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Executive summary

This white paper provides a short primer on real-time applications and the 

issues and concerns with using a standard Java™ Virtual Machine (JVM) to run 

them. It then describes how IBM has addressed most of these problems in the 

IBM WebSphere® Real Time product. In particular, this white paper discusses 

the innovations made in each of the core components of the new real-time JVM, 

including the Metronome garbage collector, the J9 JVM, IBM ahead-of-time 

(AOT) and just-in-time (JIT) compilers, the extensions to IBM’s core class 

libraries and the new class libraries provided as part of IBM Real-Time 

Specification for Java (RTSJ) support. 

What is a real-time application?

Real-time is a particularly broad term that is used to describe applications that 

have real-world timing requirements. For example, a sluggish user interface 

does not satisfy the generic real-time requirements of an average user. This 

form of application is often described as a soft real-time application, because no 

harm comes from the application being slow to respond, other than loss of sales 

for a poor product. The same requirement might be more explicitly phrased as 

“The application should not take more than a quarter of a second to respond to 

a mouse click.” If the requirement is not met, it is a soft failure — the application 

can continue and the user, although unhappy, can still use the application. In 

contrast, applications where real-world timing requirements must be strictly 

met are typically called hard real-time applications. An application controlling 

the rudder of an airplane, for example, cannot be delayed for any reason 

because the result would be catastrophic. 
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A key aspect of real-time requirements is response time. When writing hard  

or soft real-time applications, it is critical to understand the response-time  

constraint. The techniques required to meet a hard one-microsecond response 

are significantly different than those required for a hard 100-millisecond 

response. In practice, achieving response times below tens of microseconds 

requires a combination of custom hardware and software, possibly with no 

operating system.

This white paper describes the WebSphere Real Time product, which can  

provide hard response-time guarantees for real-time Java applications  

requiring responses of tens of microseconds and more.

Can Java technology be used for real-time applications?

Standard Java applications running on a general-purpose JVM, on a general-

purpose operating system, such as Microsoft® Windows® or Linux®, can only 

hope to achieve soft real-time requirements in the hundreds of milliseconds. 

Several fundamental aspects of the language are responsible, including class 

loading and compilation, garbage collection, and thread management. Some  

of these issues can be mitigated, but only with significant work. 

Class loading and compilation

A JVM must delay loading a class until a program first refers to it. This class 

loading can take a variable amount of time depending on the speed of the 

medium from which the class is loaded, the size of the class and the overhead 

incurred by the class loaders themselves. The delay to load a class can often be 

as high as 10 milliseconds. If you need to load tens, hundreds or thousands of 

these classes, the loading time itself can cause a significant and possibly  

unexpected delay. You can use careful application design to load all classes at 

application startup, but class loading must be performed manually because the 

Java language specification1 does not permit the JVM to perform this step early. 
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Compiling Java code to native code introduces a similar problem. Most  

modern JVMs interpret Java methods, compiling only frequently run methods 

as required to native code. Not compiling immediately results in fast startup  

and helps reduce the amount of compilation that needs to be performed, but it 

creates a problem for a hard real-time application because methods run more 

slowly when the interpreting phase is initially running. As with class loading, 

using the compiler class to programmatically compile methods at application 

startup can mitigate this problem, but maintaining such a list of methods is 

tedious and error prone.

Garbage collection 

Another source of frustration for hard real-time programmers using Java is  

garbage collection. Errors introduced by the need to explicitly manage memory 

in languages such as C and C++ are some of the most difficult problems to 

diagnose. Proving the absence of such errors when an application is deployed is 

also a fundamental challenge. One of the major strengths of the Java program-

ming model is that the JVM, not the application, handles memory management, 

which helps eliminate this burden for the application programmer. 

Unfortunately, traditional garbage collectors can incur very large application 

delays that are virtually impossible for the application programmer to predict. 

Delays of several hundred milliseconds are not unusual. One way to solve this 

problem is to prevent garbage collections by creating a set of objects that are 

reused, helping to ensure that the Java heap memory is never exhausted. In 

practice, this approach generally fails because it prevents programmers from 

using many of the class libraries provided in the Java Development Kit (JDK) 

and by other class vendors, which typically create many temporary objects.

