IBM WebSphere Application Server Network
Deployment, Version 5

Applications

<|ll

Note
FBefore using this information, be sure to read the general information under[“Trademarks and service marks” on page ix|

Compilation date: November 21, 2002

© Copyright International Business Machines Corporation 2002. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Trademarks and service marks ix
Chapter 1. Welcome to Applications 1
Chapter 2. Using Web appllcatlons . .7
Web applications . .7
web.xml file .8
Migrating Web apphcatlon components .9
Default Application. .12
Snoop L 12
HelloHTML .13
HitCount . .13
Servlets. .13
Developing servlets w1th WebSphere Apphcatlon
Server extensions . .. 14
Application lifecycle hsteners and events .14
Listener classes for servlet context and session
changes. .15
Example:
com.ibm.websphere. DBConnectionListenerjava . 15
Servlet filtering . . 16
Filter, FilterChain, FllterConflg classes for servlet
filtering. . 16
Example: com. 1bm websphere LoggmgFllter]ava 16

Configuring page list servlet client configurations 17
autoRequestEncoding and autoResponseEncoding 21
autoRequestEncoding and autoResponseEncoding

encoding examples . .21
JavaServer Pages files . .22
Developing]avaServer Pages flles w1th WebSphere
extensions . . e .. 22

Tag libraries . . .23

tsx:dbconnect tag]avaServer Pages syntax . .23

dbquery tag JavaServer Pages syntax . .24

dbmodify tag JavaServer Pages syntax . 25

tsx:getProperty tag JavaServer Pages syntax and

examples . . . 26

tsx:userid and tsx: passwd tag]avaServer Pages

syntax . .27

tsx:repeat tag]avaServer Pages syntax .27

Example: Combining tsx:repeat and

tsx:getProperty JavaServer Pages tags. . 28

Example: tsx:dbmodify tag syntax . . 28

Example: Using tsx:repeat JavaServer Pages tag

to iterate over a results set . 28

JspBatchCompiler tool . .31
Bean Scripting Framework . .32
Example: Converting JavaScript source to the Bean
Scripting Framework . .o .32
Scenario: Creating a Bean Scr1pt1ng Framework
application . 33

Scenario descrlptlon . 33

Developing the BSF apphcatlon . 34

Deploying the BSF application . . 38
Example: Bean Scripting Framework code example 39

© Copyright IBM Corp. 2002

Developing Web applications
Web modules. .
Assembling Web Modules
Context parameters.
Servlet mappings
Servlet caching .
Web components
Web property extensions .
Web resource collections .
Welcome files.
Context parameter assembly settmgs
Initialization parameter assembly settings
JavaServer Pages attribute assembly settings
Multipurpose Internet Mail Extensions (MIME)
filter assembly settings e
Page list assembly settings
Security constraints. . .
Security constraint assembly settlngs
Servlet mapping assembly settings
Tag library assembly settings
Welcome file assembly settings .
Servlet caching configuration assembly settlngs
Web components assembly settings
Web modules assembly settings
Assembly property extensions . .
File serving attribute assembly settings .
Invoker attribute assembly settings
Error page assembly settings .
Web resource collections security Constralnt
properties .
Troubleshooting tips for Web apphcatlon
deployment
Modifying the default Web Contalner conflguratlon
Web container
Web container settmgs .
Web Container Services settings
Web module settings
Web Module Deployment settlngs
Web applications: Resources for learning

Chapter 3. Managlng HTTP sessions
Sessions
Migrating HTTP sessions .
Developing session management in servlets
SessionSample.java .
Assembling so that session data can be shared
Servlet API Behavior
Session security support . .
Security integration rules for HTTP sessions
Programmatic details and scenarios
Session management support .
Configuring session management by level .
Session tracking options . .
Session tracking with cookies
Session tracking with URL rewriting .

. 42
. 43
.43
. 45
. 45
. 45
. 45
. 45
. 46
. 46
. 46
. 46
. 47

. 49
. 51
. 51
. 51
. 53
. 53
. 54

54

. 56
. 58
. 61
. 61
. 61
. 62

. 63

. 63

65

. 65
. 65
. 66
. 67
. 68
. 69

7

.71
.72
.73
. 74
.75
.75
.75
.76
.76
.77
. 78
.78
.79
.79

iii

Session tracking with SSL information . 80
Configuring session tracking . 80
Serializing access to session data . 81
Session Management settings . 81
Cookie settings . . 83
Distributed sessions . 84
Session recovery support . . . 84
Distributed Environment settings . . 84
Configuring for database session persistence . 85
Switching to a multirow schema . 85
Configuring tablespace and page sizes for DBZ
session databases Lo . 86
Database settings . . 86
Multirow schema cons1deratlons . 87
Memory-to-memory replication. . .88
Configuring for memory to memory rephcatlon . .9
Memory-to-memory sessions settings . .90
Clustered session support .9
Tuning session management. . .91
Configuring scheduled invalidation .92
Configuring write contents . .92
Configuring write frequency. .93
Base in-memory session pool size . . 94
Controlling write operations. . 94
Tuning parameter settings . . 95
Best practices for using HTTP Sessmns . .97
Managing HTTP sessions: Resources for learnlng 100
Chapter 4. Using enterprise beans in
applications . . 101
Enterprise beans . . 101
Developing enterprise beans . 102
Migrating enterprise bean code to the supported
specification . . 103
WebSphere extensmns to the Enterprlse
JavaBeans specification . . 106
Best practices for developing enterpr1se beans 107
Using access intent policies. . 108
Access intent policies. . 108
Applying access intent pohc1es to methods . 110
Access intent exceptions . 111
Access intent assembly settings . 112
Access intent best practices . . . 114
Frequently asked questions: Access 1ntent . 114
EJB modules. . 116
Assembling EJB modules . 116
CMP field assembly settings . 118
Container transactions . . . 118
Container transaction assembly sett1ngs . 118
EJB module assembly settings . . 120
Entity bean assembly settings . 121
EJB local-reference assembly settings . 130
Message-driven bean assembly settings. . 130
Method extensions . 133
Method extension assembly settlngs . 133
Method permissions . . 136
Method permission assembly settlngs . 136
Query assembly settings. . 137
References . . 137
EJB reference assembly sett1ngs . 138
EJB relation assembly settings . . 139

