
IBM WebSphere Application Server V7 64-bit Performance
11/14/2008
Version 1.5

IBM
®
 WebSphere

®
 Application Server

WAS V7 64-bit performance
Introducing WebSphere Compressed
Reference Technology

J. Stan Cox, Aaron Quirk, Derek Inglis, Nikola Grcevski, Piyush Agarwal
stancox@us.ibm.com
ajquirk@us.ibm.com
inglis@ca.ibm.com
nikolag@ca.ibm.com
agarwalp@us.ibm.com

WebSphere Application Server Performance
Research Triangle Park, NC

mailto:stancox@us.ibm.com
mailto:ajquirk@us.ibm.com
mailto:ingles@ca.ibm.com
mailto:nikolag@ca.ibm.com
mailto:agarwalp@us.ibm.com

IBM WebSphere Application Server V7 64-bit Performance
2

© Copyright IBM Corporation 2008. All rights reserved.

Contents

IBM® WebSphere® Application Server ... 1
WAS V7 64-bit performance Introducing WebSphere Compressed Reference
Technology ... 1
Executive Summary ... 3
WAS and 64-bit computing ... 4

Background: 64-bit in WAS V6 .. 4
Increased heap capacity ... 4
Performance Extensions ... 4
Challenges in V6 ... 5

Compressed references: 64-bit in WAS V7 ... 6
Performance with compressed references.. 6
Compressed reference usage and supported platforms ... 7
Planning for 64-bit migration ... 7

Compressed reference technical details ... 7
Performance analysis .. 9

DayTrader 1.2 benchmark ... 9
Physical memory consumption .. 10
Throughput comparison .. 12
Detailed discussion for Linux on x86 ... 12

Conclusions/Summary .. 15
References.. 16
Additional Resources .. 16

IBM WebSphere Application Server V7 64-bit Performance
3

© Copyright IBM Corporation 2008. All rights reserved.

Executive Summary

IBM® WebSphere® Application Server (WAS) version 7.0 introduces
compressed reference (CR) technology to dramatically improve WAS
performance on 64-bit platforms. IBM CR technology for Java™ allows
64-bit WAS deployments to allocate large Java heaps without the
memory footprint growth and performance overhead generally incurred
with larger, 64-bit address references. Using CR technology, WAS
instances can allocate heap sizes up to 28GB with the same physical
memory overhead as an equivalent 32-bit deployment.

The CR technology provides this improvement by reducing the width of
64-bit Java heap references to 32 bits through an efficient bit shifting
algorithm. These 4 byte (32-bit) compressed references are converted to
64-bit values and stored in processor registers in a “just in time manner”
at runtime. WAS 64-bit deployments are thus able to reap the benefits of
large Java heaps and 64-bit processor extensions while maintaining a
comparable 32-bit memory footprint. Note that heap sizes below 4GB
may not require any shift operations, since the effective virtual address
range only requires 32 bits.

64-bit WAS can provide dramatic performance improvements for
applications that take advantage of large heaps. Historically, these
performance gains were somewhat limited by the memory footprint
overhead of 8-byte Java references. CR technology removes this
limitation. For applications that do not require a large heap, the
performance of WAS 64-bit with CR technology is generally within 95%
of WAS 32-bit, when using the same heap size settings and equivalent
hardware configurations. The minimal performance cost is incurred
from the overhead of reference compression and decompression.

This paper provides details about CR technology along with the
performance characteristics and expectations for WAS V7 32-bit and 64-
bit with compressed references technology.

Applications on 64-bit WAS are
able to achieve about ~95% of
32-bit performance using the

same heap size.

“Compressed references”
reduce the size of address
references on 64-bit IBM J9 for
Java 6, offsetting increased
memory footprint and the
associated performance loss.

WAS instances can allocate
heap sizes up to 28 GB with the
same physical memory
overhead as an equivalent 32-bit
deployment.

IBM WebSphere Application Server V7 64-bit Performance
4

© Copyright IBM Corporation 2008. All rights reserved.

WAS and 64-bit computing

High performance 64-bit platforms are becoming ubiquitous in the
enterprise. IBM has been a major player in the 64-bit world for many
years, leveraging both AIX and Linux® on Power (1) hardware.
Relatively new to the scene are x86-64 platforms from AMD/Intel, which
support Windows and Linux in both native 32-bit and 64-bit modes.
With the influx of 64-bit platforms, customers are faced with the
important decision between 32 or 64 bit applications, and the impact this
choice will have on performance.