Thread management

Standard Java does not provide any guarantees for thread scheduling or thread 

priorities. An application that must respond to events in a well-defined time has 

no way to ensure that another low-priority thread won’t get scheduled in front of 

a high-priority thread. To compensate, a programmer would have to partition 

an application into a set of applications that can then be run at different  

priorities by the operating system. This approach would increase the overhead 

of these events and make communication between the events far more challenging.
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RTSJ: Addressing the challenges of real-time environments

RTSJ was created to address some of the limitations of the Java language  

and provide solutions to some of the problems outlined in the previous section. 

The RTSJ addresses several areas including scheduling, threading, memory 

management, synchronization, time and clocks, and asynchrony.

Scheduling

Real-time systems need to control how threads will be scheduled and guarantee 

that, given the same conditions, threads are scheduled in a predictable way. 

Although the Java Class Library (JCL) includes the concept of thread priorities, 

the JVM is not required to enforce priorities. In addition, non-real-time Java 

implementations typically use a round-robin preemptive scheduling approach 

with unpredictable scheduling order. With the RTSJ, true priorities and a 

fixed-priority preemptive scheduler with priority inheritance support is 

required for real-time threads. This scheduling approach helps in that the 

highest-priority thread can always be the one running, and it will continue to 

run until it releases the processor voluntarily or is preempted by a higher-priority 

thread. Priority inheritance helps ensure that priority inversion is avoided 

when a higher-priority thread needs a resource held by a lower-priority thread.

Threads

The RTSJ adds support for two new thread classes: RealtimeThreads and 

NoHeapRealtimeThreads (NHRTs). These new thread classes provide support 

for priorities, periodic behavior, deadlines with handlers than can be triggered 

when the deadline is exceeded, and the use of memory areas other than the 

heap. NHRTs cannot access the heap, and so, unlike other types of threads, 

NHRTs do not need to be interrupted or preempted by garbage collection.  

Real-time systems typically use NHRTs with high priorities for tasks with  

the tightest latency requirements, RealtimeThreads for tasks with latency 

requirements that can be accommodated by a garbage collector and regular 

Java threads for everything else.
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Memory management

Although many real-time systems can tolerate the small delays resulting from 

 a deterministic garbage collector, there are cases where even these delays are  

not acceptable. The RTSJ defines immortal- and scoped-memory areas to  

supplement the standard Java heap. Objects allocated in the immortal-memory 

area are accessible to all threads and are never collected, representing a limited 

resource to use carefully. Scoped-memory areas can be created and destroyed 

under programmer control. Each scoped-memory area is allocated with a  

maximum size and can be used for object allocation. To help ensure the  

integrity of references between objects, rules govern how objects in one memory 

area (heap, scope or immortal) can refer to objects in another memory area. 

More rules define when the objects in a scope are finalized and when the  

memory area can be reused. Because of these complexities, the use of immortal 

and scoped memory should be limited to components that cannot tolerate  

garbage-collection pauses.

Synchronization

Synchronization must be carefully managed within a real-time system to  

help prevent high-priority threads from waiting for lower-priority threads.  

The RTSJ includes priority inheritance support to manage synchronization 

when it occurs, and provides the ability for threads to communicate without 

synchronization using wait-free read and write queues.

Time and clocks

Real-time systems need higher-resolution clocks than those provided by  

standard Java. The new HighResolutionTime and Clock classes encapsulate 

these time services.

Asynchrony

Real-time systems often manage and respond to asynchronous events. The 

RTSJ includes support for handling asynchronous events triggered by a number 

of sources including timers, operating system signals, missed deadlines and 

other application-defined events. 
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Java Standard Edition, Version 5.0 libraries

WebSphere Real Time: A robust tool for managing real-time environmnents

The WebSphere Real Time product provides a conformant RTSJ  

implementation with several enhancements to enable standard Java 

code to be used in a broader spectrum of real-time environments. Many 

of the problems faced by developers of real-time systems are addressed 

by the WebSphere Real Time product and associated tools available 

from the IBM alphaWorks® Web site at www.alphaworks.ibm.com/tech. 

Figure 1 outlines the WebSphere Real Time product architecture.