Exclude list assembly settings . . 139
Security role assembly settings . 140
Session bean assembly properties. . 141
EJB containers . . 143
Managing E]JB contalners . 144
EJB container settings .o . 145
EJB container system properties . . 146
EJB cache settings . . . 146
Container interoperability . . 147
Deploying EJB modules . . 150
EJB module collection . 151
EJB module settings . . 151
Enterprise beans: Resources for learmng . 151
Chapter 5. Using message-driven
beans in applications . . 155
Message-driven beans - an overview . 155
Message-driven beans - components. . 156
Message-driven beans - transaction support . . 158
Designing an enterprise application to use
message-driven beans . 158
Developing an enterprise apphcatlon to use
message-driven beans . 160
Migrating a JMS listener apphcatlon to use
message-driven beans . . 162
Deploying an enterprise application to use
message-driven beans . . 163
Configuring deployment attrlbutes for a
message-driven bean 164
Configuring message listener resources for
message-driven beans . . 166
Configuring the message hstener service . 166
Adding a new listener port. . 170
Configuring a listener port . . 170
Deleting a listener port . . . 171
Configuring security for message—dnven beans 171
Administering listener ports . 172
Important files for message-driven beans and
extended messaging 173
Troubleshooting message- dr1ven beans . 174
Message-driven beans samples . 175
Chapter 6. Using application clients 177
Application clients . 177
Application client funct10ns . 179
ActiveX application clients . . 180
Applet clients . . 181
J2EE application clients . . 182
Pluggable application clients . 183
Thin application clients . . . 185
Example: Migrating application chents . 186
Migration tips for application clients . 187
Installing application clients . 188
Developing ActiveX application client code . 189
Starting an ActiveX application . 189
JClassProxy and JObjectProxy classes . 192
Java virtual machine initialization tips . . 196
Example: Developing ActiveX to enterprise bean
bridge, using Java proxy objects . . 196

iV IBM WebSphere Application Server Network Deployment, Version 5: Applications

Example: Calling Java methods in the ActiveX

to enterprise bean bridge

Java field programming tips .

ActiveX to Java primitive data type conversion

values . .

Array tips for ActlveX apphcatlon chents .

Error handling codes for ActiveX application

clients . .

Threading tips . .

Example: Viewing System out message

Example: Enabling logging and tracing for

application clients .

ActiveX client programmmg best practlces
Developing applet client code . .

Accessing secure resources using the TCP / IP

protocol for applet clients

Applet client tag requirements.

Applet client code requirements .
Developing J2EE application client code

J2EE application client class loading .
Developing pluggable application client code.
Developing thin application client code.
Assembling Application Client Modules

Application client assembly settings .
Deploying application clients . .

JDBC providers for application chents .

Data sources for application clients . .

Configuring new data source providers (JDBC

providers) for application clients . .

Configuring new data sources for appl1cat1on

clients . .

Mail providers and ma11 sessions for the

Application Client Assembly Tool

Configuring mail providers and sessions for

application clients . .

Configuring new mail sessions for apphcatlon

clients .

URLs for apphcatlon chents .

URL providers for the Application Chent

Resource Configuration Tool

Configuring new URL providers for apphcatlon

clients .

Configuring new URLs w1th the Apphcatlon

Client Resource Configuration Tool .

WebSphere asynchronous messaging using the

Java Message Service API for the Application

Client Resource Configuration Tool .

Configuring Java messaging client resources .

Configuring new connection factories for

application clients . . .

Configuring new Java Message Seerce

destinations for application clients .

Example: Configuring MQ Queue and TOplC

connection factories and destination factories for

application clients .

Example: Configuring WAS Queue and Toplc

connection factories and destination factories for

application clients . o

Configuring new resource environment

providers for application clients .

. 197
. 199

. 199
. 201

. 201
. 202
. 203

. 204
. 205
. 208

. 209
. 210
. 210
. 211
. 214
. 216
. 217
. 217
. 218
. 219
. 220
. 220

. 221

. 224

. 224

. 225

. 227
. 228

. 228

. 228

. 231

. 231

. 232

. 263

. 264

. 264

. 266

. 267

Configuring new resource environment entries

for application clients. . 268
Managing application clients . . 269

Updating data source and data source prov1der

configurations with the Application Client

Resource Configuration Tool . 270

Updating URLs and URL provider

configurations for application clients . 270

Updating mail session configurations for

application clients 270

Updating Java Message Serv1ce prov1der

connection factories, and destination

configurations for application clients .27

Updating MQ Java Message Service provider,

MQ connection factories, and MQ destination

configurations for application clients . 271

Updating Resource Environment Entry and

Resource Environment Provider conﬁgurations

for application clients. . . 272

Removing application client resources . . 273
Running application clients. . 274

launchClient tool . . . 275
Application client troubleshootmg tlps . . 277
Chapter 7. Developing and managing
Web services . 283
Web services . 283
Developing a Simple Ob]ect Access Protocol chent 283
Deploying Web services applications . 285
Administering deployed Web services (XML SOAP
administrative tool) . . . 285
Securing Simple Object Access Protocol services 286

Migrating SOAP security . 286

Securing Simple Object Access Protocol services

with HTTP basic authentication . 287

Securing Simple Object Access Protocol services

on Secured Socket Layer. . 287

Securing SOAP services on SSL w1th SOAP

Signature. o . 288
UDDI4]J spec1f1cat10ns . 290
Web services: Resources for learnmg . 290
Chapter 8. Enabling Web services to
use the Web Services Invocation
Framework . 293
Goals of WSIF . . 293

