

25th April 2003

Marc Carter

WebSphere MQ Performance

IBM UK Laboratories

Hursley Park

Winchester

Hampshire

SO21 2JN

Property of IBM

Message-Driven-Bean Performance
using WebSphere MQ v5.3 and

WebSphere Application Server v5.0

Version 1.1

Message-Driven-Bean Performance using WMQ 5.3 and WAS 5.0

Page II

 Notices
This report is intended to help the reader understand the performance characteristics of
WebSphere MQ for Windows V5.3 in conjunction with WebSphere Application Server v5.0.
The information is not intended as the specification of any programming interfaces that are
provided by WebSphere MQ.

References in this report to IBM products or programs do not imply that IBM intends to make
these available in all countries in which it operates.

Information contained in this report has not been submitted to any formal IBM test and is
distributed “as-is”. The use of this information and the implementation of any of the
techniques is the responsibility of the customer. Much depends on the ability of the reader to
evaluate the information and project the results to their operational environment.

The performance measurements included in this report were measured in a controlled
environment and the results obtained in other environments may vary significantly.

Trademarks and service marks:

The following terms used in this publication are trademarks of the IBM Corporation in the
United States or other countries or both:

IBM

MQSeries

WebSphere

WebSphere MQ

SupportPac

FFST

AIX

Microsoft, Windows, Windows NT and Windows 2000 are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java, JMS, J2EE and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Message-Driven-Bean Performance using WMQ 5.3 and WAS 5.0

Page III

Preface

The contents of this SupportPac
This SupportPac is intended to:

• Show the performance impact on messaging throughput of using WebSphere
Application Server MDBs in place of basic JMS 1.0 applications.

• Demonstrate the advantages of using WebSphere MQ as an external JMS Resource
Provider to WebSphere Application Server.

• Provide the reader with some hints on how to configure their messaging scenario.

Feedback on this SupportPac
We welcome constructive feedback on this report. Does it provide the sort of information you
want? Do you feel something important is missing? Is there too much technical detail, or not
enough? Could the material be presented in a manner more useful to you? Please direct any
comments of this nature to: WMQPG@uk.ibm.com.

Specific queries about performance problems on your WebSphere MQ system should be
directed to your local IBM Representative or Support Center.

Acknowledgements
The author is very grateful to Anthony Tuel for help in producing this report.

Message-Driven-Bean Performance using WMQ 5.3 and WAS 5.0

Page 1

1 Test scenario
1.1 Description

JMSPrim is a benchmark developed by the WebSphere Application Server (WAS)
performance team to evaluate an application server’s performance in the area of JMS. It is
designed to measure a wide range of primitive scenarios, to exercise the individual “building
blocks” that would make up a typical enterprise application. JMSPrim is made up of a set of
Message Driven Beans (MDBs) and contrasting standalone scenarios designed to
demonstrate a common customer upgrade scenario. The sender and receiver each run at the
same time, with appropriate warm-up intervals, to attempt to measure a typical system under
load. In each case the receivers run in a tight loop, performing negligible processing per
message. As is typical of primitives, this provides an indication of the upper bound to
performance - the best-case performance. This is a good thing for applications which are
100% JMS oriented, but most applications use JMS to drive some task such as updating a
database or have operations that are not based in any sort of JMS technology.

Each test herein is carried out with senders threads throttled to a particular rate. The number
of these senders is increased until the receivers could not remove messages from the queue
faster than they were arriving. All applications connect to a single queue and the messages
are used are simple 2048-byte text messages. Unless otherwise specified all tests are
exercising WMQ as External JMS Provider and not the default Embedded JMS.

1.2 Architecture

1.3 Terminology and Defaults

np_tns Messages are express (non-persistent) and non-transacted. Each sender is rated at
50 messages per second. MDBs are run with 6 sessions in their Listener Port.

p_tr Messages are persistent and transacted. Each sender is rated at 20 messages per
second. MDBs are run with 50 sessions in their Listener Port.

MDB The receivers are MDBs inside of WebSphere Application Server

standalone WAS MDBs are not exercised. The receiving threads are run in their own
JVM and WAS is not running

Driver Server
WMQ WAS

MDB
receivers

JMS Senders

Standalone

JMS receivers

100Mbps
Ethernet

1

2

Message-Driven-Bean Performance using WMQ 5.3 and WAS 5.0

Page 2

2 Standalone JMS vs. WebSphere MDB
The cost of basic pure-messaging increases when a simple application model, such as our
test application, is moved from the world of standalone JMS into an application server
providing runtime management and J2EE integration. In this test the application server is not
running and a simple JMS application is draining the queue using the same number of
threads as the corresponding number of WAS ListenerPort.maxSessions (see section 4.3). [
6 receivers for non-persistent and 50 receivers for persistent test variations.]

