
WebSphere™ Application Server

Getting Started with WebSphere
Application Server

Version 4.0

SC09-4581-00

IBM

WebSphere™ Application Server

Getting Started with WebSphere
Application Server

Version 4.0

SC09-4581-00

IBM

Note
Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 105.

First Edition (March 2001)

This edition replaces SC09-4430-01.

Order publications through your IBM representative or through the IBM branch office serving your locality.

© Copyright International Business Machines Corporation 1999, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

About this book ix
Who should read this book ix
Document organization ix
Related information x
Conventions used in this book x
How to send your comments xii

Chapter 1. Introducing the IBM WebSphere
family 1
IBM and e-business 1
The WebSphere family: providing e-business
solutions 2

WebSphere Application Server: three
editions for different customer needs . . . 2
Which edition should you use? 3
WebSphere Edge Server 4
WebSphere Studio 5
VisualAge for Java 7

How do I get more information about
WebSphere Application Server? 8

Installers and system administrators . . . 8
Application developers and system
architects 9

Chapter 2. Distributed computing and
WebSphere Application Server 11
Three-tiered client/server computing. . . . 11
Transactions: ensuring data consistency and
permanence in a distributed environment . . 12
Security: ensuring authorized use only . . . 14

Chapter 3. Overview of component
technology 17
Objects 17

Building objects through composition . . 18
Interface versus implementation 18
Classes 19
Inheritance 19
Polymorphism 19

Components 20

Component models and related technologies 21
Java 2™ Platform Enterprise Edition
(J2EE™) 21
JavaBeans components 23
Enterprise beans 24
Applets and servlets 26
JavaServer Pages 28
CORBA 29
Microsoft COM 30
Managed Object Framework 31

Chapter 4. Adapting business models to
WebSphere Application Server 35
Component technology 35
Common software approach 36
Software availability 36
Software reuse 36
Dividing up software development tasks . . 37
Tool sets 37
Scalability 38
Open standards and investment protection. . 38

Chapter 5. Introduction to WebSphere
Application Server, Standard and
Advanced Editions 39
What is the difference between the Standard
and Advanced Application Servers? 39
Introduction to the Advanced Application
Server 40

The Advanced Application Server
environment 40
Application model 42
WebSphere Programming Model
Extensions 42

The administration model in Advanced
Application Server 43

Administration tools 44
The extensible markup language (XML). . . 45
Services used by the Advanced Application
Server 46

Naming service 46
Transaction service 46
Security service 46
Workload management service 47

Development environment 47

© Copyright IBM Corp. 1999, 2001 iii

Documentation 48

Chapter 6. WebSphere Application Server
Enterprise Edition 49
Why use Enterprise Application Server? . . 49
Low-level services used in Enterprise
Application Server products. 50

Distributed Computing Environment
(DCE) 50
Common Object Request Broker
Architecture (CORBA) 52
Component Object Model (COM) 52

Other tools available with the Enterprise
Application Server 53

Chapter 7. Introduction to Component
Broker 55
Component Broker features 55
Application architecture 57
Application adaptors 58
Object services 59

Concurrency Control Service 59
Event Service 59
Notification Service 59
Externalization Service 59
Identity Service 59
LifeCycle Services 59
Naming Service 60
Security Service 60
Transaction Service. 60
Session Service 60
Query Service 61
Cache Service 61
Workload Management 61

System management 61
Development tools 63

Object Builder 63

Chapter 8. Introduction to TXSeries . . . 67
TXSeries CICS 67

Basic CICS concepts 68
The CICS application programming
interface 68
Relational database support 69
Queue services 69
Intersystem communication 70
CICS SNA support 71

Communicating with users 71
CICS Transaction Gateway 71
CICS administration 71

TXSeries Encina 72
Encina Monitor 72
The Recoverable Queueing Service (RQS) 73
The Structured File Server (SFS) 73
The Peer-to-Peer Communications (PPC)
Services 74
The DE-Light Gateway 74
The Encina Toolkit 75
Encina++ 75
Encina tools available only on Windows
platforms 76

Interoperability with WebSphere Application
Server Advanced Edition. 77

Chapter 9. Sample topologies and
configurations 79
Client topologies 79

Thick client 79
Thin client 80
Thinner client 81

Server topologies 81
Distributed servers 82
Cloned servers 82
Consolidated servers 83

Standard Application Server topology . . . 83
Advanced Application Server topologies . . 84

Simple configuration 84
DMZ configuration 85

TXSeries configurations 86
A simple CICS configuration 86
A simple CICS configuration within a DCE
cell 87
A simple Encina Monitor cell configuration 88

Component Broker configurations. 89
Simple configuration 89
Basic workload management configuration 90

Appendix. The library for WebSphere
Application Server 93

Notices 105
Trademarks and service marks 107

Index 111

iv WebSphere: Getting Started with WebSphere Application Server

Figures

1. Three-tiered client/server architecture 12
2. Beans make it possible to program

visually. 23
3. EJB architecture 24
4. An applet-based business solution 27
5. A servlet-based business solution 28
6. Clients and servers communicate by

using an ORB 30
7. The components of the Advanced

Application Server environment . . . 40
8. The Component Broker System Manager 62
9. Architecture of Encina 72

10. Interoperability between Java
applications and Encina/Encina++
servers 77

11. A thick client has a local user interface
and remote business logic 80

12. A thin client has an applet user interface
and remote business logic 80

13. A thinner client used with a servlet 81
14. A cluster of distributed servers

connected to resource managers . . . 82
15. Physical consolidation of the middle and

back-end tiers 83
16. A simple Standard Application Server

configuration 84
17. Simple Advanced Application Server

configuration 85
18. DMZ configuration in the Advanced

Application Server 86
19. A simple distributed configuration using

CICS in a non-DCE cell environment . . 87
20. A distributed configuration using CICS

in a DCE cell environment 88
21. A simple Encina Monitor configuration 89
22. Basic Component Broker topology 90
23. Horizontal workload management

topology for Component Broker . . . 91

© Copyright IBM Corp. 1999, 2001 v

vi WebSphere: Getting Started with WebSphere Application Server

Tables

1. Conventions used in this book x
2. Selecting a WebSphere Application Server

edition 3

3. Components of Encina++ 75
4. The library for WebSphere Application

Server 93

© Copyright IBM Corp. 1999, 2001 vii

viii WebSphere: Getting Started with WebSphere Application Server

About this book

This document is intended to help you get started using IBM® WebSphere™

Application Server and familiarize you with the components that make up
this product. Although this book focuses on the WebSphere Application Server
Enterprise Edition, it also contains information on the WebSphere Application
Server Standard Edition and the WebSphere Application Server Advanced
Edition.

Who should read this book

This document is intended for use by installers, system administrators,
developers, system architects, and other information technology professionals
who want to gain an understanding of WebSphere Application Server. A
minimal level of familiarity with distributed computing and Web computing
is assumed.

Document organization

This document has the following organization:
v “Chapter 1. Introducing the IBM WebSphere family” on page 1 provides a

high-level introduction to the IBM e-business strategy and how the
WebSphere Application Server and associated products implement this
strategy.

v “Chapter 2. Distributed computing and WebSphere Application Server” on
page 11 describes distributed computing, transactions, and security.

v “Chapter 3. Overview of component technology” on page 17 describes the
various component models and related technologies used in WebSphere
Application Server.

v “Chapter 4. Adapting business models to WebSphere Application Server” on
page 35 discusses the value that WebSphere Application Server offers to an
organization.

v “Chapter 5. Introduction to WebSphere Application Server, Standard and
Advanced Editions” on page 39 describes the main components and
concepts of the Advanced Application Server and the Standard Application
Server, with emphasis on the former.

v “Chapter 6. WebSphere Application Server Enterprise Edition” on page 49
introduces the Enterprise Application Server and associated concepts.

v “Chapter 7. Introduction to Component Broker” on page 55 provides more
detailed information on Component Broker.

© Copyright IBM Corp. 1999, 2001 ix

v “Chapter 8. Introduction to TXSeries” on page 67 provides more detailed
information on TXSeries™.

v “Chapter 9. Sample topologies and configurations” on page 79 discusses
examples of WebSphere Application Server system configurations.

v “Appendix. The library for WebSphere Application Server” on page 93
provides a complete list of the documentation available with WebSphere
Application Server.

Related information

For further information on the topics and software discussed in this manual,
see the following documents:
v Building Business Solutions with WebSphere

v CICS Application Programming Guide

v Component Broker Application Development Tools Guide

v Component Broker Planning, Performance, and Installation Guide

v Component Broker Programming Guide

v TXSeries Planning and Installation Guide

v Writing Encina Applications

v Writing Encina Applications on Windows Systems

v Writing Enterprise Beans in WebSphere

Conventions used in this book

WebSphere Application Server Enterprise Edition documentation uses the
following typographical and keying conventions.

Table 1. Conventions used in this book

Convention Meaning

Bold Indicates command names. When referring to graphical user interfaces
(GUIs), bold also indicates menus, menu items, labels, and buttons.

Monospace Indicates text you must enter at a command prompt and values you must
use literally, such as commands, functions, and resource definition attributes
and their values. Monospace also indicates screen text and code examples.

Italics Indicates variable values you must provide (for example, you supply the
name of a file for fileName). Italics also indicates emphasis and the titles of
books.

Ctrl-x Where x is the name of a key, indicates a control-character sequence. For
example, Ctrl-c means hold down the Ctrl key while you press the c key.

Return Refers to the key labeled with the word Return, the word Enter, or the left
arrow.

x WebSphere: Getting Started with WebSphere Application Server

Table 1. Conventions used in this book (continued)

Convention Meaning

% Represents the UNIX command-shell prompt for a command that does not
require root privileges.

Represents the UNIX command-shell prompt for a command that requires
root privileges.

C:\> Represents the Windows NT
®

command prompt.

> When used to describe a menu, shows a series of menu selections. For
example, “Click File > New” means “From the File menu, click the New
command.”

When used to describe a tree view, shows a series of folder or object
expansions. For example, “Expand Management Zones > Sample Cell and
Work Group Zone > Configuration” means:

1. Expand the Management Zones folder

2. Expand the management zone named Sample Cell and Work Group Zone

3. Expand the Configurations folder

Note: An object in a view can be expanded when there is a plus sign (+)
beside that object. After an object is expanded, the plus sign is replaced by a
minus sign (-).

+ Expands a tree structure to show more objects. To expand, click the plus sign
(+) beside any object.

- Collapses a branch of a tree structure to remove from view the objects
contained in that branch. To collapse the branch of a tree structure, click the
minus sign (-) beside the object at the head of the branch.

Entering commands When instructed to “enter” or “issue” a command, type the command and
then press Return. For example, the instruction “Enter the ls command”
means type ls at a command prompt and then press Return.

[] Enclose optional items in syntax descriptions.

{ } Enclose lists from which you must choose an item in syntax descriptions.

| Separates items in a list of choices enclosed in braces ({ }) in syntax
descriptions.

... Ellipses in syntax descriptions indicate that you can repeat the preceding
item one or more times. Ellipses in examples indicate that information was
omitted from the example for the sake of brevity.

IN In function descriptions, indicates parameters whose values are used to pass
data to the function. These parameters are not used to return modified data
to the calling routine. (Do not include the IN declaration in your code.)

OUT In function descriptions, indicates parameters whose values are used to
return modified data to the calling routine. These parameters are not used to
pass data to the function. (Do not include the OUT declaration in your code.)

About this book xi

Table 1. Conventions used in this book (continued)

Convention Meaning

INOUT In function descriptions, indicates parameters whose values are passed to the
function, modified by the function, and returned to the calling routine. These
parameters serve as both IN and OUT parameters. (Do not include the
INOUT declaration in your code.)

$CICS Indicates the full pathname where the CICS product is installed; for example,
C:\opt\cics on Windows NT or /opt/cics on Solaris. If the environment
variable named CICS is set to the product pathname, you can use the
examples exactly as shown; otherwise, you must replace all instances of
$CICS with the CICS product pathname.

CICS on Open Systems Refers collectively to the CICS products for all supported UNIX platforms.

TXSeries CICS Refers collectively to the CICS for AIX, CICS for Solaris, and CICS for
Windows NT products.

CICS Refers generically to the CICS on Open Systems and CICS for Windows NT
products. References to a specific version of a CICS on Open Systems
product are used to highlight differences between CICS on Open Systems
products. Other CICS products in the CICS Family are distinguished by their
operating system (for example, CICS for OS/2 or IBM mainframe-based CICS
for the ESA, MVS, and VSE platforms).

How to send your comments

Your feedback is important in helping to provide the most accurate and
highest quality information. If you have any comments about this book or any
other WebSphere Application Server Enterprise Edition documentation, send
your comments by e-mail to wasdoc@us.ibm.com. Be sure to include the name
of the book, the document number of the book, the version of WebSphere
Application Server Enterprise Edition, and, if applicable, the specific location
of the information you are commenting on (for example, a page number or
table number).

xii WebSphere: Getting Started with WebSphere Application Server

Chapter 1. Introducing the IBM WebSphere family

This chapter examines the IBM approach to e-business and discusses how the
products in the WebSphere family provide solutions to your e-business
challenges. It also looks at some of the other tools available with the
WebSphere family and how they fit into IBM’s overall approach. The final
section of this chapter provides guidance on where to get more information
about WebSphere family products.

IBM and e-business

The popularity of the World Wide Web (the Web) among both individuals and
businesses has grown rapidly. Although individuals use the Web for many
different purposes, businesses use the Web primarily to provide products,
services, and information to their customers, suppliers, strategic partners, and
employees.

When the first businesses moved onto the Web, it was enough for them to
provide a few static Web pages that listed products and services for sale and
provided a telephone number or address to order those products and services.
Businesses that provided information services (such as software companies)
were among the first to enter this new frontier, and they often made
information and software products available for downloading.

As new technologies were developed, static Web pages were no longer
sufficient. In response, businesses built active Web sites where customers
could order products directly, customers and suppliers could communicate
with the business, and employees could communicate with each other.

While the Web side of many businesses was changing rapidly, non-Web
business information systems also went through major changes as application
development spread into distributed systems from mainframe systems. The
Open Group’s Distributed Computing Environment (DCE) and the Object
Management Group’s (OMG) Common Object Request Broker Architecture
(CORBA) were two major technologies that provided the infrastructure for
these types of systems.

Until recently, Web and non-Web business information systems remained
largely detached from one another. The IBM e-business initiative and the
WebSphere family have changed that. WebSphere enables businesses to
integrate their Web-based systems with their non-Web systems, producing a
single enterprise-wide business system.

© Copyright IBM Corp. 1999, 2001 1

The WebSphere family: providing e-business solutions

The IBM WebSphere family was designed to help users realize the promise of
e-business. It is a set of software products that helps customers develop and
manage high-performance Web sites and integrate those Web sites with new
or existing non-Web business information systems. It focuses on the following
general types of businesses:
v Businesses that want to use the latest technologies to establish a powerful

Web presence or upgrade their current Web presence
v Businesses that want to develop distributed, enterprise-wide business

systems and applications
v Businesses that want to integrate their Web presence with their existing

computer systems and applications

The WebSphere family consists of the WebSphere Application Server and
other WebSphere family software that is tightly integrated with the
WebSphere Application Server and enhances its performance.

WebSphere Application Server is fully compliant with Sun Microsystem’s
Java™ 2, Enterprise Edition (J2EE™) standard and supports other common
industry standards such as CORBA, XA, secure sockets layer (SSL), Kerberos,
Logical Unit (LU) 6.2, and lightweight directory access protocol (LDAP).

WebSphere Application Server: three editions for different customer
needs

To enable customers to achieve their e-business goals, WebSphere is available
in three editions:
v The WebSphere Application Server Standard Edition (also called the

Standard Application Server) combines the portability of server-side
business applications with the performance and manageability of Java
technologies to offer a comprehensive platform for designing Java-based
Web applications. It includes server capabilities for applications built to the
Enterprise JavaBeans™ specification from Sun Microsystems. It also enables
Web applications to interact with enterprise databases and transaction
systems.

v The WebSphere Application Server Advanced Edition (also called the
Advanced Application Server) builds on the Standard Application Server. It
provides support for distributed server environments and includes the
underlying services for managing these environments. It also offers closer
integration with non-Web business systems.

v The WebSphere Application Server Enterprise Edition (also called the
Enterprise Application Server) builds on the Advanced Application Server
to expand its capabilities to enterprise-wide information systems. It
combines TXSeries™, IBM’s world-class transactional application
environment (consisting of both Encina® and CICS®), with the full

2 WebSphere: Getting Started with WebSphere Application Server

distributed object and business-process integration capabilities of
Component Broker. The Enterprise Application Server contains a complete
version of the Advanced Application Server.

All three editions are available on the IBM AIX®, Sun Microsystems Solaris,
and Microsoft® Windows NT® platforms. WebSphere Standard and Advanced
Editions are available on the Linux, IBM AS/400®, and Novell Netware
platforms. WebSphere Standard and Advanced editions and the TXSeries
component of Enterprise Edition are available on the Hewlett-Packard HP-UX
platform. For a complete list of supported platforms, see the WebSphere
Application Server web site, www.ibm.com/software/webservers/appserv.

WebSphere Application Server for OS/390® is available in Standard and
Enterprise Editions. On this platform, Standard Edition comes with the IBM
JDK and WebSphere Site Analyzer. It also supports connections to CICS and
IMS™ on the OS/390 platform through the Common Connector Framework.
Enterprise Edition consists of the Standard Edition products plus Component
Broker for the OS/390.

WebSphere Application Server is primarily a runtime environment on the
OS/390 platform. To write applications, you can use the WebSphere
development tools available on the Windows and Unix platform, such as
VisualAge™ for Java or the Component Broker Object Development Toolkit.

Which edition should you use?
The three editions of WebSphere Application Server are intended to support
the needs of different types of customers. Table 2 gives some
recommendations about which edition might fit the needs of your
organization.

Table 2. Selecting a WebSphere Application Server edition

Edition Features Recommended for

Standard v Single-machine application server

v Supports JSP™ pages, servlets,
enterprise beans

v Offers Web site development tools

Web sites with relatively
low traffic, hosted on a
single application server;
small organizations.

Advanced v Multimachine application server

v Supports JSP pages, servlets, enterprise
beans

v Offers workload management,
enhanced security, Web site and Java
development tools, better access to
back-end resources

Web sites with moderate to
high traffic, hosted on
multiple application
servers; medium to large
organizations.

Chapter 1. Introducing the IBM WebSphere family 3

http://www.ibm.com/software/webservers/appserv

Table 2. Selecting a WebSphere Application Server edition (continued)

Enterprise All features of the Advanced Application
Server plus Component Broker and
TXSeries

Organizations that need
robust, enterprise-wide
transaction servers that
integrate with Web servers.

WebSphere Edge Server
IBM WebSphere Edge Server includes software tools to reduce Web server
congestion, increase content availability, and improve Web server
performance. It is intended to provide better service to users who access
Web-based content over the Internet or a corporate intranet. The name Edge
Server indicates that the software usually runs on machines that are close (in
a network configuration sense) to the boundary between an enterprise’s
intranet and the Internet.

The Edge Server can be used in conjunction with WebSphere Application
Server to control client access to Web servers. It has two components: the
Caching Proxy and the Network Dispatcher. Both are described in this section.

The Caching Proxy
The Caching Proxy component intercepts data requests from end users,
retrieves the requested information from content-hosting machines, and
delivers it back to the end users. Most commonly, the requests are for
documents stored on Web server machines (also called origin servers or
content hosts) and delivered via the HyperText Transfer Protocol (HTTP).
However, you can configure the Caching Proxy to handle other protocols,
such as File Transfer Protocol (FTP).

When retrieving certain types of content, the Caching Proxy stores it in a local
cache before delivering it to the requester. The most prominent example of
cacheable content is static Web pages (those without portions that are
dynamically generated at access time). Caching enables the Caching Proxy to
satisfy subsequent requests for the same content directly from the cache,
which is much quicker than retrieving it again from the content host.

The Caching Proxy can be useful both when hosting Web-accessible content
and when providing Internet access:
v When used by content hosts, the Caching Proxy is installed as a reverse

proxy between the Internet and the enterprise’s content hosts. It intercepts
user requests arriving from the Internet, forwards them to the appropriate
content host, caches the returned data, and delivers it to the users across
the Internet.

v When used by Internet access providers, the Caching Proxy is installed as a
forward proxy between an enterprise’s end users and the Internet. It

4 WebSphere: Getting Started with WebSphere Application Server

forwards users’ requests to content hosts located across the Internet,
caching and delivering the retrieved data to users.

The Caching Proxy was called Web Traffic Express in earlier versions of
WebSphere.

Network Dispatcher
The Network Dispatcher also intercepts data requests from end users, but
rather than actually retrieving data, it forwards the request to the server
machine that is currently best able to fill the request. In other words, it
distributes incoming requests among a defined set of machines that service
the same type of requests.

The Network Dispatcher can distribute requests to many types of servers,
including both HTTP origin servers and Caching Proxy machines. If desired,
you can write rules that specify the criteria used by the Network Dispatcher
when determining which server can best handle a request.

Like the Caching Proxy, the Network Dispatcher can be useful both when
hosting Web-accessible content and when providing Internet access.
v When used by content hosts, the Network Dispatcher is installed between

the Internet and the enterprise’s backend servers, which can be content
hosts, Caching Proxy machines, or mail server machines that service the
POP3 or IMAP protocols. The Network Dispatcher acts as the enterprise’s
single point-of-presence on the Internet, even if the enterprise uses multiple
backend servers because of high demand or a large amount of content.

v If the Network Dispatcher’s Content Based Routing (CBR) module is
installed together with the Caching Proxy, HTTP requests can even be
distributed based on URL or other administrator-determined characteristics,
eliminating the need to store identical content on all backend servers.

v When used by Internet access providers, the Network Dispatcher is
installed between an enterprise’s end users and two or more Caching Proxy
machines in the enterprise’s intranet, to balance the load between them.
Balancing loads on multiple Caching Proxy machines provides highly
reliable access to the Internet even in the face of high demand. You can also
guarantee high availability by installing a backup Network Dispatcher to
take over if the primary one fails temporarily.

WebSphere Studio
WebSphere Studio is a suite of tools that brings all aspects of Web site
development into a common interface. Content authors, graphic artists,
programmers, and Webmasters can all work on the same projects, each having
access to the files they need. With the WebSphere Studio, it is easier than ever
to cooperatively create, assemble, publish, and maintain dynamic interactive
Web applications.