Figure 1. WebSphere Real Time architecture

Real-time Linux

The real-time Linux kernel is created from the mainline Linux kernel with 

some patches applied to help reduce latency for real-time applications and 

improve kernel performance. The patches address many of the real-time  

programming issues such as timing, interrupt latency, task scheduling and  

kernel preemption. Some of the major advances the real-time Linux kernel  

has made in helping to reduce latency are discussed in this section.
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High-resolution time and timers

Real-time Linux introduced two very important parts that help reduce latency 

and provide higher precision for timers. First, timers needed a much higher- 

precision data type to work with, so a 64-bit type, ktime_t, was created. The 

ktime_t data type is architecture-dependent and allows for representing times 

with nanosecond precision. Complementing this data type, a new set of  

functions was created to manipulate the times in the most efficient manner for 

each architecture. Second, a more-efficient timer expiration mechanism was 

developed to provide new clock-events code for programmable event interrupts 

and more-efficient timer-sorting algorithms. Rather than having the timers 

expire at the low-resolution system tick, timers can now independently  

expire using a high-resolution timer, enabling them to expire within a few 

microseconds of each other. Then a binary tree and a sorted list are used for 

more-efficient, time-bounded timer organization. This new infrastructure 

along with the ktime_t data type allows for low-latency timer operations at a 

higher resolution than before.

Fully preemptible kernel

The mainline kernel has three preemption models — no forced preemption,  

voluntary kernel preemption and preemptible kernel. Real-time Linux offers 

one more option, complete preemption. Although the mainline kernel  

preemption choices do offer the ability to preempt some parts of the kernel, 

many spin-locks still cannot be preempted. Real-time Linux replaces most of 

the spin-locks with mutexes so that there are fewer places that the kernel  

cannot be preempted. Because it is legal to sleep (be preempted) when holding 

a mutex, this capability opens up nearly all of the running kernel paths to  

preemption so that the kernel preemption can occur in only a few places,  

and all these critical sections are deterministic and short.

Interrupt handlers are another point of latency caused by the lack of preemption. 

To minimize latency, real-time Linux allows a real-time process to preempt 

interrupt handling by converting interrupt handlers into real-time kernel 

threads. This capability enables them to be scheduled, preempted and  

prioritized just like any other process. Thus, the only non-preemptible portion 

of interrupt handling is the few instructions that run in interrupt context to 

mark the interrupt handler thread as runnable.
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Symmetric multiprocessing (SMP) real-time scheduling

Real-time systems require a strictly deterministic scheduling algorithm to run 

properly. On a single-processor system, performing this task is fairly sim-

ple — you just look at the run queue and select the task with the highest priority. 

Multiple processors turn this simple routine into a complex puzzle. To avoid 

lock contention between processors, each processor has its own run queue. 

Periodically, the run queues get balanced to maximize processor utilization. 

With non-real-time tasks, this procedure is acceptable because eventually,  

processor-bound tasks run out of processor time and are removed from the 

queue, and every process gets the chance to run. But this process does not work 

with real-time tasks. If one processor has two real-time tasks in its queue, one 

of them is running and the other waiting. A second processor might be running 

the highest-priority task in its queue, but that task is not necessarily a higher 

priority than the second task in the first-run queue. With the real-time kernel, 

if a processor has more than one real-time task, the priority of the real-time 

tasks on every processor must be compared to determine which tasks should  

be running. In this way, deterministic scheduling is preserved across  

multiple processors.

Priority inheritance

Priority inheritance is the real-time kernel response to priority inversions.  

In the case where a low-priority process holds a lock that a high-priority  

process is blocked on, it is possible to indefinitely delay both the low- and  

high-priority processes with a processor-intensive, medium-priority process. 

The real-time kernel doesn’t try to detect the priority inversions. Instead, it 

avoids priority inversions by raising the priority of the process that owns the 

lock to be the same as that of the highest-priority process that is being blocked 

on that particular lock, until the process relinquishes the lock. In this manner, 

blocked high-priority processes are delayed no longer than absolutely  

necessary. The kernel uses priority-inheritance mutexes internally to avoid  

priority inversions inside the kernel.
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Fast user-space mutexes (futexes)

Futexes were created to help reduce overhead on mutexes as much as possible. 