Background: 64-bit in WAS V6

IBM began offering 64-bit WAS deployments with the release of WAS
V6, providing two key advantages for high performance applications
designed to utilize 64-bit platforms. These applications benefitted from
increased Java™ heap size capacity, as well as Java generated code
optimizations to fully leverage 64-bit performance extensions.

Increased heap capacity

Depending on the operating system (OS), WAS 32-bit provides a
maximum heap size of roughly 1 to 3 gigabytes (GB). In contrast, 64-bit
platforms can theoretically address as much as 16.8 million terabytes
(TB), far beyond the current practical limits of physical memory. Since
WebSphere/Java does not set an artificial limitation on the size of the
heap below the OS dependant 64-bit addressing maximum, 64-bit
deployments can easily contain the memory requirements of the most
demanding applications.

Applications that take advantage of the large memory addressing
capability of 64-bit can gain significant performance advantages. For
example, caching vast amounts of data in main memory and thus
avoiding latencies in accessing data from slower resources like database
or disk can result in dramatic performance gains.

Performance Extensions

In addition to supporting larger Java heaps, 64-bit processors also
provide hardware support for double precision (64-bit) mathematical
computations and wider 64-bit integer and floating point registers. For
example, x86-64 (2) provides eight extra general purpose registers that
are only available in 64-bit mode. These features in 64-bit processors can
lead to significant performance improvements on computationally
intensive applications.

IBM WebSphere Application Server V7 64-bit Performance
5

© Copyright IBM Corporation 2008. All rights reserved.

Challenges in V6

Applications capable of leveraging large Java heaps and performance
extensions provided by 64-bit WAS V6 experienced unprecedented
performance. However, many applications not designed for 64-bit
execution experienced better performance on 32-bit platforms, due to the
overhead of wider address references in 64-bit environments.

Each 64-bit Java object stored its address reference using 8 bytes, as
opposed to 4 bytes in 32-bit deployment. With larger address references,
a typical application’s memory footprint increased by an average of 60-
70% (3). Figure 1 illustrates object growth in a simple class by comparing
32-bit and 64-bit address representation.

Figure 1 – Java object growth with 64-bit

In this example, Foo64 (64-bit) occupies 71% more storage than Foo32
(32-bit) by increasing from 28 to 48 bytes with the same class definition.
If this growth represents a 64-bit application, WAS would require 71%
more heap capacity than its 32-bit counterpart to maintain equivalent
performance. Without increasing capacity, fewer objects can be stored on
the heap and garbage collection (GC) must run more frequently in order
to conserve space. Not only does 64-bit increase system memory
requirements, but can also lead to lower cache and translation lookaside
buffer (TLB) utilization due to collisions resulting from the larger 64-bit
instruction sizes.

IBM WebSphere Application Server V7 64-bit Performance
6

© Copyright IBM Corporation 2008. All rights reserved.

Each of these factors contributed to reduced performance in many
applications migrating from 32-bit to 64-bit WAS V6 deployments.
Consequently, IBM generally recommended that WAS V6 customers use
a 32-bit release unless they were deploying applications specifically
intended to leverage 64-bit capabilities (3).

WAS V6 64-bit performance is detailed in IBM WebSphere Application
Server: 64-bit Performance Demystified, written in September 2007.

Compressed references: 64-bit in WAS V7

There have been dramatic improvements in WAS 64-bit performance
since it was first introduced in V6. In addition to many Just-In-Time (JIT)
compilation optimizations to improve 64-bit performance, the
introduction of compressed reference (CR) technology allows WAS V7
64-bit to provide Java heap sizes up to 28GB, while maintaining the high
throughput and smaller physical memory consumption found in 32-bit
deployments. CR technology enables this behavior by reducing the
width of 64-bit address references to 32 bits through an efficient bit
shifting algorithm.

Performance with compressed references

CR technology enables 64-bit applications not designed to utilize large
heaps or performance extensions to achieve similar throughput offered
by 32-bit deployments. Analysis shows that a 64-bit application without
CR yields only 80-85% of 32-bit throughput but with CR yields 90-95%.
Depending on application requirements, CR can improve performance
up to 20% over standard 64-bit.