WESIF - Web services are not]ust SOAP services 294

WESIF - tying client code to a particular protocol

implementation is restricting . 294

WESIF - incorporating new bmdmgs 1nt0 cllent

code is hard . . . 294

WESIF - multiple bmdmgs can be used in ﬂex1b1e

ways 294

WESIF - a freer Web services env1r0nment

enables intermediaries . 295
An overview of WSIF . 295

WSIF architecture . . . 295

Using WSIF with Web services that offer

multiple bindings . o . 296

WSIF and WSDL . . 296

Contents

\'%

WSIF usage scenarios. . 297
Dynamic invocation . . . 298
Using WSIF to invoke Web services . . 298
Using the WSIF providers . . 298
Developing a WSIF service . . 311
Using complex types . . 320
Using JNDI . . . 321
Interacting with the WebSphere IZEE contamer 323
Running WSIF as a client . . .328
WESIF system management and admmrstratron . 323
Maintaining the WSIF properties file . 323
Enabling security for WSIF . . 324
WESIF troubleshooting tips . . 325
WSIF API . . 329
WSIF API reference: Creatrng a message for
sending to a port . . 330
WSIF API reference: Fmdmg a port factory or
service. . .. 331
WSIF API reference Us1ng ports . . 332
WESIF: Resources for learning . . 336
Chapter 9. Classloadlng . 337
Classloaders . . 338
Classloader collectlon. . 341
Classloader ID . . 342
Classloader Mode . . 342
Classloader settings . 342
Migrating the classloader Module V1s1b111ty Mode
setting. o342
Classloading;: Resources for learnmg . 343
Chapter 10. Using EJB query . 345
EJB query language . 345
Example: EJB queries. . 346
FROM clause . 348
Inheritance in EJB query . 349
Path expressions . 349
WHERE clause . . 350
Scalar functions . 358
Aggregation functions . 361
SELECT clause . . 362
ORDER BY clause . . 363
Subqueries . . 363
EJB query restrictions. . 364
EJB Query: Reserved words . 365
EJB query: BNF syntax . . 365
Comparison of EJB 2.0 spec1f1cat10n and
WebSphere query language. . 367
Chapter 11. Internationalizing
applications . . 369
Internationalization . . 369
Identifying localizable text . . 370
Creating message catalogs . . . 371
Composing language-specific strings . 371
Localization API support . 372
LocalizableTextFormatter class. . 373
Creating a formatter instance . . 375
Setting optional localization values . . 376
Composing complex strings . 377

Generating localized text379
Preparing the localizable-text package for

deployment380
LocahzableTextE]BDeploy command 380
Internationalization: Resources for learning . . . 381

Chapter 12. Using the transaction

service 383
Transaction support in WebSphere Apphcatron
Server. 383
Resource manager local transactlon (RMLT) . . 384
Global transactions38
Local transaction contarnment (LTC)38
Local and global transaction considerations . . 389
Developing components to use transactions . . . 389
Setting transactional attributes in the
deployment descriptor39
Using bean-managed transactlons .o.o.. 0391
Configuring transaction properties for an
application server . . . e 032
Transaction service settlngs L. ... 3%
Managing active transactions 3%
Managing transaction logging for optrmum server
availability 395
Configuring transactron aspects of servers for
optimum availability 39
Moving a transaction log from one server to
another 397
Restarting an apphcatlon server on a drfferent
host 398
Transactional 1nteroperatron w1th non—WebSphere
application servers39
Troubleshooting transactions399
Transaction service exceptions.400
Standard exceptions400
Heuristic exceptions 400
UserTransaction interface - methods avallable .. 401

Chapter 13. Usmg naming. 403

Naming 404
New features for name space support 404
Name space logical view405
Name space partitions 406
Initial context support 408
Initial contexts registered with the ORB as 1n1t1al
references408
Default initial contexts S . 409
Lookup names support in deployment descrlptors
and thin clients.409
Relative names.410
Qualified names 410
JNDI support in WebSphere Apphcatron Server 412
Developing applications that use JNDI 412
Example: Getting the default initial context . . 415
Example: Getting an initial context by setting
the provider URL property . . . 418

Example: Setting the provider URL property to
select a different root context as the initial

context . . . 420
Example: Lookmg up an E]B home w1th]NDI 422

Vi IBM WebSphere Application Server Network Deployment, Version 5: Applications

Example: Looking up a JavaMail session with

JNDI . . 424
JNDI 1nteroperab1hty con51deratlons . 424
JNDI caching . 426
JNDI cache settings . 427
Example: Controlling JNDI cache behav1or from
a program Coe e . 428
JNDI name syntax. . 429
INS name syntax . . 430
JNDI to CORBA name mappmg con51derat10ns 430
Example: Setting the syntax used to parse name
strings. . 430
Developing apphcatlons that use CosNammg
(CORBA Naming interface). . 431
Example: Getting an initial context w1th
CosNaming . . 431
Example: Looking up an E]B home w1th
CosNaming . . o . 434
Configured name bindings . . 436
Configured binding types . 437
Name space federation . . 438
Name space bindings. . . 440
Configuring and viewing name space bmdmgs .. 440
String binding settings . 440
CORBA object binding settmgs . 441
Indirect lookup binding settings . . 442
EJB binding settings . . . 442
Name space binding collectlon . 443
Configuring name servers . . 443
Name server settings . . . 444
Troubleshooting name space problems . . 444
dumpNameSpace tool . . 444
Example: Invoking the name space dump utlhty 446
Name space dump utility forjava: and
Tocal:name space. . 447
Example: Invoking the name space dump utlhty
for java: andlocal: name spaces . 449
Name space dump sample output .. 449
Naming and directories: Resources for learning . . 451
Chapter 14. Improving performance
through the dynamic cache service. . 453
Dynamic cache . . 453
Configuring globally the dynarruc cache service 453
DynamicCache service settings . 454
Configuring servlet caching . 454
Configuring cache replication . . 455
Configuring the dynamic cache disk offload . 457
Configuring Edge Side Include caching. . 457
Configuring external cache groups . 458
Displaying cache information . . 462
Configuring cacheable objects with the
cachespec.xml file . . . 462
Verifying the cacheable page . 464
Cachespec.xml file. . . 464
Configuring command caching . 469
Command class . 470
CacheableCommandImpl class . 470
Example: Caching a command object . 471

