

if

you

use

a

direct

connection

to

WebSphere

MQ

Event

Broker.

The

following

sections

contain

details

about

how

WebSphere

MQ

JMS

implements

ASF:

v

“ASF

classes

and

functions”

describes

how

WebSphere

MQ

JMS

implements

the

ConnectionConsumer

class

and

advanced

functionality

in

the

Session

class.

v

“Application

server

sample

code”

on

page

283

describes

the

sample

ServerSessionPool

and

ServerSession

code

that

is

supplied

with

WebSphere

MQ

JMS.

v

“Examples

of

ASF

use”

on

page

287

describes

supplied

ASF

samples

and

examples

of

ASF

use

from

the

perspective

of

a

client

application.

Note:

The

Java

Message

Service

1.0.2

specification

for

ASF

also

describes

JMS

support

for

distributed

transactions

using

the

X/Open

XA

protocol.

For

details

of

the

XA

support

that

WebSphere

MQ

JMS

provides,

see

Appendix

E,

“JMS

JTA/XA

interface

with

WebSphere

Application

Server

V4,”

on

page

475.

ASF

classes

and

functions

WebSphere

MQ

JMS

implements

the

ConnectionConsumer

class

and

advanced

functionality

in

the

Session

class.

For

details,

see:

v

“ConnectionConsumer”

on

page

318

v

“QueueConnection”

on

page

379

v

“Session”

on

page

393

v

“TopicConnection”

on

page

420

ConnectionConsumer

The

JMS

specification

enables

an

application

server

to

integrate

closely

with

a

JMS

implementation

by

using

the

ConnectionConsumer

interface.

This

feature

provides

concurrent

processing

of

messages.

Typically,

an

application

server

creates

a

pool

of

threads,

and

the

JMS

implementation

makes

messages

available

to

these

threads.

A

JMS-aware

application

server

can

use

this

feature

to

provide

high-level

messaging

functionality,

such

as

message

processing

beans.

©

Copyright

IBM

Corp.

1997,

2004

277

Normal

applications

do

not

use

the

ConnectionConsumer,

but

expert

JMS

clients

might

use

it.

For

such

clients,

the

ConnectionConsumer

provides

a

high-performance

method

to

deliver

messages

concurrently

to

a

pool

of

threads.

When

a

message

arrives

on

a

queue

or

a

topic,

JMS

selects

a

thread

from

the

pool

and

delivers

a

batch

of

messages

to

it.

To

do

this,

JMS

runs

an

associated

MessageListener’s

onMessage()

method.

You

can

achieve

the

same

effect

by

constructing

multiple

Session

and

MessageConsumer

objects,

each

with

a

registered

MessageListener.

However,

the

ConnectionConsumer

provides

better

performance,

less

use

of

resources,

and

greater

flexibility.

In

particular,

fewer

Session

objects

are

required.

To

help

you

develop

applications

that

use

ConnectionConsumers,

WebSphere

MQ

JMS

provides

a

fully-functioning

example

implementation

of

a

pool.

You

can

use

this

implementation

without

any

changes,

or

adapt

it

to

suit

the

specific

needs

of

the

application.

Planning

an

application

This

section

tells

you

how

to

plan

an

application

including:

v

“General

principles

for

point-to-point

messaging”

v

“General

principles

for

publish/subscribe

messaging”

on

page

279

v

“Handling

poison

messages”

on

page

280

v

“Removing

messages

from

the

queue”

on

page

281

General

principles

for

point-to-point

messaging

When

an

application

creates

a

ConnectionConsumer

from

a

QueueConnection

object,

it

specifies

a

JMS

queue

object

and

a

selector

string.

The

ConnectionConsumer

then

begins

to

provide

messages

to

sessions

in

the

associated

ServerSessionPool.

Messages

arrive

on

the

queue,

and

if

they

match

the

selector,

they

are

delivered

to

sessions

in

the

associated

ServerSessionPool.

In

WebSphere

MQ

terms,

the

queue

object

refers

to

either

a

QLOCAL

or

a

QALIAS

on

the

local

queue

manager.

If

it

is

a

QALIAS,

that

QALIAS

must

refer

to

a

QLOCAL.

The

fully-resolved

WebSphere

MQ

QLOCAL

is

known

as

the

underlying

QLOCAL.

A

ConnectionConsumer

is

said

to

be

active

if

it

is

not

closed

and

its

parent

QueueConnection

is

started.

It

is

possible

for

multiple

ConnectionConsumers,

each

with

different

selectors,

to

run

against

the

same

underlying

QLOCAL.

To

maintain

performance,

unwanted

messages

must

not

accumulate

on

the

queue.

Unwanted

messages

are

those

for

which

no

active

ConnectionConsumer

has

a

matching

selector.

You

can

set

the

QueueConnectionFactory

so

that

these

unwanted

messages

are

removed

from

the

queue

(for

details,

see

“Removing

messages

from

the

queue”

on

page

281).

You

can

set

this

behavior

in

one

of

two

ways:

v

Use

the

JMS

administration

tool

to

set

the

QueueConnectionFactory

to

MRET(NO).

v

In

your

program,

use:

MQQueueConnectionFactory.setMessageRetention(JMSC.MQJMS_MRET_NO)

If

you

do

not

change

this

setting,

the

default

is

to

retain

such

unwanted

messages

on

the

queue.

It

is

possible

that

ConnectionConsumers

that

target

the

same

underlying

QLOCAL

could

be

created

from

multiple

QueueConnection

objects.

However,

for

ASF

classes

and

functions

278

Using

Java

performance

reasons,

we

recommend

that

multiple

JVMs

do

not

create

ConnectionConsumers

against

the

same

underlying

QLOCAL.

When

you

set

up

the

WebSphere

MQ

queue

manager,

consider

the

following

points:

v

The

underlying

QLOCAL

must

be

enabled

for

shared

input.

To

do

this,

use

the

following

MQSC

command:

ALTER

QLOCAL(your.qlocal.name)

SHARE

GET(ENABLED)

v

Your

queue

manager

must

have

an

enabled

dead-letter

queue.

If

a

ConnectionConsumer

experiences

a

problem

when

it

puts

a

message

on

the

dead-letter

queue,

message

delivery

from

the

underlying

QLOCAL

stops.

To

define

a

dead-letter

queue,

use:

ALTER

QMGR

DEADQ(your.dead.letter.queue.name)

v

The

user

that

runs

the

ConnectionConsumer

must

have

authority

to

perform

MQOPEN

with

MQOO_SAVE_ALL_CONTEXT

and

MQOO_PASS_ALL_CONTEXT.

For

details,

see

the

WebSphere

MQ

documentation

for

your

specific

platform.

v

If

unwanted

messages

are

left

on

the

queue,

they

degrade

the

system

performance.

Therefore,

plan

your

message

selectors

so

that

between

them,

the

ConnectionConsumers

will

remove

all

messages

from

the

queue.

For

details

about

MQSC

commands,

see

the

WebSphere

MQ

Script

(MQSC)

Command

Reference.

General

principles

for

publish/subscribe

messaging

When

an

application

creates

a

ConnectionConsumer

from

a

TopicConnection

object,

it

specifies

a

Topic

object

and

a

selector

string.

The

ConnectionConsumer

then

begins

to

receive

messages

that

match

the

selector

on

that

Topic.

Alternatively,

an

application

can

create

a

durable

ConnectionConsumer

that

is

associated

with

a

specific

name.

This

ConnectionConsumer

receives

messages

that

have

been

published

on

the

Topic

since

the

durable

ConnectionConsumer

was

last

active.

It

receives

all

such

messages

that

match

the

selector

on

the

Topic.

For

non-durable

subscriptions,

a

separate

queue

is

used

for

ConnectionConsumer

subscriptions.

The

CCSUB

configurable

option

on

the

TopicConnectionFactory

specifies

the

queue

to

use.

Normally,

the

CCSUB

specifies

a

single

queue

for

use

by

all

ConnectionConsumers

that

use

the

same

TopicConnectionFactory.

However,

it

is

possible

to

make

each

ConnectionConsumer

generate

a

temporary

queue

by

specifying

a

queue

name

prefix

followed

by

a

*.

For

durable

subscriptions,

the

CCDSUB

property

of

the

Topic

specifies

the

queue

to

use.

Again,

this

can

be

a

queue

that

already

exists

or

a

queue

name

prefix

followed

by

a

*.

If

you

specify

a

queue

that

already

exists,

all

durable

ConnectionConsumers

that

subscribe

to

the

Topic

use

this

queue.

If

you

specify

a

queue

name

prefix

followed

by

a

*,

a

queue

is

generated

the

first

time

that

a

durable

ConnectionConsumer

is

created

with

a

given

name.

This

queue

is

reused

later

when

a

durable

ConnectionConsumer

is

created

with

the

same

name.

When

you

set

up

the

WebSphere

MQ

queue

manager,

consider

the

following

points:

v

Your

queue

manager

must

have

an

enabled

dead-letter

queue.

If

a

ConnectionConsumer

experiences

a

problem

when

it

puts

a

message

on

the

dead-letter

queue,

message

delivery

from

the

underlying

QLOCAL

stops.

To

define

a

dead-letter

queue,

use:

ASF

classes

and

functions

Chapter

14.

WebSphere

MQ

JMS

Application

Server

Facilities

279

ALTER

QMGR

DEADQ(your.dead.letter.queue.name)

v

The

user

that

runs

the

ConnectionConsumer

must

have

authority

to

perform

MQOPEN

with

MQOO_SAVE_ALL_CONTEXT

and

MQOO_PASS_ALL_CONTEXT.

For

details,

see

the

WebSphere

MQ

documentation

for

your

platform.

v

You

can

optimize

performance

for

an

individual

ConnectionConsumer

by

creating

a

separate,

dedicated,

queue

for

it.

This

is

at

the

cost

of

extra

resource

usage.

Handling

poison

messages

Sometimes,

a

badly-formatted

message

arrives

on

a

queue.

Such

a

message

might

make

the

receiving

application

fail

and

back

out

the

receipt

of

the

message.

In

this

situation,

such

a

message

might

be

received,

then

returned

to

the

queue,

repeatedly.

These

messages

are

known

as

poison

messages.

The

ConnectionConsumer

must

be

able

to

detect

poison

messages

and

reroute

them

to

an

alternative

destination.

When

an

application

uses

ConnectionConsumers,

the

circumstances

in

which

a

message

is

backed

out

depend

on

the

session

that

the

application

server

provides:

v

When

the

session

is

non-transacted,

with

AUTO_ACKNOWLEDGE

or

DUPS_OK_ACKNOWLEDGE,

a

message

is

backed

out

only

after

a

system

error,

or

if

the

application

terminates

unexpectedly.

v

When

the

session

is

non-transacted

with

CLIENT_ACKNOWLEDGE,

unacknowledged

messages

can

be

backed

out

by

the

application

server

calling

Session.recover().

Typically,

the

client

implementation

of

MessageListener

or

the

application

server

calls

Message.acknowledge().

Message.acknowledge()

acknowledges

all

messages

delivered

on

the

session

so

far.

v

When

the

session

is

transacted,

the

application

server

usually

commits

the

session.

If

the

application

server

detects

an

error,

it

may

choose

to

back

out

one

or

more

messages.

v

If

the

application

server

supplies

an

XASession,

messages

are

committed

or

backed

out

depending

on

a

distributed

transaction.

The

application

server

takes

responsibility

for

completing

the

transaction.

The

WebSphere

MQ

queue

manager

keeps

a

record

of

the

number

of

times

that

each

message

has

been

backed

out.

When

this

number

reaches

a

configurable

threshold,

the

ConnectionConsumer

requeues

the

message

on

a

named

backout

queue.

If

this

requeue

fails

for

any

reason,

the

message

is

removed

from

the

queue

and

either

requeued

to

the

dead-letter

queue,

or

discarded.

See

“Removing

messages

from

the

queue”

on

page

281

for

more

details.

On

most

platforms,

the

threshold

and

requeue

queue

are

properties

of

the

WebSphere

MQ

QLOCAL.

For

point-to-point

messaging,

this

is

the

underlying

QLOCAL.

For

publish/subscribe

messaging,

this

is

the

CCSUB

queue

defined

on

the

TopicConnectionFactory,

or

the

CCDSUB

queue

defined

on

the

Topic.

To

set

the

threshold

and

requeue

queue

properties,

issue

the

following

MQSC

command:

ALTER

QLOCAL(your.queue.name)

BOTHRESH(threshold)

BOQUEUE(your.requeue.queue.name)

For

publish/subscribe

messaging,

if

your

system

creates

a

dynamic

queue

for

each

subscription,

these

settings

are

obtained

from

the

WebSphere

MQ

JMS

model

queue.

To

alter

these

settings,

you

can

use:

ALTER

QMODEL(SYSTEM.JMS.MODEL.QUEUE)

BOTHRESH(threshold)

BOQUEUE(your.requeue.queue.name)

ASF

classes

and

functions

280

Using

Java

If

the

threshold

is

zero,

poison

message

handling

is

disabled,

and

poison

messages

remain

on

the

input

queue.

Otherwise,

when

the

backout

count

reaches

the

threshold,

the

message

is

sent

to

the

named

requeue

queue.

If

the

backout

count

reaches

the

threshold,

but

the

message

cannot

go

to

the

requeue

queue,

the

message

is

sent

to

the

dead-letter

queue

or

discarded.

This

situation

occurs

if

the

requeue

queue

is

not

defined,

or

if

the

ConnectionConsumer

cannot

send

the

message

to

the

requeue

queue.

On

some

platforms,

you

cannot

specify

the

threshold

and

requeue

queue

properties.

On

these

platforms,

messages

are

sent

to

the

dead-letter

queue,

or

discarded,

when

the

backout

count

reaches

20.

See

“Removing

messages

from

the

queue”

for

further

details.

Removing

messages

from

the

queue

When

an

application

uses

ConnectionConsumers,

JMS

might

need

to

remove

messages

from

the

queue

in

a

number

of

situations:

Badly

formatted

message

A

message

might

arrive

that

JMS

cannot

parse.

Poison

message

A

message

might

reach

the

backout

threshold,

but

the

ConnectionConsumer

fails

to

requeue

it

on

the

backout

queue.

No

interested

ConnectionConsumer

For

point-to-point

messaging,

when

the

QueueConnectionFactory

is

set

so

that

it

does

not

retain

unwanted

messages,

a

message

arrives

that

is

unwanted

by

any

of

the

ConnectionConsumers.

In

these

situations,

the

ConnectionConsumer

attempts

to

remove

the

message

from

the

queue.

The

disposition

options

in

the

report

field

of

the

message’s

MQMD

set

the

exact

behavior.

These

options

are:

MQRO_DEAD_LETTER_Q

The

message

is

requeued

to

the

queue

manager’s

dead-letter

queue.

This

is

the

default.

MQRO_DISCARD_MSG

The

message

is

discarded.

The

ConnectionConsumer

also

generates

a

report

message,

and

this

also

depends

on

the

report

field

of

the

message’s

MQMD.

This

message

is

sent

to

the

message’s

ReplyToQ

on

the

ReplyToQmgr.

If

there

is

an

error

while

the

report

message

is

being

sent,

the

message

is

sent

to

the

dead-letter

queue

instead.

The

exception

report

options

in

the

report

field

of

the

message’s

MQMD

set

details

of

the

report

message.

These

options

are:

MQRO_EXCEPTION

A

report

message

is

generated

that

contains

the

MQMD

of

the

original

message.

It

does

not

contain

any

message

body

data.

MQRO_EXCEPTION_WITH_DATA

A

report

message

is

generated

that

contains

the

MQMD,

any

MQ

headers,

and

100

bytes

of

body

data.

MQRO_EXCEPTION_WITH_FULL_DATA

A

report

message

is

generated

that

contains

all

data

from

the

original

message.

default

No

report

message

is

generated.

When

report

messages

are

generated,

the

following

options

are

honored:

ASF

classes

and

functions

Chapter

14.

WebSphere

MQ

JMS

Application

Server

Facilities

281

v

MQRO_NEW_MSG_ID

v

MQRO_PASS_MSG_ID

v

MQRO_COPY_MSG_ID_TO_CORREL_ID

v

MQRO_PASS_CORREL_ID

If

a

ConnectionConsumer

cannot

follow

the

disposition

options

or

exception

report

options

in

the

message’s

MQMD,

its

action

depends

on

the

persistence

of

the

message.

If

the

message

is

non-persistent,

the

message

is

discarded

and

no

report

message

is

generated.

If

the

message

is

persistent,

delivery

of

all

messages

from

the

QLOCAL

stops.

It

is

important

to

define

a

dead-letter

queue,

and

to

check

it

regularly

to

ensure

that

no

problems

occur.

Particularly,

ensure

that

the

dead-letter

queue

does

not

reach

its

maximum

depth,

and

that

its

maximum

message

size

is

large

enough

for

all

messages.

When

a

message

is

requeued

to

the

dead-letter

queue,

it

is

preceded

by

a

WebSphere

MQ

dead-letter

header

(MQDLH).

See

the

WebSphere

MQ

Application

Programming

Reference

for

details

about

the

format

of

the

MQDLH.

You

can

identify

messages

that

a

ConnectionConsumer

has

placed

on

the

dead-letter

queue,

or

report

messages

that

a

ConnectionConsumer

has

generated,

by

the

following

fields:

v

PutApplType

is

MQAT_JAVA

(0x1C)

v

PutApplName

is

“MQ

JMS

ConnectionConsumer”

These

fields

are

in

the

MQDLH

of

messages

on

the

dead-letter

queue,

and

the

MQMD

of

report

messages.

The

feedback

field

of

the

MQMD,

and

the

Reason

field

of

the

MQDLH,

contain

a

code

describing

the

error.

For

details

about

these

codes,

see

“Error

handling.”

Other

fields

are

as

described

in

the

WebSphere

MQ

Application

Programming

Reference.

Error

handling

This

section

covers

various

aspects

of

error

handling,

including

“Recovering

from

error

conditions”

and

“Reason

and

feedback

codes”

on

page

283.

Recovering

from

error

conditions

If

a

ConnectionConsumer

experiences

a

serious

error,

message

delivery

to

all

ConnectionConsumers

with

an

interest

in

the

same

QLOCAL

stops.

Typically,

this

occurs

if

the

ConnectionConsumer

cannot

requeue

a

message

to

the

dead-letter

queue,

or

it

experiences

an

error

when

reading

messages

from

the

QLOCAL.

When

this

occurs,

any

ExceptionListener

that

is

registered

with

the

affected

Connection

is

notified.

You

can

use

these

to

identify

the

cause

of

the

problem.

In

some

cases,

the

system

administrator

must

intervene

to

resolve

the

problem.

There

are

two

ways

in

which

an

application

can

recover

from

these

error

conditions:

v

Call

close()

on

all

affected

ConnectionConsumers.

The

application

can

create

new

ConnectionConsumers

only

after

all

affected

ConnectionConsumers

are

closed

and

any

system

problems

are

resolved.

v

Call

stop()

on

all

affected

Connections.

Once

all

Connections

are

stopped

and

any

system

problems

are

resolved,

the

application

should

be

able

to

start()

all

Connections

successfully.

ASF

classes

and

functions

282

Using

Java

Reason

and

feedback

codes

To

determine

the

cause

of

an

error,

you

can

use:

v

The

feedback

code

in

any

report

messages

v

The

reason

code

in

the

MQDLH

of

any

messages

in

the

dead-letter

queue

ConnectionConsumers

generate

the

following

reason

codes.

MQRC_BACKOUT_THRESHOLD_REACHED

(0x93A;

2362)

Cause

The

message

has

reached

the

Backout

Threshold

defined

on

the

QLOCAL,

but

no

Backout

Queue

is

defined.

On

platforms

where

you

cannot

define

the

Backout

Queue,

the

message

has

reached

the

JMS-defined

backout

threshold

of

20.

Action

If

this

is

not

wanted,

define

the

Backout

Queue

for

the

relevant

QLOCAL.

Also

look

for

the

cause

of

the

multiple

backouts.

MQRC_MSG_NOT_MATCHED

(0x93B;

2363)

Cause

In

point-to-point

messaging,

there

is

a

message

that

does

not

match

any

of

the

selectors

for

the

ConnectionConsumers

monitoring

the

queue.

To

maintain

performance,

the

message

is

requeued

to

the

dead-letter

queue.

Action

To

avoid

this

situation,

ensure

that

ConnectionConsumers

using

the

queue

provide

a

set

of

selectors

that

deal

with

all

messages,

or

set

the

QueueConnectionFactory

to

retain

messages.

Alternatively,

investigate

the

source

of

the

message.

MQRC_JMS_FORMAT_ERROR

(0x93C;

2364)

Cause

JMS

cannot

interpret

the

message

on

the

queue.

Action

Investigate

the

origin

of

the

message.

JMS

usually

delivers

messages

of

an

unexpected

format

as

a

BytesMessage

or

TextMessage.

Occasionally,

this

fails

if

the

message

is

very

badly

formatted.

Other

codes

that

appear

in

these

fields

are

caused

by

a

failed

attempt

to

requeue

the

message

to

a

Backout

Queue.

In

this

situation,

the

code

describes

the

reason

that

the

requeue

failed.

To

diagnose

the

cause

of

these

errors,

refer

to

the

WebSphere

MQ

Application

Programming

Reference.

If

the

report

message

cannot

be

put

on

the

ReplyToQ,

it

is

put

on

the

dead-letter

queue.

In

this

situation,

the

feedback

field

of

the

MQMD

is

filled

in

as

described

above.

The

reason

field

in

the

MQDLH

explains

why

the

report

message

could

not

be

placed

on

the

ReplyToQ.

Application

server

sample

code

Figure

6

on

page

284

summarizes

the

principles

of

ServerSessionPool

and

ServerSession

functionality.

ASF

classes

and

functions

Chapter

14.

WebSphere

MQ

JMS

Application

Server

Facilities

283

1.

The

ConnectionConsumers

get

message

references

from

the

queue.

2.

Each

ConnectionConsumer

selects

specific

message

references.

3.

The

ConnectionConsumer

buffer

holds

the

selected

message

references.

4.

The

ConnectionConsumer

requests

one

or

more

ServerSessions

from

the

ServerSessionPool.

5.

ServerSessions

are

allocated

from

the

ServerSessionPool.

6.

The

ConnectionConsumer

assigns

message

references

to

the

ServerSessions

and

starts

the

ServerSession

threads

running.

7.

Each

ServerSession

retrieves

its

referenced

messages

from

the

queue.

It

passes

them

to

the

onMessage

method

from

the

MessageListener

that

is

associated

with

the

JMS

Session.

8.

After

it

completes

its

processing,

the

ServerSession

is

returned

to

the

pool.

A B C D E

ConnectionConsumer

A B C D E

ConnectionConsumer

A B C D E

ConnectionConsumer

A B C D E F G

Message queue

1

2

3

4

A B SSt

JMS Session

C D E SSu

JMS Session

ServerSessionPool

SSa

Server sessions

5

5

8

8

7

6

Figure

6.

ServerSessionPool

and

ServerSession

functionality

Application

server

sample

code

284

Using

Java

Normally,

the

application

server

supplies

ServerSessionPool

and

ServerSession

functionality.

However,

WebSphere

MQ

JMS

is

supplied

with

a

simple

implementation

of

these

interfaces,

with

program

source.

These

samples

are

in

the

following

directory,

where

<install_dir>

is

the

installation

directory

for

WebSphere

MQ

JMS:

<install_dir>/samples/jms/asf

These

samples

enable

you

to

use

the

WebSphere

MQ

JMS

ASF

in

a

standalone

environment

(that

is,

you

do

not

need

a

suitable

application

server).

Also,

they

provide

examples

of

how

to

implement

these

interfaces

and

take

advantage

of

the

WebSphere

MQ

JMS

ASF.

These

examples

are

intended

to

aid

both

WebSphere

MQ

JMS

users,

and

vendors

of

other

application

servers.

MyServerSession.java

This

class

implements

the

javax.jms.ServerSession

interface.

It

associates

a

thread

with

a

JMS

session.

Instances

of

this

class

are

pooled

by

a

ServerSessionPool

(see

“MyServerSessionPool.java”).

As

a

ServerSession,

it

must

implement

the

following

two

methods:

v

getSession(),

which

returns

the

JMS

Session

associated

with

this

ServerSession

v

start(),

which

starts

this

ServerSession’s

thread

and

results

in

the

JMS

Session’s

run()

method

being

invoked

MyServerSession

also

implements

the

Runnable

interface.

Therefore,

the

creation

of

the

ServerSession’s

thread

can

be

based

on

this

class,

and

does

not

need

a

separate

class.

The

class

uses

a

wait()-notify()

mechanism

that

is

based

on

the

values

of

two

boolean

flags,

ready

and

quit.

This

mechanism

means

that

the

ServerSession

creates

and

starts

its

associated

thread

during

its

construction.

However,

it

does

not

automatically

execute

the

body

of

the

run()

method.

The

body

of

the

run()

method

is

executed

only

when

the

ready

flag

is

set

to

true

by

the

start()

method.

The

ASF

calls

the

start()

method

when

it

is

necessary

to

deliver

messages

to

the

associated

JMS

session.

For

delivery,

the

run()

method

of

the

JMS

session

is

called.

The

WebSphere

MQ

JMS

ASF

will

have

already

loaded

the

run()

method

with

messages.

After

delivery

completes,

the

ready

flag

is

reset

to

false,

and

the

owning

ServerSessionPool

is

notified

that

delivery

is

complete.

The

ServerSession

then

remains

in

a

wait

state

until

either

the

start()

method

is

called

again,

or

the

close()

method

is

invoked

and

ends

this

ServerSession’s

thread.

MyServerSessionPool.java

This

class

implements

the

javax.jms.ServerSessionPool

interface,

creating

and

controlling

access

to

a

pool

of

ServerSessions.

In

this

implementation,

the

pool

consists

of

a

static

array

of

ServerSession

objects

that

are

created

during

the

construction

of

the

pool.

The

following

four

parameters

are

passed

into

the

constructor:

v

javax.jms.Connection

connection

The

connection

used

to

create

JMS

sessions.

v

int

capacity

The

size

of

the

array

of

MyServerSession

objects.

Application

server

sample

code

Chapter

14.

WebSphere

MQ

JMS

Application

Server

Facilities

285

v

int

ackMode

The

required

acknowledge

mode

of

the

JMS

sessions.
v

MessageListenerFactory

mlf

The

MesssageListenerFactory

that

creates

the

message

listener

that

is

supplied

to

the

JMS

sessions.

See

“MessageListenerFactory.java.”

The

pool’s

constructor

uses

these

parameters

to

create

an

array

of

MyServerSession

objects.

The

supplied

connection

is

used

to

create

JMS

sessions

of

the

given

acknowledge

mode

and

correct

domain

(QueueSessions

for

point-to-point

and

TopicSessions

for

publish/subscribe).

The

sessions

are

supplied

with

a

message

listener.

Finally,

the

ServerSession

objects,

based

on

the

JMS

sessions,

are

created.

This

sample

implementation

is

a

static

model.

That

is,

all

the

ServerSessions

in

the

pool

are

created

when

the

pool

is

created,

and

after

this

the

pool

cannot

grow

or

shrink.

This

approach

is

just

for

simplicity.

It

is

possible

for

a

ServerSessionPool

to

use

a

sophisticated

algorithm

to

create

ServerSessions

dynamically,

as

needed.

MyServerSessionPool

keeps

a

record

of

which

ServerSessions

are

currently

in

use

by

maintaining

an

array

of

boolean

values

called

inUse.

These

booleans

are

all

initialized

to

false.

When

the

getServerSession

method

is

invoked

and

requests

a

ServerSession

from

the

pool,

the

inUse

array

is

searched

for

the

first

false

value.

When

one

is

found,

the

boolean

is

set

to

true

and

the

corresponding

ServerSession

is

returned.

If

there

are

no

false

values

in

the

inUse

array,

the

getServerSession

method

must

wait()

until

notification

occurs.

Notification

occurs

in

either

of

the

following

circumstances:

v

The

pool’s

close()

method

is

called,

indicating

that

the

pool

must

be

shut

down.

v

A

ServerSession

that

is

currently

in

use

completes

its

workload

and

calls

the

serverSessionFinished

method.

The

serverSessionFinished

method

returns

the

ServerSession

to

the

pool,

and

sets

the

corresponding

inUse

flag

to

false.

The

ServerSession

then

becomes

eligible

for

reuse.

MessageListenerFactory.java

In

this

sample,

a

message

listener

factory

object

is

associated

with

each

ServerSessionPool

instance.

The

MessageListenerFactory

class

represents

a

very

simple

interface

that

is

used

to

obtain

an

instance

of

a

class

that

implements

the

javax.jms.MessageListener

interface.

The

class

contains

a

single

method:

javax.jms.MessageListener

createMessageListener();

An

implementation

of

this

interface

is

supplied

when

the

ServerSessionPool

is

constructed.

This

object

is

used

to

create

message

listeners

for

the

individual

JMS

sessions

that

back

up

the

ServerSessions

in

the

pool.

This

architecture

means

that

each

separate

implementation

of

the

MessageListenerFactory

interface

must

have

its

own

ServerSessionPool.

WebSphere

MQ

JMS

includes

a

sample

MessageListenerFactory

implementation,

which

is

discussed

in

“CountingMessageListenerFactory.java”

on

page

288.

Application

server

sample

code

286

Using

Java

Examples

of

ASF

use

There

is

a

set

of

classes,

with

their

source,

in

the

directory

<install_dir>/samples/jms/asf

(where

<install_dir>

is

the

installation

directory

for

WebSphere

MQ

JMS).

These

classes

use

the

WebSphere

MQ

JMS

application

server

facilities

that

are

described

in

“ASF

classes

and

functions”

on

page

277,

within

the

sample

standalone

application

server

environment

that

is

described

in

“Application

server

sample

code”

on

page

283.

These

samples

provide

examples

of

ASF

use

from

the

perspective

of

a

client

application:

v

A

simple

point-to-point

example

uses:

–

ASFClient1.java

–

Load1.java

–

CountingMessageListenerFactory.java
v

A

more

complex

point-to-point

example

uses:

–

ASFClient2.java

–

Load2.java

–

CountingMessageListenerFactory.java

–

LoggingMessageListenerFactory.java
v

A

simple

publish/subscribe

example

uses:

–

ASFClient3.java

–

TopicLoad.java

–

CountingMessageListenerFactory.java
v

A

more

complex

publish/subscribe

example

uses:

–

ASFClient4.java

–

TopicLoad.java

–

CountingMessageListenerFactory.java

–

LoggingMessageListenerFactory.java
v

A

publish/subscribe

example

using

a

durable

ConnectionConsumer

uses:

–

ASFClient5.java

–

TopicLoad.java

The

following

sections

describe

each

class

in

turn.

Load1.java

This

class

is

a

generic

JMS

application

that

loads

a

given

queue

with

a

number

of

messages,

then

terminates.

It

can

either

retrieve

the

required

administered

objects

from

a

JNDI

namespace,

or

create

them

explicitly,

using

the

WebSphere

MQ

JMS

classes

that

implement

these

interfaces.

The

administered

objects

that

are

required

are

a

QueueConnectionFactory

and

a

queue.

You

can

use

the

command

line

options

to

set

the

number

of

messages

with

which

to

load

the

queue,

and

the

sleep

time

between

individual

message

puts.

This

application

has

two

versions

of

the

command

line

syntax.

For

use

with

JNDI,

the

syntax

is:

java

Load1

[-icf

jndiICF]

[-url

jndiURL]

[-qcfLookup

qcfLookup]

[-qLookup

qLookup]

[-sleep

sleepTime]

[-msgs

numMsgs]

Examples

of

ASF

use

Chapter

14.

WebSphere

MQ

JMS

Application

Server

Facilities

287

For

use

without

JNDI,

the

syntax

is:

java

Load1

-nojndi

[-qmgr

qMgrName]

[-q

qName]

[-sleep

sleepTime]

[-msgs

numMsgs]

Table

30

describes

the

parameters

and

gives

their

defaults.

Table

30.

Load1

parameters

and

defaults

Parameter

Meaning

Default

jndiICF

Initial

context

factory

class

used

for

JNDI

com.sun.jndi.ldap.LdapCtxFactory

jndiURL

Provider

URL

used

for

JNDI

ldap://localhost/o=ibm,c=us

qcfLookup

JNDI

lookup

key

used

for

QueueConnectionFactory

cn=qcf

qLookup

JNDI

lookup

key

used

for

Queue

cn=q

qMgrName

Name

of

queue

manager

to

connect

to

″″

(use

the

default

queue

manager)

qName

Name

of

queue

to

load

SYSTEM.DEFAULT.LOCAL.QUEUE

sleepTime

Time

(in

milliseconds)

to

pause

between

message

puts

0

(no

pause)

numMsgs

Number

of

messages

to

put

1000

If

there

are

any

errors,

an

error

message

is

displayed

and

the

application

terminates.

You

can

use

this

application

to

simulate

message

load

on

a

WebSphere

MQ

queue.

In

turn,

this

message

load

can

trigger

the

ASF-enabled

applications

described

in

the

following

sections.

The

messages

put

to

the

queue

are

simple

JMS

TextMessage

objects.

These

objects

do

not

contain

user-defined

message

properties,

which

could

be

useful

to

make

use

of

different

message

listeners.

The

source

code

is

supplied

so

that

you

can

modify

this

load

application

if

necessary.

CountingMessageListenerFactory.java

This

file

contains

definitions

for

two

classes:

v

CountingMessageListener

v

CountingMessageListenerFactory

CountingMessageListener

is

a

very

simple

implementation

of

the

javax.jms.MessageListener

interface.

It

keeps

a

record

of

the

number

of

times

its

onMessage

method

has

been

invoked,

but

does

nothing

with

the

messages

it

is

passed.

CountingMessageListenerFactory

is

the

factory

class

for

CountingMessageListener.

It

is

an

implementation

of

the

MessageListenerFactory

interface

described

in

“MessageListenerFactory.java”

on

page

286.

This

factory

keeps

a

record

of

all

the

message

listeners

that

it

produces.

It

also

includes

a

method,

printStats(),

which

displays

usage

statistics

for

each

of

these

listeners.

Examples

of

ASF

use

288

Using

Java

ASFClient1.java

This

application

acts

as

a

client

of

the

WebSphere

MQ

JMS

ASF.

It

sets

up

a

single

ConnectionConsumer

to

consume

the

messages

in

a

single

WebSphere

MQ

queue.

It

displays

throughput

statistics

for

each

message

listener

that

is

used,

and

terminates

after

one

minute.

The

application

can

either

retrieve

the

required

administered

objects

from

a

JNDI

namespace,

or

create

them

explicitly,

using

the

WebSphere

MQ

JMS

classes

that

implement

these

interfaces.

The

administered

objects

that

are

required

are

a

QueueConnectionFactory

and

a

queue.

This

application

has

two

versions

of

the

command

line

syntax:

For

use

with

JNDI,

the

syntax

is:

java

ASFClient1

[-icf

jndiICF]

[-url

jndiURL]

[-qcfLookup

qcfLookup]

[-qLookup

qLookup]

[-poolSize

poolSize]

[-batchSize

batchSize]

For

use

without

JNDI,

the

syntax

is:

java

ASFClient1

-nojndi

[-qmgr

qMgrName]

[-q

qName]

[-poolSize

poolSize]

[-batchSize

batchSize]

Table

31

describes

the

parameters

and

gives

their

defaults.

Table

31.

ASFClient1

parameters

and

defaults

Parameter

Meaning

Default

jndiICF

Initial

context

factory

class

used

for

JNDI

com.sun.jndi.ldap.LdapCtxFactory

jndiURL

Provider

URL

used

for

JNDI

ldap://localhost/o=ibm,c=us

qcfLookup

JNDI

lookup

key

used

for

QueueConnectionFactory

cn=qcf

qLookup

JNDI

lookup

key

used

for

Queue

cn=q

qMgrName

Name

of

queue

manager

to

connect

to

″″

(use

the

default

queue

manager)

qName

Name

of

queue

to

consume

from

SYSTEM.DEFAULT.LOCAL.QUEUE

poolSize

The

number

of

ServerSessions

created

in

the

ServerSessionPool

being

used

5

batchSize

The

maximum

number

of

message

that

can

be

assigned

to

a

ServerSession

at

a

time

10

The

application

obtains

a

QueueConnection

from

the

QueueConnectionFactory.

A

ServerSessionPool,

in

the

form

of

a

MyServerSessionPool,

is

constructed

using:

v

The

QueueConnection

that

was

created

previously

v

The

required

poolSize

v

An

acknowledge

mode,

AUTO_ACKNOWLEDGE

v

An

instance

of

a

CountingMessageListenerFactory,

as

described

in

“CountingMessageListenerFactory.java”

on

page

288

Examples

of

ASF

use

Chapter

14.

WebSphere

MQ

JMS

Application

Server

Facilities

289

The

connection’s

createConnectionConsumer

method

is

invoked,

passing

in:

v

The

queue

that

was

obtained

earlier

v

A

null

message

selector

(indicating

that

all

messages

should

be

accepted)

v

The

ServerSessionPool

that

was

just

created

v

The

batchSize

that

is

required

The

consumption

of

messages

is

then

started

by

invoking

the

connection’s

start()

method.

The

client

application

displays

throughput

statistics

for

each

message

listener

that

is

used,

displaying

statistics

every

10

seconds.

After

one

minute,

the

connection

is

closed,

the

server

session

pool

is

stopped,

and

the

application

terminates.

Load2.java

This

class

is

a

JMS

application

that

loads

a

given

queue

with

a

number

of

messages,

then

terminates,

in

a

similar

way

to

Load1.java.

The

command

line

syntax

is

also

similar

to

that

for

Load1.java

(substitute

Load2

for

Load1

in

the

syntax).

For

details,

see

“Load1.java”

on

page

287.

The

difference

is

that

each

message

contains

a

user

property

called

value,

which

takes

a

randomly

selected

integer

value

between

0

and

100.

This

property

means

that

you

can

apply

message

selectors

to

the

messages.

Consequently,

the

messages

can

be

shared

between

the

two

consumers

that

are

created

in

the

client

application

described

in

“ASFClient2.java.”

LoggingMessageListenerFactory.java

This

file

contains

definitions

for

two

classes:

v

LoggingMessageListener

v

LoggingMessageListenerFactory

LoggingMessageListener

is

an

implementation

of

the

javax.jms.MessageListener

interface.

It

takes

the

messages

that

are

passed

to

it

and

writes

an

entry

to

the

log

file.

The

default

log

file

is

./ASFClient2.log.

You

can

inspect

this

file

and

check

the

messages

that

are

sent

to

the

connection

consumer

that

is

using

this

message

listener.

LoggingMessageListenerFactory

is

the

factory

class

for

LoggingMessageListener.

It

is

an

implementation

of

the

MessageListenerFactory

interface

described

in

“MessageListenerFactory.java”

on

page

286.

ASFClient2.java

ASFClient2.java

is

a

slightly

more

complicated

client

application

than

ASFClient1.java.

It

creates

two

ConnectionConsumers

that

feed

off

the

same

queue,

but

that

apply

different

message

selectors.

The

application

uses

a

CountingMessageListenerFactory

for

one

consumer,

and

a

LoggingMessageListenerFactory

for

the

other.

Use

of

two

different

message

listener

factories

means

that

each

consumer

must

have

its

own

server

session

pool.

The

application

displays

statistics

that

relate

to

one

ConnectionConsumer

on

screen,

and

writes

statistics

that

relate

to

the

other

ConnectionConsumer

to

a

log

file.

Examples

of

ASF

use

290

Using

Java

The

command

line

syntax

is

similar

to

that

for

“ASFClient1.java”

on

page

289

(substitute

ASFClient2

for

ASFClient1

in

the

syntax).

Each

of

the

two

server

session

pools

contains

the

number

of

ServerSessions

set

by

the

poolSize

parameter.

There

should

be

an

uneven

distribution

of

messages.

The

messages

loaded

onto

the

source

queue

by

Load2

contain

a

user

property,

where

the

value

is

between

0

and

100,

evenly

and

randomly

distributed.

The

message

selector

value>75

is

applied

to

highConnectionConsumer,

and

the

message

selector

value≤75

is

applied

to

normalConnectionConsumer.

The

highConnectionConsumer’s

messages

(approximately

25%

of

the

total

load)

are

sent

to

a

LoggingMessageListener.

The

normalConnectionConsumer’s

messages

(approximately

75%

of

the

total

load)

are

sent

to

a

CountingMessageListener.

When

the

client

application

runs,

statistics

that

relate

to

the

normalConnectionConsumer,

and

its

associated

CountingMessageListenerFactories,

are

printed

to

screen

every

10

seconds.

Statistics

that

relate

to

the

highConnectionConsumer,

and

its

associated

LoggingMessageListenerFactories,

are

written

to

the

log

file.

You

can

inspect

the

screen

and

the

log

file

to

see

the

real

destination

of

the

messages.

Add

the

totals

for

each

of

the

CountingMessageListeners.

As

long

as

the

client

application

does

not

terminate

before

all

the

messages

are

consumed,

this

accounts

for

approximately

75%

of

the

load.

The

number

of

log

file

entries

accounts

for

the

remainder

of

the

load.

(If

the

client

application

terminates

before

all

the

messages

are

consumed,

you

can

increase

the

application

timeout.)

TopicLoad.java

This

class

is

a

JMS

application

that

is

a

publish/subscribe

version

of

the

Load2

queue

loader

described

in

“Load2.java”

on

page

290.

It

publishes

the

required

number

of

messages

under

the

given

topic,

then

terminates.

Each

message

contains

a

user

property

called

value,

which

takes

a

randomly

selected

integer

value

between

0

and

100.

To

use

this

application,

ensure

that

the

broker

is

running

and

that

the

required

setup

is

complete.

For

details,

see

“Additional

setup

for

publish/subscribe

mode”

on

page

26.

This

application

has

two

versions

of

the

command

line

syntax.

For

use

with

JNDI,

the

syntax

is:

java

TopicLoad

[-icf

jndiICF]

[-url

jndiURL]

[-tcfLookup

tcfLookup]

[-tLookup

tLookup]

[-sleep

sleepTime]

[-msgs

numMsgs]

For

use

without

JNDI,

the

syntax

is:

java

TopicLoad

-nojndi

[-qmgr

qMgrName]

[-t

tName]

[-sleep

sleepTime]

[-msgs

numMsgs]

Table

32

describes

the

parameters

and

gives

their

defaults.

Table

32.

TopicLoad

parameters

and

defaults

Parameter

Meaning

Default

jndiICF

Initial

context

factory

class

used

for

JNDI

com.sun.jndi.ldap.LdapCtxFactory

jndiURL

Provider

URL

used

for

JNDI

ldap://localhost/o=ibm,c=us

Examples

of

ASF

use

Chapter

14.

WebSphere

MQ

JMS

Application

Server

Facilities

291

Table

32.

TopicLoad

parameters

and

defaults

(continued)

Parameter

Meaning

Default

tcfLookup

JNDI

lookup

key

used

for

TopicConnectionFactory

cn=tcf

tLookup

JNDI

lookup

key

used

for

Topic

cn=t

qMgrName

Name

of

queue

manager

to

connect

to,

and

broker

queue

manager

to

publish

messages

to

″″

(use

the

default

queue

manager)

tName

Name

of

topic

to

publish

to

MQJMS/ASF/TopicLoad

sleepTime

Time

(in

milliseconds)

to

pause

between

message

puts

0

(no

pause)

numMsgs

Number

of

messages

to

put

200

If

there

are

any

errors,

an

error

message

is

displayed

and

the

application

terminates.

ASFClient3.java

ASFClient3.java

is

a

client

application

that

is

a

publish/subscribe

version

of

“ASFClient1.java”

on

page

289.

It

sets

up

a

single

ConnectionConsumer

to

consume

the

messages

published

on

a

single

Topic.

It

displays

throughput

statistics

for

each

message

listener

that

is

used,

and

terminates

after

one

minute.

This

application

has

two

versions

of

the

command

line

syntax.

For

use

with

JNDI,

the

syntax

is:

java

ASFClient3

[-icf

jndiICF]

[-url

jndiURL]

[-tcfLookup

tcfLookup]

[-tLookup

tLookup]

[-poolsize

poolSize]

[-batchsize

batchSize]

For

use

without

JNDI,

the

syntax

is:

java

ASFClient3

-nojndi

[-qmgr

qMgrName]

[-t

tName]

[-poolsize

poolSize]

[-batchsize

batchSize]

Table

33

describes

the

parameters

and

gives

their

defaults.

Table

33.

ASFClient3

parameters

and

defaults

Parameter

Meaning

Default

jndiICF

Initial

context

factory

class

used

for

JNDI

com.sun.jndi.ldap.LdapCtxFactory

jndiURL

Provider

URL

used

for

JNDI

ldap://localhost/o=ibm,c=us

tcfLookup

JNDI

lookup

key

used

for

TopicConnectionFactory

cn=tcf

tLookup

JNDI

lookup

key

used

for

Topic

cn=t

qMgrName

Name

of

queue

manager

to

connect

to,

and

broker

queue

manager

to

publish

messages

to

″″

(use

the

default

queue

manager)

tName

Name

of

topic

to

consume

from

MQJMS/ASF/TopicLoad

poolSize

The

number

of

ServerSessions

created

in

the

ServerSessionPool

being

used

5

Examples

of

ASF

use

292

Using

Java

Table

33.

ASFClient3

parameters

and

defaults

(continued)

Parameter

Meaning

Default

batchSize

The

maximum

number

of

message

that

can

be

assigned

to

a

ServerSession

at

a

time

10

Like

ASFClient1,

the

client

application

displays

throughput

statistics

for

each

message

listener

that

is

used,

displaying

statistics

every

10

seconds.

After

one

minute,

the

connection

is

closed,

the

server

session

pool

is

stopped,

and

the

application

terminates.

ASFClient4.java

ASFClient4.java

is

a

more

complex

publish/subscribe

client

application.

It

creates

three

ConnectionConsumers

that

all

feed

off

the

same

topic,

but

each

one

applies

different

message

selectors.

The

first

two

consumers

use

high

and

normal

message

selectors,

in

the

same

way

as

described

for

the

application

“ASFClient2.java”

on

page

290.

The

third

consumer

does

not

use

any

message

selector.

The

application

uses

two

CountingMessageListenerFactories

for

the

two

selector-based

consumers,

and

a

LoggingMessageListenerFactory

for

the

third

consumer.

Because

the

application

uses

different

message

listener

factories,

each

consumer

must

have

its

own

server

session

pool.

The

application

displays

statistics

that

relate

to

the

two

selector-based

consumers

on

screen.

It

writes

statistics

that

relate

to

the

third

ConnectionConsumer

to

a

log

file.

The

command

line

syntax

is

similar

to

that

for

“ASFClient3.java”

on

page

292

(substitute

ASFClient4

for

ASFClient3

in

the

syntax).

Each

of

the

three

server

session

pools

contains

the

number

of

ServerSessions

set

by

the

poolSize

parameter.

When

the

client

application

runs,

statistics

that

relate

to

the

normalConnectionConsumer

and

the

highConnectionConsumer,

and

their

associated

CountingMessageListenerFactories,

are

printed

to

screen

every

10

seconds.

Statistics

that

relate

to

the

third

ConnectionConsumer,

and

its

associated

LoggingMessageListenerFactories,

are

written

to

the

log

file.

You

can

inspect

the

screen

and

the

log

file

to

see

the

real

destination

of

the

messages.

Add

the

totals

for

each

of

the

CountingMessageListeners

and

inspect

the

number

of

log

file

entries.

The

distribution

of

messages

is

different

from

the

distribution

obtained

by

a

point-to-point

version

of

the

same

application

(ASFClient2.java).

This

is

because,

in

the

publish/subscribe

domain,

each

consumer

of

a

topic

obtains

its

own

copy

of

each

message

published

on

that

topic.

In

this

application,

for

a

given

topic

load,

the

high

and

normal

consumers

receive

approximately

25%

and

75%

of

the

load,

respectively.

The

third

consumer

still

receives

100%

of

the

load.

Therefore,

the

total

number

of

messages

received

is

greater

than

100%

of

the

load

originally

published

on

the

topic.

Examples

of

ASF

use

Chapter

14.

WebSphere

MQ

JMS

Application

Server

Facilities

293

ASFClient5.java

This

sample

exercises

the

durable

publish/subscribe

ConnectionConsumer

functionality

in

WebSphere

MQ

JMS.

You

invoke

it

with

the

same

command-line

options

as

the

ASFClient4

sample,

and,

as

with

the

other

samples,

the

TopicLoad

sample

application

can

be

used

to

trigger

the

consumer

that

is

created.

For

details

of

TopicLoad,

see

“TopicLoad.java”

on

page

291.

When

invoked,

ASFClient5

displays

a

menu

of

three

options:

1.

Create/reactivate

a

durable

ConnectionConsumer

2.

Unsubscribe

a

durable

ConnectionConsumer

X.

Exit

If

you

choose

option

1,

and

this

is

the

first

time

this

sample

has

been

run,

a

new

durable

ConnectionConsumer

is

created

using

the

given

name.

It

then

displays

one

minute’s

worth

of

throughput

statistics,

rather

like

the

other

samples,

before

closing

the

connection

and

terminating.

Having

created

a

durable

consumer,

messages

published

on

the

topic

in

question

continues

to

arrive

at

the

consumer’s

destination

even

though

the

consumer

is

inactive.

This

can

be

confirmed

by

running

ASFClient5

again,

and

selecting

option

1.

This

reactivates

the

named

durable

consumer,

and

the

statistics

displayed

show

that

any

relevant

messages

published

during

the

period

of

inactivity

were

subsequently

delivered

to

the

consumer.

If

you

run

ASFClient5

again

and

select

option

2,

this

unsubscribes

the

named

durable

ConnectionConsumer

and

discards

any

outstanding

messages

delivered

to

it.

Do

this

to

ensure

that

the

broker

does

not

continue

to

deliver

unwanted

messages.

Examples

of

ASF

use

294

Using

Java

Chapter

15.

JMS

interfaces

and

classes

WebSphere

MQ

classes

for

Java

Message

Service

consists

of

a

number

of

Java

classes

and

interfaces

that

are

based

on

the

Sun

javax.jms

package

of

interfaces

and

classes.

Write

your

clients

using

the

Sun

interfaces

and

classes

that

are

listed

below,

and

that

are

described

in

detail

in

the

following

sections.

The

names

of

the

WebSphere

MQ

objects

that

implement

the

Sun

interfaces

and

classes

have

a

prefix

of

MQ

(unless

stated

otherwise

in

the

object

description).

The

descriptions

include

details

about

any

deviations

of

the

WebSphere

MQ

objects

from

the

standard

JMS

definitions.

These

deviations

are

marked

with

*.

Sun

Java

Message

Service

classes

and

interfaces

The

following

tables

list

the

JMS

objects

contained

in

the

package

javax.jms.

Interfaces

marked

with

*

are

implemented

by

applications.

Interfaces

marked

with

**

are

implemented

by

application

servers.

Table

34.

Summary

of

interfaces

in

package

javax.jms

Interface

Description

BytesMessage

Used

to

send

a

message

containing

a

stream

of

uninterpreted

bytes.

Connection

A

client’s

active

connection

to

its

JMS

provider.

ConnectionConsumer

For

application

servers,

a

special

facility

for

creating

a

ConnectionConsumer.

ConnectionFactory

A

set

of

connection

configuration

parameters

that

an

administrator

has

defined.

In

JMS

1.1

only,

a

client

can

use

a

ConnectionFactory

to

create

a

Connection

to

a

JMS

point-to-point

provider,

a

JMS

publish/subscribe

provider,

or

both.

ConnectionMetaData

Information

that

describes

the

Connection.

DeliveryMode

Delivery

modes

supported

by

JMS.

Destination

Parent

interface

for

Queue

and

Topic.

ExceptionListener*

Used

to

receive

exceptions

thrown

by

Connections

asynchronous

delivery

threads.

MapMessage

Used

to

send

a

set

of

name-value

pairs

where

names

are

Strings

and

values

are

Java

primitive

types.

Message

Root

interface

of

all

JMS

messages.

MessageConsumer

In

JMS

1.1,

a

client

uses

a

MessageConsumer

to

receive

messages

from

a

Destination.

MessageListener*

Used

to

receive

asynchronously

delivered

messages.

MessageProducer

Used

by

a

client

to

send

messages

to

a

destination.

ObjectMessage

Used

to

send

a

message

that

contains

a

serializable

Java

object.

Queue

A

provider-specific

queue

name.

QueueBrowser

Used

by

a

client

to

look

at

messages

on

a

queue

without

removing

them.

QueueConnection

An

active

connection

to

a

JMS

point-to-point

provider.

©

Copyright

IBM

Corp.

1997,

2004

295

|
|
|
|

|
|

Table

34.

Summary

of

interfaces

in

package

javax.jms

(continued)

Interface

Description

QueueConnectionFactory

Used

by

a

client

to

create

QueueConnections

with

a

JMS

point-to-point

provider.

QueueReceiver

Used

by

a

client

to

receive

messages

that

have

been

delivered

to

a

queue.

QueueSender

Used

by

a

client

to

send

messages

to

a

queue.

QueueSession

Provides

methods

to

create

QueueReceivers,

QueueSenders,

QueueBrowsers

and

TemporaryQueues.

ServerSession

**

An

object

implemented

by

an

application

server.

ServerSessionPool

**

An

object

implemented

by

an

application

server

to

provide

a

pool

of

ServerSessions

for

processing

the

messages

of

a

ConnectionConsumer.

Session

A

single-threaded

context

for

producing

and

consuming

messages.

StreamMessage

Used

to

send

a

stream

of

Java

primitives.

TemporaryQueue

A

unique

queue

object

created

for

the

duration

of

a

QueueConnection.

TemporaryTopic

A

unique

Topic

object

created

for

the

duration

of

a

TopicConnection.

TextMessage

Used

to

send

a

message

containing

a

java.lang.String.

Topic

A

provider-specific

topic

name.

TopicConnection

An

active

connection

to

a

JMS

Publish/Subscribe

provider.

TopicConnectionFactory

Used

by

a

client

to

create

TopicConnections

with

a

JMS

Publish/Subscribe

provider.

TopicPublisher

Used

by

a

client

to

publish

messages

on

a

topic.

TopicSession

Provides

methods

to

create

TopicPublishers,

TopicSubscribers

and

TemporaryTopics.

TopicSubscriber

Used

by

a

client

to

receive

messages

that

have

been

published

to

a

topic.

XAConnection

Extends

the

capability

of

Connection

by

providing

an

XASession.

XAConnectionFactory

Used

by

some

application

servers

to

provide

support

for

grouping

Java

Transaction

Service

(JTS)-capable

resource

use

into

a

distributed

transaction.

XAQueueConnection

Provides

the

same

create

options

as

QueueConnection.

XAQueueConnectionFactory

Provides

the

same

create

options

as

a

QueueConnectionFactory.

XAQueueSession

Provides

a

regular

QueueSession

that

can

be

used

to

create

QueueReceivers,

QueueSenders

and

QueueBrowsers.

XASession

Extends

the

capability

of

Session

by

adding

access

to

a

JMS

provider’s

support

for

the

Java

Transaction

API

(JTA).

XATopicConnection

Provides

the

same

create

options

as

TopicConnection.

XATopicConnectionFactory

Provides

the

same

create

options

as

TopicConnectionFactory.

javax.jms

296

Using

Java

Table

34.

Summary

of

interfaces

in

package

javax.jms

(continued)

Interface

Description

XATopicSession

Provides

a

regular

TopicSession

which

can

be

used

to

create

TopicSubscribers

and

TopicPublishers.

Table

35.

Summary

of

classes

in

package

javax.jms

Class

Description

QueueRequestor

A

helper

class

to

simplify

making

service

requests.

TopicRequestor

A

helper

class

to

simplify

making

service

requests.

javax.jms

Chapter

15.

JMS

interfaces

and

classes

297

WebSphere

MQ

JMS

classes

Two

packages

contain

the

WebSphere

MQ

classes

for

Java

Message

Service

that

implement

the

Sun

interfaces.

Table

36

shows

the

interfaces

implemented

by

classes

in

the

com.ibm.mq.jms

package;

Table

37

on

page

299

shows

the

interfaces

implemented

by

classes

in

the

com.ibm.jms

package.

You

do

not

usually

use

the

implementation

classes

directly;

you

program

to

the

JMS

interfaces.

Many

of

the

interfaces

do

not

apply

when

running

a

publish/subscribe

application

on

a

direct

connection

to

the

IBM

WebSphere

MQ

Event

Broker.

Where

the

names

of

implementation

classes

are

listed,

provider-specific

methods

are

documented

in

this

chapter.

Table

36.

Summary

of

classes

in

package

com.ibm.mq.jms

JMS

interface

Client

or

bindings

implementation

Direct

connection

to

WebSphere

MQ

Event

Broker

implementation

Cleanup

Connection

MQConnection

Y

ConnectionConsumer

MQConnectionConsumer

ConnectionFactory

MQConnectionFactory

Y

ConnectionMetaData

MQConnectionMetaData

Y

Destination

MQDestination

MessageConsumer

MQMessageConsumer

MessageProducer

MQMessageProducer

Queue

MQQueue

QueueBrowser

MQQueueBrowser

QueueConnection

MQQueueConnection

QueueConnectionFactory

MQQueueConnectionFactory

MQQueueEnumeration

QueueReceiver

MQQueueReceiver

QueueSender

MQQueueSender

QueueSession

MQQueueSession

Session

MQSession

Y

TemporaryQueue

MQTemporaryQueue

TemporaryTopic

MQTemporaryTopic

Y

Topic

MQTopic

Y

TopicConnection

MQTopicConnection

Y

TopicConnectionFactory

MQTopicConnectionFactory

Y

TopicPublisher

MQTopicPublisher

Y

TopicSession

MQTopicSession

Y

TopicSubscriber

MQTopicSubscriber

Y

XAConnection

MQXAConnection

XAConnectionFactory

MQXAConnectionFactory

XAQueueConnection

MQXAQueueConnection

WebSphere

MQ

JMS

classes

298

Using

Java

Table

36.