The remaining 5-10% performance gap between 64-bit with CR and 32-
bit is due to a number of factors:

 Compression and decompression of the references, requiring
extra CPU cycles

 Uncompressed, 8-byte memory regions adding to the memory
footprint (i.e. Java execution stack, garbage collector)

 The JVM runtime libraries and native Java class library code are
still 64-bit

 Larger 64-bit instructions on some platforms resulting in
increased instruction cache misses and instruction decode time

On the other hand, using full 8-byte address references for Java objects
in standard 64-bit results in significantly greater physical memory
consumption and higher cache/TLB miss ratios. These costly

ftp://ftp.software.ibm.com/software/webserver/appserv/was/64bitPerf.pdf
ftp://ftp.software.ibm.com/software/webserver/appserv/was/64bitPerf.pdf
ftp://ftp.software.ibm.com/software/webserver/appserv/was/64bitPerf.pdf

IBM WebSphere Application Server V7 64-bit Performance
7

© Copyright IBM Corporation 2008. All rights reserved.

disadvantages far outweigh the CR performance factors listed above,
reflected in the performance gap between CR and standard 64-bit.

Compressed reference usage and supported platforms

Compressed references are enabled through the “–Xcompressedrefs”
command line switch in the IBM J9 for Java 6 JVM. This option is set
automatically in supported 64-bit releases of WAS V7, depending on
whether the maximum Java heap size is less than 25GB. While CR can
address up to 28GB, the 25GB value was chosen as a safe parameter for
automatic enablement across disparate platforms. Details surrounding
this value have been provided in the CR technical details. To explicitly

disable CR, WAS can be started using the “-Xnocompressedrefs”
option.

WAS V7 is supported on the majority of commercial 64-bit platforms (i.e.
POWER, x86-64 from Intel/AMD, Sun SPARC, etc), however in order to
use CR technology the WAS release must be packaged with the IBM J9
for Java 6 JVM. Please refer to the WAS V7 information center (4) for
detailed and up-to-date software and hardware system requirements.

Planning for 64-bit migration

It's also important to note that 32 and 64-bit WAS installs can co-exist,
allowing applications to run in a mixed mode on POWER and x86-64
platforms. This provides a simplified migration path for 32-bit
applications running on supported platforms, where they are initially
deployed on WAS 32-bit and gradually migrated to a 64-bit version.

Compressed reference technical details

The IBM J9 for Java 6 memory model requires addresses for 64-bit objects
to be 8 byte aligned on all supported platforms. While the required
alignment is necessary for performance considerations in 64-bit
execution, it also creates an interesting side-effect that the three low
order bits of every Java object address reference will always be zero.

With this side-effect in mind, it follows that 35 address bits can be stored
non-destructively in only 32 bits using simple shift arithmetic. If every
35-bit address is shifted right by 3 when stored and shifted left when
loaded, we can safely extend the 32-bit addressable range to 35 bits by
taking advantage of the fact that the low order bits of Java heap

IBM WebSphere Application Server V7 64-bit Performance
8

© Copyright IBM Corporation 2008. All rights reserved.

references will always be zero. The net effect is that through using
compressed address representation, we can theoretically address up to
32 GB of virtual address space using only 32 bits.

When running 64-bit IBM J9 for Java 6 in CR mode, the JIT compiler
detects the specified maximum heap size and applies appropriate
compression and decompression. Namely, if the maximum heap address
used by the Java JVM process is below 4GB, the shift operation on
compression and decompression is avoided. Figure 2 provides a
graphical representation of the address reference models used in each
addressing mode.

Figure 2 – Address reference models

The memory map to the right of Figure 2 indicates the virtual memory
regions addressable by each address reference mode. While the
theoretical limit for addressable space in CR mode is 32GB, certain OS
memory allocation restrictions reduce the maximum heap size in
practical application. The limiting factor is that operating systems
reserve one or more regions of memory in each process’s virtual address
space, indicated by the dashed blue lines on the virtual memory map.
Given that Java requires contiguous memory allocation, the heap is not
able to achieve the full 32GB theoretical maximum, since the address
space is broken up by static memory reservations.