A futex is a fast user-space mutex, because it only needs kernel intervention in 

the case of lock contention. A process does an atomic value exchange to replace 

the value of the futex with its process ID. If it reads a zero from the exchange,  

it owns the mutex. Otherwise, it jumps into kernel space to get put on a wait 

queue. By dividing the lock path into a slow path and a fast path, the common 

case of claiming an unlocked mutex becomes even faster, with little extra  

overhead in the slow path.

In addition to creating a mutex that can be locked in user-space, real-time 

Linux also has the notion of robust mutexes. This function means that when a 

process holding a lock is terminated, other processes blocked on the lock  

can recover it in an effective manner, enabling better failure recovery in  

real-time tasks.

Real-time garbage collection: Metronome

Garbage collection in Java shifts the burden of memory management from  

the application developer to the JVM. Although the act of reclaiming storage  

is transparent to the application, it can be visible from an application’s  

performance and behavior. Unpredictable garbage-collection pauses can  

occur while running a program, and these sometimes lengthy pause times 

make classic JVMs unsuitable for the real-time market. Although the RTSJ2 

provides capabilities to circumvent these garbage-collection pause times,  

it does so at the cost of requiring programmers to do their own Java  

memory management.

Garbage collection typically consists of stopping the running of the Java  

program, tracing through all live objects in the system and then reclaiming  

the storage of dead objects. This method of garbage collection is known as  

stop-the-world (STW) garbage collection. The efficiency of the algorithm and 

type of work being done, including compacting memory to help reduce  

fragmentation, can contribute to the size of the application’s pause. Many  

modern garbage-collection tactics break this STW pause into more-manageable 

pieces, either operating as a series of STW increments to achieve a single  

garbage-collection cycle, or running concurrently with the active program, 

exacting a tax to the application and running threads to progress through a  

garbage-collection cycle.
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Real-time tasks require an environment in which they can meet deadlines  

in a specified period of time; if the deadline cannot be met in that time  

(interruptions occur because of garbage collection, for example), then the  

real-time guarantees have failed. Although garbage-collection-induced pauses 

are allowed, they cannot cause the task to miss its deadline, and so there needs 

to be a balance of how much the garbage collector can pause the task compared 

to how much processing time the task can receive. Typical solutions involve 

reducing the times of garbage-collection pauses through a variety of means 

(such as concurrency, increments and performance improvements).

Reducing pause times to a guaranteed maximum is not enough to achieve  

real-time performance levels. Consider situations in which two or more  

garbage-collection pause points occur very close together in time; although  

the pause times of each might be small, the total garbage-collection pause for a 

time interval can actually become quite high. What are actually needed are 

both a low pause-time guarantee from the garbage collector, as well as a  

guarantee that the use of a program not be lower than a certain percentage  

during a specified window of time.

The ratio of time spent in the application over a given window of time is known 

as utilization. The units of measurement for utilization allow an application 

developer to determine if the real-time task requirements can be achieved 

given a particular utilization in a system. These tasks are typically measured 

over the course of a window of time; pause times that require tighter timing 

requirements are encouraged to use the RTSJ. The Metronome garbage  

collector achieves this capability by providing low individual pause increments 

in the garbage-collection cycle, as well as targeting a utilization rate over a  

window of time.
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Achieving utilization rates

The Metronome garbage collector is an incremental collector that effectively 

divides an STW collector into a series of short increments within which it 

accomplishes a garbage collection. These increments are short (~500 microseconds) 

and are scheduled so that the target utilization (defaulting to 70 percent) is met 

over the set window of time (10 milliseconds). This capability is in contrast to 

other soft real-time offerings, whose pause times can reach 50 milliseconds or 

more in significantly larger windows of time.

The Metronome garbage collector uses a time-based method of scheduling, 

which interleaves the collector and the mutator (application) on a fixed  

schedule.3 Time-based scheduling was chosen because allocation rates in a 

program are uneven; scheduling work relative to the amount of data allocated 

would cause inconsistent and unpredictable pause times in programs that 

would violate any real-time constraints. By using time-based scheduling, the 

Metronome garbage collector can achieve systematic, predictable, short pauses 

of no more than one millisecond to complete its garbage-collection cycle.