2.1 Chart

MDBs vs Standalone JMS

0
200
400
600
800

1000
1200
1400
1600
1800

0 10 20 30 40

Apps

M
sg

s
/ s

ec

standalone p_tr mdb p_tr
standalone np_tns mdb np_tns

2.1.1 Results
Introduction of the application server and the flexible services it provides has decreased the
raw throughput (at their respective peaks) of these comparable tests.

Non-persistent results have dropped 45% (from 1650 to 900)

Persistent tests have dropped 36% (from 780 to 500) showing that not as much of their
processing is dependant upon raw CPU due to increased locking and serialisation required in
persisting a message

Particularly for non-persistent tests, these results demonstrate that increased CPU-cost-per-
message can have the controlling effect on the throughput of the system. It also shows that
the potential benefits provided by using WMQ as an External JMS Provider to run the queue
manager on a separate physical server can be important in a scenario where performance is
of concern.

Message-Driven-Bean Performance using WMQ 5.3 and WAS 5.0

Page 3

3 Embedded JMS vs. External JMS
provided by WMQ v5.3

WebSphere Application Server v5.0 has the option to integrate WebSphere MQ as an
external JMS Resource Provider. This gives users more flexibility in their deployment and
administration of messaging resources. They can make use of the clustering and high-
availability mechanisms in WMQ and communicate with any other WMQ systems in their
organisation. It separates the application data from the application server’s configuration,
allowing different location, security and performance considerations to be applied to each.

3.1 Chart

Embedded vs External JMS provider

0
100
200
300
400
500
600
700
800
900

1000

0 5 10 15 20 25 30

Apps

M
sg

s
/ s

ec

External mdb np_tns Embedded mdb np_tns
External mdb p_tr Embedded mdb p_tr

3.2 Results

Use of a tuned, external Queue Manager has improved throughput over an untuned
embedded JMS provider. The CPU provides the constraining point for all tests, which masks
some of the improvements of the external Queue Manager, especially in the persistent tests
where it showed a 4% increase (from 480 to 500) in peak throughput. This increase is
expected to be much larger when placed in a server with more CPU resource available. Non-
persistent messaging is, by its nature, limited by CPU. External WMQ outperformed the
embedded JMS by 20% in the non-persistent case (going from 750 to 900).

Notes
This test only made use of Client connections on the external WMQ. Use of Bindings will be
shown to improve throughput by another 50% in the next section.

Details on the tuning applied to WMQ are in section 5 of this report.

Message-Driven-Bean Performance using WMQ 5.3 and WAS 5.0

Page 4

4 Increasing performance
There are many variables pertaining to the topology and workload you are planning for your
system. Most of these cannot have generic recommendations applied to them but here are
some areas that may benefit WAS messaging performance.

4.1 “Bindings” connections to WMQ

At the cost of decreased safety checking of user-programmed interactions with WMQ, you
can choose Bindings connections on a QueueConnectionFactory used by entities on the
same physical box as the Queue Manager. Bindings connections will disable several of the
security authorisation features in MQ. This setting affects anything which uses that factory,
be it an MDB in WAS or an external client using the applications server’s JNDI database.

This test changed the MDBs to use Bindings connections to WebSphere MQ while leaving the
driving applications using Client connections from their remote box.

4.1.1 Chart

Use of Bindings Connection Mode

0
200
400
600
800

1000
1200
1400
1600

0 10 20 30 40

Apps

M
sg

s
/ s

ec

mdb np_tns Bindings mdb np_tns Client
mdb p_tr Bindings mdb p_tr Client

4.1.2 Results
Use of Bindings instead of Client connections has increased peak throughput by 50% for both
persistent and non-persistent results. This is caused by a reduction in CPU time spent
validating the interactions the MDB has with the Queue Manager.

4.1.3 Where to find the Setting
In the WAS AdminConsole GUI under:

Resources
WebSphere MQ JMS Provider

Queue Connection Factories
 <Your queue factory name>

Message-Driven-Bean Performance using WMQ 5.3 and WAS 5.0

Page 5

4.2 Use of “Enable XA”

Enabling XA co-ordination on Queue and Topic Connection Factories instructs WAS to use
two phase commits (2PC) in place of single phase commits (1PC). This is essential for any
co-ordinated transactions – those which involve more than one Resource Manager but are
logically viewed as a single transaction. WAS will optimise a 2PC when it knows there is only
one resource involved. Although no logging will be done, there is still some overhead related
to XA processing.

4.2.1 Chart

Effect of "Enable XA" Setting
MDB_P_TR rated at 20 msgs/sec

0

100

200

300

400

500

600

0 5 10 15 20 25 30

Apps

M
sg

s
/ s

ec

nonXA XA

4.2.2 Results
Turning off XA co-ordination on the persistent, transacted test amounted to a 30% increase in
maximum messaging throughput. This demonstrates that the default setting of enableXA is
sub-optimal if your scenario does not require this additional logic.