Chapter 1. Introducing the IBM WebSphere family 5

WebSphere Studio is composed of the Workbench, the Page Designer, the
Remote Debugger, and wizards, and it comes with companion Web
development products. WebSphere Studio enables you to do everything you
need to create interactive Web sites that support your advanced business
functions, including the following:
v Create Java beans, database queries, and Java servlets by using the Studio

wizards. You don’t have to be a programmer to generate server-side logic
that can add powerful functions to your Web sites. The wizards make it
easy to produce the input forms, the output pages, and the Java code that
makes it all work. Your Web pages won’t just sit there; now they will be
able to do real work for your business.

v Group Web site files into projects and folders. You decide what organization
makes sense and group your files accordingly. Filters and global search
capabilities let you find just the files you need. With familiar objects that
behave the way you expect them to, you can add speed and efficiency to
your routine tasks.

v Maintain the files individually or in a shared version control system. You
can store your files locally, on your own workstation, on other systems in
your network, or in a full-function version control system (VCS). You can
confidently work in a collaborative manner and know your file integrity is
guaranteed.

v Edit and update the files with your preferred tools. You get to choose
which editing and viewing programs to use for each file type. When
opening a Studio file, you can quickly launch your default selection or you
can choose one of your alternative tools.

v Quickly assess file relationships and find broken links. The Relationship
view provides a visual representation of how your files link to each other.
You can quickly see how many other files link to a particular file, which
files have broken links, and which files are not linked at all.

v Publish your Web site during any stage of development. Go directly from
site development to site publishing, right within the Studio Workbench. You
can publish all or part of a Web site during any stage of development and
quickly view and test the results of your work. When the Web site is ready
for release, you can easily transfer the files to your final stage and publish
them to your production servers.

The Studio Workbench helps you manage and maintain your Web site
applications and files. It provides the following capabilities:
v A graphical display of the link relationships between the files in a project.
v The automatic updating of links whenever files change or move.
v The ability to register multiple authoring tools, giving you a choice each

time you edit your Web site files.

6 WebSphere: Getting Started with WebSphere Application Server

v The ability to stage your Web site production cycle and publish various
stages to different (and to multiple) servers.

v An import wizard that simplifies the transfer of existing site content
directly into a Studio project.

v A quick way to archive Web sites or subsites in a single file.
v The ability to easily integrate third-party tools right into the Workbench

environment.
v An enhanced team environment with a common view of work in progress,

through the integration of popular source control-management software
such as IBM VisualAge Team Connection®, Microsoft SourceSafe®, PVCS,
Rational ClearCase, and Lotus® Domino™.

The Studio Page Designer provides a visual design environment that enables
you to create JavaServer Pages (JSP), Java servlets, and other Java-based Web
tools. For example, you can use the visual environment to drag and drop Java
beans into JSP applications. The Studio Page Designer can also be used to
create DHTML and HTML pages and includes the capability to easily edit and
toggle between the HTML or DHTML source and the browser view. This
capability is based on the new IBM HomePage Builder product.

The Studio Remote Debugger provides source level debugging of JSP files and
Java servlets within the Studio environment. Remote debugging is possible on
any machine that contains WebSphere Application Server 3.0 or above.

VisualAge for Java
VisualAge for Java is an integrated development environment that supports
the complete cycle of Java program development. VisualAge for Java is tightly
integrated with the WebSphere Application Server. This integration enables
VisualAge developers to develop, deploy, and test their Java programs
without leaving VisualAge. It also provides developers with an environment
that helps to manage the complexity common in the enterprise environment
and is capable of automating routine steps.

You can use the VisualAge for Java visual programming features to quickly
develop Java applets and applications. In the Visual Composition Editor, you
point and click to do the following:
v Design the user interface for your program
v Specify the behavior of the user interface elements
v Define the relationship between the user interface and the rest of your

program

VisualAge for Java generates the Java code to implement what you visually
specify in the Visual Composition Editor. In many cases you can design and
run complete programs without writing any Java code.

Chapter 1. Introducing the IBM WebSphere family 7

In addition to its visual programming features, VisualAge for Java gives you
SmartGuides to lead you quickly through many tasks, including the creation
of applets, servlets, applications, JavaBeans components, and enterprise beans
built to the Enterprise JavaBeans (EJB) Specification. It also enables you to
import existing code and export code as required from the underlying file
system.

VisualAge for Java gives you the programming tools that you need to develop
industrial-strength code. Specifically, you can:
v Use the completely integrated visual debugger to examine and update code

while it is running
v Build, modify, and use Java beans and build, modify, deploy, and test

enterprise beans
v Browse your code at the level of project, package, class, or method

VisualAge for Java also has a code management system that makes it easy for
you to maintain multiple version of programs.

How do I get more information about WebSphere Application Server?

The remainder of this document contains descriptions of the three editions of
WebSphere Application Server. In addition, you can get more information by
reading the documents described in the rest of this section.

All WebSphere documentation is available from the WebSphere Application
Server library page at
www.software.ibm.com/webservers/appserv/library.html. These documents
are available as Hypertext markup language (HTML) and Adobe Portable
Document Format (PDF) files.

Installers and system administrators
If you need to install, configure, or manage a version of the WebSphere
Application Server, read one or more of the following:
v To learn the basics of installing and configuring the Standard or Advanced

Application Servers, see the InfoCenter for the product you wish to install.
This online documentation center is designed for first-time users who want
to get a simple system up and running quickly. Both versions of the
InfoCenter are available from the WebSphere Application Server library
page at www.software.ibm.com/webservers/appserv/library.html.

v To learn about managing the Standard and Advanced Application Servers,
see the following:
– The online help available within the WebSphere Administrative Console.
– The online documentation in the Standard Edition or Advanced Edition

InfoCenter.

8 WebSphere: Getting Started with WebSphere Application Server

http://www.ibm.com/software/webservers/appserv/library.html
http://www.ibm.com/software/webservers/appserv/library.html

v To learn about installing, configuring, and managing a system with the
Enterprise Application Server, start with the Planning, Performance, and
Installation Guide for Component Broker or the Planning and Installation
Guide for TXSeries.

Application developers and system architects
If you need to design business systems or develop applications using a
version of the WebSphere Application Server, read one or more of the
following documents:
v To learn about planning, developing, and troubleshooting applications in

the Standard and Advanced Application Servers, see the Standard Edition
and Advanced Edition InfoCenters, which are available from the WebSphere
Application Server library page at
www.software.ibm.com/webservers/appserv/library.html.

v To learn the basics of developing enterprise beans and related components
in compliance with the Sun Microsystems Enterprise JavaBeans
specification, start with Writing Enterprise Beans in WebSphere. This
document provides instructions for developing enterprise beans in both the
Advanced Application Server and the Enterprise Application Server.

v To learn about the broader issues involved in designing and developing
systems and applications in the WebSphere family, read Building Business
Solutions with WebSphere. Many of the technologies, issues and topologies
mentioned in Getting Started with WebSphere Application Server are described
in more detail in Building Business Solutions with WebSphere.

v To learn about developing applications in Component Broker, start by
reading the Application Development Tools Guide and then read the
Component Broker Programming Guide. Programmers on OS/390 should
also read OS/390 Component Broker Programming: Assembling Applications.

v To learn about developing applications in TXSeries CICS, start by reading
the CICS Application Programming Guide.

v To learn about developing applications in TXSeries Encina, start by reading
Writing Encina Applications (for general development) or Writing Encina
Applications on Windows Systems (for development on Microsoft Windows
platforms).

For a complete list of the documentation available with the Enterprise
Application Server, see “Appendix. The library for WebSphere Application
Server” on page 93.

Chapter 1. Introducing the IBM WebSphere family 9

http://www.ibm.com/software/webservers/appserv/library.html

10 WebSphere: Getting Started with WebSphere Application Server

Chapter 2. Distributed computing and WebSphere
Application Server

WebSphere Application Server provides an environment for open distributed
computing. Users and processes on a wide variety of platforms can interact by
using the facilities provided by WebSphere. Both the Advanced Application
Server and the Enterprise Application Server provide a distributed computing
environment.

This section provides an overview of the basic concepts of distributed
computing, transaction processing and security. If you are familiar with these
concepts, you can skip to “Chapter 3. Overview of component technology” on
page 17 or “Chapter 4. Adapting business models to WebSphere Application
Server” on page 35.

Three-tiered client/server computing

A common way of organizing software to run on distributed systems is to
separate functionality into two parts: clients and servers. A client is a program
that uses services provided by other programs called servers. The client makes
a request for a service, and a server performs that service. Server functionality
often involves some sort of resource management, in which a server
synchronizes and manages access to the resource, responding to client
requests with either data or status information. Client programs typically
handle user interactions and often request data or initiate some data
modification on behalf of a user.

For example, a client can provide a form on which a user (a person using a
Web browser, for example) can enter orders for a product. The client sends
this order information to the server, which checks the product database and
performs tasks needed for billing and shipping. A single server is typically
used by multiple clients. For example, dozens or hundreds of clients can
interact with a handful of servers that control database access.

A common design of client/server systems uses three tiers: a client that
interacts with the user, an application server that contains the business logic
of the application, and a resource manager that stores data. This approach is
shown in Figure 1 on page 12. In this model, the client is isolated from having
to know anything about the actual resource manager. If you change the
database you are using, the server might have to be modified, but the client
does not need to be modified. Because there are usually fewer copies of the
server than the client, and because the servers are often in locations that are

© Copyright IBM Corp. 1999, 2001 11

easier to update (for example, on central machines rather than on PCs running
on users’ desks), the update procedure is also simplified. Furthermore, this
approach provides additional security. Only the servers, not the clients, need
access to the data controlled by the resource manager.

WebSphere Application Server provides the middle tier in this architecture,
allowing clients—applets, Visual Basic® clients, C++ clients, and so on—to
interact with data resources (relational databases, MQSeries®, and so on) as
well as with existing applications. This architecture is also used by two major
components of the Enterprise Application Server: Component Broker and
TXSeries.

Transactions: ensuring data consistency and permanence in a distributed
environment

A transaction is a set of operations that transforms data from one consistent
state to another. This set of operations is an indivisible unit of work, and in
some contexts, a transaction is referred to as a logical unit of work (LUW). A
transaction is a tool for distributed systems programming that simplifies
failure scenarios.

Clients

Mainframe

Resource
Manager

Resources
(for example
databases)

Tier 1
(Presentation)

Tier 3
(Data/Resource)

Tier 2
(Business Logic)

Application
Servers

LAN

Figure 1. Three-tiered client/server architecture

12 WebSphere: Getting Started with WebSphere Application Server

Transactions provide the ACID properties:
v Atomicity: A transaction’s changes are atomic: either all operations that are

part of the transaction happen, or none happen.
v Consistency: A transaction moves data between consistent states.
v Isolation: Even though transactions can run (or be executed) concurrently, no

transaction sees another’s work in progress. The transactions appear to run
serially.

v Durability: After a transaction completes successfully, its changes survive
subsequent failures.

As an example, consider a transaction that transfers money from one account
to another. Such a transfer involves deducting money from one account and
depositing it in another. Withdrawing the money from one account and
depositing it in the other account are two parts of an atomic transaction: if
both parts cannot be completed, neither must happen. If multiple requests are
processed against an account at the same time, they must be isolated so that
only a single transaction can affect the account at one time. If the bank’s
server fails just after the transfer, the correct balance must still be shown when
the system becomes available again: the change must be durable. Note that
consistency is a function of the application; if money is to be transferred from
one account to another, the application must subtract the same amount of
money from one account that it adds to the other account.

Transactions can be completed in one of two ways: they can commit or roll
back. A successful transaction is said to commit. An unsuccessful transaction is
said to roll back. Any data modifications made by a rolled back transaction
must be completely undone. In the above example, if money is withdrawn
from one account but a failure prevents the money from being deposited in
the other account, any changes made to the first account must be completely
undone. The next time any source queries the account balance, the correct
balance must be shown.

A distributed transaction is one that runs in multiple processes, usually on
several machines. Each process works for the transaction.

Distributed transactions, like local transactions, must adhere to the ACID
properties. However, maintaining these properties is greatly complicated for
distributed transactions because a failure can occur in any process, yet even in
the event of such a failure, each process must undo any work already done on
behalf of the transaction.

A distributed transaction processing system maintains the ACID properties in
distributed transactions by using two features:
v Recoverable processes: Recoverable processes log their actions and thus can

restore earlier states if a failure occurs.

Chapter 2. Distributed computing and WebSphere Application Server 13

v A commit protocol: A commit protocol enables multiple processes to
coordinate the committing or aborting of a transaction. The most common
commit protocol, and the one used throughout WebSphere Application
Server, is the two-phase commit protocol.

Security: ensuring authorized use only

When enterprise computing was handled solely by a few powerful
mainframes located in information systems (IS) sites, ensuring that only
authorized users obtained access to computing services and information was a
fairly straightforward task. In distributed computing systems, where users,
application servers, and resource managers can be spread out across the
world, securing computing system resources has become a much more
complicated task.

Although there are many issues associated with providing security in a
distributed computing system, the underlying issues have not changed
significantly. A good security service provides two main functions:
authentication and authorization.

Authentication takes place when a principal (a user or a computer process)
initially attempts to gain access to a computing resource. At that point, the
security service challenges the principal to prove that the principal is who it
claims to be. Human users typically prove who they are by entering their user
IDs and passwords; a process normally presents an encrypted key. If the
password or key is valid, the security service gives the user a token or ticket
that identifies the principal and indicates that the principal has been
authenticated.

After a principal is authenticated, it can then attempt to use any of the
resources within the boundaries of the computing system protected by the
security service; however, a principal can use a particular computing resource
only if it has been authorized to do so. Authorization takes place when an
authenticated principal requests the use of a resource and the security service
determines whether the user has been granted the privilege of using that
resource. Typically, authorization is handled by associating access control lists
(ACLs) with resources that define which users or processes (or groups of
users or processes) are authorized to use the resource. If the principal is
authorized, the principal gains access to the resource.

In a distributed computing environment, principals and resources must be
mutually suspicious of each other’s identity until both have proven that they
are who they say they are. This is necessary because a principal can attempt
to fake its identity to get access to a resource, and a resource can be a trojan
horse, attempting to get valuable information from the principal. To solve this

14 WebSphere: Getting Started with WebSphere Application Server

problem, the security service contains a security server that acts as a trusted
third party, authenticating principals and resources so that these entities can
prove their identities to each other.

Chapter 2. Distributed computing and WebSphere Application Server 15

16 WebSphere: Getting Started with WebSphere Application Server

Chapter 3. Overview of component technology

Business information systems must be flexible enough to respond to shifts in
markets, organizational structures, and business methods. They must be
reliable and easily manageable. They must be able to scale up to larger sizes
and run on a wide variety of hardware and software platforms. Above all,
they must be designed, coded, tested, and put into production quickly.

Component technology is the foundation of the IBM WebSphere product
family. It can help an enterprise meet these information technology goals.
Component technology provides a common-sense, building-block approach to
application development. Applications are built from reusable blocks of
software that perform specific functions. By using component technology,
businesses can develop applications more quickly and simplify their
maintenance.

This section examines the basic concepts of component technology. It includes
the following topics:
v “Objects”
v “Components” on page 20
v “Component models and related technologies” on page 21

This chapter is intended for readers who have little or no experience with
object-oriented programming and component technology. If you are familiar
with these concepts, you can skip to “Chapter 4. Adapting business models to
WebSphere Application Server” on page 35.

Objects

Objects are used to model conceptual and physical entities. They are used in
user interfaces, embedded systems, and many other venues including complex
business systems. The model must capture both the state and behavior of the
entity in a software packet, or object. The object must know things about the
entity and be able to perform the actions associated with the entity. The things
that an object knows are referred to as its state, properties, or attributes. The
things that an object does are referred to as its behavior, operations, or methods.
Collectively, the things that an object knows and does constitute its interface to
the rest of the application.

The way in which an object implements its interface is an internal matter. Its
implementation is hidden, or encapsulated, from the rest of the software
system. Hiding implementation details — for example, the way that an

© Copyright IBM Corp. 1999, 2001 17

object’s state is represented internally — prevents the rest of the system from
becoming dependent upon them. This makes it possible to change an object’s
implementation without disrupting the rest of the system.

Business objects contain the data and tasks performed by individual parts of a
business system. They enable software developers to design software systems
that directly reflect the business information that needs to be delivered and
the tasks that need to be performed. As a result, crucial business requirements
are less likely to be overlooked. If used properly, business objects can make
information systems more manageable and extend their lifetimes.

Business objects do not exist in isolation. Instead, they collaborate to perform
the operations that are necessary for an organization to run smoothly. Each
object in an object-oriented system has its own set of responsibilities to fulfill.
Defining and allocating these responsibilities is the task of the system
designer.

Objects also have relationships to each other. These can be transient
relationships, where one object learns about another one as part of an
incoming request or as the result of a request. Relationships can also be
structural, with objects specifically designed to work with each other.

Building objects through composition
Object-oriented systems often use composition — the process of building
objects from other objects — to implement a business model. Building objects
through composition is like building a structure out of blocks. Individual
blocks (objects) can be reused in many different contexts. Older blocks can be
replaced by newer ones. Blocks can be combined to form larger units. These
units can then be used in a variety of ways.

One of the promises of object technology is that the power and simplicity of
the building block concept can be used to develop and maintain business
applications. An information system can be designed as a set of reusable
business objects that grow and evolve with the organization.

Interface versus implementation
One of the most powerful features of object-oriented systems is the notion of
object interfaces (described under “Objects” on page 17). An object’s interface
(or more specifically, the interface provided by its class) specifies certain
requirements and guarantees that apply to the object.

The client of an object can be obliged to meet certain preconditions as a basis
for using that object’s interface. Preconditions can include restrictions on the
order in which methods can be called, and requirements for the types of input
data that the client provides.

18 WebSphere: Getting Started with WebSphere Application Server

The object that serves the client must perform certain tasks in response to any
message that it is sent. The interface stipulates only what is guaranteed to
occur, including any exceptions that must be accounted for. It says nothing
about how the object will carry out its tasks.

The implementation of the interface specifies how the object fulfills its requests.
The implementation is always private. Although the implementation of an
interface can change, the interface itself is unaffected.

Classes
Object-oriented systems provide a mechanism called a class that serves as a
template for creating objects. A class describes an object’s interface, the
implementation details that support the interface, and the specific information
that describes the object’s state. Each object, in turn, is an instance of a class.

Inheritance
At any time, there can be multiple implementations of an interface in a
system. Clients are able to interact uniformly and transparently with each
implementation of an interface. This concept is unique to object-oriented
systems. What makes it possible is the idea of inheritance. Inheritance enables
classes to share, or inherit, interfaces and implementations from other classes.
The class that passes on its attributes and behaviors to other classes is known
as the parent class or the base class. The class that inherits attributes and
behaviors is known as the child class or the derived class. A child class can
inherit from one or more parent classes.

Inheritance allows you to design by addition. You can create a common parent
class that packages the attributes and behaviors of a family of related types.
The child classes inherit the parent’s interface, and can add their own
attributes and behaviors to it. (Attributes and methods cannot be subtracted
from the parent interface.)

Polymorphism
Inheritance allows objects to be used again and again. Reusing an interface is
known as interface inheritance; reusing the implementation of an interface is
known as implementation inheritance. Although interfaces can be reused, the
implementation of an interface cannot always be reused. For example, the
way in which a balance is adjusted can be different for checking accounts and
savings accounts. In practice, reusing interface designs is much more
important than reusing implementation code. The details of the private
implementation do not matter to other objects in the system, but the details of
the public interface do.

Polymorphism is a powerful tool for reusing interfaces. It enables objects of
different classes related by inheritance to respond in a unique way to the
same function call. Although their interfaces all contain the same method, the
method’s implementation varies from object to object. The method’s

Chapter 3. Overview of component technology 19

implementation in the child class can override its original implementation in
the parent class. When the method is invoked, objects derived from each class
respond in a way that is defined by their particular implementation.

Polymorphism also makes it possible to reuse client code. A client refers to an
object only through its interface. It can communicate with any object that
implements that interface. Each object that is contacted by the client responds
in a manner appropriate to its own implementation. From the client’s
perspective, an object can be substituted for any of the others in the system.

Object code can be reused as well. In general, objects with simple interfaces
have a better chance of being reused. For instance, the Account object’s
interface can be designed in a way that enables the object to be used in a
variety of contexts, such as queries and reports, settlement and audit
processing, and interest calculations for monthly statements.

Achieving reuse often requires many design iterations over the course of
several projects. Software developers must place a high priority on designing
reusable objects if object-oriented systems are to achieve their potential.

Components

Components are objects with additional capabilities that enable them to
function in large-scale information systems. These additional features include
the ability to do the following tasks:
v Create and destroy objects
v Provide an object with a location in a distributed network
v Establish a system identity for an object
v Store the state of an object in a resource manager
v Handle the activation and passivation (or paging) of an object
v Map transaction semantics to an object’s state transitions
v Coordinate an object’s locks with its underlying data store
v Control access to an object
v Search for an object
v Notify an object that an event has occurred
v Transport the state of an object across a distributed network
v Assign a human-readable name to an object

An object that has been transformed into a component can be used in
traditional client/server application environments, since it supports
distributed processing, remote procedure calls, persistence management,
integrated security, transactions, concurrency control, and dynamic query
capabilities.

20 WebSphere: Getting Started with WebSphere Application Server

Component models and related technologies

A component model, or component architecture, specifies the way in which objects
can be put together within the software system that surrounds them. It is a
model for object interoperability. This section discusses some of the
component models and related technologies that can be used to design and
implement business applications in WebSphere Application Server. It includes:
v “Java 2™ Platform Enterprise Edition (J2EE™)”
v “JavaBeans components” on page 23
v “Enterprise beans” on page 24
v “Applets and servlets” on page 26
v “JavaServer Pages” on page 28
v “CORBA” on page 29
v “Microsoft COM” on page 30
v “Managed Object Framework” on page 31

Java 2™ Platform Enterprise Edition (J2EE ™)
WebSphere Application Server complies with the Java™ 2 Platform, Enterprise
Edition (J2EE™) specification. J2EE defines a standard architecture for
designing and implementing multi-tiered applications. It is comprised of the
following elements:

J2EE application components and runtime environment
The J2EE platform is a standard platform for hosting J2EE applications. Its
runtime environment consists of the following:
v Application components, which are the building blocks for creating

J2EE-compliant programs. The J2EE programming model defines four types
of components that an application must support:
– Application clients, which are typically Java programs that run on

desktop computers.
– Applets, which run in a Web browser and provide the user interface for

J2EE application.
– Servlets and JSP pages, which run on a Web server and respond to HTTP

requests from application clients.
– Enterprise beans, which run on an EJB server and contain the

application’s business logic and handle transactions.
v Containers, which provide the runtime support for the application

components. They offer services such as transaction management, security,
and state management to application components.

v Resource manager drivers, which connect J2EE applications to external
resources.

v A database which stores business data.