Summary

of

classes

in

package

com.ibm.mq.jms

(continued)

JMS

interface

Client

or

bindings

implementation

Direct

connection

to

WebSphere

MQ

Event

Broker

implementation

XAQueueConnectionFactory

MQXAQueueConnectionFactory

XAQueueSession

MQXAQueueSession

XASession

MQXASession

XATopicConnection

MQXATopicConnection

XATopicConnectionFactory

MQXATopicConnectionFactory

XATopicSession

MQXATopicSession

Table

37.

Summary

of

classes

in

package

com.ibm.jms

JMS

interface

Client

or

bindings

implementation

Direct

connection

to

WebSphere

MQ

Event

Broker

implementation

BytesMessage

Y

Y

MapMessage

Y

Y

Message

Y

Y

ObjectMessage

Y

Y

StreamMessage

Y

Y

TextMessage

Y

Y

A

sample

implementation

of

the

following

JMS

interfaces

is

supplied

in

the

WebSphere

MQ

classes

for

Java

Message

Service.

v

ServerSession

v

ServerSessionPool

See

“Application

server

sample

code”

on

page

283

for

more

information

WebSphere

MQ

JMS

classes

Chapter

15.

JMS

interfaces

and

classes

299

BytesMessage

public

interface

BytesMessage

extends

Message

WebSphere

MQ

class:

JMSBytesMessage

Use

a

BytesMessage

to

send

a

message

containing

a

stream

of

uninterpreted

bytes.

It

inherits

Message

and

adds

a

bytes

message

body.

The

receiver

of

the

message

supplies

the

interpretation

of

the

bytes.

Note:

This

message

type

is

for

client

encoding

of

existing

message

formats.

If

possible,

use

one

of

the

other

self-defining

message

types

instead.

See

also:

MapMessage,

Message,

ObjectMessage,

StreamMessage,

and

TextMessage

Methods

getBodyLength

(JMS

1.1

only)

public

long

getBodyLength()

throws

JMSException

Get

the

number

of

bytes

in

the

message

body

when

the

message

is

in

read-only

mode.

The

value

returned

can

be

used

to

allocate

a

byte

array.

The

value

is

the

entire

length

of

the

message

body

regardless

of

where

the

pointer

for

reading

the

message

is

currently

located.

Returns:

The

number

of

bytes

in

the

message

Throws:

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

v

MessageNotReadableException

if

the

message

is

in

write-only

mode.

readBoolean

public

boolean

readBoolean()

throws

JMSException

Read

a

boolean

from

the

bytes

message.

Returns:

The

boolean

value

read.

Throws:

v

MessageNotReadableException

if

the

message

is

in

write-only

mode.

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

v

MessageEOFException

if

it

is

the

end

of

the

message

bytes.

java.lang.Object

|

+----com.ibm.jms.JMSMessage

|

+----com.ibm.jms.JMSBytesMessage

BytesMessage

300

Using

Java

|

|

|
|
|
|

|
|

|

|
|

|
|

readByte

public

byte

readByte()

throws

JMSException

Read

a

signed

8-bit

value

from

the

bytes

message.

Returns:

The

next

byte

from

the

bytes

message

as

a

signed

8-bit

byte.

Throws:

v

MessageNotReadableException

if

the

message

is

in

write-only

mode.

v

MessageEOFException

if

it

is

the

end

of

the

message

bytes.

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

readBytes

public

int

readBytes(byte[]

value)

throws

JMSException

Read

a

byte

array

from

the

bytes

message.

If

there

are

sufficient

bytes

remaining

in

the

stream,

the

entire

buffer

is

filled;

if

not,

the

buffer

is

partially

filled.

Parameters:

value:

the

buffer

into

which

the

data

is

read.

Returns:

The

total

number

of

bytes

read

into

the

buffer,

or

-1

if

there

is

no

more

data

because

the

end

of

the

bytes

has

been

reached.

Throws:

v

MessageNotReadableException

if

the

message

is

in

write-only

mode.

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

readBytes

public

int

readBytes(byte[]

value,

int

length)

throws

JMSException

Read

a

portion

of

the

bytes

message.

Parameters:

v

value:

the

buffer

into

which

the

data

is

read.

v

length:

the

number

of

bytes

to

read.

Returns:

The

total

number

of

bytes

read

into

the

buffer,

or

-1

if

there

is

no

more

data

because

the

end

of

the

bytes

has

been

reached.

Throws:

v

MessageNotReadableException

if

the

message

is

in

write-only

mode.

v

IndexOutOfBoundsException

if

length

is

negative,

or

is

less

than

the

length

of

the

array

value

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

BytesMessage

Chapter

15.

JMS

interfaces

and

classes

301

readChar

public

char

readChar()

throws

JMSException

Read

a

Unicode

character

value

from

the

bytes

message.

Returns:

The

next

two

bytes

from

the

bytes

message

as

a

Unicode

character.

Throws:

v

MessageNotReadableException

if

the

message

is

in

write-only

mode.

v

MessageEOFException

if

it

is

the

end

of

the

message

bytes.

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

readDouble

public

double

readDouble()

throws

JMSException

Read

a

double

from

the

bytes

message.

Returns:

The

next

eight

bytes

from

the

bytes

message,

interpreted

as

a

double.

Throws:

v

MessageNotReadableException

if

the

message

is

in

write-only

mode.

v

MessageEOFException

if

it

is

the

end

of

the

message

bytes.

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

readFloat

public

float

readFloat()

throws

JMSException

Read

a

float

from

the

bytes

message.

Returns:

The

next

four

bytes

from

the

bytes

message,

interpreted

as

a

float.

Throws:

v

MessageNotReadableException

if

the

message

is

in

write-only

mode.

v

MessageEOFException

if

it

is

the

end

of

the

message

bytes.

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

readInt

public

int

readInt()

throws

JMSException

Read

a

signed

32-bit

integer

from

the

bytes

message.

Returns:

The

next

four

bytes

from

the

bytes

message,

interpreted

as

an

int.

Throws:

v

MessageNotReadableException

if

the

message

is

in

write-only

mode.

v

MessageEOFException

if

it

is

the

end

of

the

message

bytes.

BytesMessage

302

Using

Java

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

readLong

public

long

readLong()

throws

JMSException

Read

a

signed

64-bit

integer

from

the

bytes

message.

Returns:

The

next

eight

bytes

from

the

bytes

message,

interpreted

as

a

long.

Throws:

v

MessageNotReadableException

if

the

message

is

in

write-only

mode.

v

MessageEOFException

if

it

is

the

end

of

the

message

bytes.

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

readShort

public

short

readShort()

throws

JMSException

Read

a

signed

16-bit

number

from

the

bytes

message.

Returns:

The

next

two

bytes

from

the

bytes

message,

interpreted

as

a

signed

16-bit

number.

Throws:

v

MessageNotReadableException

if

the

message

is

in

write-only

mode.

v

MessageEOFException

if

it

is

the

end

of

the

message

bytes.

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

readUnsignedByte

public

int

readUnsignedByte()

throws

JMSException

Read

an

unsigned

8-bit

number

from

the

bytes

message.

Returns:

The

next

byte

from

the

bytes

message,

interpreted

as

an

unsigned

8-bit

number.

Throws:

v

MessageNotReadableException

if

the

message

is

in

write-only

mode.

v

MessageEOFException

if

it

is

the

end

of

the

message

bytes.

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

BytesMessage

Chapter

15.

JMS

interfaces

and

classes

303

readUnsignedShort

public

int

readUnsignedShort()

throws

JMSException

Read

an

unsigned

16-bit

number

from

the

bytes

message.

Returns:

The

next

two

bytes

from

the

bytes

message,

interpreted

as

an

unsigned

16-bit

integer.

Throws:

v

MessageNotReadableException

if

the

message

is

in

write-only

mode.

v

MessageEOFException

if

it

is

the

end

of

the

message

bytes.

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

readUTF

public

java.lang.String

readUTF()

throws

JMSException

Read

a

string

that

has

been

encoded

using

a

modified

UTF-8

format

from

the

bytes

message.

The

first

two

bytes

are

interpreted

as

a

2-byte

length

field.

Returns:

A

Unicode

string

from

the

bytes

message.

Throws:

v

MessageNotReadableException

if

the

message

is

in

write-only

mode.

v

MessageEOFException

if

it

is

the

end

of

the

message

bytes.

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

reset

public

void

reset()

throws

JMSException

Put

the

message

body

in

read-only

mode,

and

reposition

the

stream

of

bytes

to

the

beginning.

Throws:

v

JMSException

if

JMS

fails

to

reset

the

message

because

of

an

internal

JMS

error.

v

MessageFormatException

if

message

has

an

incorrect

format

writeBoolean

public

void

writeBoolean(boolean

value)

throws

JMSException

Write

a

boolean

to

the

bytes

message

as

a

1-byte

value.

The

value

true

is

written

out

as

the

value

(byte)1;

the

value

false

is

written

out

as

the

value

(byte)0.

Parameters:

value:

the

boolean

value

to

be

written.

Throws:

v

MessageNotWriteableException

if

message

in

read-only

mode.

v

JMSException

if

JMS

fails

to

write

the

message

because

of

an

internal

JMS

error.

BytesMessage

304

Using

Java

writeByte

public

void

writeByte(byte

value)

throws

JMSException

Write

a

byte

to

the

bytes

message

as

a

1-byte

value.

Parameters:

value:

the

byte

value

to

be

written.

Throws:

v

MessageNotWriteableException

if

message

in

read-only

mode.

v

JMSException

if

JMS

fails

to

write

the

message

because

of

an

internal

JMS

error.

writeBytes

public

void

writeBytes(byte[]

value)

throws

JMSException

Write

a

byte

array

to

the

bytes

message.

Parameters:

value:

the

byte

array

to

be

written.

Throws:

v

MessageNotWriteableException

if

message

in

read-only

mode.

v

JMSException

if

JMS

fails

to

write

the

message

because

of

an

internal

JMS

error.

writeBytes

public

void

writeBytes(byte[]

value,

int

offset,

int

length)

throws

JMSException

Write

a

portion

of

a

byte

array

to

the

bytes

message.

Parameters:

v

value:

the

byte

array

value

to

be

written.

v

offset:

the

initial

offset

within

the

byte

array.

v

length:

the

number

of

bytes

to

use.

Throws:

v

MessageNotWriteableException

if

message

in

read-only

mode.

v

JMSException

if

JMS

fails

to

write

the

message

because

of

an

internal

JMS

error.

writeChar

public

void

writeChar(char

value)

throws

JMSException

Write

a

char

to

the

bytes

message

as

a

2-byte

value,

high

byte

first.

Parameters:

value:

the

char

value

to

be

written.

Throws:

v

MessageNotWriteableException

if

message

in

read-only

mode.

v

JMSException

if

JMS

fails

to

write

the

message

because

of

an

internal

JMS

error.

BytesMessage

Chapter

15.

JMS

interfaces

and

classes

305

|

writeDouble

public

void

writeDouble(double

value)

throws

JMSException

Convert

the

double

argument

to

a

long

using

doubleToLongBits

method

in

class

Double,

and

then

write

that

long

value

to

the

bytes

message

as

an

8-byte

quantity.

Parameters:

value:

the

double

value

to

be

written.

Throws:

v

MessageNotWriteableException

if

message

in

read-only

mode.

v

JMSException

if

JMS

fails

to

write

the

message

because

of

an

internal

JMS

error.

writeFloat

public

void

writeFloat(float

value)

throws

JMSException

Convert

the

float

argument

to

an

int

using

floatToIntBits

method

in

class

Float,

and

then

write

that

int

value

to

the

bytes

message

as

a

4-byte

quantity.

Parameters:

value:

the

float

value

to

be

written.

Throws:

v

MessageNotWriteableException

-

if

message

in

read-only

mode.

v

JMSException

if

JMS

fails

to

write

the

message

because

of

an

internal

JMS

error.

writeInt

public

void

writeInt(int

value)

throws

JMSException

Write

an

int

to

the

bytes

message

as

four

bytes.

Parameters:

value:

the

int

to

be

written.

Throws:

v

MessageNotWriteableException

if

message

in

read-only

mode.

v

JMSException

if

JMS

fails

to

write

the

message

because

of

an

internal

JMS

error.

writeLong

public

void

writeLong(long

value)

throws

JMSException

Write

a

long

to

the

bytes

message

as

eight

bytes,

Parameters:

value:

the

long

to

be

written.

Throws:

v

MessageNotWriteableException

if

message

in

read-only

mode.

v

JMSException

if

JMS

fails

to

write

the

message

because

of

an

internal

JMS

error.

BytesMessage

306

Using

Java

writeObject

public

void

writeObject(java.lang.Object

value)

throws

JMSException

Write

a

Java

object

to

the

bytes

message.

Note:

This

method

works

only

for

the

primitive

object

types

(such

as

Integer,

Double,

and

Long),

Strings,

and

byte

arrays.

Parameters:

value:

the

Java

object

to

be

written.

Throws:

v

MessageNotWriteableException

if

message

in

read-only

mode.

v

MessageFormatException

if

object

is

not

a

valid

type.

v

JMSException

if

JMS

fails

to

write

the

message

because

of

an

internal

JMS

error.

writeShort

public

void

writeShort(short

value)

throws

JMSException

Write

a

short

to

the

bytes

message

as

two

bytes.

Parameters:

value:

the

short

to

be

written.

Throws:

v

MessageNotWriteableException

-

if

message

in

read-only

mode.

v

JMSException

if

JMS

fails

to

write

the

message

because

of

an

internal

JMS

error.

writeUTF

public

void

writeUTF(java.lang.String

value)

throws

JMSException

Write

a

string

to

the

bytes

message

using

UTF-8

encoding

in

a

machine-independent

manner.

The

UTF-8

string

written

to

the

buffer

starts

with

a

2-byte

length

field.

Parameters:

value:

the

String

value

to

be

written.

Throws:

v

MessageNotWriteableException

if

message

in

read-only

mode.

v

JMSException

if

JMS

fails

to

write

the

message

because

of

an

internal

JMS

error.

BytesMessage

Chapter

15.

JMS

interfaces

and

classes

307

Cleanup

*

public

class

Cleanup

implements

Runnable

WebSphere

MQ

class:

Cleanup

Cleanup

contains

utilities

for

dealing

with

broken

non-durable

subscriptions

using

the

SUBSTATE(BROKER)

option.

It

is

not

applicable

if

you

use

a

direct

connection

to

WebSphere

MQ

Event

Broker.

See

also:

ConnectionFactory.

WebSphere

MQ

constructor

Cleanup

public

Cleanup()

Default

constructor.

Cleanup

public

Cleanup(MQTopicConnectionFactory

mqtcf)

throws

JMSException

Constructor

that

copies

property

values

from

the

supplied

MQTopicConnectionFactory.

Methods

cleanup

public

void

cleanup()

throws

JMSException

Executes

Cleanup

once.

If

cleanupLevel

is

NONE,

throws

an

IllegalStateException.

getCCSID

public

int

getCCSID()

Get

the

character

set

of

the

queue

manager.

getChannel

public

String

getChannel()

For

client

only,

get

the

channel

that

was

used.

getCleanupInterval

public

long

getCleanupInterval()

Retrieve

the

cleanup

interval.

Cleanup

308

Using

Java

getCleanupLevel

public

int

getCleanupLevel()

Retrieve

the

cleanup

level.

getExceptionListener

public

ExceptionListener

getExceptionListener()

Return

the

ExceptionListener.

getHostName

public

String

getHostName()

Retrieve

the

name

of

the

host.

getPort

public

int

getPort()

For

client

connections,

get

the

port

number.

getQueueManager

public

String

getQueueManager()

Get

the

name

of

the

queue

manager.

getReceiveExit

public

String

getReceiveExit()

Get

the

name

of

the

receive

exit

class.

getReceiveExitInit

public

String

getReceiveExitInit()

Get

the

initialization

string

that

was

passed

to

the

receive

exit

class.

getSecurityExit

public

String

getSecurityExit()

Get

the

name

of

the

security

exit

class.

getSecurityExitInit

public

String

getSecurityExitInit()

Get

the

security

exit

initialization

string.

getSendExit

public

String

getSendExit()

Get

the

name

of

the

send

exit

class.

Cleanup

Chapter

15.

JMS

interfaces

and

classes

309

getSendExitInit

public

String

getSendExitInit()

Get

the

send

exit

initialization

string.

getTransportType

public

int

getTransportType()

Retrieve

the

transport

type.

isRunning

public

boolean

isRunning()

Return

true

if

the

run()

method

is

currently

active.

main

public

static

void

main(String

args[])

throws

java.io.UnsupportedEncodingException

Invoke

the

utility

from

a

command

line.

For

details

of

the

invocation

options

and

parameters,

see

“Manual

cleanup”

on

page

232.

For

information

specific

to

JMS

1.1,

see

“Manual

cleanup”

on

page

250.

run

public

void

run()

Run

this

utility

in

the

background

at

intervals,

as

determined

by

the

cleanupLevel

and

cleanupInterval

properties.

setCCSID

public

void

setCCSID(int

x)

throws

JMSException

Set

the

character

set

to

be

used

when

connecting

to

the

queue

manager.

See

Table

13

on

page

127

for

a

list

of

allowed

values.

We

recommend

that

you

use

the

default

value

(819)

for

most

situations.

setChannel

public

void

setChannel(String

x)

throws

JMSException

For

client

only,

set

the

channel

to

use.

setCleanupInterval

public

void

setCleanupInterval(long

interval)

throws

JMSException

Set

the

cleanupInterval.

Parameters:

v

interval:

length

of

time

in

milliseconds

between

runs

of

the

cleanup

utility

Throws:

JMSException

if

interval

is

less

than

0

Cleanup

310

Using

Java

|
|

setCleanupLevel

public

void

setCleanupLevel(int

level)

throws

JMSException

Set

the

cleanup

level

to

use.

It

can

be

one

of

JMSC.MQJMS_CLEANUP_NONE

JMSC.MQJMS_CLEANUP_SAFE

JMSC.MQJMS_CLEANUP_STRONG

JMSC.MQJMS_CLEANUP_FORCE

JMSC.MQJMS_CLEANUP_NONDUR

setExceptionListener

public

void

setExceptionListener(ExceptionListener

el)

Set

the

ExceptionListener.

If

set,

the

ExceptionListener

receives

any

exceptions

caused

during

the

run()

method.

Shortly

after

issuing

the

exception

to

the

ExceptionListener,

Cleanup

terminates.

setHostName

public

void

setHostName(String

hostname)

For

client

connections,

the

name

of

the

host

to

connect

to.

setPort

public

void

setPort(int

port)

throws

JMSException

Set

the

port

for

a

client

connection.

Parameters:

port:

the

new

value

to

use.

Throws:

JMSException

if

the

port

is

negative.

setQueueManager

public

void

setQueueManager(String

x)

throws

JMSException

Set

the

name

of

the

queue

manager

to

connect

to.

setReceiveExit

public

void

setReceiveExit(String

receiveExit)

The

name

of

a

class

that

implements

a

receive

exit.

setReceiveExitInit

public

void

setReceiveExitInit(String

x)

Initialization

string

that

is

passed

to

the

constructor

of

the

receive

exit

class.

Cleanup

Chapter

15.

JMS

interfaces

and

classes

311

setSecurityExit

public

void

setSecurityExit(String

securityExit)

The

name

of

a

class

that

implements

a

security

exit.

setSecurityExitInit

public

void

setSecurityExitInit(String

x)

Initialization

string

that

is

passed

to

the

security

exit

constructor.

setSendExit

public

void

setSendExit(String

sendExit)

The

name

of

a

class

that

implements

a

send

exit.

setSendExitInit

public

void

setSendExitInit(String

x)

Initialization

string

that

is

passed

to

the

constructor

of

send

exit.

setTransportType

public

void

setTransportType(int

x)

throws

JMSException

Set

the

transport

type

to

use.

It

can

be

one

of

the

following:

JMSC.MQJMS_TP_BINDINGS_MQ

JMSC.MQJMS_TP_CLIENT_MQ_TCPIP

stop

public

void

stop()

Stop

any

currently

running

cleanup

thread.

Return

when

cleanup

has

finished.

Do

nothing

if

cleanup

is

not

running.

Cleanup

312

Using

Java

Connection

public

interface

Connection

Subinterfaces:

QueueConnection,

TopicConnection,

XAConnection,

XAQueueConnection,

and

XATopicConnection

WebSphere

MQ

class:

MQConnection

A

JMS

Connection

is

a

client’s

active

connection

to

its

JMS

provider.

See

also:

ConnectionFactory,

QueueConnection,

and

TopicConnection

Methods

close

public

void

close()

throws

JMSException

Because

a

provider

can

allocate

some

resources

outside

the

JVM

on

behalf

of

a

Connection,

clients

must

close

them

when

they

are

not

needed.

You

cannot

rely

on

garbage

collection

to

reclaim

these

resources

eventually,

because

this

might

not

occur

soon

enough.

There

is

no

need

to

close

the

sessions,

producers,

and

consumers

of

a

closed

connection.

Closing

a

connection

causes

any

of

its

sessions’

in-process

transactions

to

be

rolled

back.

If

a

session’s

work

is

coordinated

by

an

external

transaction

manager,

when

using

XASession,

a

session’s

commit

and

rollback

methods

are

not

used

and

the

result

of

a

closed

session’s

work

is

determined

later

by

a

transaction

manager.

Closing

a

connection

does

not

force

an

acknowledgement

of

client

acknowledged

sessions.

WebSphere

MQ

JMS

keeps

a

pool

of

WebSphere

MQ

hConns

available

for

use

by

sessions.

Under

some

circumstances,

Connection.close()

clears

this

pool.

If

an

application

uses

multiple

connections

sequentially,

you

can

force

the

pool

to

remain

active

between

JMS

connections.

To

do

this,

register

an

MQPoolToken

with

com.ibm.mq.MQEnvironment

for

the

lifetime

of

your

JMS

application.

For

details,

see

“Connection

pooling”

on

page

80

and

“MQEnvironment”

on

page

110.

Throws:

JMSException

if

the

JMS

implementation

fails

to

close

the

connection

because

of

an

internal

error.

Examples

are

a

failure

to

release

resources

or

to

close

a

socket

connection.

java.lang.Object

|

+----com.ibm.mq.jms.MQConnection

Connection

Chapter

15.

JMS

interfaces

and

classes

313

|

|

createConnectionConsumer

(JMS

1.1

only)

public

ConnectionConsumer

createConnectionConsumer

(Destination

destination,

java.lang.String

messageSelector,

ServerSessionPool

sessionPool,

int

maxMessages)

throws

JMSException

Create

a

connection

consumer

for

this

connection.

This

is

an

expert

facility

that

is

not

used

by

regular

JMS

clients.

Parameters:

v

destination:

the

destination

to

access.

v

messageSelector:

deliver

only

those

messages

with

properties

that

match

the

message

selector

expression.

A

value

of

null

or

an

empty

string

indicates

that

there

is

no

message

selector

for

the

message

consumer.

v

sessionPool:

the

server

session

pool

to

associate

with

this

connection

consumer.

v

maxMessages:

the

maximum

number

of

messages

that

can

be

assigned

to

a

server

session

at

one

time.

Returns:

The

connection

consumer.

Throws:

v

JMSException

if

the

connection

fails

to

create

a

connection

consumer

because

of

an

internal

JMS

error,

or

because

of

incorrect

arguments

for

sessionPool

and

messageSelector.

v

InvalidDestinationException

if

the

destination

is

not

valid.

v

InvalidSelectorException

if

the

message

selector

is

not

valid.

See

also:

ConnectionConsumer

createDurableConnectionConsumer

(JMS

1.1

only)

public

ConnectionConsumer

createDurableConnectionConsumer

(Topic

topic,

java.lang.String

subscriptionName,

java.lang.String

messageSelector,

ServerSessionPool

sessionPool,

int

maxMessages)

throws

JMSException

Create

a

durable

connection

consumer

for

this

connection.

This

is

an

expert

facility

that

is

not

used

by

regular

JMS

clients.

Note

For

a

direct

connection

to

WebSphere

MQ

Event

Broker,

WebSphere

Business

Integration

Event

Broker,

or

WebSphere

Business

Integration

Message

Broker,

this

method

throws

a

JMSException.

Parameters:

v

topic:

the

topic

to

access.

v

subscriptionName:

the

name

of

the

durable

subscription.

Connection

314

Using

Java

|

|
|
|
|
|

|
|

|

|

|
|
|
|

|
|

|
|

|
|

|

|
|
|

|

|

|
|

|

|
|
|
|
|
|

|
|
|

|
|
|
||||

|

|

|

v

messageSelector:

deliver

only

those

messages

with

properties

that

match

the

message

selector

expression.

A

value

of

null

or

an

empty

string

indicates

that

there

is

no

message

selector

for

the

message

consumer.

v

sessionPool:

the

server

session

pool

to

associate

with

this

durable

connection

consumer.

v

maxMessages:

the

maximum

number

of

messages

that

can

be

assigned

to

a

server

session

at

one

time.

Returns:

The

durable

connection

consumer.

Throws:

v

JMSException

if

the

connection

fails

to

create

a

connection

consumer

because

of

an

internal

JMS

error,

or

because

of

incorrect

arguments

for

sessionPool

and

messageSelector.

v

InvalidDestinationException

if

the

destination

is

not

valid.

v

InvalidSelectorException

if

the

message

selector

is

not

valid.

See

also:

ConnectionConsumer

createSession

(JMS

1.1

only)

public

Session

createSession(boolean

transacted,

int

acknowledgeMode)

throws

JMSException

Create

a

session.

Parameters:

v

transacted:

if

true,

the

session

is

transacted.

v

acknowledgeMode:

indicates

whether

the

consumer

or

the

client

acknowledges

any

messages

it

receives.

Possible

values

are:

Session.AUTO_ACKNOWLEDGE

Session.CLIENT_ACKNOWLEDGE

Session.DUPS_OK_ACKNOWLEDGE

This

parameter

is

ignored

if

the

session

is

transacted.

Returns:

A

newly

created

session.

Throws:

JMSException

if

the

connection

fails

to

create

a

session

because

of

an

internal

JMS

error,

or

because

of

lack

of

support

for

the

specific

transaction

and

acknowledgement

mode.

See

also:

Session.AUTO_ACKNOWLEDGE,

Session.CLIENT_ACKNOWLEDGE,

Session.DUPS_OK_ACKNOWLEDGE

Connection

Chapter

15.

JMS

interfaces

and

classes

315

|
|
|
|

|
|

|
|

|
|

|

|
|
|

|

|

|
|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|
|
|
|

|
|
|
|

getClientID

public

java.lang.String

getClientID()

throws

JMSException

Get

the

client

identifier

for

this

connection.

The

client

identifier

can

either

be

preconfigured

by

the

administrator

in

a

ConnectionFactory,

or

assigned

by

calling

setClientId.

Returns:

The

unique

client

identifier.

Throws:

JMSException

if

the

JMS

implementation

fails

to

return

the

client

ID

for

this

connection

because

of

an

internal

error.

getExceptionListener

public

ExceptionListener

getExceptionListener()

throws

JMSException

Get

the

ExceptionListener

for

this

connection.

Returns:

The

ExceptionListener

for

this

connection

Throws:

JMSException

general

exception

if

the

JMS

implementation

fails

to

get

the

exception

listener

for

this

connection.

getMetaData

public

ConnectionMetaData

getMetaData()

throws

JMSException

Get

the

metadata

for

this

connection.

Returns:

The

connection

metadata.

Throws:

JMSException

general

exception

if

the

JMS

implementation

fails

to

get

the

connection

metadata

for

this

connection.

See

also:

“ConnectionMetaData”

on

page

335

setClientID

public

void

setClientID(java.lang.String

clientID)

throws

JMSException

Set

the

client

identifier

for

this

connection.

Note:

The

client

identifier

is

ignored

for

point-to-point

connections.

WebSphere

MQ

Event

Broker

note

This

method

always

throws

an

IllegalStateException

when

you

make

a

direct

connection

to

WebSphere

MQ

Event

Broker.

Parameters:

clientID:

the

unique

client

identifier.

Throws:

Connection

316

Using

Java

v

JMSException

if

the

JMS

implementation

fails

to

set

the

client

ID

for

this

Connection

because

of

an

internal

error.

v

InvalidClientIDException

if

the

JMS

client

specifies

a

non

valid

or

duplicate

client

ID.

v

IllegalStateException

if

attempting

to

set

a

connection’s

client

identifier

at

the

wrong

time,

or

if

it

has

been

configured

administratively.

setExceptionListener

public

void

setExceptionListener(ExceptionListener

listener)

throws

JMSException

Set

an

exception

listener

for

this

connection.

Parameters:

handler:

the

exception

listener.

Throws:

JMSException

general

exception

if

the

JMS

implementation

fails

to

set

the

exception

listener

for

this

connection.

start

public

void

start()

throws

JMSException

Start

(or

restart)

a

connection’s

delivery

of

incoming

messages.

Starting

a

started

session

is

ignored.

Use

the

stop

method

to

stop

delivery.

Throws:

JMSException

if

the

JMS

implementation

fails

to

start

the

message

delivery

because

of

an

internal

error.

stop

public

void

stop()

throws

JMSException

Used

to

stop

a

connection’s

delivery

of

incoming

messages

temporarily.

It

can

be

restarted

using

its

start

method.

When

stopped,

delivery

to

all

the

connection’s

message

consumers

is

inhibited.

Synchronous

receives

are

blocked,

and

messages

are

not

delivered

to

message

listeners.

Stopping

a

session

has

no

affect

on

its

ability

to

send

messages.

Stopping

a

stopped

session

is

ignored.

Throws:

JMSException

if

the

JMS

implementation

fails

to

stop

the

message

delivery

because

of

an

internal

error.

Connection

Chapter

15.

JMS

interfaces

and

classes

317

ConnectionConsumer

public

interface

ConnectionConsumer

WebSphere

MQ

class:

MQConnectionConsumer

For

application

servers,

Connections

provide

a

special

facility

to

create

a

ConnectionConsumer.

A

Destination

and

a

Property

Selector

specify

the

messages

that

it

is

to

consume.

Also,

a

ConnectionConsumer

must

be

given

a

ServerSessionPool

to

use

to

process

its

messages.

See

also:

QueueConnection,

and

TopicConnection.

Methods

close()

public

void

close()

throws

JMSException

Because

a

provider

can

allocate

some

resources

outside

the

JVM

on

behalf

of

a

ConnectionConsumer,

clients

must

close

them

when

they

are

not

needed.

You

cannot

rely

on

garbage

collection

to

reclaim

these

resources

eventually,

because

this

might

not

occur

soon

enough.

Throws:

JMSException

if

a

JMS

implementation

fails

to

release

resources

on

behalf

of

ConnectionConsumer,

or

if

it

fails

to

close

the

connection

consumer.

getServerSessionPool()

public

ServerSessionPool

getServerSessionPool()

throws

JMSException

Get

the

server

session

associated

with

this

connection

consumer.

Returns:

The

server

session

pool

used

by

this

connection

consumer.

Throws:

JMSException

if

a

JMS

implementation

fails

to

get

the

server

session

pool

associated

with

this

connection

consumer

because

of

an

internal

error.

java.lang.Object

|

+----com.ibm.mq.jms.MQConnectionConsumer

ConnectionConsumer

318

Using

Java

ConnectionFactory

public

interface

ConnectionFactory

Subinterfaces:

QueueConnectionFactory,

TopicConnectionFactory,

XAQueueConnectionFactory,

and

XATopicConnectionFactory

WebSphere

MQ

class:

MQConnectionFactory

A

ConnectionFactory

encapsulates

a

set

of

connection

configuration

parameters

that

has

been

defined

by

an

administrator.

A

client

uses

it

to

create

a

Connection

with

a

JMS

provider.

Note

For

direct

connections

to

WebSphere

MQ

Event

Broker,

WebSphere

Business

Integration

Event

Broker,

or

WebSphere

Business

Integration

Message

Broker,

properties

accessed

by

methods

marked

with

a

§

are

ignored.

See

also:

Connection,

QueueConnectionFactory,

and

TopicConnectionFactory

WebSphere

MQ

constructor

MQConnectionFactory

public

MQConnectionFactory()

Methods

createConnection

(JMS

1.1

only)

public

Connection

createConnection()

throws

JMSException

Create

a

connection

with

the

default

user

identity.

The

connection

is

created

in

stopped

mode.

No

messages

are

delivered

until

the

Connection.start

method

is

called

explicitly.

Returns:

A

newly

created

connection.

Throws:

v

JMSException

if

JMS

fails

to

create

the

connection

because

of

an

internal

JMS

error.

v

JMSSecurityException

if

client

authentication

fails

because

the

user

name

or

password

is

not

valid.

java.lang.Object

|

+----com.ibm.mq.jms.MQConnectionFactory

ConnectionFactory

Chapter

15.

JMS

interfaces

and

classes

319

|

|

|

|
|
|

|
|

|

|
|

|
|

createConnection

(JMS

1.1

only)

public

Connection

createConnection(java.lang.String

userName,

java.lang.String

password)

throws

JMSException

Create

a

connection

with

the

specified

user

identity.

The

connection

is

created

in

stopped

mode.

No

messages

are

delivered

until

the

Connection.start

method

is

called

explicitly.

Parameters:

v

userName:

the

user

name

of

the

caller.

v

password:

the

password

of

the

caller.

Returns:

A

newly

created

connection.

Throws:

v

JMSException

if

JMS

fails

to

create

the

connection

because

of

an

internal

JMS

error.

v

JMSSecurityException

if

client

authentication

fails

because

the

user

name

or

password

is

not

valid.

getBrokerCCSubQueue

*

§

public

String

getBrokerCCSubQueue()

Get

method

for

brokerCCSubQueue

attribute.

Returns:

The

name

of

the

nondurable

subscription

queue

to

use

for

a

connection

consumer.

getBrokerControlQueue

*

§

public

String

getBrokerControlQueue()

Get

method

for

brokerControlQueue

attribute.

Returns:

The

broker’s

control

queue

name

getBrokerPubQueue

*

§

public

String

getBrokerPubQueue()

Get

method

for

brokerPubQueue

attribute.

Returns:

The

broker’s

publish

queue

name.

getBrokerQueueManager

*

§

public

String

getBrokerQueueManager()

Get

method

for

brokerQueueManager

attribute.

Returns:

The

broker’s

queue

manager

name.

ConnectionFactory

320

Using

Java

|

|
|
|

|
|
|

|

|

|

|
|

|

|
|

|
|

|

|

|

|
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

getBrokerSubQueue

*

§

public

String

getBrokerSubQueue()

Get

method

for

brokerSubQueue

attribute.

Returns:

The

name

of

the

nondurable

subscription

queue

to

use.

getBrokerVersion

*

public

int

getBrokerVersion()

Get

method

for

brokerVersion

attribute.

Returns:

The

broker’s

version

number

getCCSID

*

§

public

int

getCCSID()

Get

the

character

set

of

the

queue

manager.

getChannel

*

§

public

String

getChannel()

For

client

only,

get

the

channel

that

was

used.

getCleanupInterval

*

§

public

long

getCleanupInterval()

Get

method

for

cleanupInterval

attribute.

Returns:

How

often

the

cleanup

utility

runs,

in

milliseconds

getCleanupLevel

*

§

public

int

getCleanupLevel()

Get

method

for

cleanupLevel

attribute.

Returns:

The

value

of

cleanupLevel

getClientId

*

public

String

getClientId()

Get

the

client

identifier

that

is

used

for

all

connections

that

are

created

using

this

ConnectionFactory.

getDescription

*

public

String

getDescription()

Retrieve

the

object

description.

ConnectionFactory

Chapter

15.

JMS

interfaces

and

classes

321

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

getDirectAuth

*

public

int

getDirectAuth()

Get

method

for

the

direct

authentication

attribute.

Returns:

The

value

of

the

direct

authentication

attribute

See

also:

setDirectAuth()

getFailIfQuiesce

*

§

public

int

getFailIfQuiesce()

Get

the

default

behavior

of

applications

accessing

a

quiescing

queue

manager

when

using

destinations

created

using

this

ConnectionFactory

object.

getHostName

*

public

String

getHostName()

Retrieve

the

name

of

the

host.

getLocalAddress

*

public

String

getLocalAddress()

Get

the

local

address.

See

also:

setLocalAddress()

getMessageRetention

*

public

int

getMessageRetention()

Get

method

for

messageRetention

attribute.

Returns:

v

JMSC.MQJMS_MRET_YES:

unwanted

messages

remain

on

the

input

queue.

v

JMSC.MQJMS_MRET_NO:

unwanted

messages

are

dealt

with

according

to

their

disposition

options.

getMessageSelection

*

§

public

int

getMessageSelection()

Get

method

for

the

message

selection

attribute.

Returns:

The

value

of

the

message

selection

attribute

See

also:

setMessageSelection()

ConnectionFactory

322

Using

Java

|

|

|

|
|

|
|

|

|

|

|
|

|

|

|

|

|
|

|
|

|

|

|

|
|

|
|

getMsgBatchSize

*

§

public

int

getMsgBatchSize()

Return

the

current

value

of

this

property.

getMulticast

*

public

int

getMulticast()

Get

method

for

the

multicast

attribute.

Returns:

An

integer

representing

the

current

multicast

setting.

See

also:

setMulticast()

getPollingInterval

*

§

public

int

getPollingInterval()

Return

the

current

value

of

this

property.

getPort

*

public

int

getPort()

For

client

connections

or

direct

TCP/IP

connection

to

WebSphere

MQ

Event

Broker,

get

the

port

number.

getProxyHostName

*

public

String

getProxyHostName()

Get

method

for

the

proxy

host

name

attribute.

Returns:

The

host

name

of

the

proxy

server

when

establishing

a

direct

connection,

or

null

if

no

proxy

server

is

used.

getProxyPort

*

public

int

getProxyPort()

Get

method

for

the

proxy

port

attribute.

Returns:

The

port

number

to

connect

to

on

the

proxy

server.

getPubAckInterval

*

§

public

int

getPubAckInterval()

Get

method

for

pubAckInterval

attribute.

Returns:

The

interval,

in

number

of

messages,

between

publish

requests

that

require

acknowledgement

from

the

broker.

ConnectionFactory

Chapter

15.

JMS

interfaces

and

classes

323

|

|

|

|
|

|
|

|

|

|

|
|
|

|

|

|

|
|

|

|

|

|
|
|

getQueueManager

*

§

public

String

getQueueManager()

Get

the

name

of

the

queue

manager.

getReceiveExit

*

§

public

String

getReceiveExit()

Get

the

name

of

the

receive

exit

class.

getReceiveExitInit

*

§

public

String

getReceiveExitInit()

Get

the

initialization

string

that

was

passed

to

the

receive

exit

class.

getReference

*

public

Reference

getReference()

throws

NamingException

Return

a

reference

for

this

connection

factory.

Returns:

A

reference

for

this

object.

Throws:

NamingException.

getSecurityExit

*

§

public

String

getSecurityExit()

Get

the

name

of

the

security

exit

class.

getSecurityExitInit

*

§

public

String

getSecurityExitInit()

Get

the

security

exit

initialization

string.

getSendExit

*

§

public

String

getSendExit()

Get

the

name

of

the

send

exit

class.

getSendExitInit

*

§

public

String

getSendExitInit()

Get

the

send

exit

initialization

string.

getSparseSubscriptions

*

public

boolean

getSparseSubscriptions()

Get

method

for

the

sparse

subscriptions

attribute.

Returns:

The

value

of

the

sparse

subscriptions

attribute

See

also:

setSparseSubscriptions()

ConnectionFactory

324

Using

Java

|

|

|

|
|

|
|

|

|

|

|
|

|
|

getSSLCertStores

*

§

public

java.util.Collection

getSSLCertStores()

Return

a

collection

of

CertStore

objects.

If

setSSLCertStores()

was

used

to

set

a

collection

of

CertStore

objects,

the

value

returned

from

getSSLCertStores()

is

a

copy

of

the

original

collection.

If

setSSLCertStores()

was

used

to

set

a

string

detailing

a

list

of

LDAP

URIs,

this

method

returns

a

collection

of

CertStore

objects

representing

the

LDAP

CRLs.

getSSLCertStoresAsString

*

§

public

String

getSSLCertStoresAsString()

throws

JMSException

Return

the

string

of

LDAP

URIs,

set

with

setSSLCertStores.

Throws

JMSException

if

a

collection

of

CertStores

was

set.

getSSLCipherSuite

*

§

public

String

getSSLCipherSuite()

Return

the

CipherSuite

used

for

SSL

encryption.

getSSLPeerName

*

§

public

String

getSSLPeerName()

Return

the

distinguished

name

pattern

used

to

validate

the

queue

manager.

getSSLSocketFactory

*

§

public

javax.net.ssl.SSLSocketFactory

getSSLSocketFactory()

Return

the

SSLSocketFactory

used

with

SSL

encryption.

getStatusRefreshInterval

*

§

public

int

getStatusRefreshInterval()

Get

method

for

statusRefreshInterval

attribute.

Returns:

The

number

of

milliseconds

between

transactions

to

refresh

publish/subscribe

status.

getSubscriptionStore

*

§

public

int

getSubscriptionStore()

Get

method

for

the

SUBSTORE

property.

Returns:

An

integer

representing

the

current

SUBSTORE

property.

ConnectionFactory

Chapter

15.

JMS

interfaces

and

classes

325

|

|

|

|
|
|

|

|

|

|
|

getSyncpointAllGets

*

§

public

boolean

getSyncpointAllGets()

Return

the

current

value

of

this

property.

getTemporaryModel

*

public

String

getTemporaryModel()

getTempQPrefix

*

public

String

getTempQPrefix()

Get

the

prefix

that

is

used

to

form

the

name

of

a

WebSphere

MQ

dynamic

queue.

Returns:

The

prefix

that

is

used

to

form

the

name

of

a

WebSphere

MQ

dynamic

queue.

getTransportType

*

public

int

getTransportType()

Retrieve

the

transport

type.

getUseConnectionPooling

*

§

public

boolean

getUseConnectionPooling()

Return

the

current

value

of

this

property.

setBrokerCCSubQueue

*

§

public

void

setBrokerCCSubQueue(String

x)

throws

JMSException

Set

method

for

brokerCCSubQueue

attribute.

Parameters:

brokerSubQueue:

the

name

of

the

nondurable

subscription

queue

to

use

for

a

connection

consumer.

setBrokerControlQueue

*

§

public

void

setBrokerControlQueue(String

x)

throws

JMSException

Set

method

for

brokerControlQueue

attribute.

Parameters:

brokerControlQueue:

the

name

of

the

broker

control

queue.

setBrokerPubQueue

*

§

public

void

setBrokerPubQueue(String

x)

throws

JMSException

Set

method

for

brokerPubQueue

attribute.

Parameters:

brokerPubQueue:

the

name

of

the

broker

publish

queue.

ConnectionFactory

326

Using

Java

|

|

|

|

|
|

|
|
|

|

|

|

|
|
|

|

|

|

|
|

|

|

|

|
|

setBrokerQueueManager

*

§

public

void

setBrokerQueueManager(String

x)

throws

JMSException

Set

method

for

brokerQueueManager

attribute.

Parameters:

brokerQueueManager:

the

name

of

the

broker’s

queue

manager.

setBrokerSubQueue

*

§

public

void

setBrokerSubQueue(String

x)

throws

JMSException

Set

method

for

brokerSubQueue

attribute.

Parameters:

brokerSubQueue:

the

name

of

the

nondurable

subscription

queue

to

use.

setBrokerVersion

*

public

void

setBrokerVersion(int

x)

throws

JMSException

Set

method

for

brokerVersion

attribute.

Parameters:

An

integer

representing

one

of

the

valid

broker

version

number

values.

These

are

represented

by

the

constants:

JMSC.MQJMS_BROKER_V1

JMSC.MQJMS_BROKER_V2

setCCSID

*

§

public

void

setCCSID(int

x)

throws

JMSException

Set

the

character

set

to

be

used

when

connecting

to

the

queue

manager.

See

Table

13

on

page

127

for

a

list

of

allowed

values.

We

recommend

that

you

use

the

default

value

(819)

for

most

situations.

setChannel

*

§

public

void

setChannel(String

x)

throws

JMSException

For

client

only,

set

the

channel

to

use.

setCleanupInterval

*

§

public

void

setCleanupInterval(long

x)

throws

JMSException

Set

method

for

cleanupInterval

attribute.

Parameters:

How

often

the

cleanup

utility

runs,

in

milliseconds

setCleanupLevel

*

§

public

void

setCleanupLevel(int

x)

throws

JMSException

Set

method

for

cleanupLevel

attribute.

Parameters:

An

integer

representing

one

of

the

valid

cleanup

levels.

These

are

represented

by

the

constants:

JMSC.MQJMS_CLEANUP_NONE

JMSC.MQJMS_CLEANUP_SAFE

JMSC.MQJMS_CLEANUP_STRONG

JMSC.MQJMS_CLEANUP_AS_PROPERTY

ConnectionFactory

Chapter

15.

JMS

interfaces

and

classes

327

|

|

|

|
|

|

|

|

|
|
|

|

|

|

|
|
|
|
|

|

|

|

|
|

|

|

|

|
|
|
|
|
|
|

setClientId

*

public

void

setClientId(String

x)

Set

the

client

Identifier

to

be

used

for

all

connections

created

using

this

connection.

WebSphere

MQ

Event

Broker

note

This

method

always

throws

an

IllegalStateException

when

you

make

a

direct

connection

to

WebSphere

MQ

Event

Broker.

setDescription

*

public

void

setDescription(String

x)

A

short

description

of

the

object.

setDirectAuth

*

public

void

setDirectAuth(int

x)

throws

JMSException

Set

method

for

the

direct

authentication

attribute.

Parameters:

x:

an

integer

specifying

the

type

of

direct

authentication

that

is

required.

The

following

are

symbolic

constants

that

represent

the

valid

values

of

the

parameter:

JMSC.MQJMS_DIRECTAUTH_BASIC

JMSC.MQJMS_DIRECTAUTH_CERTIFICATE

setFailIfQuiesce

*

§

public

void

setFailIfQuiesce(int

fiqValue)

throws

JMSException

Set

the

default

behavior

of

applications

accessing

a

quiescing

queue

manager

when

using

destinations

created

using

this

ConnectionFactory

object.

Takes

values

of:

v

JMSC.MQJMS_FIQ_YES

(default)

v

JMSC.MQJMS_FIQ_NO

setHostName

*

public

void

setHostName(String

hostname)

For

client

connections

or

direct

TCP/IP

connections

to

WebSphere

MQ

Event

Broker,

the

name

of

the

host

to

connect

to.

setLocalAddress

*

public

void

setLocalAddress(String

localAddress)

throws

JMSException

Set

the

local

address.

Parameters:

localAddress:

the

local

address

to

be

used.

The

format

of

a

local

address

is

[ip-addr][(low-port[,high-port])].

Here

are

some

examples:

9.20.4.98

The

channel

binds

to

address

9.20.4.98

locally

ConnectionFactory

328

Using

Java

|

|

|

|
|
|
|
|
|

|

|

|

|
|

|
|

|
|

9.20.4.98(1000)

The

channel

binds

to

address

9.20.4.98

locally

and

uses

port

1000

9.20.4.98(1000,2000)

The

channel

binds

to

address

9.20.4.98

locally

and

uses

a

port

in

the

range

1000

to

2000

(1000)

The

channel

binds

to

port

1000

locally

(1000,2000)

The

channel

binds

to

a

port

in

the

range

1000

to

2000

locally

You

can

specify

a

host

name

instead

of

an

IP

address.

Specify

a

range

of

ports

to

allow

for

connections

that

are

required

internally

as

well

as

those

explicitly

used

by

an

application.

The

number

of

ports

required

depends

on

the

application

and

the

facilities

it

uses.

Typically,

this

is

the

number

of

sessions

the

application

uses

plus

three

or

four

additional

ports.

If

an

application

is

having

difficulty

making

connections,

increase

the

number

of

ports

in

the

range.

Note

that

connection

pooling

has

an

effect

on

how

quickly

a

port

can

be

reused.

In

JMS,

connection

pooling

is

switched

on

by

default

and

it

might

be

some

minutes

before

a

port

can

be

reused

and

connection

errors

may

occur

in

the

meantime.

For

direct

connections,

the

local

address

determines

which

of

the

local

network

interfaces

is

used

for

multicast

connections.

When

specifying

a

local

address

for

a

direct

connection,

do

not

include

a

port

number.

A

port

number

is

not

valid

for

multicast

and,

if

specified,

causes

a

failure

at

connect

time.

Throws:

JMSException

if

the

format

of

the

local

address

is

incorrect.

setMessageRetention

*

public

void

setMessageRetention(int

x)

throws

JMSException

Set

method

for

messageRetention

attribute.

Parameters:

Valid

values

are:

v

JMSC.MQJMS_MRET_YES:

unwanted

messages

remain

on

the

input

queue.

v

JMSC.MQJMS_MRET_NO:

unwanted

messages

are

dealt

with

according

to

their

disposition

options.

For

more

information

on

this,

see

“General

principles

for

point-to-point

messaging”

on

page

278.

ConnectionFactory

Chapter

15.

JMS

interfaces

and

classes

329

|
|
|

|
|
|

||

|
|
|

|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|

|

|

|
|

|
|

|
|
|
|

setMessageSelection

*

§

public

void

setMessageSelection(int

x)

Set

method

for

the

message

selection

attribute.

Parameters:

x:

an

integer

indicating

whether

the

client

or

the

broker

performs

message

selection.

The

following

are

symbolic

constants

that

represent

the

valid

values

of

the

parameter:

JMSC.MQJMS_MSEL_CLIENT

JMSC.MQJMS_MSEL_BROKER

setMsgBatchSize

*

§

public

void

setMsgBatchSize(int

x)

Set

the

maximum

number

of

messages

to

be

taken

at

once

when

using

asynchronous

delivery.

setMulticast

*

public

void

setMulticast(int

x)

throws

JMSException

Set

method

for

the

multicast

attribute.

Parameters:

x:

an

integer

specifying

a

multicast

setting.

The

following

are

symbolic

constants

that

represent

the

valid

values

of

the

parameter:

JMSC.MQJMS_MULTICAST_DISABLED

JMSC.MQJMS_MULTICAST_NOT_RELIABLE

JMSC.MQJMS_MULTICAST_RELIABLE

JMSC.MQJMS_MULTICAST_ENABLED

setPollingInterval

*

§

public

void

setPollingInterval(int

x)

Set

the

interval

between

scans

of

all

receivers

during

asynchronous

message

delivery.

The

value

is

a

number

of

milliseconds.

setPort

*

public

void

setPort(int

port)

throws

JMSException

Set

the

port

for

a

client

connection

or

direct

TCP/IP

connection

to

WebSphere

MQ

Event

Broker.

Parameters:

port:

the

new

value

to

use.

Throws:

JMSException

if

the

port

is

negative.

ConnectionFactory

330

Using

Java

|

|

|

|
|
|
|
|
|

|

|

|

|
|
|
|
|
|
|

setProxyHostName

*

public

void

setProxyHostName(String

proxyHostName)

throws

JMSException

Set

method

for

the

proxy

host

name

attribute.

Parameters:

proxyHostName:

the

host

name

of

the

proxy

server

when

establishing

a

direct

connection,

or

null

if

no

proxy

server

is

used.

setProxyPort

*

public

void

setProxyPort(int

proxyPort)

throws

JMSException

Set

method

for

the

proxy

port

attribute.

Parameters:

proxyPort:

the

port

number

of

the

proxy

server

when

establishing

a

direct

connection.

setPubAckInterval

*

§

public

void

setPubAckInterval(int

x)

Set

method

for

pubAckInterval

attribute.

The

number

of

messages

to

publish

between

requiring

acknowledgement

from

the

broker.

The

default

is

25.

Applications

do

not

normally

alter

this

value,

and

must

not

rely

on

this

acknowledgement.

Parameters:

pubAckInterval:

the

number

of

messages

to

use

as

an

interval.

setQueueManager

*

§

public

void

setQueueManager(String

x)

throws

JMSException

Set

the

name

of

the

queue

manager

to

connect

to.

setReceiveExit

*

§

public

void

setReceiveExit(String

receiveExit)

The

name

of

a

class

that

implements

a

receive

exit.

setReceiveExitInit

*

§

public

void

setReceiveExitInit(String

x)

Initialization

string

that

is

passed

to

the

constructor

of

the

receive

exit

class.

setSecurityExit

*

§

public

void

setSecurityExit(String

securityExit)

The

name

of

a

class

that

implements

a

security

exit.

setSecurityExitInit

*

§

public

void

setSecurityExitInit(String

x)

Initialization

string

that

is

passed

to

the

security

exit

constructor.

ConnectionFactory

Chapter

15.

JMS

interfaces

and

classes

331

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|
|
|
|

|
|

setSendExit

*

§

public

void

setSendExit(String

sendExit)

The

name

of

a

class

that

implements

a

send

exit.

setSendExitInit

*

§

public

void

setSendExitInit(String

x)

Initialization

string

that

is

passed

to

the

constructor

of

send

exit.

setSparseSubscriptions

*

public

void

setSparseSubscriptions(boolean

x)

Set

method

for

the

sparse

subscriptions

attribute.

A

sparse

subscription

is

one

that

receives

infrequent

matching

messages.

The

default

value

of

this

attribute

is

false.

A

value

of

true

might

be

required

if

an

application

using

sparse

subscriptions

fails

to

receive

messages

because

of

log

overflow.

If

you

set

the

attribute

to

true,

the

application

must

be

able

to

open

the

consumer

queue

for

browsing

messages.

Parameters:

x:

indicates

whether

sparse

subscriptions

are

selected.

setSSLCertStores

*

§

public

void

setSSLCertStores(java.util.Collection

stores)

Provide

a

collection

of

CertStore

objects

used

for

CRL

checking.

The

certificate

provided

by

the

queue

manager

is

checked

against

one

of

the

CertStore

objects

contained

within

the

collection;

if

the

certificate

is

found,

the

connection

attempt

fails.

At

connect-time,

each

CertStore

in

the

collection

is

tried

in

turn

until

one

is

successfully

used

to

verify

the

queue

manager’s

certificate.

If

set

to

null

(the

default),

no

checking

of

the

queue

manager’s

certificate

is

performed.

This

property

is

ignored

if

sslCipherSuite

is

null.

Use

of

this

property

requires

Java

2

v1.4.

If

CertStores

are

specified

using

this

method,

the

MQConnectionFactory

cannot

be

bound

into

a

JNDI

namespace.

Attempting

to

do

so

will

result

in

an

exception.

Note:

To

use

a

CertStore

successfully

with

a

CRL

hosted

on

an

LDAP

server,

make

sure

that

your

Java

Software

Development

Kit

(SDK)

is

compatible

with

the

CRL.

Some

SDKs

require

that

the

CRL

conforms

to

RFC

2587,

which

defines

a

schema

for

LDAP

v2.

Most

LDAP

v3

servers

use

RFC

2256

instead.

setSSLCertStores

*

§

public

void

setSSLCertStores(String

storeSpec)

throws

JMSException

Specify

a

list

of

LDAP

servers

used

for

CRL

checking.

This

string

must

consist

of

a

sequence

of

space-delimited

LDAP

URIs

of

the

form

ldap://host[:port].

If

no

port

is

specified,

the

LDAP

default

of

389

is

assumed.

The

certificate

provided

by

the

queue

manager

is

checked

against

one

of

the

listed

LDAP

CRL

servers;

if

found,

the

connection

fails.

Each

LDAP

server

is

tried

in

turn

until

one

is

successfully

used

to

verify

the

queue

manager’s

certificate.

If

set

to

null

(the

default),

no

checking

of

the

queue

manager’s

certificate

is

performed.

Throws

JMSException

if

the

ConnectionFactory

332

Using

Java

|

|

|
|
|
|
|
|

|
|

supplied

list

of

LDAP

URIs

is

not

valid.

This

property

is

ignored

if

sslCipherSuite

is

null.

Use

of

this

property

requires

Java

2

v1.4.

Note:

To

use

a

CertStore

successfully

with

a

CRL

hosted

on

an

LDAP

server,

make

sure

that

your

Java

Software

Development

Kit

(SDK)

is

compatible

with

the

CRL.

Some

SDKs

require

that

the

CRL

conforms

to

RFC

2587,

which

defines

a

schema

for

LDAP

v2.

Most

LDAP

v3

servers

use

RFC

2256

instead.

setSSLCipherSuite

*

§

public

void

setSSLCipherSuite(String

cipherSuite)

Set

this

to

the

CipherSuite

matching

the

CipherSpec

set

on

the

SVRCONN

channel.

If

set

to

null

(the

default),

no

SSL

encryption

is

performed.

See

Appendix

H,

“SSL

CipherSuites

supported

by

WebSphere

MQ,”

on

page

487

for

a

list

of

CipherSuites

and

their

associated

CipherSpecs.

setSSLPeerName

*

§

public

void

setSSLPeerName(String

peerName)

throws

JMSException

Sets

sslPeerName

to

a

distinguished

name

pattern.

If

sslCipherSuite

is

set,

this

variable

can

be

used

to

ensure

the

correct

queue

manager

is

used.

For

a

description

of

the

format

for

this

value,

see

“Using

the

distinguished

name

of

the

queue

manager”

on

page

90.

The

distinguished

name

provided

by

the

queue

manager

must

match

this

pattern,

or

the

connection

attempt

fails.

If

set

to

null

(the

default),

no

checking

of

the

queue

manager’s

DN

is

performed.

Throws

JMSException

if

the

supplied

pattern

is

not

valid.

This

property

is

ignored

if

sslCipherSuite

is

null.

setSSLSocketFactory

*

§

public

void

setSSLSocketFactory(javax.net.ssl.SSLSocketFactory

sf)

Set

the

SSLSocketFactory

for

use

with

SSL

encryption.

Use

this

to

customize

all

aspects

of

SSL

encryption.

For

more

information

on

constructing

and

customizing

SSLSocketFactory

instances,

refer

to

your

JSSE

provider’s

documentation.