Application thread stopping and starting 

A garbage-collection cycle consists of a number of increments within which a 

series of work units are completed. To meet real-time pause requirements by 

keeping individual garbage-collection quanta times low, each of these work 

units must be a known measurable quantity of work, so that at each step, the 

garbage collector can determine whether it should proceed with the next work 

unit or yield to the mutator until the next scheduled garbage-collection pause 

to continue. Consequently, an overhead is associated with each garbage- 

collection quantum to track its time, thereby increasing the overall length of 

the garbage-collection cycle. There is also the additional overhead of stopping 

and starting all application threads for each garbage-collection quantum. 

Because the J9 JVM uses a cooperative suspend model for application threads, 

which allows the garbage-collection tracing to be accurate, there is an associ-

ated overhead with stopping or starting threads. Both of these overheads can  

affect throughput.
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Root scanning 

Work units within a garbage-collection quantum can consist of a number of 

different operations. Generally, each is a known measurable quantity with 

maximum path lengths whose cost can be evaluated to determine whether the 

garbage collector should proceed or yield. However, there are some work units 

to which the cost cannot be easily ascertained, and these cases should be 

guarded against when writing application code. These problematic cases  

relate to threads and their corresponding structures. Thread stacks can be 

complicated and time consuming to scan, and sufficiently deep stacks can be 

the source of outliers in garbage-collection pause times. Thread-local Java 

Native Interface (JNI) references, along with the thread stacks, must be 

scanned as a single atomic unit. If there are a sufficiently large enough number 

of JNI local references on a thread, the pause times could exceed the targeted 

value for a quantum.

Allocation 

Allocation of objects in the Metronome garbage collector is performed using 

segregated free lists to manage the available memory.4 The heap is divided into 

a series of evenly sized pages that represent a size class from which objects can 

be allocated. These heap pages are used to create individual units of work so 

that the Metronome garbage collector can schedule operations on a page with 

predictable time requirements to complete the operations. The page- and  

size-class splitting is calculated so that in a worst-case scenario, no more than 

one-eighth of the heap (12.5 percent) would be lost because of fragmentation  

or unused ranges of memory due to objects smaller than the size class being 

allocated. In practice, this number rarely exceeds two percent.5
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Arraylets 

An area of concern in any collector is the handling of large objects, particularly 

arrays. Although enough total free memory might be available to handle an 

allocation, there might not be enough contiguous free memory within which  

to lay the object out, in which case, the garbage collector performs a heap  

compaction, which can be time consuming and not easily incrementalized. The 

Metronome garbage collector uses an array-splitting technique called arraylets 
to lay array objects out in memory. Arraylets are hierarchical representations of 

arrays that enable array memory to be allocated individually (leaves) with a 

central object representing the entire array (spine). By splitting the array up 

into separately allocatable chunks, you can take advantage of the heap layout to 

avoid the need for contiguous storage for large objects, and consequently avoid 

having to start and complete garbage-collection cycles for the sole purpose of 

freeing memory to satisfy the allocation.

Write barriers 

The Metronome garbage collector is an incremental collector that achieves  

a full collection by stopping the virtual machine at consistent intervals and 

performing a small amount of work in each interval. The Metronome garbage 

collector uses a variant of the Yuasa snapshot-at-the-beginning method,6 which 

incurs a level of overhead associated with each object assignment into the heap; 

as object references between one another are created and destroyed, the virtual 

machine manages these changes for the garbage collector to reconcile. A  

nonincremental garbage collector would not incur this management overhead.

Multiple JVM support

The garbage collector is dynamically adjusted to enable multiple real-time 

JVMs to run on the same system. It runs just above the priority of the highest 

real-time thread, and as a result, the garbage collector reflects the priority 

assigned to the real-time threads in that JVM. By assigning priorities appropriately, 

it is possible to configure a set of threads in one JVM to have priority over 

another set of threads in a different JVM including the garbage-collection 

threads, which reflect the priority of the application threads in each JVM. 