Chapter 3. Overview of component technology 21

J2EE application model and development team roles
The J2EE application model defines a standard application model for
developing multi-tier, thin client services. Applications are assembled from
components such as servlets, JSP pages and enterprise beans, then deployed
on the J2EE runtime platform. J2EE application development team roles
include:
v Product provider — Implements a J2EE product, including component

containers, J2EE platform APIs, and other J2EE features.
v System administrator — Configures and administers deployed J2EE

applications and the corresponding computing and network infrastructure.
v Tool provider — Provides tools for developing and packaging application

components.
v Application component provider — Designs and implements J2EE

application components.
v Application assembler — Assembles application components into a

complete J2EE application.
v Deployer — Deploys applications.

J2EE standard services
The J2EE standard services include the following services and protocols:
v HTTP and HTTPS
v Java Transaction API (JTA)
v RMI-IIOP. Both the Java native RMI protocol and the CORBA IIOP protocol

are supported.
v JavIDL
v Java Database Connectivity (JDBC™) API
v Java Messaging Service (JMS) API
v Java Naming and Directory Interface™ (JNDI)
v JavaMail™

v JavaBeans™ Activation Framework (JAF)
v Java API for XML Parsing (JAXP)
v J2EE Connector architecture
v Java Authentication and Authorization Service (JAAS)

J2EE compatibility test suite and reference implementation
The J2EE compatibility test suite is a suite of compatibility tests for verifying
that an application conforms with the J2EE platform standard.

The J2EE reference implementation demonstrates the capabilities of J2EE and
provides an operationa definition of the J2EE platform.

22 WebSphere: Getting Started with WebSphere Application Server

JavaBeans components
A number of programming languages can be used to implement components.
However, the Java programming language is well suited for cross-platform
component development. Java is an object-oriented language created by Sun
Microsystems. It is simpler to use than older object-oriented programming
languages like C++.

JavaBeans technology is Sun’s component architecture for the Java application
environment. It extends the idea of writing once and running anywhere to
reusable component development. A bean is a reusable software component
built using the JavaBeans specification. Visual programming tools can combine
beans to create an application.

A bean implements an additional set of interfaces from an ordinary Java
object. The interfaces specific to a bean are:
v Introspection — Allows a visual programming tool to analyze how a bean

works, allowing developers to connect beans.
v Customization — Enables developers to customize the appearance and

behavior of a bean, using a property sheet provided by a visual
programming tool.

v Events — Enables beans to communicate by using a notification
mechanism.

v Properties — Describes the bean’s attributes and broadcasts a notification
when an attribute changes.

v Persistence — Allows developers to customize beans and package them
into a Java Archive (JAR) file. Also known as serialization.

Figure 2 shows how two JavaBeans components can be combined during the
development of a simple applet. When a user presses the Close button in this
example, an event occurs. The event is communicated to the AccountProxy
bean, which invokes a method. A visual Java development tool can be used to
link the beans.

Beans can also interoperate with ActiveX controls. (ActiveX is Microsoft’s
version of downloadable, interoperable objects.) Bridge software makes it

Figure 2. Beans make it possible to program visually

Chapter 3. Overview of component technology 23

possible for beans to be deployed in ActiveX environments such as Internet
Explorer, Visual Basic®, and Microsoft Word.

Enterprise beans
The Enterprise JavaBeans (EJB) specification enables developers to create
server-side business components in Java. Enterprise beans are the standard
component architecture for building distributed object-oriented business
applications in the Java programming language. They are designed to be
installed on a server and accessed remotely from a client. Enterprise beans are
platform independent and can be deployed in any run-time environment that
supports the EJB specification.

This section discusses the following enterprise bean-related topics:
v “The EJB architecture”
v “Persistence” on page 25
v “Deploying enterprise beans” on page 25

The EJB architecture
Figure 3 illustrates some of the details of the EJB specification.

The client application communicates with a remote object called a home. The
home object is used to create a business object — for example, an Account
object — that is accessed remotely from the client. This object provides all of
the attributes and behaviors that pertain to accounts (such as methods for
adjusting an account balance and opening an account).

The Account object forwards the requests it receives to an enterprise bean that
provides the real business implementation. By intercepting incoming requests,
the Account object controls access to the enterprise bean and handles any
requirements for executing business methods. For example, the Account object
must establish the appropriate transactional context before money can be
moved into or out of an account.

Figure 3. EJB architecture

24 WebSphere: Getting Started with WebSphere Application Server

On the server side of Figure 3 on page 24, a container is the run-time
component of an EJB environment. It provides essential services like
transactional support, security support, and memory management. The
Account object collaborates with the container in order to complete its tasks.

Home collections and containers are native features of WebSphere Application
Server Enterprise Edition. They provide simultaneous server support for C++
business objects and enterprise beans. No layered run-time service is required.

Persistence
Enterprise beans exhibit two different types of persistence.
v Session beans represent tasks and operations. They are transient and do not

correspond to data in persistent storage. However, a session bean can
maintain state information, such as a list of actions that have been
performed during its lifetime. State information that is associated with a
session bean is not shared between clients.

v Entity beans represent persistent data. Each entity bean is mapped to a data
store that is shared with other enterprise beans. For instance, entity beans
can correspond to rows in a relational database. In most cases, an entity
bean must be accessed in some transactional manner. Instances of an entity
bean are unique, and they can be accessed by multiple users. Entity beans
do not store state information and can be shared between clients.

Management of the persistent state of an entity bean can be done in two
ways:
v In bean-managed persistence (BMP), the bean directly accesses persistent

storage. Access to persistent storage must be implemented by the software
developer.

v In container-managed persistence (CMP), the bean relies on its container to
provide transparent access to persistent storage. The software developer
does not need to explicitly implement access to persistent storage.

Deploying enterprise beans
Enterprise beans are deployed into a container that provides run-time
services. A deployment descriptor is used to specify how an enterprise bean is
managed by its container. Deployment descriptors are set during application
assembly or deployment. They define life cycle, persistence, transactions, and
security settings for enterprise beans.

In addition, an enterprise bean’s environment properties allow developers to
customize the bean based on the needs of the application. For instance, an
environment property might specify the location of a database. By using
deployment descriptors and environment properties, you can customize
applications without accessing the underlying source code.

Chapter 3. Overview of component technology 25

Applets and servlets
Java applets and servlets are complementary technologies to beans and
enterprise beans. They are not components themselves, but Java programs
tailored to perform specific client-server tasks.

Applets
Applets run in a client machine’s Java-capable browser. The business logic in
an applet is downloaded from a central World Wide Web server and run on a
client, ensuring that the client machine always gets the latest copy of the code.
Administration costs are lower than traditional desktop environments, where
applications must be updated manually. The downloadable nature of applets
also reduces hardware requirements. For these reasons, many companies are
deploying Java applets internally.

Applets can be designed by using the standard packages found in the Java2™

Software Development Kit (SDK) or by using the components of the Java
Foundation Classes (JFC). They use the Java Virtual Machine (JVM) supplied
by a Web browser. The JVM is a run-time environment that interprets
compiled Java programs according to the underlying operating system.
Because JVMs have been developed for most operating systems, applets can
be run on many different operating systems without any special porting
requirements.

Applets also enable a business to extend its reach to a larger set of clients. The
Internet gives customers a new entry point into an enterprise, opening up
opportunities for electronic commerce. Applets can be downloaded over the
Internet at any time to enable customers to place orders, retrieve information,
and perform many other tasks.

Figure 4 on page 27 shows a scenario for using applets to access a database. A
Web server downloads a page of information in Hypertext Markup Language
(HTML) to a Web browser (1). The page includes a command to download a
Java applet packaged into a Java Archive (JAR) file from the server (2). The
applet uses Java’s Remote Method Invocation (RMI) protocol to communicate
with other objects residing on the server (3). These objects then access the
database (4).

26 WebSphere: Getting Started with WebSphere Application Server

The applet cannot directly access the resource. Java security prevents the
applet from communicating directly with the file system on the machine
where the browser runs or with other machines than the server.

Applets have two drawbacks:
v Depending on their size and the type of network connection, they can take

a considerable amount of time to download.
v They cannot run properly if the browser’s JVM does not support the

functionality of the Java code in the applet. Although the correct JVM can
be attached to the browser dynamically, this does not solve the underlying
incompatibility problem and can degrade applet performance.

Servlets
Java servlets are a complementary technology to applets; many applications
use both. A servlet is a Java program that runs on a World Wide Web server.
A special interface allows it to receive requests from a Web browser, such as a
user-initiated submission from an HTML form. Servlets typically access
enterprise resources in response to an incoming request, then format new
HTML pages dynamically for transmission back to the browser. To simplify
HTML generation, servlets can use (but are not limited to) Java Server Side
Includes (JSSIs) and JavaServer Page (JSP) scripting.

Servlets use the Java Servlet API and its associated classes and methods.
Servlets can also use Java class packages that extend and add to the Java
Servlet API. Like applets, servlets are part of the Java standard and are
designed to run across different platforms. However, unlike applets, Java
servlets do not use the JVM supported by a browser. Servlets run on a Web
server that is controlled from within your enterprise. This makes their
behavior more reliable and predictable.

Figure 5 on page 28 shows how to access a database by using only a servlet.
The HTML file that is generated by the servlet contains embedded JavaScript

x
Databases,
transactions, and
other resources

Web browsers Web server

1. HTML

2. Applet

3. RMI

4. Enterprise

Figure 4. An applet-based business solution

Chapter 3. Overview of component technology 27

commands (1). JavaScript is a scripting language that is used to write simple
programs that run on a client machine. JavaScript does not require a JVM and
is faster to download than an applet. The browser uses HTTP to communicate
directly with the servlet (2). The servlet can then access databases and other
resources (3).

The servlet-based application retains Internet access and the ability to process
logic locally at the client. It reduces the costs of administration and client
hardware. Compared to the applet-based application shown in Figure 4 on
page 27, the servlet-based application avoids the overhead associated with
downloading an applet. It reduces concerns related to the capabilities of the
client browser, since it does not require a JVM. It also avoids restrictions for
communicating through a firewall.

Unlike the widely-used Common Gateway Interface (CGI) programs, which
require an entire process to handle user requests, servlets can handle user
requests by using threads. This capability makes servlets much more efficient
than CGI programs.

A servlet can be loaded automatically when the Web server is started, or it
can be loaded the first time a client requests its services. After being loaded, a
servlet continues to run, waiting for additional client requests.

JavaServer Pages
WebSphere Application Server supports a powerful approach to dynamic Web
page content: JavaServer Pages (JSP). The JSP function in the Application
Server is based on the Sun Microsystems JavaServer Pages Specification.

JSP files are similar in some ways to server-side includes in static HTML
because both embed servlet functionality into the Web page. However, in a
server-side include, a call to a servlet is embedded within a special servlet tag;
in JSP pages, Java servlet code (or other Java code) is embedded directly into
the HTML page.

2. HTTP to
servlet

1. HTML with
JavaScript

3. Enterprise

Databases,
transactions, and
other resources

Web browsers Web server

Figure 5. A servlet-based business solution

28 WebSphere: Getting Started with WebSphere Application Server

One of the many advantages of JSP pages is that they enable you to
effectively separate the HTML coding from the business logic in your Web
pages. You can use JSP pages to access reusable components, such as servlets,
Java beans, enterprise beans, and Java-based Web applications.

CORBA
The Common Object Request Broker Architecture (CORBA) specification
defines communications between distributed objects and integrated object
services. CORBA provides a common framework for developing applications
that use components. It defines the software services that enable objects to
communicate transparently across a distributed computer network. CORBA is
language and platform independent and can handle objects that are
implemented with different vendor packages, located on different machines,
coded in different programming languages, and run on different operating
systems. Both TXSeries and Component Broker can be used to create
CORBA-compliant applications.

Distributed object communications
Distributed objects communicate by using an Object Request Broker (ORB). The
ORB sends local client requests across the network by using the Internet
Inter-ORB Protocol (IIOP), which is a TCP/IP-based protocol with
CORBA-defined message exchanges. IIOP allows ORBs to communicate with
each other and enables them to use the Internet for distributed object
communication.

Figure 6 on page 30 shows client/server communication through an ORB. The
client uses a proxy object that represents a remote object located in another part
of the network. The client does not need to know where the real object
resides, since the proxy object handles communication with the remote object.
The proxy object works with the ORB to translate client requests into a format
that can be sent over the network. An object adaptor on the server finds the
remote object and dispatches the request for processing. It is the primary
interface between the ORB and the object implementation code. The object
adaptor then sends the results back to the proxy object, which returns them to
the client that initiated the request.

Chapter 3. Overview of component technology 29

The proxy object and the real object are synchronized by using the Interface
Definition Language (IDL). IDL specifies the behaviors and attributes that are
provided by the remote object. During application development, the IDL
specification of an interface is compiled to generate the code that implements
the remote interface for the client and server. The client communicates with a
remote object through its remote interface, and can interact with any remote
object that supports that interface. The component interface is created in a
CORBA IDL file, which is then compiled by using the CORBA idl compiler.
This produces most of the stub and skeleton files required for creating a
distributed application.

CORBA business objects implement interfaces described by proxies. The client
proxy object represents an abstract interface. The server implementation of
this object inherits this interface and implements the object’s business logic.

Remote calls
CORBA remote calls enable communications between client proxy objects and
server-side objects. CORBA servers export implementation objects to which
client proxy objects bind in order to obtain a service. Objects that participate
in transactions or make transactional requests on other objects are called
transactional objects.

A remote call in CORBA occurs when a client creates a proxy object and uses
that object to invoke a method on a corresponding implementation object at
the server. This remote call is similar in most respects to an RPC.

Common object services
CORBA specifies common object services, which are used to manage
distributed components. These services include naming, security, life cycle,
event, externalization, transaction, persistence, and more. The CORBA
specification also includes interfaces that support specific domains and
common facilities.

Microsoft COM
Microsoft Component Object Model (COM) is a component architecture that
allows applications to be built from binary software components. Using COM,

Figure 6. Clients and servers communicate by using an ORB

30 WebSphere: Getting Started with WebSphere Application Server

Windows applications can be developed as multiple components instead of as
a single entity. The individual components of each application can be
transparently and separately upgraded and applications can be distributed
more easily. COM can be used to create applications in any programming
language.

A COM component is a piece of compiled code that performs an action in an
application. (In contrast, components in other object-oriented programming
models are defined in the application’s source code.) Once instantiated in a
client, a COM component acts as a proxy for the client, marshalling and
unmarshalling data to contact a server and returning data and status
information back to the client. This encapsulates data from processing.

COM provides the following:
v A standardized component interface
v Communication between components
v Shared memory management between components
v Error and status reporting
v Dynamic loading of components

Managed Object Framework
Component Broker has its own object model. Server objects are derived from
the Managed Object Framework (MOFW), which enables objects to work
together and behave as a single component. Each component consists of a set
of objects that are managed by an application adaptor. From the client’s
perspective, the component acts as a single object, even though it is
implemented as a set of objects on the server.

Components are made up of three types of basic objects: business objects,
managed objects, and data objects. Persistent components add a fourth type of
object, persistent objects, which provides the code to access resource managers
or data stores. Key objects and copy helper objects aid in locating and creating
the component.

The objects that make up a component are described in the rest of this section.

Business objects
Business objects define the component’s interface — that is, the attributes and
methods that contain its business logic. The CORBA Interface Definition
Language (IDL) is used to define a business object’s interface. IDL specifies an
object’s interfaces, independent of operating system and programming
language.

A business object can be implemented in the C++ or Java programming
languages. Because the business object is derived from the Managed Object

Chapter 3. Overview of component technology 31

Framework, the only code you need to provide is the implementation for any
application-specific methods you defined. When you create a business object
by using Component Broker tools, the framework is extended for you.
Attributes that are part of the state of the object can be cached or delegated to
the data object.

Data objects
Data objects manage the persistence of components’ essential state information
(state data). They provide an interface for the business object to get and set
state data.

A data object isolates its business object from these actions:
v Knowing which data store to use
v Knowing how to access the data store
v Managing access to the data store

Managed objects
Managed objects provide the component with management by an application
adaptor. Because this management capability is provided in a separate object,
the type of service provided can be changed without affecting the component
interface.

Some examples of managed services are:
v Persistence, transaction, and security
v Workload management and availability management over multiple servers
v Object-oriented access to existing databases and applications

Persistent objects
Persistent objects are C++ objects that provide a mechanism for storing a
component’s state in a data store. Every persistent object has an identifier or a
key that is used for locating its corresponding record within the data store.
There are two main kinds of persistent objects:
v Those used for accessing database data (mapping to a database schema).
v Those used for accessing procedural data (mapping to a CICS or IMS bean,

or Procedural Adaptor bean (PA bean)).

Key objects and copy helper objects
A component’s key object defines which attributes are to be used to find a
particular instance of the component on the server. The key consists of one or
more of the business object attributes, which must contain enough information
to uniquely identify an instance.

A copy helper object provides an efficient way for the client application to create
new instances of the component on the server. Its use is optional. The copy
helper contains the same attributes as the business object (or a subset of

32 WebSphere: Getting Started with WebSphere Application Server

them). Without a copy helper, the client might need to make many calls to the
server for each new instance: one call to create the instance, and then an
additional call to initialize each of the instance’s attributes. With a copy
helper, the client can create a local instance of the copy helper, set values for
its attributes, and then create the server component and initialize its attributes
in one call by passing it the copy helper.

Assembling components
When you assemble a component, you can start from the business object, data
object, or schema. Configuring the objects into a unified component involves
selecting which objects form a particular component on the server. The
deployed component is accessed through its managed object, by client
applications or other components that require access to the server data.

Component instantiation and execution
Each component is instantiated and later located by using a home object. A
home object is a server object that allows clients and other components to
locate and create components of a certain type. After they are created, the
components run in a container, which acts as an application adaptor for the
component, providing management services to the component through its
managed object. From the point of view of the calling program, only the
business object interface (which acts as the interface to the whole component)
is visible. Even the managed object is hidden.

Chapter 3. Overview of component technology 33

34 WebSphere: Getting Started with WebSphere Application Server

Chapter 4. Adapting business models to WebSphere
Application Server

Just as people are highly valued resources in a business, software also
provides value to a business. It must meet the same expectations that are
placed upon other business resources. A change driven by external influences
such as government regulation, new technology, or competition can be
analyzed in terms of business policies and processes. The corresponding
information systems model can then be designed and adapted.

Component technology

Software must work well within existing business processes without requiring
excessive accommodation. Reworking existing business processes is
undesirable, as is lost productivity. Components enable a new approach to
building distributed applications, where the business model drives the
software implementation. This is because:
v The software model and implementation is described in business terms.
v Components have business names and embody behavior and state

consistent with their business role.
v Relationships between components are established by business process.
v Models are cooperatively created and maintained by business domain

experts with support from information technology specialists.

These characteristics of component-based systems provide the flexibility
required by today’s fast changing business climate. Consider the advantage
when a change in business objectives can be mapped directly to the systems
model, enabling a more rapid introduction of new components and
relationships.
v New components can be introduced without unnecessary changes to

existing components.
v New relationships can be established without having to modify existing

(and still useful) relationships.
v Relationships can be changed without having to rewrite the entire system.
v Component-based applications can interface with existing business

information systems, enabling new development to proceed without
making existing investments in technology obsolete.

© Copyright IBM Corp. 1999, 2001 35

Common software approach

A high-level programming model allows software developers to produce
useful business components that can be used directly in your system. If other
businesses follow the same programming model, organizations can achieve a
higher level of intercompany system integration to support collaborative
engagements, mergers and acquisitions. The benefits of a common approach
to object-oriented design and implementation are extraordinary and, in many
respects, essential to achieve a greater return on a software investment.

Several important industry trends are supporting the adoption of a common
software approach:
v Industry-wide support for component-based architectures.
v The rapid adoption of the Java programming language, the Internet, and

corporate intranets.
v Distributed software topologies supported by robust enterprise servers.

The convergence of these trends has produced unprecedented opportunities
based on new models of computing. At the same time, businesses must be
able to use the substantial investments they have made in existing application
systems and data. It would be far too costly for them to rebuild from scratch.

Software availability

IBM has been the industry leader in computing infrastructure for nearly 40
years, and has vast experience in technologies such as transactions, compilers,
operating systems, communications, and databases. This technical knowledge
has been utilized in WebSphere. It is available on common, industry-wide
platforms and supports a wide range of operating systems, communication
protocols, databases, and other resources.

Businesses improve their reliability by cross-training people to accommodate
unexpected outages. Similarly, systems can improve their reliability by
incorporating redundancies and respond to unexpected outages by shifting
work to available resources. WebSphere incorporates automated workload
management and failover features that eliminate single points of failure in
systems and maintain the availability of the system. This allows the
development of highly available, fault-tolerant systems.

Software reuse

Component-based systems offer the promise of reusability where individual
components can be used again and again without being reworked. However,
this promise has largely remained unrealized, primarily because there has
been no infrastructure to provide necessary services to object systems. As a

36 WebSphere: Getting Started with WebSphere Application Server

result, support for operating systems, data management mechanisms, and
communication mechanisms has had to be explicitly coded into applications.

WebSphere provides the distributed object infrastructure necessary to support
reusable components. It allows developers to concentrate on the development
of components that implement business functionality. Components can be
reused with a variety of platforms, operating systems, databases,
communication protocols, and programming languages.

Dividing up software development tasks

The WebSphere programming model breaks down application development
into a number of different roles. The specific role a developer plays depends
on the type of application that is being developed. These roles enable
development team members to concentrate on tasks that provide the most
business value without being concerned with the low-level technical details of
other parts of the system. For instance, Java programmers can concentrate on
developing enterprise beans, servlets, and other types of components without
having to worry about how these components are used in a browser-based
client. Similarly, Web site developers can concentrate on coding references to
these components into Web pages without having to worry about the details
of their implementation.

Role-based development allows the creation of highly productive teams, with
different team members concentrating on analysis, design, development,
testing, and deploying the system. Each team member can concentrate on the
parts of their role that directly benefit the business.

Tool sets

Distributed object systems have recurring implementation patterns. These
patterns are relatively few in number, are highly repetitive, and have little
variability. This makes it possible to create a set of tools that use these
patterns to generate systems. These patterns constitute a programming model,
and define the ″best practices″ for developing a distributed object system.

The WebSphere development tools help to improve developer productivity.
They can determine what information is needed based on the patterns that are
being utilized, locate and manage this information, and then use it to
generate, deploy and manage the resulting system. This frees software
developers to concentrate on providing information that is not contained in
the tool: the design and implementation of business logic.