If

set

to

null

(default),

the

JSSE

default

SSLSocketFactory

is

used

when

SSL

encryption

is

requested.

This

property

is

ignored

if

sslCipherSuite

is

null.

If

a

custom

SSLSocketFactory

is

specified,

the

MQConnectionFactory

cannot

be

bound

into

a

JNDI

namespace.

Attempting

to

do

so

results

in

an

exception.

setStatusRefreshInterval

*

§

public

void

setStatusRefreshInterval(int

x)

Set

method

for

statusRefreshInterval

attribute.

Parameters:

statusRefreshInterval:

the

number

of

milliseconds

between

transactions

to

refresh

publish/subscribe

status.

ConnectionFactory

Chapter

15.

JMS

interfaces

and

classes

333

|

|

|

|
|
|

setSubscriptionStore

*

§

public

void

setSubscriptionStore(int

x)

throws

JMSException

Set

method

for

the

SUBSTORE

property.

Parameters:

SubStoretype:

an

integer

representing

one

of

the

valid

values

of

the

SUBSTORE

property.

The

following

symbolic

constants

represent

the

valid

values:

JMSC.MQJMS_SUBSTORE_QUEUE

JMSC.MQJMS_SUBSTORE_BROKER

JMSC.MQJMS_SUBSTORE_MIGRATE

setSyncpointAllGets

*

§

public

void

setSyncpointAllGets(boolean

x)

Choose

whether

to

do

all

GET

operations

within

a

syncpoint.

The

default

setting

for

this

property

is

false.

This

allows

GET

operations

not

under

transaction

management

to

perform

more

quickly.

setTemporaryModel

*

public

void

setTemporaryModel(String

x)

throws

JMSException

setTempQPrefix

*

public

void

setTempQPrefix(java.lang.String

tempQPrefix)

throws

JMSException

Set

the

prefix

to

be

used

to

form

the

name

of

a

WebSphere

MQ

dynamic

queue.

Parameters:

tempQPrefix:

the

prefix

to

be

used

to

form

the

name

of

a

WebSphere

MQ

dynamic

queue.

Throws:

JMSException

if

the

string

is

null,

empty,

greater

than

33

characters

in

length,

or

consists

solely

of

a

single

asterisk

(*).

setTransportType

*

public

void

setTransportType(int

x)

throws

JMSException

Set

the

transport

type

to

use.

It

can

be

one

of

the

following:

JMSC.MQJMS_TP_BINDINGS_MQ

JMSC.MQJMS_TP_CLIENT_MQ_TCPIP

JMSC.MQJMS_TP_DIRECT_TCPIP

JMSC.MQJMS_TP_DIRECT_HTTP

setUseConnectionPooling

*

§

public

void

setUseConnectionPooling(boolean

x)

Choose

whether

to

use

connection

pooling.

If

you

set

this

to

true,

JMS

enables

connection

pooling

for

the

lifetime

of

any

connections

created

through

the

ConnectionFactory.

This

also

affects

connections

created

with

UseConnectionPooling

set

to

false;

to

disable

connection

pooling

throughout

a

JVM,

ensure

that

all

ConnectionFactories

used

within

the

JVM

have

ConnectionPooling

set

to

false.

The

default,

and

recommended,

value

is

true.

You

can

disable

connection

pooling

if,

for

example,

your

applications

run

in

an

environment

that

performs

its

own

pooling.

ConnectionFactory

334

Using

Java

|

|

|

|
|
|
|
|
|
|

|

|

|

|

|
|

|
|
|

|
|
|

|

ConnectionMetaData

public

interface

ConnectionMetaData

WebSphere

MQ

class:

MQConnectionMetaData

ConnectionMetaData

provides

information

that

describes

the

connection.

WebSphere

MQ

constructor

MQConnectionMetaData

public

MQConnectionMetaData()

Methods

getJMSMajorVersion

public

int

getJMSMajorVersion()

throws

JMSException

Get

the

JMS

major

version

number.

Returns:

The

JMS

major

version

number.

Throws:

JMSException

if

an

internal

error

occurs

in

JMS

implementation

during

the

metadata

retrieval.

getJMSMinorVersion

public

int

getJMSMinorVersion()

throws

JMSException

Get

the

JMS

minor

version

number.

Returns:

The

JMS

minor

version

number.

Throws:

JMSException

if

an

internal

error

occurs

in

JMS

implementation

during

the

metadata

retrieval.

getJMSProviderName

public

java.lang.String

getJMSProviderName()

throws

JMSException

Get

the

JMS

provider

name.

Returns:

The

JMS

provider

name.

Throws:

JMSException

if

an

internal

error

occurs

in

JMS

implementation

during

the

metadata

retrieval.

getJMSVersion

public

java.lang.String

getJMSVersion()

throws

JMSException

Get

the

JMS

version.

java.lang.Object

|

+----com.ibm.mq.jms.MQConnectionMetaData

ConnectionMetaData

Chapter

15.

JMS

interfaces

and

classes

335

Returns:

The

JMS

version.

Throws:

JMSException

if

an

internal

error

occurs

in

JMS

implementation

during

the

metadata

retrieval.

getJMSXPropertyNames

public

java.util.Enumeration

getJMSXPropertyNames()

throws

JMSException

Get

an

enumeration

of

the

names

of

the

JMSX

Properties

supported

by

this

connection.

Returns:

An

enumeration

of

JMSX

PropertyNames.

Throws:

JMSException

if

an

internal

error

occurs

in

JMS

implementation

during

the

property

names

retrieval.

getProviderMajorVersion

public

int

getProviderMajorVersion()

throws

JMSException

Get

the

JMS

provider

major

version

number.

Returns:

The

JMS

provider

major

version

number.

Throws:

JMSException

-

if

an

internal

error

occurs

in

JMS

implementation

during

the

metadata

retrieval.

getProviderMinorVersion

public

int

getProviderMinorVersion()

throws

JMSException

Get

the

JMS

provider

minor

version

number.

Returns:

The

JMS

provider

minor

version

number.

Throws:

JMSException

if

an

internal

error

occurs

in

JMS

implementation

during

the

metadata

retrieval.

getProviderVersion

public

java.lang.String

getProviderVersion()

throws

JMSException

Get

the

JMS

provider

version.

Returns:

The

JMS

provider

version.

Throws:

JMSException

if

an

internal

error

occurs

in

JMS

implementation

during

the

metadata

retrieval.

toString

*

public

String

toString()

Overrides:

toString

in

class

Object.

ConnectionMetaData

336

Using

Java

DeliveryMode

public

interface

DeliveryMode

Delivery

modes

supported

by

JMS.

Fields

NON_PERSISTENT

public

static

final

int

NON_PERSISTENT

The

lowest

overhead

delivery

mode,

because

it

does

not

require

that

the

message

be

logged

to

stable

storage.

PERSISTENT

public

static

final

int

PERSISTENT

Instruct

the

JMS

provider

to

log

the

message

to

stable

storage

as

part

of

the

client’s

send

operation.

DeliveryMode

Chapter

15.

JMS

interfaces

and

classes

337

Destination

public

interface

Destination

Subinterfaces:

Queue,

TemporaryQueue,

TemporaryTopic,

and

Topic

WebSphere

MQ

class:

MQDestination

The

Destination

object

encapsulates

provider-specific

addresses.

See

also:

Queue,

TemporaryQueue,

TemporaryTopic,

and

Topic

WebSphere

MQ

constructors

MQDestination

public

MQDestination()

Methods

getCCSID

*

public

int

getCCSID()

Get

the

name

of

the

character

set

that

is

used

by

this

destination.

getDescription

*

public

String

getDescription()

Get

the

description

of

the

object.

getEncoding

*

public

int

getEncoding()

Get

the

encoding

that

is

used

for

this

destination.

getExpiry

*

public

int

getExpiry()

Get

the

value

of

the

expiry

for

this

destination.

getFailIfQuiesce

*

public

int

getFailIfQuiesce()

Get

the

behavior

of

applications

accessing

a

quiescing

queue

manager

with

this

destination.

getPersistence

*

public

int

getPersistence()

Get

the

value

of

the

persistence

for

this

destination.

getPriority

*

public

int

getPriority()

Get

the

override

priority

value.

getTargetClient

*

java.lang.Object

|

+----com.ibm.mq.jms.MQDestination

Destination

338

Using

Java

public

int

getTargetClient()

Get

the

JMS

compliance

indicator

flag.

setCCSID

*

public

void

setCCSID(int

x)

throws

JMSException

Character

set

to

be

used

to

encode

text

strings

in

messages

sent

to

this

destination.

See

Table

13

on

page

127

for

a

list

of

allowed

values.

The

default

value

is

1208

(UTF8).

setDescription

*

public

void

setDescription(String

x)

A

short

description

of

the

object.

setEncoding

*

public

void

setEncoding(int

x)

throws

JMSException

The

encoding

to

be

used

for

numeric

fields

in

messages

sent

to

this

destination.

See

Table

13

on

page

127

for

a

list

of

allowed

values.

setExpiry

*

public

void

setExpiry(int

expiry)

throws

JMSException

Override

the

expiry

of

all

messages

sent

to

this

destination.

setFailIfQuiesce

*

public

void

setFailIfQuiesce(int

fiqValue)

throws

JMSException

Set

the

behavior

of

applications

accessing

a

quiescing

queue

manager

with

this

destination.

Takes

values

of:

v

JMSC.MQJMS_FIQ_YES

(default)

v

JMSC.MQJMS_FIQ_NO

setPersistence

*

public

void

setPersistence(int

persistence)

throws

JMSException

Override

the

persistence

of

all

messages

sent

to

this

destination.

setPriority

*

public

void

setPriority(int

priority)

throws

JMSException

Override

the

priority

of

all

messages

sent

to

this

destination.

setTargetClient

*

public

void

setTargetClient(int

targetClient)

throws

JMSException

Whether

the

remote

application

is

JMS

compliant.

Destination

Chapter

15.

JMS

interfaces

and

classes

339

ExceptionListener

public

interface

ExceptionListener

If

a

JMS

provider

detects

a

serious

problem

with

a

connection,

it

informs

the

connection’s

ExceptionListener

if

one

has

been

registered.

It

does

this

by

calling

the

listener’s

onException()

method,

passing

it

a

JMSException

that

describes

the

problem.

This

allows

a

client

to

be

asynchronously

notified

of

a

problem.

Some

connections

only

consume

messages,

so

they

have

no

other

way

to

learn

that

their

Connection

has

failed.

Exceptions

are

delivered

when:

v

There

is

a

failure

in

receiving

an

asynchronous

message

v

A

message

throws

a

runtime

exception

Methods

onException

public

void

onException(JMSException

exception)

Notify

user

of

a

JMS

exception.

Parameters:

exception:

the

JMS

exception.

These

are

exceptions

that

result

from

asynchronous

message

delivery.

Typically,

they

indicate

a

problem

with

receiving

a

message

from

the

queue

manager,

or

possibly

an

internal

error

in

the

JMS

implementation.

ExceptionListener

340

Using

Java

MapMessage

public

interface

MapMessage

extends

Message

WebSphere

MQ

class:

JMSMapMessage

Use

a

MapMessage

to

send

a

set

of

name-value

pairs

where

names

are

strings

and

values

are

Java

primitive

types.

The

entries

can

be

accessed

sequentially

or

randomly

by

name.

The

order

of

the

entries

is

undefined.

See

also:

BytesMessage,

Message,

ObjectMessage,

StreamMessage,

and

TextMessage

Methods

getBoolean

public

boolean

getBoolean(java.lang.String

name)

throws

JMSException

Return

the

boolean

value

with

the

given

name.

Parameters:

name:

the

name

of

the

boolean

Returns:

The

boolean

value

with

the

given

name.

Throws:

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

v

MessageFormatException

if

this

type

conversion

is

not

valid.

getByte

public

byte

getByte(java.lang.String

name)

throws

JMSException

Return

the

byte

value

with

the

given

name.

Parameters:

name:

the

name

of

the

byte.

Returns:

The

byte

value

with

the

given

name.

Throws:

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

v

MessageFormatException

if

this

type

conversion

is

not

valid.

java.lang.Object

|

+----com.ibm.jms.JMSMessage

|

+----com.ibm.jms.JMSMapMessage

MapMessage

Chapter

15.

JMS

interfaces

and

classes

341

getBytes

public

byte[]

getBytes(java.lang.String

name)

throws

JMSException

Return

the

byte

array

value

with

the

given

name.

Parameters:

name:

the

name

of

the

byte

array.

Returns:

A

copy

of

the

byte

array

value

with

the

given

name.

If

there

is

no

item

by

this

name,

a

null

value

is

returned.

Throws:

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

v

MessageFormatException

if

this

type

of

conversion

is

not

valid.

getChar

public

char

getChar(java.lang.String

name)

throws

JMSException

Return

the

Unicode

character

value

with

the

given

name.

Parameters:

name:

the

name

of

the

Unicode

character.

Returns:

The

Unicode

character

value

with

the

given

name.

Throws:

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

v

MessageFormatException

if

this

type

conversion

is

not

valid.

getDouble

public

double

getDouble(java.lang.String

name)

throws

JMSException

Return

the

double

value

with

the

given

name.

Parameters:

name:

the

name

of

the

double.

Returns:

The

double

value

with

the

given

name.

Throws:

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

v

MessageFormatException

if

this

type

conversion

is

not

valid.

MapMessage

342

Using

Java

getFloat

public

float

getFloat(java.lang.String

name)

throws

JMSException

Return

the

float

value

with

the

given

name.

Parameters:

name:

the

name

of

the

float.

Returns:

The

float

value

with

the

given

name.

Throws:

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

v

MessageFormatException

if

this

type

conversion

is

not

valid.

getInt

public

int

getInt(java.lang.String

name)

throws

JMSException

Return

the

integer

value

with

the

given

name.

Parameters:

name:

the

name

of

the

integer.

Returns:

The

integer

value

with

the

given

name.

Throws:

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

v

MessageFormatException

if

this

type

conversion

is

not

valid.

getLong

public

long

getLong(java.lang.String

name)

throws

JMSException

Return

the

long

value

with

the

given

name.

Parameters:

name:

the

name

of

the

long.

Returns:

The

long

value

with

the

given

name.

Throws:

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

v

MessageFormatException

if

this

type

conversion

is

not

valid.

getMapNames

public

java.util.Enumeration

getMapNames()

throws

JMSException

Return

an

enumeration

of

all

the

map

message’s

names.

Returns:

An

enumeration

of

all

the

names

in

this

map

message.

Throws:

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

MapMessage

Chapter

15.

JMS

interfaces

and

classes

343

getObject

public

java.lang.Object

getObject(java.lang.String

name)

throws

JMSException

Return

the

Java

object

value

with

the

given

name.

This

method

returns

in

object

format,

a

value

that

has

been

stored

in

the

map

either

using

the

setObject

method

call,

or

the

equivalent

primitive

set

method.

Parameters:

name:

the

name

of

the

Java

object.

Returns:

A

copy

of

the

Java

object

value

with

the

given

name,

in

object

format

(if

it

is

set

as

an

int,

an

Integer

is

returned).

If

there

is

no

item

by

this

name,

a

null

value

is

returned.

Throws:

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

getShort

public

short

getShort(java.lang.String

name)

throws

JMSException

Return

the

short

value

with

the

given

name.

Parameters:

name:

the

name

of

the

short.

Returns:

The

short

value

with

the

given

name.

Throws:

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

v

MessageFormatException

if

this

type

conversion

is

not

valid.

getString

public

java.lang.String

getString(java.lang.String

name)

throws

JMSException

Return

the

string

value

with

the

given

name.

Parameters:

name:

the

name

of

the

string.

Returns:

The

string

value

with

the

given

name.

If

there

is

no

item

by

this

name,

a

null

value

is

returned.

Throws:

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

v

MessageFormatException

if

this

type

conversion

is

not

valid.

MapMessage

344

Using

Java

itemExists

public

boolean

itemExists(java.lang.String

name)

throws

JMSException

Check

if

an

item

exists

in

this

MapMessage.

Parameters:

name:

the

name

of

the

item

to

test.

Returns:

True

if

the

item

exists.

Throws:

JMSException

-

if

a

JMS

error

occurs.

setBoolean

public

void

setBoolean(java.lang.String

name,

boolean

value)

throws

JMSException

Set

a

boolean

value

with

the

given

name

into

the

map.

Parameters:

v

name:

the

name

of

the

boolean.

v

value:

the

boolean

value

to

set

in

the

Map.

Throws:

v

JMSException

if

JMS

fails

to

write

message

due

to

some

internal

JMS

error.

v

MessageNotWriteableException

if

the

message

is

in

read-only

mode.

setByte

public

void

setByte(java.lang.String

name,

byte

value)

throws

JMSException

Set

a

byte

value

with

the

given

name

into

the

map.

Parameters:

v

name:

the

name

of

the

byte.

v

value:

the

byte

value

to

set

in

the

Map.

Throws:

v

JMSException

if

JMS

fails

to

write

message

due

to

some

internal

JMS

error

v

MessageNotWriteableException

if

the

message

is

in

read-only

mode.

setBytes

public

void

setBytes(java.lang.String

name,

byte[]

value)

throws

JMSException

Set

a

byte

array

value

with

the

given

name

into

the

map.

Parameters:

v

name:

the

name

of

the

byte

array.

v

value:

the

byte

array

value

to

set

in

the

map.

The

array

is

copied,

so

the

value

in

the

map

is

not

altered

by

subsequent

modifications

to

the

array.

MapMessage

Chapter

15.

JMS

interfaces

and

classes

345

Throws:

v

JMSException

if

JMS

fails

to

write

message

due

to

some

internal

JMS

error.

v

MessageNotWriteableException

if

the

message

is

in

read-only

mode.

setBytes

public

void

setBytes(java.lang.String

name,

byte[]

value,

int

offset,

int

length)

throws

JMSException

Set

a

portion

of

the

byte

array

value

with

the

given

name

into

the

mp.

The

array

is

copied,

so

the

value

in

the

map

is

not

altered

by

subsequent

modifications

to

the

array.

Parameters:

v

name:

the

name

of

the

byte

array.

v

value:

the

byte

array

value

to

set

in

the

Map.

v

offset:

the

initial

offset

within

the

byte

array.

v

length:

the

number

of

bytes

to

be

copied.

Throws:

v

JMSException

if

JMS

fails

to

write

message

due

to

some

internal

JMS

error.

v

MessageNotWriteableException

if

the

message

is

in

read-only

mode.

setChar

public

void

setChar(java.lang.String

name,

char

value)

throws

JMSException

Set

a

Unicode

character

value

with

the

given

name

into

the

map.

Parameters:

v

name:

the

name

of

the

Unicode

character.

v

value:

the

Unicode

character

value

to

set

in

the

map.

Throws:

v

JMSException

if

JMS

fails

to

write

message

due

to

some

internal

JMS

error.

v

MessageNotWriteableException

if

the

message

is

in

read-only

mode.

setDouble

public

void

setDouble(java.lang.String

name,

double

value)

throws

JMSException

Set

a

double

value

with

the

given

name

into

the

map.

Parameters:

v

name:

the

name

of

the

double.

v

value:

the

double

value

to

set

in

the

Map.

Throws:

MapMessage

346

Using

Java

v

JMSException

if

JMS

fails

to

write

message

due

to

some

internal

JMS

error.

v

MessageNotWriteableException

if

the

message

is

in

read-only

mode.

setFloat

public

void

setFloat(java.lang.String

name,

float

value)

throws

JMSException

Set

a

float

value

with

the

given

name

into

the

map.

Parameters:

v

name:

the

name

of

the

float.

v

value:

the

float

value

to

set

in

the

map.

Throws:

v

JMSException

if

JMS

fails

to

write

message

due

to

some

internal

JMS

error.

v

MessageNotWriteableException

if

the

message

is

in

read-only

mode.

setInt

public

void

setInt(java.lang.String

name,

int

value)

throws

JMSException

Set

an

integer

value

with

the

given

name

into

the

map.

Parameters:

v

name:

the

name

of

the

integer.

v

value:

the

integer

value

to

set

in

the

map.

Throws:

v

JMSException

if

JMS

fails

to

write

message

due

to

some

internal

JMS

error.

v

MessageNotWriteableException

if

the

message

is

in

read-only

mode.

setLong

public

void

setLong(java.lang.String

name,

long

value)

throws

JMSException

Set

a

long

value

with

the

given

name

into

the

map.

Parameters:

v

name:

the

name

of

the

long.

v

value:

the

long

value

to

set

in

the

map.

Throws:

v

JMSException

if

JMS

fails

to

write

message

due

to

some

internal

JMS

error.

v

MessageNotWriteableException

if

the

message

is

in

read-only

mode.

MapMessage

Chapter

15.

JMS

interfaces

and

classes

347

setObject

public

void

setObject(java.lang.String

name,

java.lang.Object

value)

throws

JMSException

Set

a

Java

object

value

with

the

given

name

into

the

map.

This

method

works

only

for

object

primitive

types

(for

example,

Integer,

Double,

and

Long),

strings

and

byte

arrays.

Parameters:

v

name:

the

name

of

the

Java

object.

v

value:

the

Java

object

value

to

set

in

the

map.

Throws:

v

JMSException

if

JMS

fails

to

write

message

due

to

some

internal

JMS

error.

v

MessageFormatException

if

object

is

not

valid.

v

MessageNotWriteableException

if

the

message

is

in

read-only

mode.

setShort

public

void

setShort(java.lang.String

name,

short

value)

throws

JMSException

Set

a

short

value

with

the

given

name

into

the

map.

Parameters:

v

name:

the

name

of

the

short.

v

value:

the

short

value

to

set

in

the

map.

Throws:

v

JMSException

if

JMS

fails

to

write

message

due

to

some

internal

JMS

error.

v

MessageNotWriteableException

-

if

the

message

is

in

read-only

mode.

setString

public

void

setString(java.lang.String

name,

java.lang.String

value)

throws

JMSException

Set

a

string

value

with

the

given

name

into

the

map.

Parameters:

v

name:

the

name

of

the

string.

v

value:

the

string

value

to

set

in

the

map.

Throws:

v

JMSException

if

JMS

fails

to

write

message

due

to

some

internal

JMS

error.

v

MessageNotWriteableException

if

the

message

is

in

read-only

mode.

MapMessage

348

Using

Java

Message

public

interface

Message

Subinterfaces:

BytesMessage,

MapMessage,

ObjectMessage,

StreamMessage,

and

TextMessage

WebSphere

MQ

class:

JMSMessage

The

Message

interface

is

the

root

interface

of

all

JMS

messages.

It

defines

the

JMS

header

and

the

acknowledge

method

used

for

all

messages.

Fields

DEFAULT_DELIVERY_MODE

public

static

final

int

DEFAULT_DELIVERY_MODE

The

default

delivery

mode

value.

DEFAULT_PRIORITY

public

static

final

int

DEFAULT_PRIORITY

The

default

priority

value.

DEFAULT_TIME_TO_LIVE

public

static

final

long

DEFAULT_TIME_TO_LIVE

The

default

time-to-live

value.

Methods

acknowledge

public

void

acknowledge()

throws

JMSException

Acknowledge

this

and

all

previous

messages

received

by

the

session.

Throws:

JMSException

if

JMS

fails

to

acknowledge

because

of

an

internal

JMS

error.

clearBody

public

void

clearBody()

throws

JMSException

Clear

out

the

message

body.

All

other

parts

of

the

message

are

left

untouched.

Throws:

JMSException

if

JMS

fails

to

because

of

an

internal

JMS

error.

java.lang.Object

|

+----com.ibm.jms.MQJMSMessage

Message

Chapter

15.

JMS

interfaces

and

classes

349

clearProperties

public

void

clearProperties()

throws

JMSException

Clear

a

message’s

properties.

The

header

fields

and

message

body

are

not

cleared.

Throws:

JMSException

if

JMS

fails

to

clear

JMS

message

properties

because

of

an

internal

JMS

error.

getBooleanProperty

public

boolean

getBooleanProperty(java.lang.String

name)

throws

JMSException

Return

the

boolean

property

value

with

the

given

name.

Parameters:

name:

the

name

of

the

boolean

property.

Returns:

The

boolean

property

value

with

the

given

name.

Throws:

v

JMSException

if

JMS

fails

to

get

the

property

because

of

an

internal

JMS

error.

v

MessageFormatException

if

this

type

conversion

is

not

valid

getByteProperty

public

byte

getByteProperty(java.lang.String

name)

throws

JMSException

Return

the

byte

property

value

with

the

given

name.

Parameters:

name:

the

name

of

the

byte

property.

Returns:

The

byte

property

value

with

the

given

name.

Throws:

v

JMSException

if

JMS

fails

to

get

the

property

because

of

an

internal

JMS

error.

v

MessageFormatException

if

this

type

conversion

is

not

valid.

getDoubleProperty

public

double

getDoubleProperty(java.lang.String

name)

throws

JMSException

Return

the

double

property

value

with

the

given

name.

Parameters:

name:

the

name

of

the

double

property.

Returns:

The

double

property

value

with

the

given

name.

Throws:

v

JMSException

if

JMS

fails

to

get

the

property

because

of

an

internal

JMS

error.

v

MessageFormatException

if

this

type

conversion

is

not

valid.

Message

350

Using

Java

getFloatProperty

public

float

getFloatProperty(java.lang.String

name)

throws

JMSException

Return

the

float

property

value

with

the

given

name.

Parameters:

name:

the

name

of

the

float

property.

Returns:

The

float

property

value

with

the

given

name.

Throws:

v

JMSException

if

JMS

fails

to

get

the

property

because

of

an

internal

JMS

error.

v

MessageFormatException

if

this

type

conversion

is

not

valid.

getIntProperty

public

int

getIntProperty(java.lang.String

name)

throws

JMSException

Return

the

integer

property

value

with

the

given

name.

Parameters:

name:

the

name

of

the

integer

property.

Returns:

The

integer

property

value

with

the

given

name.

Throws:

v

JMSException

if

JMS

fails

to

get

the

property

because

of

an

internal

JMS

error.

v

MessageFormatException

if

this

type

conversion

is

not

valid.

getJMSCorrelationID

public

java.lang.String

getJMSCorrelationID()

throws

JMSException

Get

the

correlation

ID

for

the

message.

Returns:

The

correlation

ID

of

a

message

as

a

string.

Throws:

JMSException

if

JMS

fails

to

get

the

correlation

ID

because

of

an

internal

JMS

error.

See

also:

setJMSCorrelationID(),

getJMSCorrelationIDAsBytes(),

setJMSCorrelationIDAsBytes()

Message

Chapter

15.

JMS

interfaces

and

classes

351

getJMSCorrelationIDAsBytes

public

byte[]

getJMSCorrelationIDAsBytes()

throws

JMSException

Get

the

correlation

ID

as

an

array

of

bytes

for

the

message.

Returns:

The

correlation

ID

of

a

message

as

an

array

of

bytes.

Throws:

JMSException

if

JMS

fails

to

get

correlation

ID

because

of

an

internal

JMS

error.

See

also:

setJMSCorrelationID(),

getJMSCorrelationID(),

setJMSCorrelationIDAsBytes()

getJMSDeliveryMode

public

int

getJMSDeliveryMode()

throws

JMSException

Get

the

delivery

mode

for

this

message.

Returns:

The

delivery

mode

of

this

message.

Throws:

JMSException

if

JMS

fails

to

get

JMS

DeliveryMode

because

of

an

internal

JMS

error.

See

also:

setJMSDeliveryMode(),

DeliveryMode

getJMSDestination

public

Destination

getJMSDestination()

throws

JMSException

Get

the

destination

for

this

message.

Returns:

The

destination

of

this

message.

Throws:

JMSException

if

JMS

fails

to

get

JMS

Destination

because

of

an

internal

JMS

error.

See

also:

setJMSDestination()

getJMSExpiration

public

long

getJMSExpiration()

throws

JMSException

Get

the

message’s

expiration

value.

Returns:

The

time

that

the

message

expires.

It

is

the

sum

of

the

time-to-live

value

specified

by

the

client,

and

the

GMT

at

the

time

of

the

send.

Throws:

JMSException

if

JMS

fails

to

get

JMS

message

expiration

because

of

an

internal

JMS

error.

See

also:

setJMSExpiration()

Message

352

Using

Java

getJMSMessageID

public

java.lang.String

getJMSMessageID()

throws

JMSException

Get

the

message

ID.

Returns:

The

message

ID.

Throws:

JMSException

if

JMS

fails

to

get

the

message

ID

because

of

an

internal

JMS

error.

See

also:

setJMSMessageID()

getJMSPriority

public

int

getJMSPriority()

throws

JMSException

Get

the

message

priority.

Returns:

The

message

priority.

Throws:

JMSException

if

JMS

fails

to

get

JMS

message

priority

because

of

an

internal

JMS

error.

See

also:

setJMSPriority()

for

priority

levels

getJMSRedelivered

public

boolean

getJMSRedelivered()

throws

JMSException

Get

an

indication

of

whether

this

message

is

being

redelivered.

If

a

client

receives

a

message

with

the

redelivered

indicator

set,

it

is

likely,

but

not

guaranteed,

that

this

message

was

delivered

to

the

client

earlier,

but

that

the

client

did

not

acknowledge

its

receipt

at

that

earlier

time.

Returns:

Set

to

true

if

this

message

is

being

redelivered.

Throws:

JMSException

if

JMS

fails

to

get

JMS

redelivered

flag

because

of

an

internal

JMS

error.

See

also:

setJMSRedelivered()

getJMSReplyTo

public

Destination

getJMSReplyTo()

throws

JMSException

Get

where

a

reply

to

this

message

should

be

sent.

Returns:

Where

to

send

a

response

to

this

message

Throws:

JMSException

if

JMS

fails

to

get

ReplyTo

destination

because

of

an

internal

JMS

error.

Message

Chapter

15.

JMS

interfaces

and

classes

353

See

also:

setJMSReplyTo()

getJMSTimestamp

public

long

getJMSTimestamp()

throws

JMSException

Get

the

message

timestamp.

Returns:

The

message

timestamp.

Throws:

JMSException

if

JMS

fails

to

get

the

timestamp

because

of

an

internal

JMS

error.

See

also:

setJMSTimestamp()

getJMSType

public

java.lang.String

getJMSType()

throws

JMSException

Get

the

message

type.

Returns:

The

message

type.

Throws:

JMSException

if

JMS

fails

to

get

JMS

message

type

because

of

an

internal

JMS

error.

See

also:

setJMSType()

getLongProperty

public

long

getLongProperty(java.lang.String

name)

throws

JMSException

Return

the

long

property

value

with

the

given

name.

Parameters:

name:

the

name

of

the

long

property.

Returns:

The

long

property

value

with

the

given

name.

Throws:

v

JMSException

if

JMS

fails

to

get

the

property

because

of

an

internal

JMS

error.

v

MessageFormatException

if

this

type

conversion

is

not

valid.

getObjectProperty

public

java.lang.Object

getObjectProperty

(java.lang.String

name)

throws

JMSException

Return

the

Java

object

property

value

with

the

given

name.

Parameters:

name:

the

name

of

the

Java

object

property.

Returns:

The

Java

object

property

value

with

the

given

name,

in

object

format

(for

example,

if

it

set

as

an

int,

an

Integer

is

returned).

If

there

is

no

property

by

this

name,

a

null

value

is

returned.

Message

354

Using

Java

Throws:

JMSException

if

JMS

fails

to

get

the

property

because

of

an

internal

JMS

error.

getPropertyNames

public

java.util.Enumeration

getPropertyNames()

throws

JMSException

Return

an

enumeration

of

all

the

property

names.

Returns:

An

enumeration

of

all

the

names

of

property

values.

Throws:

JMSException

if

JMS

fails

to

get

the

property

names

because

of

an

internal

JMS

error.

getShortProperty

public

short

getShortProperty(java.lang.String

name)

throws

JMSException

Return

the

short

property

value

with

the

given

name.

Parameters:

name:

the

name

of

the

short

property.

Returns:

The

short

property

value

with

the

given

name.

Throws:

v

JMSException

if

JMS

fails

to

get

the

property

because

of

an

internal

JMS

error.

v

MessageFormatException

if

this

type

conversion

is

not

valid.

getStringProperty

public

java.lang.String

getStringProperty

(java.lang.String

name)

throws

JMSException

Return

the

string

property

value

with

the

given

name.

Parameters:

name:

the

name

of

the

string

property

Returns:

The

string

property

value

with

the

given

name.

If

there

is

no

property

by

this

name,

a

null

value

is

returned.

Throws:

v

JMSException

if

JMS

fails

to

get

the

property

because

of

an

internal

JMS

error.

v

MessageFormatException

if

this

type

conversion

is

not

valid.

Message

Chapter

15.

JMS

interfaces

and

classes

355

propertyExists

public

boolean

propertyExists(java.lang.String

name)

throws

JMSException

Check

if

a

property

value

exists.

Parameters:

name:

the

name

of

the

property

to

test.

Returns:

True

if

the

property

does

exist.

Throws:

JMSException

if

JMS

fails

to

check

whether

a

property

exists

because

of

an

internal

JMS

error.

setBooleanProperty

public

void

setBooleanProperty(java.lang.String

name,

boolean

value)

throws

JMSException

Set

a

boolean

property

value

with

the

given

name

into

the

message.

Parameters:

v

name:

the

name

of

the

boolean

property.

v

value:

the

boolean

property

value

to

set

in

the

message.

Throws:

v

JMSException

if

JMS

fails

to

set

property

because

of

an

internal

JMS

error.

v

MessageNotWriteableException

if

the

properties

are

read-only.

setByteProperty

public

void

setByteProperty(java.lang.String

name,

byte

value)

throws

JMSException

Set

a

byte

property

value

with

the

given

name

into

the

message.

Parameters:

v

name:

the

name

of

the

byte

property.

v

value:

the

byte

property

value

to

set

in

the

message.

Throws:

v

JMSException

if

JMS

fails

to

set

property

because

of

an

internal

JMS

error.

v

MessageNotWriteableException

if

the

properties

are

read-only.

setDoubleProperty

public

void

setDoubleProperty(java.lang.String

name,

double

value)

throws

JMSException

Set

a

double

property

value

with

the

given

name

into

the

message.

Parameters:

v

name:

the

name

of

the

double

property.

v

value:

the

double

property

value

to

set

in

the

message.

Message

356

Using

Java

Throws:

v

JMSException

if

JMS

fails

to

set

the

property

because

of

an

internal

JMS

error.

v

MessageNotWriteableException

if

the

properties

are

read-only.

setFloatProperty

public

void

setFloatProperty(java.lang.String

name,

float

value)

throws

JMSException

Set

a

float

property

value

with

the

given

name

into

the

message.

Parameters:

v

name:

the

name

of

the

float

property.

v

value:

the

float

property

value

to

set

in

the

message.

Throws:

v

JMSException

if

JMS

fails

to

set

the

property

because

of

an

internal

JMS

error.

v

MessageNotWriteableException

if

the

properties

are

read-only.

setIntProperty

public

void

setIntProperty(java.lang.String

name,

int

value)

throws

JMSException

Set

an

integer

property

value

with

the

given

name

into

the

message.

Parameters:

v

name:

the

name

of

the

integer

property.

v

value:

the

integer

property

value

to

set

in

the

message.

Throws:

v

JMSException

if

JMS

fails

to

set

property

because

of

an

internal

JMS

error.

v

MessageNotWriteableException

if

the

properties

are

read-only.

setJMSCorrelationID

public

void

setJMSCorrelationID

(java.lang.String

correlationID)

throws

JMSException

Set

the

correlation

ID

for

the

message.

A

client

can

use

the

JMSCorrelationID

header

field

to

link

one

message

with

another.

A

typical

use

is

to

link

a

response

message

with

its

request

message.

Note:

The

use

of

a

byte[]

value

for

JMSCorrelationID

is

non-portable.

Parameters:

correlationID:

the

message

ID

of

a

message

being

referred

to.

Throws:

JMSException

if

JMS

fails

to

set

the

correlation

ID

because

of

an

internal

JMS

error.

See

also:

getJMSCorrelationID(),

getJMSCorrelationIDAsBytes(),

setJMSCorrelationIDAsBytes()

Message

Chapter

15.

JMS

interfaces

and

classes

357

setJMSCorrelationIDAsBytes

public

void

setJMSCorrelationIDAsBytes(byte[]

correlationID)

throws

JMSException

Set

the

correlation

ID

as

an

array

of

bytes

for

the

message.

A

client

can

use

this

call

to

set

the

correlationID

equal

either

to

a

messageID

from

a

previous

message,

or

to

an

application-specific

string.

Application-specific

strings

must

not

start

with

the

characters

ID.

Parameters:

correlationID:

the

correlation

ID

as

a

string,

or

the

message

ID

of

a

message

being

referred

to.

Throws:

JMSException

if

JMS

fails

to

set

the

correlation

ID

because

of

an

internal

JMS

error.

See

also:

setJMSCorrelationID(),

getJMSCorrelationID(),

getJMSCorrelationIDAsBytes()

setJMSDeliveryMode

public

void

setJMSDeliveryMode(int

deliveryMode)

throws

JMSException

Set

the

delivery

mode

for

this

message.

Any

value

set

using

this

method

is

ignored

when

the

message

is

sent,

but

this

method

can

be

used

to

change

the

value

in

a

received

message.

To

alter

the

delivery

mode

when

a

message

is

sent,

use

the

setDeliveryMode

method

on

the

QueueSender

or

TopicPublisher

(this

method

is

inherited

from

MessageProducer).

Parameters:

deliveryMode:

the

delivery

mode

for

this

message.

Throws:

JMSException

if

JMS

fails

to

set

JMS

DeliveryMode

because

of

an

internal

JMS

error.

See

also:

getJMSDeliveryMode(),

DeliveryMode

setJMSDestination

public

void

setJMSDestination(Destination

destination)

throws

JMSexception

Set

the

destination

for

this

message.

Any

value

set

using

this

method

is

ignored

when

the

message

is

sent,

but

this

method

can

be

used

to

change

the

value

in

a

received

message.

Parameters:

destination:

the

destination

for

this

message.

Throws:

JMSException

if

JMS

fails

to

set

JMS

destination

because

of

an

internal

JMS

error.

Message

358

Using

Java

See

also:

getJMSDestination()

setJMSExpiration

public

void

setJMSExpiration(long

expiration)

throws

JMSException

Set

the

message’s

expiration

value.

Any

value

set

using

this

method

is

ignored

when

the

message

is

sent,

but

this

method

can

be

used

to

change

the

value

in

a

received

message.

Parameters:

expiration:

the

message’s

expiration

time.

Throws:

JMSException

if

JMS

fails

to

set

JMS

message

expiration

because

of

an

internal

JMS

error.

See

also:

getJMSExpiration()

setJMSMessageID

public

void

setJMSMessageID(java.lang.String

id)

throws

JMSException

Set

the

message

ID.

Any

value

set

using

this

method

is

ignored

when

the

message

is

sent,

but

this

method

can

be

used

to

change

the

value

in

a

received

message.

Parameters:

id:

the

ID

of

the

message.

Throws:

JMSException

if

JMS

fails

to

set

the

message

ID

because

of

an

internal

JMS

error.

See

also:

getJMSMessageID()

setJMSPriority

public

void

setJMSPriority(int

priority)

throws

JMSException

Set

the

priority

for

this

message.

JMS

defines

a

ten-level

priority

value,

with

0

as

the

lowest

priority,

and

9

as

the

highest.

In

addition,

clients

must

consider

priorities

0-4

as

gradations

of

normal

priority,

and

priorities

5-9

as

gradations

of

expedited

priority.

Parameters:

priority:

the

priority

of

this

message.

Throws:

JMSException

if

JMS

fails

to

set

JMS

message

priority

because

of

an

internal

JMS

error.

See

also:

getJMSPriority()

Message

Chapter

15.

JMS

interfaces

and

classes

359

setJMSRedelivered

public

void

setJMSRedelivered(boolean

redelivered)

throws

JMSException

Set

to

indicate

whether

this

message

is

being

redelivered.

Any

value

set

using

this

method

is

ignored

when

the

message

is

sent,

but

this

method

can

be

used

to

change

the

value

in

a

received

message.

Parameters:

redelivered:

an

indication

of

whether

this

message

is

being

redelivered.

Throws:

JMSException

if

JMS

fails

to

set

JMSRedelivered

flag

because

of

an

internal

JMS

error.

See

also:

getJMSRedelivered()

setJMSReplyTo

public

void

setJMSReplyTo(Destination

replyTo)

throws

JMSException

Set

where

a

reply

to

this

message

should

be

sent.

Parameters:

replyTo:

where

to

send

a

response

to

this

message.

A

null

value

indicates

that

no

reply

is

expected.

Throws:

JMSException

if

JMS

fails

to

set

ReplyTo

destination

because

of

an

internal

JMS

error.

See

also:

getJMSReplyTo()

setJMSTimestamp

public

void

setJMSTimestamp(long

timestamp)

throws

JMSException

Set

the

message

timestamp.

Any

value

set

using

this

method

is

ignored

when

the

message

is

sent,

but

this

method

can

be

used

to

change

the

value

in

a

received

message.

Parameters:

timestamp:

the

timestamp

for

this

message.

Throws:

JMSException

if

JMS

fails

to

set

the

timestamp

because

of

an

internal

JMS

error.

See

also:

getJMSTimestamp()

Message

360

Using

Java

setJMSType

public

void

setJMSType(java.lang.String

type)

throws

JMSException

Set

the

message

type.

JMS

clients

must

assign

a

value

to

type

whether

the

application

makes

use

of

it

or

not.

This

ensures

that

it

is

properly

set

for

those

providers

that

require

it.

Parameters:

type:

the

class

of

message.

Throws:

JMSException

if

JMS

fails

to

set

JMS

message

type

because

of

an

internal

JMS

error.

See

also:

getJMSType()

setLongProperty

public

void

setLongProperty(java.lang.String

name,

long

value)

throws

JMSException

Set

a

long

property

value

with

the

given

name

into

the

message.

Parameters:

v

name:

the

name

of

the

long

property.

v

value:

the

long

property

value

to

set

in

the

message.

Throws:

v

JMSException

if

JMS

fails

to

set

property

because

of

an

internal

JMS

error.

v

MessageNotWriteableException

if

the

properties

are

read-only.

setObjectProperty

public

void

setObjectProperty(java.lang.String

name,

java.lang.Object

value)

throws

JMSException

Set

a

property

value

with

the

given

name

into

the

message.

Parameters:

v

name:

the

name

of

the

Java

object

property.

v

value:

the

Java

object

property

value

to

set

in

the

message.

Throws:

v

JMSException

if

JMS

fails

to

set

property

because

of

an

internal

JMS

error.

v

MessageFormatException

if

the

object

is

not

valid.

v

MessageNotWriteableException

-

if

the

properties

are

read-only.

Message

Chapter

15.

JMS

interfaces

and

classes

361

setShortProperty

public

void

setShortProperty(java.lang.String

name,

short

value)

throws

JMSException

Set

a

short

property

value

with

the

given

name

into

the

message.

Parameters:

v

name:

the

name

of

the

short

property.

v

value:

the

short

property

value

to

set

in

the

message.

Throws:

v

JMSException

if

JMS

fails

to

set

property

because

of

an

internal

JMS

error.

v

MessageNotWriteableException

if

the

properties

are

read-only.

setStringProperty

public

void

setStringProperty(java.lang.String

name,

java.lang.String

value)

throws

JMSException

Set

a

string

property

value

with

the

given

name

into

the

message.

Parameters:

v

name:

the

name

of

the

string

property.

v

value:

the

string

property

value

to

set

in

the

message.

Throws:

v

JMSException

if

JMS

fails

to

set

the

property

because

of

an

internal

JMS

error.

v

MessageNotWriteableException

if

the

properties

are

read-only.

Message

362

Using

Java

MessageConsumer

public

interface

MessageConsumer

Subinterfaces:

QueueReceiver

and

TopicSubscriber

WebSphere

MQ

class:

MQMessageConsumer

MessageConsumer

is

the

parent

interface

for

all

message

consumers.

A

client

uses

a

message

consumer

to

receive

messages

from

a

Destination.

See

also:

QueueReceiver,

Session,

and

TopicSubscriber

Methods

close

public

void

close()

throws

JMSException

Close

the

message

consumer.

Because

a

provider

can

allocate

some

resources

outside

the

JVM

on

behalf

of

a

MessageConsumer,

clients

must

close

them

when

they

are

not

needed.

You

cannot

rely

on

garbage

collection

to

reclaim

these

resources

eventually,

because

this

might

not

occur

soon

enough.

This

call

blocks

until

a

receive

or

message

listener

in

progress

has

completed.

Throws:

JMSException

if

JMS

fails

to

close

the

consumer

because

of

an

error.

getMessageListener

public

MessageListener

getMessageListener()

throws

JMSException

Get

the

message

consumer’s

MessageListener.

Returns:

The

listener

for

the

message

consumer,

or

null

if

a

listener

is

not

set.

Throws:

JMSException

if

JMS

fails

to

get

the

message

listener

because

of

a

JMS

error.

See

also:

setMessageListener

java.lang.Object

|

+----com.ibm.mq.jms.MQMessageConsumer

MessageConsumer

Chapter

15.

JMS

interfaces

and

classes

363

|

|

getMessageSelector

public

java.lang.String

getMessageSelector()

throws

JMSException

Get

this

message

consumer’s

message

selector

expression.

Returns:

The

message

consumer’s

message

selector.

Throws:

JMSException

if

JMS

fails

to

get

the

message

selector

because

of

a

JMS

error.

receive

public

Message

receive()

throws

JMSException

Receive

the

next

message

produced

for

this

message

consumer.

Returns:

The

next

message

produced

for

this

message

consumer.

Throws:

JMSException

if

JMS

fails

to

receive

the

next

message

because

of

an

error.

receive

public

Message

receive(long

timeOut)

throws

JMSException

Receive

the

next

message

that

arrives

within

the

specified

timeout

interval.

A

timeout

value

of

zero

causes

the

call

to

wait

indefinitely

until

a

message

arrives.

Parameters:

timeout:

the

timeout

value

(in

milliseconds).

Returns:

The

next

message

produced

for

this

message

consumer,

or

null

if

one

is

not

available.

Throws:

JMSException

if

JMS

fails

to

receive

the

next

message

because

of

an

error.

receiveNoWait

public

Message

receiveNoWait()

throws

JMSException

Receive

the

next

message

if

one

is

immediately

available.

Returns:

The

next

message

produced

for

this

message

consumer,

or

null

if

one

is

not

available.

Throws:

JMSException

if

JMS

fails

to

receive

the

next

message

because

of

an

error.

MessageConsumer

364

Using

Java

setMessageListener

public

void

setMessageListener(MessageListener

listener)

throws

JMSException

Set

the

message

consumer’s

MessageListener.

Parameters:

messageListener:

the

messages

are

delivered

to

this

listener.

Throws:

JMSException

if

JMS

fails

to

set

message

listener

because

of

a

JMS

error.

See

also:

getMessageListener

MessageConsumer

Chapter

15.

JMS

interfaces

and

classes

365

MessageListener

public

interface

MessageListener

Use

a

MessageListener

to

receive

asynchronously

delivered

messages.

Methods

onMessage

public

void

onMessage(Message

message)

Pass

a

message

to

the

listener.

Parameters:

message:

the

message

passed

to

the

listener.

See

also

Session.setMessageListener

MessageListener

366

Using

Java

MessageProducer

public

interface

MessageProducer

Subinterfaces:

QueueSender

and

TopicPublisher

WebSphere

MQ

class:

MQMessageProducer

A

client

uses

a

MessageProducer

to

send

messages

to

a

destination.

See

also:

QueueSender,

TopicPublisher,

and

Session.createProducer(javax.jms.Destination)

WebSphere

MQ

constructors

MQMessageProducer

public

MQMessageProducer()

Methods

close

public

void

close()

throws

JMSException

Because

a

provider

can

allocate

some

resources

outside

the

JVM

on

behalf

of

a

MessageProducer,

clients

must

close

them

when

they

are

not

needed.

You

cannot

rely

on

garbage

collection

to

reclaim

these

resources

eventually,

because

this

might

not

occur

soon

enough.

Throws:

JMSException

if

JMS

fails

to

close

the

producer

because

of

an

error.

getDeliveryMode

public

int

getDeliveryMode()

throws

JMSException

Get

the

producer’s

default

delivery

mode.

Returns:

The

message

delivery

mode

for

this

message

producer.

Throws:

JMSException

if

JMS

fails

to

get

the

delivery

mode

because

of

an

internal

error.

See

also:

setDeliveryMode

java.lang.Object

|

+----com.ibm.mq.jms.MQMessageProducer

MessageProducer

Chapter

15.

JMS

interfaces

and

classes

367

|
|

getDestination

(JMS

1.1

only)

public

Destination

getDestination()

throws

JMSException

Get

the

destination

associated

with

the

message

producer.

Returns:

The

message

producer’s

destination.

Throws:

JMSException

if

JMS

fails

to

get

the

destination

because

of

an

internal

JMS

error.

getDisableMessageID

public

boolean

getDisableMessageID()

throws

JMSException

Get

an

indication

of

whether

message

IDs

are

disabled.

Returns:

An

indication

of

whether

message

IDs

are

disabled.

Throws:

JMSException

if

JMS

fails

to

get

the

disabled

message

ID

because

of

an

internal

error.

getDisableMessageTimestamp

public

boolean

getDisableMessageTimestamp()

throws

JMSException

Get

an

indication

of

whether

message

timestamps

are

disabled.

Returns:

An

indication

of

whether

message

IDs

are

disabled.

Throws:

JMSException

if

JMS

fails

to

get

the

disabled

message

timestamp

because

of

an

internal

error.

getPriority

public

int

getPriority()

throws

JMSException

Get

the

producer’s

default

priority.

Returns:

The

message

priority

for

this

message

producer.

Throws:

JMSException

if

JMS

fails

to

get

the

priority

because

of

an

internal

error.

See

also:

setPriority

MessageProducer

368

Using

Java

|

|

|

|
|

|
|
|

getTimeToLive

public

long

getTimeToLive()

throws

JMSException

Get

the

default

length

of

time

in

milliseconds

from

its

dispatch

time

that

the

message

system

retains

a

produced

message.

Returns:

The

message

time-to-live

in

milliseconds;

zero

is

unlimited.

Throws:

JMSException

if

JMS

fails

to

get

the

time-to-live

because

of

an

internal

error.

See

also:

setTimeToLive

send

(JMS

1.1

only)

public

void

send(Message

message)

throws

JMSException

Send

a

message

using

the

message

producer’s

default

delivery

mode,

default

priority,

and

default

time

to

live.

Parameters:

message:

the

message

to

send.

Throws:

v

JMSException

if

JMS

fails

to

send

the

message

because

of

an

internal

JMS

error.

v

MessageFormatException

if

the

message

is

not

valid.

v

InvalidDestinationException

if

a

client

uses

this

method

with

a

message

producer

whose

destination

is

not

valid.

v

java.lang.UnsupportedOperationException

if

a

client

uses

this

method

with

a

message

producer

for

which

no

destination

was

specified

when

it

was

created.

See

also:

MessageProducer,

Session.createProducer

send

(JMS

1.1

only)

public

void

send(Message

message,

int

deliveryMode,

int

priority,

long

timeToLive)

throws

JMSException

Send

a

message

specifying

a

delivery

mode,

a

priority,

and

a

time

to

live.

Parameters:

v

message:

the

message

to

send.

v

deliveryMode:

the

delivery

mode

to

use

v

priority:

the

priority

for

the

message

v

timeToLive:

the

lifetime

of

the

message

in

milliseconds.

Throws:

v

JMSException

if

JMS

fails

to

send

the

message

because

of

an

internal

JMS

error.

v

MessageFormatException

if

the

message

is

not

valid.

v

InvalidDestinationException

if

a

client

uses

this

method

with

a

message

producer

whose

destination

is

not

valid.

MessageProducer

Chapter

15.

JMS

interfaces

and

classes

369

|

|

|
|

|
|

|

|
|

|

|
|

|
|
|

|
|

|

|
|

|

|

|

|

|

|

|

|
|

|

|
|

v

java.lang.UnsupportedOperationException

if

a

client

uses

this

method

with

a

message

producer

for

which

no

destination

was

specified

when

the

message

producer

was

created.

See

also:

Session.createProducer

send

(JMS

1.1

only)

public

void

send(Destination

destination,

Message

message)

throws

JMSException

Send

a

message

to

a

destination

if

you

are

using

a

message

producer

for

which

no

destination

was

specified

when

the

message

producer

was

created.

The

method

uses

the

message

producer’s

default

delivery

mode,

default

priority,

and

default

time

to

live.

Typically,

you

specify

a

destination

when

you

create

a

message

producer

but,

if

you

do

not,

you

must

specify

a

destination

every

time

you

send

a

message.

Parameters:

v

destination:

the

destination

to

send

the

message

to.

v

message:

the

message

to

send.

Throws:

v

JMSException

if

JMS

fails

to

send

the

message

because

of

an

internal

JMS

error.

v

MessageFormatException

if

the

message

is

not

valid.

v

InvalidDestinationException

if

the

destination

is

not

valid.

v

java.lang.UnsupportedOperationException

if

a

client

uses

this

method

with

a

message

producer

for

which

a

destination

was

specified

when

the

message

producer

was

created.

See

also:

MessageProducer,

Session.createProducer

send

(JMS

1.1

only)

public

void

send(Destination

destination,

Message

message,

int

deliveryMode,

int

priority,

long

timeToLive)

throws

JMSException

Send

a

message

to

a

destination

if

you

are

using

a

message

producer

for

which

no

destination

was

specified

when

the

message

producer

was

created.

The

method

specifies

a

delivery

mode,

a

priority,

and

a

time

to

live.

Typically,

you

specify

a

destination

when

you

create

a

message

producer

but,

if

do

not,

you

must

specify

a

destination

every

time

you

send

a

message.

Parameters:

v

destination:

the

destination

to

which

to

send

the

message.

v

message:

the

message

to

send.

v

deliveryMode:

the

delivery

mode

to

use

v

priority:

the

priority

for

the

message

v

timeToLive:

the

lifetime

of

the

message

in

milliseconds.

MessageProducer

370

Using

Java

|
|
|

|
|

|

|
|

|
|
|
|

|
|
|

|

|

|

|

|
|

|

|

|
|
|

|
|

|

|
|
|

|
|
|
|

|
|
|

|

|

|

|

|

|

Throws:

v

JMSException

if

JMS

fails

to

send

the

message

because

of

an

internal

JMS

error.

v

MessageFormatException

if

the

message

is

not

valid.

v

InvalidDestinationException

if

the

destination

is

not

valid.

v

java.lang.UnsupportedOperationException

if

a

client

uses

this

method

with

a

message

producer

for

which

a

destination

was

specified

when

the

message

producer

was

created.

See

also:

Session.createProducer

setDeliveryMode

public

void

setDeliveryMode(int

deliveryMode)

throws

JMSException

Set

the

producer’s

default

delivery

mode;

it

is

set

to

DeliveryMode.PERSISTENT

by

default.

Parameters:

deliveryMode:

the

message

delivery

mode

for

this

message

producer.

Throws:

JMSException

if

JMS

fails

to

set

the

delivery

mode

because

of

an

internal

error.

See

also:

getDeliveryMode,

DeliveryMode.NON_PERSISTENT,

DeliveryMode.PERSISTENT,

Message.DEFAULT_DELIVERY_MODE

setDisableMessageID

public

void

setDisableMessageID(boolean

value)

throws

JMSException

Set

whether

message

IDs

are

disabled;

they

are

enabled

by

default.

Note:

This

method

is

ignored

in

the

WebSphere

MQ

classes

for

Java

Message

Service

implementation.

Parameters:

value:

indicates

whether

message

IDs

are

disabled.

Throws:

JMSException

if

JMS

fails

to

set

the

disabled

message

ID

because

of

an

internal

error.

setDisableMessageTimestamp

public

void

setDisableMessageTimestamp(boolean

value)

throws

JMSException

Set

whether

message

timestamps

are

disabled;

they

are

enabled

by

default.

Note:

This

method

is

ignored

in

the

WebSphere

MQ

classes

for

Java

Message

Service

implementation.

Parameters:

value:

indicates

whether

message

timestamps

are

disabled.

MessageProducer

Chapter

15.

JMS

interfaces

and

classes

371

|

|
|

|

|

|
|
|

|
|

|

Throws:

JMSException

if

JMS

fails

to

set

the

disabled

message

timestamp

because

of

an

internal

error.

setPriority

public

void

setPriority(int

defaultPriority)

throws

JMSException

Set

the

producer’s

default

priority

(default

4).

Parameters:

defaultPriority:

the

message

priority

for

this

message

producer.

Throws:

JMSException

if

JMS

fails

to

set

the

priority

because

of

an

internal

error.

See

also:

getPriority,

Message.DEFAULT_PRIORITY

setTimeToLive

public

void

setTimeToLive(long

timeToLive)

throws

JMSException

Set

the

default

length

of

time,

in

milliseconds

from

its

dispatch

time,

that

the

message

system

retains

a

produced

message.

Time-to-live

is

set

to

zero

by

default.

WebSphere

MQ

Event

Broker

note

This

method

throws

a

JMSException

if

set

to

other

than

0

when

you

make

a

direct

connection

to

WebSphere

MQ

Event

Broker.

Parameters:

timeToLive:

the

message

time

to

live

in

milliseconds;

zero

is

unlimited.

Throws:

JMSException

if

JMS

fails

to

set

the

time-to-live

because

of

an

internal

error.

See

also:

getTimeToLive,

Message.DEFAULT_TIME_TO_LIVE

MessageProducer

372

Using

Java

|

|

|

|

MQQueueEnumeration

*

public

class

MQQueueEnumeration

extends

Object

implements

Enumeration

MQQueueEnumeration

enumerates

messages

on

a

queue.

This

class

is

not

defined

in

the

JMS

specification;

it

is

created

by

calling

the

getEnumeration

method

of

MQQueueBrowser.

The

class

contains

a

base

MQQueue

instance

to

hold

the

browse

cursor.

The

queue

is

closed

once

the

cursor

has

moved

off

the

end

of

the

queue.