Example: Caching Web services . . 472
Example: Configuring the dynamic cache . . 474
Chapter 15. Managlng user proflles 477
User profile . . 477
UserProfileManager class . 478
User profile development options . 478
Extending the data represented in user proflles 478
Adding columns to the base user profile
implementation. . 478
Extending the User Proflle enterprlse bean and
importing legacy databases. . 479
UPServletExample java . . . 479
UserProfileExtendedSample.j]ava . . 481
UPServletExampleExtended.java . . 482
UserProfileExtended.java . 484
UPServletExtended java . . 485
userprofile.xml . . 487
Chapter 16. Assembling applications 489
Application assembly and J2EE applications . . 490
Archive support in Version 5.0 .o . 491
Starting the Application Assembly Tool (AAT) . 491
Migrating application modules from J2EE 1.2 to
J2EE 1.3 . .o o . 492
earconvert tool . . . 493
Assembling new or modlfymg ex1st1ng modules 493
Adding files to assembled modules . . 496
Resource environment reference assembly
settings . . 497
Resource Adapter Archlve flle assembly settmgs 498
Saving applications after assembly . 501
Verifying archive files . 502
Generating code for deployment . . 502
ejbdeploy tool . . 503
ejbdeploy syntax -- relatlonshlp to Apphcatlon
Assembly Tool options . . . 504
Chapter 17. Deploylng and managing
applications . . 505
Enterprise applications . . 505
Installing a new application . 505
Preparing for application install settmgs . 510
Example: Installing an EAR file using the
default bindings e . 514
Enterprise application collectlon . . 514
Name . . 515
Status . . . 515
Enterprise apphcatlon settmgs . 515
Starting and stopping applications . 518
Exporting applications . . 518
Exporting DDL files . . 518
Updating applications . 519
Hot deployment and dynamlc reloadmg . 520
Uninstalling applications . 528
Deploying and managing apphcat1ons Resources
for learning . . 529
Contents Vii

viii IBM WebSphere Application Server Network Deployment, Version 5: Applications

Trademarks and service marks

The following terms are trademarks of IBM Corporation in the United States, other
countries, or both:

Everyplace
iSeries
IBM
Redbooks
ViaVoice
WebSphere

zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product and service names may be trademarks or service marks of
others.

© Copyright IBM Corp. 2002

ix

X IBM WebSphere Application Server Network Deployment, Version 5: Applications

Chapter 1. Welcome to Applications

The following items comprise the application programming model, including
numerous services available to support deployed applications.

Web modules

Use Web components such as servlets and JavaServer Pages files to develop
dynamic Web sites. Product extensions to the open source servlet and JSP APIs
enhance standard features, and provide additional functionality.

Web modules consist of the following application components, each performing a
different function:

* HTML and JSP pages provide the user interface and program logic
* Servlets coordinate work between other components of the application

* Bean Scripting Framework enables users to implement JavaScript code in JSP
applications

HTTP sessions are a key area of product support for Web modules. By managing
(HTTP sessions) for your Web applications, you can personalize a Web site for
individual customers. A session is a series of requests to a servlet, originating from
the same user at the same browser. Managing HTTP sessions allows servlets
running in a Web container to keep track of individual users. For example, a
servlet might use sessions to provide "shopping carts” to on-line shoppers.
Suppose the servlet is designed to record the items each shopper indicates he or
she will purchase from the Web site. It is important that the servlet be able to
associate incoming requests with particular shoppers. Otherwise, the servlet might
mistakenly add choices of Shopper 1 to the cart of Shopper 2.

EJB modules

IBM WebSphere Application Server provides broad support for enterprise beans,
including the Enterprise JavaBeans (E]JB) 2.0 specification. The EJB 2.0 specification
introduces a container-managed persistence (CMP) 2.0 component model, which
provides a number of improvements to aid developer productivity and application
performance. In addition, this product continues to fully support enterprise beans
written to the CMP 1.1 programming model and deployed in previous versions of
this product; applications can use CMP 1.1 beans, CMP 2.0 beans, or a mixture of
both. CMP 1.1 beans can be directly carried forward in an EJB 1.1 ejb-jar module or
may be repackaged and combined with CMP 2.0 beans in an EJB 2.0 module.

For EJB 2.0 modules, a feature introduced in Version 5 of this product, called
access intent policies, eases the management of interactions between CMP beans
and their underlying datastores. Each policy sets such data access characteristics
such as access type (read or update) and transaction isolation that affect the
locking of resources, letting you choose the level of data integrity and performance
for your application.

Several excellent trade books that cover EJB 2.0 and the CMP 2.0 persistence model
are already available. A good way to locate some of these is to visit your favorite
online bookstore and search on the term Enterprise JavaBeans. For a more basic
orientation, see ("Enterprise beans: Resources for learning”).

© Copyright IBM Corp. 2002 1

Your application development might include asynchronous messaging, which the
product supports as a method of communication based on the Java Message
Service (JMS) programming interface.

The base JMS support enables IBM WebSphere Application Server applications to
exchange messages asynchronously with other JMS clients by using JMS
destinations (queues or topics). An application can explicitly poll for messages on a
destination.

The product also provides a message listener service that applications can use to
automatically retrieve messages from JMS destinations for processing by
message-driven beans, without the application having to explicitly poll JMS
destinations.

Refer to:

* "Asynchronous messaging with WebSphere - an overview” (not in this
document)

* "Using JMS and messaging in applications” (not in this document)
* ("Using message-driven beans in applications”)

Client modules

The product provides a CD-ROM and installation program for installing
application clients without installing the entire application server. This smaller
footprint is useful if you want to run client applications on multiple client
machines. For more information, see ("Installing application clients”).

Application clients follow several programming models with unique requirements
and suitability for different types of applications. Most of these models are only
available when you install the product. Models include:

ActiveX application client
Supported Windows platforms only; Client only

Applet client
Supported Windows platforms only; Client only

J2EE application client
All supported server platforms; All supported client platforms

Pluggable application client
Supported Windows platforms only, Sun JRE 1.3.1_03 or later (but not 1.4);
Thin application client programming model only (no J2EE programming
model); Client only

Thin application client
All supported client platforms

Web services

The Web services components included with this product version build upon the
Apache Simple Object Access Protocol (SOAP) 2.3-based capabilities delivered with
Version 4.0.x of the product.