Chapter 4. Adapting business models to WebSphere Application Server 37

Scalability

Productivity can be threatened by growth. As a business grows, it must add
employees to handle the increased workload. The same holds true for
computer systems that support growing businesses. As they become saturated,
the service level they provide to the business reaches a plateau, and in some
cases actually decreases. This can damage the growth of the business, and
must be remedied as quickly as possible.

WebSphere allows systems to grow by adding more computing power, either
by adding more computers or by migrating functions to more powerful
platforms. It monitors executing systems so that signs of saturation are visible
before they have an adverse impact. It also allows dynamic configurations, so
that conditions can be responded to without making the system unavailable.
This is particularly important if problems occur at times when the system’s
availability is most critical.

Open standards and investment protection

Systems that cannot communicate with other systems or require large changes
in other systems present enormous challenges to businesses. This can cause
problems ranging from lost productivity to abandoning investments in
non-working systems.

WebSphere can communicate with other systems in a variety of ways with
little or no impact on those systems. This allows WebSphere-based systems to
be as productive as possible, and enables the other systems to maintain their
productivity.

Open standards define ways in which various segments of the computer
industry have agreed to implement common functions. WebSphere supports
open standards such as the Java 2, Enterprise Edition (J2EE) specification,
Common Object Request Broker Architecture (CORBA), XA, secure sockets
layer (SSL), Kerberos, Logical Unit (LU) 6.2, and other industry-wide
standards.

Businesses invest heavily in their information technology systems. Distributed
object systems must be designed to work with existing systems. WebSphere
protects existing information technology investments by providing ways to
communicate and interoperate with existing systems.

38 WebSphere: Getting Started with WebSphere Application Server

Chapter 5. Introduction to WebSphere Application Server,
Standard and Advanced Editions

IBM’s WebSphere Application Server offers customers a comprehensive set of
middleware for designing, implementing, deploying, and managing a new
generation of business applications. These applications can range from a
simple Web site storefront to a complete revision of an organization’s
computing infrastructure. It is available in three editions: Standard, Advanced,
and Enterprise.

What is the difference between the Standard and Advanced Application
Servers?

The Standard and Advanced Application Servers have many similar features
and both can be used to create robust business information systems. However,
there are several major difference between the Standard Application Server
and the Advanced Application Server:
v The Standard Application Server supports only a single-machine server

environment. The Advanced Application Server supports a
multiple-machine server environment and includes underlying support for
services such as naming, transaction, and workload management. However,
both editions can support access from multiple client machines.

v The Advanced Application Server supports the replication of EJB server
models that makes it easy to clone EJB servers across multiple nodes,
enabling workload management and improving availability. The Standard
Application Server does not permit replication.

v The administrative interfaces to the two application servers differ somewhat
as a result of the differences in functionality. The interface to the Advanced
Application Server cannot be used to administer a Standard Application
Server environment and the interface to the Standard Application Server
cannot be used to administer an Advanced Application Server. The
Advanced Application Server stores configuration information in a database
repository; the Standard Application Server stores it in XML files.

The Enterprise Application Server includes the Advanced Application Server.
So if you purchase the Enterprise Application Server, you can use any of the
products in any of the three Application Servers to implement your e-business
solutions.

The rest of this chapter focuses on the Advanced Application Server because it
contains everything that is in the Standard Application Server and more.

© Copyright IBM Corp. 1999, 2001 39

Introduction to the Advanced Application Server

The WebSphere Application Server Advanced Edition provides the following
major functionality:
v Tools for developing active Web sites through the use of Java servlets and

JavaServer Pages (JSP). This functionality is also available in the Standard
Application Server.

v Tight integration with tools for developing and deploying enterprise beans
written to the EJB specification. Enterprise beans can act as a bridge
between your Web site and your non-Web computer systems.

v A graphical user interface (GUI), the WebSphere Administrative Console,
for administering the components of the Advanced Application Server
environment. This functionality is also available in the Standard Application
Server.

v A set of application programming interfaces (APIs) for generating,
validating, parsing, and presenting extensible markup language (XML)
documents. (This functionality is also available in the Standard Application
Server.)

The Advanced Application Server environment
Figure 7 shows the components that make up the Advanced Application
Server.

Figure 7. The components of the Advanced Application Server environment

40 WebSphere: Getting Started with WebSphere Application Server

They can be combined to create a powerful, Java-centered, three-tiered system
that puts heavy emphasis on a customer’s Web site. Each part of the
Advanced Application Server is explained as follows.

Administration server
The Administration server and the administrative interface enable application
servers and processes to be monitored and controlled centrally. For more
information, see “The administration model in Advanced Application Server”
on page 43.

Browser-based clients
Clients of applications that run on the Advanced Application Server generally
run in Java-enabled browsers. They send and receive information from a Web
server by using HTTP. Browser-based clients can include applets, described in
“Applets and servlets” on page 26, and JavaServer Pages (JSP), described in
“JavaServer Pages” on page 28.

Web servers
Except for stand-alone Java applets, which are restricted by built-in Java
security, browser-based client applications require that a Web server be
installed on at least one machine in your Advanced Application Server
environment. The Web server provides the communications link between
browser-based applications and the other components of Advanced
Application Server.

WebSphere Application Server supports many of the most widely used Web
servers. The IBM HTTP Server, which is a modified version of the Apache
server, comes with the Advanced Application Server. For information on the
supported Web servers, refer to the IBM WebSphere Application Server site at
www.ibm.com/software/webservers/appserv.

Servlet engine
The Advanced Application Server contains a Java-based servlet engine that is
independent of both your Web server and its underlying operating system.
Java servlets extend the Web server’s capabilities by creating a framework for
providing request and response services over the Web. For more information
on servlets, see “Applets and servlets” on page 26.

Enterprise beans
Advanced Edition provides full support for enterprise beans. An enterprise
bean is a Java component that can be combined with other enterprise beans
and other Java components to create a distributed, three-tiered application. An
EJB server provides the run-time environment for enterprise beans, handling
low-level programming tasks like transaction management, naming, and
security. Java applications can interact directly with an EJB server by using
Java remote method invocation over the Internet Inter-ORB Protocol
(RMI/IIOP).

Chapter 5. Introduction to WebSphere Application Server, Standard and Advanced Editions 41

For more information on enterprise beans, EJB servers, and containers, see
“Enterprise beans” on page 24.

Application model
Advanced Application Server applications consist of object-oriented business
logic that use relational database systems for data storage. Applications are
usually integrated with Web clients (either thick or thin); they can also be
integrated with existing procedural applications running in application
servers.

An application consists of the following components, each performing a
different function:
v HTML and JSP pages provide the user interface and program flow.
v Enterprise beans contain the application’s business logic and handle

transactional operations and access to databases.
v Servlets coordinate work between the other components of the application.

They also can dynamically generate Web page contents.
v JavaBeans components enable the other types of components to work

together.
v Relational databases implement persistence and query functions for

enterprise beans. Either new or existing databases can be used in an
application.

WebSphere Programming Model Extensions
The Programming Model Extensions provide reusable business logic for Java
programs. There are two sets of tools provided in the Advanced Application
Server environment for Java programmers: the command package and the
distributed-exception package. These tools are documented in Writing
Enterprise Beans in WebSphere, but their use is not restricted to enterprise
beans.

The command package provides a way for distributed applications to bundle
remote requests together, reducing the number of individual remote
invocations. Remote invocations are expensive, so the command package can
help you improve the performance of distributed applications. In addition, the
command package provides a generic way of making requests. The package
provides a common way to issue a command, locally or remotely, and
independently of a server’s implementation. Any server (an enterprise bean, a
JDBC server, and so on) can be the target of a command.

The distributed-exception package helps you manage exceptions in distributed
applications. When writing complex distributed applications, you face a
choice in handling exceptions. One option is to manage each exception
explicitly, catching and rethrowing each by name. This ensures that the
information about the original exception is not lost, but it can lead to

42 WebSphere: Getting Started with WebSphere Application Server

unmanageable code as the number of exceptions increases. The other option is
to adopt a strategy of throwing one exception when you catch any of a group.
This choice allows you to keep the number of exceptions manageable, but you
lose information as exceptions pass through an application. The
distributed-exception package allows you to chain a sequence of exceptions
into a throwable object. With an exception chain, you can throw one exception
in response to another, without losing the previous exceptions. You can also
retrieve exceptions from the chain.

The administration model in Advanced Application Server

WebSphere Application Server provides central administration of EJB servers
and other resources. The administration server manages servlets, JSP files,
enterprise beans, and EJB servers. This management is directed by the
WebSphere Application Server administrator who uses the WebSphere
Administrative Console, which is the interface to the administration server.

In WebSphere Application Server, an administrative domain is a collection of
host machines called managed nodes. Each managed node runs an
administration server (administration servers are also EJB servers). A node’s
administration server is responsible for configuring, monitoring, and
managing the resources on that node. Resources include live objects such as
EJB servers, containers, deployed beans, JSP files, Java servlets, and
applications. Resources also include objects such as method groups or policies
that are used to define security for resources in the domain.

Resource beans are container-managed persistent (CMP) entity beans. The
persistent data associated with a resource (for example, the name, current
state, and executable file of an EJB server) is stored in a central data
repository. The administration server communicates with a repository server
to access, define, and modify resource information stored in the repository. An
administration server also communicates with other (remote) administration
servers to delegate tasks and to respond to requests. The IBM DB2 relational
database, which is packaged with the Advanced Application Server, acts as
the repository server. You can also use other databases such as Oracle, Sybase,
or InstantDB.

Administration takes place through method calls to resource beans in the
repository server. The WebSphere Administrative Console makes requests to
an administration server to access or modify a resource in the domain. In the
administration server, session beans invoke methods on the resource beans.
Each resource bean has an associated attribute class that contains methods for
getting and setting attribute values.

All administration servers in a domain share the central storage for resources
in that domain. Regardless of the node it is running on, any administration

Chapter 5. Introduction to WebSphere Application Server, Standard and Advanced Editions 43

server can view and modify the characteristics or status of resources on other
nodes. If an administration server calls a method on a resource that is running
on a different remote node, the method is delegated from the local
administration server to the remote administration server.

Resources are modeled in an object type hierarchy that relates the object types
to each other. Other object types represent entities such as server groups.
Related objects inherit methods from objects above them in the tree hierarchy.

Certain objects in the administrative domain, such as EJB servers, can be
copied (modeled) to create replicas (clones) that perform identical functions to
the object from which they are replicated. This enables the administrator to
duplicate server functionality across multiple nodes, improving availability
and efficiency. After you clone a resource, modifying the model automatically
propagates the same changes to all of the clones. You can efficiently
administer several copies of a server or other resource by administering its
model.

Resources that can be cloned include the following:
v Application servers
v EJB containers
v Enterprise beans
v Servlets
v Servlet engines
v Web applications

Administration tools
The WebSphere Administrative Console is the administrative interface to the
Advanced Application Server. It can be used for a range of administrative
tasks—from configuring resources and setting security policies, to starting
servers and deploying beans, to identifying and responding to system failures
and monitoring usage patterns. The tasks supported by the WebSphere
Administrative Console fall into six categories: configuration, operation,
security, troubleshooting, performance, and data storage.

The WebSphere Administrative Console provides a centralized hierarchical
view of all resources in an administrative domain, guides for performing
administrative operations, forms for viewing and modifying a resource’s
attributes, a central browsing facility for JAR files, a messages window for
monitoring critical events, and context-sensitive help. The WebSphere
Administrative Console modifies information in the repository in response to
user commands and reflects any changes to the configuration and status of
the administrative domain.

44 WebSphere: Getting Started with WebSphere Application Server

The extensible markup language (XML)

XML is designed to make it easy to exchange documents (and other
structured information) over the Internet. In simple terms, it is a standard for
defining document markup languages. A markup language is a set of
elements (frequently called tags) that have one or more of the following
functions:
v Describing the structure of the document.
v Describing the content of the document.
v Controlling how the document is presented to the user.

HTML is the most widely used markup language for Web-based documents,
but it has many limitations. HTML tags describe the visual presentation of
Web pages and do not really specify their logical structure. HTML users are
restricted to a relatively small set of tags and cannot create their own tags
because commercially-available Web browsers do not support tags that are not
part of the HTML standard.

HTML is further limited because the tags that control presentation are in the
same file with tags that describe the document content. Although HTML 4
and Cascading Style Sheets enable HTML authors to separate content from
presentation, HTML 4 is limited in its ability to describe the content of a
document.

XML overcomes these limitations. XML users can define their own custom tag
set, or use tags from any publicly available document type definition (DTD).
XML tags specify the content and structure of a document. Presentation is
separated from the document’s content.

The XML Document Structure Service contained in the Advanced Application
Server enables users to develop servlets and applications that implement
server-side XML processing. It includes a set of APIs for setting servlet
configuration parameters without using the administration interface. This
alternative method involves creating an XML servlet configuration file (which
is an XML document named servlet_instance_name.servlet) that contains the
following:
v The name of the servlet class file.
v A description of the servlet.
v The servlet initialization parameters.
v A page list that contains the universal resource identifiers (URIs) of each

JSP file that the servlet can call. The page list can include a default page, an
error page, and one or more target pages that are loaded if their name
appears in the HTTP request.

Chapter 5. Introduction to WebSphere Application Server, Standard and Advanced Editions 45

Services used by the Advanced Application Server

Although the Advanced Application Server is primarily concerned with the
Web side of your business, the EJB server can act as a bridge to connect your
Web and the non-Web applications to span all of your business systems. This
section looks at some of the generic tasks that must be accomplished to enable
the development and use of distributed applications. It also describes the tools
used to approach each of these tasks in the Advanced Application Server.

Naming service
In an object-oriented distributed computing environment, clients must have a
mechanism to locate and identify the objects as if the clients and objects were
all on the same machine. A naming service provides this mechanism. In the
EJB server environment, the Java Naming and Directory Interface (JNDI) is
used to provide a common front end to the naming service.

JNDI provides naming and directory functionality to Java applications, but the
API is independent of any specific implementation of a naming and directory
service. This independence ensures that different naming and directory
services can be used by accessing it behind the JNDI API. Therefore, Java
applications can use many existing naming and directory services, for
example, the Lightweight Directory Access Protocol (LDAP) or the Domain
Name System (DNS).

Transaction service
A transaction is a set of operations that transforms data from one consistent
state to another. The EJB server manages transactions for EJB applications by
using the mechanism defined in the Java Transaction API (JTA).

For most purposes, enterprise bean developers can delegate the tasks involved
in managing a transaction to the EJB server. The developer performs this
delegation by setting the deployment descriptor attributes for transactions.
The enterprise bean code itself does not need to contain transactional logic.

For more information on transactions, see “Transactions: ensuring data
consistency and permanence in a distributed environment” on page 12.

Security service
In the Advanced Application Server environment, the main component of the
security service is an EJB server that contains security enterprise beans. When
system administrators administer the security service, they manipulate the
security beans.

After an EJB client is authenticated, it can attempt to invoke methods on the
enterprise beans that it manipulates. A method is successfully invoked if the
principal associated with the method invocation has the required permissions
to invoke the method. These permissions can be set by application (an

46 WebSphere: Getting Started with WebSphere Application Server

administrator-defined set of Web and object resources) and by method group
(an administrator-defined set of Java interface-method pairs). An application
can contain multiple method groups.

In general, the principal under which a method is invoked is associated with
that invocation across multiple Web servers and EJB servers (this association is
known as delegation). Delegating the method invocations in this way ensures
that the user of an EJB client needs to authenticate only once. HTTP cookies
(identification files stored on a client computer’s hard drive) are used to
propagate a user’s authentication information across multiple Web servers.
These cookies have a lifetime equal to the life of the browser session.

Workload management service
Workload management (WLM) optimizes the distribution of processing tasks
in the WebSphere Application Server environment. Incoming requests are
distributed to the application servers and other objects that can most
effectively process the requests.

The workload management service ensures that client requests are distributed
according to the capacity of each machine in the system, making it easier to
scale up systems to meet higher client loads. It also provides failover support
by redirecting requests and simplifies maintenance and administration.

The WebSphere Application Server environment provides several ways to
manage workloads:
v Clones and models can be created for application objects, from individual

enterprise beans and servlets to entire application servers. The Advanced
Application Server’s WLM service distributes processing requests among
enterprise bean and EJB server clones.

v Servlet redirection is used to route client requests to servlet clones.
v EJB servers can be combined into EJB server groups. Clients then access

these EJB server groups as if they were a single server.
v WLM-enabled administration servers provide failover and load balancing

for administration requests.

Development environment

WebSphere Studio is the WebSphere Application Server application
development environment. It can be used to create everything from personal
Web pages to Web sites that serve as front ends for e-business applications.
WebSphere Studio provides a tool suite for developing HTML content and can
be integrated with other content development tools.

VisualAge for Java is an integrated development environment that supports
the complete cycle of Java program development. Although it is not formally

Chapter 5. Introduction to WebSphere Application Server, Standard and Advanced Editions 47

a part of the Standard or Advanced Application Servers, VisualAge for Java is
tightly integrated with the WebSphere Application Server environment. This
integration enables VisualAge developers to develop, deploy, and test their
Java programs without leaving the VisualAge program. It also helps
developers to manage the complexity of the enterprise environment and is
capable of automating routine steps.

Documentation

The Standard and Advanced Edition InfoCenters provide information that can
help you to install and configure WebSphere Application Server and plan,
develop, deploy, and troubleshoot applications. The InfoCenters for both
Standard and Advanced Edition can be accessed online from the WebSphere
Application Server library page at
www.software.ibm.com/webservers/appserv/library.html.

48 WebSphere: Getting Started with WebSphere Application Server

http://www.ibm.com/software/webservers/appserv/library.html

Chapter 6. WebSphere Application Server Enterprise
Edition

This chapter provides a brief discussion of the contents of the WebSphere
Application Server Enterprise Edition. It also discusses the environments in
which the Enterprise Application Server products run and the additional
products packaged with the Enterprise Application Server.

Why use Enterprise Application Server?

The Enterprise Application Server contains all of the products found in the
Advanced Edition and adds the following major product components:
v Component Broker, which is an enterprise solution for distributed

computing, providing a scalable, manageable run time for developing and
deploying distributed component-based solutions. It is a complete and
integrated implementation of the open standards contained in the Object
Management Group’s (OMG) Common Object Request Broker Architecture
(CORBA). In addition, Component Broker contains a separate
implementation of the EJB Specification, which can be used with or instead
of the implementation contained in the Advanced Edition.

v TXSeries, which contains two popular middleware packages (CICS and
Encina) that support and simplify the creation of transactional applications
that can span multiple platforms in diverse and complex networks. In
addition to offering cross-enterprise integration, TXSeries applications
provide high levels of scalability, availability, integrity, longevity, and
security.

The Enterprise Application Server contains a complete tool set for building
applications that span all aspects of a modern, customer-oriented and
supplier-aware business. Whether you want to build a powerful Web
presence, create distributed, transactional applications that can tie together
disparate non-Web business computing resources, integrate your Web and
non-Web systems, or accomplish all of these goals, Enterprise Application
Server can help you.

The rest of this chapter explains some of the major underlying environments
and services on which Enterprise Application Server runs. It also briefly
discusses some of the other products that are licensed for use with the
Enterprise Application Server. The following two chapters examine the
components of the Enterprise Application Server and explain what each of
these components do best.

© Copyright IBM Corp. 1999, 2001 49

Low-level services used in Enterprise Application Server products

Many of the Enterprise Application Server products rely on one or more of
the following services to handle low-level tasks such as security, naming, and
remote procedure calls:
v The Open Group’s Distributed Computing Environment (DCE). For more

information, see “Distributed Computing Environment (DCE)”.
v The Object Management Group’s (OMG) Component Object Request Broker

Architecture (CORBA). For more information, see “Common Object Request
Broker Architecture (CORBA)” on page 52.

v Microsoft Corporation’s Component Object Model (COM). For more
information, see “Component Object Model (COM)” on page 52.

The Enterprise Application Server also contains an implementation of the EJB
Specification (and related Java specifications) that is built into the Component
Broker product. Information about this implementation is provided in the
general discussion of Component Broker; for more information see “Chapter 7.
Introduction to Component Broker” on page 55.

Distributed Computing Environment (DCE)
DCE enables distributed transaction processing environments using
Component Broker or TXSeries to run seamlessly across machines that differ
in hardware, operating system, network transport, and application software.
The DCE layer extends the basic operating systems of the separate machines
to provide a common infrastructure for distributed computing. By using the
standard interfaces provided by DCE, applications can interoperate with and
be ported to other DCE platforms. The following sections describe the DCE
services used by Enterprise Application Server products.

Remote procedure call (RPC)
At the core of DCE support is the RPC. RPCs provide a form of
network-transparent communication between processes in a distributed
system. Processes use RPCs to communicate in exactly the same way
regardless of whether they are on the same machine or different machines in
an administrative unit known as a cell. The DCE Security Service can be used
to authenticate RPCs. Authenticated RPCs can be checked for tampering and
can be encrypted for privacy. DCE uses multithreading to enable a client to
have multiple concurrent RPC conversations with servers and to enable a
server to handle many concurrent client requests.

Cell Directory Service (CDS)
The CDS provides a namespace within which network resources can be
accessed by name only. Applications do not need to know the addresses of
resources. (Typical network resources are servers, users, files, disks, or print
queues.) Further, if a resource is moved, it can still be located by the same
name; application code does not need to be changed.

50 WebSphere: Getting Started with WebSphere Application Server

The CDS Server manages a database, called a clearinghouse, which contains the
names and attributes (including locations) of network resources in the DCE
cell. When a request is made for a network resource, the CDS Server locates
the resource.

The DCE Directory Service also supports a global name service for identifying
resources outside a cell.

DCE Security Service
The DCE Security Service provides secure communications and controlled
access to network resources in a DCE cell. It verifies the identity of DCE
principals (users, servers, and DCE-enabled clients) and allows them to access
only the network resources that they are authorized to use. The DCE security
service does the following:
v Manages a central source of security information in the cell’s security

database.
v Validates the identity of interactive principals, such as users, by enabling

them to log into DCE. This is known as establishing a login context.
v Grants tickets to principals and services so their communications are secure.
v Certifies the credentials of principals to control principals’ access rights to

resources.
v Validates the identity of noninteractive principals, such as CICS regions, by

enabling them to perform the equivalent of an interactive user login. In this
way, they can establish their own login context rather than running under
the identity of the principal that started them.

v Controls the authorization that principals have to network resources in the
DCE cell. Each object in the DCE cell can have an associated access control
list (ACL) that specifies which operations can be performed by which users.
ACLs can be associated with files, directories, and registry objects, and can
be implemented by arbitrary applications to control access to their internal
objects.