There

is

no

way

to

reset

an

instance

of

this

class;

it

acts

as

a

one-shot

mechanism.

See

also:

MQQueueBrowser

Methods

hasMoreElements

public

boolean

hasMoreElements()

Whether

another

message

can

be

returned.

nextElement

public

Object

nextElement()

throws

NoSuchElementException

Return

the

current

message.

If

hasMoreElements()

returns

true,

nextElement()

always

returns

a

message.

It

is

possible

for

the

returned

message

to

pass

its

expiry

date

between

the

hasMoreElements()

and

the

nextElement

calls.

java.lang.Object

|

+----com.ibm.mq.jms.MQQueueEnumeration

MQQueueEnumeration

Chapter

15.

JMS

interfaces

and

classes

373

ObjectMessage

public

interface

ObjectMessage

extends

Message

WebSphere

MQ

class:

JMSObjectMessage

Use

an

ObjectMessage

to

send

a

message

that

contains

a

serializable

Java

object.

It

inherits

from

Message

and

adds

a

body

containing

a

single

Java

reference.

Only

serializable

Java

objects

can

be

used.

See

also:

BytesMessage,

MapMessage,

Message,

StreamMessage,

and

TextMessage

Methods

getObject

public

java.io.Serializable

getObject()

throws

JMSException

Get

the

serializable

object

containing

this

message’s

data.

The

default

value

is

null.

Returns:

The

serializable

object

containing

this

message’s

data.

Throws:

v

JMSException

if

JMS

fails

to

get

the

object

because

of

an

internal

JMS

error.

v

MessageFormatException

if

object

deserialization

fails.

setObject

public

void

setObject(java.io.Serializable

object)

throws

JMSException

Set

the

serializable

object

containing

this

message’s

data.

The

ObjectMessage

contains

a

snapshot

of

the

object

at

the

time

setObject()

is

called.

Subsequent

modifications

of

the

object

have

no

effect

on

the

ObjectMessage

body.

Parameters:

object:

the

message’s

data.

Throws:

v

JMSException

if

JMS

fails

to

set

the

object

because

of

an

internal

JMS

error.

v

MessageFormatException

if

object

serialization

fails.

v

MessageNotWriteableException

if

the

message

is

in

read-only

mode.

java.lang.Object

|

+----com.ibm.jms.JMSMessage

|

+----com.ibm.jms.JMSObjectMessage

ObjectMessage

374

Using

Java

Queue

public

interface

Queue

extends

Destination

Subinterfaces:

TemporaryQueue

WebSphere

MQ

class:

MQQueue

A

Queue

object

encapsulates

a

provider-specific

queue

name.

It

is

the

way

that

a

client

specifies

the

identity

of

a

queue

to

JMS

methods.

WebSphere

MQ

constructors

MQQueue

*

public

MQQueue()

Default

constructor

for

use

by

the

administration

tool.

MQQueue

*

public

MQQueue(String

URIqueue)

Create

a

new

MQQueue

instance.

The

string

takes

a

URI

format,

as

described

on

page

204.

MQQueue

*

public

MQQueue(String

queueManagerName,

String

queueName)

Methods

getBaseQueueManagerName

*

public

String

getBaseQueueManagerName()

Returns:

The

value

of

the

WebSphere

MQ

queue

manager

name.

getBaseQueueName

*

public

String

getBaseQueueName()

Returns:

The

value

of

the

WebSphere

MQ

queue

name.

getQueueName

public

java.lang.String

getQueueName()

throws

JMSException

Get

the

name

of

this

queue.

Clients

that

depend

upon

the

name

are

not

portable.

Returns:

The

queue

name

java.lang.Object

|

+----com.ibm.mq.jms.MQDestination

|

+----com.ibm.mq.jms.MQQueue

Queue

Chapter

15.

JMS

interfaces

and

classes

375

Throws:

JMSException

if

JMS

implementation

for

queue

fails

to

return

the

queue

name

because

of

an

internal

error.

getReference

*

public

Reference

getReference()

throws

NamingException

Create

a

reference

for

this

queue.

Returns:

A

reference

for

this

object.

Throws:

NamingException.

setBaseQueueManagerName

*

public

void

setBaseQueueManagerName(String

x)

throws

JMSException

Set

the

value

of

the

WebSphere

MQ

queue

manager

name.

Note:

Only

the

administration

tool

can

use

this

method.

setBaseQueueName

*

public

void

setBaseQueueName(String

x)

throws

JMSException

Set

the

value

of

the

WebSphere

MQ

queue

name.

Note:

Only

the

administration

tool

can

use

this

method.

It

makes

no

attempt

to

decode

queue:qmgr:queue

format

strings.

toString

public

java.lang.String

toString()

Return

a

well-formatted

printed

version

of

the

queue

name.

Returns:

The

provider-specific

identity

values

for

this

queue.

Overrides:

toString

in

class

java.lang.Object

Queue

376

Using

Java

QueueBrowser

public

interface

QueueBrowser

WebSphere

MQ

class:

MQQueueBrowser

A

client

uses

a

QueueBrowser

to

look

at

messages

on

a

queue

without

removing

them.

Note:

The

WebSphere

MQ

class

MQQueueEnumeration

is

used

to

hold

the

browse

cursor.

See

also:

QueueReceiver

Methods

close

public

void

close()

throws

JMSException

Because

a

provider

can

allocate

some

resources

outside

the

JVM

on

behalf

of

a

QueueBrowser,

clients

must

close

them

when

they

are

not

needed.

You

cannot

rely

on

garbage

collection

to

reclaim

these

resources

eventually,

because

this

might

not

occur

soon

enough.

Throws:

JMSException

if

a

JMS

fails

to

close

this

browser

because

of

a

JMS

error.

getEnumeration

public

java.util.Enumeration

getEnumeration()

throws

JMSException

Get

an

enumeration

for

browsing

the

current

queue

messages

in

the

order

that

they

are

received.

Returns:

An

enumeration

for

browsing

the

messages.

Throws:

JMSException

if

JMS

fails

to

get

the

enumeration

for

this

browser

because

of

a

JMS

error.

Note:

If

the

browser

is

created

for

a

nonexistent

queue,

this

is

not

detected

until

the

first

call

to

getEnumeration.

getMessageSelector

public

java.lang.String

getMessageSelector()

throws

JMSException

Get

this

queue

browser’s

message

selector

expression.

Returns:

This

queue

browser’s

message

selector.

Throws:

JMSException

if

JMS

fails

to

get

the

message

selector

for

this

browser

because

of

a

JMS

error.

java.lang.Object

|

+----com.ibm.mq.jms.MQQueueBrowser

QueueBrowser

Chapter

15.

JMS

interfaces

and

classes

377

getQueue

public

Queue

getQueue()

throws

JMSException

Get

the

queue

associated

with

this

queue

browser.

Returns:

The

queue.

Throws:

JMSException

if

JMS

fails

to

get

the

queue

associated

with

this

browser

because

of

a

JMS

error.

QueueBrowser

378

Using

Java

QueueConnection

public

interface

QueueConnection

extends

Connection

Subinterfaces:

XAQueueConnection

WebSphere

MQ

class:

MQQueueConnection

A

QueueConnection

is

an

active

connection

to

a

JMS

point-to-point

provider.

A

client

uses

a

QueueConnection

to

create

one

or

more

QueueSessions

for

producing

and

consuming

messages.

See

also:

Connection,

QueueConnectionFactory,

and

XAQueueConnection

Methods

close

*

public

void

close()

throws

JMSException

Overrides:

Close

in

class

MQConnection.

createConnectionConsumer

public

ConnectionConsumer

createConnectionConsumer

(Queue

queue,

java.lang.String

messageSelector,

ServerSessionPool

sessionPool,

int

maxMessages)

throws

JMSException

Create

a

connection

consumer

for

this

connection.

This

is

an

expert

facility

that

is

not

used

by

regular

JMS

clients.

Parameters:

v

queue:

the

queue

to

access.

v

messageSelector:

only

messages

with

properties

that

match

the

message

selector

expression

are

delivered.

v

sessionPool:

the

server

session

pool

to

associate

with

this

connection

consumer.

v

maxMessages:

the

maximum

number

of

messages

that

can

be

assigned

to

a

server

session

at

one

time.

Returns:

The

connection

consumer.

Throws:

v

JMSException

if

the

JMS

connection

fails

to

create

a

connection

consumer

because

of

an

internal

error,

or

incorrect

arguments

for

sessionPool

and

messageSelector.

v

InvalidDestinationException

if

the

queue

is

not

valid.

v

InvalidSelectorException

if

the

message

selector

is

not

valid.

java.lang.Object

|

+----com.ibm.mq.jms.MQConnection

|

+----com.ibm.mq.jms.MQQueueConnection

QueueConnection

Chapter

15.

JMS

interfaces

and

classes

379

|

See

also:

ConnectionConsumer

createQueueSession

public

QueueSession

createQueueSession(boolean

transacted,

int

acknowledgeMode)

throws

JMSException

Create

a

QueueSession.

Parameters:

v

transacted:

if

true,

the

session

is

transacted.

v

acknowledgeMode:

indicates

whether

the

consumer

or

the

client

acknowledges

any

messages

it

receives.

Possible

values

are:

Session.AUTO_ACKNOWLEDGE

Session.CLIENT_ACKNOWLEDGE

Session.DUPS_OK_ACKNOWLEDGE

This

parameter

is

ignored

if

the

session

is

transacted.

Returns:

A

newly-created

queue

session.

Throws:

JMSException

if

JMS

Connection

fails

to

create

a

session

because

of

an

internal

error,

or

lack

of

support

for

specific

transaction

and

acknowledgement

mode.

QueueConnection

380

Using

Java

QueueConnectionFactory

public

interface

QueueConnectionFactory

extends

ConnectionFactory

Subinterfaces:

XAQueueConnectionFactory

WebSphere

MQ

class:

MQQueueConnectionFactory

A

client

uses

a

QueueConnectionFactory

to

create

QueueConnections

with

a

JMS

point-to-point

provider.

See

also:

ConnectionFactory

and

XAQueueConnectionFactory

WebSphere

MQ

constructor

MQQueueConnectionFactory

public

MQQueueConnectionFactory()

Methods

createQueueConnection

public

QueueConnection

createQueueConnection()

throws

JMSException

Create

a

queue

connection

with

default

user

identity.

The

connection

is

created

in

stopped

mode.

No

messages

are

delivered

until

Connection.start

method

is

explicitly

called.

Returns:

A

newly-created

queue

connection.

Throws:

v

JMSException

if

JMS

provider

fails

to

create

queue

connection

because

of

an

internal

error.

v

JMSSecurityException

if

client

authentication

fails

because

of

a

non

valid

user

name

or

password.

createQueueConnection

public

QueueConnection

createQueueConnection

(java.lang.String

userName,

java.lang.String

password)

throws

JMSException

Create

a

queue

connection

with

specified

user

identity.

Note:

Use

this

method

only

with

transport

type

JMSC.MQJMS_TP_CLIENT_MQ_TCPIP

(see

ConnectionFactory).

The

connection

is

created

in

stopped

mode.

No

messages

are

delivered

until

Connection.start

method

is

explicitly

called.

Parameters:

v

userName:

the

caller’s

user

name.

java.lang.Object

|

+----com.ibm.mq.jms.MQConnectionFactory

|

+----com.ibm.mq.jms.MQQueueConnectionFactory

QueueConnectionFactory

Chapter

15.

JMS

interfaces

and

classes

381

v

password:

the

caller’s

password.

Returns:

A

newly-created

queue

connection.

Throws:

v

JMSException

if

JMS

Provider

fails

to

create

queue

connection

because

of

an

internal

error.

v

JMSSecurityException

if

client

authentication

fails

because

of

a

non

valid

user

name

or

password.

getMessageRetention

*

public

int

getMessageRetention()

Get

method

for

messageRetention

attribute.

Returns:

v

JMSC.MQJMS_MRET_YES:

unwanted

messages

remain

on

the

input

queue.

v

JMSC.MQJMS_MRET_NO:

unwanted

messages

are

dealt

with

according

to

their

disposition

options.

getReference

*

public

Reference

getReference()

throws

NamingException

Return

a

reference

for

this

queue

connection

factory.

Returns:

A

reference

for

this

object.

Throws:

NamingException.

getTemporaryModel

*

public

String

getTemporaryModel()

getTempQPrefix

*

public

String

getTempQPrefix()

Get

the

prefix

that

is

used

to

form

the

name

of

a

WebSphere

MQ

dynamic

queue.

Returns:

The

prefix

that

is

used

to

form

the

name

of

a

WebSphere

MQ

dynamic

queue.

setMessageRetention

*

public

void

setMessageRetention(int

x)

throws

JMSException

Set

method

for

messageRetention

attribute.

Parameters:

Valid

values

are:

v

JMSC.MQJMS_MRET_YES:

unwanted

messages

remain

on

the

input

queue.

v

JMSC.MQJMS_MRET_NO:

unwanted

messages

are

dealt

with

according

to

their

disposition

options.

For

more

information

on

this,

see

“General

principles

for

point-to-point

messaging”

on

page

278.

QueueConnectionFactory

382

Using

Java

|

|

|

|
|

|
|
|

setTemporaryModel

*

public

void

setTemporaryModel(String

x)

throws

JMSException

setTempQPrefix

*

public

void

setTempQPrefix(java.lang.String

tempQPrefix)

throws

JMSException

Set

the

prefix

to

be

used

to

form

the

name

of

a

WebSphere

MQ

dynamic

queue.

Parameters:

tempQPrefix:

the

prefix

to

be

used

to

form

the

name

of

a

WebSphere

MQ

dynamic

queue.

Throws:

JMSException

if

the

string

is

null,

empty,

greater

than

33

characters

in

length,

or

consists

solely

of

a

single

asterisk

(*).

QueueConnectionFactory

Chapter

15.

JMS

interfaces

and

classes

383

|

|

|
|

|
|
|

|
|
|

QueueReceiver

public

interface

QueueReceiver

extends

MessageConsumer

WebSphere

MQ

class:

MQQueueReceiver

A

client

uses

a

QueueReceiver

to

receive

messages

that

have

been

delivered

to

a

queue.

See

also:

MessageConsumer

This

class

inherits

the

following

methods

from

MQMessageConsumer.

v

receive

v

receiveNoWait

v

close

v

getMessageListener

v

setMessageListener

Methods

getQueue

public

Queue

getQueue()

throws

JMSException

Get

the

queue

associated

with

this

queue

receiver.

Returns:

The

queue.

Throws:

JMSException

if

JMS

fails

to

get

queue

for

this

queue

receiver

because

of

an

internal

error.

java.lang.Object

|

+----com.ibm.mq.jms.MQMessageConsumer

|

+----com.ibm.mq.jms.MQQueueReceiver

QueueReceiver

384

Using

Java

QueueRequestor

public

class

QueueRequestor

extends

java.lang.Object

The

QueueRequestor

helper

class

simplifies

making

service

requests.

The

QueueRequestor

constructor

is

given

a

non-transacted

QueueSession

and

a

destination

Queue.

It

creates

a

TemporaryQueue

for

the

responses,

and

provides

a

request()

method

that

sends

the

request

message

and

waits

for

its

reply.

Users

are

free

to

create

more

sophisticated

versions.

See

also:

TopicRequestor

Constructors

QueueRequestor

public

QueueRequestor(QueueSession

session,

Queue

queue)

throws

JMSException

This

implementation

assumes

that

the

session

parameter

is

non-transacted

and

either

AUTO_ACKNOWLEDGE

or

DUPS_OK_ACKNOWLEDGE.

Parameters:

v

session:

the

queue

session

the

queue

belongs

to.

v

queue:

the

queue

to

perform

the

request/reply

call

on.

Throws:

JMSException

if

a

JMS

error

occurs.

Methods

close

public

void

close()

throws

JMSException

Because

a

provider

can

allocate

some

resources

outside

the

JVM

on

behalf

of

a

QueueRequestor,

clients

must

close

them

when

they

are

not

needed.

You

cannot

rely

on

garbage

collection

to

reclaim

these

resources

eventually,

because

this

might

not

occur

soon

enough.

Note:

This

method

closes

the

session

object

passed

to

the

QueueRequestor

constructor.

Throws:

JMSException

if

a

JMS

error

occurs.

request

public

Message

request(Message

message)

throws

JMSException

Send

a

request

and

wait

for

a

reply.

The

temporary

queue

is

used

for

replyTo,

and

only

one

reply

is

expected

for

each

request.

java.lang.Object

|

+----javax.jms.QueueRequestor

QueueRequestor

Chapter

15.

JMS

interfaces

and

classes

385

Parameters:

message:

the

message

to

send.

Returns:

The

reply

message.

Throws:

JMSException

if

a

JMS

error

occurs.

QueueRequestor

386

Using

Java

QueueSender

public

interface

QueueSender

extends

MessageProducer

WebSphere

MQ

class:

MQQueueSender

A

client

uses

a

QueueSender

to

send

messages

to

a

queue.

A

QueueSender

is

normally

associated

with

a

particular

queue.

However,

it

is

possible

to

create

an

unidentified

QueueSender

that

is

not

associated

with

any

given

queue.

See

also:

MessageProducer

Methods

close

*

public

void

close()

throws

JMSException

Because

a

provider

can

allocate

some

resources

outside

the

JVM

on

behalf

of

a

QueueSender,

clients

must

close

them

when

they

are

not

needed.

You

cannot

rely

on

garbage

collection

to

reclaim

these

resources

eventually,

because

this

might

not

occur

soon

enough.

Throws:

JMSException

if

JMS

fails

to

close

the

producer

because

of

some

error.

Overrides:

Close

in

class

MQMessageProducer.

getQueue

public

Queue

getQueue()

throws

JMSException

Get

the

queue

associated

with

this

queue

sender.

Returns:

The

queue.

Throws:

JMSException

if

JMS

fails

to

get

the

queue

for

this

queue

sender

because

of

an

internal

error.

java.lang.Object

|

+----com.ibm.mq.jms.MQMessageProducer

|

+----com.ibm.mq.jms.MQQueueSender

QueueSender

Chapter

15.

JMS

interfaces

and

classes

387

send

public

void

send(Message

message)

throws

JMSException

Send

a

message

to

the

queue.

Use

the

QueueSender’s

default

delivery

mode,

time-to-live,

and

priority.

Parameters:

message:

the

message

to

be

sent.

Throws:

v

JMSException

if

JMS

fails

to

send

the

message

because

of

an

error.

v

MessageFormatException

if

a

non

valid

message

is

specified.

v

InvalidDestinationException

if

a

client

uses

this

method

with

a

queue

sender

with

a

non

valid

queue.

send

public

void

send(Message

message,

int

deliveryMode,

int

priority,

long

timeToLive)

throws

JMSException

Send

a

message

specifying

delivery

mode,

priority,

and

time-to-live

to

the

queue.

Parameters:

v

message:

the

message

to

be

sent.

v

deliveryMode:

the

delivery

mode

to

use.

v

priority:

the

priority

for

this

message.

v

timeToLive:

the

message’s

lifetime

(in

milliseconds).

Throws:

v

JMSException

if

JMS

fails

to

send

the

message

because

of

an

internal

error.

v

MessageFormatException

if

a

non

valid

message

is

specified.

v

InvalidDestinationException

if

a

client

uses

this

method

with

a

queue

sender

with

a

non

valid

queue.

send

public

void

send(Queue

queue,

Message

message)

throws

JMSException

Send

a

message

to

the

specified

queue

with

the

QueueSender’s

default

delivery

mode,

time-to-live,

and

priority.

Note:

This

method

can

be

used

only

with

unidentified

QueueSenders.

Parameters:

v

queue:-

the

queue

that

this

message

should

be

sent

to.

v

message:

the

message

to

be

sent.

Throws:

v

JMSException

if

JMS

fails

to

send

the

message

because

of

an

internal

error.

v

MessageFormatException

if

a

non

valid

message

is

specified.

QueueSender

388

Using

Java

v

InvalidDestinationException

if

a

client

uses

this

method

with

a

non

valid

queue.

send

public

void

send(Queue

queue,

Message

message,

int

deliveryMode,

int

priority,

long

timeToLive)

throws

JMSException

Send

a

message

to

the

specified

queue

with

delivery

mode,

priority,

and

time-to-live.

Note:

This

method

can

be

used

only

with

unidentified

QueueSenders.

Parameters:

v

queue:

the

queue

that

this

message

should

be

sent

to.

v

message:

the

message

to

be

sent.

v

deliveryMode:

the

delivery

mode

to

use.

v

priority:

the

priority

for

this

message.

v

timeToLive:

the

message’s

lifetime

(in

milliseconds).

Throws:

v

JMSException

if

JMS

fails

to

send

the

message

because

of

an

internal

error.

v

MessageFormatException

if

a

non

valid

message

is

specified.

v

InvalidDestinationException

if

a

client

uses

this

method

with

a

non

valid

queue.

QueueSender

Chapter

15.

JMS

interfaces

and

classes

389

QueueSession

public

interface

QueueSession

extends

Session

WebSphere

MQ

class:

MQQueueSession

A

QueueSession

provides

methods

to

create

QueueReceivers,

QueueSenders,

QueueBrowsers,

and

TemporaryQueues.

See

also:

Session

The

following

methods

are

inherited

from

MQSession:

v

close

v

commit

v

rollback

v

recover

Methods

createBrowser

public

QueueBrowser

createBrowser(Queue

queue)

throws

JMSException

Create

a

QueueBrowser

to

peek

at

the

messages

on

the

specified

queue.

Parameters:

queue:

the

queue

to

access.

Throws:

v

JMSException

if

a

session

fails

to

create

a

browser

because

of

a

JMS

error.

v

InvalidDestinationException

if

a

non

valid

queue

is

specified.

createBrowser

public

QueueBrowser

createBrowser(Queue

queue,

java.lang.String

messageSelector)

throws

JMSException

Create

a

QueueBrowser

to

peek

at

the

messages

on

the

specified

queue.

Parameters:

v

queue:

the

queue

to

access.

v

messageSelector:

only

deliver

messages

with

properties

that

match

the

message

selector

expression.

Throws:

v

JMSException

if

a

session

fails

to

create

a

browser

because

of

a

JMS

error.

v

InvalidDestinationException

if

a

non

valid

queue

is

specified.

v

InvalidSelectorException

if

the

message

selector

is

not

valid.

java.lang.Object

|

+----com.ibm.mq.jms.MQSession

|

+----com.ibm.mq.jms.MQQueueSession

QueueSession

390

Using

Java

createQueue

public

Queue

createQueue(java.lang.String

queueName)

throws

JMSException

Create

a

queue

with

a

queue

name.

This

allows

the

creation

of

a

queue

with

a

provider-specific

name.

The

string

takes

a

URI

format,

as

described

on

page

204.

Note:

Clients

that

depend

on

this

ability

are

not

portable.

Parameters:

queueName:

the

name

of

this

queue.

Returns:

A

queue

with

the

given

name.

Throws:

JMSException

if

a

session

fails

to

create

a

queue

because

of

a

JMS

error.

createReceiver

public

QueueReceiver

createReceiver(Queue

queue)

throws

JMSException

Create

a

QueueReceiver

to

receive

messages

from

the

specified

queue.

Parameters:

queue:

the

queue

to

access.

Throws:

v

JMSException

if

a

session

fails

to

create

a

receiver

because

of

a

JMS

error.

v

InvalidDestinationException

if

a

non

valid

queue

is

specified.

createReceiver

public

QueueReceiver

createReceiver(Queue

queue,

java.lang.String

messageSelector)

throws

JMSException

Create

a

QueueReceiver

to

receive

messages

from

the

specified

queue.

Parameters:

v

queue:

the

queue

to

access.

v

messageSelector:

only

messages

with

properties

that

match

the

message

selector

expression

are

delivered.

Throws:

v

JMSException

if

a

session

fails

to

create

a

receiver

because

of

a

JMS

error.

v

InvalidDestinationException

if

a

non

valid

queue

is

specified.

v

InvalidSelectorException

if

the

message

selector

is

not

valid.

createSender

public

QueueSender

createSender(Queue

queue)

throws

JMSException

Create

a

QueueSender

to

send

messages

to

the

specified

queue.

QueueSession

Chapter

15.

JMS

interfaces

and

classes

391

Parameters:

queue:

the

queue

to

access,

or

null

if

this

is

to

be

an

unidentified

producer.

Throws:

v

JMSException

if

a

session

fails

to

create

a

sender

because

of

a

JMS

error.

v

InvalidDestinationException

if

a

non

valid

queue

is

specified.

createTemporaryQueue

public

TemporaryQueue

createTemporaryQueue()

throws

JMSException

Create

a

temporary

queue.

Its

lifetime

is

that

of

the

QueueConnection

unless

deleted

earlier.

Returns:

A

temporary

queue.

Throws:

JMSException

if

a

session

fails

to

create

a

temporary

queue

because

of

a

JMS

error.

QueueSession

392

Using

Java

Session

public

interface

Session

extends

java.lang.Runnable

Subinterfaces:

QueueSession,

TopicSession,

XAQueueSession,

XASession,

and

XATopicSession

WebSphere

MQ

class:

MQSession

A

JMS

session

is

a

single-threaded

context

for

producing

and

consuming

messages.

See

also:

QueueSession,

TopicSession,

and

XASession

Fields

AUTO_ACKNOWLEDGE

public

static

final

int

AUTO_ACKNOWLEDGE

With

this

acknowledgement

mode,

the

session

automatically

acknowledges

a

message

when

it

has

either

successfully

returned

from

a

call

to

receive,

or

the

message

listener

it

has

called

to

process

the

message

successfully

returns.

CLIENT_ACKNOWLEDGE

public

static

final

int

CLIENT_ACKNOWLEDGE

With

this

acknowledgement

mode,

the

client

acknowledges

a

message

by

calling

a

message’s

acknowledge

method.

DUPS_OK_ACKNOWLEDGE

public

static

final

int

DUPS_OK_ACKNOWLEDGE

This

acknowledgement

mode

instructs

the

session

to

acknowledge

the

delivery

of

messages

lazily.

SESSION_TRANSACTED

public

static

final

int

SESSION_TRANSACTED

The

method

getAcknowledgeMode

returns

this

value

if

the

session

is

transacted

and

ignores

the

acknowledgement

mode.

Methods

java.lang.Object

|

+----com.ibm.mq.jms.MQSession

Session

Chapter

15.

JMS

interfaces

and

classes

393

|

|

|
|

close

public

void

close()

throws

JMSException

Because

a

provider

can

allocate

some

resources

outside

the

JVM

on

behalf

of

a

session,

clients

must

close

them

when

they

are

not

needed.

You

cannot

rely

on

garbage

collection

to

reclaim

these

resources

eventually,

because

this

might

not

occur

soon

enough.

Closing

a

transacted

session

rolls

back

any

in-progress

transaction.

Closing

a

session

automatically

closes

its

message

producers

and

consumer,

so

there

is

no

need

to

close

them

individually.

Throws:

JMSException

if

the

JMS

implementation

fails

to

close

a

session

because

of

an

internal

error.

commit

public

void

commit()

throws

JMSException

Commit

all

messages

done

in

this

transaction

and

release

any

locks

currently

held.

WebSphere

MQ

Event

Broker

note

This

always

throws

a

JMSException

when

you

have

a

direct

connection

to

WebSphere

MQ

Event

Broker.

Throws:

v

JMSException

if

JMS

fails

to

commit

the

transaction

because

of

an

internal

JMS

error.

v

TransactionRolledBackException

if

the

transaction

gets

rolled

back

because

of

an

internal

error

during

commit.

v

IllegalStateException

if

the

method

is

not

called

by

a

transacted

session.

createBrowser

(JMS

1.1

only)

public

QueueBrowser

createBrowser(Queue

queue)

throws

JMSException

Create

a

queue

browser

to

browse

the

messages

on

the

specified

queue.

Parameters:

queue:

the

queue

to

access.

Throws:

v

JMSException

if

the

session

fails

to

create

a

queue

browser

because

of

an

internal

JMS

error.

v

InvalidDestinationException

if

the

destination

is

not

valid.

Session

394

Using

Java

|
|

|

|

|

|
|

|

|
|

|

createBrowser

(JMS

1.1

only)

public

QueueBrowser

createBrowser(Queue

queue,

java.lang.String

messageSelector)

throws

JMSException

Create

a

queue

browser

to

browse

the

messages

on

the

specified

queue

using

a

message

selector.

Parameters:

v

queue:

the

queue

to

access.

v

messageSelector:

deliver

only

those

messages

with

properties

that

match

the

message

selector

expression.

A

value

of

null

or

an

empty

string

indicates

that

there

is

no

message

selector

for

the

message

consumer.

Throws:

v

JMSException

if

the

session

fails

to

create

a

queue

browser

because

of

an

internal

JMS

error.

v

InvalidDestinationException

if

the

destination

is

not

valid.

v

InvalidSelectorException

if

the

message

selector

is

not

valid.

createBytesMessage

public

BytesMessage

createBytesMessage()

throws

JMSException

Create

a

BytesMessage.

A

BytesMessage

is

used

to

send

a

message

containing

a

stream

of

uninterpreted

bytes.

Throws:

JMSException

if

JMS

fails

to

create

this

message

because

of

an

internal

error.

createConsumer

(JMS

1.1

only)

public

MessageConsumer

createConsumer(Destination

destination)

throws

JMSException

Create

a

message

consumer

for

the

specified

destination.

Because

Queue

and

Topic

both

inherit

from

Destination,

they

can

be

used

in

the

destination

parameter

to

create

a

message

consumer.

A

client

uses

a

message

consumer

object

to

receive

messages

that

are

sent

to

a

destination.

Parameters:

destination:

the

destination

to

access.

Throws:

v

JMSException

if

the

session

fails

to

create

a

message

consumer

because

of

an

internal

JMS

error.

v

InvalidDestinationException

if

the

destination

is

not

valid.

Session

Chapter

15.

JMS

interfaces

and

classes

395

|

|
|
|

|
|

|

|

|
|
|
|

|

|
|

|

|

|

|
|

|
|
|

|
|

|
|

|

|
|

|

createConsumer

(JMS

1.1

only)

public

MessageConsumer

createConsumer(Destination

destination,

java.lang.String

messageSelector)

throws

JMSException

Create

a

message

consumer

for

the

specified

destination

using

a

message

selector.

Because

Queue

and

Topic

both

inherit

from

Destination,

they

can

be

used

in

the

destination

parameter

to

create

a

message

consumer.

A

client

uses

a

message

consumer

object

to

receive

messages

that

are

sent

to

a

destination.

Parameters:

v

destination:

the

destination

to

access.

v

messageSelector:

deliver

only

those

messages

with

properties

that

match

the

message

selector

expression.

A

value

of

null

or

an

empty

string

indicates

that

there

is

no

message

selector

for

the

message

consumer.

Throws:

v

JMSException

if

the

session

fails

to

create

a

message

consumer

because

of

an

internal

JMS

error.

v

InvalidDestinationException

if

the

destination

is

not

valid.

v

InvalidSelectorException

if

the

message

selector

is

not

valid.

createConsumer

(JMS

1.1

only)

public

MessageConsumer

createConsumer(Destination

destination,

java.lang.String

messageSelector,

boolean

NoLocal)

throws

JMSException

Create

a

message

consumer

for

the

specified

destination

using

a

message

selector.

Because

Queue

and

Topic

both

inherit

from

Destination,

they

can

be

used

in

the

destination

parameter

to

create

a

message

consumer.

If

the

destination

is

a

topic,

you

can

use

this

method

to

specify

whether

the

consumer

can

receive

messages

published

by

its

own

connection.

A

client

uses

a

message

consumer

to

receive

messages

that

are

published

to

a

destination.

A

connection

can

publish

and

subscribe

to

the

same

topic.

The

NoLocal

attribute

of

a

consumer

determines

whether

the

consumer

can

receive

messages

published

by

its

own

connection.

The

default

value

of

the

attribute

is

false.

Parameters:

v

destination:

the

destination

to

access.

v

messageSelector:

deliver

only

those

messages

with

properties

that

match

the

message

selector

expression.

A

value

of

null

or

an

empty

string

indicates

that

there

is

no

message

selector

for

the

message

consumer.

v

NoLocal:

if

true,

the

consumer

does

not

receive

the

messages

published

by

its

own

connection.

The

action

of

this

parameter

is

defined

only

if

the

destination

is

a

topic,

not

a

queue.

Throws:

v

JMSException

if

the

session

fails

to

create

a

message

consumer

because

of

an

internal

JMS

error.

Session

396

Using

Java

|

|
|
|

|
|
|

|
|

|

|

|
|
|
|

|

|
|

|

|

|

|
|
|

|
|
|
|
|

|
|

|
|
|
|

|

|

|
|
|
|

|
|
|

|

|
|

v

InvalidDestinationException

if

the

destination

is

not

valid.

v

InvalidSelectorException

if

the

message

selector

is

not

valid.

createDurableSubscriber

(JMS

1.1

only)

public

TopicSubscriber

createDurableSubscriber(Topic

topic,

java.lang.String

name)

throws

JMSException

Create

a

durable

subscriber

to

the

specified

topic.

If

a

client

needs

to

receive

all

the

messages

published

on

a

topic,

including

the

ones

published

while

the

subscriber

is

inactive,

it

uses

a

durable

topic

subscriber.

The

broker

retains

a

record

of

this

durable

subscription

and

ensures

that

all

messages

from

the

publishers

of

the

topic

are

retained

until

they

are

acknowledged

by

this

durable

subscriber

or

they

expire.

Sessions

with

durable

subscribers

must

always

provide

the

same

client

identifier.

In

addition,

each

client

must

specify

a

name

that

uniquely

identifies,

within

the

client

identifier,

each

durable

subscription

it

creates.

Only

one

session

at

a

time

can

have

a

topic

subscriber

for

a

particular

durable

subscription.

A

client

can

change

an

existing

durable

subscription

by

creating

a

durable

topic

subscriber

with

the

same

name,

but

with

a

new

topic

or

message

selector

or

both.

Changing

a

durable

subscriber

is

equivalent

to

unsubscribing

the

old

one

and

creating

a

new

one.

Parameters:

v

topic:

the

topic

to

subscribe

to.

The

topic

must

not

be

a

temporary

topic.

v

name:

the

name

used

to

identify

the

subscription.

Throws:

v

JMSException

if

the

session

fails

to

create

a

subscriber

because

of

an

internal

JMS

error.

v

InvalidDestinationException

if

the

topic

is

not

valid.

createDurableSubscriber

(JMS

1.1

only)

public

TopicSubscriber

createDurableSubscriber

(Topic

topic,

java.lang.String

name,

java.lang.String

messageSelector,

boolean

noLocal)

throws

JMSException

Create

a

durable

subscriber

to

the

specified

topic,

using

a

message

selector

and

specifying

whether

the

subscriber

can

receive

messages

published

by

its

own

connection.

If

a

client

needs

to

receive

all

the

messages

published

on

a

topic,

including

the

ones

published

while

the

subscriber

is

inactive,

it

uses

a

durable

topic

subscriber.

The

broker

retains

a

record

of

this

durable

subscription

and

ensures

that

all

messages

from

the

publishers

of

the

topic

are

retained

until

they

are

acknowledged

by

this

durable

subscriber

or

they

expire.

Sessions

with

durable

subscribers

must

always

provide

the

same

client

identifier.

In

addition,

each

client

must

specify

a

name

which

uniquely

identifies,

within

the

client

identifier,

each

durable

subscription

it

creates.

Session

Chapter

15.

JMS

interfaces

and

classes

397

|

|

|

|
|
|

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|

|

|

|
|

|

|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

Only

one

session

at

a

time

can

have

a

topic

subscriber

for

a

particular

durable

subscription.

An

inactive

durable

subscriber

is

one

that

exists

but

does

not

currently

have

a

message

consumer

associated

with

it.

A

client

can

change

an

existing

durable

subscription

by

creating

a

durable

topic

subscriber

with

the

same

name,

but

with

a

new

topic

or

message

selector

or

both.

Changing

a

durable

subscriber

is

equivalent

to

unsubscribing

the

old

one

and

creating

a

new

one.

A

connection

can

publish

and

subscribe

to

the

same

topic.

The

NoLocal

attribute

of

a

subscriber

determines

whether

the

subscriber

can

receive

messages

published

by

its

own

connection.

The

default

value

of

the

attribute

is

false.

Parameters:

v

topic:

the

topic

to

subscribe

to.

The

topic

must

not

be

a

temporary

topic.

v

name:

the

name

used

to

identify

the

subscription.

v

messageSelector:

deliver

only

those

messages

with

properties

that

match

the

message

selector

expression.

A

value

of

null

or

an

empty

string

indicates

that

there

is

no

message

selector

for

the

message

consumer.

v

noLocal:

if

true,

the

subscriber

does

not

receive

the

messages

published

by

its

own

connection.

Throws:

v

JMSException

if

the

session

fails

to

create

a

subscriber

because

of

an

internal

JMS

error.

v

InvalidDestinationException

if

the

topic

is

not

valid.

v

InvalidSelectorException

if

the

message

selector

is

not

valid.

createMapMessage

public

MapMessage

createMapMessage()

throws

JMSException

Create

a

MapMessage.

A

MapMessage

is

used

to

send

a

self-defining

set

of

name-value

pairs,

where

names

are

strings,

and

values

are

Java

primitive

types.

Throws:

JMSException

if

JMS

fails

to

create

this

message

because

of

an

internal

error.

createMessage

public

Message

createMessage()

throws

JMSException

Create

a

message.

The

Message

interface

is

the

root

interface

of

all

JMS

messages.

It

holds

all

the

standard

message

header

information.

It

can

be

sent

when

a

message

containing

only

header

information

is

sufficient.

Throws:

JMSException

if

JMS

fails

to

create

this

message

because

of

an

internal

error.

Session

398

Using

Java

|
|
|

|
|
|
|

|
|
|
|

|

|
|

|

|
|
|
|

|
|

|

|
|

|

|

createObjectMessage

public

ObjectMessage

createObjectMessage()

throws

JMSException

Create

an

ObjectMessage.

An

ObjectMessage

is

used

to

send

a

message

that

contains

a

serializable

Java

object.

Throws:

JMSException

if

JMS

fails

to

create

this

message

because

of

an

internal

error.

createObjectMessage

public

ObjectMessage

createObjectMessage

(java.io.Serializable

object)

throws

JMSException

Create

an

initialized

ObjectMessage.

An

ObjectMessage

is

used

to

send

a

message

that

contains

a

serializable

Java

object.

Parameters:

object:

the

object

to

use

to

initialize

this

message.

Throws:

JMSException

if

JMS

fails

to

create

this

message

because

of

an

internal

error.

createProducer

(JMS

1.1

only)

public

MessageProducer

createProducer(Destination

destination)

throws

JMSException

Create

a

message

producer

to

send

messages

to

the

specified

destination.

Because

Queue

and

Topic

both

inherit

from

Destination,

they

can

be

used

in

the

destination

parameter

to

create

a

message

producer.

Parameters:

destination:

the

destination

to

send

messages

to,

or

null

to

create

a

message

producer

that

does

not

have

a

specified

destination.

Throws:

v

JMSException

if

the

session

fails

to

create

a

message

producer

because

of

an

internal

JMS

error.

v

InvalidDestinationException

if

the

destination

is

not

valid.

createQueue

(JMS

1.1

only)

public

Queue

createQueue(java.lang.String

queueName)

throws

JMSException

Create

a

Queue

object

given

a

queue

name.

The

queue

name

can

be

the

name

of

a

WebSphere

MQ

queue

or

it

can

be

a

queue

URI.

For

information

about

URI

format,

see

“Destinations”

on

page

239.

This

method

is

provided

for

the

rare

cases

where

a

client

needs

to

work

directly

with

a

Queue

object.

The

client

can

create

the

Queue

object

with

a

provider

specific

name.

Clients

that

depend

on

this

ability

are

not

portable.

The

method

does

not

create

the

WebSphere

MQ

queue.

Creating

a

WebSphere

MQ

queue

is

an

administrative

task

and

is

not

done

through

the

JMS

API.

The

one

exception

is

creating

a

temporary

queue,

which

is

done

using

the

createTemporaryQueue()

method.

Session

Chapter

15.

JMS

interfaces

and

classes

399

|

|
|

|
|
|

|
|
|

|

|
|

|

|

|

|
|
|

|
|
|

|
|
|
|

Parameters:

queueName:

the

name

of

the

queue.

Returns:

A

Queue

object

with

the

specified

name.

Throws:

JMSException

if

the

session

fails

to

create

a

queue

because

of

an

internal

JMS

error.

createStreamMessage

public

StreamMessage

createStreamMessage()

throws

JMSException

Create

a

StreamMessage.

A

StreamMessage

is

used

to

send

a

self-defining

stream

of

Java

primitives.

Throws:

JMSException

if

JMS

fails

to

create

this

message

because

of

an

internal

error.

createTemporaryQueue

(JMS

1.1

only)

public

TemporaryQueue

createTemporaryQueue()

throws

JMSException

Create

a

TemporaryQueue

object.

The

temporary

queue

remains

until

the

connection

ends

or

the

queue

is

explicitly

deleted,

whichever

is

the

sooner.

Returns:

A

TemporaryQueue

object.

Throws:

JMSException

if

the

session

fails

to

create

a

temporary

queue

because

of

an

internal

JMS

error.

createTemporaryTopic

(JMS

1.1

only)

public

TemporaryTopic

createTemporaryTopic()

throws

JMSException

Create

a

TemporaryTopic

object.

The

temporary

topic

remains

until

the

connection

ends

or

the

topic

is

explicitly

deleted,

whichever

is

the

sooner.

Returns:

A

TemporaryTopic

object.

Throws:

JMSException

if

the

session

fails

to

create

a

temporary

topic

because

of

an

internal

JMS

error.

createTextMessage

public

TextMessage

createTextMessage()

throws

JMSException

Create

a

TextMessage.

A

TextMessage

is

used

to

send

a

message

containing

a

string.

Throws:

JMSException

if

JMS

fails

to

create

this

message

because

of

an

internal

error.

Session

400

Using

Java

|
|

|
|

|
|
|

|

|

|
|

|
|

|
|
|

|

|

|
|

|
|

|
|
|

createTextMessage

public

TextMessage

createTextMessage

(java.lang.String

string)

throws

JMSException

Create

an

initialized

TextMessage.

A

TextMessage

is

used

to

send

a

message

containing

a

string.

Parameters:

string:

the

string

used

to

initialize

this

message.

Throws:

JMSException

if

JMS

fails

to

create

this

message

because

of

an

internal

error.

createTopic

(JMS

1.1

only)

public

Topic

createTopic(java.lang.String

topicName)

throws

JMSException

Create

a

Topic

object

given

a

topic

name.

The

topic

name

can

be

the

name

of

a

broker

topic

or

it

can

be

a

topic

URI.

For

information

about

URI

format,

see

“Destinations”

on

page

239.

This

method

is

provided

for

the

rare

cases

where

a

client

needs

to

work

directly

with

a

Topic

object.

The

client

can

create

the

Topic

object

with

a

provider

specific

name.

Clients

that

depend

on

this

ability

are

not

portable.

This

method

does

not

create

the

broker

topic.

Creating

a

broker

topic

is

an

administrative

task

and

is

not

done

through

the

JMS

API.

The

one

exception

is

creating

a

temporary

topic,

which

is

done

using

the

createTemporaryTopic()

method.

Parameters:

topicName:

the

name

of

the

topic.

Returns:

A

Topic

object

with

the

specified

name.

Throws:

JMSException

if

the

session

fails

to

create

a

topic

because

of

an

internal

JMS

error.

getAcknowledgeMode

(JMS

1.1

only)

public

int

getAcknowledgeMode()

throws

JMSException

Return

the

acknowledgement

mode

for

the

session.

The

acknowledgement

mode

is

specified

when

the

session

is

created.

A

session

that

is

transacted

has

no

acknowledgement

mode.

Returns:

The

acknowledgement

mode

for

the

session,

provided

the

session

is

not

transacted.

If

the

session

is

transacted,

the

method

returns

SESSION_TRANSACTED.

Throws:

JMSException

if

JMS

fails

to

return

the

acknowledgment

mode

because

of

an

internal

JMS

error.

See

also:

Connection.createSession

Session

Chapter

15.

JMS

interfaces

and

classes

401

|

|

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|
|

|

|

|
|
|

|
|
|
|

|
|
|

|
|

getMessageListener

public

MessageListener

getMessageListener()

throws

JMSException

Return

the

session’s

distinguished

message

listener.

Returns:

The

message

listener

associated

with

this

session.

Throws:

JMSException

if

JMS

fails

to

get

the

message

listener

because

of

an

internal

JMS

error.

See

also:

setMessageListener

getTransacted

public

boolean

getTransacted()

throws

JMSException

Whether

the

session

is

in

transacted

mode.

WebSphere

MQ

Event

Broker

note

This

method

always

returns

false

when

you

have

a

direct

connection

to

WebSphere

MQ

Event

Broker.

Returns:

True

if

the

session

is

in

transacted

mode.

Throws:

JMSException

if

JMS

fails

to

return

the

transaction

mode

because

of

an

internal

error

in

JMS

Provider.

recover

public

void

recover()

throws

JMSException

Stop

the

delivery

of

messages

in

this

session,

and

restart

the

sending

messages

with

the

oldest

unacknowledged

message.

WebSphere

MQ

Event

Broker

note

This

always

throws

a

JMSException

when

you

have

a

direct

connection

to

WebSphere

MQ

Event

Broker.

Throws:

v

JMSException

if

JMS

fails

to

stop

the

delivery

of

messages

and

restart

the

sending

messages

because

of

an

internal

JMS

error.

v

IllegalStateException

if

the

method

is

called

by

a

transacted

session.

Session

402

Using

Java

|
|

rollback

public

void

rollback()

throws

JMSException

Roll

back

any

messages

done

in

this

transaction

and

release

any

locks

currently

held.

WebSphere

MQ

Event

Broker

note

This

always

throws

a

JMSException

when

you

have

a

direct

connection

to

WebSphere

MQ

Event

Broker.

Throws:

v

JMSException

if

JMS

fails

to

roll

back

the

transaction

because

of

an

internal

JMS

error.

v

IllegalStateException

if

the

method

is

not

called

by

a

transacted

session.

run

public

void

run()

This

method

is

intended

for

use

only

by

application

servers.

WebSphere

MQ

Event

Broker

note

This

always

throws

an

IllegalStateException

when

you

have

a

direct

connection

to

WebSphere

MQ

Event

Broker.

Specified

by:

run

in

the

interface

java.lang.Runnable

See

also:

ServerSession

setMessageListener

public

void

setMessageListener(MessageListener

listener)

throws

JMSException

Set

the

session’s

distinguished

message

listener.

When

it

is

set,

no

other

form

of

message

receipt

in

the

session

can

be

used.

However,

all

forms

of

sending

messages

are

still

supported.

This

is

an

expert

facility

that

is

not

used

by

regular

JMS

clients.

Parameters:

listener:

the

message

listener

to

associate

with

this

session.

Throws:

JMSException

if

JMS

fails

to

set

the

message

listener

because

of

an

internal

error

in

the

JMS

Provider.

See

also:

getMessageListener

Session

Chapter

15.

JMS

interfaces

and

classes

403

|
|

unsubscribe

(JMS

1.1

only)

public

void

unsubscribe(java.lang.String

name)

throws

JMSException

Unsubscribe

a

durable

subscription

that

has

been

created

by

a

client.

This

method

tells

the

broker

that

the

durable

subscription

has

ended

and

not

to

send

any

more

messages

to

the

subscriber.

It

is

not

advisable

for

a

client

to

delete

a

durable

subscription

while

there

is

an

active

message

consumer

for

the

subscription,

or

while

a

consumed

message

is

part

of

a

pending

transaction

or

has

not

been

acknowledged

in

the

session.

Note

For

a

direct

connection

to

WebSphere

MQ

Event

Broker,

WebSphere

Business

Integration

Event

Broker,

or

WebSphere

Business

Integration

Message

Broker,

this

method

throws

a

JMSException.

Parameters:

name:

the

name

used

to

identify

the

subscription.

Throws:

v

JMSException

if

the

session

fails

to

remove

the

durable

subscription

because

of

an

internal

JMS

error.

v

InvalidDestinationException

if

the

subscription

name

is

not

valid.

Session

404

Using

Java

|

|

|

|
|

|
|
|
|
|

|
|
|
||||

|
|

|

|
|

|
|

StreamMessage

public

interface

StreamMessage

extends

Message

WebSphere

MQ

class:

JMSStreamMessage

Use

a

StreamMessage

to

send

a

stream

of

Java

primitives.

See

also:

BytesMessage,

MapMessage,

Message,

ObjectMessage

and

TextMessage

Methods

readBoolean

public

boolean

readBoolean()

throws

JMSException

Read

a

boolean

from

the

stream

message.

Returns:

The

boolean

value

read.

Throws:

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

v

MessageEOFException

if

an

end

of

message

stream

is

received.

v

MessageFormatException

if

this

type

conversion

is

not

valid.

v

MessageNotReadableException

if

the

message

is

in

write-only

mode.

readByte

public

byte

readByte()

throws

JMSException

Read

a

byte

value

from

the

stream

message.

Returns:

The

next

byte

from

the

stream

message

as

an

8-bit

byte.

Throws:

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

v

MessageEOFException

if

an

end

of

message

stream

is

received.

v

MessageFormatException

if

this

type

conversion

is

not

valid.

v

MessageNotReadableException

if

the

message

is

in

write-only

mode.

java.lang.Object

|

+----com.ibm.jms.JMSMessage

|

+----com.ibm.jms.JMSStreamMessage

StreamMessage

Chapter

15.

JMS

interfaces

and

classes

405

readBytes

public

int

readBytes(byte[]

value)

throws

JMSExceptioneam

message.

Read

a

byte

array

field

from

the

stream

message

into

the

specified

byte[]

object

(the

read

buffer).

If

the

buffer

size

is

less

than,

or

equal

to,

the

size

of

the

data

in

the

message

field,

an

application

must

make

further

calls

to

this

method

to

retrieve

the

remainder

of

the

data.

Once

the

first

readBytes

call

on

a

byte[]

field

value

has

been

done,

the

full

value

of

the

field

must

be

read

before

it

is

valid

to

read

the

next

field.

An

attempt

to

read

the

next

field

before

that

has

been

done

throws

a

MessageFormatException.

Parameters:

value:

the

buffer

into

which

the

data

is

read.

Returns:

The

total

number

of

bytes

read

into

the

buffer,

or

-1

if

there

is

no

more

data

because

the

end

of

the

byte

field

has

been

reached.

Throws:

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

v

MessageEOFException

if

an

end

of

message

stream

is

received.

v

MessageFormatException

if

this

type

conversion

is

not

valid.

v

MessageNotReadableException

if

the

message

is

in

write-only

mode.

readChar

public

char

readChar()

throws

JMSException

Read

a

Unicode

character

value

from

the

stream

message.

Returns:

A

Unicode

character

from

the

stream

message.

Throws:

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

v

MessageEOFException

if

an

end

of

message

stream

is

received.

v

MessageFormatException

if

this

type

conversion

is

not

valid.

v

MessageNotReadableException

if

the

message

is

in

write-only

mode.

readDouble

public

double

readDouble()

throws

JMSException

Read

a

double

from

the

stream

message.

Returns:

A

double

value

from

the

stream

message.

Throws:

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

v

MessageEOFException

if

an

end

of

message

stream

is

received.

v

MessageFormatException

if

this

type

conversion

is

not

valid.

StreamMessage

406

Using

Java

v

MessageNotReadableException

if

the

message

is

in

write-only

mode.

readFloat

public

float

readFloat()

throws

JMSException

Read

a

float

from

the

stream

message.

Returns:

A

float

value

from

the

stream

message.

Throws:

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

v

MessageEOFException

if

an

end

of

message

stream

v

MessageFormatException

if

this

type

conversion

is

not

valid.

v

MessageNotReadableException

if

the

message

is

in

write-only

mode.

readInt

public

int

readInt()

throws

JMSException

Read

a

32-bit

integer

from

the

stream

message.

Returns:

A

32-bit

integer

value

from

the

stream

message,

interpreted

as

an

int.

Throws:

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

v

MessageEOFException

if

an

end

of

message

stream

is

received.

v

MessageFormatException

if

this

type

conversion

is

not

valid.

v

MessageNotReadableException

if

the

message

is

in

write-only

mode.

readLong

public

long

readLong()

throws

JMSException

Read

a

64-bit

integer

from

the

stream

message.

Returns:

A

64-bit

integer

value

from

the

stream

message,

interpreted

as

a

long.

Throws:

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

v

MessageEOFException

if

an

end

of

message

stream

v

MessageFormatException

if

this

type

conversion

is

not

valid.

v

MessageNotReadableException

if

the

message

is

in

write-only

mode.

StreamMessage

Chapter

15.

JMS

interfaces

and

classes

407

readObject

public

java.lang.Object

readObject()

throws

JMSException

Read

a

Java

object

from

the

stream

message.

Returns:

A

Java

object

from

the

stream

message

in

object

format

(for

example,

if

it

was

set

as

an

int,

an

integer

is

returned).

Throws:

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

v

MessageEOFException

if

an

end

of

message

stream

is

received.

v

NotReadableException

if

the

message

is

in

write-only

mode.

readShort

public

short

readShort()

throws

JMSException

Read

a

16-bit

number

from

the

stream

message.

Returns:

A

16-bit

number

from

the

stream

message.

Throws:

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

v

MessageEOFException

if

an

end

of

message

stream

is

received.

v

MessageFormatException

if

this

type

conversion

is

not

valid.

v

MessageNotReadableException

if

the

message

is

in

write-only

mode.

readString

public

java.lang.String

readString()

throws

JMSException

Read

in

a

string

from

the

stream

message.

Returns:

A

Unicode

string

from

the

stream

message.

Throws:

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

v

MessageEOFException

if

an

end

of

message

stream

is

received.

v

MessageFormatException

if

this

type

conversion

is

not

valid.

v

MessageNotReadableException

if

the

message

is

in

write-only

mode

StreamMessage

408

Using

Java

reset

public

void

reset()

throws

JMSException

Put

the

message

in

read-only

mode,

and

reposition

the

stream

to

the

beginning.

Throws:

v

JMSException

if

JMS

fails

to

reset

the

message

because

of

an

internal

JMS

error.

v

MessageFormatException

if

the

message

has

an

non

valid

format.

writeBoolean

public

void

writeBoolean(boolean

value)

throws

JMSException

Write

a

boolean

to

the

stream

message.

Parameters:

value:

the

boolean

value

to

be

written.

Throws:

v

JMSException

if

JMS

fails

to

read

the

message

because

of

an

internal

JMS

error.

v

MessageNotWriteableException

if

the

message

is

in

read-only

mode.

writeByte

public

void

writeByte(byte

value)

throws

JMSException

Write

a

byte

to

the

stream

message.

Parameters:

value:

the

byte

value

to

be

written.

Throws:

v

JMSException

if

JMS

fails

to

write

the

message

because

of

an

internal

JMS

error.

v

MessageNotWriteableException

if

the

message

is

in

read-only

mode.

writeBytes

public

void

writeBytes(byte[]

value)

throws

JMSException

Write

a

byte

array

to

the

stream

message.

Parameters:

value:

the

byte

array

to

be

written.

Throws:

v

JMSException

if

JMS

fails

to

write

the

message

because

of

an

internal

JMS

error.

v

MessageNotWriteableException

if

the

message

is

in

read-only

mode.

StreamMessage

Chapter

15.

JMS

interfaces

and

classes

409

writeBytes

public

void

writeBytes(byte[]

value,

int

offset,

int

length)

throws

JMSException

Write

a

portion

of

a

byte

array

to

the

stream

message.

Parameters:

v

value:

the

byte

array

value

to

be

written.

v

offset:

the

initial

offset

within

the

byte

array.

v

length:

the

number

of

bytes

to

use.

Throws:

v

JMSException

if

JMS

fails

to

write

the

message

because

of

an

internal

JMS

error.

v

MessageNotWriteableException

if

the

message

is

in

read-only

mode.

writeChar

public

void

writeChar(char

value)

throws

JMSException

Write

a

character

to

the

stream

message.

Parameters:

value:

the

character

value

to

be

written.

Throws:

v

JMSException

if

JMS

fails

to

write

the

message

because

of

an

internal

JMS

error.

v

MessageNotWriteableException

if

the

message

is

in

read-only

mode.

writeDouble

public

void

writeDouble(double

value)

throws

JMSException

Write

a

double

to

the

stream

message.

Parameters:

value:

the

double

value

to

be

written.

Throws:

v

JMSException

if

JMS

fails

to

write

the

message

because

of

an

internal

JMS

error.

v

MessageNotWriteableException

if

the

message

is

in

read-only

mode.

writeFloat

public

void

writeFloat(float

value)

throws

JMSException

Write

a

float

to

the

stream

message.

Parameters:

value:

the

float

value

to

be

written.

Throws:

v

JMSException

if

JMS

fails

to

write

the

message

because

of

an

internal

JMS

error.

StreamMessage

410

Using

Java

v

MessageNotWriteableException

if

the

message

is

in

read-only

mode.

writeInt

public

void

writeInt(int

value)

throws

JMSException

Write

an

integer

to

the

stream

message.

Parameters:

value:

the

integer

to

be

written.

Throws:

v

JMSException

if

JMS

fails

to

write

the

message

because

of

an

internal

JMS

error.

v

MessageNotWriteableException

if

the

message

is

in

read-only

mode.

writeLong

public

void

writeLong(long

value)

throws

JMSException

Write

a

long

to

the

stream

message.

Parameters:

value:

the

long

to

be

written.

Throws:

v

JMSException

if

JMS

fails

to

write

the

message

because

of

an

internal

JMS

error.

v

MessageNotWriteableException

if

the

message

is

in

read-only

mode.

writeObject

public

void

writeObject(java.lang.Object

value)

throws

JMSException

Write

a

Java

object

to

the

stream

message.

This

method

works

only

for

object

primitive

types

(for

example,

Integer,

Double,

Long),

strings,

and

byte

arrays.