New in this release is an open source implementation for a Web Services
Invocation Framework (WSIF).

2 IBM WebSphere Application Server Network Deployment, Version 5: Applications

An additional Web services component, "IBM WebSphere Web Services for J2EE
Technology Preview”, is available for use with Version 5.0. It is a separate
download available at:

http://www7b.boulder.ibm.com/wsdd/downloads/techpreviews.html

and includes additional documentation. The Web services technology preview
supports emerging Java Web services standards like JAX-RPC and Web services for
J2EE. It is recommended that new development efforts use the Web Services
Technology Preview and follow these standards.

Additional features are available, such as UDDI Registry and Web Services
Gateway. See their description in "Welcome to Servers” (not in this document).

Application services

IBM WebSphere Application Server provides essential services to ease the building
of dynamic and flexible e-business applications. These services support and extend
the open standards of J2EE and Web services, with a focus on application reuse
and integration.

* Classloading

The WebSphere Application Server product provides several classloading modes,
policies, and features to enable you to deploy and run your applications
successfully. An application server provides an Application Classloader Policy
that enables you to control the isolation of applications in a server. If you want
applications to share classes, choose the SINGLE policy; otherwise choose the
MULTIPLE policy, which isolates the classloaders for each application.

Similarly, at the application level, you can choose a (WAR Classloader Policy)
that configures the isolation of Web modules within an application. If you
choose the policy APPLICATION, then each Web module in your application
can see the other Web module’s classes. A policy of MODULE creates a separate
classloader for each Web module resulting in isolation for each Web module’s
classes.

The classloader mode setting, which you can configure at the server, application,
or Web module level depending on your classloader policy, enables you to
control whether application classloaders override classes contained in base
run-time classloaders. By default, the WebSphere Application Server classloaders
have a classloader mode of PARENT_FIRST, which is the standard JDK mode
and does not allow the appplication classloader to override classes. You must
take care when using the PARENT_LAST classloader mode to make all
dependent classes available within the application or you might get
LinkageErrors or other classloader exceptions. For example, if you provide a
newer version of the Xerces.jar file and your application is using XSLT, you must
provide a compatible version of Xalan.jar within the application.

Finally, Version 5.0 of WebSphere Application Server introduces the concept of
classloader "Managing shared libraries” (not in this document). A shared library
is a CLASSPATH and a symbolic name for the classpath. You define shared
libraries at the cell, node, or server level and then associate the shared libraries
either with an application server (making the classes available to all applications
in the server) or with individual applications (making the classes available only
to the referencing application). This mechanism provides a convenient way to
make libraries of classes available to your applications outside of a standard
J2EE enterprise application (EAR) file for easier version management and space
efficiency.

¢ Internationalization

Chapter 1. Welcome to Applications 3

If your application component must support multiple locales, the
localizable-text API can help both developers and administrators through
central management of displayed strings. The developer separates strings into a
message catalog, which is then translated into the other languages required. All
message catalogs are then deployed with the application component. From then
on, the administrator can add or update message catalogs centrally as required.

¢ Transactions

IBM WebSphere Application Server applications can use transactions to
coordinate multiple updates to resources as atomic units (as indivisible units of
work) such that all or none of the updates are made permanent. The way that
applications use transactions depends on the type of application component, as
follows:

— A session bean can either use container-managed transactions (where the bean
delegates management of transactions to the container) or bean-managed
transactions (where the bean manages transactions itself)

— Entity beans use container-managed transactions

— Web components (servlets) use bean-managed transactions

The product is a transaction manager that supports the coordination of resource
managers through their XAResource interface and participates in distributed
global transactions with other OTS 1.2 compliant transaction managers (for
example J2EE 1.3 application servers). Applications can also be configured to
interact with databases, JMS queues, and JCA connectors through their local
transaction support when distributed transaction coordination is not required.

Resource managers that offer transaction support can be categorized into those
that support 2-phase coordination (by offering an XAResource interface) and
those that support only 1-phase coordination (for example through a
LocalTransaction interface). The IBM WebSphere Application Server transaction
support provides coordination, within a transaction, for any number of 2-phase
capable resource managers. It also enables a single 1-phase capable resource
manager to be used within a transaction in the absence of any other resource
managers, although a WebSphere transaction is not necessary in this case. With
the Last Participant Support of Enterprise Extensions, you can coordinate the use
of a single 1-phase commit (1PC) capable resource with any number of 2-phase
commit (2PC) capable resources in the same global transaction. At transaction
commit, the 2-phase commit resources are prepared first using the 2-phase
commit protocol, and if this is successful the 1-phase commit-resource is then
called to commit(one_phase). The 2-phase commit resources are then committed
or rolled back depending on the response of the 1-phase commit resource.

The ActivitySession service of Enterprise Extensions provides an alternative
unit-of-work (UOW) scope to that provided by global transaction contexts. It is a
distributed context that can be used to coordinate multiple 1-phase resource
managers. The product EJB container and deployment tooling support
ActivitySessions as an extension to the J2EE programming model. Enterprise
beans can be deployed with lifecycles that are influenced by ActivitySession
context, as an alternative to transaction context. An application can then interact
with a resource manager through its LocalTransaction interface for the period of
a client-scoped ActivitySession rather than just the duration of an EJB method.

* Naming
Naming clients use (Naming Services) primarily to access objects, such as EJB

homes, associated with applications installed on IBM WebSphere Application
Server. Objects are made available to clients by being bound into a name space.

4 IBM WebSphere Application Server Network Deployment, Version 5: Applications

A name space is under the control of a name server. In this product, there are
potentially many name servers, and the name spaces controlled by the various
name servers are federated together to form the view of a single name space.
Each name server presents the same logical view of the federated name spaces.

Name servers provided by this product are a CORBA CosNaming
implementation. IBM WebSphere Application Server provides a CosNaming
JNDI plug-in which enables clients to access the name servers through the JNDI
interface. Clients to EJB applications typically use JNDI to perform Naming
operations. Clients may access the name servers directly through the CORBA
programming model. The CosNaming interface is part of the CORBA
programming model. CORBA clients which need to access EJB homes or some
other objects bound to the name space would typically use the CORBA
CosNaming interface to perform Naming operations.