Along with the ability to bind a JVM to a subset of the processors, this dynamic 

priority assignment facilitates running multiple JVMs in the same system that 

can be required in more-complex systems.
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Real-time compilation

Most JVMs employ a JIT compiler to generate native code for frequently used 

methods as the application runs for several reasons: to eliminate the overhead 

of bytecode interpretation, to take advantage of the strengths of the processor’s 

native instruction set and to exploit dynamic application characteristics 

observed when a particular program runs. Modern JIT compilers use the same 

technology developed to compile static languages, such as C/C++ or Fortran, 

as well as new technologies targeted at optimizing the performance of Java  

programs. These new technologies are often speculative in nature because they 

must account for the dynamic class-loading support required by the Java  

language,7 and they often sacrifice worst-case performance to improve  

average-case performance. This focus on average-case performance is one  

reason why traditional Java JIT compilers cannot be used in a real-time  

environment, where worst-case performance is a critical metric. In addition, 

traditional JIT compilers run at the same time as the application,  

randomly consuming resources to compile methods and shattering the  

predictability required for real-time applications.

WebSphere Real Time provides two forms of native compilation suitable for 

different classes of real-time applications. The first form is a JIT compiler that 

has been adapted to avoid speculative optimizations and run at a priority level 

below real-time tasks. The second form is an AOT compiler that generates Java 

technology-conformant native code before the program runs.

JIT compilation for real time

The JIT compiler included with WebSphere Real Time performs compilations 

on a dedicated compilation thread operating below real-time thread priorities. 

After a method has been identified for compilation, a request to compile  

the method is placed on a compilation queue and the method continues to run, 

unlike some commercial JVMs, which would delay running the method until 

the compilation was complete. Because of its low priority, the compilation 

thread does not interfere with running the real-time thread. Any real-time 

thread requiring the processor will immediately preempt the compilation thread.

Many of the speculative optimizations employed by IBM’s standard Java JIT 

compiler are not used, helping to ensure the performance of the generated code 

runs predictably. In particular, the real-time JIT compiler does not perform 

aggressive optimizations based on the state of the class hierarchy, which can 

change as the compiler runs.
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AOT compilation for real time

The JIT compilation model works well in softer real-time environments  

where the presence of the JIT compiler can be tolerated. For harder real-time 

applications with stringent resource and response-time demands, even a  

low-priority JIT compiler is not a feasible option but native execution speed is 

still desirable. Such applications can employ the AOT compiler included in the 

WebSphere Real Time product. With this compiler, the application’s Java  

bytecodes can be compiled to native code before the program is run and stored 

into a Java Executable (JXE) format, which is an efficient storage vehicle for 

AOT-compiled code. When the compiler is running, the native code is loaded 

into the JVM, and after some processing to bind that code into the currently 

running JVM, the code can be directly implemented.

Because the Java Language Specification [7] requires dynamic class resolution, 

AOT-compiled code cannot include any assumptions about field offsets  

within objects, or the targets of invocations. Therefore, AOT-compiled code is 

generally slower than JIT-compiled code, because many compiler optimizations 

rely on precise information about fields and methods. Nonetheless, AOT- 

compiled code is almost always faster than bytecode interpretation, so in cases 

where a JIT compiler is not viable, AOT compilation is frequently a desirable 

alternative. Furthermore, because AOT compilation time is not a runtime  

cost, more methods can be compiled with an AOT compiler than with a JIT 

compiler, which can result in an AOT-compiled application running faster  

than a JIT-compiled application.

Real-time middleware

A key component of any deterministic enterprise solution is the real-time  

messaging middleware. This software is the backbone by which real-time,  

critical service providers, service consumers and complex event-processing 

applications can communicate. These middleware applications have well-

defined quality-of-service agreement policies that establish the worst-case 

total time from start to completion of a message or event. Without these well-

defined quality-of-service policies, latency determinism and predictability are 

unachievable for either a node-to-node or end-to-end real-time, critical  

business process. 
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As part of a total real-time enterprise solution, IBM has teamed with key  

real-time middleware technology providers whose solutions and products  

are based on open standards from the Object Management Group (OMG).  

These providers include Real Time Innovations (RTI) with their Data 

Distribution Service (DDS) technology-based real-time middleware, called 

Naval Data Distribution Service (NDDS, Version 4.1), and PrismTech’s 

OpenFusion RTOrb.