Parameters:

value:

the

Java

object

to

be

written.

Throws:

v

JMSException

if

JMS

fails

to

write

the

message

because

of

an

internal

JMS

error.

v

MessageNotWriteableException

if

the

message

is

in

read-only

mode.

v

MessageFormatException

if

the

object

is

not

valid.

StreamMessage

Chapter

15.

JMS

interfaces

and

classes

411

writeShort

public

void

writeShort(short

value)

throws

JMSException

Write

a

short

to

the

stream

message.

Parameters:

value:

the

short

to

be

written.

Throws:

v

JMSException

if

JMS

fails

to

write

the

message

because

of

an

internal

JMS

error.

v

MessageNotWriteableException

if

the

message

is

in

read-only

mode.

writeString

public

void

writeString(java.lang.String

value)

throws

JMSException

Write

a

string

to

the

stream

message.

Parameters:

value:

the

string

value

to

be

written.

Throws:

v

JMSException

if

JMS

fails

to

write

the

message

because

of

an

internal

JMS

error.

v

MessageNotWriteableException

if

the

message

is

in

read-only

mode.

StreamMessage

412

Using

Java

TemporaryQueue

public

interface

TemporaryQueue

extends

Queue

WebSphere

MQ

class:

MQTemporaryQueue

A

TemporaryQueue

is

a

unique

queue

object

that

is

created

for

the

duration

of

a

QueueConnection.

Methods

delete

public

void

delete()

throws

JMSException

Delete

this

temporary

queue.

If

there

are

still

existing

senders

or

receivers

using

it,

a

JMSException

is

thrown.

Throws:

JMSException

if

JMS

implementation

fails

to

delete

a

TemporaryQueue

because

of

an

internal

error.

java.lang.Object

|

+----com.ibm.mq.jms.MQDestination

|

+----com.ibm.mq.jms.MQQueue

|

+----com.ibm.mq.jms.MQTemporaryQueue

TemporaryQueue

Chapter

15.

JMS

interfaces

and

classes

413

TemporaryTopic

public

interface

TemporaryTopic

extends

Topic

WebSphere

MQ

class:

MQTemporaryTopic

A

TemporaryTopic

is

a

unique

topic

object

created

for

the

duration

of

a

TopicConnection

and

can

be

consumed

only

by

consumers

of

that

connection.

WebSphere

MQ

constructor

MQTemporaryTopic

MQTemporaryTopic()

throws

JMSException

Methods

delete

public

void

delete()

throws

JMSException

Delete

this

temporary

topic.

If

there

are

still

existing

publishers

or

subscribers

using

it,

a

JMSException

is

thrown.

Throws:

JMSException

if

JMS

implementation

fails

to

delete

a

TemporaryTopic

because

of

an

internal

error.

java.lang.Object

|

+----com.ibm.mq.jms.MQDestination

|

+----com.ibm.mq.jms.MQTopic

|

+----com.ibm.mq.jms.MQTemporaryTopic

TemporaryTopic

414

Using

Java

TextMessage

public

interface

TextMessage

extends

Message

WebSphere

MQ

class:

JMSTextMessage

Use

TextMessage

to

send

a

message

containing

a

java.lang.String.

It

inherits

from

Message

and

adds

a

text

message

body.

See

also:

BytesMessage,

MapMessage,

Message,

ObjectMessage

and

StreamMessage

Methods

getText

public

java.lang.String

getText()

throws

JMSException

Get

the

string

containing

this

message’s

data.

The

default

value

is

null.

Returns:

The

string

containing

the

message’s

data.

Throws:

JMSException

if

JMS

fails

to

get

the

text

because

of

an

internal

JMS

error.

setText

public

void

setText(java.lang.String

string)

throws

JMSException

Set

the

string

containing

this

message’s

data.

Parameters:

string:

the

string

containing

the

message’s

data.

Throws:

v

JMSException

if

JMS

fails

to

set

text

because

of

an

internal

JMS

error.

v

MessageNotWriteableException

if

the

message

is

in

read-only

mode.

java.lang.Object

|

+----com.ibm.jms.JMSMessage

|

+----com.ibm.jms.JMSTextMessage

TextMessage

Chapter

15.

JMS

interfaces

and

classes

415

Topic

public

interface

Topic

extends

Destination

Subinterfaces:

TemporaryTopic

WebSphere

MQ

class:

MQTopic

A

Topic

object

encapsulates

a

provider-specific

topic

name.

It

is

the

way

that

a

client

specifies

the

identity

of

a

topic

to

JMS

methods.

WebSphere

MQ

Event

Broker

note

For

direct

connections

to

WebSphere

MQ

Event

Broker,

properties

accessed

by

methods

marked

with

a

§

are

ignored.

See

also:

Destination

WebSphere

MQ

constructor

MQTopic

public

MQTopic()

public

MQTopic(string

URItopic)

See

TopicSession.createTopic.

Methods

getBaseTopicName

*

public

String

getBaseTopicName()

Get

method

for

the

underlying

WebSphere

MQ

topic

name.

getBrokerCCDurSubQueue

*

§

public

String

getBrokerCCDurSubQueue()

Get

method

for

brokerCCDurSubQueue

attribute.

Returns:

The

name

of

the

durable

subscription

queue

(the

brokerCCDurSubQueue)

to

use

for

a

ConnectionConsumer.

java.lang.Object

|

+----com.ibm.mq.jms.MQDestination

|

+----com.ibm.mq.jms.MQTopic

Topic

416

Using

Java

getBrokerDurSubQueue

*

§

public

String

getBrokerDurSubQueue()

Get

method

for

brokerDurSubQueue

attribute.

Returns:

The

name

of

the

durable

subscription

queue

(the

brokerDurSubQueue)

to

use.

getBrokerVersion

*

public

int

getBrokerVersion()

Get

method

for

brokerVersion

attribute.

Returns:

The

broker’s

version

number

getMulticast

*

public

int

getMulticast()

Get

method

for

the

multicast

attribute.

Returns:

An

integer

representing

the

current

multicast

setting.

See

also:

setMulticast()

getReference

*

public

Reference

getReference()

Create

a

reference

for

this

topic.

Returns:

A

reference

for

this

object.

Throws:

NamingException.

getTopicName

public

java.lang.String

getTopicName()

throws

JMSException

Get

the

name

of

this

topic

in

URI

format.

(URI

format

is

described

in

“Creating

topics

at

runtime”

on

page

223.

For

information

specific

to

JMS

1.1,

see

“Destinations”

on

page

239.)

Note:

Clients

that

depend

upon

the

name

are

not

portable.

Returns:

The

topic

name.

Throws:

JMSException

if

JMS

implementation

for

topic

fails

to

return

the

topic

name

because

of

an

internal

error.

Topic

Chapter

15.

JMS

interfaces

and

classes

417

|

|

|

|
|

|
|

|
|

setBaseTopicName

*

public

void

setBaseTopicName(String

x)

Set

method

for

the

underlying

WebSphere

MQ

topic

name.

setBrokerCCDurSubQueue

*

§

public

void

setBrokerCCDurSubQueue(String

x)

throws

JMSException

Set

method

for

brokerCCDurSubQueue

attribute.

Parameters:

brokerCCDurSubQueue:

the

name

of

the

durable

subscription

queue

to

use

for

a

ConnectionConsumer.

setBrokerDurSubQueue

*

§

public

void

setBrokerDurSubQueue(String

x)

throws

JMSException

Set

method

for

brokerDurSubQueue

attribute.

Parameters:

brokerDurSubQueue:

the

name

of

the

durable

subscription

queue

to

use.

setBrokerVersion

*

public

void

setBrokerVersion(int

x)

throws

JMSException

Set

method

for

brokerVersion

attribute.

Parameters:

An

integer

representing

one

of

the

valid

broker

version

number

values.

These

are

represented

by

the

constants:

JMSC.MQJMS_BROKER_V1

JMSC.MQJMS_BROKER_V2

setMulticast

*

public

void

setMulticast(int

x)

throws

JMSException

Set

method

for

the

multicast

attribute.

Parameters:

x:

an

integer

specifying

a

multicast

setting.

The

following

are

symbolic

constants

that

represent

the

valid

values

of

the

parameter:

JMSC.MQJMS_MULTICAST_AS_CF

JMSC.MQJMS_MULTICAST_DISABLED

JMSC.MQJMS_MULTICAST_NOT_RELIABLE

JMSC.MQJMS_MULTICAST_RELIABLE

JMSC.MQJMS_MULTICAST_ENABLED

Throws:

JMSException

if

the

parameter

does

not

represent

a

valid

multicast

setting.

Topic

418

Using

Java

|

|

|

|
|
|
|
|
|
|
|

|
|
|

toString

public

String

toString()

Return

a

well-formatted

printed

version

of

the

topic

name.

Returns:

The

provider-specific

identity

values

for

this

topic.

Overrides:

toString

in

class

Object.

Topic

Chapter

15.

JMS

interfaces

and

classes

419

TopicConnection

public

interface

TopicConnection

extends

Connection

Subinterfaces:

XATopicConnection

WebSphere

MQ

class:

MQTopicConnection

A

TopicConnection

is

an

active

connection

to

a

JMS

publish/subscribe

provider.

See

also:

Connection,

TopicConnectionFactory,

and

XATopicConnection

Methods

createConnectionConsumer

public

ConnectionConsumer

createConnectionConsumer

(Topic

topic,

java.lang.String

messageSelector,

ServerSessionPool

sessionPool,

int

maxMessages)

throws

JMSException

Create

a

connection

consumer

for

this

connection.

This

is

an

expert

facility

that

is

not

used

by

regular

JMS

clients.

WebSphere

MQ

Event

Broker

note

For

a

direct

connection

to

WebSphere

MQ

Event

Broker,

this

method

throws

a

JMSException.

Parameters:

v

topic:

the

topic

to

access.

v

messageSelector:

only

deliver

messages

with

properties

that

match

the

message

selector

expression.

v

sessionPool:

the

server

session

pool

to

associate

with

this

connection

consumer.

v

maxMessages:

the

maximum

number

of

messages

that

can

be

assigned

to

a

server

session

at

one

time.

Returns:

The

connection

consumer.

Throws:

v

JMSException

if

the

JMS

Connection

fails

to

create

a

connection

consumer

because

of

an

internal

error,

or

because

of

incorrect

arguments

for

sessionPool.

v

InvalidDestinationException

if

the

topic

is

not

valid.

v

InvalidSelectorException

if

the

message

selector

is

not

valid.

See

also:

ConnectionConsumer

java.lang.Object

|

+----com.ibm.mq.jms.MQConnection

|

+----com.ibm.mq.jms.MQTopicConnection

TopicConnection

420

Using

Java

|

createDurableConnectionConsumer

public

ConnectionConsumer

createDurableConnectionConsumer

(Topic

topic,

java.lang.String

subscriptionName

java.lang.String

messageSelector,

ServerSessionPool

sessionPool,

int

maxMessages)

throws

JMSException

Create

a

durable

connection

consumer

for

this

connection.

This

is

an

expert

facility

that

is

not

used

by

regular

JMS

clients.

WebSphere

MQ

Event

Broker

note

For

a

direct

connection

to

WebSphere

MQ

Event

Broker,

this

method

throws

a

JMSException.

Parameters:

v

topic:

the

topic

to

access.

v

subscriptionName:

the

name

of

the

durable

subscription.

v

messageSelector:

deliver

only

messages

with

properties

that

match

the

message

selector

expression.

v

sessionPool:

the

server

session

pool

to

associate

with

this

durable

connection

consumer.

v

maxMessages:

the

maximum

number

of

messages

that

can

be

assigned

to

a

server

session

at

one

time.

Returns:

The

durable

connection

consumer.

Throws:

v

JMSException

if

the

JMS

Connection

fails

to

create

a

connection

consumer

because

of

an

internal

error,

or

because

of

incorrect

arguments

for

sessionPool

and

messageSelector.

v

InvalidDestinationException

if

the

topic

is

not

valid.

v

InvalidSelectorException

if

the

message

selector

is

not

valid.

See

also:

ConnectionConsumer

createTopicSession

public

TopicSession

createTopicSession(boolean

transacted,

int

acknowledgeMode)

throws

JMSException

Create

a

TopicSession.

WebSphere

MQ

Event

Broker

note

For

a

direct

connection

to

WebSphere

MQ

Event

Broker,

if

transacted

is

true,

this

method

throws

a

JMSException.

Parameters:

v

transacted:

if

true,

the

session

is

transacted.

v

acknowledgeMode:

one

of:

Session.AUTO_ACKNOWLEDGE

TopicConnection

Chapter

15.

JMS

interfaces

and

classes

421

|

Session.CLIENT_ACKNOWLEDGE

Session.DUPS_OK_ACKNOWLEDGE
Indicates

whether

the

consumer

or

the

client

acknowledge

any

messages

that

they

receive.

This

parameter

is

ignored

if

the

session

is

transacted.

Returns:

A

newly-created

topic

session.

Throws:

JMSException

if

JMS

Connection

fails

to

create

a

session

because

of

an

internal

error,

or

a

lack

of

support

for

the

specific

transaction

and

acknowledgement

mode.

TopicConnection

422

Using

Java

TopicConnectionFactory

public

interface

TopicConnectionFactory

extends

ConnectionFactory

Subinterfaces:

XATopicConnectionFactory

WebSphere

MQ

class:

MQTopicConnectionFactory

A

client

uses

a

TopicConnectionFactory

to

create

TopicConnections

with

a

JMS

publish/subscribe

provider.

Note

For

direct

connections

to

WebSphere

MQ

Event

Broker,

WebSphere

Business

Integration

Event

Broker,

or

WebSphere

Business

Integration

Message

Broker,

properties

accessed

by

methods

marked

with

a

§

are

ignored.

See

also:

ConnectionFactory

and

XATopicConnectionFactory

WebSphere

MQ

constructor

MQTopicConnectionFactory

public

MQTopicConnectionFactory()

Methods

createTopicConnection

public

TopicConnection

createTopicConnection()

throws

JMSException

Create

a

topic

connection

with

default

user

identity.

The

connection

is

created

in

stopped

mode.

No

messages

are

delivered

until

Connection.start

method

is

explicitly

called.

Returns:

A

newly-created

topic

connection.

Throws:

v

JMSException

if

JMS

Provider

fails

to

create

a

Topic

Connection

because

of

an

internal

error.

v

JMSSecurityException

if

client

authentication

fails

because

of

a

non

valid

user

name

or

password.

java.lang.Object

|

+----com.ibm.mq.jms.MQConnectionFactory

|

+----com.ibm.mq.jms.MQTopicConnectionFactory

TopicConnectionFactory

Chapter

15.

JMS

interfaces

and

classes

423

|
|
|

createTopicConnection

public

TopicConnection

createTopicConnection

(java.lang.String

userName,

java.lang.String

password)

throws

JMSException

Create

a

topic

connection

with

specified

user

identity.

The

connection

is

created

in

stopped

mode.

No

messages

are

delivered

until

Connection.start

method

is

explicitly

called.

Parameters:

v

userName:

the

caller’s

user

name.

v

password:

the

caller’s

password.

Returns:

A

newly-created

topic

connection.

Throws:

v

JMSException

if

JMS

Provider

fails

to

create

a

Topic

Connection

because

of

an

internal

error.

v

JMSSecurityException

if

client

authentication

fails

because

of

a

non

valid

user

name

or

password.

Note:

This

method

is

valid

only

for

transport

type

IBM_JMS_TP_CLIENT_MQ_TCPIP.

See

ConnectionFactory.

getBrokerCCSubQueue

*

§

public

String

getBrokerCCSubQueue()

Get

method

for

brokerCCSubQueue

attribute.

Returns:

The

name

of

the

nondurable

subscription

queue

to

use

for

a

connection

consumer.

getBrokerControlQueue

*

§

public

String

getBrokerControlQueue()

Get

method

for

brokerControlQueue

attribute.

Returns:

The

broker’s

control

queue

name

getBrokerPubQueue

*

§

public

String

getBrokerPubQueue()

Get

method

for

brokerPubQueue

attribute.

Returns:

The

broker’s

publish

queue

name.

TopicConnectionFactory

424

Using

Java

getBrokerQueueManager

*

§

public

String

getBrokerQueueManager()

Get

method

for

brokerQueueManager

attribute.

Returns:

The

broker’s

queue

manager

name.

getBrokerSubQueue

*

§

public

String

getBrokerSubQueue()

Get

method

for

brokerSubQueue

attribute.

Returns:

The

name

of

the

nondurable

subscription

queue

to

use.

getBrokerVersion

*

public

int

getBrokerVersion()

Get

method

for

brokerVersion

attribute.

Returns:

The

broker’s

version

number

getCleanupInterval

*

§

public

long

getCleanupInterval()

Get

method

for

cleanupInterval

attribute.

Returns:

How

often

the

cleanup

utility

runs,

in

milliseconds

getCleanupLevel

*

§

public

int

getCleanupLevel()

Get

method

for

cleanupLevel

attribute.

Returns:

The

value

of

cleanupLevel

getDirectAuth

*

public

int

getDirectAuth()

Get

method

for

the

direct

authentication

attribute.

Returns:

The

value

of

the

direct

authentication

attribute

See

also:

setDirectAuth()

TopicConnectionFactory

Chapter

15.

JMS

interfaces

and

classes

425

|

|

|

|
|

|
|

getMessageSelection

*

§

public

int

getMessageSelection()

Get

method

for

the

message

selection

attribute.

Returns:

The

value

of

the

message

selection

attribute

See

also:

setMessageSelection()

getMulticast

*

public

int

getMulticast()

Get

method

for

the

multicast

attribute.

Returns:

An

integer

representing

the

current

multicast

setting.

See

also:

setMulticast()

getProxyHostName

*

public

String

getProxyHostName()

Get

method

for

the

proxy

host

name

attribute.

Returns:

The

host

name

of

the

proxy

server

when

establishing

a

direct

connection,

or

null

if

no

proxy

server

is

used.

getProxyPort

*

public

int

getProxyPort()

Get

method

for

the

proxy

port

attribute.

Returns:

The

port

number

to

connect

to

on

the

proxy

server.

getPubAckInterval

*

§

public

int

getPubAckInterval()

Get

method

for

pubAckInterval

attribute.

Returns:

The

interval,

in

number

of

messages,

between

publish

requests

that

require

acknowledgement

from

the

broker.

getReference

*

public

Reference

getReference()

Return

a

reference

for

this

topic

connection

factory.

Returns:

A

reference

for

this

topic

connection

factory.

Throws:

NamingException.

TopicConnectionFactory

426

Using

Java

|

|

|

|
|

|
|

|

|

|

|
|

|
|

|

|

|

|
|
|

|

|

|

|
|

getSparseSubscriptions

*

public

boolean

getSparseSubscriptions()

Get

method

for

the

sparse

subscriptions

attribute.

Returns:

The

value

of

the

sparse

subscriptions

attribute

See

also:

setSparseSubscriptions()

getStatusRefreshInterval

*

§

public

int

getStatusRefreshInterval()

Get

method

for

statusRefreshInterval

attribute.

Returns:

The

number

of

milliseconds

between

transactions

to

refresh

publish/subscribe

status.

getSubscriptionStore

*

§

public

int

getSubscriptionStore()

Get

method

for

the

SUBSTORE

property.

Returns:

An

integer

representing

the

current

SUBSTORE

property.

setBrokerCCSubQueue

*

§

public

void

setBrokerCCSubQueue(String

x)

throws

JMSException

Set

method

for

brokerCCSubQueue

attribute.

Parameters:

brokerSubQueue:

the

name

of

the

nondurable

subscription

queue

to

use

for

a

connection

consumer.

setBrokerControlQueue

*

§

public

void

setBrokerControlQueue(String

x)

throws

JMSException

Set

method

for

brokerControlQueue

attribute.

Parameters:

brokerControlQueue:

the

name

of

the

broker

control

queue.

setBrokerPubQueue

*

§

public

void

setBrokerPubQueue(String

x)

throws

JMSException

Set

method

for

brokerPubQueue

attribute.

Parameters:

brokerPubQueue:

the

name

of

the

broker

publish

queue.

TopicConnectionFactory

Chapter

15.

JMS

interfaces

and

classes

427

|

|

|

|
|

|
|

setBrokerQueueManager

*

§

public

void

setBrokerQueueManager(String

x)

throws

JMSException

Set

method

for

brokerQueueManager

attribute.

Parameters:

brokerQueueManager:

the

name

of

the

broker’s

queue

manager.

setBrokerSubQueue

*

§

public

void

setBrokerSubQueue(String

x)

throws

JMSException

Set

method

for

brokerSubQueue

attribute.

Parameters:

brokerSubQueue:

the

name

of

the

nondurable

subscription

queue

to

use.

setBrokerVersion

*

public

void

setBrokerVersion(int

x)

throws

JMSException

Set

method

for

brokerVersion

attribute.

Parameters:

An

integer

representing

one

of

the

valid

broker

version

number

values.

These

are

represented

by

the

constants:

JMSC.MQJMS_BROKER_V1

JMSC.MQJMS_BROKER_V2

setCleanupInterval

*

§

public

void

setCleanupInterval(long

x)

throws

JMSException

Set

method

for

cleanupInterval

attribute.

Parameters:

How

often

the

cleanup

utility

runs,

in

milliseconds

setCleanupLevel

*

§

public

void

setCleanupLevel(int

x)

throws

JMSException

Set

method

for

cleanupLevel

attribute.

Parameters:

An

integer

representing

one

of

the

valid

cleanup

levels.

These

are

represented

by

the

constants:

JMSC.MQJMS_CLEANUP_NONE

JMSC.MQJMS_CLEANUP_SAFE

JMSC.MQJMS_CLEANUP_STRONG

JMSC.MQJMS_CLEANUP_AS_PROPERTY

TopicConnectionFactory

428

Using

Java

setDirectAuth

*

public

void

setDirectAuth(int

x)

throws

JMSException

Set

method

for

the

direct

authentication

attribute.

Parameters:

x:

an

integer

specifying

the

type

of

direct

authentication

that

is

required.

The

following

are

symbolic

constants

that

represent

the

valid

values

of

the

parameter:

JMSC.MQJMS_DIRECTAUTH_BASIC

JMSC.MQJMS_DIRECTAUTH_CERTIFICATE

setMessageSelection

*

§

public

void

setMessageSelection(int

x)

Set

method

for

the

message

selection

attribute.

Parameters:

x:

an

integer

indicating

whether

the

client

or

the

broker

performs

message

selection.

The

following

are

symbolic

constants

that

represent

the

valid

values

of

the

parameter:

JMSC.MQJMS_MSEL_CLIENT

JMSC.MQJMS_MSEL_BROKER

setMulticast

*

public

void

setMulticast(int

x)

throws

JMSException

Set

method

for

the

multicast

attribute.

Parameters:

x:

an

integer

specifying

a

multicast

setting.

The

following

are

symbolic

constants

that

represent

the

valid

values

of

the

parameter:

JMSC.MQJMS_MULTICAST_DISABLED

JMSC.MQJMS_MULTICAST_NOT_RELIABLE

JMSC.MQJMS_MULTICAST_RELIABLE

JMSC.MQJMS_MULTICAST_ENABLED

setProxyHostName

*

public

void

setProxyHostName(String

proxyHostName)

throws

JMSException

Set

method

for

the

proxy

host

name

attribute.

Parameters:

proxyHostName:

the

host

name

of

the

proxy

server

when

establishing

a

direct

connection,

or

null

if

no

proxy

server

is

used.

setProxyPort

*

public

void

setProxyPort(int

proxyPort)

throws

JMSException

Set

method

for

the

proxy

port

attribute.

Parameters:

proxyPort:

the

port

number

to

connect

to

on

the

proxy

server.

TopicConnectionFactory

Chapter

15.

JMS

interfaces

and

classes

429

|

|

|

|
|
|
|
|
|

|

|

|

|
|
|
|
|
|

|

|

|

|
|
|
|
|
|
|

|

|

|

|
|
|

|

|

|

|
|

setPubAckInterval

*

§

public

void

setPubAckInterval(int

x)

Set

method

for

pubAckInterval

attribute.

The

number

of

messages

to

publish

between

requiring

acknowledgement

from

the

broker.

The

default

is

25.

Applications

do

not

normally

alter

this

value,

and

must

not

rely

on

this

acknowledgement.

Parameters:

pubAckInterval:

the

number

of

messages

to

use

as

an

interval.

setSparseSubscriptions

*

public

void

setSparseSubscriptions(boolean

x)

Set

method

for

the

sparse

subscriptions

attribute.

A

sparse

subscription

is

one

that

receives

infrequent

matching

messages.

The

default

value

of

this

attribute

is

false.

A

value

of

true

might

be

required

if

an

application

using

sparse

subscriptions

fails

to

receive

messages

because

of

log

overflow.

If

you

set

the

attribute

to

true,

the

application

must

be

able

to

open

the

subscriber

queue

for

browsing

messages.

Parameters:

x:

indicates

whether

sparse

subscriptions

are

selected.

setStatusRefreshInterval

*

§

public

void

setStatusRefreshInterval(int

x)

Set

method

for

statusRefreshInterval

attribute.

Parameters:

statusRefreshInterval:

the

number

of

milliseconds

between

transactions

to

refresh

publish/subscribe

status.

setSubscriptionStore

*

§

public

void

setSubscriptionStore(int

x)

throws

JMSException

Set

method

for

the

SUBSTORE

property.

Parameters:

SubStoretype:

an

integer

representing

one

of

the

valid

values

of

the

SUBSTORE

property.

The

following

symbolic

constants

represent

the

valid

values:

JMSC.MQJMS_SUBSTORE_QUEUE

JMSC.MQJMS_SUBSTORE_BROKER

JMSC.MQJMS_SUBSTORE_MIGRATE

TopicConnectionFactory

430

Using

Java

|

|

|

|
|
|
|
|
|

|
|

|
|
|

TopicPublisher

public

interface

TopicPublisher

extends

MessageProducer

WebSphere

MQ

class:

MQTopicPublisher

A

client

uses

a

TopicPublisher

for

publishing

messages

on

a

topic.

TopicPublisher

is

the

publish/subscribe

variant

of

a

JMS

message

producer.

Methods

close

*

public

void

close()

throws

JMSException

Because

a

provider

can

allocate

some

resources

outside

the

JVM

on

behalf

of

a

TopicPublisher,

clients

must

close

them

when

they

are

not

needed.

You

cannot

rely

on

garbage

collection

to

reclaim

these

resources

eventually,

because

this

might

not

occur

soon

enough.

Throws:

JMSException

if

JMS

fails

to

close

the

producer

because

of

an

error.

Overrides:

close

in

class

MQMessageProducer.

getTopic

public

Topic

getTopic()

throws

JMSException

Get

the

topic

associated

with

this

publisher.

Returns:

This

publisher’s

topic

Throws:

JMSException

if

JMS

fails

to

get

the

topic

for

this

topic

publisher

because

of

an

internal

error.

publish

public

void

publish(Message

message)

throws

JMSException

Publish

a

message

to

the

topic.

Use

the

topic’s

default

delivery

mode,

time-to-live,

and

priority.

Parameters:

message:

the

message

to

publish

Throws:

v

JMSException

if

JMS

fails

to

publish

the

message

because

of

an

internal

error.

v

MessageFormatException

if

a

non

valid

message

is

specified.

v

InvalidDestinationException

if

a

client

uses

this

method

with

a

Topic

Publisher

with

a

non

valid

topic.

java.lang.Object

|

+----com.ibm.mq.jms.MQMessageProducer

|

+----com.ibm.mq.jms.MQTopicPublisher

TopicPublisher

Chapter

15.

JMS

interfaces

and

classes

431

publish

public

void

publish(Message

message,

int

deliveryMode,

int

priority,

long

timeToLive)

throws

JMSException

Publish

a

message

to

the

topic

specifying

delivery

mode,

priority,

and

time-to-live

to

the

topic.

WebSphere

MQ

Event

Broker

note

If

deliveryMode

is

PERSISTENT

or

timeToLive

is

greater

than

0,

this

method

throws

a

JMSException

when

you

have

a

direct

connection

to

WebSphere

MQ

Event

Broker.

Parameters:

v

message:

the

message

to

publish.

v

deliveryMode:

the

delivery

mode

to

use.

v

priority:

the

priority

for

this

message.

v

timeToLive:

the

message’s

lifetime

(in

milliseconds).

Throws:

v

JMSException

if

JMS

fails

to

publish

the

message

because

of

an

internal

error.

v

MessageFormatException

if

a

non

valid

message

is

specified.

v

InvalidDestinationException

if

a

client

uses

this

method

with

a

Topic

Publisher

with

a

non

valid

topic.

publish

public

void

publish(Topic

topic,

Message

message)

throws

JMSException

Publish

a

message

to

a

topic

for

an

unidentified

message

producer.

Use

the

topic’s

default

delivery

mode,

time-to-live,

and

priority.

Parameters:

v

topic:

the

topic

to

publish

this

message

to.

v

message:

the

message

to

send.

Throws:

v

JMSException

if

JMS

fails

to

publish

the

message

because

of

an

internal

error.

v

MessageFormatException

if

a

non

valid

message

is

specified.

v

InvalidDestinationException

if

a

client

uses

this

method

with

a

non

valid

topic.

TopicPublisher

432

Using

Java

publish

public

void

publish(Topic

topic,

Message

message,

int

deliveryMode,

int

priority,

long

timeToLive)

throws

JMSException

Publish

a

mssage

to

a

topic

for

an

unidentified

message

producer,

specifying

delivery

mode,

priority,

and

time-to-live.

WebSphere

MQ

Event

Broker

note

If

deliveryMode

is

PERSISTENT

or

timeToLive

is

greater

than

0,

this

method

throws

a

JMSException

when

you

have

a

direct

connection

to

WebSphere

MQ

Event

Broker.

Parameters:

v

topic:

the

topic

to

publish

this

message

to.

v

message:

the

message

to

send.

v

deliveryMode:

the

delivery

mode

to

use.

v

priority:

the

priority

for

this

message.

v

timeToLive:

the

message’s

lifetime

(in

milliseconds).

Throws:

v

JMSException

if

JMS

fails

to

publish

the

message

because

of

an

internal

error.

v

MessageFormatException

if

a

non

valid

message

is

specified.

v

InvalidDestinationException

if

a

client

uses

this

method

with

a

non

valid

topic.

TopicPublisher

Chapter

15.

JMS

interfaces

and

classes

433

TopicRequestor

public

class

TopicRequestor

extends

java.lang.Object

JMS

provides

this

TopicRequestor

class

to

assist

with

making

service

requests.

The

TopicRequestor

constructor

is

given

a

non-transacted

TopicSession

and

a

destination

Topic.

It

creates

a

TemporaryTopic

for

the

responses,

and

provides

a

request()

method

that

sends

the

request

message

and

waits

for

its

reply.

Users

are

free

to

create

more

sophisticated

versions.

Constructors

TopicRequestor

public

TopicRequestor(TopicSession

session,

Topic

topic)

throws

JMSException

Constructor

for

the

TopicRequestor

class.

This

implementation

assumes

that

the

session

parameter

is

non-transacted,

and

either

AUTO_ACKNOWLEDGE

or

DUPS_OK_ACKNOWLEDGE.

Parameters:

v

session:

the

topic

session

the

topic

belongs

to.

v

topic:

the

topic

to

perform

the

request/reply

call

on.

Throws:

JMSException

if

a

JMS

error

occurs.

Methods

close

public

void

close()

throws

JMSException

Because

a

provider

can

allocate

some

resources

outside

the

JVM

on

behalf

of

a

TopicRequestor,

clients

must

close

them

when

they

are

not

needed.

You

cannot

rely

on

garbage

collection

to

reclaim

these

resources

eventually,

because

this

might

not

occur

soon

enough.

Note:

This

method

closes

the

session

object

passed

to

the

TopicRequestor

constructor.

Throws:

JMSException

if

a

JMS

error

occurs.

request

public

Message

request(Message

message)

throws

JMSException

Send

a

request

and

wait

for

a

reply.

Parameters:

message:

the

message

to

send.

java.lang.Object

|

+----javax.jms.TopicRequestor

TopicRequestor

434

Using

Java

Returns:

The

reply

message.

Throws:

JMSException

if

a

JMS

error

occurs.

TopicRequestor

Chapter

15.

JMS

interfaces

and

classes

435

TopicSession

public

interface

TopicSession

extends

Session

WebSphere

MQ

class:

MQTopicSession

A

TopicSession

provides

methods

for

creating

TopicPublishers,

TopicSubscribers,

and

TemporaryTopics.

See

also:

Session

WebSphere

MQ

constructor

MQTopicSession

public

MQTopicSession(boolean

transacted,

int

acknowledgeMode)

throws

JMSException

See

TopicConnection.createTopicSession.

Methods

createDurableSubscriber

public

TopicSubscriber

createDurableSubscriber

(Topic

topic,

java.lang.String

name)

throws

JMSException

Create

a

durable

subscriber

to

the

specified

topic.

WebSphere

MQ

Event

Broker

note

This

method

throws

a

JMSException

when

you

have

a

direct

connection

to

WebSphere

MQ

Event

Broker.

Parameters:

v

topic:

the

topic

to

subscribe

to.

v

name:

the

name

used

to

identify

this

subscription.

Throws:

v

JMSException

if

a

session

fails

to

create

a

subscriber

because

of

a

JMS

error.

v

InvalidDestinationException

if

the

topic

specified

is

not

valid.

See

TopicSession.unsubscribe

java.lang.Object

|

+----com.ibm.mq.jms.MQSession

|

+----com.ibm.mq.jms.MQTopicSession

TopicSession

436

Using

Java

createDurableSubscriber

public

TopicSubscriber

createDurableSubscriber

(Topic

topic,

java.lang.String

name,

java.lang.String

messageSelector,

boolean

noLocal)

throws

JMSException

Create

a

durable

subscriber

to

the

specified

topic.

A

client

can

change

an

existing

durable

subscription

by

creating

a

durable

subscriber

with

the

same

name

and

a

new

topic

or

message

selector

or

both.

WebSphere

MQ

Event

Broker

note

This

method

throws

a

JMSException

when

you

have

a

direct

connection

to

WebSphere

MQ

Event

Broker.

Parameters:

v

topic:

the

topic

to

subscribe

to.

v

name:

the

name

used

to

identify

this

subscription.

v

messageSelector:

deliver

only

messages

with

properties

that

match

the

message

selector

expression.

This

value

can

be

null.

v

noLocal:

if

set,

inhibits

the

delivery

of

messages

published

by

its

own

connection.

Throws:

v

JMSException

if

a

session

fails

to

create

a

subscriber

because

of

a

JMS

error

or

non

valid

selector.

v

InvalidDestinationException

if

the

topic

specified

is

not

valid.

v

InvalidSelectorException

if

the

message

selector

is

not

valid.

createPublisher

public

TopicPublisher

createPublisher(Topic

topic)

throws

JMSException

Create

a

publisher

for

the

specified

topic.

Parameters:

topic:

the

topic

to

publish

to,

or

null

if

this

is

an

unidentified

producer.

Throws:

v

JMSException

if

a

session

fails

to

create

a

publisher

because

of

a

JMS

error.

v

InvalidDestinationException

if

the

topic

specified

is

not

valid.

createSubscriber

public

TopicSubscriber

createSubscriber(Topic

topic)

throws

JMSException

Create

a

non-durable

subscriber

to

the

specified

topic.

Parameters:

topic:

the

topic

to

subscribe

to

Throws:

v

JMSException

-

if

a

session

fails

to

create

a

subscriber

because

of

a

JMS

error.

TopicSession

Chapter

15.

JMS

interfaces

and

classes

437

v

InvalidDestinationException

if

the

topic

specified

is

not

valid.

createSubscriber

public

TopicSubscriber

createSubscriber

(Topic

topic,

java.lang.String

messageSelector,

boolean

noLocal)

throws

JMSException

Create

a

non-durable

subscriber

to

the

specified

topic.

Parameters:

v

topic:

the

topic

to

subscribe

to.

v

messageSelector:

deliver

only

messages

with

properties

that

match

the

message

selector

expression.

This

value

can

be

null.

v

noLocal:

if

set,

inhibits

the

delivery

of

messages

published

by

its

own

connection.

Throws:

v

JMSException

if

a

session

fails

to

create

a

subscriber

because

of

a

JMS

error

or

non

valid

selector.

v

InvalidDestinationException

if

the

topic

specified

is

not

valid.

v

InvalidSelectorException

if

the

message

selector

is

not

valid.

createTemporaryTopic

public

TemporaryTopic

createTemporaryTopic()

throws

JMSException

Create

a

temporary

topic.

Its

lifetime

is

that

of

the

TopicConnection

unless

deleted

earlier.

Returns:

A

temporary

topic.

Throws:

JMSException

if

a

session

fails

to

create

a

temporary

topic

because

of

a

JMS

error.

createTopic

public

Topic

createTopic(java.lang.String

topicName)

throws

JMSException

Create

a

topic

given

a

URI

format

topic

name.

(URI

format

is

described

in

“Creating

topics

at

runtime”

on

page

223.

For

information

specific

to

JMS

1.1,

see

“Destinations”

on

page

239.)

This

allows

you

to

create

a

topic

with

a

provider-specific

name.

Note:

Clients

that

depend

on

this

ability

are

not

portable.

Parameters:

topicName:

the

name

of

this

topic.

Returns:

A

topic

with

the

given

name.

Throws:

JMSException

if

a

session

fails

to

create

a

topic

because

of

a

JMS

error.

TopicSession

438

Using

Java

|
|

unsubscribe

public

void

unsubscribe(java.lang.String

name)

throws

JMSException

Unsubscribe

a

durable

subscription

that

has

been

created

by

a

client.

WebSphere

MQ

Event

Broker

note

This

method

throws

a

JMSException

when

you

have

a

direct

connection

to

WebSphere

MQ

Event

Broker.

Note:

Do

not

use

this

method

while

an

active

subscription

exists.

You

must

close()

your

subscriber

first.

Parameters:

name:

the

name

used

to

identify

this

subscription.

Throws:

v

JMSException

if

JMS

fails

to

unsubscribe

the

durable

subscription

because

of

a

JMS

error.

v

InvalidDestinationException

if

the

subscription

name

specified

is

not

valid.

TopicSession

Chapter

15.

JMS

interfaces

and

classes

439

TopicSubscriber

public

interface

TopicSubscriber

extends

MessageConsumer

WebSphere

MQ

class:

MQTopicSubscriber

A

client

uses

a

TopicSubscriber

to

receive

messages

that

have

been

published

to

a

topic.

TopicSubscriber

is

the

publish/subscribe

variant

of

a

JMS

message

consumer.

See

also:

MessageConsumer

and

TopicSession.createSubscriber

MQTopicSubscriber

inherits

the

following

methods

from

MQMessageConsumer:

close

getMessageListener

receive

receiveNoWait

setMessageListener

Methods

getNoLocal

public

boolean

getNoLocal()

throws

JMSException

Get

the

NoLocal

attribute

for

this

TopicSubscriber.

The

default

value

for

this

attribute

is

false.

Returns:

Set

to

true

if

locally-published

messages

are

being

inhibited.

Throws:

JMSException

if

JMS

fails

to

get

NoLocal

attribute

for

this

topic

subscriber

because

of

an

internal

error.

getTopic

public

Topic

getTopic()

throws

JMSException

Get

the

topic

associated

with

this

subscriber.

Returns:

This

subscriber’s

topic.

Throws:

JMSException

if

JMS

fails

to

get

topic

for

this

topic

subscriber

because

of

an

internal

error.

java.lang.Object

|

+----com.ibm.mq.jms.MQMessageConsumer

|

+----com.ibm.mq.jms.MQTopicSubscriber

TopicSubscriber

440

Using

Java

XAConnection

public

interface

XAConnection

extends

Connection

Subinterfaces:

XAQueueConnection

and

XATopicConnection

WebSphere

MQ

class:

MQXAConnection

WebSphere

MQ

JMS

exposes

its

JTS

support

in

the

XAConnectionFactory,

XAConnection,

and

XASession

classes.

These

classes

are

provided

for

use

in

a

J2EE

application

server

environment.

WebSphere

Application

Server

Version

5

uses

these

classes

to

create

and

manage

a

pool

of

XAConnection

and

XASession

objects.

A

JMS

application

does

not

need

to

use

these

classes

directly

if

it

is

running

in

this

environment.

A

JMS

application

might

need

to

use

the

XAConnection

class

only

if

it

is

running

in

a

WebSphere

Application

Server

environment

with

a

version

of

WebSphere

Application

Server

before

Version

5.

For

more

details,

see

Appendix

E,

“JMS

JTA/XA

interface

with

WebSphere

Application

Server

V4,”

on

page

475.

See

also:

XAQueueConnection

and

XATopicConnection

Methods

createSession

(JMS

1.1

only)

public

Session

createSession(boolean

transacted,

int

acknowledgeMode)

throws

JMSException

Create

a

session.

Specified

by:

createSession

in

the

Connection

interface.

Parameters:

v

transacted:

usage

is

undefined.

v

acknowledgeMode:

usage

is

undefined.

Returns:

A

newly

created

session.

Throws:

JMSException

if

the

XA

connection

fails

to

create

a

session

because

of

an

internal

JMS

error.

java.lang.Object

|

+----com.ibm.mq.jms.MQXAConnection

XAConnection

Chapter

15.

JMS

interfaces

and

classes

441

|

|
|
|

|
|
|

|
|
|
|

|

|

|
|

|

|
|

|

|

|

|
|

|
|
|

|

createXASession

(JMS

1.1

only)

public

XASession

createXASession()

throws

JMSException

Create

an

XA

session.

Returns:

A

newly

created

XA

session.

Throws:

JMSException

if

the

XA

connection

fails

to

create

an

XA

session

because

of

an

internal

JMS

error.

XAConnection

442

Using

Java

|

|

|

|
|

|
|
|

XAConnectionFactory

public

interface

XAConnectionFactory

Subinterfaces:

XAQueueConnectionFactory

and

XATopicConnectionFactory

WebSphere

MQ

class:

MQXAConnectionFactory

WebSphere

MQ

JMS

exposes

its

JTS

support

in

the

XAConnectionFactory,

XAConnection,

and

XASession

classes.

These

classes

are

provided

for

use

in

a

J2EE

application

server

environment.

WebSphere

Application

Server

Version

5

uses

these

classes

to

create

and

manage

a

pool

of

XAConnection

and

XASession

objects.

A

JMS

application

does

not

need

to

use

these

classes

directly

if

it

is

running

in

this

environment.

A

JMS

application

might

need

to

use

the

XAConnectionFactory

class

only

if

it

is

running

in

a

WebSphere

Application

Server

environment

with

a

version

of

WebSphere

Application

Server

before

Version

5.

For

more

details,

see

Appendix

E,

“JMS

JTA/XA

interface

with

WebSphere

Application

Server

V4,”

on

page

475.

See

also:

XAQueueConnectionFactory

and

XATopicConnectionFactory

Methods

createXAConnection

(JMS

1.1

only)

public

XAConnection

createXAConnection()

throws

JMSException

Create

an

XA

connection

with

the

default

user

identity.

The

connection

is

created

in

stopped

mode.

No

messages

are

delivered

until

the

Connection.start()

method

is

called

explicitly.

Returns:

A

newly

created

XA

connection.

Throws:

v

JMSException

if

JMS

fails

to

create

an

XA

connection

because

of

an

internal

JMS

error.

v

JMSSecurityException

if

client

authentication

fails

because

the

user

name

or

password

is

not

valid.

createXAConnection

(JMS

1.1

only)

public

XAConnection

createXAConnection(java.lang.String

userName,

java.lang.String

password)

throws

JMSException

Create

an

XA

connection

with

the

specified

user

identity.

The

connection

is

created

in

stopped

mode.

No

messages

are

delivered

until

the

Connection.start

method

is

called

explicitly.

Parameters:

v

userName:

the

user

name

of

the

caller.

v

password:

the

password

of

the

caller.

java.lang.Object

|

+----com.ibm.mq.jms.MQXAConnectionFactory

XAConnectionFactory

Chapter

15.

JMS

interfaces

and

classes

443

|
|
|

|
|
|

|
|
|
|

|

|

|

|
|
|

|
|

|

|
|

|
|

|

|
|
|

|
|
|

|

|

|

Returns:

A

newly

created

XA

connection.

Throws:

v

JMSException

if

JMS

fails

to

create

an

XA

connection

because

of

an

internal

JMS

error.

v

JMSSecurityException

if

client

authentication

fails

because

the

user

name

or

password

is

not

valid.

XAConnectionFactory

444

Using

Java

|
|

|

|
|

|
|

XAQueueConnection

public

interface

XAQueueConnection

extends

QueueConnection

and

XAConnection

WebSphere

MQ

class:

MQXAQueueConnection

XAQueueConnection

provides

the

same

create

options

as

QueueConnection.

The

only

difference

is

that,

by

definition,

an

XAConnection

is

transacted.

Refer

to

Appendix

E,

“JMS

JTA/XA

interface

with

WebSphere

Application

Server

V4,”

on

page

475

for

details

about

how

WebSphere

MQ

JMS

uses

XA

classes.

See

also:

XAConnection

and

QueueConnection

Methods

createQueueSession

public

QueueSession

createQueueSession(boolean

transacted,

int

acknowledgeMode)

throws

JMSException

Create

a

QueueSession.

Parameters:

v

transacted:

if

true,

the

session

is

transacted.

v

acknowledgeMode:

indicates

whether

the

consumer

or

the

client

acknowledges

any

messages

it

receives.

Possible

values

are:

Session.AUTO_ACKNOWLEDGE

Session.CLIENT_ACKNOWLEDGE

Session.DUPS_OK_ACKNOWLEDGE

This

parameter

is

ignored

if

the

session

is

transacted.

Returns:

A

newly-created

queue

session

(this

is

not

an

XA

queue

session).

Throws:

JMSException

if

JMS

Connection

fails

to

create

a

queue

session

because

of

an

internal

error.

createXAQueueSession

public

XAQueueSession

createXAQueueSession()

Create

an

XAQueueSession.

Throws:

JMSException

if

JMS

Connection

fails

to

create

an

XA

queue

session

because

of

an

internal

error.

java.lang.Object

|

+----com.ibm.mq.jms.MQConnection

|

+----com.ibm.mq.jms.MQQueueConnection

|

+----com.ibm.mq.jms.MQXAQueueConnection

XAQueueConnection

Chapter

15.

JMS

interfaces

and

classes

445

XAQueueConnectionFactory

public

interface

XAQueueConnectionFactory

extends

QueueConnectionFactory

and

XAConnectionFactory

WebSphere

MQ

class:

MQXAQueueConnectionFactory

An

XAQueueConnectionFactory

provides

the

same

create

options

as

a

QueueConnectionFactory.

Refer

to

Appendix

E,

“JMS

JTA/XA

interface

with

WebSphere

Application

Server

V4,”

on

page

475

for

details

about

how

WebSphere

MQ

JMS

uses

XA

classes.

See

also:

QueueConnectionFactory

and

XAConnectionFactory

Methods

createXAQueueConnection

public

XAQueueConnection

createXAQueueConnection()

throws

JMSException

Create

an

XAQueueConnection

using

the

default

user

identity.

The

connection

is

created

in

stopped

mode.

No

messages

are

delivered

until

the

Connection.start

method

is

called

explicitly.

Returns:

A

newly-created

XA

queue

connection.

Throws:

v

JMSException

if

the

JMS

provider

fails

to

create

an

XA

queue

connection

because

of

an

internal

error.

v

JMSSecurityException

if

client

authentication

fails

because

of

a

non

valid

user

name

or

password.

createXAQueueConnection

public

XAQueueConnection

createXAQueueConnection

(java.lang.String

userName,

java.lang.String

password)

throws

JMSException

Create

an

XA

queue

connection

using

a

specific

user

identity.

The

connection

is

created

in

stopped

mode.

No

messages

are

delivered

until

the

Connection.start

method

is

called

explicitly.

Parameters:

v

userName:

the

user

name

of

the

caller.

v

password:

the

password

for

the

caller.

Returns:

A

newly-created

XA

queue

connection.

java.lang.Object

|

+----com.ibm.mq.jms.MQConnectionFactory

|

+----com.ibm.mq.jms.MQQueueConnectionFactory

|

+----com.ibm.mq.jms.MQXAQueueConnectionFactory

XAQueueConnectionFactory

446

Using

Java

Throws:

v

JMSException

if

the

JMS

Provider

fails

to

create

an

XA

queue

connection

because

of

an

internal

error.

v

JMSSecurityException

if

client

authentication

fails

because

of

a

non

valid

user

name

or

password.

XAQueueConnectionFactory

Chapter

15.

JMS

interfaces

and

classes

447

XAQueueSession

public

interface

XAQueueSession

extends

XASession

WebSphere

MQ

class:

MQXAQueueSession

An

XAQueueSession

provides

a

regular

QueueSession

that

can

be

used

to

create

QueueReceivers,

QueueSenders,

and

QueueBrowsers.

Refer

to

Appendix

E,

“JMS

JTA/XA

interface

with

WebSphere

Application

Server

V4,”

on

page

475

for

details

about

how

WebSphere

MQ

JMS

uses

XA

classes.

The

XAResource

that

corresponds

to

the

QueueSession

can

be

obtained

by

calling

the

getXAResource

method,

which

is

inherited

from

XASession.

See

also:

XASession

Methods

getQueueSession

public

QueueSession

getQueueSession()

throws

JMSException

Get

the

queue

session

associated

with

this

XAQueueSession.

Returns:

The

queue

session

object.

Throws:

JMSException

if

a

JMS

error

occurs.

java.lang.Object

|

+----com.ibm.mq.jms.MQXASession

|

+----com.ibm.mq.jms.MQXAQueueSession

XAQueueSession

448

Using

Java

XASession

public

interface

XASession

extends

java.lang.Runnable

and

Session

Subinterfaces:

XAQueueSession

and

XATopicSession

WebSphere

MQ

class:

MQXASession

WebSphere

MQ

JMS

exposes

its

JTS

support

in

the

XAConnectionFactory,

XAConnection,

and

XASession

classes.

These

classes

are

provided

for

use

in

a

J2EE

application

server

environment.

WebSphere

Application

Server

Version

5

uses

these

classes

to

create

and

manage

a

pool

of

XAConnection

and

XASession

objects.

A

JMS

application

does

not

need

to

use

these

classes

directly

if

it

is

running

in

this

environment.

A

JMS

application

might

need

to

use

the

XASession

class

only

if

it

is

running

in

a

WebSphere

Application

Server

environment

with

a

version

of

WebSphere

Application

Server

before

Version

5.

For

more

details,

see

Appendix

E,

“JMS

JTA/XA

interface

with

WebSphere

Application

Server

V4,”

on

page

475.

See

also:

Session

Methods

commit

public

void

commit()

throws

JMSException

Do

not

call

this

method

for

an

XASession

object.

If

it

is

called,

it

throws

a

TransactionInProgressException.

Specified

by:

commit

in

the

Session

interface.

Throws:

TransactionInProgressException

if

this

method

is

called

on

an

XASession.

getSession

(JMS

1.1

only)

public

Session

getSession()

throws

JMSException

Get

the

session

associated

with

this

XA

session.

Returns:

The

session.

Throws:

JMSException

if

JMS

fails

to

return

the

session

because

of

an

internal

JMS

error.

java.lang.Object

|

+----com.ibm.mq.jms.MQXASession

XASession

Chapter

15.

JMS

interfaces

and

classes

449

|

|
|
|

|
|
|

|
|
|
|

|

|

|

|

|
|

|
|
|

getTransacted

public

boolean

getTransacted()

throws

JMSException

Indicates

whether

the

session

is

in

transacted

mode.

Specified

by:

getTransacted

in

the

Session

interface.

Returns:

True.

Throws:

JMSException

if

JMS

fails

to

return

the

transaction

mode

because

of

an

internal

JMS

error.

getXAResource

public

javax.transaction.xa.XAResource

getXAResource()

Return

an

XA

resource

to

the

caller.

Returns:

An

XA

resource

to

the

caller.

rollback

public

void

rollback()

throws

JMSException

Do

not

call

this

method

for

an

XASession

object.

If

it

is

called,

it

throws

a

TransactionInProgressException.

Specified

by:

rollback

in

the

Session

interface.

Throws:

TransactionInProgressException

if

this

method

is

called

on

an

XASession.

XASession

450

Using

Java

|

|

XATopicConnection

public

interface

XATopicConnection

extends

TopicConnection

and

XAConnection

WebSphere

MQ

class:

MQXATopicConnection

An

XATopicConnection

provides

the

same

create

options

as

TopicConnection.

The

only

difference

is

that

an

XAConnection

is

transacted.

Refer

to

Appendix

E,

“JMS

JTA/XA

interface

with

WebSphere

Application

Server

V4,”

on

page

475

for

details

about

how

WebSphere

MQ

JMS

uses

XA

classes.

See

also:

TopicConnection

and

XAConnection

Methods

createTopicSession

public

TopicSession

createTopicSession(boolean

transacted,

int

acknowledgeMode)

throws

JMSException

Create

a

TopicSession.

Specified

by:

createTopicSession

in

interface

TopicConnection.

Parameters:

v

transacted:

if

true,

the

session

is

transacted.

v

acknowledgeMode:

one

of:

Session.AUTO_ACKNOWLEDGE

Session.CLIENT_ACKNOWLEDGE

Session.DUPS_OK_ACKNOWLEDGE
Indicates

whether

the

consumer

or

the

client

acknowledges

any

messages

it

receives.

This

parameter

is

ignored

if

the

session

is

transacted.

Returns:

A

newly-created

topic

session

(this

is

not

an

XA

topic

session).

Throws:

JMSException

if

JMS

Connection

fails

to

create

a

topic

session

because

of

an

internal

error.

createXATopicSession

public

XATopicSession

createXATopicSession()

throws

JMSException

Create

an

XATopicSession.

Throws:

JMSException

if

the

JMS

Connection

fails

to

create

an

XA

topic

session

because

of

an

internal

error.

java.lang.Object

|

+----com.ibm.mq.jms.MQConnection

|

+----com.ibm.mq.jms.MQTopicConnection

|

+----com.ibm.mq.jms.MQXATopicConnection

XATopicConnection

Chapter

15.

JMS

interfaces

and

classes

451

XATopicConnectionFactory

public

interface

XATopicConnectionFactory

extends

TopicConnectionFactory

and

XAConnectionFactory

WebSphere

MQ

class:

MQXATopicConnectionFactory

An

XATopicConnectionFactory

provides

the

same

create

options

as

TopicConnectionFactory.

Refer

to

Appendix

E,

“JMS

JTA/XA

interface

with

WebSphere

Application

Server

V4,”

on

page

475

for

details

about

how

WebSphere

MQ

JMS

uses

XA

classes.

See

also:

TopicConnectionFactory

and

XAConnectionFactory

Methods

createXATopicConnection

public

XATopicConnection

createXATopicConnection()

throws

JMSException

Create

an

XA

topic

connection

using

the

default

user

identity.

The

connection

is

created

in

stopped

mode.

No

messages

are

delivered

until

the

Connection.start

method

is

called

explicitly.

Returns:

A

newly-created

XA

topic

connection.

Throws:

v

JMSException

if

the

JMS

Provider

fails

to

create

an

XA

topic

connection

because

of

an

internal

error.

v

JMSSecurityException

if

client

authentication

fails

because

of

a

non

valid

user

name

or

password.

createXATopicConnection

public

XATopicConnection

createXATopicConnection(java.lang.String

userName,

java.lang.String

password)

throws

JMSException

Create

an

XA

topic

connection

using

the

specified

user

identity.

The

connection

is

created

in

stopped

mode.

No

messages

are

delivered

until

the

Connection.start

method

is

called

explicitly.

Parameters:

v

userName:

the

user

name

of

the

caller

v

password:

the

password

of

the

caller

Returns:

A

newly-created

XA

topic

connection.

Throws:

java.lang.Object

|

+----com.ibm.mq.jms.MQConnectionFactory

|

+----com.ibm.mq.jms.MQTopicConnectionFactory

|

+----com.ibm.mq.jms.MQXATopicConnectionFactory

XATopicConnectionFactory

452

Using

Java

v

JMSException

if

the

JMS

Provider

fails

to

create

an

XA

topic

connection

because

of

an

internal

error.

v

JMSSecurityException

if

client

authentication

fails

because

of

a

non

valid

user

name

or

password.

XATopicConnectionFactory

Chapter

15.

JMS

interfaces

and

classes

453

XATopicSession

public

interface

XATopicSession

extends

XASession

WebSphere

MQ

class:

MQXATopicSession

An

XATopicSession

provides

a

TopicSession,

which

you

can

use

to

create

TopicSubscribers

and

TopicPublishers.

Refer

to

Appendix

E,

“JMS

JTA/XA

interface

with

WebSphere

Application

Server

V4,”

on

page

475

for

details

about

how

WebSphere

MQ

JMS

uses

XA

classes.

The

XAResource

that

corresponds

to

the

TopicSession

can

be

obtained

by

calling

the

getXAResource

method,

which

is

inherited

from

XASession.

See

also:

TopicSession

and

XASession

Methods

getTopicSession

public

TopicSession

getTopicSession()

throws

JMSException

Get

the

topic

session

associated

with

this

XATopicSession.

Returns:

The

topic

session

object.

Throws:

v

JMSException

if

a

JMS

error

occurs.

java.lang.Object

|

+----com.ibm.mq.jms.MQXASession

|

+----com.ibm.mq.jms.MQXATopicSession

XATopicSession

454

Using

Java

Part

4.

Appendixes

©

Copyright

IBM

Corp.

1997,

2004

455

456

Using

Java

Appendix

A.

Mapping

between

administration

tool

properties

and

programmable

properties

WebSphere

MQ

classes

for

Java

Message

Service

provides

facilities

to

set

and

query

the

properties

of

administered

objects

either

using

the

WebSphere

MQ

JMS

administration

tool,

or

in

an

application

program.

Table

38

shows

the

mapping

between

each

property

name

used

with

the

administration

tool

and

the

corresponding

member

variable

it

refers

to.

It

also

shows

the

mapping

between

symbolic

property

values

used

in

the

tool

and

their

programmable

equivalents.