Dynamic cache

Dynamic Cache improves application performance by caching outputs and
contents of outputs of Servlets, Java Server Pages files, Web Services and
Commands. On subsequent client requests to the same applications, Dynamic
cache intercepts these calls and responds by serving the output or the contents
of output from the cache.

Dynamic Cache in this product version includes:

Servlet/JSP caching
This caches output of dynamic servlets and JSP files by working with
Java virtual machine of the application server by intercepting calls to
service methods and serving Web pages from the cache. This improves
server response time, throughput and scalability.

Command caching
Commands that are written to the Command Architecture encapsulate
business logic tasks and provide a standard way to invoke the business
logic request. Command objects need to implement CacheableCommand
interface instead of TargetableCommand interface to cache. Like in
servlets and JSP caching, requests to execute business logic in the
command is intercepted by the cache. If a command with the same
request attributes are available in cache, output properties are copied
from the cached instance to the requested instance and returned without
executing the business logic again.

Web Services caching
Web service responses can be cached just like servlet and JSP results.
These requests are intercepted and cache ID computed based on how the
cache ID rules are specified in the cache policy. Hash of the whole
SOAPEnvelope can be used as a cache ID or it can be parsed and
service, operation and parameters to these operations used as cache ID.
If a cache entry is not found for the computed cache id, the request is
forwarded to the SOAP engine and the result is cached.

Edge Side Include caching
This provides the ability to cache, assemble and deliver dynamic web
pages at the edge of the enterprise network. Edge Side Includes (ESI) is
a simple markup language which enables dynamic web pages (which by
themselves are not so cache efficient) to be broken down into cacheable
fragments. These fragments are then cached on the edge of the network
and assembled into a single page upon user requests.

Distributed caching
Cache contents can be shared and replicated among servers by Dynamic

Chapter 1. Welcome to Applications 5

Caching using an underlying JMS based message broker system, DRS
(Data Replication Service). Sharing characteristics of individual cache
entry is configured using the cache policy specification.

* User profiles

Managing (user profiles) allows a company to maintain database tables
containing fields for demographic data of individual customers or other users on
the company system. For example, when a user repeatedly logs onto a Web site
that supports user profiles, the Web site can display headlines and advertising
tailored to the shopping preferences of that user. The site can address the user
by his or her logon name. User profile API is deprecated in the current release.

Assembly tools

The Application Assembly Tool and a command line deployment tool are provided
for packaging your application code components into the needed modules for
deployment onto the server.

See ("Assembling applications”).

EAR files are comprised of the following archives:

* Enterprise bean (JAR) files (known as ("EJB modules”))

* Web application (WAR) files (known as ("Web modules”))

* Application client (JAR) files (known as application client modules)
* Resource adapter (RAR) files (known as resource adapter modules)

* Optionally, additional JAR files containing dependent classes or other
components required by the application

The standard file extension of an Enterprise application file is .ear.

For a discussion of archives and Web components supported by the Application
Assembly Tool in Version 5, see ("Archive support in Version 5.0").

See also, "Assembling or packaging” (not in this document).
Deployment
Tools, such as the WebSphere Administrative Console, are provided for installing

your modules onto the application server, then managing the installed modules in
their respective containers.

6 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Chapter 2. Using Web applications

A developer creates the files comprising a Web application, and then assembles the
Web application components into a Web module. Next, the deployer (typically the
developer in a unit-testing environment or the administrator in a production
environment) installs the Web application on the server.

Therefore the development process generally consists of the following steps:

Steps for this task

1. (Optional) Migrate existing Web applications| to run in the new version of
WebSphere.

2. Design the Web application and develop its code artifacts: Servlets, [JavaServer
[Pages (JSP) files| and static files, as for example, images and Hyper Text
Markup Language (HTML) files.

See the "Resources for learning” article for links to design documentation.

3. (Optional) Implement JavaScript within JSP tags using the

[Framework (BSF)|

4. [Develop the Web application} using WebSphere Application Server extensions
to enhance its functionality.

5. [Assemble the Web application into a Web module]
Web module assembly properties might include the ability to:

 Configure servlet page lists
* Configure servlet filters

* Serve servlets by class name
* Enable file serving

6. (Deploy the Web module or application module) that contains the Web
application.

Following deployment, you might find it handy to use the |tool that enables|
[patch compiling| of the JSP files for quicker initial response times.

7. (Optional) Troubleshoot your Web application.

8. (Optional) [Modify the default Web container configuration|in the application
server in which you deployed the Web module or application module
containing the Web application.

9. (Optional) (Manage the deployed Web application.).

Web applications

A Web application is comprised of one or more related servlets, JavaServer Pages
technology (JSP files), and Hyper Text Markup Language (HTML) files that you
can manage as a unit.

The files in a Web application are related in that they work together to perform a
business logic function.

For example, one of the WebSphere Application Server samples is a Simple

Greeting Web application. This application, comprised of a servlet and Web pages,
greets new users when the application is accessed.

© Copyright IBM Corp. 2002 7

The Web application is a concept supported by the Java Servlet Specification. Web
applications are typically packaged as .war files.

web.xml file

The web.xml file provides configuration and deployment information for the Web
components that comprise a Web application. Examples of Web components are
servlet parameters, servlet and JavaServer Pages (JSP) definitions, and Uniform
Resource Locators (URL) mappings.

The servlet 2.3 specification dictates the format of the web.xml file, which makes
this file portable among Java Two Enterprise Edition (J2EE) compliant products.

Location

The web.xml file must reside in the WEB-INF directory under the context of the
hierarchy of directories that exist for a Web application. For example, if the
application is client.war, then the web.xml file is placed in the install_root/client
war /WEB-INF directory.

Usage notes
¢ Is this file read-only?
No
* Is this file updated by a product component?
This file is updated by the Application Assembly Tool (AAT).
* If so, what triggers its update?

The AAT updates the web.xml file when you assemble Web components into a
Web module, or when you modify the properties of the Web components or the
Web module.