Historically these solutions were targeted towards a C or C++ technology-

based programming model, because both were the only languages in wide  

use that could meet both hard and soft real-time requirements for critical 

applications. However, with the advancements in real-time Java, these  

middleware solutions have been extended to support intercommunication 

between existing C or C++ and real-time Java technology-based applications.  

A key example of this is the DDG-1000 Destroyer Total Ship Computing 

Environment (TSCE) in which existing C++ real-time applications need to 

interoperate with new real-time Java technology-based applications as part of 

the ship’s end-to-end weapons-system integration. To achieve this integration, 

both RTI and PrismTech have developed interfaces for C++ and Java  

technology-based applications to communicate. These interfaces map critical 

thread and method information, such as priority number, method call format 

and data type from Java to C++. Specifically, for interoperability between a 

real-time JVM and C++ application, RTI has created a package8 called com.rti.
ndds.rtsj, which fully supports the RTSJ for standard Java and RTSJ thread 

types, as well as RTSJ memory areas. To program with the RTSJ technology-

supported DDS middleware, four specific RTI DDS RTSJ classes are provided. 

RtsjProperty_t provides services to manage all threads created by DDS. 

RtsjThreadproperty_t provides services to configure threads created by DDS. 

RtsjThreadSupport provides services to configure domain participants for use 

with real-time threads and custom memory areas. And ThreadKind is a class 

that provides an opaque type that provides type-safe enumeration of different 

types of RTSJ threads.

Figure 2 depicts how C++ and WebSphere Real Time technology-based Java 

applications can communicate across different languages using the NDDS 

real-time middleware environment. Here, both C++ and real-time Java  

components are anchored to different domain containers that publish or subscribe 

to services. Data can be sent to one or more subscribers by a publisher as long 

as they have the same topic. The domain container also defines the quality-of-

service policy parameters and agreements between a set of nodes, as well as 

communication between nodes (such as publish, subscribe or both). 
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Figure 2. Interoperability between NDDS C++ and real-time Java entities

Practical applications

Many features of WebSphere Real Time are useful to programmers who need  

to target a traditional operating system. Incremental garbage collection and 

priority-based threads would clearly be useful in many applications, even  

if hard real-time guarantees could not be met and only soft real-time  

performance was available. For example, many would welcome providing  

an application server that could provide predictable performance without 

unpredictable garbage-collection delays. Similarly, enabling applications to 

run high-priority Java health-monitor threads with reasonable scheduling 

guarantees would make Java server development easier. 

The current WebSphere Real Time product provides a full-function runtime 

environment. It was designed to provide tools to make it easy to eliminate 

unpredictable delays in applications due to class loading and compilation. 

Providing tools to trace paths from the operating system through the JVM and 

into applications makes it easier to perform detailed performance analysis. 

WebSphere Real Time offers new and innovative ways to develop submillisecond 

Java critical regions without hand-coded memory management. You can  

download the first of these technologies from the alphaWorks Web site at  

www.alphaworks.ibm.com/topics/realtimejava.
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Other key technology components are required to create a comprehensive 

enterprise infrastructure, including security, system management, information 

management, development, governance and runtime environments. 

Summary

This white paper defines soft and hard real-time applications and predictable 

performance, and presents the features of traditional JVMs that create  

unpredictable delays while an application runs, including class loading,  

compilation, garbage collection and thread management. It also discusses how 

the WebSphere Real Time solution, in conjunction with a Linux distribution 

containing real-time capabilities, and tools from the IBM alphaWorks Web site, 

addresses each of these issues. Static precompilation of code helps ensure that 

no compilation is required at run time. 

Alternatively, tooling to generate code that loads and compiles referenced 

classes at startup is provided. The IBM Metronome garbage collector delivers 

an innovative solution to the problem by performing very small increments  

of garbage collection frequently, helping to eliminate large pauses and  

replacing them with frequent, small pauses. Finally, IBM’s support of RTSJ 

enables programmers to have exacting control of the threads they create and 

the periods they run at, with precise control over thread priority, preemption  

and priority inversion.

For more information

To learn more about IBM WebSphere Real-Time software, contact your  

IBM representative or IBM Business Partner, or visit:

ibm.com/software/webservers/realtime/

To join the Global WebSphere Community, visit:

www.websphere.org

http://www.ibm.com/software/webservers/realtime/
http://www.websphere.org
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