The DCE Security Service is implemented as a security server, which
maintains a store of security information about network resources in its
security database (also known as the DCE registry database).

Distributed Time Service (DTS)
To compensate for natural drifts in system clocks, the DCE DTS ensures that
all system clocks of the servers in a DCE cell are synchronized. This is
especially important where servers are in different time zones. A time service
is also essential to ensure the reliable operation of authentication and
authorization services.

Chapter 6. WebSphere Application Server Enterprise Edition 51

Common Object Request Broker Architecture (CORBA)
The OMG created the CORBA specification to facilitate the development of
object-oriented applications across a network. CORBA objects are standard
software objects implemented in any object-oriented programming language.
An Object Request Broker (ORB) mediates the transfer of messages between
client programs and objects. When a client program invokes a method on an
object, the ORB intercepts the request and finds an object implementing that
method. The result of the method invocation is returned to the client program
by the ORB. From the programmer’s point of view, all of the work appears to
be done on one computer system.

The Internet Inter-ORB Protocol (IIOP) enables communications between
different ORB implementations. The IIOP is based on TCP/IP and includes
additional message-exchange protocols defined by CORBA.

Various Enterprise Application Server products support one of the following
ORBs:
v The IONA Orbix ORB
v The IBM Component Broker ORB
v The IBM Java ORB

For more information, see “CORBA” on page 29.

Component Object Model (COM)
Microsoft COM is a model for developing applications composed of
individual components that can be transparently and separately upgraded.
When COM is used, Windows applications can be developed as multiple
components rather than as a single entity; this enables the application to be
distributed and maintained more easily.

Both TXSeries Encina and Component Broker provide COM functionality on
Windows NT systems.
v Encina applications can use COM components to transparently handle the

functions of Encina clients. Clients can contact Encina servers, manage
transactions, and perform other tasks by instantiating Encina COM
components and calling standard member functions on these components.
COM components can be created from standard Encina Transactional
Interface Definition Language (TIDL) files. The resulting dynamic linked
library (DLL) can be used with the prepackaged Encina COM DLLs and
other, non-Encina COM DLLs to develop Encina clients.

v Component Broker applications can use COM components to access
managed objects. A managed object is wrapped at run time by a COM
component, which serves as a proxy for accessing the object. COM
components can also be used to access remote CORBA objects.

52 WebSphere: Getting Started with WebSphere Application Server

COM components can be created from standard Interface Definition
Language (IDL) files. The resulting DLL can be used with other COM DLLs
to develop Component Broker clients. COM components for some
Component Broker object services are also provided.

For more information on COM components, see “Microsoft COM” on page 30.

Other tools available with the Enterprise Application Server

The Enterprise Application Server includes the following additional products
that are required by (or recommended for use with) the main tools of the
Enterprise Application Server:
v IBM DB2—DB2 is a distributed relational database that can be used as a

resource manager in conjunction with TXSeries and Component Broker.
DB2 can be used by the EJB administration servers contained in the
Advanced Application Server and must be used by the EJB administration
servers contained in Component Broker. It can also be used to store
persistent data associated with container-managed persistence (CMP) entity
beans in both the Advanced and Enterprise Application Server.

v IBM HTTP Server—The IBM HTTP Server is a powerful Web server that is
based on the popular Apache Web server. In addition to providing the full
range of Web server features, it provides enhanced SSL for secure
transactions. The Advanced Application Server also provides plug-ins for
the most popular Web servers, enabling your Web server to extend into a
Java application server.

v IBM MQSeries—The IBM MQSeries® range of products enables application
programs to communicate in a nonserial, asynchronous manner by using
messages and queues. At the heart of MQSeries is the Message Queue
Interface (MQI), a high-level programming interface that enables
applications to communicate transparently across various platforms. MQI
takes care of network interfaces, assures delivery of messages, deals with
communications protocols, and handles recovery from system problems.

v IBM VisualAge for Java Enterprise Edition—VisualAge for Java is a
powerful integrated development environment (IDE) that contains many
features for building Java-based business information systems. This
powerful IDE provides support for developing and testing Java applications
and components written to the Enterprise JavaBeans and JavaBeans
specifications. For more information, see “VisualAge for Java” on page 7.

v IBM VisualAge C++ Professional Edition—VisualAge C++ provides a rich
environment and toolset for multiplatform object-oriented application
development. The development environment is especially valuable for
high-performance and highly computational applications. Its Open Class®

Library provides advanced class libraries and frameworks to build robust
applications on AIX and Windows NT.

Chapter 6. WebSphere Application Server Enterprise Edition 53

54 WebSphere: Getting Started with WebSphere Application Server

Chapter 7. Introduction to Component Broker

Component Broker provides a scalable, manageable environment for
developing and deploying distributed component-based solutions. It is an
integrated implementation of the open standards contained in the Object
Management Group’s (OMG) Common Object Request Broker Architecture
(CORBA) initiative. Many of the low-level details of the CORBA interface are
hidden by Component Broker’s easy-to-use framework. It is available on the
Windows NT, AIX, Solaris, and OS/390 platforms.

This overview provides an introduction to the following Component Broker
features:
v “Component Broker features”
v “Application architecture” on page 57
v “Application adaptors” on page 58
v “Object services” on page 59
v “System management” on page 61
v “Development tools” on page 63

Component Broker features

Component Broker is primarily an object server. It comes with a development
environment that is optimized for creating business objects that run in the
Component Broker server. This server consists of both a run-time package
called the Component Broker Connector (CBConnector) and the VisualAge
Component Development Toolkit (CB Tools). The run-time package provides a
server in which business object components run and are managed through a
set of management tools.

As an object server, Component Broker provides an application environment
that lets clients access back-end systems through object-oriented middleware.
This system provides an infrastructure scalable enough to include everything
from desktops to the largest cluster of mainframes.

The Component Broker run-time environment supports the execution of C++
and Java-based business logic that follows the CORBA model or the model of
the Enterprise JavaBeans (EJB) Specification from Sun Microsystems. The
Enterprise JavaBeans Specification provides a portable, platform-independent
reusable component architecture. These components run in a robust,
multithreaded server that provides easy access to a wide variety of services
and capabilities.

© Copyright IBM Corp. 1999, 2001 55

Component Broker’s object services are available in an integrated fashion
based on the OMG model and the Component Broker Managed Object
Framework (MOFW), a set of configurable and extensible object interfaces.
Key object services provided include Data Cache and Prefetch, Concurrency
Control, Event, Externalization, Object Identity, LifeCycle, Naming, Query,
Security, and Transaction. Application adaptors extend and specialize these
interfaces and provide a home and container for Managed Objects, similar to
an object-oriented database

Component Broker contains a CORBA 2.0–compliant Object Request Broker
(ORB). This ORB is largely encapsulated by the Managed Object Framework
and the object services provided by Component Broker. The ORB facilitates
interoperability with other Internet Inter-ORB Protocol (IIOP) servers and with
clients. Component Broker supports client access by using the Internet
Inter-ORB Protocol (IIOP) directly or by using Remote Method Invocation
over IIOP (RMI/IIOP). This enables Java clients (applet, application, or
servlet), C++ clients, and Microsoft ActiveX® or Visual Basic clients to access
business objects running in the server.

Component Broker applications can access resources on DB2, Oracle, CICS,
IMS, and MQSeries. Business objects that have data objects backed by these
resource managers can participate in distributed transactions. Component
Broker acts as an external commit coordinator for all of these resource
managers through the implementation of the CORBA Object Transaction
Service (OTS).

System Management tools enable administrators to control the
distributed-object computing environment. These tools enable the modeling of
the deployment configuration and then the actual management of the
abstractions that are introduced by the distributed-object paradigm.
Administrators can enlarge configurations by adding servers and server
groups. They can alter qualities-of-service through container management, and
they can scale up environments by adding additional computing resources
into the object server pool.

Development of applications that run on Component Broker can be done in
three ways:
v Component Broker provides the Object Builder tools for building

CORBA-based applications. Designs for systems can be imported into
Object Builder from the Rational Rose visual modeling tool. After these
designs are imported, the template for the implementation is available for
use. Developers fill in the business logic within the implementation
framework. Object Builder takes care of the rest. It generates the code,
makefiles, and application configuration information necessary to test the
application on a Component Broker server. Object Builder also supports
development of large-scale systems by teams of developers.

56 WebSphere: Getting Started with WebSphere Application Server

v Enterprise beans created in other tools (such as VisualAge for Java) can be
deployed in Component Broker, which can also act as an EJB server.
Developers can build enterprise applications by using the EJB programming
model. Object Builder serves as the deployment tool for enterprise beans
that run in the Component Broker run time and facilitates the mapping of
entity beans with container-managed persistence (CMP) to databases and
existing applications. This support is based on the same technology used to
map CORBA-based business objects to existing resource managers.
Enterprise beans also benefit from the same implementations of object
services that are available to CORBA-based business objects.

v Distributed object applications that combine enterprise beans and
Component Broker business objects can be easily constructed, tested, and
deployed using the Object Builder tool and the Component Broker run
time.

Component Broker applications can also make use of the WebSphere
Programming Model Extensions. For more information, see “WebSphere
Programming Model Extensions” on page 42.

Application architecture

Component Broker applications are designed as three-tiered applications (as
described in “Three-tiered client/server computing” on page 11). The content
of each tier is summarized below:
v First tier—Client applications can be C++ programs, Java applets, or Visual

Basic programs that a user interacts with directly; they can also be Web
servers or application servers with their own clients. Clients can access
components on the server through proxy objects over a CORBA-compliant
ORB. The Component Broker client programming model also supports
access to components from clients that use programming models such as
ActiveX/COM objects.

v Middle tier—A run-time environment in which components containing the
application’s business logic are deployed on a Component Broker server.
Components can be CORBA-based business objects or enterprise beans. The
server can have components on one machine or on many different
machines.

v Third tier—Data in various resource managers, including DB2, Oracle, CICS,
and IMS. Application adaptors in the middle tier allow components to
access third-tier resources. The third tier can be running on many different
physical hosts, and can use application logic that itself provides additional
physical tiers.

Development of three-tiered applications is made possible by the Managed
Object Framework. The framework is supported by a suite of development

Chapter 7. Introduction to Component Broker 57

tools, which allow you to make use of the framework to create components
without going into details of inheritance and framework implementation.

Components are deployed in the middle tier, connecting the first tier (client)
with the third tier (databases and other resources). The components are
implemented as CORBA-based business objects or enterprise beans. They
allow application logic to run on high-powered servers, and insulate client
applications from the complexities of the various resource managers. The
client works with the components through a CORBA-compliant ORB, and the
components work with the resource managers, using whatever
communications protocols are supported by the target resource manager (for
example, TCP/IP). For an overview of Component Broker’s component
architecture, see “Managed Object Framework” on page 31.

A Component Broker server process provides a complete execution
environment and partial implementation for managed objects. Method
requests are routed from the ORB to the server. The server, in conjunction
with the container and adaptor, ensures that method requests are dispatched.

For more information, see the Component Broker Programming Guide.

Application adaptors

An application adaptor is similar to an object-oriented database. It provides a
place for the managed objects of components, similar to the way in which a
database system provides a home for data or records. Application adaptors
are responsible for providing systems capabilities (for example, identity,
caching, and persistence) for their managed objects. Component Broker
provides the following application adaptors:
v The Procedural Application Adaptor (PAA), which enables Component

Broker applications to access procedural resources such as CICS, IMS, or
SAP.

v The MQSeries application adaptor, which integrates Component Broker
applications with MQSeries applications.

v Database application adaptors, which are used to access relational databases
such as DB2, Oracle, and Informix.

To learn how to use the adaptors available with Component Broker, see the
following documents:
v MQSeries Application Adaptor Development Guide

v Procedural Application Adaptor Development Guide

v Database Application Adaptors Development Guide

58 WebSphere: Getting Started with WebSphere Application Server

Object services

The Component Broker application server provides a number of services to
business objects or enterprise beans. Some of these object services are
administrative in nature; their behavior is configured through the
management tools. Others are presented as interfaces, and still others are built
into the infrastructure and work on behalf of the business logic. For more
information on these services, see the Component Broker Advanced
Programming Guide.

Concurrency Control Service
The Concurrency Control Service is intended for use in a transactional
environment. It consists of a set of interfaces that allow an application to
coordinate access by multiple transactions or threads to a shared resource.
When multiple transactions or threads try to access a single resource at the
same time, any conflicting actions are reconciled so that the resource remains
in a consistent state.

Event Service
The Event Service enables objects to communicate asynchronously. There are
two defined roles: supplier objects and consumer objects. Suppliers produce
events, and consumers process events. Component Broker uses the Event
Service to uniquely identify the occurrence of an event. The event message
does not convey anything more about the event instance except that it
occurred.

Notification Service
The Notification Service enables objects to register (and unregister) their
interest in certain events. It contains event channels that allow supplier objects
to communicate with consumer objects asynchronously, without affecting the
low-level object processes.

Externalization Service
The Externalization Service enables objects to save and restore their states in a
nonobject form. This allows the object’s state to exist independently of the
object itself. The state can be maintained indefinitely without regard to the
continued existence of the original object or the ORB process in which it
existed.

Identity Service
The Identity Service provides unique identity information for each object. It
derives an object’s identity from relative information that positions the object
within its container, server, host, and domain.

LifeCycle Services
The LifeCycle Services provide operations for creating, copying, moving, and
deleting objects in a distributed environment. Clients need to perform
LifeCycle operations on objects in various locations.

Chapter 7. Introduction to Component Broker 59

Naming Service
The Component Broker Naming Service allows you to create naming
hierarchies to easily locate objects. In conjunction with other services, clients
can navigate through different naming context trees to locate specific objects.
Component Broker Naming Service handles both absolute and relative paths.

Security Service
Component Broker supports a variety of security services. It provides the
mechanisms and technologies to secure your distributed system. However,
your distributed system is no more secure than you make it. The Component
Broker run time (specifically the application adaptor to which the object is
configured) is responsible for establishing the authenticity of any requests
made on the data system for that object’s persistent data. These mechanisms
include the following:
v Authentication
v Message protection
v Authorization

The Security Service is used primarily to prevent end users from accessing
information and resources that they are not authorized to use. This
predominantly covers distributed business objects, but by extension includes
any of the information and resources from other nonobject-oriented or
nondistributed sources used by those business objects.

In many cases, Component Broker is used to wrap legacy information system
resources, such as business applications and enterprise data. Often, those
resources have been centralized and held in a physically secure environment
or with restricted access over controlled access channels.

Transaction Service
The Transaction Service provides standard, distributed object interfaces that
can be used by programmers to implement transactions. Component Broker
uses the Transaction Service to ensure that transactional data is updated
consistently. If an application uses the Transaction Service in conjunction with
the Concurrency Service, these updates are not affected by updates being
performed for other tasks.

For more information on transactions, see “Transactions: ensuring data
consistency and permanence in a distributed environment” on page 12.

Session Service
The Session Service enables applications to control the extent of a session and
provides information on the application profile and session properties that are
relevant within the scope of that session.

60 WebSphere: Getting Started with WebSphere Application Server

The scope of the session is defined to exist between the point when the
session starts and the point when it ends. Each session provides the ability,
outside of a transaction context, to isolate particular instances of objects from
other sessions; each session can have its own view of object data.

Query Service
The Query Service locates objects in a Component Broker collection based on
a set of conditions described with an object-oriented structure query language
(OOSQL). OOSQL is a extension of SQL with features for handling object
collections, object attributes, and methods in query statements. It supports
complex search criteria.

The Query Service can return either a list of object references or a list of object
attribute values. It uses the search capabilities and indexes in the underlying
database to make searching for objects more efficient.

Cache Service
The Cache Service enhances concurrency and performance by supporting
optimistic and pessimistic caching of data. In optimistic caching, frequently
used data is cached in the memory of the Component Broker server and not
reread from the database on each transaction. Cached data is invalidated
based on a time-out value. Pessimistic caching is used when the application
must be guaranteed current data and uses a higher degree of isolation to
guarantee serializability of transactions. You configure the caching mode by
using the System Management End User Interface on each object type.

Workload Management
As more clients use an application, the amount of work increases and the load
on the servers increases. The Workload Management capability allows the
Component Broker run time to dynamically allocate an application server to
process a request. This minimizes the response time for client requests and
maximizes server dispatch by reducing routing between objects in the
distributed network. The key to workload management in Component Broker
is the use of a server group to define multiple application servers with a
common configuration.

System management

Component Broker provides a range of system management functions. On the
UNIX and Windows NT platforms, system management is handled through a
graphical user interface (GUI). This GUI helps you administer and operate
your enterprise easily and effectively. The System Manager user interface
displays and acts on the entities in your enterprise as system management
objects. On the OS/390 platform, system management is handled by using the
Administration Application and the Operations Application.

Chapter 7. Introduction to Component Broker 61

As shown in Figure 8, the System Manager controls the applications, servers,
and clients within the Component Broker network. All servers, clients,
applications, and their resources are managed as system management objects.
Information about those objects is stored in the central configuration data
maintained by the System Manager. The System Manager interacts with the
system management objects on each managed host in its network through the
System Manager agent that runs on the managed host. It presents
administrators with data about objects in its network through the System
Manager user interface.

For effective systems management, organize your systems and resources
according to your business needs. For example, you can use the System
Manager to do the following:
v Group your host computers into cells and workgroups.
v Configure your enterprise as one or more management zones to be

managed as separate units. The hosts in your enterprise are automatically
configured into one management zone, the network zone. Business
applications and their clients and servers can be configured into one or
more other application management zones.

Figure 8. The Component Broker System Manager

62 WebSphere: Getting Started with WebSphere Application Server

v Create alternative configurations of each management zone to provide
support for changes in your business needs. For example, you can have
configurations that support different applications or geographical areas, use
different servers, or even use different host computers.

v Configure workload management of your applications across controlled
server groups.

v Verify that your configurations are complete, properly defined, and ready
for activation.

v Activate an entire configuration of a management zone with one action to
update all or part of your business enterprise.

You can do all this with minimal definition of system management objects.
When you verify that a configuration can be activated, the System Manager
determines what system management objects and relationships are needed
and, if possible, creates those objects and relationships.

You can also use Component Broker system management to operate your
enterprise and to perform functions on run-time objects. For example, you can
do the following:
v Start and stop individual servers and applications.
v Display and act on the status of managed objects.
v Display and change the attributes and relationships of managed objects.
v Change workload management across server groups.

Development tools

The CB Tools can be used with VisualAge for Java and VisualAge C++ to
generate multitier applications.

Object Builder
Object Builder is the development environment for Component Broker. You
can use Object Builder to:
v Develop new applications.
v Accumulate existing applications.
v Add new functionality to existing applications.
v Package an application.
v Prepare enterprise beans for execution in the Component Broker run time.

It is used to develop applications from start to finish. You can also design in
Rational Rose, then import the design into Object Builder and add the final
objects and program logic. Object Builder supports the CORBA programming
model using IDL with implementations in both Java and C++. Complete
working applications can be generated, including unit test versions and full
client/server packages complete with server setup scripts.

Chapter 7. Introduction to Component Broker 63

The CB Tools integrate with the Object Builder to create the input to compile
code and emitters. This integration defines Object Builder as the development
environment for the Component Broker product. You can use it to develop
your application from start to finish, or you can import architectural
engineering designs into Object Builder, where you add the final objects and
program logic.

You can select platforms for which to generate your application. For each
platform you select, an equivalent subdirectory is added to the working
directory of the application project. Every time you generate code, you
generate that code for all selected platforms; however, only code that needs to
be regenerated because of changes to the model since the last code generation
are rebuilt.

You can define constraints to ensure that the components you develop are
deployable on your target platforms. These constraints can be set when you
create the object, or later by editing its properties. For example, if your
platform constraints are set to AIX and OS/390, you can select to apply only
OS/390 constraints to develop an OS/390-specific version of the object.

The Object Builder user interface provides access to different views of your
application. To build the application DLL files defined in Object Builder, you
must have the Component Broker Server software development kit (SDK)
installed, as well as any prerequisite application development software.

The model for your application is constructed from components. You can use
Object Builder to develop components for deployment on Windows NT, AIX,
Solaris, or OS/390 servers. Most development options are the same for all
platforms: the main differences appear when you generate the code for your
components. For example, you can filter inheritance options, framework
methods, and framework method implementations for the selected platform.
The information for all platform views is stored in the same project model;
you can switch between views at any time.

Component Broker also provides tools for deploying portable enterprise beans
to run as Component Broker business objects. Deployment of both session
beans and entity beans is supported. Command-line and GUI interfaces for
bean deployment are provided, including support for deploying enterprise
beans from Object Builder or from VisualAge for Java. Deployment of session
beans and entity beans with bean-managed persistence can be done
unattended in batch mode or from a makefile. Deployment of entity beans
with CMP involves using Object Builder to define the mapping between the
bean’s CMP fields and a persistent data store. This mapping can be done
either by using a legacy data store or by defining a new database, and can
utilize the full variety of persistent back ends that are supported by

64 WebSphere: Getting Started with WebSphere Application Server

Component Broker. The mapping can also take advantage of the rich set of
database mapping helpers that Component Broker provides.

For more information on Object Builder, see the Component Broker Application
Development Tools Guide.

Chapter 7. Introduction to Component Broker 65

66 WebSphere: Getting Started with WebSphere Application Server

Chapter 8. Introduction to TXSeries

IBM TXSeries is an advanced transaction processing solution that coordinates
and integrates servers, managing high-performance applications and data
sources across the network. It combines the technologies of IBM’s
market-leading Customer Information Control System (CICS) and IBM’s
Encina transaction processing products. Customers can use it to create a
distributed, client/server environment with the reliability, availability, and
data integrity required for online transaction processing.

TXSeries supports standard protocols and gateways to the Internet. You can
link your transaction environment to key applications for groupware and
database management. TXSeries also enables you to run business transactions
over the Internet securely and reliably; for example, you can run order entry,
customer record updates, and inventory maintenance applications.

TXSeries provides transaction-based access to data stored in DB2, Oracle,
Microsoft SQL Server, Informix, and Sybase relational databases.

TXSeries CICS

CICS is IBM’s general-purpose online transaction processing software. It is an
application server that runs on a range of operating systems from the desktop
to the largest mainframe. TXSeries CICS, which is part of WebSphere
Enterprise Edition, runs on AIX, HP-UX, Solaris, and Windows NT systems;
other versions of CICS run on OS/390, AS/400, VMS, and other platforms.