For example, Linux allocates kernel memory at the 3GB mark of the
virtual address range while Windows has system specific allocation at

IBM WebSphere Application Server V7 64-bit Performance
9

© Copyright IBM Corporation 2008. All rights reserved.

the 2GB mark. In both cases, the Java heap is only able to occupy the
virtual memory space following the OS reserved memory up to the 32GB
mark. Since compression and decompression logic must be used for
address spaces greater than 4GB, CR technology can only be used to
satisfy memory requirements less than 28GB.

Considering that memory reservations vary by OS, the automatic CR
enablement feature uses 25 GB as a safe limitation for maximum heap
size. If necessary, it is possible to extend the 25GB limitation to 28GB by

explicitly using the “–Xcompressedrefs” switch in the JVM command
line arguments. In the case where CR is automatically enabled, verbose
garbage collection (verbosegc) logs can be used to verify a 64-bit WAS
deployment has successfully initialized the CR feature. When verbosegc
is enabled, output is written by default to the native_stderr.log file in the
profile’s logs directory. Opening this file, an entry similar to the

following will indicate “CMPRSS” at the end of the version string when
CR is enabled:

In 32-bit and standard 64-bit addressing modes, the “CMPRSS” string is
not present in the verbosegc log.

Performance analysis

It’s clear that CR technology provides a distinct performance advantage
over the standard 64-bit addressing mode. In order to validate and
measure the expected improvement in a real world application, the WAS
performance team used the open source DayTrader 1.2 (5) benchmark
from the Apache Geronimo (6) project.

DayTrader 1.2 benchmark

DayTrader is an appropriate benchmark for this study because it
contains a set of applications not specifically designed for 64-bit
deployment. In the past, this type of application suffered significant
performance loss because it did not reap the benefits of large Java heaps
or 64-bit precision calculations. Results collected from the DayTrader
benchmark show that 64-bit deployment with CR technology is now a
viable option for these applications. Figure 3 is a general overview of the
benchmark’s design.

IBM WebSphere Application Server V7 64-bit Performance
10

© Copyright IBM Corporation 2008. All rights reserved.

Figure 3 - DayTrader 1.2 architecture

DayTrader is a J2EE enterprise application modeling an online stock
brokerage. Web users can login, view and modify their account, check
stock quotes, buy and sell shares etc. This benchmark was originally
developed by IBM as an end-to-end test suite for Web application server
performance. IBM donated the benchmark to open-source and it now is
developed and maintained under the Apache Geronimo project. All
source code and benchmark artifacts are downloadable under the
Apache open-source license.

Physical memory consumption

The following discussion presents data collected from DayTrader 1.2
over various operating systems and architectures supported by WAS V7.
In order to understand the performance improvements enabled by CR,
it’s important to understand the differences between physical memory
usage in 32-bit, 64-bit and 64-bit with CR. Figure 4 compares the effective
heap consumption for each type of WAS deployment on several
operating systems, each configured with a 1GB Java heap.

IBM WebSphere Application Server V7 64-bit Performance
11

© Copyright IBM Corporation 2008. All rights reserved.

Figure 4 - Memory consumption with 1GB Java heap

Effective heap consumption is expressed as the average kilobytes (KB) of
garbage generated per request. This metric approximates the effective
Java heap growth introduced by 64-bit, making the assumption that
actual footprint growth for all objects is equal to the growth of objects
freed during garbage collection (GC). While the memory freed during
GC represents short lived objects, persistent heap data experiences
similar growth conditions.

Figure 4 shows that CR heap utilization is nearly equivalent to 32-bit,
while usage increases by ~50% in standard 64-bit addressing modes
across all platforms. Each value is computed by dividing the amount of
heap memory freed over a discrete time span, by the number of requests
completed during the time span. This expression simplifies to:

 𝐾𝐵 𝐹𝑟𝑒𝑒𝑑

𝑅𝑒𝑞𝑢𝑒𝑠𝑡

Verbose GC logging must be enabled to acquire the information required

for this analysis, using the “-Xverbose:gc” JVM switch. Parsing the
XML output from the verbosegc log provides detailed entries for each
garbage collection. This data includes timestamp, bytes collected, post
GC heap occupation, etc.