Table

38.

Comparison

of

representations

of

property

values

within

the

administration

tool

and

within

programs

Property

Member

variable

name

Tool

property

values

Program

property

values

BROKERCCDSUBQ

brokerCCDurSubQueue

BROKERCCSUBQ

brokerCCSubQueue

BROKERCONQ

brokerControlQueue

BROKERDURSUBQ

brokerDurSubQueue

BROKERPUBQ

brokerPubQueue

BROKERQMGR

brokerQueueManager

BROKERSUBQ

brokerSubQueue

BROKERVER

brokerVersion

V1

V2

JMSC.MQJMS_BROKER_V1

JMSC.MQJMS_BROKER_V2

CCSID

CCSID

CHANNEL

channel

CLEANUP

cleanupLevel

NONE

SAFE

STRONG

ASPROP

JMSC.MQJMS_CLEANUP_NONE

JMSC.MQJMS_CLEANUP_SAFE

JMSC.MQJMS_CLEANUP_STRONG

JMSC.MQJMS_CLEANUP_AS_PROPERTY

CLEANUPINT

cleanupInterval

CLIENTID

clientId

DESCRIPTION

description

DIRECTAUTH

directAuth

BASIC

CERTIFICATE

JMSC.MQJMS_DIRECTAUTH_BASIC

JMSC.MQJMS_DIRECTAUTH_CERTIFICATE

ENCODING

encoding

EXPIRY

expiry

APP

UNLIM

JMSC.MQJMS_EXP_APP

JMSC.MQJMS_EXP_UNLIMITED

FAILIFQUIESCE

failIfQuiesce

YES

NO

JMSC.MQJMS_FIQ_YES

JMSC.MQJMS_FIQ_NO

HOSTNAME

hostName

LOCALADDRESS

localAddress

MSGBATCHSZ

msgBatchSize

MSGRETENTION

messageRetention

YES

NO

JMSC.MQJMS_MRET_YES

JMSC.MQJMS_MRET_NO

MSGSELECTION

messageSelection

CLIENT

BROKER

JMSC.MQJMS_MSEL_CLIENT

JMSC.MQJMS_MSEL_BROKER

©

Copyright

IBM

Corp.

1997,

2004

457

|||
|
|
|

||||

|||
|
|
|

Table

38.

Comparison

of

representations

of

property

values

within

the

administration

tool

and

within

programs

(continued)

Property

Member

variable

name

Tool

property

values

Program

property

values

MULTICAST

multicast

DISABLED

NOTR

RELIABLE

ENABLED

ASCF

JMSC.MQJMS_MULTICAST_DISABLED

JMSC.MQJMS_MULTICAST_NOT_RELIABLE

JMSC.MQJMS_MULTICAST_RELIABLE

JMSC.MQJMS_MULTICAST_ENABLED

JMSC.MQJMS_MULTICAST_AS_CF

PERSISTENCE

persistence

APP

QDEF

PERS

NON

JMSC.MQJMS_PER_APP

JMSC.MQJMS_PER_QDEF

JMSC.MQJMS_PER_PER

JMSC.MQJMS_PER_NON

POLLINGINT

pollingInterval

PORT

port

PRIORITY

priority

APP

QDEF

JMSC.MQJMS_PRI_APP

JMSC.MQJMS_PRI_QDEF

PROXYHOSTNAME

proxyHostName

PROXYPORT

proxyPort

PUBACKINT

pubAckInterval

QUEUE

baseQueueName

QMANAGER

queueManager*

RECEXIT

receiveExit

RECEXITINIT

receiveExitInit

SECEXIT

securityExit

SECEXITINIT

securityExitInit

SENDEXIT

sendExit

SENDEXITINIT

sendExitInit

SPARSESUBS

sparseSubscriptions

YES

NO

true

false

SSLCIPHERSUITE

sslCipherSuite

SSLCRL

sslCertStores

SSLPEERNAME

sslPeerName

STATREFRESHINT

statusRefreshInterval

SUBSTORE

subscriptionStore

MIGRATE

QUEUE

BROKER

JMSC.MQJMS_SUBSTORE_MIGRATE

JMSC.MQJMS_SUBSTORE_QUEUE

JMSC.MQJMS_SUBSTORE_BROKER

SYNCPOINTALLGETS

syncpointAllGets

TARGCLIENT

targetClient

JMS

MQ

JMSC.MQJMS_CLIENT_JMS_COMPLIANT

JMSC.MQJMS_CLIENT_NONJMS_MQ

TEMPMODEL

temporaryModel

TOPIC

baseTopicName

TRANSPORT

transportType

BIND

CLIENT

DIRECT

DIRECTHTTP

JMSC.MQJMS_TP_BINDINGS_MQ

JMSC.MQJMS_TP_CLIENT_MQ_TCPIP

JMSC.MQJMS_TP_DIRECT_TCPIP

JMSC.MQJMS_TP_DIRECT_HTTP

USECONNPOOLING

useConnectionPooling

Properties

458

Using

Java

|||
|
|
|
|

|
|
|
|
|

||||

||||

|||
|
|
|

|||
|
|

|
|
|

||

Table

38.

Comparison

of

representations

of

property

values

within

the

administration

tool

and

within

programs

(continued)

Property

Member

variable

name

Tool

property

values

Program

property

values

Note:

*

for

an

MQQueue

object,

the

member

variable

name

is

baseQueueManagerName

Properties

Appendix

A.

Mapping

between

administration

tool

properties

and

programmable

properties

459

Properties

460

Using

Java

Appendix

B.

Scripts

provided

with

WebSphere

MQ

classes

for

Java

Message

Service

The

following

files

are

provided

in

the

bin

directory

of

your

WebSphere

MQ

JMS

installation.

These

scripts

are

provided

to

assist

with

common

tasks

that

need

to

be

performed

while

installing

or

using

WebSphere

MQ

JMS.

Table

39

lists

the

scripts

and

their

uses.

Table

39.

Utilities

supplied

with

WebSphere

MQ

classes

for

Java

Message

Service

Utility

Use

Cleanup.bat

Runs

the

subscription

cleanup

utility

as

described

in

“Manual

cleanup”

on

page

232,

or

the

consumer

cleanup

utility

as

described

in

“Manual

cleanup”

on

page

250..

DefaultConfiguration

Runs

the

default

configuration

application

on

non-Windows

systems

as

described

in

“JMS

Postcard

configuration”

on

page

22.

formatLog.bat

Converts

binary

log

files

to

plain

text

as

described

in

“Logging”

on

page

39.

IVTRun.bat

IVTTidy.bat

IVTSetup.bat

Runs

the

point-to-point

installation

verification

test

program

as

described

in

“Running

the

point-to-point

IVT”

on

page

31.

JMSAdmin.bat

Runs

the

administration

tool

as

described

in

Chapter

5,

“Using

the

WebSphere

MQ

JMS

administration

tool,”

on

page

41.

JMSAdmin.config

Configuration

file

for

the

administration

tool

as

described

in

“Configuration”

on

page

42.

postcard.bat

Starts

the

JMS

Postcard

application

as

described

in

“JMS

Postcard”

on

page

19.

PSIVTRun.bat

Runs

the

publish/subscribe

installation

verification

test

program

as

described

in

“The

publish/subscribe

installation

verification

test”

on

page

35.

PSReportDump.class

Views

broker

report

messages

as

described

in

“Handling

broker

reports”

on

page

233.

For

information

specific

to

JMS

1.1,

see

“Handling

broker

reports”

on

page

252.

runjms.bat

Helps

you

to

run

JMS

applications

as

described

in

“Running

your

own

WebSphere

MQ

JMS

programs”

on

page

38.

Note:

On

UNIX

systems,

the

extension

.bat

is

omitted

from

the

filenames.

©

Copyright

IBM

Corp.

1997,

2004

461

|
|

|
|

Scripts

462

Using

Java

Appendix

C.

LDAP

schema

definition

for

storing

Java

objects

This

appendix

gives

details

of

the

schema

definitions

(objectClass

and

attribute

definitions)

needed

in

an

LDAP

directory

for

it

to

store

Java

objects.

Read

it

if

you

want

to

use

an

LDAP

server

as

your

JNDI

service

provider

in

which

to

store

WebSphere

MQ

JMS

administered

objects.

Ensure

that

your

LDAP

server

schema

contains

the

following

definitions;

the

exact

procedure

to

achieve

this

varies

from

server

to

server.

How

to

make

the

changes

to

some

specific

LDAP

servers

is

covered

later

in

this

section.

Much

of

the

data

contained

in

this

appendix

has

been

taken

from

RFC

2713

Schema

for

Representing

Java

Objects

in

an

LDAP

Directory,

which

can

be

found

at

http://www.faqs.org/rfcs/rfc2713.html.

LDAP

server-specific

information

has

been

taken

from

Sun

Microsystems’

JNDI

1.2.1

LDAP

service

provider,

available

at

http://java.sun.com/products/jndi.

Checking

your

LDAP

server

configuration

To

check

whether

the

LDAP

server

is

already

configured

to

accept

Java

objects,

run

the

WebSphere

MQ

JMS

administration

tool

JMSAdmin

against

your

LDAP

server

(see

“Invoking

the

administration

tool”

on

page

41).

Try

to

create

and

display

a

test

object

using

the

following

commands:

DEFINE

QCF(ldapTest)

DISPLAY

QCF(ldapTest)

If

no

errors

occur,

your

server

is

properly

configured

to

store

Java

objects

and

you

can

proceed

to

store

JMS

objects.

However,

if

your

LDAP

server

contains

older

schema

definitions

(for

example,

from

an

earlier

draft

of

RFC

2713

such

as

the

now-obsolete

draft-ryan-java-schema-00

and

draft-ryan-java-schema-01

specifications),

update

them

with

those

described

here.

If

a

SchemaViolationException

occurs,

or

if

the

message

Unable

to

bind

to

object

is

returned,

your

server

is

not

properly

configured.

Either

your

server

is

not

configured

to

store

Java

objects,

permissions

on

the

objects

are

not

correct,

or

the

provided

suffix

or

context

has

not

been

set

up.

The

following

information

helps

you

with

the

schema

configuration

part

of

your

server

setup.

©

Copyright

IBM

Corp.

1997,

2004

463

Attribute

definitions

Table

40.

Attribute

settings

for

javaCodebase

Attribute

Value

OID

(Object

Identifier)

1.3.6.1.4.1.42.2.27.4.1.7

Syntax

IA5

String

(1.3.6.1.4.1.1466.115.121.1.26)

Maximum

length

2048

Single/multi-valued

Multi-valued

User

modifiable

Yes

Matching

rules

caseExactIA5Match

Access

class

normal

Usage

userApplications

Description

URL(s)

specifying

the

location

of

class

definition

Table

41.

Attribute

settings

for

javaClassName

Attribute

Value

OID

(Object

Identifier)

1.3.6.1.4.1.42.2.27.4.1.6

Syntax

Directory

String

(1.3.6.1.4.1.1466.115.121.1.15)

Maximum

length

2048

Single/multi-valued

Single-valued

User

modifiable?

Yes

Matching

rules

caseExactMatch

Access

class

normal

Usage

userApplications

Description

Fully

qualified

name

of

distinguished

Java

class

or

interface

Table

42.

Attribute

settings

for

javaClassNames

Attribute

Value

OID

(Object

Identifier)

1.3.6.1.4.1.42.2.27.4.1.13

Syntax

Directory

String

(1.3.6.1.4.1.1466.115.121.1.15)

Maximum

length

2048

Single/multi-valued

Multi-valued

User

modifiable

Yes

Matching

rules

caseExactMatch

Access

class

normal

Usage

userApplications

Description

Fully

qualified

Java

class

or

interface

name

Attribute

definitions

464

Using

Java

Table

43.

Attribute

settings

for

javaFactory

Attribute

Value

OID

(Object

Identifier)

1.3.6.1.4.1.42.2.27.4.1.10

Syntax

Directory

String

(1.3.6.1.4.1.1466.115.121.1.15)

Maximum

length

2048

Single/multi-valued

Single-valued

User

modifiable

Yes

Matching

rules

caseExactMatch

Access

class

normal

Usage

userApplications

Description

Fully

qualified

Java

class

name

of

a

JNDI

object

factory

Table

44.

Attribute

settings

for

javaReferenceAddress

Attribute

Value

OID

(Object

Identifier)

1.3.6.1.4.1.42.2.27.4.1.11

Syntax

Directory

String

(1.3.6.1.4.1.1466.115.121.1.15)

Maximum

length

2048

Single/multi-valued

Multi-valued

User

modifiable

Yes

Matching

rules

caseExactMatch

Access

class

normal

Usage

userApplications

Description

Addresses

associated

with

a

JNDI

Reference

Table

45.

Attribute

settings

for

javaSerializedData

Attribute

Value

OID

(Object

Identifier)

1.3.6.1.4.1.42.2.27.4.1.8

Syntax

Octet

String

(1.3.6.1.4.1.1466.115.121.1.40)

Single/multi-valued

Single-valued

User

modifiable

Yes

Access

class

normal

Usage

userApplications

Description

Serialized

form

of

a

Java

object

objectClass

definitions

Table

46.

objectClass

definition

for

javaSerializedObject

Definition

Value

OID

(Object

Identifier)

1.3.6.1.4.1.42.2.27.4.2.5

Extends/superior

javaObject

Type

AUXILIARY

Required

(must)

attrs

javaSerializedData

Attribute

definitions

Appendix

C.

LDAP

schema

definition

for

storing

Java

objects

465

Table

47.

objectClass

definition

for

javaObject

Definition

Value

OID

(Object

Identifier)

1.3.6.1.4.1.42.2.27.4.2.4

Extends/superior

top

Type

ABSTRACT

Required

(must)

attrs

javaClassName

Optional

(may)

attrs

javaClassNames

javaCodebase

javaDoc

description

Table

48.

objectClass

definition

for

javaContainer

Definition

Value

OID

(Object

Identifier)

1.3.6.1.4.1.42.2.27.4.2.1

Extends/superior

top

Type

STRUCTURAL

Required

(must)

attrs

cn

Table

49.

objectClass

definition

for

javaNamingReference

Definition

Value

OID

(Object

Identifier)

1.3.6.1.4.1.42.2.27.4.2.7

Extends/superior

javaObject

Type

AUXILIARY

Optional

(may)

attrs

javaReferenceAddress

javaFactory

Server-specific

configuration

details

This

section

describes

special

steps

you

need

to

take

to

use

the

following

servers:

v

“Netscape

Directory

(4.1

and

earlier)”

v

“Microsoft

Active

Directory”

v

“Sun

Microsystems’

schema

modification

applications”

on

page

467

v

“OS/400

V4R5

Schema

Modification”

on

page

467

Netscape

Directory

(4.1

and

earlier)

This

level

of

Netscape

Directory

does

not

support

the

Octet

String

syntax;

use

Binary

syntax

(1.3.6.1.4.1.1466.115.121.1.5)

instead.

Netscape

Directory

4.1

also

has

problems

parsing

an

object

class

definition

that

contains

a

MUST

clause

without

parentheses.

The

workaround

is

to

add

a

superfluous

value

(objectClass)

to

each

MUST

clause.

Alternatively,

you

can

use

the

Sun-supplied

schema

modification

applications

described

in

“Sun

Microsystems’

schema

modification

applications”

on

page

467.

Microsoft

Active

Directory

Within

Active

Directory,

only

the

names

of

structural

classes

(not

auxiliary

classes)

can

appear

in

the

object

class

attribute

of

an

entry.

You

must

redefine

the

abstract

and

auxiliary

classes

in

the

Java

schema

definition

as

structural.

This

has

the

following

effects:

v

The

javaObject

class

now

inherits

from

javaContainer

objectClass

definitions

466

Using

Java

v

The

javaNamingReference

and

javaSerializedObject

classes

now

inherit

from

javaObject

Instead

of

making

these

changes

manually,

you

can

use

the

Sun-supplied

schema

modification

applications

described

in

“Sun

Microsystems’

schema

modification

applications.”

Sun

Microsystems’

schema

modification

applications

You

can

use

your

LDAP

server’s

administration

tool

(for

example,

the

Directory

Management

Tool

for

IBM’s

SecureWay®

Directory)

to

verify

or

add

the

definitions

described

above.

Alternatively,

Sun

Microsystems’

JNDI

1.2.1

LDAP

service

provider

(available

at

http://java.sun.com/products/jndi)

contains

Java

applications

(CreateJavaSchema.java

and

UpdateJavaSchema.java)

that

add

or

update

the

required

schema

definitions

automatically.

These

applications

contain

workarounds

for

schema

bugs

and

server-specific

behavior

in

both

Netscape

Directory

Server

(pre-4.1

and

4.1)

and

Microsoft®

Windows

2000

Active

Directory.

These

applications

are

not

packaged

with

WebSphere

MQ

classes

for

Java

Message

Service.

Details

on

running

them

can

be

found

in

both

the

README

and

the

application

source

contained

in

the

Sun

JNDI

1.2.1

LDAP

service

provider

download.

OS/400

V4R5

Schema

Modification

You

can

use

your

LDAP

server’s

administration

tool

(the

Directory

Management

Tool

for

IBM’s

SecureWay

Directory)

to

verify

or

add

the

definitions

described

above.

OS/400

V4R5

LDAP

Server

is

shipped

with

an

out-of-date

version

of

RFC

2713

schema

for

Java

objects.

Update

this

schema

to

the

schema

described

above

to

operate

correctly

with

JMSAdmin.

When

you

modify

the

schema,

delete

any

out-of-data

definitions

and

uses

of

those

definitions

before

adding

the

correct

definitions.

OS/400

V5R1

is

shipped

with

the

current

version

of

RFC

2713

and

does

not

require

these

changes.

Microsoft

Active

Directory

Appendix

C.

LDAP

schema

definition

for

storing

Java

objects

467

468

Using

Java

Appendix

D.

Connecting

to

other

products

This

section

covers:

v

How

to

configure

a

publish/subscribe

broker

for

a

connection

from

WebSphere

MQ

JMS

in

“Setting

up

a

publish/subscribe

broker”

v

How

to

use

WebSphere

MQ

Integrator

V2

to

route

or

transform

messages

sent

to

or

from

a

JMS

client

in

“Transformation

and

routing

with

WebSphere

MQ

Integrator

V2”

on

page

471

v

How

to

configure

WebSphere

MQ

JMS

for

a

direct

connection

to

WebSphere

Business

Integration

Event

Broker

Version

5.0

or

WebSphere

Business

Integration

Message

Broker

Version

5.0

in

“Configuring

WebSphere

MQ

JMS

for

a

direct

connection

to

WebSphere

Business

Integration

Event

Broker

Version

5.0

and

WebSphere

Business

Integration

Message

Broker

Version

5.0”

on

page

472.

Setting

up

a

publish/subscribe

broker

You

can

use

WebSphere

MQ

Integrator

Version

2,

WebSphere

MQ

Event

Broker

Version

2.1,

WebSphere

Business

Integration

Event

Broker

Version

5.0,

or

WebSphere

Business

Integration

Message

Broker

Version

5.0

as

the

publish/subscribe

broker

for

WebSphere

MQ

JMS.

You

can

link

to

each

of

these

brokers

across

a

connection

to

base

WebSphere

MQ,

or

you

can

connect

directly

to

WebSphere

MQ

Event

Broker,

WebSphere

Business

Integration

Event

Broker,

or

WebSphere

Business

Integration

Message

Broker

over

TCP/IP.

Each

method

requires

some

setup

activities:

Linking

across

WebSphere

MQ

v

Base

WebSphere

MQ

First,

create

a

broker

publication

queue.

This

is

a

WebSphere

MQ

queue

on

the

broker

queue

manager;

it

is

used

to

submit

publications

to

the

broker.

You

can

choose

your

own

name

for

this

queue,

but

it

must

match

the

queue

name

in

your

TopicConnectionFactory’s

BROKERPUBQ

property.

By

default,

a

TopicConnectionFactory’s

BROKERPUBQ

property

is

set

to

the

value

SYSTEM.BROKER.DEFAULT.STREAM

so,

unless

you

want

to

configure

a

different

name

in

the

TopicConnectionFactory,

name

the

queue

SYSTEM.BROKER.DEFAULT.STREAM.

v

WebSphere

MQ

Integrator

V2

The

next

step

is

to

set

up

a

message

flow

within

an

execution

group

for

the

broker.

The

purpose

of

this

message

flow

is

to

read

messages

from

the

broker

publication

queue.

(If

you

want,

you

can

set

up

multiple

publication

queues;

each

needs

its

own

TopicConnectionFactory

and

message

flow.)

The

basic

message

flow

consists

of

an

MQInput

node

(configured

to

read

from

the

SYSTEM.BROKER.DEFAULT.STREAM

queue)

whose

output

is

connected

to

the

input

of

a

Publication

(or

MQOutput)

node.

The

message

flow

diagram

therefore

looks

similar

to

the

following:

©

Copyright

IBM

Corp.

1997,

2004

469

|

|

|

|
|
|
|
|

|
|
|
|
|
|

When

this

message

flow

is

deployed

and

the

broker

is

started,

from

the

JMS

application’s

perspective

the

WebSphere

MQ

Integrator

V2

broker

behaves

like

an

MQSeries

Publish/Subscribe

broker.

The

current

subscription

state

can

be

viewed

using

the

WebSphere

MQ

Integrator

Control

Center.

Notes:

1.

No

modifications

are

required

to

WebSphere

MQ

classes

for

Java

Message

Service.

2.

MQSeries

Publish/Subscribe

and

WebSphere

MQ

Integrator

V2

brokers

cannot

coexist

on

the

same

queue

manager.

3.

Details

of

the

WebSphere

MQ

Integrator

V2

installation

and

setup

procedure

are

described

in

the

WebSphere

MQ

Integrator

for

Windows

NT

Version

2.0

Installation

Guide.

Direct

connection

to

WebSphere

MQ

Event

Broker

Version

2.1

over

TCP/IP

For

this,

set

up

a

message

flow

within

an

execution

group

on

WebSphere

MQ

Event

Broker.

This

message

flow

is

to

read

messages

from

the

TCP/IP

socket

on

which

the

broker

is

listening.

The

basic

message

flow

consists

of

a

JMSIPOptimised

flow

set

to

listen

on

the

port

configured

for

direct

connections.

By

default,

this

port

is

1506.

Note:

WebSphere

MQ

Event

Broker

can

be

configured

to

listen

for

both

direct

connections

across

TCP/IP

from

WebSphere

MQ

JMS

and

connections

made

across

TCP/IP

through

WebSphere

MQ.

In

this

case,

the

two

listeners

must

be

configured

on

different

ports.

The

default

port

for

a

WebSphere

MQ

connection

is

1414.

Direct

connection

to

WebSphere

Business

Integration

Event

Broker

Version

5.0

or

WebSphere

Business

Integration

Message

Broker

Version

5.0

To

configure

a

WebSphere

Business

Integration

Event

Broker

or

WebSphere

Business

Integration

Message

Broker

broker

for

a

direct

connection

from

WebSphere

MQ

JMS,

create

a

message

flow

to

read

messages

from

the

TCP/IP

port

on

which

the

broker

is

listening

and

publish

the

messages.

You

can

do

this

in

either

of

the

following

ways:

v

You

can

create

a

message

flow

that

contains

a

Real-timeOptimizedFlow

message

processing

node.

v

You

can

create

a

message

flow

that

contains

a

Real-timeInput

message

processing

node

and

a

Publication

message

processing

node.

You

must

configure

the

Real-timeOptimizedFlow

or

Real-timeInput

node

to

listen

on

the

port

used

for

direct

connections.

By

default,

the

port

number

for

direct

connections

is

1506.

Figure

7.

WebSphere

MQ

Integrator

message

flow

Setting

up

a

publish/subscribe

broker

470

Using

Java

|

|
|
|
|
|
|
|

|
|

|
|

|
|
|

Transformation

and

routing

with

WebSphere

MQ

Integrator

V2

You

can

use

WebSphere

MQ

Integrator

V2

to

route

or

transform

messages

that

are

created

by

a

JMS

client

application,

and

to

send

or

publish

messages

to

a

JMS

client.

The

WebSphere

MQ

JMS

implementation

uses

the

mcd

folder

of

the

MQRFH2

to

carry

information

about

the

message,

as

described

in

“The

MQRFH2

header”

on

page

262.

By

default,

the

Message

Domain

(Msd)

property

is

used

to

identify

whether

the

message

is

a

text,

bytes,

stream,

map,

or

object

message.

This

value

is

set

depending

on

the

type

of

the

JMS

message.

If

the

application

calls

setJMSType,

it

can

set

the

mcd

type

field

to

a

value

of

its

choosing.

This

type

field

can

be

read

by

the

WebSphere

MQ

Integrator

message

flow,

and

a

receiving

JMS

application

can

use

the

getJMSType

method

to

retrieve

its

value.

This

applies

to

all

kinds

of

JMS

message.

When

a

JMS

application

creates

a

text

or

bytes

message,

the

application

can

set

mcd

folder

fields

explicitly

by

calling

the

setJMSType

method

and

passing

in

a

string

argument

in

a

special

URI

format

as

follows:

mcd://domain/[set]/[type][?format=fmt]

This

URI

form

allows

an

application

to

set

the

mcd

to

a

domain

that

is

not

one

of

the

standard

jms_xxxx

values;

for

example,

to

domain

mrm.

It

also

allows

the

application

to

set

any

or

all

of

the

mcd

set,

type,

and

format

fields.

The

string

argument

to

setJMSType

is

interpreted

as

follows:

1.

If

the

string

does

not

appear

to

be

in

the

special

URI

format

(it

does

not

start

with

mcd://),

the

string

is

added

to

the

mcd

folder

as

the

type

field.

2.

If

the

string

starts

with

mcd://,

conforms

to

the

URI

format,

and

the

message

is

a

Text

or

Bytes

message,

the

URI

string

is

split

into

its

constituent

parts.

The

domain

part

overrides

the

jms_text

or

jms_bytes

value

that

would

otherwise

have

been

generated,

and

the

remaining

parts

(if

present)

are

used

to

set

the

set,

type,

and

format

fields

in

the

mcd.

Note

that

set,

type,

and

format

are

all

optional.

3.

If

the

string

starts

with

mcd://

and

the

message

is

a

Map,

Stream,

or

Object

message,

the

setJMSType

call

throws

an

exception.

So

you

cannot

override

the

domain,

or

provide

a

set

or

format

for

these

classes

of

message,

but

you

can

provide

a

type.

When

a

WebSphere

MQ

message

is

received

with

an

Msd

domain

other

than

one

of

the

standard

jms_xxxx

values,

it

is

instantiated

as

a

JMS

text

or

bytes

message

and

a

URI-style

JMSType

is

assigned

to

it.

If

the

format

field

of

the

RFH2

is

MQFMT_STRING,

it

becomes

a

TextMessage;

otherwise

it

becomes

a

BytesMessage.

The

receiving

application

can

read

this

using

the

getJMSType

method.

Transformation

and

routing

Appendix

D.

Connecting

to

other

products

471

Configuring

WebSphere

MQ

JMS

for

a

direct

connection

to

WebSphere

Business

Integration

Event

Broker

Version

5.0

and

WebSphere

Business

Integration

Message

Broker

Version

5.0

A

WebSphere

MQ

JMS

client

can

connect

directly

to

a

WebSphere

Business

Integration

Event

Broker

or

WebSphere

Business

Integration

Message

Broker

broker

over

TCP/IP.

The

available

function

is

comparable

to

that

provided

for

a

direct

connection

to

a

WebSphere

MQ

Event

Broker

Version

2.1

broker,

but

with

the

following

additions:

v

Secure

Sockets

Layer

(SSL)

authentication

v

Multicast

v

HTTP

tunnelling

v

Connect

via

proxy

For

detailed

information

about

this

additional

function,

see

the

WebSphere

Business

Integration

Event

Broker

or

WebSphere

Business

Integration

Message

Broker

Information

Center.

The

following

sections

explain

how

to

configure

a

WebSphere

MQ

JMS

client

in

order

to

use

this

function.

Secure

Sockets

Layer

(SSL)

authentication

You

can

use

SSL

authentication

when

a

WebSphere

MQ

JMS

client

connects

directly

to

a

WebSphere

Business

Integration

Event

Broker

or

WebSphere

Business

Integration

Message

Broker

broker.

Only

SSL

authentication

is

supported

for

this

type

of

connection.

SSL

cannot

be

used

to

encrypt

or

decrypt

message

data

that

flows

between

the

WebSphere

MQ

JMS

client

and

the

broker

or

to

perform

integrity

checks

on

the

data.

Note

the

difference

between

this

situation

and

that

when

a

WebSphere

MQ

JMS

client

connects

to

a

WebSphere

MQ

queue

manager.

In

the

latter

case,

the

WebSphere

MQ

SSL

support

can

be

used

to

encrypt

and

decrypt

message

data

that

flows

between

the

client

and

the

queue

manager

and

to

perform

integrity

checks

on

the

data,

as

well

as

providing

authentication.

If

you

want

to

protect

message

data

on

a

direct

connection

to

a

broker,

you

can

use

function

in

the

broker

instead.

You

can

assign

a

quality

of

protection

(QoP)

value

to

each

topic

whose

associated

messages

you

want

to

protect.

This

allows

you

to

select

a

different

level

of

message

protection

for

each

topic.

If

client

authentication

is

required,

a

WebSphere

MQ

JMS

client

can

use

the

same

digital

certificate

for

connecting

directly

to

a

broker

as

it

does

for

connecting

to

a

WebSphere

MQ

queue

manager.

You

can

configure

a

WebSphere

MQ

JMS

client

to

use

SSL

authentication

in

either

of

the

following

ways:

v

In

a

WebSphere

MQ

JMS

application,

use

the

setDirectAuth()

method

of

an

MQConnectionFactory

or

MQTopicConnectionFactory

object

to

set

the

direct

authentication

attribute

to

JMSC.MQJMS_DIRECTAUTH_CERTIFICATE.

v

Use

the

WebSphere

MQ

JMS

administration

tool

to

set

the

DIRECTAUTH

property

to

CERTIFICATE.

Notes:

1.

If

the

TRANSPORT

property

is

set

to

DIRECT,

then

it

is

the

DIRECTAUTH

property,

not

the

SSLCIPHERSUITE

property,

that

determines

whether

SSL

authentication

is

used.

WebSphere

Business

Integration

brokers

472

Using

Java

|

|

|

|
|
|
|
|

|

|

|

|

|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|

|

|
|
|

2.

If

the

DIRECTAUTH

property

is

set

to

CERTIFICATE,

the

SSLPEERNAME

and

SSLCRL

properties

are

used

to

perform

the

same

checks

as

those

performed

when

a

WebSphere

MQ

JMS

client

connects

to

a

WebSphere

MQ

queue

manager

using

the

WebSphere

MQ

SSL

support.

3.

The

Java

Secure

Socket

Extension

(JSSE)

KeyStore

and

TrustStore

configurations

determine

which

client

certificate

is

used

for

authentication,

and

whether

a

server

certificate

is

trusted,

in

the

same

way

that

they

do

when

a

WebSphere

MQ

JMS

client

connects

to

a

WebSphere

MQ

queue

manager

using

the

WebSphere

MQ

SSL

support.

Multicast

You

can

configure

a

WebSphere

MQ

JMS

client

multicast

connection

to

a

broker

in

either

of

the

following

ways:

v

In

a

WebSphere

MQ

JMS

application,

use

the

setMulticast()

method

of

an

MQConnectionFactory,

MQTopicConnectionFactory,

or

MQTopic

object

to

set

the

multicast

attribute.

v

Use

the

WebSphere

MQ

JMS

administration

tool

to

set

the

MULTICAST

property.

The

TRANSPORT

property

must

be

set

to

DIRECT

before

the

MULTICAST

property

has

any

effect.

HTTP

tunnelling

A

WebSphere

MQ

JMS

client

can

connect

to

a

broker

using

HTTP

tunnelling.

HTTP

tunnelling

is

suitable

for

applets

because

the

Java

2

Security

Manager

normally

rejects

any

attempt

by

an

applet

to

connect

directly

to

the

broker.

Using

HTTP

tunnelling,

which

exploits

the

built

in

support

in

Web

browsers,

a

WebSphere

MQ

JMS

client

can

connect

to

the

broker

using

the

HTTP

protocol

as

though

connecting

to

a

Web

site.

You

can

configure

a

WebSphere

MQ

JMS

client

to

use

HTTP

tunnelling

in

either

of

the

following

ways:

v

In

a

WebSphere

MQ

JMS

application,

use

the

setTransportType()

method

of

an

MQConnectionFactory

object

to

set

the

transport

type

attribute

to

JMSC.MQJMS_TP_DIRECT_HTTP.

v

Use

the

WebSphere

MQ

JMS

administration

tool

to

set

the

TRANSPORT

property

to

DIRECTHTTP.

SSL

authentication

cannot

be

used

with

HTTP

tunnelling.

Connect

via

proxy

A

WebSphere

MQ

JMS

client

can

connect

to

a

broker

through

a

proxy

server.

The

client

connects

directly

to

the

proxy

server

and

uses

the

Internet

protocol

defined

in

RFC

2817

to

ask

the

proxy

server

to

forward

the

connection

request

to

the

broker.

This

option

does

not

work

for

applets

because

the

Java

2

Security

Manager

normally

rejects

any

attempt

by

an

applet

to

connect

directly

to

a

proxy

server.

You

can

configure

a

WebSphere

MQ

JMS

client

to

connect

to

a

broker

through

a

proxy

server

in

either

of

the

following

ways:

v

In

a

WebSphere

MQ

JMS

application,

use

the

setProxyHostName()

and

setProxyPort()

methods

of

an

MQConnectionFactory

or

MQTopicConnectionFactory

object

to

set

the

proxy

host

name

and

proxy

port

attributes.

WebSphere

Business

Integration

brokers

Appendix

D.

Connecting

to

other

products

473

|
|
|
|

|
|
|
|
|

|

|
|

|
|
|

|
|

|
|

|

|
|
|
|
|
|

|
|

|
|
|

|
|

|

|

|
|
|
|
|

|
|

|
|
|
|

v

Use

the

WebSphere

MQ

JMS

administration

tool

to

set

the

PROXYHOSTNAME

and

PROXYPORT

properties.

If

the

TRANSPORT

property

is

set

to

DIRECT,

the

type

of

connection

to

the

broker

depends

on

the

PROXYHOSTNAME

property

according

to

the

following

rules:

v

If

the

PROXYHOSTNAME

property

is

set

to

the

empty

string,

the

WebSphere

MQ

JMS

client

connects

directly

to

the

broker

using

the

HOSTNAME

and

PORT

properties

to

locate

the

broker.

v

If

the

PROXYHOSTNAME

property

is

set

to

a

value

other

than

the

empty

string,

the

WebSphere

MQ

JMS

client

connects

to

the

broker

through

the

proxy

server

identified

by

the

PROXYHOSTNAME

and

PROXYPORT

properties.

WebSphere

Business

Integration

brokers

474

Using

Java

|
|

|
|

|
|
|

|
|
|

Appendix

E.

JMS

JTA/XA

interface

with

WebSphere

Application

Server

V4

WebSphere

MQ

classes

for

Java

Message

Service

includes

the

JMS

XA

interfaces.

These

allow

WebSphere

MQ

JMS

to

participate

in

a

two-phase

commit

that

is

coordinated

by

a

transaction

manager

that

complies

with

the

Java

Transaction

API

(JTA).

This

section

describes

how

to

use

these

features

with

the

WebSphere

Application

Server,

Advanced

Edition,

so

that

WebSphere

Application

Server

can

coordinate

JMS

send

and

receive

operations,

and

database

updates,

in

a

global

transaction.

Note:

Before

you

use

WebSphere

MQ

JMS

and

the

XA

classes

with

WebSphere

Application

Server,

there

might

be

additional

installation

or

configuration

steps.

Refer

to

the

Readme.txt

file

on

the

WebSphere

MQ

Using

Java

SupportPac

Web

page

for

the

latest

information

(www.ibm.com/software/ts/mqseries/txppacs/ma88.html).

Using

the

JMS

interface

with

WebSphere

Application

Server

This

section

provides

guidance

on

using

the

JMS

interface

with

the

WebSphere

Application

Server

Version

4,

Advanced

Edition.

You

must

already

understand

the

basics

of

JMS

programs,

WebSphere

MQ,

and

EJB

beans.

These

details

are

in

the

JMS

specification,

the

EJB

V2

specification

(both

available

from

Sun),

this

manual,

the

samples

provided

with

WebSphere

MQ

JMS,

and

other

manuals

for

WebSphere

MQ

and

WebSphere

Application

Server.

Administered

objects

JMS

uses

administered

objects

to

encapsulate

vendor-specific

information.

This

minimizes

the

impact

of

vendor-specific

details

on

end-user

applications.

Administered

objects

are

stored

in

a

JNDI

namespace,

and

can

be

retrieved

and

used

in

a

portable

manner

without

knowing

the

vendor-specific

contents.

For

standalone

use,

WebSphere

MQ

JMS

provides

the

following

classes:

v

MQQueueConnectionFactory

v

MQQueue

v

MQTopicConnectionFactory

v

MQTopic

WebSphere

Application

Server

provides

an

additional

pair

of

administered

objects

so

that

WebSphere

MQ

JMS

can

integrate

with

WebSphere

Application

Server:

v

JMSWrapXAQueueConnectionFactory

v

JMSWrapXATopicConnectionFactory

You

use

these

objects

in

exactly

the

same

way

as

the

MQQueueConnectionFactory

and

MQTopicConnectionFactory.

However,

behind

the

scenes

they

use

the

XA

versions

of

the

JMS

classes,

and

enlist

the

WebSphere

MQ

JMS

XAResource

in

the

WebSphere

Application

Server

transaction.

©

Copyright

IBM

Corp.

1997,

2004

475

Container-managed

versus

bean-managed

transactions

Container-managed

transactions

are

transactions

in

EJB

beans

that

are

demarcated

automatically

by

the

EJB

container.

Bean-managed

transactions

are

transactions

in

EJB

beans

that

are

demarcated

by

the

program

(using

the

UserTransaction

interface).

Two-phase

commit

versus

one-phase

optimization

The

WebSphere

Application

Server

coordinator

invokes

a

true

two-phase

commit

only

if

more

than

one

XAResource

is

used

in

a

particular

transaction.

Transactions

that

involve

a

single

resource

are

committed

using

a

one-phase

optimization.

This

largely

removes

the

need

to

use

different

ConnectionFactories

for

distributed

and

non-distributed

transactions.

Defining

administered

objects

You

can

use

the

WebSphere

MQ

JMS

administration

tool

to

define

the

WebSphere

Application

Server-specific

connection

factories

and

store

them

in

a

JNDI

namespace.

The

admin.config

file

in

MQ_install_dir/bin

must

contain

the

following

lines:

INITIAL_CONTEXT_FACTORY=com.ibm.websphere.naming.WsnInitialContextFactory

PROVIDER_URL=iiop://hostname/

MQ_install_dir

is

the

installation

directory

for

WebSphere

MQ

JMS,

and

hostname

is

the

name

or

IP

address

of

the

machine

that

is

running

WebSphere

Application

Server.

To

access

the

com.ibm.ejs.ns.jndi.CNInitialContextFactory,

you

must

add

the

file

ejs.jar

from

the

WebSphere

Application

Server

lib

directory

to

the

CLASSPATH.

To

create

the

new

factories,

use

the

define

verb

with

the

following

two

new

types:

def

WSQCF(name)

[properties]

def

WSTCF(name)

[properties]

These

new

types

use

the

same

properties

as

the

equivalent

QCF

or

TCF

types,

except

that

only

the

BIND

transport

type

is

allowed

(and

therefore,

client

properties

cannot

be

configured).

For

details,

see

“Administering

JMS

objects”

on

page

45.

Retrieving

administration

objects

In

an

EJB

bean,

you

retrieve

the

JMS-administered

objects

using

the

InitialContext.lookup()

method,

for

example:

InitialContext

ic

=

new

InitialContext();

TopicConnectionFactory

tcf

=

(TopicConnectionFactory)

ic.lookup("jms/Samples/TCF1");

The

objects

can

be

cast

to,

and

used

as,

the

generic

JMS

interfaces.

Normally,

there

is

no

need

to

program

to

the

WebSphere

MQ

specific

classes

in

the

application

code.

Samples

There

are

three

samples

that

illustrate

the

basics

of

using

WebSphere

MQ

JMS

with

WebSphere

Application

Server

Advanced

Edition.

These

are

in

subdirectories

of

MQ_samples_dir/ws,

where

MQ_samples_dir

is

the

samples

directory

for

WebSphere

MQ

JMS.

See

Table

3

on

page

10

to

find

where

this

is.

JTA/XA

interface

with

WebSphere

Application

Server

V4

476

Using

Java

v

Sample1

demonstrates

a

simple

put

and

get

for

a

message

in

a

queue

by

using

container-managed

transactions.

v

Sample2

demonstrates

a

simple

put

and

get

for

a

message

in

a

queue

by

using

bean-managed

transactions.

v

Sample3

illustrates

the

use

of

the

publish/subscribe

API.

For

details

about

how

to

build

and

deploy

the

EJB

beans,

refer

to

the

WebSphere

Application

Server

documentation.

The

readme.txt

files

in

each

sample

directory

include

example

output

from

each

EJB

bean.

The

scripts

provided

assume

that

a

default

queue

manager

is

available

on

the

local

machine.

If

your

installation

varies

from

the

default,

you

can

edit

these

scripts.

Sample1

Sample1EJB.java,

in

the

sample1

directory,

defines

two

methods

that

use

JMS:

v

putMessage()

sends

a

TextMessage

to

a

queue,

and

returns

the

MessageID

of

the

sent

message

v

getMessage()

reads

the

message

with

the

specified

MessageID

back

from

the

queue

Before

you

run

the

sample,

you

must

store

two

administered

objects

in

the

WebSphere

Application

Server

JNDI

namespace:

QCF1

a

WebSphere

Application

Server-specific

queue

connection

factory

Q1

a

queue

Both

objects

must

be

bound

in

the

jms/Samples

sub-context.

To

set

up

the

administered

objects,

you

can

either

use

the

WebSphere

MQ

JMS

administration

tool

and

set

them

up

manually,

or

you

can

use

the

script

provided.

The

WebSphere

MQ

JMS

administration

tool

must

be

configured

to

access

the

WebSphere

Application

Server

namespace.

For

details

about

how

to

configure

the

administration

tool,

refer

to

“Configuring

for

WebSphere

Application

Server

V3.5”

on

page

44.

To

set

up

the

administered

objects

with

typical

default

settings,

you

can

enter

the

following

command

to

run

the

script

admin.scp:

JMSAdmin

<

admin.scp

The

bean

must

be

deployed

with

the

getMessage

and

putMessage

methods

marked

as

TX_REQUIRED.

This

ensures

that

the

container

starts

a

transaction

before

entering

each

method,

and

commits

the

transaction

when

the

method

completes.

Within

the

methods,

you

do

not

need

any

application

code

that

relates

to

the

transactional

state.

However,

the

message

sent

from

putMessage

occurs

under

syncpoint,

and

does

not

become

available

until

the

transaction

is

committed.

In

the

sample1

directory,

there

is

a

simple

client

program,

Sample1Client.java,

to

call

the

EJB

bean.

There

is

also

a

script,

runClient,

to

simplify

running

this

program.

The

client

program

(or

script)

takes

a

single

parameter,

which

is

used

as

the

body

of

a

TextMessage

that

is

sent

by

the

EJB

bean

putMessage

method.

The

getMessage

JTA/XA

interface

with

WebSphere

Application

Server

V4

Appendix

E.

JMS

JTA/XA

interface

with

WebSphere

Application

Server

V4

477

is

called

to

read

the

message

back

off

the

queue

and

return

the

body

to

the

client

for

display.

The

EJB

bean

sends

progress

messages

to

the

standard

output

(stdout)

of

the

application

server,

so

you

might

want

to

monitor

that

output

during

the

run.

If

the

application

server

is

on

a

machine

that

is

remote

from

the

client,

you

might

need

to

edit

Sample1Client.java.

If

you

do

not

use

the

defaults,

you

might

need

to

edit

the

runClient

script

to

match

the

local

installation

path

and

name

of

the

deployed

jar

file.

Sample2

Sample2EJB.java,

in

the

sample2

directory,

performs

the

same

task

as

sample1,

and

requires

the

same

administered

objects.

Unlike

sample1,

sample2

uses

bean-managed

transactions

to

control

the

transactional

boundaries.

If

you

have

not

already

run

sample1,

ensure

that

you

set

up

the

administered

objects

QCF1

and

Q1,

as

described

in

“Sample1”

on

page

477.

The

putMessage

methods

and

getMessage

methods

start

by

obtaining

an

instance

of

UserTransaction.

They

use

this

instance

to

create

a

transaction

using

the

UserTransaction.begin()

method.

After

that,

the

main

body

of

the

code

is

the

same

as

sample1

until

the

end

of

each

method.

At

the

end

of

each

method,

the

transaction

is

completed

by

the

UserTransaction.commit()

call.

In

the

sample2

directory,

there

is

a

simple

client

program,

Sample2Client.java,

to

call

the

EJB

bean.

There

is

also

a

script,

runClient,

to

simplify

running

this

program.

You

can

use

these

in

the

same

way

as

described

for

“Sample1”

on

page

477.

Sample3

Sample3EJB.java,

in

the

sample3

directory,

demonstrates

the

use

of

the

publish/subscribe

API

with

WebSphere

Application

Server.

Publishing

a

message

is

very

similar

to

the

point-to-point

case.

However,

there

are

differences

when

receiving

messages

using

a

TopicSubscriber.

Publish/subscribe

programs

commonly

use

nondurable

subscribers.

These

nondurable

subscribers

exist

only

for

the

lifetime

of

their

owning

sessions

(or

less

if

the

subscriber

is

closed

explicitly).

Also,

they

can

receive

messages

from

the

broker

only

during

that

lifetime.

To

convert

sample1

to

publish/subscribe,

create

a

durable

subscriber

before

the

message

is

published.

Durable

subscribers

persist

as

a

deliverable

end-point

beyond

the

lifetime

of

the

session.

Therefore,

the

message

is

available

for

retrieval

during

the

call

to

getMessage().

The

EJB

bean

includes

two

additional

methods:

v

createSubscription

creates

a

durable

subscription

v

destroySubscription

deletes

a

durable

subscription

These

methods

(along

with

putMessage

and

getMessage)

must

be

deployed

with

the

TX_REQUIRED

attribute.

JTA/XA

interface

with

WebSphere

Application

Server

V4

478

Using

Java

Before

you

run

sample3,

you

must

store

two

administered

objects

in

the

WebSphere

Application

Server

JNDI

namespace:

TCF1

T1

Both

objects

must

be

bound

in

the

jms/Samples

sub-context.

To

set

up

the

administered

objects,

you

can

either

use

the

WebSphere

MQ

JMS

administration

tool

and

set

them

up

manually,

or

you

can

use

a

script.

The

script

admin.scp

is

provided

in

the

sample3

directory.

The

WebSphere

MQ

JMS

administration

tool

must

be

configured

to

access

the

WebSphere

Application

Server

namespace.

For

details

about

how

to

configure

the

administration

tool,

refer

to

“Configuring

for

WebSphere

Application

Server

V3.5”

on

page

44.

To

set

up

the

administered

objects

with

typical

default

settings,

you

can

enter

the

following

command

to

run

the

script

admin.scp:

JMSAdmin

<

admin.scp

If

you

have

already

run

admin.scp

to

set

up

objects

for

sample1

or

sample2,

there

will

be

error

messages

when

you

run

admin.scp

for

sample3.

(These

occur

when

you

attempt

to

create

the

jms

and

Samples

sub-contexts.)

You

can

safely

ignore

these

error

messages.

Also,

before

you

run

sample3,

ensure

that

the

WebSphere

MQ

publish/subscribe

broker

(SupportPac

MA0C)

is

installed

and

running.

In

the

sample3

directory,

there

is

a

simple

client

program,

Sample3Client.java,

to

call

the

EJB

bean.

There

is

also

a

script,

runClient,

to

simplify

running

this

program.

You

can

use

these

in

the

same

way

as

described

for

“Sample1”

on

page

477.

JTA/XA

interface

with

WebSphere

Application

Server

V4

Appendix

E.

JMS

JTA/XA

interface

with

WebSphere

Application

Server

V4

479

480

Using

Java

Appendix

F.

Using

WebSphere

MQ

Java

in

applets

with

Java

1.2

or

later

You

might

need

to

perform

additional

tasks

to

run

an

applet

using

WebSphere

MQ

Java

classes

in

a

Java

virtual

machine

(JVM)

at

Java

1.2

level

or

greater.

This

is

because

the

default

security

rules

for

applets

with

JVMs

at

these

levels

were

changed

to

reduce

the

risk

of

damage

by

malevolent

or

misbehaving

classes.

There

are

two

different

approaches

that

you

can

take:

1.

Change

the

security

settings

on

the

browser

and

JVM

to

allow

the

use

of

WebSphere

MQ

Java

packages.

2.

Copy

the

WebSphere

MQ

Java

classes

to

the

same

location

as

the

applet

you

wish

to

run.

Changing

browser

security

settings

Different

errors

can

result

from

trying

to

run

the

same

applet

in

different

environments;

for

example,

in

IBM

VisualAge

for

Java,

in

appletviewer

(supplied

with

most

Development

Kits

for

Java)

or

in

a

Web

browser

such

as

Internet

Explorer.

The

differences

are

to

do

with

different

security

settings

in

each

environment.

You

can

change

the

behavior

of

the

environments

to

allow

an

applet

access

to

the

classes

it

needs

that

are

stored

in

package

files.

In

the

following

instructions,

examples

assume

use

of

the

Windows

platforms.

On

other

platforms,

the

instructions

need

slight

modification.

For

IBM

VisualAge

for

Java:

Change

the

java.policy

file

found

in

<vaj_install_dir>\ide\program\lib\security,

where

<vaj_install_dir>

is

the

directory

in

which

you

installed

IBM

VisualAge

for

Java.

Refer

to

“Running

WebSphere

MQ

Java

applications

under

the

Java

2

Security

Manager”

on

page

13

for

general

instructions

about

changes

to

this

file.

For

applets,

also

check

for

the

following

changes

to

the

permissions:

1.

Comment

out

the

line

permission

java.net.SocketPermission

"localhost:1024-",

"listen";

and

replace

it

with

the

following

line:

permission

java.net.SocketPermission

"*",

"accept,

connect,

listen,

resolve";

2.

Add

the

following

lines:

permission

java.util.PropertyPermission

"MQJMS_LOG_DIR",

"read";

permission

java.util.PropertyPermission

"MQJMS_TRACE_DIR",

"read";

permission

java.util.PropertyPermission

"MQJMS_TRACE_LEVEL",

"read";

permission

java.util.PropertyPermission

"MQ_JAVA_INSTALL_PATH","read";

permission

java.util.PropertyPermission

"file.separator","read";

permission

java.util.PropertyPermission

"user.name","read";

permission

java.util.PropertyPermission

"com.ibm.mq.jms.cleanup","read";

permission

java.lang.RuntimePermission

"loadLibrary.*";

Notes:

1.

You

might

need

to

restart

VisualAge

for

Java

if

you

get

the

error

message

Unknown

Java

Error

after

repeated

tests.

©

Copyright

IBM

Corp.

1997,

2004

481

2.

Make

sure

that

<install_dir>\java\lib

is

in

the

workspace

classpath.

For

appletviewer:

Find

the

policy

file

for

your

JDK

and

make

the

same

changes

as

for

IBM

VisualAge

for

Java.

For

example,

in

the

IBM

Developer

Kit

for

Windows,

Java

Technology

Edition,

Version

1.3,

the

java.policy

file

is

found

in

the

directory

<jdk_install_dir>\jre\lib\security,

where

<jdk_install_dir>

is

the

directory

where

the

Developer

Kit

was

installed.

For

a

Web

browser:

To

achieve

consistent

behavior

for

applets

within

different

Web

browsers,

use

the

Sun

Java

plug-in.

1.

Install

the

Sun

Java

plug-in

1.3.01

or

later.

From

this

level,

Netscape

6

is

also

supported.

2.

Make

the

same

changes

to

the

java.policy

file

as

listed

above.

The

policy

file

is

found

in

<java_plugin_install_dir>\lib\security.

3.

Make

sure

that

your

HTML

applet

tags

are

changed

to

run

with

the

plug-in.

Download

and

run

the

Sun

HTML

Converter

v1.3

to

make

the

necessary

changes.

Copying

package

class

files

When

a

Java

program

is

executed

in

the

context

of

an

applet

(which

is

what

is

done

when

appletviewer

is

executed

or

a

Web

browser

is

used),

by

default

the

Java

program

has

significant

security

restrictions

applied

to

it.

One

of

these

restrictions

is

that

all

environment

variables

in

effect

when

the

applet

is

launched

are

ignored.

This

includes

CLASSPATH.

As

a

result,

unless

you

make

the

changes

described

in

“Changing

browser

security

settings”

on

page

481,

when

an

applet

is

executed,

each

and

every

class

that

it

needs

must

also

be

available

for

download

from

the

same

location

as

the

applet

code

itself.

To

achieve

this

on

a

Windows

system,

perform

the

following

steps

(non-Windows

users

need

to

perform

similar

tasks):

1.

Download

and

install

WINZIP

(http://www.winzip.com)

or

equivalent

file

unzipping

utility

2.

Find

the

files

containing

the

WebSphere

MQ

Java,

or

other

package,

classes

that

your

applet

needs.

For

example,

WebSphere

MQ

base

Java

classes

are

in

a

file

called

com.ibm.mq.jar

usually

found

in

the

C:\Program

Files\IBM\WebSphere

MQ\Java\lib

folder.

3.

Using

the

unzipping

utility

you

installed

in

step

1,

extract

all

the

files

in

the

.jar

file

into

the

folder

that

contains

your

applet.

For

the

samples

supplied

with

WebSphere

MQ

Java,

the

folder

to

use

is

C:\Program

Files\IBM\WebSphere

MQ\Tools\Java\base

This

creates

a

sub-folder

structure

com\ibm.

4.

Run

your

applet.

Changing

browser

security

482

Using

Java

Appendix

G.

Information

for

SupportPac

MA1G

This

appendix

contains

information

that

is

relevant

to

users

of

SupportPac

MA1G

“WebSphere

MQ

for

MVS/ESA™

–

WebSphere

MQ

classes

for

Java”.

MA1G

provides

support

for

WebSphere

MQ

classes

for

Java

from

versions

of

OS/390

not

supported

by

WebSphere

MQ

Java.

It

also

provides

support

for

CICS

and

High

Performance

Java

(HPJ).

Users

intending

to

use

the

WebSphere

MQ

base

Java

with

CICS

Transaction

Server

for

OS/390

must

be

familiar

with:

v

Customer

Information

Control

System

(CICS)

concepts

v

Using

the

CICS

Java

Application

Programming

Interface

(API)

v

Running

Java

programs

from

within

CICS

Users

intending

to

use

VisualAge

for

Java

to

develop

OS/390

UNIX

System

Services

High

Performance

Java

(HPJ)

applications

must

be

familiar

with

the

Enterprise

Toolkit

for

OS/390

(supplied

with

VisualAge

for

Java

Enterprise

Edition

for

OS/390,

Version

2).

Environments

supported

by

SupportPac

MA1G

SupportPac

MA1G

provides

support

for

WebSphere

MQ

base

Java

from

the

following

environments:

v

OS/390

V2R6

or

higher

v

Java

for

OS/390,

V1.1.8

or

higher

v

IBM

MQSeries

for

MVS/ESA,

Version

1.2

or

higher

v

High

Performance

Java

(HPJ)

SupportPac

MA1G

also

provides

support

for

CICS

TS1.3

or

higher.

Support

for

HPJ

in

this

environment

requires

OS/390

V2R9

or

higher.

SupportPac

MA1G

does

not

provide

support

for

JMS.

Obtaining

and

installing

SupportPac

MA1G

Obtain

SupportPac

MA1G

from

the

WebSphere

MQ

web

site

http://www.ibm.com/software/integration/mqfamily/.

Follow

links

to

Download

and

then

SupportPacs

to

find

the

WebSphere

MQ

Java

code.

The

following

procedure

installs

the

WebSphere

MQ

classes

for

Java.

The

directory

used

for

the

installation

needs

at

least

2MB

of

free

storage.

In

the

following,

replace

/u/joe/mqm

with

the

path

name

of

the

directory

you

choose:

1.

Remove

any

previous

installation

of

this

product

using

the

following

commands

in

the

OpenEdition

shell:

cd

/u/joe

chmod

-fR

700

mqm

rm

-rf

mqm

mkdir

mqm

2.

Using

FTP

binary

mode,

upload

the

file

ma1g.tar.Z

from

your

workstation

to

the

HFS

directory

/u/joe/mqm.

©

Copyright

IBM

Corp.

1997,

2004

483

3.

While

in

the

OpenEdition

shell,

change

to

the

installation

directory

/u/joe/mqm.

4.

Uncompress

and

untar

the

file

with

the

command

tar

-xpozf

ma1g.tar.Z

5.

Set

up

your

CLASSPATH

and

LIBPATH

as

described

in

“Environment

variables”

on

page

10.

Verifying

installation

using

the

sample

program

To

verify

installation

of

MA1G

from

UNIX

System

Services

(USS),

follow

the

instructions

in

“Verifying

with

the

sample

application”

on

page

16.

To

verify

installation

of

MA1G

from

CICS

Transaction

Server:

1.

Define

the

sample

application

program

(MQIVP)

to

CICS.

2.

Define

a

transaction

to

run

the

sample

application.

3.

Put

the

queue

manager

name

into

the

file

used

for

standard

input.

4.

Run

the

transaction.

The

program

output

is

placed

in

the

files

used

for

standard

and

error

output.

Refer

to

CICS

documentation

for

more

information

on

running

Java

programs

and

setting

the

input

and

output

files.

Features

not

provided

by

SupportPac

MA1G

SupportPac

MA1G

provides

a

subset

of

features

available

to

other

WebSphere

MQ

base

Java

applications.