CICS handles security, data integrity, and resource scheduling. It integrates
basic business software services required by online transaction processing
applications. Typical transaction processing applications that use CICS
include:
v Retail distribution systems
v Banking, insurance, and brokering systems
v Order entry and processing systems
v General ledger systems
v Payroll systems
v Automatic teller machines
v Airline reservation systems
v Process control systems

© Copyright IBM Corp. 1999, 2001 67

This section provides a high-level overview of CICS and describes the basic
CICS components. For more information, see the TXSeries Concepts and
Planning guide.

Basic CICS concepts
An instance of a CICS system is called a CICS region. A region is configured
and administered as a unit and controls a common set of resources. Multiple
CICS regions often run on the same system. These regions can be independent
of one another—for example, one for accounting, one for inventory
management, and so on—or they can be closely tied together. CICS provides a
number of facilities for interregion (also called intersystem) communication.

User interactions with a CICS region involve one or more transactions. In
CICS terms, a transaction is a basic operation that is offered to the user. For
example, a banking application can include a query transaction, a debit
transaction, a funds-transfer transaction, and so on. This use of the term is a
bit different from the use of the term in other contexts (such as within
Encina). CICS calls a group of actions that must be performed as an atomic
unit of work and which must be durable and recoverable a logical unit of work
(LUW).

The transactions that make up an application are written by CICS application
developers. An administrator specifies which transactions are to be offered to
users in the region’s Transaction Definitions. A number of predefined
transactions are supplied with CICS. These transactions allow users to sign on
and off. They also provide utility, management, and debugging facilities.

CICS uses a file manager—either the Encina Structured File Server (SFS) or
DB2—to store transient data and Virtual Storage Access Method (VSAM) files.

The CICS application programming interface
CICS provides a rich application programming interface (API) to enable
developers to create transaction application programs. The API is made up of
a number of CICS commands. The commands are embedded in an application
program written in a high-level language (such as COBOL, C, C++, PL/I, or
Java). The developer simply precedes the CICS command by the phrase EXEC
CICS as shown in this example:
EXEC CICS READ FILE('ORDER') INTO(RECORD)

The program source file is then processed by a precompiler before it is
processed by the compiler for the programming language (the COBOL
compiler, the C compiler, and so on).

CICS API commands are available to perform the following types of
functions:
v Reading, writing, and updating files

68 WebSphere: Getting Started with WebSphere Application Server

v Allocating and freeing memory
v Passing control between CICS programs
v Reading from and writing to temporary storage queues
v Reading from and writing to transient data queues
v Using timers
v Writing journals for audit trails, change records, and so forth
v Sending and receiving data from 3270 terminals
v Communicating using SNA LU 6.2 communications
v Controlling the CICS internal dispatcher
v Handling logical units of work
v Security and authentication
v Batched data exchange
v Monitoring and diagnostics

Commands are also provided for a number of other functions. On some
platforms, CICS API commands are also implemented as C++ and Java
methods.

CICS also provides user exits, places in CICS modules at which CICS can
transfer control to a program that you have written (a user exit program).
CICS resumes control when your exit program has finished its work. You can
use user exits to extend and customize the function of your CICS system
according to your own requirements.

Relational database support
CICS supports the use of a number of relational databases. These databases
can be used to store the information used by CICS applications, which can
include embedded Structured Query Language (SQL) statements. The
databases can fully participate in CICS LUWs by using a full two-phase
commit process if needed. CICS provides support for the following relational
database management systems:
v DB2 UDB
v Oracle
v Informix
v Sybase
v Microsoft SQL Server

CICS also supports the use of VSAM.

Queue services
Queues are sequential storage facilities that are global resources within either
a single CICS region or a system of interconnected CICS regions. That is,

Chapter 8. Introduction to TXSeries 69

queues, like files and databases, are not associated with a particular task. Any
task can read, write, or delete queues, and the pointers associated with a
queue are shared across all tasks.

Two types of queues are provided by CICS: transient data queues and
temporary storage queues. Although these names imply impermanence, CICS
queues are permanent storage. Except for temporary storage queues kept in
main storage, CICS queues persist across executions of CICS, unless explicitly
discarded in a cold start. Persistent queues are stored by the CICS file
manager—either the Encina Structured File Server (SFS) or DB2.

Intersystem communication
In a multiple system environment, CICS regions can communicate with other
regions to provide users of the local region with services on remote systems
and offer services in the local region to users on remote systems. Both data
and applications can be shared.

The CICS intercommunication facilities simplify the operation of distributed
systems. In general, this support extends the standard CICS facilities (such as
reading and writing to files and queues) so that applications or users can use
resources situated on remote systems without needing to know where the
resources are located. The following CICS intercommunication facilities are
available:
v Distributed program link (DPL) extends the use of the EXEC CICS LINK

command to allow a CICS application program to link to a program that
resides on a different CICS system.

v Function shipping enables an application program to access files, transient
data queues, and temporary storage queues belonging to another CICS
system.

v Transaction routing enables transactions to be executed on a remote system.
The transaction is able to display information on your terminal as if it were
running on your local system.

v Asynchronous processing extends the EXEC CICS START command to enable
an application to initiate a transaction to run on another CICS system. As
with standard EXEC CICS START calls, the transaction requested in the
START command runs independently of the application issuing the START
command.

v Distributed transaction processing (DTP) uses additional EXEC CICS
commands that enable two applications running on different systems to
pass information between themselves. These EXEC CICS commands map to
the LU 6.2 mapped conversation verbs defined in the SNA Architecture.
DTP can be used to communicate with non-CICS applications that use the
advanced program-to-program communications (APPC) protocol.

70 WebSphere: Getting Started with WebSphere Application Server

CICS SNA support
CICS regions and Encina PPC-based applications can communicate across
SNA with any system that supports APPC; for example, IBM
mainframe-based CICS and APPC workstations.

TXSeries can use the following two methods of SNA communication:
v CICS local SNA support, which supports synchronization levels 0 and 1.
v An Encina PPC Gateway server, which supports synchronization levels 0, 1,

and 2.

Both methods support all the CICS intercommunication facilities to other
CICS regions, and DTP is supported to non-CICS regions (such as Encina).
Also, CICS can use local SNA support to communicate with IBM CICS
Universal Clients.

Communicating with users
Users communicate with the CICS region through clients. Clients are typically
products dedicated to communicating with servers and providing interfaces to
users and their application programs. Clients run on a range of platforms, for
example, laptop computers and Open Systems workstations. A CICS client can
communicate with multiple CICS regions.

CICS Transaction Gateway
The CICS Transaction Gateway is an integration of the functionality of the
CICS Internet Gateway and the CICS Gateway for Java. The gateway enables
any Web browser, network computer, or Internet-enabled consumer device to
access business applications running on CICS servers. When the CICS
Transaction Gateway is used, a Web browser can be used to run a CICS 3270
terminal session, a Java applet, or a CORBA-based client.

The CICS Transaction Gateway runs on the Windows NT, AIX, Solaris, and
OS/2 operating systems. In addition, application development is supported
for the Windows 95 and 98 operating systems.

CICS administration
Systems administration for CICS consists of configuring the CICS environment
so that CICS regions can be started, monitoring running regions, shutting
regions down, and recovering from problems. Administering CICS involves
procedures that affect other components such as SFS, DB2, and the Distributed
Computing Environment (DCE).

The administrative tool used to configure and manage CICS depends on the
operating system you are using. For example, you can use the TXSeries
Administration Tool on Windows NT or the System Management Interface

Chapter 8. Introduction to TXSeries 71

Tool (SMIT) for CICS on AIX. The tools simplify and automate administrative
procedures. You can also use other tools, such as CICS commands and
transactions.

The CICS administration tools are designed to manage the CICS environment
on one machine. To use them, you log into the machine as a systems
administrator, then invoke the tool that you want to use. To manage the CICS
environment on several machines, you can use standard techniques to log into
each machine remotely and use the tools on those machines. For example, you
can use one machine as a single point of control, with sessions set up to run
tools on other machines. You can control access to the administration tools by
controlling access to this machine.

TXSeries Encina

Encina is designed to help develop and manage open distributed systems.
Encina is a family of software products for building and running large-scale,
distributed client/server systems. It uses and enhances the facilities provided
by DCE and CORBA. It provides support for distributed transactions across
multiple platforms, using multiple resource managers. It can also interact with
other transaction processing products, including CICS, and coordinate
transactions that span platforms and resource managers.

Encina runs on AIX, Sun Solaris, HP-UX, and Windows NT. Using facilities
such as the Encina DE-Light Gateway and Encina’s support for such
standards as CORBA and Microsoft COM, clients can also run on a number of
other platforms and in Web browsers.

Figure 9 provides an overview of the Encina architecture. Descriptions of the
components follow.

Encina Monitor
The Encina Monitor provides an infrastructure for developing, running, and
administering transaction processing applications. The Encina Monitor, in
conjunction with resource managers, provides an environment to maintain
large quantities of data in a consistent state, controlling which users and

Figure 9. Architecture of Encina

72 WebSphere: Getting Started with WebSphere Application Server

clients access specific data through defined servers in specific ways. The
Monitor provides an open, modular system that is scalable and that
interoperates with existing computing resources such as IBM mainframes. The
Monitor includes:
v A full-featured API that shields the programmer from the complexities of

distributed computing
v A reliable execution environment that delivers load balancing, scheduling,

and fault tolerance across heterogeneous environments to provide high
performance and transactional integrity

v A comprehensive management environment that enables widely distributed
Monitor-based systems to be administered as a single, logically defined
system

The Monitor and its programming interface are described in more detail in the
Encina Monitor Programming Guide. For more information on the
administrative interfaces to the Encina Monitor, see Encina Administration
Guide Volume 1: Basic Administration.

The Recoverable Queueing Service (RQS)
The Recoverable Queueing Service (RQS) enables applications to queue
transactional work for later processing. Applications can then commit their
transactions with the assurance that the queued work will be completed
transactionally at a later time.

RQS supports transactional applications that must offload all or part of a task
for later processing. An application can store data related to a task in a queue.
This data can be subsequently processed by another program. This offloading
can be desirable when use of a resource incurs an unacceptable time penalty
during peak usage hours, when one part of a transaction takes much longer
than other parts, or when a resource is temporarily unavailable. For example,
the confirmation of a sale can be completed in real time, and the data
associated with the sale can be stored in an RQS queue for later processing.

RQS programming is described in the Encina RQS Programming Guide. RQS
administration is described in the Encina Administration Guide Volume 2: Server
Administration.

The Structured File Server (SFS)
The SFS is a record-oriented file system that provides transactional integrity,
log-based recovery, and broad scalability. Many operating systems support
only byte-stream access to data: all input and output data, regardless of its
source, is treated as an unformatted stream of bytes. SFS uses structured files,
which are composed of records. The records themselves are made up of fields.
For example, each record possibly contains information about an employee,
with fields for the name, employee number, and salary.

Chapter 8. Introduction to TXSeries 73

All data in SFS files is managed by the SFS server. Programs that require
access to this data must submit their requests to that server, which retrieves
the requested data or performs the specified operation.

SFS programming is described in the Encina SFS Programming Guide. SFS
administration is described in the Encina Administration Guide Volume 2: Server
Administration.

The Peer-to-Peer Communications (PPC) Services
The Encina Peer-to-Peer Communications Services (PPC Services) enable
Encina transaction processing systems to interoperate with systems that have
System Network Architecture (SNA) LU 6.2 communications interfaces. This
enables integration of mainframe and Encina environments.

PPC Services enable bidirectional communications, so that both applications
and data can be shared between mainframes and Encina, with either side
initiating communications. Communications are routed through a gateway
server that is part of both a DCE cell and a SNA network, establishing a
virtual link between an Encina and mainframe application.

PPC Services support the following interfaces:
v Distributed Program Link (DPL)
v Both the X/Open Common Programming Interface Communications

(CPI-C) and the IBM System Application Architecture (SAA) CPI-C
v SAA Common Programming Interface Resource Recovery (CPI-RR)

These communications interfaces and this distributed transaction processing
model operate within the Encina environment.

PPC programming is described in the Encina PPC Services Programming Guide.
PPC administration is described in the Encina Administration Guide Volume 2:
Server Administration.

The DE-Light Gateway
The DCE Encina Lightweight Client™ (DE-Light) is a set of APIs and a
gateway server that you can use to extend the power of DCE and Encina to
personal computers and other systems that are not running as DCE clients.

DE-Light enables you to access DCE and Encina from systems that do not
support DCE, but that do support Java. DE-Light clients require less effort to
create, are simpler to administer, and do not use the network resource require
by DCE or Encina clients. Yet DE-Light clients can still take advantage of the
benefits that were formerly available only to full DCE and Encina clients.

DE-Light is composed of the following:

74 WebSphere: Getting Started with WebSphere Application Server

v A Java API used to develop Java clients for standalone Java applications.
DE-Light Java clients communicate with gateways via TCP/IP and
Hypertext Transfer Protocol (HTTP).

v A C API used to develop clients for the Microsoft Windows NT and
Windows 98 environments. DE-Light C clients use TCP/IP to communicate
with gateways at known endpoints.

v A DE-Light Gateway server that enables communications between DE-Light
clients and DCE or Encina.

DE-Light Java supports two types of clients:
v A Java applet embedded into a Hypertext Markup Language (HTML)

document residing on a Web server.
v A standalone Java application.

DE-Light programming is described in the Encina DE-Light Programming Guide.
DE-Light Gateway administration is described in the Encina Administration
Guide Volume 2: Server Administration.

The Encina Toolkit
The Encina Toolkit is a collection of modules, libraries, and programs that
provide the functions required for large-scale distributed client/server system
development. The modules of the Toolkit include log and recovery services,
transaction services, and Transactional Remote Procedure Call (TRPC, an
extension to the DCE RPC technology). These modules transparently ensure
distributed transactional integrity. The Toolkit also provides Transactional-C
(Tran-C), a transactional extension to the C programming language.

For more information on the Toolkit, see the Encina Toolkit Programming Guide

Encina++
Encina++ is an object-oriented API for Encina. It is composed of classes that
access many Encina components. Encina++ supports the development of
object-oriented applications that are based on DCE (Encina++/DCE), CORBA
(Encina++/CORBA), and a mixture of both DCE and CORBA
(Encina++/CORBA-DCE). The latter type of application is often referred to as
a mixed application.

Table 3 lists the interfaces that make up Encina++. Some can be used only
with Encina++/DCE or only with Encina++/CORBA, and some can be used
by both.

Table 3. Components of Encina++

Interface Purpose Language Used with

Chapter 8. Introduction to TXSeries 75

Table 3. Components of Encina++ (continued)

Encina++ Creates and manages client/server
applications.

C++

DCE and
CORBA

Transactional-C++
(Tran-C++)

Distributed transaction processing. C++

Object Management
Group Object
Transaction Service
(OMG OTS)

Distributed transaction processing;
implements the OMG Object
Transaction Service specification (OMG
document 94.8.4).

C++

RQS++ Transactionally enqueues and
dequeues data at an RQS server

C++

DCE only
SFS++ Manipulates data stored at an SFS

server.
C++

Object Concurrency
Control Service
(OCCS)

Enables multiple clients to coordinate
access to shared resources;
implements the OMG Concurrency
Control Service Proposal

C++

CORBA
only

Java OTS Client Enables Java clients to use distributed
transactions; implements the OMG
Object Transaction Service specification.

Java

For more information on the various Encina++ interfaces, see the following
documents:
v Encina Object-Oriented Programming Guide

v Encina Transactional Programming Guide

v Encina RQS++ and SFS++ Programming Guide

Encina tools available only on Windows platforms
On both Windows NT and Windows 95/98 systems, Encina comes with
additional programming and diagnostic tools that are not available on other
platforms. For more information on how to use these tools to create Encina
applications, see Writing Encina Applications on Windows Systems.

Programming tools
The following Encina tools aid developers in the creation of distributed
client/server applications:
v Encina Server Wizard—This wizard, which can be used to create Encina

and Encina++ servers, generates much of the standard initialization code
for the server, organizes the code into a project, and associates the
appropriate Encina and system libraries required to build a server.

v Encina COM Wizard—This wizard is used to create an Encina COM
component (in the form of a DLL file) from an Encina TIDL interface. The

76 WebSphere: Getting Started with WebSphere Application Server

DLL file can then be incorporated into a client written in any language to
enable that client’s access to any Encina server that exports the interface
defined in the DLL file.

WinTrace
The WinTrace tool aids developers in debugging distributed client/server
applications. This Encina-specific tool is used to format and view application
output and Encina trace files and to translate error codes and trace identifiers.
It can also be used to start Encina Trace Listener servers for use in viewing
output while a process is running. For information on using this tool, consult
its online help.

Interoperability with WebSphere Application Server Advanced Edition

Encina applications can interoperate with Advanced Edition applications.
Java-based Advanced Edition applications can act as clients to Encina servers.
They can connect to Encina servers by using a specialized Monitor application
server that acts as a bridge between Java-based systems and Encina/DCE
systems, Encina++/DCE systems, or both. The bridge server propagates
transactions originating at the client to the server.

Figure 10 illustrates the general architecture of a distributed system that uses a
bridge server.

Java-based clients can access Encina/Encina++/DCE applications with
minimum development effort. Encina provides a tool (the wstidl command)
that takes a TIDL file as input and generates the required CORBA IDL
interfaces, Java classes, server main function, and other files used to achieve
connectivity. The generated Java bean or enterprise bean can be used as part
of Advanced Application Server applications. For example, an enterprise bean
in a WebSphere EJB server can use a generated bean (or a generated
enterprise bean) to communicate with the Encina application.

Figure 10. Interoperability between Java applications and Encina/Encina++ servers

Chapter 8. Introduction to TXSeries 77

For an example of an application that uses the Encina bridge server, see
Building Business Solutions with WebSphere.

78 WebSphere: Getting Started with WebSphere Application Server

Chapter 9. Sample topologies and configurations

This section discusses typical examples of topologies and configurations for
WebSphere Application Server. It is intended to be a sampling of
configurations that can be set up using the WebSphere Application Server
Standard, Advanced, and Enterprise editions, not an exhaustive set of
configurations.

The following examples are included:
v “Client topologies”
v “Server topologies” on page 81
v “Standard Application Server topology” on page 83
v “Advanced Application Server topologies” on page 84
v “TXSeries configurations” on page 86
v “Component Broker configurations” on page 89

For a detailed look at other WebSphere Application Server topologies, see
Building Business Solutions with WebSphere.

Client topologies

Traditional client/server models place the logical second tier onto the physical
first tier — that is, the client implements some or all of the application’s
business logic. This architecture often results in clients that require larger and
more powerful desktop machines than those required by clients in other
distributed architectures. (This type of client is sometimes called a fat client.)
In addition to requiring more expensive equipment, maintaining the business
logic directly on the user’s desktop can be difficult and expensive to
administer.

Many designers of business information systems are implementing computing
models in which the essential business logic is more centrally maintained.
This approach is easier to administer and enables the information system to
be updated more quickly. WebSphere Application Server can be used to
implement various types of clients where business processes are handled more
centrally.

Thick client
A thick client depends on a local application for its user interface. Its business
logic is handled on a remote server in a distributed computing environment.

© Copyright IBM Corp. 1999, 2001 79

For instance, a thick client can use desktop applications such as word
processors and spreadsheets to provide a user interface.

Figure 11 shows a typical thick client. This figure depicts only the user
interface and business logic portions of the architecture.

Using a thick client to implement a business solution has less administrative
overhead than using a traditional client. The application’s business logic is
centrally located and easier to maintain. However, a thick client still requires a
relatively powerful desktop computer.

Thin client
Using a Java applet can reduce client size. Figure 12 shows how this type of
thin client can be implemented. In this example, the applet is downloaded
over a corporate intranet into a browser where it runs locally on the client
machine.

Thin clients make more efficient use of computer resources since a large
number of high-powered machines are not needed to run the client. They also
have less administrative overhead than thick clients. A fresh copy of the
applet is downloaded every time it is accessed, which makes updating the
client automatic. This is a huge advantage in an environment where many
machines are running a client. Thin clients also do not need to run on a
powerful desktop computer. The only requirement is that the client machine’s

1. Traditional user interface

2. Remote logic

Traditional desktop Object server

Figure 11. A thick client has a local user interface and remote business logic

1. Applet user interface

2. Remote logic

Web browser HTTP server and
Web object server

Figure 12. A thin client has an applet user interface and remote business logic

80 WebSphere: Getting Started with WebSphere Application Server

browser must support the Java Virtual Machine (JVM) level required by the
applet. Thin client applets can have longer download times than other types
of clients, however, since the client user interface must be downloaded over
the network.

Thinner client
A thin client can be made even thinner by using HTML with JavaScript, as
shown in Figure 13. User requests are submitted to a Java servlet. The servlet
initiates remote processing requests from the Web server and dynamically
generates new HTML pages as required.

The thinner client described in Figure 13 has a much shorter download time
than a thin client implemented with a Java applet. The thinner client also does
not use JVM, eliminating incompatibility problems in this area. It retains the
applet benefits of reduced hardware requirements and reduced client
administration. At the same time, it can improve client performance and
reliability. The use of HTTP between the browser and Web server also enables
clients to securely access the servlet through a firewall.

The drawback of using a thinner client is that it offers only a simplified set of
client functions. In particular, it cannot make use of Java’s sophisticated user
interface functions. However, it is a good choice for clients that do not require
a complex user interface.

Server topologies

The thick, thin, and thinner client examples focused on the first and second
tiers of a three-tiered distributed computing architecture. WebSphere
Application Server allows you to organize the servers and resources of the
second and third tiers along several different models. The client topologies
described in “Client topologies” on page 79 can be used with all of these
server models.

1. HTML user interface 2. Remote logic

Web browser Object serverWeb server
with servlet

Figure 13. A thinner client used with a servlet

Chapter 9. Sample topologies and configurations 81

Distributed servers
The Advanced and Enterprise Application Servers support distributed servers.
Figure 14 shows several middle-tier and back-end machines in a physically
distributed network. In this example, the machines in the middle tier have
smaller, slower, and less expensive processors than those in the third tier. If a
sufficient number of these smaller servers are clustered together, the middle
tier can gain enough processing power to handle its workload. This includes
compensating for the overhead imposed by distributed network traffic.
Clusters also improve the availability of servers because processing can be
done by other machines if a member of the cluster goes offline. Another
benefit of clustered servers is that computing capacity can be added
incrementally without disrupting clients.

For this approach to work, the servers must be easily replicated and have
transparent, manageable load balancing and failure support. In addition, the
business logic that runs in the middle-tier environment must be consistent
across the cluster.

Cloned servers
In this topology, each machine in the middle tier hosts an exact replica (or
clone) of a server. Cloning servers improve the availability of servers because
processing can be done by other machines if one of the servers goes offline.