0
20
40
60
80

100
120
140
160
180
200

SLES 10.1
(x86_64)

Win 2003
(x86_64)

AIX 6.1
(Power6)

G
ar

b
ag

e
 (

K
B

)
/

R
e

q
u

e
st

Operating System (Platform)

Effective Heap Consumption
1GB Java Heap Size

32-bit

64-bit (compressed)

64-bit (standard)

IBM WebSphere Application Server V7 64-bit Performance
12

© Copyright IBM Corporation 2008. All rights reserved.

Throughput comparison

Spikes in memory growth are directly related to the performance
regressions experienced by many applications migrating to 64-bit WAS
deployments. The connection between performance and memory usage
is demonstrated in the following chart, which contains corresponding
throughput data from the scenarios in Figure 4. In order to account for
hardware differences, values have been normalized as percentages of 32-
bit throughput for each platform.

Figure 5 - Throughput with 1GB heap

The performance advantage provided by the CR deployment is clear.
Assuming 32-bit throughput as the baseline for each platform, CR
deployments are able to achieve ~95% of the available performance,
compared to ~85% for standard 64-bit deployment. Recall that the 5%
performance delta between 32-bit and CR is the result of compression /
decompression operations, uncompressed regions in the Java execution
stack, external calls to 64-bit user libraries, etc..

Detailed discussion for Linux on x86

Thus far, data has been limited to WAS deployments with 1GB Java
heaps, however it’s also very useful to discuss the performance
characteristics of WAS deployments as the heap sizes grow. Using
Novell SUSE Linux Enterprise Server (SLES) 10.1 on x86 hardware,
memory footprint and throughput are explored in detail with varying

94% 95% 92%

85% 87% 87%

0%

20%

40%

60%

80%

100%

120%

SLES 10.1
(x86_64)

Win 2003
(x86_64)

AIX 6.1
(Power6)

%
 o

f
3

2
-b

it
 T

h
ro

u
gh

p
u

t

Operating System (Architecture)

Throughput Comparison
1GB Java Heap Size

32-bit

64-bit (compressed)

64-bit (standard)

IBM WebSphere Application Server V7 64-bit Performance
13

© Copyright IBM Corporation 2008. All rights reserved.

Java heap configurations. Figure 6 shows memory usage with heaps
configured up to 12GB, according to the hardware limitations of the
system under test.

Figure 6 - Linux memory footprint by heap size

Since SLES uses a Linux kernel, the Java heap is limited to 3GB in 32-bit
deployments. Within this range, effective heap consumption is nearly
equivalent for 32-bit and 64-bit CR deployments. Looking further along
the axis, we can determine that relative memory usage is consistent
between the two 64-bit deployments regardless of heap size. Even as
heap size approaches 12 GB, 64-bit CR deployments maintain their
advantage in physical memory consumption over the standard 64-bit
addressing mode.

Since memory consumption and throughput are directly related, CR is
also able to maintain its performance advantage over 64-bit as the heap
size grows. Figure 7 shows the corresponding throughput measurements
for the heap configurations above.

0

20

40

60

80

100

120

140

160

180

200

1GB 2GB 3GB 4GB 8GB 12GB

G
ar

b
ag

e
 (

K
B

)
/

R
e

q
u

e
st

Java Heap Size

Linux Memory by Heap Size
IBM x3550 - (2x) Intel E5320 QuadCore @ 1.86GHz

32-bit

64-bit (compressed)

64-bit (standard)

IBM WebSphere Application Server V7 64-bit Performance
14

© Copyright IBM Corporation 2008. All rights reserved.

Figure 7 - Linux throughput by heap size

There are two important observations to take away from figure 7. First,
the throughput for WAS deployments using CR is significantly faster
than standard 64-bit for all heap sizes. Secondly, CR experiences a slight
drop in relative performance between 2GB and 3GB, but remains
constant from 3GB forward.

The slight performance shift (~2.5%) at 3GB occurs when throughput is
reduced from 3020 requests/second to 2946 requests/second. This shift
is a consequence of the Linux kernel’s static memory reservation in the
JVM’s virtual address space. Recall from the CR details that since IBM J9
for Java 6 requires contiguous heap allocation, the effective heap’s start
offset must be moved past the kernel’s reserved memory. Once the offset
has been adjusted, the heap has a wide area of open memory to satisfy its
contiguous requirement using the address range above the 3GB mark.