The same effect, demonstrated here on QueueConnectionFactories, will be seen with
TopicConnectionFactories

4.2.3 Where to find the Setting
In the WAS AdminConsole GUI under:

Resources
WebSphere MQ JMS Provider

Queue Connection Factories
 <Your queue factory name>

Message-Driven-Bean Performance using WMQ 5.3 and WAS 5.0

Page 6

4.3 Use of “ListenerPort.maxSessions”

This setting represents the number of concurrent JMS server sessions used by an MDB
Listener to process messages for an MDB. This correlates to the number of parallel
connections made to WebSphere MQ.

4.3.1 Chart

Effect of ListenerPort.maxSessions
MDB_NP_TNS rated at 50 msgs/sec

0
100
200
300
400
500
600
700
800
900

1000

0 5 10 15 20 25

Apps

M
sg

s
/ s

ec

6 sessions 2 sessions 1 session

4.3.2 Results
Message Driven Beans are asynchronous by nature and therefore suffer a significant penalty
when forced to run in a serial mode (i.e. with maxSessions=1)

In order to make best use of parallelism in your server you need to set realistic values for your
maximum number of concurrent sessions. It is also sensible to set the minimum sessions (in
the QueueConnectionFactory) to a value greater than the default if you expect to handle
intermittent, heavy bursts of traffic

4.3.2.1 Non-persistent, non-transacted
It is desirable to have enough sessions such that there is always one spare to make use of
each processor as it becomes free.

There are many factors involved in the choice of this number. If, as here, the MDB does not
use much CPU time per message, then the optimum value for maxSessions is dominated by
the number of processors available.

The graph above shows that choosing a suitable number of concurrent sessions has
improved non-persistent throughput 33% when compared to the default value.

4.3.2.2 Persistent, transacted
For tests involving use of the WMQ logging facilities, best utilisation of the disk is achieved
again by the use of parallelism. In this case a large value for maxSessions is necessary. All
tests shown in this report involving persistent measurements used a maximum of 50.

Message-Driven-Bean Performance using WMQ 5.3 and WAS 5.0

Page 7

Where to find the Setting
In the WAS AdminConsole GUI under:

Servers
Application Servers

<Your server name>
 Message Listener Service
 Listener Ports
 <Your listener port name>

Note
ListenerPort.maxSessions is dependant upon the maximum sessions parameter set in the
QueueConnectionFactory session pool for the relevant queue. The difference between these
two values is that the Factory value encompasses all types of EJB that might request access
to that resource. The ListenerPort maximum value is for that specific listener port only, when
increasing this value – be sure to increase the value in the QueueConnectionFactory too.

4.4 Use of “ListenerPort.maxMessages”

Altering of this value with WebSphere MQ v5.3 as JMS provider is not supported at this time.

Message-Driven-Bean Performance using WMQ 5.3 and WAS 5.0

Page 8

5 How to Tune External WMQ
Performance reports with tuning information for WebSphere MQ v5.3 on each platform can be
found under the official IBM SupportPac webpage at the following URL:

http://www.ibm.com/software/integration/support/supportpacs/perfreppacs.html

The main settings used for the tests in this report were:

• Use of multiple physical disk arrays
• Changing log settings to their maximums, for persistent messaging
• FASTPATH Channel Application for Client connections
• DefaultQBufferSize = 1MB
• DefaultPQBufferSize = 1MB

6 How to Tune Embedded JMS Provider
WebSphere Application Server may create/delete/start/stop queue managers or queues when
it performs administrative procedures on its embedded JMS provider. For this reason it is not
recommended for manual tuning to be applied to the embedded JMS provider.

For advice on what tuning can be applied to this scenario please visit the WAS InfoCenter
and search for “tuning parameter list”.

http://publib7b.boulder.ibm.com/webapp/wasinfo1/index.jsp?deployment=ApplicationServer&l
ang=en

7 Test Environment
7.1 Hardware

Server
• IBM Netfinity 5500 M20, 4 * 500MHz P3 Xeon
• Windows 2000 Server SP3
• 4GB Ram
• 5 * SCSI 7,200 RPM drives
• 100Mb Ethernet card

Driver
• IBM Netfinity 6000R, 4 * 700MHz P3 Xeon
• Windows 2000 Server SP3
• 0.5GB Ram
• 3 * SCSI 10,000 RPM drives
• 1Gb Ethernet card

7.2 Software Levels

WebSphere Application Server v5.0, no PTFs

WebSphere MQ v5.3, CSD 1

IBM Java 1.3.1