Figure 14. A cluster of distributed servers connected to resource managers

82 WebSphere: Getting Started with WebSphere Application Server

The Advanced and Enterprise Application Servers provide a workload
management service to evenly distribute processing requests across the clones
of a server and provide failover services if a server unexpectedly goes offline.
Workload management applies to administrative servers as well as application
servers, ensuring that there are no disruptions to management of the
application server cluster.

Consolidated servers
Many companies limit their physical architecture to two tiers, regardless of
whether they implement a three-tiered logical architecture. The operational
costs of a three-tiered physical architecture can be very high. In Figure 15, the
second and third tiers are physically consolidated.

This configuration improves performance by reducing remote communications
and eliminating the overhead of network traffic between the middle tier
application server and its associated back-end systems. Its centralized
implementation is easier to administer than clustered servers.

Increasing the scale of a system that implements a consolidated server
architecture depends on the computing platform on which it is implemented.
High-end platforms (such as the IBM OS/390) that use this architecture can
easily scale up to large business systems.

Standard Application Server topology

The Standard Application Server is a single-machine version of WebSphere
Application Server. Figure 16 on page 84 shows one example of how the
Standard Application Server can be configured.

Back end
resource managers

Object server

Figure 15. Physical consolidation of the middle and back-end tiers

Chapter 9. Sample topologies and configurations 83

Clients access the Web server via HTTP requests over the World Wide Web.
Processing requests are referred to the application server, which accesses a
database that is located on the same machine as the application server. The
administration server and administration client manage the Standard
Application Server environment.

Advanced Application Server topologies

The Advanced Application Server can be configured in a wide variety of
topologies depending on the needs of an organization. The following sections
illustrate some sample topologies for the Advanced Application Server.

Simple configuration
A simple Advanced Application Server configuration is shown in Figure 17 on
page 85.

Figure 16. A simple Standard Application Server configuration

84 WebSphere: Getting Started with WebSphere Application Server

Clients access a Web-based business application hosted on the Advanced
Application Server. For simplicity’s sake, a single application server is shown
in this configuration; however, the application can be hosted on multiple
servers.

The client accesses a servlet that runs on the Web server. The servlet relays
client processing requests to enterprise beans that transactionally access a
database on another machine. (Administration data is also stored in a
database on this machine.) The results of the operation are displayed to the
client using HTML that is dynamically generated via JavaServer Pages (JSP)
files.

DMZ configuration
The demilitarized zone (DMZ) topology, shown in Figure 18 on page 86,
provides enhanced security for business applications that are accessed from
the Internet.

Figure 17. Simple Advanced Application Server configuration

Chapter 9. Sample topologies and configurations 85

In this configuration, the Web server is isolated by firewalls both from its
clients and from the application servers, administration servers, and back end
data stores that the system uses. Clients accessing the application from the
Internet must pass though the secure Web server in the DMZ in order to gain
access to the application servers, databases, and other resources on the
organization’s protected intranet. This minimizes the risk to sensitive
enterprise resources.

TXSeries configurations

The following sections illustrate some example configurations for CICS and
Encina.

A simple CICS configuration
A simple distributed CICS environment has a CICS client on one machine and
a CICS region on another machine, as shown in Figure 19 on page 87. This
configuration is recommended for first-time CICS installations because it is
the easiest to install, test, and maintain.

Figure 18. DMZ configuration in the Advanced Application Server

86 WebSphere: Getting Started with WebSphere Application Server

The example configuration shows CICS in an RPC-only environment. In an
RPC-only environment, internal CICS security and directory services are used.
The DCE RPC for endpoint mapping and transmitting transactional data is
the only DCE service used.

The example configuration shows the following:
v The SFS server is used for CICS region files and queues, and can be used to

store user data.
v Communications between the CICS region and the SFS server use DCE

RPCs provided by the DCE RPC daemon. Other DCE client services are not
used.

v The CICS client provides immediate 3270 terminal access and program
access to the CICS region.

A simple CICS configuration within a DCE cell
A simple distributed CICS environment within a Distributed Computing
Environment (DCE) cell consists of a client on one machine and a CICS region
running on another machine, as shown in Figure 20 on page 88. This
configuration requires the DCE CDS and DCE Security Service to be installed
on machines in the DCE cell.

Figure 19. A simple distributed configuration using CICS in a non-DCE cell environment

Chapter 9. Sample topologies and configurations 87

The example configuration shows the following:
v Server location and security services are provided by DCE.
v The SFS server is used for CICS region files and queues, and can be used to

store user data.
v The DCE RPCs used to communicate between the CICS region and the SFS

server can be authenticated by the DCE Security Server.
v The CICS client provides immediate 3270 terminal access and program

access to the CICS region.

Note: The CICS client machine does not have to be part of the DCE cell,
unless it also runs a CICS region that uses the DCE cell services.

A simple Encina Monitor cell configuration
A simple Encina Monitor cell configuration, shown in Figure 21 on page 89,
contains the following:
v A cell manager, which coordinates the activity of node managers in the cell
v A node manager, which controls the activity of all servers running on the

node (machine)
v A Monitor application server, which provides the business logic of an

Encina application and acts on data stored in an SFS server

Figure 20. A distributed configuration using CICS in a DCE cell environment

88 WebSphere: Getting Started with WebSphere Application Server

v A Monitor client, which provides the presentation logic of an Encina
application

The Monitor cell is part of a DCE cell, which contains another machine on
which the DCE CDS and DCE Security Service is installed.

Server location and security services are provided by DCE. The DCE RPCs
used to communicate between the Encina servers and client can be
authenticated by the DCE Security Service.

Component Broker configurations

The following illustrates some example configurations for Component Broker.

Simple configuration
The simple Component Broker topology shown in Figure 22 on page 90 runs
all business objects on the same host using a single application server.

Figure 21. A simple Encina Monitor configuration

Chapter 9. Sample topologies and configurations 89

In addition to the Component Broker host server, this topology requires three
supporting servers. The System Manager runs the Component Broker
installation and manages the Component Broker server that hosts the
application server. The DCE server provides underlying services. The DB2
server represents a heavily used third-tier resource manager; other resource
managers that can be configured on this tier include IMS and CICS.

Basic workload management configuration
The topology shown in Figure 23 on page 91 represents a basic workload
management configuration. The business objects still run on one application
server, but multiple copies of this server are running on different machines in
the network.

Figure 22. Basic Component Broker topology

90 WebSphere: Getting Started with WebSphere Application Server

Two Component Broker servers are configured into a work group. Multiple
application servers run on each Component Broker server.

Increasing the number of application servers improves the ability of the
network to support applications. Client requests can be distributed between
the application servers in the workload management group, making the server
group appear as a single logical server to the client.

When workload management is enabled by using a controlled server group,
two additional servers must be located on one of the hosts in the network:
v Server Group Control Point (SGCP)
v Server Group Gateway (SGGW)

These servers provide underlying support for Component Broker’s workload
management service.

Figure 23. Horizontal workload management topology for Component Broker

Chapter 9. Sample topologies and configurations 91

92 WebSphere: Getting Started with WebSphere Application Server

Appendix. The library for WebSphere Application Server

The following table lists the complete documentation library for WebSphere
Application Server. All documents are available online from the WebSphere
Application Server library page at
www.software.ibm.com/webservers/appserv/library.html.

Table 4. The library for WebSphere Application Server

Form number Document name Document description

Common documentation for WebSphere Application Server (for all supported platforms)

SC09-4581 Getting Started with WebSphere
Application Server

Provides a common familywide overview of all editions
of WebSphere Application Server and the contents of each
edition. Formerly titled Introduction to WebSphere
Application Server.

SC09-4431 Writing Enterprise Beans in
WebSphere

Provides an introduction to programming with Enterprise
JavaBeans™ components in the Advanced and Enterprise
Editions of WebSphere Application Server.

SC09-4432 Building Business Solutions
with WebSphere

Provides programming examples and scenarios that
demonstrate application development and recommended
programming practices across the WebSphere Application
Server family. It also discusses other products in the
WebSphere family.

GC09-3951 Using the Performance
Monitoring Infrastructure
Client Package

Describes how to use the Performance Monitoring
Infrastructure (PMI) interface to write WebSphere
Application Server clients that gather, process, and
display performance information from WebSphere
servers.

GC09-3952 Using the JRas Message
Logging and Trace Facility

Describes how to use the WebSphere JRas interface to
incorporate message and logging facilities into WebSphere
Application Server applications.

GC09-4550 Using the WorkArea Facility Describes how to use the WorkArea facility to set,
retrieve, and manage scoped contexts in WebSphere
Application Server applications.

WebSphere Application Server Standard and Advanced Editions documentation (for all supported
platforms)

InfoCenter Provides information on installing, configuring,
maintaining, and programming with the Standard and
Advanced Editions of WebSphere Application Server.

Common Component Broker documentation (for all supported platforms)

© Copyright IBM Corp. 1999, 2001 93

http://www.ibm.com/software/webservers/appserv/library.html

Table 4. The library for WebSphere Application Server (continued)

Form number Document name Document description

SC09-4442 Programming Guide Provides information on developing Component Broker
applications in all supported programming languages on
all supported platforms. It describes the programming
model, including business objects and data objects, and
includes information about various basic programming
issues.

SC09-4443 Advanced Programming Guide Describes Component Broker’s implementation of the
Common Object Request Broker Architecture (CORBA)
Object Service; the Component Broker Object Request
Broker (ORB); Cache, Notification, Query, Session, and
other Services; interlanguage object model (IOM); and
workload management.

SC09-4444 MQSeries Application Adaptor
Development Guide

Provides information about developing Component
Broker applications that use the MQSeries Application
Adaptor.

SC09-4572 Procedural Application Adaptor
Development Guide

Provides information about developing Component
Broker applications that use the Procedural Applicaton
Adaptor.

SC09-4573 Database Application Adaptors
Development Guide

Provides information about developing Component
Broker applications that use the DB2, Oracle, and
Informix Application Adaptors.

SC09-4445 System Administration Guide Provides information on administering Component
Broker and Component Broker applications on all
supported platforms. Also provides general information
about using the System Manager interface.

SC09-4588 Programming Reference Documents the complete Component Broker application
programming interfaces available for all supported
programming languages.

SC09-4448 Application Development Tools
Guide

Provides information about using the Component Broker
Toolkit components, with a focus on common
development scenarios such as inheritance and team
development.

SC09-4449 Problem Determination Guide Provides information to help administrators and
programmers identify and solve problems with
Component Broker and Component Broker applications.
It includes information on installation problems, run-time
errors, debugging of applications, and analysis of log
messages.

SC09-4450 Glossary Lists and defines terms commonly used in Component
Broker documentation.

94 WebSphere: Getting Started with WebSphere Application Server

Table 4. The library for WebSphere Application Server (continued)

Form number Document name Document description

GC09-4490 Component Broker Release
Notes

Provides platform- and release-specific information about
Component Broker, including late-breaking functional
changes; known restrictions; and, where possible, suitable
workarounds for restrictions.

Distributed Debugger for
Workstations

Contains information about the Distributed Debugger
program on workstations.

Distributed Debugger for
OS/390

Contains information about the Distributed Debugger
program on OS/390.

Object Level Trace Contains information about Object Level Trace.

Component Broker for AIX documentation

SC09-4437 Planning, Performance, and
Installation Guide for AIX

Provides complete instructions for installing, configuring,
and upgrading to the latest version of Component Broker
on AIX.

Component Broker for Solaris documentation

SC09-4438 Planning, Performance, and
Installation Guide for Solaris

Provides complete instructions for installing and
configuring the latest version of Component Broker on
Solaris.

Component Broker for Windows systems documentation

SC09-4436 Planning, Performance, and
Installation Guide for Windows
Systems

Provides complete instructions for installing, configuring,
and upgrading to the latest version of Component Broker
on Windows systems.

Component Broker for OS/390 documentation

GA22-7325 OS/390 Component Broker
Installation and Customization

Describes the planning and installation considerations for
Component Broker on the OS/390 platform.

GA22-7326 OS/390 Component Broker
Programming: Assembling
Applications

Provides information for assembling applications using
Component Broker on the OS/390 platform.

GA22-7331 WebSphere Application Server
for OS/390 Concepts and
Planning

Describes planning considerations for WebSphere
Application Server on the OS/390 platform.

GA22-7328 OS/390 Component Broker
Operations and Administration
Guide

Provides information for operating and administering
Component Broker on the OS/390 platform.

GA22-7329 OS/390 Component Broker
Messages and Diagnosis

Provides diagnosis information and describes the
messages associated with Component Broker on the
OS/390 platform.

SC33-6587 OS/390 Component Broker
System Management User
Interface

Describes the System Management user interface
provided with Component Broker on the OS/390
platform.

Appendix. The library for WebSphere Application Server 95

Table 4. The library for WebSphere Application Server (continued)

Form number Document name Document description

GA22-7478 OS/390 System Management
Scripting Application
Programming Interface

Describes the System Management scripting interface
provided with Component Broker on the OS/390
platform.

GA22-7460 WebSphere Application Server
for OS/390 Program Directory

Describes the WebSphere Application Server for OS/390
program directory.

GA22-7462 WebSphere Application Server
for OS/390 Licensed Program
Specifications

Describes the WebSphere Application Server for OS/390
licensed program specifications.

Common TXSeries (CICS and Encina) documentation (for all supported platforms)

SC09-4582 Concepts and Planning Introduces the TXSeries product, providing high-level
descriptions of transaction processing, CICS, and Encina.

GC09-4491 TXSeries Release Notes Provides platform- and release-specific information about
TXSeries, including descriptions of new features that are
more thorough than those in the TXSeries README file,
information for features or changes learned too late for
incorporation into the product documentation,
descriptions of defects fixed since the last release of the
product, and information about known restrictions
associated with TXSeries and, where possible, suitable
workarounds.

TXSeries for AIX documentation

SC09-4452 Planning and Installation Guide
for AIX

Provides complete instructions for installing, configuring,
and upgrading to the latest version of TXSeries (CICS and
Encina) on AIX.

TXSeries for Solaris documentation

SC09-4453 Planning and Installation Guide
for Solaris

Provides complete instructions for installing, configuring,
and upgrading to the latest version of TXSeries (CICS and
Encina) on Solaris.

TXSeries for Windows systems documentation

SC09-4451 Planning and Installation Guide
for Windows Systems

Provides complete instructions for installing, configuring,
and upgrading to the latest version of TXSeries (CICS and
Encina) on Windows systems.

TXSeries for HP-UX documentation

SC09-4583 Planning and Installation Guide
for HP-UX

Provides complete instructions for installing, configuring,
and upgrading to the latest version of TXSeries (CICS and
Encina) on HP-UX.

CICS documentation (for all supported platforms unless otherwise noted)

96 WebSphere: Getting Started with WebSphere Application Server

Table 4. The library for WebSphere Application Server (continued)

Form number Document name Document description

SC09-4587 CICS Administration Guide for
Open Systems

Provides guide information for administering CICS and
CICS applications on UNIX platforms. It includes
information on the Tivoli interface for CICS. It also
includes the CICS glossary.

SC09-4456 CICS Administration Guide for
Windows Systems

Provides guide information for administering CICS and
CICS applications on Windows systems. It includes
information on the Tivoli interface for CICS. It also
includes the CICS glossary.

SC09-4459 CICS Administration Reference Provides complete reference information for commands
used to administer CICS on all supported platforms.

SC09-4460 CICS Application Programming
Guide

Provides information for developing CICS-based
applications in all supported programming languages on
all supported platforms.

SC09-4461 CICS Application Programming
Reference

Provides reference information for the CICS application
programming interfaces for all supported languages on
all supported platforms.

SC09-4462 CICS Intercommunication
Guide

Describes how to implement communications between a
CICS region and other systems (for example, another
CICS region on a UNIX or Windows machine or another
application on a system such as a mainframe).

SC09-4589 CICS Messages and Codes Lists and describes all messages and codes that can be
issued by a TXSeries CICS system.

SC09-4465 CICS Problem Determination
Guide

Helps administrators identify and diagnose problems
with a CICS system or application. It describes symptoms
of problems and their possible causes.

SC09-4466 Using CICS Workload
Management

Describes the CICS Workload Management utility.

SC09-4585 CICS IIOP and Java
Programming Guide

Describes the CICS Internet Inter-ORB Programming
(IIOP) interface, which enables CICS applications to
communicate with Common Object Request Broker
Architecture (CORBA) and Java Object Request Brokers
(ORBs). It also describes how to use the Java application
programming interface for CICS.

SC09-4468 CICS Front-End Programming
Interface for Windows NT

Provides information about developing applications that
use the CICS front-end programming interface (FEPI) for
Windows NT.

SC09-4469 Using IBM Communications
Server for AIX with CICS

Provides information for using CICS with the Systems
Network Architecture (SNA) package provided by IBM
Communications Server for AIX.

Appendix. The library for WebSphere Application Server 97

Table 4. The library for WebSphere Application Server (continued)

Form number Document name Document description

SC09-4470 Using IBM Communications
Server for Windows Systems
with CICS

Provides information for using CICS with the Systems
Network Architecture (SNA) package provided by IBM
Communications Server for Windows systems.

SC09-4471 Using Microsoft SNA Server
with CICS

Provides information for using CICS with the Systems
Network Architecture (SNA) package provided by
Microsoft for Windows systems.

SC09-4472 Using SNAP-IX for Solaris
with CICS

Provides information for using CICS with the SNAP-IX
Systems Network Architecture (SNA) package provided
by Data Connection Limited (DCL) for Solaris.

SC09-4586 Using HP-UX SNAplus2 with
CICS

Provides information for using CICS with the SNAplus2
Systems Network Architecture (SNA) package provided
by Hewlett-Packard.

Encina administrative guide documentation (for all supported platforms)

SC09-4473 Encina Administration Guide
Volume 1: Basic Administration

Provides basic information about administering Encina
and Encina applications on all supported platforms. It
describes the use of the Enconsole administrative
interface and includes the complete Encina glossary. It
also includes information on the Tivoli interface for
Encina.

SC09-4474 Encina Administration Guide
Volume 2: Server
Administration

Describes administration of Structured File Server (SFS),
Recoverable Queueing Service (RQS), Peer-to-Peer
Communications (PPC) Gateway, and DCE Encina
Lightweight Client (DE-Light) Gateway servers.

SC09-4475 Encina Administration Guide
Volume 3: Advanced
Administration

Describes advanced administration topics such as the
Encina object hierarchy and the command-line scripting
interface, enccp, that can be used with Encina. It also
includes an appendix that describes the environment
variables used by all Encina components.

Encina programming guide documentation (for all supported platforms)

SC09-4476 Encina COBOL Programming
Guide

Describes the COBOL application programming interface
available with Encina.

SC09-4477 Encina Monitor Programming
Guide

Describes how to program with the Encina Monitor
application programming interface.

SC09-4478 Encina Object-Oriented
Programming Guide

Describes how to program with the Encina object-oriented
(Encina++) application programming interfaces used to
develop applications in either a Distributed Computing
Environment (DCE) or Common Object Request Broker
Architecture (CORBA) environment.

98 WebSphere: Getting Started with WebSphere Application Server

Table 4. The library for WebSphere Application Server (continued)

Form number Document name Document description

SC09-4479 Encina RQS++ and SFS++
Programming Guide

Describes how to program with the Encina object-oriented
application programming interfaces for the Structured
File Server (SFS) and Recoverable Queueing Service (RQS)
components.

SC09-4480 Encina DE-Light Programming
Guide

Describes how to program to the DCE Encina
Lightweight Client (DE-Light) application programming
interfaces. These interfaces provide C- and Java-based
means of communicating with a DE-Light Gateway server
to access Distributed Computing Environment (DCE) and
Encina applications from low-end machines incapable of
supporting these resource-intensive systems.

SC09-4481 Encina PPC Services
Programming Guide

Describes how to program to the Encina Peer-to-Peer
Communications (PPC) Executive application
programming interface.

SC09-4482 Encina RQS Programming
Guide

Describes how to program to the Encina Recoverable
Queueing Service (RQS) application programming
interface.

SC09-4483 Encina SFS Programming
Guide

Describes how to program to the Encina Structured File
Server (SFS) application programming interface.

SC09-4484 Encina Toolkit Programming
Guide

Introduces and describes how to program to the various
Encina Client (Executive) and Server Core application
programming interfaces.

SC09-4485 Encina Transactional
Programming Guide

Describes how to program with the the Encina
Transactional-C (Tran-C) application programming
interface.

SC09-4486 Writing Encina Applications Provides an introduction to creating an Encina
application. The document takes a tutorial-like approach
to the development of an application with various Encina
application programming interfaces. It includes general
information on Encina terminology and application
development.

SC09-4487 Writing Encina Applications on
Windows Systems

Provides information on using the TXSeries application
development toolkit (ADK) to develop Encina
applications on Windows systems. The ADK also
provides support for the Microsoft COM interface, which
this document describes.

SC09-4488 Encina Messages and Codes Lists and describes all messages and status codes that can
be issued by Encina. The information is designed to help
administrators and developers understand and correct
problems with Encina or Encina applications.

Encina administrative reference documentation (for all supported platforms)

Appendix. The library for WebSphere Application Server 99

Table 4. The library for WebSphere Application Server (continued)

Form number Document name Document description

GC09-4492 Introductory Administrative
Page

Introduces the Encina administrative interfaces. It
provides high-level descriptions of the various interfaces,
their uses, and their syntax conventions.

GC09-4493 The drpcadmin Command Pages Describes the drpcadmin suite of administrative
commands. These commands are used to administer DCE
Encina Lightweight Client (DE-Light) Gateway servers.

GC09-4494 The emadmin Command Pages Describes the emadmin suite of administrative
commands. These commands were previously used to
manipulate the object hierarchy provided with Encina.
Their functionality has been superseded by the enccp
interface, and they will become obsolete with this or a
future release of Encina.

GC09-4495 The enccp Introductory Page Introduces the Encina control program (enccp)
command-line and scripting interface, introducing the
commands in the enccp interface, describing the common
syntax of the commands, and generally augmenting the
information provided on the other enccp reference pages.

GC09-4496 The enccp Example Pages Provides examples of the commands in the enccp
interface.

GC09-4497 The enccp Object Pages Describes the objects that make up the Encina Monitor
object hierarchy. This hierarchy replaces the previous set
of objects manipulated by the emadmin suite of
commands.

GC09-4498 The enccp Operation Pages Describes the operations (commands) available in the
enccp interface. The commands are used to manipulate
the Encina Monitor object hierarchy.

GC09-4499 Miscellaneous Administrative
Reference Pages

Describes the miscellaneous (nonsuite) commands
available with Encina, including the ecm (Encina cell
manager) startup command; the enm (Encina node
manager) startup command; the rqs, sfs, ppcgwy, and
drpcgwy startup commands; the Encina restart scripts;
and the Encina command-line tracing utilities.