However, when the effective Java heap memory start offset is pushed
above the 32-bit addressable memory range, the JIT compiler has to
perform bit shift arithmetic for compressing and decompressing the 64-
bit object references. The extra instructions for address compression and
decompression cause increase in instruction path-length, which results in
the slight overhead observed in Figure 7.

Each OS comes with its own set of memory reservations, which must be
accounted for by the CR algorithm. Despite all limitations, the CR

2000

2200

2400

2600

2800

3000

3200

3400

1GB 2GB 3GB 4GB 8GB 12GB

R
e

q
u

e
st

s
/

Se
co

n
d

Java Heap Size

Linux Throughput by Heap Size
IBM x3550 - (2x) Intel E5320 QuadCore @ 1.86GHz

32-bit

64-bit (compressed)

64-bit (standard)

IBM WebSphere Application Server V7 64-bit Performance
15

© Copyright IBM Corporation 2008. All rights reserved.

technology is able to provide significantly faster 64-bit performance at
each heap size, even taking into account OS specific differences.

Conclusions/Summary

Since the introduction of 64-bit technology in WAS V6, Java 5
applications were provided the ability to run with heaps much larger
than the 3GB effective limit found on 32-bit platforms. The IBM Just-In-
Time compilation technology for Java transparently leveraged the 64-bit
performance extensions and generated optimized code.

WAS V7 introduces “compressed references” technology with IBM J9 for
Java 6, which allows the JVM to offset the performance and memory
footprint growth previously experienced by many applications on 64-bit
platforms. The CR technology allows applications deployed on 64-bit
WAS to take full advantage of all 64-bit features of the processor, such as
native 64-bit arithmetic, additional CPU registers, etc. At the same time it
allows the application to use heaps as large as 28GB, overcoming the
4GB limit imposed by 32-bit architectures.

Minimizing the performance gap between 32-bit and 64-bit WAS
deployments, compressed reference technology provides customers with
a viable single install solution on 64-bit platforms for both applications
that leverage and those that do not leverage 64-bit address extensions.

IBM WebSphere Application Server V7 64-bit Performance
16

© Copyright IBM Corporation 2008. All rights reserved.

References
1. Utsler, Jim. Linux on Power. IBM. [Online] IBM.
http://www.ibm.com/servers/eserver/linux/power/powerarticle.pdf.
2. Christian Zdebel, Simon Solotko. the AMD64 Computing Platform.
AMD. [Online] http://www.amd.com/us-
en/assets/content_type/white_papers_and_tech_docs/30172C.pdf.
3. J. Stan Cox, Piyush Agarwal, Nikola Grcevski, Hong Hua. IBM
WebSphere Application Server 64-bit Performance Demystified. [Online]
IBM.
ftp://ftp.software.ibm.com/software/webserver/appserv/was/64bitPe
rf.pdf.
4. IBM Corporation. WebSphere Application Server. IBM Information
Center. [Online] IBM.
http://www.ibm.com/software/webservers/appserv/was/library/.
5. Apache Geronimo Project. DayTrader. Apache Geronimo v2.0
Documentation. [Online]
http://cwiki.apache.org/GMOxDOC20/daytrader.html.
6. —. Welcome to Apache Geronimo. Apache Geronimo. [Online]
http://geronimo.apache.org/.

Additional Resources

Java Diagnostics Guide 6

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/index.jsp

Porting Guide – Moving Java Applications to 64-bit Systems
http://download.boulder.ibm.com/ibmdl/pub/software/dw/jdk/64bi
tporting/64BitJavaPortingGuide.pdf

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/index.jsp
http://download.boulder.ibm.com/ibmdl/pub/software/dw/jdk/64bitporting/64BitJavaPortingGuide.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/jdk/64bitporting/64BitJavaPortingGuide.pdf

IBM WebSphere Application Server V7 64-bit Performance
17

© Copyright IBM Corporation 2008. All rights reserved.

IBM, AIX, DB2, POWER Architecture, POWER3, POWER4, POWER4+,
POWER5, POWER5+, POWER6, WebSphere and xSeries are trademarks
of International Business Machines Corporation in the United States,
other countries, or both

Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows 2003 and the Windows logo are
trademarks of Microsoft Corporation in the United States, other
countries, or both.

Intel and Intel Xeon are registered trademarks or trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other
countries, or both.

Other company, product or service names may be trademarks or service
marks of others.