* How and when are the contents of this file used?

WebSphere Application Server functions use infomation in this file during the
configuration and deployment phases of Web application development.

Sample file entry

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.2//EN" "http://java.sun.com/j2ee/dtds/web-app_2 2.dtd">

<web-app id="WebApp_1">
<display-name>Persistence Manager Web Client</display-name>
<description>Peristence Manager Web Client</description>
<servlet id="Servlet_1">
<servlet-name>CustomerLocalServlet</servlet-name>
<description>Local Customer Servlet</description>
<servlet-class>CustomerLocalServiet</servlet-class>
</servlet>
<servlet id="Servlet_2">
<servlet-name>CustomerServiet</servlet-name>
<description>Remote Customer Servlet</description>
<servlet-class>CustomerServlet</servlet-class>
</servlet>
<servlet id="Servlet_3">
<servlet-name>CreditCardServlet</servlet-name>
<description>Credit Card Serviet - PM Verification</description>
<servlet-class>CreditCardServlet</servlet-class>
</servlet>
<servlet-mapping id="ServletMapping_1">
<servlet-name>CustomerLocalServlet</servlet-name>

8 IBM WebSphere Application Server Network Deployment, Version 5: Applications

<url-pattern>/CustomerLocal</url-pattern>
</servlet-mapping>
<servlet-mapping id="ServletMapping 2">
<servlet-name>CustomerServlet</servlet-name>
<url-pattern>/Customer</url-pattern>
</servlet-mapping>
<servlet-mapping id="ServletMapping_3">
<servlet-name>CreditCardServiet</serviet-name>
<url-pattern>/CreditCard</url-pattern>
</servlet-mapping>
<welcome-file-list id="WelcomeFilelList_1">
<welcome-file>index.html</welcome-file>
</welcome-file-list>
<security-role id="SecurityRole_1">
<description>Everyone role</description>
<role-name>Everyone Role</role-name>
</security-role>
<security-role id="SecurityRole_2">
<description>AT1Authenticated role</description>
<role-name>A11 Role</role-name>
</security-role>
<security-role id="SecurityRole 3">
<description>Deny all access role</description>
<role-name>DenyAl11Role</role-name>
</security-role>
</web-app>

Migrating Web application components

Supported open specification levels in WebSphere Application Server Version 5 are
documented in article, Migrating APIs and specifications.

Migration of Web applications deployed in WebSphere Application Server Version
4.x is not necessary; version 2.2 of the servlet specification and version 1.1 of the
JavaServerPages (JSP) specification are still supported. However, where there are
behavioral differences between the Java Two Enterprise Edition (J2EE) 1.2 and J2EE
1.3 specifications, bear in mind that J2EE 1.3 specifications are implemented in
WebSphere Application Server Version 5 and will override any J2EE 1.2 behaviors.

Servlet migration might be a concern if your application:

¢ implements a WebSphere internal servlet to bypass a WebSphere Application
Server Version 4.x single application path restriction.

* extends a PageListServlet that relies on configuration information in the servlet
configuration XML file.

* uses a servlet to generate Hyper Text Markup Language (HTML) output.

* calls the response.sendRedirect () method for a servlet using the
encodeRedirectURL function or executing within a non-context root.

JSP migration might be a concern if your application references JSP page
implementation classes in unnamed packages, or if you install WebSphere
Application Server Version 4.x EAR files (deployed in Version 4.x with the JSP
Precompile option), in Version 5.

Follow these steps if migration issues apply to your Web application:

Steps for this task

1. Use WebSphere Application Server Version 5 package names for any
WebSphere Application Server Version 4.x internal servlets, which are
implemented in your application.

Chapter 2. Using Web applications 9

In WebSphere Application Server Version 4.x, Web modules with a context root
setting of / are not supported. Accessing Web modules with this root context
results in HTTP 404 - File not Found errrors.

To bypass the errors, and to enable the serving of static files from the root
context, WebSphere Application Server Version 4.x users are advised to add the
servlet class, com.ibm.servlet.engine.webapp.SimpleFileServiet, to their Web
module.

The Version 4.x single path limitation does not exist in Version 5. However,
users who choose to use the
com.ibm.servlet.engine.webapp.SimpleFileServlet in Version 5 must do one
of the following:

* Rename com.ibm.servlet.engine.webapp.SimpleFileServlet to
com.ibm.ws.webcontainer.servlet.SimpleFileServiet.

* Open the EAR file in the Application Assembly Tool (AAT) and enable the
SimpleFileServiet static file setting.

The following list identifies the other internal servlets affected by the Version 5
package name change:

* DefaultErrorReporter
e Autolnvoker

Use the Version 5 package name, com.ibm.ws.webcontainer.servlet.><servlet
class name> for these servlets.

2. Use the WASPostUpgrade tool to migrate servlets that extend PageListServlet
and rely on configuration information in the associated XML servlet
configuration file.

In Version 4.x, the XML servlet configuration file provides configuration data
for page lists and augments servlet configuration information. This file is
named as either <servlet class name>.servlet or <servlet class
name>.servlet, and is stored in the same directory as the servlet class file.

The XML servlet configuration file is not supported in WebSphere Application
Server Version 5.

3. Set a content type if your servlet generates Hyper Text Markup Language
(HTML) output.

The default behavior of the Web container changed in WebSphere Application
Server Version 5. If the servlet developer does not specify a content type in the
servlet then the container is forbidden to set one automatically. Without an
explicit content type setting, the content type is set to null. The Netscape
browser displays HTML source as plain text with a null content type setting.

To resolve this problem, do one of the following:

* Explicitly set a content type in your servlet.

* Open the WAR file in the Application Assembly Tool (AAT) and enable the
autoResponseEncoding static file setting.

4. Set the Java environment variable,
com. ibm.websphere.sendredirect.compatibility, to true if you want your
URLs interpreted relative to the application root.

The default value of the Java environment variable

com. ibm.websphere.sendredirect.compatibility changed in WebSphere
Application Server Version 5. In Version 4, the default setting of this variable is
true. In Version 5, the setting is false.