GC09-4500 The otsadmin Command Pages Describes the otsadmin suite of administrative
commands. These commands are used to provide
Toolkit-like administration of servers based on the Encina
Object Transaction Service (OTS) programming interfaces.

GC09-4501 The ppcadmin Command Pages Describes the ppcadmin suite of administrative
commands. These commands are used to administer a
Peer-to-Peer Communications (PPC) Gateway server and
its interaction with the Systems Network Architecture
(SNA).

100 WebSphere: Getting Started with WebSphere Application Server

Table 4. The library for WebSphere Application Server (continued)

Form number Document name Document description

GC09-4502 The rqsadmin Command Pages Describes the rqsadmin suite of administrative
commands. These commands are used to administer a
Recoverable Queueing Service (RQS) server and the data
it contains.

GC09-4503 The sfsadmin Command Pages Describes the sfsadmin suite of administrative
commands. These commands are used to administer a
Structured File Server (SFS) server and the data it
contains.

GC09-4504 The tkadmin Command Pages Describes the tkadmin suite of administrative commands.
These commands are used to administer Encina Toolkit
servers. These commands enable administration of data
and log volumes, server tracing, transactional activities,
and additional aspects of Toolkit servers.

Encina programming reference documentation (for all supported platforms)

GC09-4505 Introductory C Programming
Page

Introduces the C programming language application
programming interfaces available with Encina. It also
describes some high-level issues associated with
programming to the C interfaces.

GC09-4506 Abort Facility Programming
Pages

Describes the C-language-based Abort Facility application
programming interface available with Encina. This
interface is part of the Toolkit Executive.

GC09-4507 DE-Light C Programming
Pages

Describes the C-language-based application programming
interface available with the DCE Encina Lightweight
Client (DE-Light).

GC09-4508 Distributed Transaction Service
(TRAN) Programming Pages

Describes the C-language-based Distributed Transaction
Service (TRAN) application programming interface
available with Encina. This interface is part of the Toolkit
Executive.

GC09-4509 EMA Programming Pages Describes the C-language-based Encina Monitor
Administrative (EMA) application programming interface
available with Encina. This interface was previously used
to manipulate the object hierarchy provided with Encina.
It will become obsolete with this or a future release of
Encina.

GC09-4510 Lock Service (LOCK)
Programming Pages

Describes the C-language-based Lock Service (LOCK)
application programming interface available with Encina.
This interface is part of the Toolkit Server Core.

GC09-4511 Log Service (LOG)
Programming Pages

Describes the C-language-based Log Service (LOG)
application programming interface available with Encina.
This interface is part of the Toolkit Server Core.

Appendix. The library for WebSphere Application Server 101

Table 4. The library for WebSphere Application Server (continued)

Form number Document name Document description

GC09-4512 Miscellaneous C Programming
Pages

Describes miscellaneous C-language-based functions
available with Encina, including the transactional
interface definition language (tidl) compiler and
miscellaneous conversion functions.

GC09-4513 Monitor Programming Pages Describes the C-language-based Monitor application
programming interface available with Encina.

GC09-4514 PPC Executive Programming
Pages

Describes the C-language-based Peer-to-Peer
Communications (PPC) Executive application
programming interface available with Encina.

GC09-4515 Recovery Service (REC)
Programming Pages

Describes the C-language-based Recovery Service (REC)
application programming interface available with Encina.
This interface is part of the Toolkit Server Core.

GC09-4516 Restart Service Programming
Pages

Describes the C-language-based Restart Service
application programming interface available with Encina.
This interface is part of the Toolkit Server Core.

GC09-4517 RQS Programming Pages Describes the C-language-based Recoverable Queueing
Service (RQS) application programming interface
available with Encina.

GC09-4518 SFS Programming Pages Describes the C-language-based Structured File Server
(SFS) application programming interface available with
Encina.

GC09-4519 T-ISAM Programming Pages Describes the C-language-based Transactional Indexed
Sequential Access Method (T-ISAM) application
programming interface available for use with the
Structured File Server (SFS) component of Encina.

GC09-4520 ThreadTid Programming Pages Describes the C-language-based Thread-to-Tid Mapping
Service (ThreadTid) application programming interface
available with Encina. This interface is part of the Toolkit
Executive.

GC09-4521 TM-XA Programming Pages Describes the C-language-based Transaction Manager-XA
Service (TM-XA) application programming interface
available with Encina. This interface is part of the Toolkit
Server Core.

GC09-4522 Trace Facility Programming
Pages

Describes the C-language-based Trace Facility application
programming interface available with Encina.

GC09-4523 Transactional-C Programming
Pages

Describes the C-language-based Transactional-C (Tran-C)
application programming interface available with Encina.
This interface provides transactional extensions and
constructs for the C programming language.

102 WebSphere: Getting Started with WebSphere Application Server

Table 4. The library for WebSphere Application Server (continued)

Form number Document name Document description

GC09-4524 TranLog Programming Pages Describes the C-language-based Transactional State Log
(TranLog) application programming interface available
with Encina. This interface is part of the Toolkit Server
Core.

GC09-4525 TRDCE Programming Pages Describes the C-language-based Transarc Encina
Distributed Computing Environment (TRDCE) utilities
available with Encina. This application programming
interface is part of the Toolkit Executive.

GC09-4526 TRPC Programming Pages Describes the C-language-based Transactional Remote
Procedure Call (TRPC) application programming interface
available with Encina.

GC09-4527 TX Interface Programming
Pages

Describes the C-language-based Encina X/Open TX
application programming interface available with Encina.

GC09-4528 Volume Service (VOL)
Programming Pages

Describes the C-language-based Volume Service (VOL)
application programming interface provided with Encina.
This interface is part of the Toolkit Server Core.

GC09-4529 Introductory Object-Oriented
Programming Page

Introduces the different object-oriented (C++ and Java)
application programming interfaces available with Encina.
Also describes some high-level issues associated with
programming to Encina object-oriented interfaces.

GC09-4530 DE-Light Java Programming
Pages

Describes the Java-based application programming
interface available with the DCE Encina Lightweight
Client (DE-Light).

GC09-4531 Encina++ Programming Pages Describes the C++-language-based Encina C++
(Encina++) application programming interface.

GC09-4532 Miscellaneous Object-Oriented
Programming Pages

Describes the data definition language (ddl) compiler and
miscellaneous C++ and Java classes included with Encina.

GC09-4533 OCCS Programming Pages Describes the C++-language-based Object Concurrency
Control Service (OCCS) application programming
interface available with Encina.

GC09-4534 OTS Administrative
Programming Pages

Describes the C++-language-based administrative classes
and functions in the Object Transaction Service (OTS)
application programming interface available with Encina.

GC09-4535 OTS C++ Programming Pages Describes the C++-language-based classes and functions
in the Object Transaction Service (OTS) application
programming interface available with Encina.

GC09-4536 OTS Java Programming Pages Describes the Java-based classes and functions in the
Object Transaction Service (OTS) application
programming interface available with Encina.

Appendix. The library for WebSphere Application Server 103

Table 4. The library for WebSphere Application Server (continued)

Form number Document name Document description

GC09-4537 OTS Synchronization Class
Programming Pages

Describes the C++-language-based synchronization class
and function in the Object Transaction Service (OTS)
application programming interface available with Encina.

GC09-4538 RQS++ Programming Pages Describes the C++-language-based Recoverable Queueing
Service (RQS) application programming interface
available with Encina.

GC09-4539 SFS++ Programming Pages Describes the C++-language-based Structured File Server
(SFS) application programming interface available with
Encina.

GC09-4540 Transactional-C++
Programming Pages

Describes the C++-language-based classes, functions, and
constructs in the Transactional-C++ (Tran-C++)
application programming interface available with Encina.
This interface offers transactional extensions to the C++
programming language.

GC09-4541 COBOL Programming Pages Describes the calls (functions) included with the Encina
COBOL programming interface.

104 WebSphere: Getting Started with WebSphere Application Server

Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
DOCUMENT “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will

© Copyright IBM Corp. 1999, 2001 105

be incorporated in new editions of the document. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

For Component Broker:
IBM Corporation
Department LZKS
11400 Burnet Road
Austin, TX 78758
U.S.A.

For TXSeries:
IBM Corporation
ATTN: Software Licensing
11 Stanwix Street
Pittsburgh, PA 15222
U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM International
Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

106 WebSphere: Getting Started with WebSphere Application Server

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks and service marks

The following terms are trademarks or registered trademarks of the IBM
Corporation in the United States, other countries, or both:

Advanced Peer-to-Peer Networking
AFS
AIX
APPN
AS/400
CICS
CICS OS/2
CICS/400
CICS/6000
CICS/ESA
CICS/MVS
CICS/VSE
CICSPlex
DB2
DCE Encina Lightweight Client
DFS
Encina
IBM
IBM System Application Architecture
IMS
IMS/ESA
Language Environment
MQSeries

MVS/ESA
NetView
Open Class
OS/2
OS/390
OS/400
Parallel Sysplex
PowerPC
RACF
RAMAO
RMF
RISC System/6000
RS/6000
S/390
SAA
SecureWay
TeamConnection
Transarc
TXSeries
VSE/ESA
VTAM
VisualAge
WebSphere

Notices 107

Domino, Lotus, and LotusScript are trademarks or registered trademarks of
Lotus Development Corporation in the United States, other countries, or both.

Tivoli is a registered trademark of Tivoli Systems, Inc. in the United States,
other countries, or both.

ActiveX, Microsoft, Visual Basic, Visual C++, Visual J++, Windows, Windows
NT, and the Windows 95 logo are trademarks or registered trademarks of
Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Some of this documentation is based on material from Object Management
Group bearing the following copyright notices:

Copyright 1995, 1996 AT&T/NCR
Copyright 1995, 1996 BNR Europe Ltd.
Copyright 1991, 1992, 1995, 1996 by Digital Equipment Corporation
Copyright 1996 Gradient Technologies, Inc.
Copyright 1995, 1996 Groupe Bull
Copyright 1995, 1996 Expersoft Corporation
Copyright 1996 FUJITSU LIMITED
Copyright 1996 Genesis Development Corporation
Copyright 1989, 1990, 1991, 1992, 1995, 1996 by Hewlett-Packard Company
Copyright 1991, 1992, 1995, 1996 by HyperDesk Corporation
Copyright 1995, 1996 IBM Corporation
Copyright 1995, 1996 ICL, plc
Copyright 1995, 1996 Ing. C. Olivetti &C.Sp
Copyright 1997 International Computers Limited
Copyright 1995, 1996 IONA Technologies, Ltd.
Copyright 1995, 1996 Itasca Systems, Inc.
Copyright 1991, 1992, 1995, 1996 by NCR Corporation
Copyright 1997 Netscape Communications Corporation
Copyright 1997 Northern Telecom Limited
Copyright 1995, 1996 Novell USG
Copyright 1995, 1996 02 Technolgies
Copyright 1991, 1992, 1995, 1996 by Object Design, Inc.
Copyright 1991, 1992, 1995, 1996 Object Management Group, Inc.
Copyright 1995, 1996 Objectivity, Inc.
Copyright 1995, 1996 Oracle Corporation
Copyright 1995, 1996 Persistence Software

108 WebSphere: Getting Started with WebSphere Application Server

Copyright 1995, 1996 Servio, Corp.
Copyright 1996 Siemens Nixdorf Informationssysteme AG
Copyright 1991, 1992, 1995, 1996 by Sun Microsystems, Inc.
Copyright 1995, 1996 SunSoft, Inc.
Copyright 1996 Sybase, Inc.
Copyright 1996 Taligent, Inc.
Copyright 1995, 1996 Tandem Computers, Inc.
Copyright 1995, 1996 Teknekron Software Systems, Inc.
Copyright 1995, 1996 Tivoli Systems, Inc.
Copyright 1995, 1996 Transarc Corporation
Copyright 1995, 1996 Versant Object Technology Corporation
Copyright 1997 Visigenic Software, Inc.
Copyright 1996 Visual Edge Software, Ltd.

Each of the copyright holders listed above has agreed that no person shall be
deemed to have infringed the copyright in the included material of any such
copyright holder by reason of having used the specification set forth herein or
having conformed any computer software to the specification.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE
ACCURATE, THE OBJECT MANAGEMENT GROUP, AND THE
COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH
REGARDS TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. The Object Management Group and the companies
listed above shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use
of this material.

This software contains RSA encryption code.

Other company, product, and service names may be trademarks or service
marks of others.

Notices 109

110 WebSphere: Getting Started with WebSphere Application Server

Index

A
ACID properties 13
ActiveX 23
Advanced Application Server 2, 39,

40
application design 42
application model 42
DMZ configuration 85
online documentation 93
simple configuration 84

Apache Web Server 41, 53
applets 26
application adaptors 58
application model 42
attributes 17
authentication 14
authorization 14

B
bean-managed persistence

(BMP) 25
beans 23
business objects 18, 31, 55, 56

C
C++ 53, 55, 63
Caching Proxy 4
Cell Directory Service 50
CICS 49

administration 71
API 68
CICS-supplied transactions 68
intersystem communication 70
regions 68
relational database support 69
simple configuration 86
simple configuration with DCE

cell 87
SNA support 71
supported platforms 67
Transaction Gateway 71
transactions 68
user exits 69

classes 19
cloned servers 82
COM 30, 52, 57
command package 42
component architecture 21
Component Broker 49, 55

application adaptors 58

Component Broker 49, 55
(continued)

architecture 57
business objects 31
Cache Service 61
Concurrency Control Service 59
copy helper objects 32
data objects 32
development tools 63
enterprise beans 56
Event Service 59
Externalization Service 59
Identity Service 59
key objects 32
LifeCycle Services 59
Managed Object Framework 31
managed objects 32
Naming Service 60
Notification Service 59
Object Builder 56, 63
object services 59
persistent objects 32
Query Service 61
resources 56
Security Service 60
Session Service 60
simple configuration 89
System Management 61
Transaction Service 60
Workload Management 61
workload management

configuration 90
component technology 17
components 20
composition 18
Concurrency Control Service 59
consolidated servers 83
container-managed persistence

(CMP) 25
containers

for enterprise beans 25
managing persistence 25

copy helper objects 32
CORBA 29, 52, 55

IDL 31
object services 30

CPI-C 74
CPI-RR 74

D
data objects 32
DB2 53
DCE 50
DE-Light Gateway 74
deployment descriptor 25
distributed computing 11
distributed-exception package 42
distributed objects 29
distributed servers 82
Distributed Time Service (DTS) 51
distributed transactions 13
documentation 8, 93

E
e-business 1, 2
EJB servers 40, 41, 56
EJB specification 24
Encina 49, 72

COM Wizard 76
DE-Light Gateway 74
Monitor 72
Monitor cell configuration 88
PPC 74
RQS 73
Server Wizard 76
SFS 73
SNA support 74
supported platforms 72
Toolkit 75
tracing tools 77

Encina++ 75
Enterprise Application Server 2, 49

online documentation 93
enterprise beans 24, 41, 55, 56

deploying into a container 25
in Advanced Application

Server 42
entity beans 25, 41

with BMP 25
with CMP 25

environment properties 25
Event Service 59
Externalization Service 59

F
fat client 79

© Copyright IBM Corp. 1999, 2001 111

H
homes

in enterprise beans 24
in managed objects 33

HTML 26

I
IBM HTTP Server 41, 53
Identity Service 59
IDL 30
IDL (CORBA) 31
IIOP 29
implementation 18
InfoCenter 8
inheritance 19
interface 17, 18

J
J2EE 21
JAR file 26
Java 26, 53, 55, 56
Java programming language 23
JavaBeans components 23

and ActiveX 23
JavaScript 27
JavaServer Pages 27, 28
JFC 26
JNDI 46
JSP files 28, 40
JSP pages

in Advanced Application
Server 42

JSSI 27

K
key objects 32

L
LifeCycle Services 59
LUWs 68

M
Managed Object Framework 31
managed objects 32
MQSeries 53

N
naming

Advanced Application Server 46
Component Broker 60

Network Dispatcher 5
Notification Service 59

O
Object Builder 56, 63
objects 17

objects 17 (continued)
business 18
classes 19
collaboration between 18
composition of 18
distributed 29
inheritance 19
polymorphism 19

ORBs 29, 52, 56

P
persistence 25

bean-managed 25
container-managed 25

persistent objects 32
platforms

Component Broker 64
TXSeries CICS 67
TXSeries Encina 72
WebSphere Application Server 3

polymorphism 19
Programming Model Extensions 42,

57
command package 42
distributed-exception

package 42

R
relational databases 42
remote calls 30
RMI 26
RPCs 50
RQS 73
RQS++ 75

S
security 14

Advanced Application Server 46
Component Broker 60
Enterprise Application Server 51

servlets 27, 40
session beans 25, 41
SFS 73
SFS++ 75
SNA 71, 74
Standard Application Server 2, 39

online documentation 93
topology 83

T
thick client 79
thin client 80
thinner client 81
three-tiered architecture 11
topologies

Advanced Application Server 84

topologies (continued)
client 79
DMZ (Advanced Application

Server) 85
server 81
Standard Application Server 83
TXSeries 86

Tran-C 75
transactions 12

Advanced Application Server 46
Component Broker 60
distributed 13

TXSeries 49, 67
CICS 67
Encina 72
example configurations 86

V
VisualAge C++ 53, 63
VisualAge for Java 7, 47, 53, 56, 63

W
Web servers 41
WebSphere Administrative

Console 40, 43, 44
WebSphere Application Server 2, 35

and J2EE 21
distributed computing 11
documentation 8, 93
supported platforms 3
three-tiered architecture 11
transactions 12

WebSphere Edge Server 4
WebSphere family 2
WebSphere Programming Model

Extensions 42, 57
command package 42
distributed-exception

package 42
WebSphere Studio 5, 47
workload management 82

Advanced Application Server 47
Component Broker 61

X
XML 40, 45
XML Document Structure

Service 45

112 WebSphere: Getting Started with WebSphere Application Server

IBMR

Part Number: CT6PYNA

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC09-4581-00

(1
P)

P/
N:

CT
6P
YN
A

Spine information:

IBM WebSphere
Getting Started with WebSphere
Application Server Version 4.0 SC09-4581-00

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	Document organization
	Related information
	Conventions used in this book
	How to send your comments

	Chapter 1. Introducing the IBM WebSphere family
	IBM and e-business
	The WebSphere family: providing e-business solutions
	WebSphere Application Server: three editions for different customerneeds
	Which edition should you use?
	WebSphere Edge Server
	The Caching Proxy
	Network Dispatcher

	WebSphere Studio
	VisualAge for Java

	How do I get more information about WebSphere Application Server?
	Installers and system administrators
	Application developers and system architects

	Chapter 2. Distributed computing and WebSphereApplication Server
	Three-tiered client/server computing
	Transactions: ensuring data consistency and permanence in a distributedenvironment
	Security: ensuring authorized use only

	Chapter 3. Overview of component technology
	Objects
	Building objects through composition
	Interface versus implementation
	Classes
	Inheritance
	Polymorphism

	Components
	Component models and related technologies
	Java 2™ Platform Enterprise Edition (J2EE™)
	J2EE application components and runtime environment
	J2EE application model and development team roles
	J2EE standard services
	J2EE compatibility test suite and reference implementation

	JavaBeans components
	Enterprise beans
	The EJB architecture
	Persistence
	Deploying enterprise beans

	Applets and servlets
	Applets
	Servlets

	JavaServer Pages
	CORBA
	Distributed object communications
	Remote calls
	Common object services

	Microsoft COM
	Managed Object Framework
	Business objects
	Data objects
	Managed objects
	Persistent objects
	Key objects and copy helper objects
	Assembling components
	Component instantiation and execution

	Chapter 4. Adapting business models to WebSphereApplication Server
	Component technology
	Common software approach
	Software availability
	Software reuse
	Dividing up software development tasks
	Tool sets
	Scalability
	Open standards and investment protection

	Chapter 5. Introduction to WebSphere Application Server,Standard and Advanced Editions
	What is the difference between the Standard and Advanced ApplicationServers?
	Introduction to the Advanced Application Server
	The Advanced Application Server environment
	Administration server
	Browser-based clients
	Web servers
	Servlet engine
	Enterprise beans

	Application model
	WebSphere Programming Model Extensions

	The administration model in Advanced Application Server
	Administration tools

	The extensible markup language (XML)
	Services used by the Advanced Application Server
	Naming service
	Transaction service
	Security service
	Workload management service

	Development environment
	Documentation

	Chapter 6. WebSphere Application Server EnterpriseEdition
	Why use Enterprise Application Server?
	Low-level services used in Enterprise Application Server products
	Distributed Computing Environment (DCE)
	Remote procedure call (RPC)
	Cell Directory Service (CDS)
	DCE Security Service
	Distributed Time Service (DTS)

	Common Object Request Broker Architecture (CORBA)
	Component Object Model (COM)

	Other tools available with the Enterprise Application Server

	Chapter 7. Introduction to Component Broker
	Component Broker features
	Application architecture
	Application adaptors
	Object services
	Concurrency Control Service
	Event Service
	Notification Service
	Externalization Service
	Identity Service
	LifeCycle Services
	Naming Service
	Security Service
	Transaction Service
	Session Service
	Query Service
	Cache Service
	Workload Management

	System management
	Development tools
	Object Builder

	Chapter 8. Introduction to TXSeries
	TXSeries CICS
	Basic CICS concepts
	The CICS application programming interface
	Relational database support
	Queue services
	Intersystem communication
	CICS SNA support
	Communicating with users
	CICS Transaction Gateway
	CICS administration

	TXSeries Encina
	Encina Monitor
	The Recoverable Queueing Service (RQS)
	The Structured File Server (SFS)
	The Peer-to-Peer Communications (PPC) Services
	The DE-Light Gateway
	The Encina Toolkit
	Encina++
	Encina tools available only on Windows platforms
	Programming tools
	WinTrace

	Interoperability with WebSphere Application Server Advanced Edition

	Chapter 9. Sample topologies and configurations
	Client topologies
	Thick client
	Thin client
	Thinner client

	Server topologies
	Distributed servers
	Cloned servers
	Consolidated servers

	Standard Application Server topology
	Advanced Application Server topologies
	Simple configuration
	DMZ configuration

	TXSeries configurations
	A simple CICS configuration
	A simple CICS configuration within a DCE cell
	A simple Encina Monitor cell configuration

	Component Broker configurations
	Simple configuration
	Basic workload management configuration

	Appendix. The library for WebSphere Application Server
	Notices
	Trademarks and service marks

	Index