In

particular,

it

does

not

support

the

ConnectionPooling

feature

described

in

Chapter

7,

“Writing

WebSphere

MQ

base

Java

programs,”

on

page

67.

The

following

classes

and

methods

are

not

supported:

v

Classes

and

interfaces

–

MQPoolServices

–

MQPoolServicesEvent

–

MQPoolToken

–

MQSimpleConnectionManager

–

MQPoolServicesEventListener

–

MQConnectionManager

–

ManagedConnection

–

ManagedConnectionFactory

–

ManagedConnectionMetaData
v

Methods

–

MQEnvironment.getDefaultConnectionManager()

–

MQEnvironment.setDefaultConnectionManager()

–

MQEnvironment.addConnectionPoolToken()

–

MQEnvironment.removeConnectionPoolToken()

–

The

six

MQQueueManager

constructors

which

allow

a

ConnectionManager

or

MQConnectionManager

to

be

specified.

Attempting

to

use

these

classes,

interfaces,

or

methods

results

in

compile-time

errors

or

runtime

exceptions.

Obtaining

and

installing

484

Using

Java

Running

WebSphere

MQ

base

Java

applications

under

CICS

Transaction

Server

for

OS/390

To

run

a

Java

application

as

a

transaction

under

CICS,

you

must:

1.

Define

the

application

and

transaction

to

CICS

by

using

the

supplied

CEDA

transaction.

2.

Ensure

that

the

WebSphere

MQ

CICS

adapter

is

installed

in

your

CICS

system.

(See

WebSphere

MQ

for

z/OS

System

Setup

Guide

for

details.)

3.

Ensure

that

the

JVM

environment

specified

in

the

DHFJVM

parameter

of

your

CICS

startup

JCL

(Job

Control

Language)

includes

appropriate

CLASSPATH

and

LIBPATH

entries.

4.

Initiate

the

transaction

by

using

any

of

your

normal

processes.

For

more

information

on

running

CICS

Java

transactions,

refer

to

your

CICS

system

documentation.

Restrictions

under

CICS

Transaction

Server

In

the

CICS

Transaction

Server

for

OS/390

environment,

only

the

main

(first)

thread

is

allowed

to

issue

CICS

or

WebSphere

MQ

calls.

It

is

therefore

not

possible

to

share

MQQueueManager

or

MQQueue

objects

between

threads

in

this

environment,

or

to

create

a

new

MQQueueManager

on

a

child

thread.

Chapter

8,

“Environment-dependent

behavior,”

on

page

95

identifies

some

restrictions

and

variations

that

apply

to

the

WebSphere

MQ

classes

for

Java

when

running

against

a

z/OS

or

OS/390

queue

manager.

Additionally,

when

running

under

CICS,

the

transaction

control

methods

on

MQQueueManager

are

not

supported.

Instead

of

issuing

MQQueueManager.commit()

or

MQQueueManager.backout(),

applications

use

the

JCICS

task

synchronization

methods,

Task.commit()

and

Task.rollback().

The

Task

class

is

supplied

by

JCICS

in

the

com.ibm.cics.server

package.

Running

WebSphere

MQ

base

Java

applications

under

CICS

Appendix

G.

Information

for

SupportPac

MA1G

485

486

Using

Java

Appendix

H.

SSL

CipherSuites

supported

by

WebSphere

MQ

The

following

table

lists

the

CipherSpecs

supported

by

WebSphere

MQ,

and

their

associated

CipherSuite

names.

Specify

the

CipherSpec

name

in

the

SSLCIPH

property

of

the

SVRCONN

channel

on

the

queue

manager.

Specify

the

CipherSuite

name:

v

In

MQEnvironment.sslCipherSuite

or

MQC.SSL_CIPHER_SUITE_PROPERTY

of

WebSphere

MQ

base

Java

v

Using

the

setSSLCipherSuite()

method

of

MQConnectionFactory

in

JMS

v

Using

the

SSLCIPHERSUITE

(SCPHS)

property

from

JMSAdmin

The

set

of

supported

CipherSuites

varies

between

JSSE

providers;

those

CipherSuites

not

supported

by

the

IBM

implementation

of

JSSE

are

marked

with

an

asterisk.

Table

50.

CipherSpecs

and

matching

CipherSuites

CipherSpec

CipherSuite

DES_SHA_EXPORT

SSL_RSA_WITH_DES_CBC_SHA

DES_SHA_EXPORT1024

SSL_RSA_EXPORT1024_WITH_DES_CBC_SHA

*

NULL_MD5

SSL_RSA_WITH_NULL_MD5

NULL_SHA

SSL_RSA_WITH_NULL_SHA

RC2_MD5_EXPORT

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

RC4_56_SHA_EXPORT1024

SSL_RSA_EXPORT1024_WITH_RC4_56_SHA

*

RC4_MD5_US

SSL_RSA_WITH_RC4_128_MD5

RC4_MD5_EXPORT

SSL_RSA_EXPORT_WITH_RC4_40_MD5

RC4_SHA_US

SSL_RSA_WITH_RC4_128_SHA

TRIPLE_DES_SHA_US

SSL_RSA_WITH_3DES_EDE_CBC_SHA

©

Copyright

IBM

Corp.

1997,

2004

487

SSL

CipherSuites

488

Using

Java

Appendix

I.

JMS

exception

messages

This

section

lists

most

common

exceptions

that

can

be

generated

by

WebSphere

MQ

JMS.

It

does

not

include

all

messages

that

can

be

written

to

a

trace

file.

If

you

receive

an

exception

message

not

in

this

list

(except

in

a

trace

file),

or

if

the

cause

seems

to

be

an

error

in

WebSphere

MQ

JMS,

contact

your

IBM

service

representative.

A

JMSException

might

have

an

embedded

exception

that

contains

a

WebSphere

MQ

reason

code.

For

an

explanation

of

each

WebSphere

MQ

reason

code,

see

the

WebSphere

MQ

Application

Programming

Reference.

Reading

variables

in

a

message

Some

messages

display

text

or

numbers

that

vary

according

to

the

circumstances

giving

rise

to

the

message;

these

are

known

as

message

variables.

Message

variables

are

indicated

in

this

book

by

the

use

of

numbers

in

braces;

for

example,

{0},

{1},

and

so

on.

MQJMS0000

Method

{0}

has

been

invoked

at

an

illegal

or

inappropriate

time

or

if

the

provider

is

not

in

an

appropriate

state

for

the

requested

operation.

Explanation:

The

normal

reason

for

this

exception

is

that

the

SSL

certificate

stores

have

not

been

defined.

{0}

identifies

the

method

that

has

caused

the

problem.

User

Response:

For

more

information,

see

“Using

Secure

Sockets

Layer

(SSL)”

on

page

210.

For

information

specific

to

JMS

1.1,

see

“Using

Secure

Sockets

Layer

(SSL)”

on

page

253.

MQJMS0002

JMS

Client

attempted

to

set

invalid

clientId

on

a

connection.

Explanation:

An

application

attempted

to

set

the

clientId

property

of

a

valid

connection

to

null,

or

attempted

to

set

the

clientId

property

of

an

invalid

connection.

User

Response:

The

clientId

property

on

a

connection

can

only

be

set

once,

only

to

a

non-null

value,

and

only

before

the

connection

is

used.

Ensure

that

the

connection

is

valid

and

that

the

clientId

value

is

not

null.

MQJMS0003

Destination

not

understood

or

no

longer

valid.

Explanation:

The

queue

or

topic

may

have

become

unavailable,

the

application

may

be

using

an

incorrect

connection

for

the

queue

or

topic,

or

the

supplied

destination

is

not

of

the

correct

type

for

this

method.

User

Response:

Check

that

WebSphere

MQ

is

still

running

and

the

queue

manager

is

available.

Check

that

the

right

connection

is

being

used

for

your

queue

or

topic.

MQJMS0004

JMS

Client

has

given

JMS

Provider

a

message

selector

with

invalid

syntax.

Explanation:

The

message

selector

string

is

empty

or

contains

an

invalid

value

or

syntax.

User

Response:

Check

the

linked

WebSphere

MQ

exception

reason

and

completion

codes

for

more

information.

MQJMS0005

Unexpected

end

of

stream

has

been

reached

when

a

StreamMessage

or

BytesMessage

is

being

read.

Explanation:

The

byte

stream

being

read

is

shorter

than

the

buffer

supplied.

This

can

also

be

caused

by

receiving

a

corrupt

StreamMessage

or

BytesMessage.

User

Response:

Check

the

length

of

buffer

supplied.

Check

system

event

logs

for

more

information.

MQJMS0006

JMS

Client

attempts

to

use

a

data

type

not

supported

by

a

message

or

attempts

to

read

data

in

the

wrong

type.

Explanation:

Wrong

data

types

used

to

read

message

property

types.

User

Response:

Check

that

the

message

received

and

the

properties

to

be

read

are

of

the

type

expected.

MQJMS0009

JMS

Provider

is

unable

to

allocate

the

resources

required

for

a

method.

Explanation:

Machine

resources

may

be

overloaded,

the

linked

exception

may

give

further

information.

User

Response:

Check

system

resources

and

load.

©

Copyright

IBM

Corp.

1997,

2004

489

|
|
|

|
|
|
|

MQJMS0010

Operation

invalid

because

a

transaction

is

in

progress.

Explanation:

User

Response:

Wait

for

the

current

transaction

to

complete.

See

the

linked

WebSphere

MQ

exception

for

further

information.

MQJMS0011

Call

to

Session.commit

resulted

in

a

rollback

of

the

current

transaction.

Explanation:

The

transaction

failed

resulting

in

a

call

to

rollback

to

a

safe

state.

See

the

linked

exception

for

more

information.

MQJMS1000

Failed

to

create

JMS

message.

Explanation:

Invalid

message

type

or

properties

were

specified

when

creating

a

base

message.

User

Response:

Check

the

linked

WebSphere

MQ

exception

Reason

and

Completion

code

for

more

information.

MQJMS1001

Unknown

acknowledgement

mode

{0}.

Explanation:

Invalid

or

no

parameter

{0}

set

for

acknowledgement

mode

on

the

session.

User

Response:

See

“Session”

on

page

393

for

the

possible

values

for

acknowledgement

mode.

MQJMS1004

Connection

closed.

Explanation:

An

operation

such

as

start()

or

stop()

has

been

called

on

a

connection

that

is

already

closed.

User

Response:

Ensure

that

the

connection

is

open

before

performing

any

operation.

MQJMS1005

Unhandled

state

transition

from

{0}

to

{1}.

Explanation:

The

state

transition

is

not

valid,

see

log

for

more

information.

User

Response:

Check

the

linked

WebSphere

MQ

exception

reason

and

completion

code.

MQJMS1006

Invalid

value

for

{0}:

{1}

Explanation:

Invalid

value

{1}

for

property

{0}.

User

Response:

Check

the

linked

WebSphere

MQ

exception

reason

and

completion

code.

See

Table

11

on

page

49

for

a

list

of

valid

values

for

this

property.

MQJMS1008

Unknown

value

of

transportType:

{0}.

Explanation:

The

value

given

for

transportType

could

not

be

used.

{0}

shows

the

invalid

value.

User

Response:

See

Table

11

on

page

49

for

a

list

of

valid

values

for

this

property.

MQJMS1010

Not

implemented.

Explanation:

The

function

requested

is

not

implemented.

This

can

be

thrown

by

message

acknowledgement,

if

the

session

or

acknowledgement

parameters

are

invalid

or

incorrect.

MQJMS1011

Security

credentials

cannot

be

specified

when

using

MQ

bindings.

Explanation:

The

RRS

queue

does

not

support

a

client

connection,

and

bindings

connections

do

not

support

the

specification

of

security

credentials.

User

Response:

Ensure

that

you

do

not

try

to

specify

security

credentials

when

using

a

bindings

connection.

MQJMS1012

No

message

listener.

Explanation:

The

message

listener

has

stopped

or

was

never

started.

User

Response:

Restart

the

message

listener

and

retry.

MQJMS1013

Operation

invalid

while

session

is

using

asynchronous

delivery.

Explanation:

You

cannot

perform

the

requested

operation

while

the

session

is

actively

using

asynchronous

delivery

mode.

User

Response:

For

more

information,

see

“Asynchronous

delivery”

on

page

208.

For

information

specific

to

JMS

1.1,

see

“Asynchronous

delivery”

on

page

248.

MQJMS1014

Operation

invalid

for

identified

producer.

Explanation:

The

QueueSender.send

method

has

been

performed

on

an

identified

QueueSender,

which

contradicts

the

JMS

specification

User

Response:

See

“QueueSender”

on

page

387

and

the

JMS

specification

(http://java.sun.com/products/jms/docs.html)

for

further

information.

MQJMS1015

Unknown

value

of

targetClient:

{0}.

Explanation:

The

value

for

the

targetClient

property

set

by

the

application

for

this

destination

is

not

recognized

by

WebSphere

MQ

JMS.

User

Response:

See

“Sending

a

message”

on

page

204

for

valid

values

of

the

targetClient

property.

MQJMS1017

Non-local

MQ

queue

not

valid

for

receiving

or

browsing.

Explanation:

An

attempt

was

made

to

perform

an

inappropriate

operation

on

a

non-local

queue.

User

Response:

Check

the

queue

properties.

MQJMS1018

No

valid

connection

available.

Explanation:

The

queue

is

busy,

there

are

network

problems

or

a

connection

has

not

been

defined

for

the

object.

User

Response:

Create

a

valid

connection

for

this

operation.

JMS

exception

messages

490

Using

Java

|

|

|

|

MQJMS1019

Invalid

operation

for

non-transacted

session.

Explanation:

Commit

is

not

allowed

on

a

session

that

is

not

transacted.

User

Response:

Check

the

linked

IllegalStateException

for

more

information.

See

“Session”

on

page

393

for

further

information.

MQJMS1020

Invalid

operation

for

transacted

session.

Explanation:

Invalid

acknowledgement

mode

for

a

transacted

session.

Acknowledge

and

Recover

are

not

valid

operations

in

transacted

sessions.

User

Response:

See

“Session”

on

page

393

for

further

information.

MQJMS1021

Recover

failed:

unacknowledged

messages

might

not

get

redelivered.

Explanation:

The

system

was

unable

to

recover

from

a

failure.

User

Response:

Consult

the

linked

exception

to

determine

why

the

call

to

recover

failed.

MQJMS1022

Failed

to

redirect

message.

Explanation:

When

performing

asynchronous

delivery,

WebSphere

MQ

JMS

attempted

to

redirect

the

message

to

the

backout

queue.

No

backout

queue

was

defined.

User

Response:

Ensure

that

the

backout

queue

is

defined.

Also,

investigate

why

WebSphere

MQ

JMS

was

attempting

to

redirect

the

message.

It

might

do

so

in

response

to

a

failing

MessageListener

implementation.

MQJMS1023

Rollback

failed.

Explanation:

The

system

was

unable

to

rollback

to

a

safe

state.

User

Response:

Check

the

linked

WebSphere

MQ

Exception

reason

and

completion

codes

for

further

information.

MQJMS1024

Session

closed.

Explanation:

The

session

timed

out

or

was

closed;

or

either

the

connection

or

the

queue

manager

was

closed,

implicitly

closing

the

session.

User

Response:

Restart

the

session,

and

check

all

required

resources

are

available.

MQJMS1025

Failed

to

browse

message.

Explanation:

No

message

was

available

for

browsing.

There

may

be

no

message

on

the

Queue.

User

Response:

Check

the

linked

WebSphere

MQ

Exception

reason

and

completion

codes.

Check

that

a

message

is

available

for

browsing.

MQJMS1026

ExceptionListener

threw

exception:

{0}.

User

Response:

Check

linked

exceptions

for

further

information.

MQJMS1027

Failed

to

reconstitute

destination

from

{0}.

Explanation:

A

message

has

been

received

which

contains

invalid

destination

information

in

the

RFH2

header.

User

Response:

Ensure

that

any

messages

being

sent

by

non-JMS

applications

have

correctly

formatted

destination

information.

In

the

case

of

RFH2

headers,

pay

special

attention

to

the

“Rto”

(reply

to)

and

“Dst”

(destination)

elements

of

the

XML

portion

of

the

header.

Valid

destination

strings

must

start

either

“queue”

or

“topic”.

MQJMS1028

Element

name

is

null.

Explanation:

A

null

name

string

was

passed

to

one

of

the

“get

value

by

name”

methods

of

MapMessage.

User

Response:

Ensure

that

all

name

strings

being

used

to

retrieve

values

are

non-null.

MQJMS1029

Property

name

is

null.

Explanation:

The

itemExists

method

of

MapMessage

was

invoked

with

a

null

item

name;

or

a

null

name

string

was

used

as

an

argument

to

a

method

which

retrieves

property

values

by

name

from

a

JMS

message.

User

Response:

Ensure

that

the

name

strings

indicated

do

not

have

null

values.

MQJMS1031

An

internal

error

has

occurred.

Please

contact

your

system

administrator.

Explanation:

Internal

Error.

User

Response:

Contact

your

IBM

representative.

MQJMS1032

close()

failed

because

of

{0}

Explanation:

Internal

Error.

{0}

indicates

the

reason

for

the

error.

User

Response:

Contact

your

IBM

representative.

MQJMS1033

start()

failed

because

of

{0}.

Explanation:

{0}

indicates

why

the

session

failed

to

start.

User

Response:

Contact

your

IBM

representative.

MQJMS1034

MessageListener

threw:

{0}.

Explanation:

When

performing

asynchronous

delivery,

the

onMessage()

method

of

the

application’s

MessageListener

failed

with

a

Throwable.

WebSphere

MQ

JMS

tries

to

redeliver

or

requeue

the

message.

User

Response:

Do

not

throw

Throwables

from

the

onMessage()

method

of

a

MessageListener.

JMS

exception

messages

Appendix

I.

JMS

exception

messages

491

MQJMS1035

Cannot

transmit

non-MQ

JMS

messages.

Explanation:

Wrong

message

type

used.

This

is

a

possible

internal

problem.

User

Response:

Check

the

message

type.

Contact

your

IBM

representative

if

there

appears

to

be

an

internal

error.

MQJMS1036

Failed

to

locate

resource

bundle.

Explanation:

The

resource

bundle

is

either

not

present

or

not

in

the

application’s

classpath.

User

Response:

Check

that

the

classpath

includes

the

location

of

property

files.

MQJMS1038

Failed

to

log

error.

Explanation:

Log

settings

may

be

incorrect,

see

the

linked

LogException.

User

Response:

Check

log

settings

are

correct.

MQJMS1039

Trace

file

does

not

exist

Explanation:

Trace

settings

may

be

incorrect.

User

Response:

Check

trace

settings

and

trace

file

existence.

See

“Tracing

programs”

on

page

38

for

more

information

on

Trace.

MQJMS1040

Failed

to

connect

to

Trace

stream.

Explanation:

Trace

settings

may

be

incorrect.

User

Response:

See

“Tracing

programs”

on

page

38

for

more

information

on

Trace.

MQJMS1041

Failed

to

find

system

property

{0}.

Explanation:

The

system

property

specified

in

{0}

does

not

exist

or

was

not

found

in

the

application’s

classpath.

User

Response:

Check

the

classpath

settings

and

the

product

installation.

MQJMS1042

Invalid

delivery

mode.

Explanation:

Either

an

invalid

value

was

specified

for

the

delivery

mode

of

a

message

producer,

or

an

invalid

delivery

mode

value

was

specified

when

publishing

a

message.

User

Response:

Check

to

ensure

that

the

value

specified

is

a

valid

enumeration

for

delivery

mode.

MQJMS1043

JNDI

failed

due

to

{0}.

Explanation:

{0}

gives

further

information.

User

Response:

Check

settings

for

LDAP,

JNDI,

and

in

the

JMSAdmin.config

file.

MQJMS1044

String

is

not

a

valid

hexadecimal

number

-

{0}.

Explanation:

An

attempt

was

made

to

specify

a

group

ID

or

correlation

ID

which

starts

with

the

prefix

“ID:”

but

is

not

followed

by

a

well-formed

hex

value;

or

an

attempt

was

made

to

receive

a

message

which

contains

an

RFH2

property

of

type

bin.hex

that

does

not

have

a

well-formed

hex

value.

User

Response:

Ensure

that

a

valid

hex

value

always

follows

the

“ID:”

prefix

when

setting

group

ID

or

correlation

ID

values.

Ensure

that

any

RFH2

headers

generated

by

non-JMS

applications

are

well-formed.

MQJMS1045

Number

outside

of

range

for

double

precision

S/390

Float

{0}.

Explanation:

This

is

a

z/OS

and

OS/390

specific

error.

MQJMS1046

The

character

set

{0}

is

not

supported.

Explanation:

An

attempt

was

made

to

send

or

receive

a

map

message,

stream

message

or

text

message

whose

body

is

encoded

using

a

character

set

not

supported

by

the

JVM.

In

the

case

of

text

messages,

this

exception

may

be

thrown

when

the

body

of

the

message

is

first

queried,

rather

than

at

receive

time.

User

Response:

Only

set

character

encoding

on

a

message

to

values

known

to

be

available

to

the

receiving

application.

MQJMS1047

The

map

message

has

an

incorrect

format.

Explanation:

A

map

message

was

received,

but

its

RFH2

header

information

is

badly

formatted.

User

Response:

Ensure

any

non-JMS

applications

are

building

well-formed

RFH2

header

information

for

inclusion

in

map

messages.

MQJMS1048

The

stream

message

has

an

incorrect

format.

Explanation:

A

stream

message

was

received,

but

its

RFH2

header

information

is

badly

formatted.

User

Response:

Ensure

any

non-JMS

applications

are

building

well-formed

RFH2

header

information

for

inclusion

in

stream

messages.

MQJMS1049

The

JMS

client

attempted

to

convert

a

byte

array

to

a

String.

Explanation:

Attempting

to

receive

a

byte

array

from

a

stream

message

using

the

readString

method.

User

Response:

Either

use

the

appropriate

method

to

receive

the

data,

or

format

the

data

placed

into

the

stream

message

correctly.

MQJMS1050

The

MQRFH2

header

has

an

incorrect

format.

Explanation:

Receiving

a

message

with

a

badly

formed

RFH2

header.

User

Response:

Ensure

that

any

non-JMS

applications

building

messages

with

RFH2

headers

create

well-formed

RFH2

headers.

JMS

exception

messages

492

Using

Java

MQJMS1053

Invalid

UTF-16

surrogate

detected

{0}.

Explanation:

An

invalid

UTF-16

surrogate

character

has

been

encountered

as

part

of

a

topic

name

or

RFH2

property.

User

Response:

Ensure

that,

when

specifying

UTF-16,

topic

names

or

RFH2

properties

are

well-formed.

MQJMS1054

Invalid

XML

escape

sequence

detected

{0}.

Explanation:

An

invalid

XML

escape

sequence

has

been

encountered

in

the

RFH2

header

of

a

received

message.

User

Response:

Ensure

that

only

valid

XML

escape

sequences

are

placed

into

any

RFH2

headers

built

by

non-JMS

applications.

MQJMS1055

The

property

or

element

in

the

message

has

incompatible

datatype

{0}.

Explanation:

Attempting

to

retrieve

a

property

from

a

JMS

message

using

a

accessor

method

which

specifies

an

incompatible

type.

For

example,

attempting

to

retrieve

an

integer

property

using

the

getBooleanProperty

method.

User

Response:

Use

an

accessor

method

defined

by

the

JMS

specification

as

being

able

to

retrieve

property

values

of

the

required

type.

MQJMS1056

Unsupported

property

or

element

datatype

{0}.

Explanation:

This

error

is

caused

by

one

of

the

following:

1.

Attempting

to

set

a

property

of

a

JMS

message

using

an

object

which

is

not

one

of

the

supported

types.

2.

Attempting

to

set

or

receive

a

message

whose

RFH2

contains

a

element

representing

a

property

which

does

not

have

a

valid

type

associated

with

it.
User

Response:

Ensure

that

when

setting

message

properties,

an

object

type

described

as

being

valid

in

the

JMS

specification

is

used.

If

this

exception

occurs

when

receiving

a

message

containing

an

RFH2

header

sent

by

a

non-JMS

application,

ensure

that

the

RFH2

header

is

well-formed.

MQJMS1057

Message

has

no

session

associated

with

it.

Explanation:

An

attempt

was

made

to

acknowledge

a

message

on

a

session

which

is

not

in

an

open

state.

User

Response:

Ensure

that

the

session

associated

with

the

message

has

been

correctly

opened.

Check

that

the

session

has

not

been

closed.

MQJMS1058

Invalid

message

property

name:

{0}.

Explanation:

Attempting

to

set

a

property

that

either

does

not

have

a

valid

property

name,

or

is

not

a

settable

property.

User

Response:

Ensure

that

the

property

name

used

is

a

valid

property

name

in

accordance

with

the

JMS

specification.

If

the

property

name

refers

to

a

JMS

or

provider-specific

extension

property,

ensure

that

this

property

is

settable.

MQJMS1059

Fatal

error

-

UTF8

not

supported.

Explanation:

The

Java

runtime

environment

you

are

using

does

not

support

the

UTF-8

character

encoding.

JMS

requires

support

for

this

encoding

to

perform

some

operations.

User

Response:

Consult

the

documentation

and

or

provider

of

your

Java

runtime

environment

to

determine

how

to

obtain

support

for

the

UTF-8

character

encoding.

MQJMS1060

Unable

to

serialize

object.

Explanation:

An

attempt

has

been

made

to

serialize

an

ObjectMessage

which

contains

a

non-serializable

object.

User

Response:

Ensure

that

ObjectMessages

only

contain

serializable

objects.

If

the

object

placed

inside

an

ObjectMessage

references

other

objects,

these

must

also

be

serializable.

MQJMS1061

Unable

to

deserialize

object.

Explanation:

De-serialization

of

an

ObjectMessage

failed.

User

Response:

Ensure

that

the

ObjectMessage

being

received

contains

valid

data.

Ensure

that

the

class

files

representing

object

data

contained

within

the

ObjectMessage

are

present

on

the

machine

deserializing

the

ObjectMessage.

If

the

object

contained

within

the

ObjectMessage

references

other

objects,

ensure

that

these

class

files

are

also

present.

MQJMS1066

Invalid

message

element

name:

{0}.

Explanation:

Attempting

to

set

a

message

property

using

either

an

invalid

property

name,

or

the

name

of

a

property

which

cannot

have

its

value

set.

User

Response:

Ensure

that

the

property

name

specified

conforms

to

the

JMS

specification.

If

the

property

name

supplied

is

that

of

a

JMS

property,

or

a

vendor

specific

extension,

ensure

that

this

property

name

is

settable.

MQJMS1067

Timeout

invalid

for

MQ.

Explanation:

An

attempt

was

made

to

invoke

the

receive

method

on

either

a

QueueReceiver

or

TopicSubscriber

method,

specifying

a

long

timeout

value

which

is

not

valid.

User

Response:

Ensure

the

timeout

value

specified

is

not

negative

and

not

greater

than

the

value

of

Integer.MAX_VALUE.

JMS

exception

messages

Appendix

I.

JMS

exception

messages

493

MQJMS1068

Failed

to

obtain

XAResource.

Explanation:

JMS

failed

to

create

an

XA

Queue

resource

due

to

an

error.

User

Response:

See

the

linked

XAException

for

more

information.

MQJMS1072

Could

not

inquire

upon

queue

manager

name.

Explanation:

In

createConnectionConsumer()

or

createDurableConnectionConsumer(),

JMS

could

not

determine

the

name

of

the

queue

manager.

User

Response:

Check

your

queue

manager

error

logs

for

problems

which

may

cause

this.

If

there

are

no

other

error

conditions,

contact

your

IBM

representative.

MQJMS1073

Specified

MQ

Queue

is

neither

a

QLOCAL

nor

a

QALIAS.

Explanation:

createConnectionConsumer()

was

called,

but

a

queue

of

the

wrong

type

was

specified.

Only

QALIAS

and

QLOCALs

can

be

used

with

the

ConnectionConsumer

feature.

User

Response:

Specify

a

queue

of

the

correct

type.

MQJMS1074

Unable

to

process

null

message.

Explanation:

Internal

error

in

WebSphere

MQ

JMS.

User

Response:

Contact

your

IBM

representative.

MQJMS1075

Error

writing

dead

letter

header.

Explanation:

JMS

attempted

to

requeue

a

message

to

the

dead

letter

queue,

but

could

not

construct

a

dead

letter

header.

User

Response:

Use

the

linked

exception

to

determine

the

cause

of

this

error.

MQJMS1076

Error

reading

dead

letter

header.

Explanation:

JMS

attempted

to

interpret

a

message

with

a

dead

letter

header,

but

encountered

a

problem.

User

Response:

Use

the

linked

exception

to

determine

the

cause

of

this

error.

MQJMS1077

Connection

and

Destination

mismatch.

Explanation:

An

operation

was

requested,

but

the

Destination

class

is

incompatible

with

the

Connection

class.

Topics

cannot

be

used

with

QueueConnections

and

Queues

cannot

be

used

with

TopicConnections.

User

Response:

Supply

a

suitable

Destination.

This

may

represent

an

internal

error

condition

in

JMS;

in

this

case

contact

your

IBM

representative.

MQJMS1078

Invalid

Session

object.

Explanation:

The

JMS

ConnectionConsumer

feature

attempted

to

deliver

a

batch

of

messages

to

a

Session.

However,

the

Session

contained

in

the

ServerSession

object

returned

by

the

ServerSessionPool

was

not

a

WebSphere

MQ

JMS

Session.

User

Response:

This

is

an

error

in

the

ServerSessionPool.

If

you

have

supplied

a

ServerSessionPool,

check

its

behavior.

In

a

J2EE

application

server,

this

may

represent

an

error

in

the

application

server;

in

which

case,

refer

to

your

application

server’s

documentation.

MQJMS1079

Unable

to

write

message

to

dead

letter

queue.

Explanation:

JMS

attempted

to

requeue

a

message

to

the

dead

letter

queue,

but

failed.

User

Response:

Use

the

linked

exception

to

determine

the

cause

of

this

error.

If

there

is

no

linked

exception,

check

that

the

queue

manager

has

a

defined

dead

letter

queue.

Once

JMS

has

sent

a

message

to

the

dead

letter

queue,

the

reason

code

stored

in

the

message’s

DLH

can

be

used

to

determine

why

the

message

was

dead-lettered.

MQJMS1080

No

Backout-Requeue

queue

defined.

Explanation:

JMS

encountered

a

message

which

has

been

backed

out

more

than

the

queue’s

Backout

Threshold,

however

the

queue

doesn’t

have

a

Backout-Requeue

queue

defined.

User

Response:

Define

a

Backout-Requeue

queue

for

the

queue,

or

set

the

Backout

Threshold

to

zero

to

disable

poison

message

handling.

Investigate

the

repeated

backouts.

MQJMS1081

Message

requeue

failed.

Explanation:

JMS

found

an

error

when

requeuing

a

message

which

has

been

backed

out

more

than

the

queue’s

Backout

Threshold.

User

Response:

Use

the

linked

exception

to

determine

the

cause

of

this

error.

Investigate

the

repeated

backouts.

MQJMS1082

Failure

while

discarding

message.

Explanation:

JMS

encountered

an

error

while

discarding

a

message,

or

while

generating

an

exception

report

for

a

message

to

be

discarded.

User

Response:

Use

the

linked

exception

to

determine

the

cause

of

this

error.

MQJMS1083

Invalid

message

batch

size

(must

be

>0).

Explanation:

An

invalid

batch

size

parameter

was

passed

to

createConnectionConsumer()

or

createDurableConnectionConsumer().

User

Response:

Set

a

batch

size

greater

than

zero.

In

a

J2EE

application

server,

this

may

represent

an

error

in

the

application

server.

Refer

to

your

application

server’s

documentation.

MQJMS1084

Null

ServerSessionPool

has

been

provided.

Explanation:

The

ServerSessionPool

specified

on

createConnectionConsumer()

or

createDurableConnectionConsumer()

was

null.

User

Response:

Set

an

appropriate

ServerSessionPool.

In

a

J2EE

application

server,

this

may

represent

an

error

JMS

exception

messages

494

Using

Java

in

the

application

server.

Refer

to

your

application

server’s

documentation.

MQJMS1085

Error

writing

RFH.

Explanation:

JMS

attempted

to

construct

an

RFH

message

header,

but

encountered

an

error.

User

Response:

Use

the

linked

exception

to

determine

the

cause

of

this

error.

MQJMS1086

Error

reading

RFH.

Explanation:

JMS

encountered

an

error

while

parsing

an

RFH

message

header.

User

Response:

Use

the

linked

exception

to

determine

the

cause

of

this

error.

MQJMS1087

Unrecognized

or

invalid

RFH

content.

Explanation:

JMS

expected

to

find

an

RFH

message

header,

but

found

it

to

be

missing,

malformed

or

lacking

required

data.

User

Response:

Investigate

the

source

of

the

message.

This

may

represent

an

internal

error

condition

in

JMS;

in

this

case,

contact

your

IBM

representative.

MQJMS1088

Mixed-domain

consumers

acting

on

the

same

input

is

forbidden.

Explanation:

A

point-to-point

ConnectionConsumer

is

using

the

subscriber

queue

of

a

publish/subscribe

ConnectionConsumer.

User

Response:

Do

not

attempt

to

access

subscriber

queues

using

the

point-to-point

ConnectionConsumer

facilities

of

JMS.

Check

your

TopicConnectionFactory

and

Topic

objects

to

make

sure

they

are

not

using

a

QLOCAL

intended

for

use

by

point-to-point

applications

as

a

subscriber

queue.

MQJMS1089

Exception

occurred

reading

message

body:

{0}.

Explanation:

JMS

encountered

an

exception

while

reading

data

from

a

message.

The

message

being

read

is

likely

to

be

a

response

message

from

the

publish/subscribe

broker.

User

Response:

Use

the

linked

exception

to

determine

the

cause

of

this

error.

MQJMS1111

JMS

1.1

The

required

queues

or

publish/subscribe

services

are

not

set

up:

{0}.

Explanation:

The

required

WebSphere

MQ

setup

for

the

messaging

domain

is

not

complete.

User

Response:

For

the

point-to-point

messaging,

make

sure

that

you

have

started

the

queue

manager

and,

if

your

JMS

application

is

connecting

as

a

client

application,

make

sure

that

you

have

started

a

listener

for

the

correct

port.

For

publish/subscribe

messaging,

make

sure

that

you

have

done

the

post

installation

setup,

as

described

in

“Additional

setup

for

publish/subscribe

mode”

on

page

26.

MQJMS1112

JMS

1.1

Invalid

operation

for

a

domain

specific

object.

Explanation:

A

JMS

application

attempted

to

perform

an

operation

on

domain

specific

object,

but

the

operation

is

valid

only

for

the

other

messaging

domain.

User

Response:

Make

sure

that

the

JMS

objects

used

by

your

application

are

relevant

for

the

required

messaging

domain.

If

your

application

uses

both

messaging

domains,

consider

using

domain

independent

objects

throughout

the

application.

MQJMS1113

JMS

1.1

Invalid

attribute

for

a

domain

specific

object.

Explanation:

A

JMS

application

attempted

to

set

an

attribute

of

a

domain

specific

object,

but

the

attribute

is

valid

only

for

the

other

messaging

domain.

User

Response:

Make

sure

that

the

JMS

object

types

used

by

your

application

are

relevant

for

the

required

messaging

domain.

If

your

application

uses

both

messaging

domains,

consider

using

domain

independent

objects

throughout

the

application.

MQJMS2000

Failed

to

close

MQ

queue.

Explanation:

JMS

attempted

to

close

a

WebSphere

MQ

queue,

but

encountered

an

error.

The

queue

may

already

be

closed,

or

another

thread

may

be

performing

an

MQGET

while

close()

is

called.

User

Response:

Use

the

linked

exception

to

determine

the

cause

of

this

error.

You

may

be

able

to

perform

the

close()

later.

MQJMS2001

MQQueue

reference

is

null.

Explanation:

JMS

attempted

to

perform

some

operation

on

a

null

MQQueue

object.

User

Response:

Check

your

system

setup,

and

that

all

required

queue

names

have

been

specified.

This

may

represent

an

internal

error

condition

in

JMS;

in

this

case,

contact

your

IBM

representative.

MQJMS2002

Failed

to

get

message

from

MQ

queue.

Explanation:

JMS

attempted

to

perform

an

MQGET;

however

WebSphere

MQ

reported

an

error.

User

Response:

Use

the

linked

exception

to

determine

the

cause

of

this

error.

MQJMS2003

Failed

to

disconnect

queue

manager.

Explanation:

JMS

encountered

an

error

while

attempting

to

disconnect.

User

Response:

Use

the

linked

exception

to

determine

the

cause

of

this

error.

MQJMS2004

MQQueueManager

reference

is

null.

Explanation:

JMS

attempted

to

perform

an

operation

on

a

null

MQQueueManager

object.

User

Response:

Check

that

the

relevant

object

has

not

been

closed.

This

may

represent

an

internal

error

JMS

exception

messages

Appendix

I.

JMS

exception

messages

495

||
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

condition

in

JMS;

in

this

case,

contact

your

IBM

representative.

MQJMS2005

Failed

to

create

MQQueueManager

for

{0}.

Explanation:

JMS

could

not

connect

to

a

queue

manager.

{0}

gives

the

name

of

the

queue

manager.

User

Response:

Use

the

linked

exception

to

determine

the

cause

of

this

error.

Check

the

queue

manager

is

running

and,

if

using

client

attach,

that

the

listener

is

running

and

the

channel,

port

and

hostname

are

set

correctly.

If

no

queue

manager

name

has

been

specified,

check

that

the

default

queue

manager

has

been

defined.

MQJMS2006

MQ

problem:

{0}.

Explanation:

JMS

encountered

some

problem

with

WebSphere

MQ.

{0}

describes

the

problem.

User

Response:

Use

the

included

text

and

linked

exception

to

determine

the

cause

of

this

error.

MQJMS2007

Failed

to

send

message

to

MQ

queue.

Explanation:

JMS

attempted

to

perform

an

MQPUT;

however

WebSphere

MQ

reported

an

error.

User

Response:

Use

the

linked

exception

to

determine

the

cause

of

this

error.

MQJMS2008

Failed

to

open

MQ

queue.

Explanation:

JMS

attempted

to

perform

an

MQOPEN;

however

WebSphere

MQ

reported

an

error.

User

Response:

Use

the

linked

exception

to

determine

the

cause

of

this

error.

Check

that

the

specified

queue

and

queue

manager

are

defined

correctly.

MQJMS2009

MQQueueManager.commit()

failed.

Explanation:

JMS

attempted

to

perform

an

MQCMIT;

however

WebSphere

MQ

reported

an

error.

User

Response:

Use

the

linked

exception

to

determine

the

cause

of

this

error.

MQJMS2010

Unknown

value

for

MQ

queue

definitionType:

{0}.

Explanation:

Unable

to

delete

the

temporary

queue

as

the

definitionType

is

not

valid.

User

Response:

Check

the

setting

of

definitionType.

MQJMS2011

Failed

to

inquire

MQ

queue

depth.

Explanation:

WebSphere

MQ

JMS

is

unable

to

tell

how

many

messages

are

on

the

queue.

User

Response:

Check

that

the

queue

and

queue

manager

are

available.

MQJMS2012

XACLOSE

failed.

Explanation:

See

linked

XAException

for

more

details.

MQJMS2013

Invalid

security

authentication

supplied

for

MQQueueManager.

Explanation:

Bad

username

or

password

or

both.

In

bindings

mode,

a

supplied

user

ID

does

not

match

the

logged

in

user

ID.

User

Response:

Check

that

the

user

IDs

used

by

WebSphere

MQ

are

all

assigned

to

the

relevant

groups

and

given

appropriate

user

permissions.

MQJMS3000

Failed

to

create

a

temporary

queue

from

{0}.

Explanation:

Creation

of

temporary

queue

failed.

User

Response:

See

linked

exception

for

more

information.

Check

that

the

TemporaryModel

parameter

against

the

QueueConnectionFactory

is

set

to

a

valid

model

queue.

MQJMS3001

Temporary

queue

already

closed

or

deleted.

Explanation:

Temporary

queue

no

longer

exists

or

is

equal

to

null.

User

Response:

Check

to

see

that

the

queue

has

been

created,

and

that

the

session

is

still

available.

MQJMS3002

Temporary

queue

in

use.

Explanation:

Another

program

is

using

the

queue.

User

Response:

Wait

for

the

temporary

queue

to

become

free

or

create

another.

MQJMS3003

Cannot

delete

a

static

queue.

Explanation:

Attempted

to

delete

a

queue

of

type

static,

where

a

temporary

queue

was

expected.

User

Response:

Check

the

expected

queue

type

for

deletion.

MQJMS3004

Failed

to

delete

temporary

queue.

Explanation:

The

temporary

queue

may

be

persistent

or

busy.

User

Response:

See

the

linked

WebSphere

MQ

exception

for

more

details.

Wait

if

the

queue

is

busy,

or

delete

the

queue

manually

if

it

is

persistent.

MQJMS3005

Publish/Subscribe

failed

due

to

{0}.

Explanation:

General

error:

{0}

shows

the

reason.

User

Response:

Check

the

linked

WebSphere

MQ

Exception

reason

and

completion

codes

for

more

information.

It

is

possible

that

the

broker

and

queue

manager

versions

are

incompatible.

MQJMS3006

Topic

reference

is

null.

Explanation:

Topic

supplied

to

a

publisher

is

null.

User

Response:

Use

non-null

values.

JMS

exception

messages

496

Using

Java

MQJMS3008

Failed

to

build

command

{0}.

Explanation:

Broker

message

command

parameters

incorrect.

User

Response:

Check

linked

exception

for

cause.

MQJMS3009

Failed

to

publish

command

to

MQ

queue.

Explanation:

Invalid

command,

queue

unavailable

or

broker

errors.

User

Response:

Check

linked

WebSphere

MQ

exception

reason

and

completion

codes

for

more

information.

MQJMS3010

Failed

to

build

publish

message.

Explanation:

Unable

to

build

the

base

message

for

the

broker.

User

Response:

See

the

linked

WebSphere

MQ

Exception

for

further

details.

Check

settings

and

parameters

are

all

correct.

See

Chapter

11,

“Writing

WebSphere

MQ

JMS

publish/subscribe

applications,”

on

page

213

for

more

information.

MQJMS3011

Failed

to

publish

message

to

MQ

queue.

Explanation:

See

linked

Exception

for

more

information.

User

Response:

Check

settings

and

parameters

are

all

correct.

See

Chapter

11,

“Writing

WebSphere

MQ

JMS

publish/subscribe

applications,”

on

page

213

for

more

information.

MQJMS3013

Failed

to

store

admin.

entry.

Explanation:

An

add

to

the

admin

or

status

queue

failed

due

to

duplication

or

some

other

error.

See

any

linked

exception

for

more

information.

User

Response:

Check

for

duplicates

and

retry.

MQJMS3014

Failed

to

open

subscriber

queue

{0}.

User

Response:

See

linked

exception

for

more

information.

MQJMS3017

Failed

to

delete

subscriber

queue

{0}.

Explanation:

{0}

gives

the

queue

name.

See

linked

exception

for

more

information.

User

Response:

See

Chapter

11,

“Writing

WebSphere

MQ

JMS

publish/subscribe

applications,”

on

page

213

for

more

information

on

solving

publish/subscribe

problems.

MQJMS3018

Unknown

durable

subscription

{0}.

Explanation:

Could

not

locate

the

given

subscription.

For

example,

during

an

unsubscribe

request.

User

Response:

See

Chapter

11,

“Writing

WebSphere

MQ

JMS

publish/subscribe

applications,”

on

page

213

for

more

information.

MQJMS3020

TemporaryTopic

out

of

scope.

Explanation:

The

current

connection

ID

does

not

match

the

connection

that

created

the

temporary

topic.

MQJMS3021

Invalid

subscriber

queue

prefix:

{0}.

Explanation:

The

name

specified

is

not

valid.

It

must

begin

with

SYSTEM.JMS.D

for

durable

subscriptions

or

SYSTEM.JMS.ND

for

non-durable

subscriptions.

User

Response:

See

Chapter

11,

“Writing

WebSphere

MQ

JMS

publish/subscribe

applications,”

on

page

213

for

naming

conventions.

MQJMS3022

Durable

re-subscribe

must

use

same

subscriber

queue;

specified:

{0},

original:

{1}.

Explanation:

{0}

and

{1}

show

the

differing

queue

names.

Unable

to

get

a

subscription

due

to

wrong

queue

manager

or

queue.

User

Response:

Check

settings.

MQJMS3023

Subscription

has

an

active

TopicSubscriber.

Explanation:

Can

be

caused

by

a

queue

open

problem

or

if

a

subscription

already

exists

on

the

JVM.

If

running

in

WebSphere

Application

Server

there

can

be

other

causes.

See

linked

exception,

if

set,

for

more

information.

User

Response:

Check

settings.

MQJMS3024

Illegal

use

of

uninitialized

clientId.

Explanation:

The

clientId

in

the

connection

has

not

been

set.

User

Response:

Set

the

clientId

before

attempting

to

perform

any

operation.

MQJMS3025

TemporaryTopic

in

use.

Explanation:

Something

else

is

currently

using

the

topic.

User

Response:

Wait

until

the

topic

is

free

or

create

another

topic.

Ensure

subscribers

de-register

when

finished.

MQJMS3026

QueueSender

is

closed.

User

Response:

Open

or

re-open

the

queue

sender

if

required.

MQJMS3027

Local

transactions

not

allowed

with

XA

sessions.

Explanation:

A

call

pertaining

to

a

local

transaction

was

made

on

a

Session

involved

with

XA-coordinated

transactions

User

Response:

This

typically

represents

an

error

in

an

application

server.

Consult

your

application

server’s

documentation

and

any

error

logs.

JMS

exception

messages

Appendix

I.

JMS

exception

messages

497

MQJMS3028

TopicPublisher

is

closed.

User

Response:

Open

or

reopen

the

topic

publisher

if

required.

MQJMS3029

Enlist

failed

(see

linked

Exception).

Explanation:

JTSXA.enlist

threw

an

exception

that

was

caught

by

JMS.

User

Response:

Check

the

linked

WebSphere

MQ

Exception

reason

and

completion

codes

for

more

information.

Contact

your

IBM

representative.

MQJMS3031

clientId

cannot

be

set

after

connection

has

been

used.

Explanation:

The

clientId

of

a

connection

can

be

set

only

once

and

only

before

the

connection

is

used.

User

Response:

Set

the

clientId

before

using

the

connection.

MQJMS3032

Resetting

the

clientId

is

not

allowed.

Explanation:

The

clientId

of

a

connection

can

be

set

only

once

and

only

before

the

connection

is

used.

User

Response:

Set

the

clientId

before

using

the

connection.

MQJMS3033

QueueReceiver

is

closed.

User

Response:

Open

or

reopen

the

receiver.

MQJMS3034

TopicSubscriber

is

closed.

User

Response:

Open

or

reopen

the

TopicSubscriber.

MQJMS3036

Broker

side

message

selection

valid

only

when

using

WebSphere

MQ

Integrator

broker.

Explanation:

Broker

version

and

message

selection

are

not

consistent.

User

Response:

Ensure

the

broker

version

has

been

set

in

the

ConnectionFactory.

Use

the

method

setBrokerVersion(JMSC.MQJMS_BROKER_V2)

on

the

ConnectionFactory

for

WebSphere

MQ

Integrator

or

WebSphere

MQ

Event

Broker.

MQJMS3037

Message

Producer

is

closed.

Explanation:

Either

or

both

of

the

session

and

connection

are

closed.

User

Response:

Check

to

ensure

that

the

session

and

connection

are

both

available.

MQJMS3038

Message

Consumer

is

closed.

Explanation:

Either

or

both

of

the

session

and

connection

are

closed.

User

Response:

Check

to

ensure

that

the

session

and

connection

are

both

available.

MQJMS3039

Illegal

use

of

null

name.

Explanation:

Durable

connection

consumers

must

be

named.

User

Response:

Check

for

null

values.

MQJMS3040

Invalid

broker

control

message

content:

{0}.

Explanation:

{0}

explains

further.

User

Response:

Check

the

broker

documentation

for

message

content

information.

MQJMS3042

Unrecognized

message

from

Pub/Sub

Broker.

Explanation:

The

message

received

from

the

broker

was

not

of

a

recognized

or

supported

format.

User

Response:

Check

that

the

broker

you

are

using

is

supported

and

refer

to

broker

documentation

for

settings.

MQJMS3044

Cleanup

level

of

NONE

requested.

Explanation:

Cleanup

requested

while

cleanupLevel

set

to

NONE.

User

Response:

Set

cleanupLevel

property

to

an

appropriate

value.

MQJMS3047

Subscription

store

type

not

supported

by

queue

manager.

Explanation:

Not

an

MQSPIQueue

manager

or

deferred

message

not

supported.

User

Response:

Possible

incompatibility

between

queue

manager

version

and

broker.

Specify

a

different

type

of

subscription

store

or

upgrade

the

queue

manager.

For

more

information,

see

“Subscription

stores”

on

page

227.

For

information

specific

to

JMS

1.1,

see

“Subscription

stores”

on

page

246.

MQJMS3048

Incorrect

subscription

store

type.

Explanation:

Subscription

store

changed

within

TopicConnection.

User

Response:

Contact

your

IBM

representative.

MQJMS3049

Incorrect

subscription

type

for

this

subscription

store.

Explanation:

TopicSubscriber

was

created

with

a

different

SUBSTORE

setting

than

current

TopicConnection.

User

Response:

Ensure

TopicSubscribers

are

only

used

during

the

lifetime

of

their

parent

TopicConnection.

For

more

information,

see

“Subscription

stores”

on

page

227.

For

information

specific

to

JMS

1.1,

see

“Subscription

stores”

on

page

246.

JMS

exception

messages

498

Using

Java

|

|

|

|

|

|

|

MQJMS4009

Context

is

not

empty.

Explanation:

Error

deleting

Context

due

to

context

not

being

empty.

User

Response:

Remove

context

contents

before

trying

delete.

MQJMS4096

Binding

non-administerable

or

not

found.

Explanation:

From

JMSAdmin,

an

object

was

specified

on

the

command

line

that

either

does

not

exist,

or

is

not

an

object

that

JMSAdmin

can

administer.

User

Response:

Specify

a

valid

obect

on

the

JMSAdmin

command

line.

MQJMS4097

Context

not

found.

Explanation:

Could

not

find

a

context

to

match

the

name

given.

User

Response:

Ensure

the

correct

context

name

is

specified.

MQJMS4104

Object

is

inactive,

so

cannot

perform

directory

operations.

Explanation:

The

JNDI

service

is

inactive.

User

Response:

See

Chapter

5,

“Using

the

WebSphere

MQ

JMS

administration

tool,”

on

page

41

for

JMSAdmin

and

JNDI

information.

MQJMS4106

Object

is

not

a

WebSphere

MQ

JMS

administered

object.

User

Response:

See

Chapter

5,

“Using

the

WebSphere

MQ

JMS

administration

tool,”

on

page

41.

MQJMS4111

Unable

to

create

context.

Explanation:

Administration

service

failed.

User

Response:

Check

LDAP

and

JNDI

settings.

MQJMS4112

Unable

to

create

a

valid

object,

please

check

the

parameters

supplied.

Explanation:

Consistency

check

failed.

User

Response:

Contact

your

IBM

representative.

MQJMS4113

Unable

to

bind

object.

Explanation:

Administration

service

bind

or

copy

or

move

operation

failed.

User

Response:

Check

that

you

have

correctly

set

up

your

JNDI

provider.

MQJMS4115

An

invalid

name

was

supplied.

Explanation:

JMSAdmin

error.

An

invalid

name

was

supplied

when

trying

to

delete

a

context.

User

Response:

Refer

to

Chapter

5,

“Using

the

WebSphere

MQ

JMS

administration

tool,”

on

page

41

for

more

about

using

JMSAdmin.

MQJMS4121

Cannot

open

configuration

file.

Explanation:

Configuration

file

may

not

exist.

User

Response:

Check

MQ_JAVA_INSTALL_PATH

environment

variable

exists

and

points

to

the

installation

directory

of

the

base

Java

classes.

MQJMS4127

Invalid

property

in

this

context.

Explanation:

JMSAdmin

object

value

is

invalid

in

the

current

context.

User

Response:

See

Chapter

5,

“Using

the

WebSphere

MQ

JMS

administration

tool,”

on

page

41

for

more

about

JMSAdmin.

MQJMS4130

Context

not

found

or

unremovable.

Explanation:

The

specified

child

context

could

not

be

deleted.

User

Response:

Ensure

the

correct

context

name

was

specified.

MQJMS4131

Expected

and

actual

object

types

do

not

match.

Explanation:

Requested

and

retrieved

objects

are

of

different

types.

User

Response:

Check

that

you

have

specified

the

correct

object

type.

MQJMS4132

Client-bindings

attribute

clash.

Explanation:

Client

properties

specified

for

a

bindings

connection.

User

Response:

Ensure

the

ConnectionFactory

properties

are

correct.

MQJMS4133

ExitInit

string

supplied

without

Exit

string.

Explanation:

ExitInit

string

supplied

but

Exit

is

not

set.

User

Response:

Set

appropriate

exit,

or

unset

ExitInit

string.

MQJMS4137

Unable

to

create

a

WebSphere

MQ

specific

class.

The

WebSphere

MQ

classes

may

not

have

been

installed

or

added

to

the

classpath.

User

Response:

Check

WebSphere

Application

Server

installation

and

classpath

variable.

MQJMS4139

Invalid

authentication

type

supplied

-

using

’none’.

Explanation:

AdminService

JNDI

initialization

parameters

contain

an

invalid

authorization

scheme,

so

“none”

is

used

as

the

value

instead.

User

Response:

See

Chapter

5,

“Using

the

WebSphere

MQ

JMS

administration

tool,”

on

page

41

for

more

information.

JMS

exception

messages

Appendix

I.

JMS

exception

messages

499

MQJMS5053

No

broker

response.

Please

ensure

that

the

broker

is

running.

Explanation:

Possible

causes:

1.

Broker

is

not

running.

2.

You

are

using

BrokerVersion=V2

in

your

TopicConnectionFactory

with

the

MQSeries

Publish/Subscribe

broker,

which

does

not

support

this.

3.

The

Broker

has

rejected

the

Publication

or

Subscription

and

placed

it

on

the

SYSTEM.DEAD.LETTER.QUEUE
User

Response:

Ensure

that

your

broker

is

running.

Check

the

system

event

log

for

broker

error

messages.

Check

that

the

broker

supports

the

BrokerVersion

you

are

using.

Check

the

SYSTEM.DEAD.LETTER.QUEUE

for

rejected

messages.

MQJMS5054

The

broker

appears

to

be

running,

but

the

message

did

not

arrive.

Explanation:

Thrown

by

Installation

Verification

Test

when

the

subscriber

fails

to

receive

the

published

message.

User

Response:

Check

that

you

have

set

up

the

broker

correctly.

Check

system

event

logs

for

broker

error

messages.

Check

the

SYSTEM.DEAD.LETTER.QUEUE

for

messages

rejected

by

the

broker.

MQJMS5060

Unable

to

connect

to

queue

manager.

Explanation:

Thrown

by

Installation

Verification

Test.

User

Response:

Check

that

the

queue

manager

is

running

and

that

its

name

is

specified

correctly

in

the

IVTTest

parameters.

MQJMS5061

Unable

to

access

broker

control

queue

on

queue

manager.

User

Response:

Check

that

the

control

queue

exists.

The

default

name

is

SYSTEM.BROKER.CONTROL.QUEUE.

MQJMS6040

Invalid

socket

family

name:

{0}.

Explanation:

An

invalid

socket

family

name

was

given

to

an

instance

of

IMBSocketFactory.

{0}

shows

the

bad

name.

User

Response:

Contact

your

IBM

representative.

MQJMS6041

An

exception

occurred

while

attempting

to

load

socket

factory

class

{0},

exception:

<{1}>.

Explanation:

Either

a

ClassNotFoundException,

an

InstantiationException

or

an

IllegalAccessException

occurred

while

trying

to

load

a

particular

IMBSocketFactory.

{0}

gives

the

name

of

the

class.

User

Response:

Contact

your

IBM

representative.

MQJMS6059

An

exception

occurred

while

loading

the

minimal

client

security

implementation.

User

Response:

Contact

your

IBM

representative.

MQJMS6060

An

unexpected

exception

in

minimal

client,

exception

=

{0}.

Explanation:

An

unusual

or

unexpected

exception

occurred

at

the

minimal

client.

{0}

gives

more

details.

User

Response:

Contact

your

IBM

representative.

MQJMS6061

A

specified

topic

was

malformed,

topic

=

{0}.

Explanation:

{0}

gives

the

name

of

the

malformed

topic.

User

Response:

See

“Using

topics”

on

page

221

for

more

information.

MQJMS6062

EOF

was

encountered

while

receiving

data

in

the

minimal

client.

User

Response:

Contact

your

IBM

representative.

MQJMS6063

The

broker

indicated

an

error

on

the

minimal

client

connection.

User

Response:

Refer

to

JMS

or

broker

documentation.

Contact

your

IBM

representative.

MQJMS6064

Connector.send

was

called

with

an

illegal

message

value.

Explanation:

Connector.send

was

called

with

an

illegal

message

value.

User

Response:

See

Chapter

7,

“Writing

WebSphere

MQ

base

Java

programs,”

on

page

67

for

more

information.

MQJMS6065

An

illegal

value

was

encountered

for

a

field,

value

=

{0}.

Explanation:

{0}

shows

the

illegal

value.

User

Response:

See

Table

38

on

page

457

for

a

list

of

properties

and

their

possible

values.

MQJMS6066

An

unexpected

internal

error

occurred

in

the

minimal

client.

Explanation:

Internal

problem.

User

Response:

Contact

your

IBM

representative.

MQJMS6067

A

bytes

message

operation

was

requested

on

something

that

is

not

a

bytes

message.

Explanation:

The

wrong

message

type

was

found.

User

Response:

Check

message

type

before

performing

type

specific

operations.

JMS

exception

messages

500

Using

Java

MQJMS6068

A

text

message

operation

was

requested

on

something

that

is

not

a

text

message.

Explanation:

The

wrong

message

type

was

found.

User

Response:

Check

message

type

before

performing

type

specific

operations.

MQJMS6069

A

stream

message

operation

was

requested

on

something

that

is

not

a

stream

message.

Explanation:

The

wrong

message

type

was

found.

User

Response:

Check

message

type

before

performing

type

specific

operations.

MQJMS6070

A

map

message

operation

was

requested

on

something

that

is

not

a

map

message.

Explanation:

The

wrong

message

type

was

found.

User

Response:

Check

message

type

before

performing

type

specific

operations.

MQJMS6071

The

broker

sent

an

invalid

message

during

authentication.

User

Response:

See

Chapter

11,

“Writing

WebSphere

MQ

JMS

publish/subscribe

applications,”

on

page

213

and

the

broker

documentation

for

more

information.

MQJMS6072

The

broker

requested

an

unavailable

protocol

during

authentication.

User

Response:

See

Chapter

11,

“Writing

WebSphere

MQ

JMS

publish/subscribe

applications,”

on

page

213

and

the

broker

documentation

for

more

information.

MQJMS6073

Minimal

client

connection

rejected

because

of

authentication

failure.

User

Response:

See

Chapter

11,

“Writing

WebSphere

MQ

JMS

publish/subscribe

applications,”

on

page

213

and

the

broker

documentation

for

more

information.

MQJMS6074

No

QOP

available

in

the

minimal

client.

Explanation:

Indicates

that

QOP

is

not

implemented

in

the

current

version

of

the

minimal

client.

User

Response:

Contact

your

IBM

representative.

MQJMS6078

An

attempt

was

made

to

write

an

invalid

object

type

of

class

{0}.

Explanation:

{0}

identifies

the

invalid

object’s

class.

User

Response:

See

Chapter

11,

“Writing

WebSphere

MQ

JMS

publish/subscribe

applications,”

on

page

213

and

the

broker

documentation

for

more

information.

MQJMS6079

An

exception

occurred

while

attempting

to

load

thread

pooling

support,

exception

=

{0}.

Explanation:

An

exception

was

caught

while

attempting

to

load

thread

pooling

support

in

the

JMS

client.

Parameter

{0}

will

give

details

of

the

exception.

User

Response:

Contact

your

IBM

representative.

MQJMS6081

An

attempt

was

made

to

read

from

a

Stream

message

before

a

previous

read

has

completed.

Explanation:

Internal

error.

User

Response:

Contact

your

IBM

representative.

MQJMS6083

An

exception

occurred

while

initializing

a

thread

pool

instance,

exception

=

{0}.

Explanation:

A

SocketThreadPoolException

was

caught

while

initializing

a

thread

pool

instance

in

the

JMS

client.

{0}

gives

details

of

the

exception.

User

Response:

Contact

your

IBM

representative.

MQJMS6085

No

ExceptionListener

has

been

set.

User

Response:

Create

an

ExceptionListener.

MQJMS6088

The

client-side

connection

monitor

is

terminating.

User

Response:

Restart

the

connection.

MQJMS6090

Attempted

to

synchronously

receive

on

a

MessageConsumer

for

which

a

listener

is

active.

Explanation:

MessageConsumer.receive()

was

called

but

a

message

listener

is

already

active

on

the

connection.

User

Response:

See

Chapter

7,

“Writing

WebSphere

MQ

base

Java

programs,”

on

page

67

for

more

information.

MQJMS6091

An

IOException

occurred

when

starting

or

stopping

delivery

on

the

connection,

exception

=

{0}.

Explanation:

Parameter

{0}

gives

details

of

the

exception.

User

Response:

Restart

the

connection.

MQJMS6093

An

exception

occurred

during

synchronous

receive,

exception

=

{0}.

Explanation:

Internal

error,

parameter

{0}

gives

details

of

the

exception.

User

Response:

Restart

connection.

MQJMS6096

A

JMSPriority

level

of

{0}

is

outside

the

range

specified

in

JMS.

Explanation:

Parameter

{0}

gives

the

value

that

is

in

error.

User

Response:

See

Table

38

on

page

457

for

valid

values.

MQJMS6097

The

specified

JMSMessageID,

{0},

is

invalid.

Explanation:

Incorrect

syntax

was

used

to

specify

a

message

ID

in

Message.setJMSMessageID.

The

correct

syntax

is

ID:[0-9]+.

User

Response:

Check

parameters.

See

Chapter

13,

JMS

exception

messages

Appendix

I.

JMS

exception

messages

501

“JMS

messages,”

on

page

257

for

more

information

on

message

IDs.

MQJMS6105

No

more

client

parameter

changes

allowed.

Explanation:

An

attempt

was

made

to

set

a

SessionConfig

parameter

when

no

more

changes

are

allowed.

Internal

error.

User

Response:

Contact

your

IBM

representative.

MQJMS6106

An

exception

occurred

when

initializing

parameter

{0},

exception

{1}.

Explanation:

{0}

identifies

the

failing

parameter

and

{1}

the

caught

exception.

User

Response:

Contact

your

IBM

representative.

MQJMS6115

An

exception

occurred

while

creating

the

TopicConnection,

exception

{0}.

Explanation:

{0}

gives

details

of

the

exception.

User

Response:

Contact

your

IBM

representative.

MQJMS6116

This

operation

is

not

permitted

on

an

entity

that

is

closed.

Explanation:

An

operation

was

requested

on

a

closed

publisher,

session,

or

connection.

User

Response:

Ensure

that

the

publisher,

session,

or

connection

is

open

before

trying

this

operation.

MQJMS6117

The

{0}

implementation

of

Topic

is

not

supported.

Explanation:

The

Topic

instance

passed

to

a

TopicPublisher

or

TopicSession

method

has

an

unsupported

run-time

implementation.

{0}

gives

the

class

name

of

the

unsupported

implementation.

User

Response:

See

“Using

topics”

on

page

221

for

more

information

on

Topic

implementations.

MQJMS6118

Topic

{0}

contains

a

wildcard,

which

is

invalid

for

publishing.

Explanation:

The

Topic

specified

to

a

TopicPublisher

method

contained

a

wildcard.

Wildcards

are

not

allowed

in

Topics

when

publishing

messages.

The

failing

Topic

is

given

by

{0}.

User

Response:

See

“Using

topics”

on

page

221

for

more

information.

MQJMS6119

An

IOException

occurred

while

publishing,

exception

{0}.

Explanation:

An

IOException

was

caught

while

publishing

a

message.

{0}

gives

details

of

the

exception.

User

Response:

See

Chapter

11,

“Writing

WebSphere

MQ

JMS

publish/subscribe

applications,”

on

page

213

for

more

information.

MQJMS6120

Attempted

to

use

a

temporary

topic

not

created

on

the

current

connection.

Explanation:

Invalid

use

of

temporary

topics

and

connections.

User

Response:

See

Chapter

15,

“JMS

interfaces

and

classes,”

on

page

295

for

more

information.

MQJMS6121

An

IOException

occurred

while

subscribing,

exception

{0}.

Explanation:

An

IOException

was

caught

while

subscribing.

{0}

gives

details

of

the

exception.

User

Response:

See

Chapter

11,

“Writing

WebSphere

MQ

JMS

publish/subscribe

applications,”

on

page

213

for

more

information.

MQJMS6122

An

exception

occurred

when

creating

subscription

to

{0},

{1}.

Explanation:

An

invalid

subject

or

query

syntax

was

used

in

the

creation

of

a

subscriber,

resulting

in

an

exception.

The

topic

name,

and

caught

exception

are

included

as

parameters

of

this

event.

User

Response:

See

Chapter

11,

“Writing

WebSphere

MQ

JMS

publish/subscribe

applications,”

on

page

213

and

the

broker

documentation

for

more

information.

MQJMS6232

While

creating

a

TopicSubscriber,

attempting

to

add

the

subscription

to

the

matching

engine

resulted

in

exception:

{0}.

Explanation:

{0}

gives

details

of

the

exception.

User

Response:

See

Chapter

11,

“Writing

WebSphere

MQ

JMS

publish/subscribe

applications,”

on

page

213

and

the

broker

documentation

for

more

information.

MQJMS6234

An

attempt

was

made

to

remove

an

object

with

Topic

{0}

from

an

empty

matching

engine:

{1}.

Explanation:

An

attempt

was

made

to

remove

from

a

null

tree

in

match

space.

{0}

gives

the

Topic

and

{1}

gives

the

MatchTarget.

Internal

error.

User

Response:

Contact

your

IBM

representative.

MQJMS6235

An

attempt

was

made

to

remove

an

object

with

a

Topic

{0}

from

the

matching

engine,

but

it

did

not

have

a

cache

entry:

{1}.

Explanation:

Internal

error.

User

Response:

Contact

your

IBM

representative.

MQJMS6238

In

attempting

to

access

a

field

of

a

message,

the

following

exception

occurred:

{0}.

Explanation:

A

corrupt

message

format

was

discovered.

Internal

error.

User

Response:

Contact

your

IBM

representative.

JMS

exception

messages

502

Using

Java

MQJMS6240

An

EvalCache

get

or

put

operation

specified

an

invalid

id.

Explanation:

An

operation

expected

the

MinValue

of

an

EvalCache

to

be

increased,

but

it

won’t

be.

Internal

Error.

User

Response:

Contact

your

IBM

representative.

MQJMS6241

Too

many

content

attributes

were

specified.

Explanation:

Too

many

non-topic

attributes

were

specified

in

Factor.createMatcherInternal.

Internal

error.

User

Response:

Contact

your

IBM

representative.

MQJMS6246

An

incorrect

use

of

a

the

Topic

wildcard

character

{0}

was

detected.

Explanation:

The

failing

Topic

is

given

by

parameter

{0}.

User

Response:

See

“Using

topics”

on

page

221

for

more

information.

MQJMS6247

The

Topic

segment

separator

{0}

appears

in

an

incorrect

position.

Explanation:

A

subscription

Topic

separator

was

used

incorrectly.

{0}

shows

the

bad

separator.

User

Response:

See

“Using

topics”

on

page

221

for

more

information.

MQJMS6249

The

following

exception

occurred

while

parsing

a

subscription

selector:

{0}.

Explanation:

A

TypeCheckException

occurred

while

loading

or

invoking

the

match

parser.

This

may

indicate

a

syntax

error

in

your

Selector.

User

Response:

For

more

information,

see

“Message

selectors”

on

page

207.

For

information

specific

to

JMS

1.1,

see

“Message

selectors”

on

page

243.

MQJMS6250

The

escape

character

was

used

to

terminate

the

following

pattern:

{0}.

Explanation:

This

may

indicate

a

syntax

error

in

your

Selector.

User

Response:

For

more

information,

see

“Message

selectors”

on

page

207.

For

information

specific

to

JMS

1.1,

see

“Message

selectors”

on

page

243.

MQJMS6251

The

escape

character

{0}

passed

to

the

pattern

tool

is

longer

than

one

character.

Explanation:

This

may

indicate

a

syntax

error

in

your

Selector.

User

Response:

For

more

information,

see

“Message

selectors”

on

page

207.

For

information

specific

to

JMS

1.1,

see

“Message

selectors”

on

page

243.

MQJMS6252

A

message

field

was

expected

to

contain

a

value

of

type

{0}

but

contained

one

of

type

{1}.

Explanation:

This

may

indicate

a

syntax

error

in

your

Selector.

User

Response:

For

more

information,

see

“Message

selectors”

on

page

207.

For

information

specific

to

JMS

1.1,

see

“Message

selectors”

on

page

243.

MQJMS6312

Non-authorized

subscription

to

topic

{0}.

Explanation:

Attempting

to

create

a

subscription

to

a

Topic

that

is

not

authorized

for

the

client.

{0}

gives

the

Topic

string.

User

Response:

See

Chapter

11,

“Writing

WebSphere

MQ

JMS

publish/subscribe

applications,”

on

page

213

and

the

broker

documentation

for

more

information.

JMS

exception

messages

Appendix

I.

JMS

exception

messages

503

|
|
|

|
|
|

|
|
|

|

|

|

JMS

exception

messages

504

Using

Java

Appendix

J.

Notices

This

information

was

developed

for

products

and

services

offered

in

the

United

States.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

information

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

information.

The

furnishing

of

this

information

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY,

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

information.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

information

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

1997,

2004

505

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

United

Kingdom

Laboratories,

Mail

Point

151,

Hursley

Park,

Winchester,

Hampshire,

England

SO21

2JN.

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

information

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Programming

License

Agreement,

or

any

equivalent

agreement

between

us.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrate

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

Trademarks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

or

other

countries,

or

both:

AIX

AS/400

CICS

IBM

iSeries

Language

Environment

MQSeries

MVS/ESA

OS/390

OS/400

SecureWay

SupportPac

System/390

S/390

VisualAge

WebSphere

z/OS

zSeries

Intel,

Intel

Inside

(logos),

MMX,

and

Pentium

are

trademarks

of

Intel

Corporation

in

the

United

States,

other

countries,

or

both.

Notices

506

Using

Java

Java,

HotJava,

JDK,

and

all

Java-based

trademarks

and

logos

are

trademarks

or

registered

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Microsoft,

Windows,

and

Windows

NT

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

Notices

Appendix

J.

Notices

507

508

Using

Java

Index

A
accessibility

24

JMS

Postcard

24

accessing

queues

and

processes

75

administered

objects

47,

200

with

WebSphere

Application

Server

V4

475

administering

JMS

objects

45

administration
commands

44

verbs

45

administration

tool
configuration

file

42

configuring

42

overview

41

properties

42

property

mapping

457

starting

41

advantages

of

Java

interface

63

applets
example

code

69

running

93

security

settings

for

481

using

WebSphere

MQ

Java

in

481

versus

applications

67

appletviewer
using

5

application

example

72

Application

Server

Facilities

277

classes

and

functions

277

sample

client

applications

287

sample

code

283

applications
closing

209

JMS

1.1,

writing

235

JMS

publish/subscribe,

writing

213

JMS,

writing

199

running

94

unexpected

termination

230

versus

applets

67

ASF

(Application

Server

Facilities)

277

ASFClient1.java

289

ASFClient2.java

290

ASFClient3.java

292

ASFClient4.java

293

ASFClient5.java

294

asynchronous

message

delivery

208

using

JMS

1.1

248

B
bean-managed

transactions

476

sample

application

478

behavior

in

different

environments

485

benefits

of

JMS

3

bindings
connection

6

connection,

programming

68

example

application

72

verifying

16

bindings

transport,

choosing

202

body,

message

257

broker

reports

233

BROKERCCDSUBQ

object

property

49,

279,

457

BROKERCCSUBQ

object

property

49,

279,

457

BROKERCONQ

object

property

49,

457

BROKERDURSUBQ

object

property

49,

457

BROKERPUBQ

object

property

49,

457

BROKERQMGR

object

property

49,

457

BROKERSUBQ

object

property

49,

457

BROKERVER

object

property

49,

457

building

a

connection

200

using

JMS

1.1

236

bytes

message

257

BytesMessage
interface

300

type

207

C
CCSID

object

property

49,

457

certificate

revocation

list

(CRL)

91

CHANGE

(administration

verb)

45

CHANNEL

object

property

49,

457

choosing

transport

202

CICS

Transaction

Server
running

applications

485

CipherSpecs

487

CipherSuites

supported

487

class

library

65

classes,

Application

Server

Facilities

277

classes,

core

95

restrictions

and

variations

96,

485

classes,

JMS

295

classes,

WebSphere

MQ

classes

for

Java

101

ManagedConnection

188

ManagedConnectionFactory

191

ManagedConnectionMetaData

193

MQC

179

MQChannelDefinition

102

MQChannelExit

104

MQConnectionManager

181

MQDistributionList

107

MQDistributionListItem

109

MQEnvironment

110

MQException

117

MQGetMessageOptions

119

MQManagedObject

123

MQMessage

126

MQMessageTracker

144

MQPoolServices

146

MQPoolServicesEvent

147

MQPoolServicesEventListener

180

MQPoolToken

149

MQProcess

150

MQPutMessageOptions

152

MQQueue

155

classes,

WebSphere

MQ

classes

for

Java

(continued)
MQQueueManager

163

MQReceiveExit

182

MQSecurityExit

184

MQSendExit

186

MQSimpleConnectionManager

176

classpath
configuring

25

settings

10

Cleanup
class

308

CLEANUP

object

property

49,

457

cleanup

utility
consumer

248

subscriber

230

CLEANUPINT

object

property

49,

457

client

properties

56

client

transport,

choosing

202

CLIENTID

object

property

49,

457

clients
configuring

queue

manager

15

connection

5

programming

67

verifying

16

closing
applications

209

JMS

resources

in

publish/subscribe

mode

219

resources

208

resources

using

JMS

1.1

252

code

examples

69

com.ibm.jms

package

299

com.ibm.mq.jar

9

com.ibm.mq.jms

package

298

com.ibm.mqbind.jar

9

com.ibm.mqjms.jar

9

combinations,

valid,

of

objects

and

properties

52

commands,

administration

44

compiling

WebSphere

MQ

classes

for

Java

programs

93

configuration

file,

for

administration

tool

42

configuring
environment

variables

26

for

publish/subscribe

26

for

WebSphere

Application

Server

44

Java

2

Security

Manager

13

LDAP

server

463

queue

manager

for

clients

15

the

administration

tool

42

to

run

applets

481

unsupported

InitialContextFactory

43

Web

server

12

your

classpath

25

your

installation

25

confirm

on

arrival

report

options,

message

133

©

Copyright

IBM

Corp.

1997,

2004

509

confirm

on

delivery

report

options,

message

133

connecting

to

a

publish/subscribe

broker

469

connecting

to

a

queue

manager

75

connecting

to

WebSphere

Business

Integration

Event

Broker
configuring

a

client

for

a

multicast

connection

473

configuring

a

client

for

connection

through

a

proxy

server

473

configuring

a

client

for

HTTP

tunnelling

473

configuring

a

client

for

SSL

authentication

472

configuring

the

broker

for

a

direct

connection

470

connecting

to

WebSphere

Business

Integration

Message

Broker
configuring

a

client

for

a

multicast

connection

473

configuring

a

client

for

connection

through

a

proxy

server

473

configuring

a

client

for

HTTP

tunnelling

473

configuring

a

client

for

SSL

authentication

472

configuring

the

broker

for

a

direct

connection

470

connecting

to

WebSphere

MQ

Event

Broker

469

connecting

to

WebSphere

MQ

Integrator

V2

469

connection
building

200

building

using

JMS

1.1

236

creating

201

interface

199

options

4

starting

201

WebSphere

MQ,

losing

230

Connection

interface

313

connection

pooling

80

example

81

connection

type,

defining

68

ConnectionConsumer

class

277

ConnectionConsumer

interface

318

ConnectionFactory

interface

319

ConnectionMetaData

interface

335

connector.jar

9

consumer

cleanup

utility

248

container-managed

transactions

476

sample

application

477

converting

the

log

file

41

COPY

(administration

verb)

45

core

classes

95

restrictions

and

variations

96,

485

createQueueSession

method

203

createReceiver

method

207

createSender

method

204

creating
a

connection

201

factories

at

runtime

201

JMS

objects

48

Topics

at

runtime

223

D
default

connection

pool

80

multiple

components

83

default

trace

and

log

output

locations

38

DEFINE

(administration

verb)

45

defining

connection

type

68

defining

transport

202

definition,

LDAP

schema

463

DELETE

(administration

verb)

45

DeliveryMode

interface

337

dependencies,

property

56

DESCRIPTION

object

property

49,

457

Destination

interface

338

destinations

239

differences

between

applets

and

applications

67

differences

due

to

environment

485

DIRECTAUTH

object

property

49,

457

directories,

installation

10

disconnecting

from

a

queue

manager

75

DISPLAY

(administration

verb)

45

disposition

options,

message

134,

281

distribution

lists
platform

dependency

98

durable

subscribers

224

E
ENCODING

object

property

57,

457

END

(administration

verb)

45

environment

dependencies

95

functions

not

with

all

platforms

98

distribution

lists

98

MQGetMessageOptions

fields

98

MQMD

fields

99

MQPutMessageOptions

fields

98

MQQueueManager

begin()

method

98

MQQueueManager

constructor

98

restrictions

and

variations

96

MQGMO_*

values

96

MQPMO_*

values

96

MQPMRF_*

values

96

MQRO_*

values

97

z/OS

and

OS/390

97

environment

differences

485

environment

variables

10

configuring

26

error
conditions

when

creating

an

object

59

conditions

when

using

an

object

59

handling

77

logging

39

recovery,

IVT

34

recovery,

PSIVT

37

runtime,

handling

209

runtime,

handling

using

JMS

1.1

252

error

messages

18

LDAP

server

463

example

code

69

exception

listener

209

exception

messages,

JMS

489

exception

report

options,

message

133,

281

ExceptionListener

interface

340

exceptions
JMS

209

JMS

1.1

252

WebSphere

MQ

209

exit

string

properties

57

expiration

report

options,

message

133

EXPIRY

object

property

49,

457

extra

function

provided

over

WebSphere

MQ

Java

3

F
factories,

creating

at

runtime

201

FAILIFQUIESCE

object

property

49,

457

formatLog

utility

41,

461

fscontext.jar

9

function,

extra

provided

over

WebSphere

MQ

Java

3

functions,

Application

Server

Facilities

277

G
getting

started

3

H
handling

errors

77

JMS

runtime

errors

209

messages

76

runtime

errors

using

JMS

1.1

252

headers,

message

257

HOSTNAME

object

property

49,

457

I
import

statements

217

INITIAL_CONTEXT_FACTORY

property

42,

43

inquire

and

set

78

installation
directories

10

Installation

Verification

Test

program

for

publish/subscribe

(PSIVT)

35

IVT

error

recovery

34

PSIVT

error

recovery

37

setup

25

verifying

19

Installation

Verification

Test

program

(IVT)

31

installing
WebSphere

MQ

classes

for

Java

9

WebSphere

MQ

classes

for

Java

Message

Service

9

interface,

programming

64

interfaces
JMS

199,

295

WebSphere

MQ

199

introduction
for

programmers

63

WebSphere

MQ

classes

for

Java

3

WebSphere

MQ

classes

for

Java

Message

Service

3

510

Using

Java

IVT

(Installation

Verification

Test

program)

31

IVTrun

utility

461

IVTRun

utility

31,

33,

37

IVTSetup

utility

32,

461

IVTTidy

utility

34,

461

J
J2EE

connector

architecture

81

JAAS

(Java

Authentication

and

Authorization

Service)

81,

181

jar

files

9

Java

2

Platform

Enterprise

Edition

(J2EE)

81

Java

2

Security

Manager,

running

applications

under

13

Java

Authentication

and

Authorization

Service

(JAAS)

81,

181

Java

classes

65

See

classes,

WebSphere

MQ

classes

for

Java

Java

Development

Kit

(JDK)

64

Java

interface,

advantages

63

Java

Transaction

API

(JTA)

449

with

WebSphere

Application

Server

V4

475

javaClassName
LDAP

attribute

setting

464

javaClassNames
LDAP

attribute

setting

464

javaCodebase
LDAP

attribute

setting

464

javaContainer
LDAP

objectClass

definition

466

javaFactory
LDAP

attribute

setting

465

javaNamingReference
LDAP

objectClass

definition

466

javaObject
LDAP

objectClass

definition

466

javaReferenceAddress
LDAP

attribute

setting

465

javaSerializedData
LDAP

attribute

setting

465

javaSerializedObject
LDAP

objectClass

definition

465

javax.jms

package

295

JDBC

coordination

87

JDK

(Java

Development

Kit)

64

JMS
administered

objects

200

applications,

writing

199

benefits

3

classes

295

exception

listener

209

exceptions

209

reference

489

interfaces

199,

295

introduction

3

mapping

of

fields

at

send

or

publish

268

mapping

with

MQMD

265

message

types

206

messages

257

model

199

objects

for

publish/subscribe

217

JMS

(continued)
objects,

administering

45

objects,

creating

48

objects,

properties

49

publish/subscribe

applications,

writing

213

resources,

closing

in

publish/subscribe

mode

219

JMS

1.1
applications,

writing

235

exceptions

252

model

235

JMS

exception

messages

489

JMS

JTA/XA

Interface
with

WebSphere

Application

Server

V4

475

JMS

Postcard
accessibility

24

changing

appearance

24

changing

browser

for

help

24

default

configuration

22

font

and

color

settings

24

how

it

works

22

interoperability

with

other

Postcard

applications

24

receiving

messages

23

sending

a

postcard

20

sending

messages

23

sign-on

20

advanced

options

20

starting

19

tidying

up

after

use

24

using

with

one

queue

manager

20

using

with

two

queue

managers

21

jms.jar

9

JMSAdmin

configuration

file

42,

43

JMSAdmin

utility

41,

461

JMSAdmin.config

file

41

JMSBytesMessage

class

300

JMSCorrelationID

header

field

257

JMSMapMessage

class

341

JMSMessage

class

349

JMSStreamMessage

class

405

JMSTextMessage

class

415

JNDI
retrieving

200

security

considerations

43

jndi.jar

9

JSSE
for

SSL

support

89,

210,

253

JTA

(Java

Transaction

API)

449

with

WebSphere

Application

Server

V4

475

JTA/JDBC

coordination

87

installation
other

platforms

87

Windows

87

known

problems

88

limitations

88

switch

file

87

usage

88

L
LDAP

naming

considerations

48

LDAP

schema

definition

463

LDAP

server

32

LDAP

server

(continued)
attribute

settings
javaClassName

464

javaClassNames

464

javaCodebase

464

javaFactory

465

javaReferenceAddress

465

javaSerializedData

465

configuration

463

error

messages

463

iSeries

OS/400

V4R5

Schema

Modification

467

Microsoft

Active

Directory

466

Netscape

Directory

466

objectClass

definitions
javaContainer

466

javaNamingReference

466

javaObject

466

javaSerializedObject

465

schema

463

Sun

Microsystems’

Schema

Modification

Applications

467

ldap.jar

9

library,

Java

classes

65

listener,

JMS

exception

209

Load1.java

287

Load2.java

290

local

publications,

suppressing

225

LOCALADDRESS

object

property

49,

457

log

file
converting

41

default

output

location

38

logging

errors

39

M
MA1G,

SupportPac
special

considerations

for

483

ManagedConnection

188

ManagedConnectionFactory

191

ManagedConnectionMetaData

193

manipulating

subcontexts

45

map

message

257

MapMessage
interface

341

type

207

mapping

properties

between

admin.

tool

and

programs

457

mcd

folder

471

message
body

257

delivery,

asynchronous

208

delivery,

asynchronous

using

JMS

1.1

248

error

18

handling

76

headers

257

message

body

273

properties

257

selectors

208,

257

selectors

and

SQL

258

selectors

in

publish/subscribe

mode

224

types

206,

257

Message

interface

349

MessageConsumer

interface

199,

363

Index

511

MessageListener

interface

366

MessageListenerFactory.java

286

MessageProducer

interface

199,

367

MessageProducer

object

204

messages
JMS

257

mapping

between

JMS

and

WebSphere

MQ

261

poison

280

publishing

219

receiving

207

receiving

in

publish/subscribe

mode

219

receiving

using

JMS

1.1

241

selecting

208,

257

sending

204

sending

using

JMS

1.1

240

model
JMS

199

JMS

1.1

235

MOVE

(administration

verb)

45

MQC

179

MQChannelDefinition

102

MQChannelExit

104

MQCNO_FASTPATH_BINDING
variations

by

environment

96

MQConnection

class

313

MQConnectionConsumer

class

277,

318

MQConnectionFactory

class

319

MQConnectionManager

181

MQConnectionMetaData

class

335

MQDeliveryMode

class

337

MQDestination

class

338

MQDistributionList

107

MQDistributionListItem

109

MQEnvironment

68,

74,

110

MQException

117

MQGetMessageOptions

119

MQGetMessageOptions

fields
platform

dependency

98

MQGMO_*

values
variations

by

environment

96

MQIVP
listing

17

sample

application

16

tracing

17

mqjavac
using

to

verify

29

MQManagedObject

123

MQMD

(MQSeries

Message

Descriptor)

261

MQMD

fields
platform

dependency

99

MQMessage

76,

126

MQMessageConsumer

class

363

MQMessageProducer

interface

367

MQMessageTracker

144

MQObjectMessage

class

374

MQPMO_*

values
variations

by

environment

96

MQPMRF_*

values
variations

by

environment

96

MQPoolServices

146

MQPoolServicesEvent

147

MQPoolServicesEventListener

180

MQPoolToken

149

MQProcess

150

MQPutMessageOptions

152

MQPutMessageOptions

fields
platform

dependency

98

MQQueue

76,

155

(JMS

object)

47

class

375

for

verification

32

MQQueueBrowser

class

377

MQQueueConnection

class

379

MQQueueConnectionFactory
(JMS

object)

47

class

381

for

verification

32

interface

381

object

200

set

methods

202

MQQueueEnumeration

class

373

MQQueueManager

75,

163

MQQueueManager

begin()

method
platform

dependency

98

MQQueueManager

constructor
platform

dependency

98

MQQueueReceiver

class

384

MQQueueSender

interface

387

MQQueueSession

class

390

MQReceiveExit

182

MQRFH2

header

262

mcd

folder

of

the

471

MQRO_*

values
variations

by

environment

97

MQSecurityExit

184

MQSendExit

186

MQSession

class

277,

393

MQSimpleConnectionManager

176

MQTemporaryQueue

class

413

MQTemporaryTopic

class

414

MQTopic
(JMS

object)

47

class

416

MQTopicConnection

class

420

MQTopicConnectionFactory
(JMS

object)

47

class

423

object

200

MQTopicPublisher

class

431

MQTopicSession

class

436

MQTopicSubscriber

class

440

MQXAConnection

class

441

MQXAConnectionFactory

class

443

MQXAQueueConnection

class

445

MQXAQueueConnectionFactory

class

446

MQXAQueueSession

class

448

MQXASession

class

449

MQXATopicConnection

class

451

MQXATopicConnectionFactory

class

452

MQXATopicSession

class

454

MSGBATCHSZ

object

property

49,

457

MSGRETENTION

object

property

49,

457

MSGSELECTION

object

property

49,

457

MULTICAST

object

property

49,

457

multithreaded

programs

79

MyServerSession.java

285

MyServerSessionPool.java

285

N
NAME_PREFIX

property

43

NAME_READABILITY_MARKER

property

43

names,

of

Topics

221

naming

considerations,

LDAP

48

non-durable

subscribers

224

O
object

creation,

error

conditions

59

object

use,

error

conditions

59

ObjectMessage
interface

374

type

207

objects
administered

200

JMS,

administering

45

JMS,

creating

48

JMS,

properties

49

message

257

retrieving

from

JNDI

200

objects

and

properties,

valid

combinations

52

obtaining

a

session

203

using

JMS

1.1

238

one-phase

optimization
with

WebSphere

Application

Server

V4

476

operations

on

queue

managers

74

options
connection

4

subscribers

224

overview

3

P
package

com.ibm.jms

299

com.mq.ibm.jms

298

javax.jms

295

PERSISTENCE

object

property

49,

457

platform

differences

485

point-to-point

installation

verification

31

poison

messages

280

POLLINGINT

object

property

49,

457

PORT

object

property

49,

457

ports,

specifying

a

range

for

client

connections
WebSphere

MQ

base

Java

68

WebSphere

MQ

JMS

203

WebSphere

MQ

JMS

1.1

237

postcard.ini

24

prerequisite

software

6

PRIORITY

object

property

49,

457

problems,

solving

17,

38

problems,

solving

in

publish/subscribe

mode

229

processes,

accessing

75

programmers,

introduction

63

programming
bindings

connection

68

client

connections

67

compiling

93

connections

67

multithreaded

79

512

Using

Java

programming

(continued)
tracing

94

writing

67

programming

interface

64

programs
JMS

1.1,

writing

235

JMS

publish/subscribe,

writing

213

JMS,

writing

199

running

38,

94

tracing

38

properties
client

56

dependencies

56

for

Secure

Sockets

Layer

58

for

WebSphere

MQ

Event

Broker

57

mapping

between

admin.

tool

and

programs

457

message

257

of

exit

strings

57

of

JMS

objects

49

queue,

setting

204

properties

and

objects,

valid

combinations

52

PROVIDER_PASSWORD

property

43

PROVIDER_URL

property

42

PROVIDER_USERDN

property

43

providerutil.jar

9

PROXYHOSTNAME

object

property

49,

457

PROXYPORT

object

property

49,

457

PSIVT

(Installation

Verification

Test

program)

35

PSIVTRun

utility

35,

461

PSReportDump

application

233

PUBACKINT

object

property

49,

457

publications

(publish/subscribe),

local

suppressing

225

publish/subscribe
installation

verification

test

program

(PSIVT)

35

sample

application

with

WebSphere

Application

Server

V4

478

setup

for

26

publish/subscribe

broker,

connecting

to

469

publishing

messages

219

Q
QMANAGER

object

property

49,

457

Queue
interface

375

object

200

queue

manager
configuring

for

clients

15

connecting

to

75

disconnecting

from

75

operations

on

74

QUEUE

object

property

49,

457

queue

properties
setting

204

setting

with

set

methods

206

QueueBrowser

interface

377

QueueConnection

interface

379

QueueReceiver

interface

384

QueueRequestor

class

385

queues,

accessing

75

QueueSender

interface

387

QueueSession

interface

390

R
range

of

ports,

specifying

for

client

connections
WebSphere

MQ

base

Java

68

WebSphere

MQ

JMS

203

WebSphere

MQ

JMS

1.1

237

reading

strings

77

receiving
messages

207

messages

in

publish/subscribe

mode

219

messages

using

JMS

1.1

241

RECEXIT

object

property

49,

457

RECEXITINIT

object

property

49,

457

report

options,

message

133,

281

reports,

broker

233

resources
closing

208

closing

using

JMS

1.1

252

restrictions

and

variations
to

core

classes

485

retrieving

objects

from

JNDI

200

runjms

utility

38,

461

running
applets

93

applications

under

CICS

Transaction

Server

485

in

a

Web

browser

5

programs

38

standalone

program

5

the

IVT

31

the

PSIVT

35

WebSphere

MQ

classes

for

Java

programs

94

with

appletviewer

5

your

own

programs

17

runtime
creating

factories

201

creating

Topics

223

errors,

handling

209

errors,

handling

using

JMS

1.1

252

S
sample

applet
using

to

verify

29

sample

application
bean-managed

transactions

478

bindings

mode

72

container-managed

transactions

477

publish/subscribe

215

publish/subscribe

with

WebSphere

Application

Server

V4

478

tracing

17

using

Application

Server

Facilities

287

using

to

verify

16

WebSphere

MQ

JMS

with

WebSphere

Application

Server

V4

476

sample

classpath

settings

10

sample

code
applet

69

sample

code

(continued)
ServerSession

283

ServerSessionPool

283

Sample1EJB.java

477

Sample2EJB.java

478

Sample3EJB.java

478

schema

definition,

LDAP

463

schema,

LDAP

server

463

scripts

provided

with

WebSphere

MQ

classes

for

Java

Message

Service

461

SECEXIT

object

property

49,

457

SECEXITINIT

object

property

49,

457

Secure

Sockets

Layer

79,

210

certificate

revocation

list

(CRL)

91

CipherSpecs

90,

487

CipherSuites

90

CipherSuites

supported

487

distinguished

names

(DN)

90

enabling

90

handled

by

JSSE

89,

210,

253

introduction

89,

210,

253

properties

58

SSLCERTSTORES

211,

255

SSLCIPHERSUITE

210,

254

SSLPEERNAME

210,

254

sslCertStores

property

92

sslCipherSuite

property

90

sslPeerName

property

90

sslSocketFactory

property

92

using

JMS

1.1

253

with

user

exits

79

security

considerations,

JNDI

43

Security

policy

definition

file,

editing

13

SECURITY_AUTHENTICATION

property

42,

43

selecting

a

subset

of

messages

208,

257

selectors
message

208,

257

message

in

publish/subscribe

mode

224

message,

and

SQL

258

SENDEXIT

object

property

49,

457

SENDEXITINIT

object

property

49,

457

sending
messages

204

messages

using

JMS

1.1

240

ServerSession

sample

code

283

ServerSessionPool

sample

code

283

session
obtaining

203

obtaining

using

JMS

1.1

238

Session

class

277

Session

interface

199,

393

set

and

inquire

78

set

methods
on

MQQueueConnectionFactory

202

using

to

set

queue

properties

206

setJMSType

method

471

setting
queue

properties

204

queue

properties

with

set

methods

206

shutting

down

applications

209

software,

prerequisites

6

solving

problems

17

general

38

in

publish/subscribe

mode

229

Index

513

SPARSESUBS

object

property

49,

457

SQL

for

message

selectors

258

SSL
See

Secure

Sockets

Layer

SSLCERTSTORES

object

property

211,

255

sslCertStores

property

92

SSLCIPHERSUITE

object

property

49,

58,

210,

254,

457

sslCipherSuite

property

90

SSLCRL

object

property

49,

58,

457

SSLPEERNAME

object

property

49,

58,

210,

254,

457

sslPeerName

property

90

sslSocketFactory

property

92

standalone

program,

running

5

starting

a

connection

201

starting

the

administration

tool

41

STATREFRESHINT

object

property

49,

457

stream

message

257

StreamMessage
interface

405

type

207

strings,

reading

and

writing

77

subcontexts,

manipulating

45

subscriber

cleanup

utility

230

subscriber

options

224

subscriptions,

receiving

219

subset

of

messages,

selecting

208,

257

SUBSTORE

object

property

49

Sun

JMS

interfaces

and

classes

295

Sun

Web

site

3

SupportPac

MA1G
special

considerations

for

483

suppressing

local

publications

225

switch

file

for

JTA/JDBC

87

SYNCPOINTALLGETS

object

property

49,

457

T
TARGCLIENT

object

property

49,

457

TCP/IP
client

verifying

16

connection,

programming

67

TEMPMODEL

object

property

49,

457

TemporaryQueue

interface

413

TemporaryTopic

interface

414

TEMPQPREFIX

object

property

49

termination,

unexpected

230

testing

WebSphere

MQ

classes

for

Java

programs

94

text

message

257

TextMessage
interface

415

type

207

tokens,

connection

pooling

80

Topic
interface

217,

416

names

221

names,

wildcards

221

object

200

TOPIC

object

property

49,

457

TopicConnection

217

interface

420

TopicConnectionFactory

217

TopicConnectionFactory

(continued)
interface

423

TopicLoad.java

291

TopicPublisher

219

interface

431

TopicRequestor

class

434

TopicSession

217

interface

436

TopicSubscriber

219

interface

440

trace,

default

output

location

38

tracing
programs

94

the

sample

application

17

WebSphere

MQ

for

Java

Message

Service

38

transactions
bean-managed

476

container-managed

476

sample

application

477,

478

TRANSPORT

object

property

49,

457

transport,

choosing

202

two-phase

commit
with

WebSphere

Application

Server

V4

476

types

of

JMS

message

206,

257

U
unexpected

application

termination

230

uniform

resource

identifier

(URI)

for

queue

properties

204

URI

for

queue

properties

204

USE_INITIAL_DIR_CONTEXT

property

43

USECONNPOOLING

object

property

457

USECONPOOLING

object

property

49

user

exits
with

SSL

79

writing

79,

209

writing

using

JMS

1.1

253

uses

for

WebSphere

MQ

4

using
WebSphere

MQ

base

Java

15

utilities

provided

with

WebSphere

MQ

classes

for

Java

Message

Service

461

V
valid

combinations

of

objects

and

properties

52

verbs,

WebSphere

MQ

supported

64

verification
with

JNDI

(point-to-point)

32

with

JNDI

(publish/subscribe)

36

without

JNDI

(point-to-point)

31

without

JNDI

(publish/subscribe)

35

verifying
client

mode

installation

29

TCP/IP

clients

16

with

the

sample

applet

29

with

the

sample

application

16

your

installation

19

versions

of

software

required

6

VisiBroker
using

4

W
Web

browser
using

5

Web

server,

configuring

12

WebSphere

Application

Server

283

configuration

44

CosNaming

namespace

42

CosNaming

repository

42,

44

WebSphere

Application

Server

V4
JMS

JTA/XA

Interface

475

using

with

JMS

475

WebSphere

Business

Integration

Event

Broker,

connecting

to
configuring

a

client

for

a

multicast

connection

473

configuring

a

client

for

connection

through

a

proxy

server

473

configuring

a

client

for

HTTP

tunnelling

473

configuring

a

client

for

SSL

authentication

472

configuring

the

broker

for

a

direct

connection

470

WebSphere

Business

Integration

Message

Broker,

connecting

to
configuring

a

client

for

a

multicast

connection

473

configuring

a

client

for

connection

through

a

proxy

server

473

configuring

a

client

for

HTTP

tunnelling

473

configuring

a

client

for

SSL

authentication

472

configuring

the

broker

for

a

direct

connection

470

WebSphere

MQ
connection,

losing

230

exceptions

209

interfaces

199

messages

261

WebSphere

MQ

classes

for

Java

classes

101

WebSphere

MQ

Event

Broker
connecting

as

publish/subscribe

broker

469

WebSphere

MQ

Event

Broker

properties

57

WebSphere

MQ

Integrator

V2
connecting

as

publish/subscribe

broker

469

transforming

and

routing

messages

471

WebSphere

MQ

Message

Descriptor

(MQMD)

261

mapping

with

JMS

265

WebSphere

MQ

Publish/Subscribe

26

WebSphere

MQ

supported

verbs

64

wildcards

in

topic

names

221

writing
JMS

1.1

applications

235

JMS

applications

199

JMS

publish/subscribe

applications

213

514

Using

Java

writing

(continued)
programs

67

strings

77

user

exits

79,

209

user

exits

using

JMS

1.1

253

X
XAConnection

interface

441

XAConnectionFactory

interface

443

XAQueueConnection

interface

379,

445

XAQueueConnectionFactory

interface

381,

446

XAQueueSession

interface

448

XAResource

449

XASession

interface

449

XATopicConnection

interface

451

XATopicConnectionFactory

interface

452

XATopicSession

interface

454

Z
z/OS

and

OS/390
differences

with

97

Index

515

516

Using

Java

Sending

your

comments

to

IBM

If

you

especially

like

or

dislike

anything

about

this

book,

please

use

one

of

the

methods

listed

below

to

send

your

comments

to

IBM.

Feel

free

to

comment

on

what

you

regard

as

specific

errors

or

omissions,

and

on

the

accuracy,

organization,

subject

matter,

or

completeness

of

this

book.

Please

limit

your

comments

to

the

information

in

this

book

and

the

way

in

which

the

information

is

presented.

To

make

comments

about

the

functions

of

IBM

products

or

systems,

talk

to

your

IBM

representative

or

to

your

IBM

authorized

remarketer.

When

you

send

comments

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

your

comments

in

any

way

it

believes

appropriate,

without

incurring

any

obligation

to

you.

You

can

send

your

comments

to

IBM

in

any

of

the

following

ways:

v

By

mail,

to

this

address:

User

Technologies

Department

(MP095)

IBM

United

Kingdom

Laboratories

Hursley

Park

WINCHESTER,

Hampshire

SO21

2JN

United

Kingdom
v

By

fax:

–

From

outside

the

U.K.,

after

your

international

access

code

use

44–1962–816151

–

From

within

the

U.K.,

use

01962–816151
v

Electronically,

use

the

appropriate

network

ID:

–

IBM

Mail

Exchange:

GBIBM2Q9

at

IBMMAIL

–

IBMLink™:

HURSLEY(IDRCF)

–

Internet:

idrcf@hursley.ibm.com

Whichever

method

you

use,

ensure

that

you

include:

v

The

publication

title

and

order

number

v

The

topic

to

which

your

comment

applies

v

Your

name

and

address/telephone

number/fax

number/network

ID.

©

Copyright

IBM

Corp.

1997,

2004

517

518

Using

Java

����

Printed

in

USA

SC34-6066-02

	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	How to use this book
	Terms used in this book

	Summary of changes
	Changes for this edition (SC34–6066–02)
	Changes for the second edition (SC34-6066-01)
	Changes for the first edition (SC34-6066-00)

	Part 1. Guidance for users
	Chapter 1. Getting started
	What are WebSphere MQ classes for Java?
	What are WebSphere MQ classes for Java Message Service?
	Who should use WebSphere MQ Java?
	Connection options
	Client connection
	Bindings connection

	Prerequisites

	Chapter 2. Installation
	What is installed
	Installation directories
	Environment variables
	STEPLIB configuration on z/OS and OS/390

	Web server configuration
	Running WebSphere MQ Java applications under the Java 2 Security Manager

	Chapter 3. Using WebSphere MQ classes for Java (WebSphere MQ base Java)
	Configuring your queue manager to accept client connections
	TCP/IP client

	Verifying with the sample application
	Running your own WebSphere MQ base Java programs
	Solving WebSphere MQ base Java problems
	Tracing the sample application
	Error messages

	Chapter 4. Using WebSphere MQ classes for Java Message Service (WebSphere MQ JMS)
	JMS Postcard
	Setting up JMS Postcard
	Starting
	Sign-on
	Sign-on advanced options

	Sending a postcard
	Running JMS Postcard with one queue manager
	Running JMS Postcard with two queue managers

	JMS Postcard configuration
	JMS Postcard default configuration

	How JMS Postcard works
	Starting up
	Receiving messages
	Sending messages
	How the postcards get there
	Tidying up undeliverable messages
	Exchanging messages between different WebSphere MQ Postcard applications
	Customizing JMS Postcard

	Post installation setup
	Additional setup for publish/subscribe mode
	For a broker running on a remote queue manager

	Queues that require authorization for non-privileged users

	Using the sample JMS applet to verify the TCP/IP client
	Using the sample applet with OS/400
	Running the sample applet
	Tracing the sample as an application

	Running the point-to-point IVT
	Point-to-point verification without JNDI
	Point-to-point verification with JNDI
	IVT error recovery

	The publish/subscribe installation verification test
	Publish/subscribe verification without JNDI
	Publish/subscribe verification with JNDI
	PSIVT error recovery

	Running your own WebSphere MQ JMS programs
	Solving problems
	Tracing programs
	Logging

	Chapter 5. Using the WebSphere MQ JMS administration tool
	Invoking the administration tool
	Configuration
	Using an unlisted InitialContextFactory
	Security
	Configuring for WebSphere Application Server V3.5

	Administration commands
	Manipulating subcontexts
	Administering JMS objects
	Object types
	Verbs used with JMS objects
	Creating objects
	LDAP naming considerations

	Properties
	Property dependencies
	The ENCODING property
	SSL properties
	Sample error conditions

	Part 2. Programming with WebSphere MQ base Java
	Chapter 6. Introduction for programmers
	Why should I use the Java interface?
	The WebSphere MQ classes for Java interface
	Java Development Kit
	WebSphere MQ classes for Java class library

	Chapter 7. Writing WebSphere MQ base Java programs
	Should I write applets or applications?
	Connection differences
	Client connections
	Bindings mode
	Defining which connection to use
	Specifying a range of ports for client connections

	Example code fragments
	Example applet code
	Example application code

	Operations on queue managers
	Setting up the WebSphere MQ environment
	Connecting to a queue manager

	Accessing queues and processes
	Handling messages
	Handling errors
	Getting and setting attribute values
	Multithreaded programs
	Writing user exits
	Connection pooling
	Controlling the default connection pool
	The default connection pool and multiple components
	Supplying a different connection pool
	Supplying your own ConnectionManager

	JTA/JDBC coordination using WebSphere MQ base Java
	Installation
	Installation on Windows systems
	Installation on other platforms

	Usage
	Known problems and limitations

	Secure Sockets Layer (SSL) support
	Enabling SSL
	Using the distinguished name of the queue manager
	Using certificate revocation lists
	Supplying a customized SSLSocketFactory
	Error handling when using SSL

	Compiling and testing WebSphere MQ base Java programs
	Running WebSphere MQ base Java applets
	Running WebSphere MQ base Java applications
	Tracing WebSphere MQ base Java programs

	Chapter 8. Environment-dependent behavior
	Core details
	Restrictions and variations for core classes
	MQGMO_* values
	MQPMRF_* values
	MQPMO_* values
	MQCNO_FASTPATH_BINDING
	MQRO_* values
	Miscellaneous differences with z/OS and OS/390

	Features outside the core
	MQQueueManager constructor option
	MQQueueManager.begin() method
	MQGetMessageOptions fields
	Distribution lists
	MQPutMessageOptions fields
	MQMD fields

	Chapter 9. The WebSphere MQ base Java classes and interfaces
	MQChannelDefinition
	Variables
	Constructors

	MQChannelExit
	Variables
	Constructors

	MQDistributionList
	Constructors
	Methods

	MQDistributionListItem
	Variables
	Constructors

	MQEnvironment
	Variables
	Constructors
	Methods

	MQException
	Variables
	Constructors
	Methods

	MQGetMessageOptions
	Variables
	Constructors

	MQManagedObject
	Variables
	Constructors
	Methods

	MQMessage
	Variables
	Constructors
	Methods

	MQMessageTracker
	Variables

	MQPoolServices
	Constructors
	Methods

	MQPoolServicesEvent
	Variables
	Constructors
	Methods

	MQPoolToken
	Constructors

	MQProcess
	Constructors
	Methods

	MQPutMessageOptions
	Variables
	Constructors

	MQQueue
	Constructors
	Methods

	MQQueueManager
	Variables
	Constructors
	Methods

	MQSimpleConnectionManager
	Variables
	Constructors
	Methods

	MQC
	MQPoolServicesEventListener
	Methods

	MQConnectionManager
	MQReceiveExit
	Methods

	MQSecurityExit
	Methods

	MQSendExit
	Methods

	ManagedConnection
	Methods

	ManagedConnectionFactory
	Methods

	ManagedConnectionMetaData
	Methods

	Part 3. Programming with WebSphere MQ JMS
	Chapter 10. Writing WebSphere MQ JMS applications
	The JMS model
	Building a connection
	Retrieving the factory from JNDI
	Using the factory to create a connection
	Creating factories at runtime
	Starting the connection

	Choosing client or bindings transport
	Specifying a range of ports for client connections

	Obtaining a session
	Sending a message
	Setting properties with the set method
	Message types

	Receiving a message
	Message selectors
	Asynchronous delivery

	Closing down
	Java Virtual Machine hangs at shutdown

	Handling errors
	Exception listener

	User exits
	Using Secure Sockets Layer (SSL)
	SSL administrative properties
	SSLCIPHERSUITE object property
	SSLPEERNAME object property
	SSLCERTSTORES object property
	SSLSocketFactory object property

	Chapter 11. Writing WebSphere MQ JMS publish/subscribe applications
	Introduction
	Getting started with WebSphere MQ JMS and publish/subscribe
	Choosing a broker
	Setting up the broker to run the WebSphere MQ JMS
	Connecting to your broker using WebSphere MQ
	Connecting to your broker directly

	Writing a simple publish/subscribe application connecting through WebSphere MQ
	Import required packages
	Obtain or create JMS objects
	Publish messages
	Receive subscriptions
	Close down unwanted resources
	TopicConnectionFactory administered objects
	Topic administered objects

	Using topics
	Topic names
	Creating topics at runtime

	Subscriber options
	Creating non-durable subscribers
	Creating durable subscribers
	Using message selectors
	Suppressing local publications
	Combining the subscriber options
	Configuring the base subscriber queue
	Default configuration
	Configuring non-durable subscribers
	Configuring durable subscribers

	Subscription stores
	Migration and coexistence considerations

	Solving publish/subscribe problems
	Incomplete publish/subscribe close down
	Subscriber cleanup utility
	Manual cleanup
	Cleanup from within a program
	Handling broker reports
	Other considerations

	Chapter 12. Writing WebSphere MQ JMS 1.1 applications
	The JMS 1.1 model
	Building a connection
	Retrieving a connection factory from JNDI
	Using a connection factory to create a connection
	Creating a connection factory at runtime
	Starting the connection
	Specifying a range of ports for client connections

	Obtaining a session
	Destinations
	Sending a message
	Message types

	Receiving a message
	Creating durable topic subscribers
	Message selectors
	Suppressing local publications
	Configuring the consumer queue
	Default configuration
	Configuring nondurable message consumers
	Configuring durable topic subscribers

	Subscription stores
	Migration and coexistence considerations

	Asynchronous delivery
	Consumer cleanup utility for the publish/subscribe domain
	Manual cleanup
	Cleanup from within a program

	Closing down
	Java Virtual Machine hangs at shutdown

	Handling errors
	Exception listener
	Handling broker reports
	Other considerations

	User exits
	Using Secure Sockets Layer (SSL)
	SSL administrative properties
	SSLCIPHERSUITE object property
	SSLPEERNAME object property
	SSLCERTSTORES object property
	SSLSocketFactory object property

	Chapter 13. JMS messages
	Message selectors
	Mapping JMS messages onto WebSphere MQ messages
	The MQRFH2 header
	JMS fields and properties with corresponding MQMD fields
	Mapping JMS fields onto WebSphere MQ fields (outgoing messages)
	Mapping JMS header fields at send() or publish()
	Mapping JMS property fields
	Mapping JMS provider-specific fields

	Mapping WebSphere MQ fields onto JMS fields (incoming messages)
	Mapping JMS to a native WebSphere MQ application
	Message body

	Chapter 14. WebSphere MQ JMS Application Server Facilities
	ASF classes and functions
	ConnectionConsumer
	Planning an application
	General principles for point-to-point messaging
	General principles for publish/subscribe messaging
	Handling poison messages
	Removing messages from the queue

	Error handling
	Recovering from error conditions
	Reason and feedback codes

	Application server sample code
	MyServerSession.java
	MyServerSessionPool.java
	MessageListenerFactory.java

	Examples of ASF use
	Load1.java
	CountingMessageListenerFactory.java
	ASFClient1.java
	Load2.java
	LoggingMessageListenerFactory.java
	ASFClient2.java
	TopicLoad.java
	ASFClient3.java
	ASFClient4.java
	ASFClient5.java

	Chapter 15. JMS interfaces and classes
	Sun Java Message Service classes and interfaces
	WebSphere MQ JMS classes
	BytesMessage
	Methods

	Cleanup *
	WebSphere MQ constructor
	Methods

	Connection
	Methods

	ConnectionConsumer
	Methods

	ConnectionFactory
	WebSphere MQ constructor
	Methods

	ConnectionMetaData
	WebSphere MQ constructor
	Methods

	DeliveryMode
	Fields

	Destination
	WebSphere MQ constructors
	Methods

	ExceptionListener
	Methods

	MapMessage
	Methods

	Message
	Fields
	Methods

	MessageConsumer
	Methods

	MessageListener
	Methods

	MessageProducer
	WebSphere MQ constructors
	Methods

	MQQueueEnumeration *
	Methods

	ObjectMessage
	Methods

	Queue
	WebSphere MQ constructors
	Methods

	QueueBrowser
	Methods

	QueueConnection
	Methods

	QueueConnectionFactory
	WebSphere MQ constructor
	Methods

	QueueReceiver
	Methods

	QueueRequestor
	Constructors
	Methods

	QueueSender
	Methods

	QueueSession
	Methods

	Session
	Fields
	Methods

	StreamMessage
	Methods

	TemporaryQueue
	Methods

	TemporaryTopic
	WebSphere MQ constructor
	Methods

	TextMessage
	Methods

	Topic
	WebSphere MQ constructor
	Methods

	TopicConnection
	Methods

	TopicConnectionFactory
	WebSphere MQ constructor
	Methods

	TopicPublisher
	Methods

	TopicRequestor
	Constructors
	Methods

	TopicSession
	WebSphere MQ constructor
	Methods

	TopicSubscriber
	Methods

	XAConnection
	Methods

	XAConnectionFactory
	Methods

	XAQueueConnection
	Methods

	XAQueueConnectionFactory
	Methods

	XAQueueSession
	Methods

	XASession
	Methods

	XATopicConnection
	Methods

	XATopicConnectionFactory
	Methods

	XATopicSession
	Methods

	Part 4. Appendixes
	Appendix A. Mapping between administration tool properties and programmable properties
	Appendix B. Scripts provided with WebSphere MQ classes for Java Message Service
	Appendix C. LDAP schema definition for storing Java objects
	Checking your LDAP server configuration
	Attribute definitions
	objectClass definitions
	Server-specific configuration details
	Netscape Directory (4.1 and earlier)
	Microsoft Active Directory
	Sun Microsystems' schema modification applications
	OS/400 V4R5 Schema Modification

	Appendix D. Connecting to other products
	Setting up a publish/subscribe broker
	Transformation and routing with WebSphere MQ Integrator V2
	Configuring WebSphere MQ JMS for a direct connection to WebSphere Business Integration Event Broker Version 5.0 and WebSphere Business Integration Message Broker Version 5.0
	Secure Sockets Layer (SSL) authentication
	Multicast
	HTTP tunnelling
	Connect via proxy

	Appendix E. JMS JTA/XA interface with WebSphere Application Server V4
	Using the JMS interface with WebSphere Application Server
	Administered objects
	Container-managed versus bean-managed transactions
	Two-phase commit versus one-phase optimization
	Defining administered objects
	Retrieving administration objects

	Samples
	Sample1
	Sample2
	Sample3

	Appendix F. Using WebSphere MQ Java in applets with Java 1.2 or later
	Changing browser security settings
	Copying package class files

	Appendix G. Information for SupportPac MA1G
	Environments supported by SupportPac MA1G
	Obtaining and installing SupportPac MA1G
	Verifying installation using the sample program

	Features not provided by SupportPac MA1G
	Running WebSphere MQ base Java applications under CICS Transaction Server for OS/390
	Restrictions under CICS Transaction Server

	Appendix H. SSL CipherSuites supported by WebSphere MQ
	Appendix I. JMS exception messages
	Appendix J. Notices
	Trademarks

	Index
	Sending your comments to IBM