When this variable is set to false, if a URL has a leading slash, the URL is
interpreted relative to the Web module/application root. However, if the URL

10 1BM WebSphere Application Server Network Deployment, Version 5: Applications

does not have a leading slash, it is interpreted relative to the Web container
root (also known as the Web server document root). Therefore, if an application
has a WAR file that has a context root of myPledge_app and a servlet that has a
servlet mapping of /Intranet/, a JSP file in the WAR file cannot access the
servlet when its encodeRedirectURL is set to /Intranet/myPledge. The JSP file
can access the servlet if the encodeRedirectURL is set to

myPledge app/Intranet/myPlege, or if the
com.ibm.websphere.sendredirect.compatibility variable is set to true.

See the Setting the sendredirect variable article for more information.

Use the WASPostUpgrade tool to migrate WebSphere Version 4.x enterprise
applications to Version 5.

Note: The WebSphere Application Server Version 4.x JSP page implementation
class files are not compatible with the WebSphere Application Server Version 5
JSP container.

The WASPostUpgrade tool automatically precompiles JSP files, which ensures the
JSP page implementation class files are compatible with Version 5.

If you install Version 4.x EAR files, deployed with the JSP Precompile option,
in Version 5, and you choose not to follow the migration path, do one of the
following:

* Select the Pre-compile JSP option in the administrative console Install New
AppTlication window.

See article (Installing a new application) for more information.
* Specify the -preCompileJSPs option when using the Wsadmin tool.
Import your classes if your application uses unnamed packages.
Section 8.2 of the JSP 1.2 specification states:

The JSP container creates a JSP page implementation class

for each JSP page. The name of the JSP page implementation

class is implementation dependent.

The JSP page implementation object belongs to an implementation-dependent
named package. The package used may vary between one JSP and another, so
minimal assumptions should be made. The unnamed package should not be used
without an explicit import of the class.

For example, if myBeanClass is in the unnamed package, and you reference it in
a jsp:useBean tag, then you must explicitly import myBeanClass with the page
directive import attribute, as shown in the following example:

<%@page import="myBeanClass" %>

<jsp:useBean id="myBean" class="myBeanClass" scope="session"/>

In WebSphere Application Server Version 5, the JSP engine creates JSP page
implementation classes in the org.apache.jsp package. If a class in the
unnamed package is not explicitly imported, then the javac compiler assumes
the class is in package org.apache.jsp, and the compilation fails.

Note: Avoid using the unnamed package altogether because of a change made
in JDK 1.4 that will affect the JSP 2.0 specification. WebSphere Application
Server Version 5 ships with JDK 1.3.1, so this is not an issue with the Version 5
JSP engine, but it will become an issue in future releases.

The Incompatibilities section of the version 1.4.Java 2 Platform, Standard Edition
(J2SE) documentation states:

The compiler now rejects import statements that import a type
from the unnamed namespace.
Previous versions of the compiler would accept such import declarations,

Chapter 2. Using Web applications 11

even though they were arguably not allowed by the language
(because the type name appearing in the import clause is not in scope).
The specification is being clarified to state clearly that you
cannot have a simple name in an import statement, nor can you
import from the unnamed namespace.
To summarize, the syntax:

import SimpleName;
is no Tonger legal. Nor is the syntax:
import ClassInUnnamedNamespace.Nested;
which would import a nested class from the unnamed namespace.

To fix such problems in your code, move all of the
classes from the unnamed namespace into a named namespace.

What to do next

See "Resources for learning” for links to the J2SE, JSP, and Servlet specification
documentation.

Default Application

The IBM WebSphere Application Server provides a default configuration that
allows administrators to easily verify that the Application Server is running. When
the product is installed, it includes an application server called server]l and an
enterprise application called Default Application.

Default Application contains a Web Module called DefaultWebApplication and an
enterprise bean JAR file called Increment. The Default Application provides a number
of servlets, described below. These servlets are available in the product.

For additional code examples, visit the Samples Gallery. Learn how to locate and
install the Samples Gallery by viewing the Samples Gallery reference page.

The URL for accessing Samples is: http://localhost:9080/WSamples/

Snoop

Use the Snoop servlet to retrieve information about a servlet request. This servlet
returns the following information:

* Servlet initialization parameters

* Servlet context initialization parameters

* URL invocation request parameters

* Perferred client locale

* Context path

* User principal

* Request headers and their values

* Request parameter names and their values
* HTTPS protocol information

* Servlet request attributes and their values
e HTTP session information

e Session attributes and their values

12 1BM WebSphere Application Server Network Deployment, Version 5: Applications

The Snoop servlet includes security configuration so that when WebSphere Security
is enabled, clients must supply a user ID and password to execute the servlet.

The URL for the Snoop servlet is: http://Tocalhost:9080/snoop/.

HelloHTML

Use the HelloHTML pervasive servlet to exercise the PageList support provided by
the WebSphere Web container. This servlet extends the PageListServlet, which
provides APIs that allow servlets to call other Web resources by name or, when
using the Client Type detection support, by type.

You can invoke the Hello servlet from an HTML browser, speech client, or most
Wireless Application Protocol (WAP) enabled browsers using the URL:
http://localhost:9080/HelToHTML. jsp/.

HitCount

Use the HitCount Demonstration application to demonstrate incrementing a
counter using a variety of methods, including:

e A servlet instance variable
e An HTTP session

* An enterprise bean

You can instruct the servlet to execute any of these methods within a transaction
that you can ommit or roll back. If the transaction is committed, the counter is
incremented. If the transaction is rolled back, the counter is not incremented.

The enterprise bean method uses a Container- Managed Persistence enterprise
bean that persists the counter value to a Cloudscape database. This enterprise bean
is configured to use the Default Datasource, which is set to the DefaultDB
database.

When using the enterprise bean method, you can instruct the servlet to look up the
enterprise bean, either in the WebSphere global namespace, or in the namespace

local to the application.

The URL for the HitCount application is: http://Tocalhost:9080/HitCount.jsp/.

Servlets

Servlets are Java programs that use the Java Servlet Application Programming
Interface (API). You must package servlets in a Web ARchive (WAR) file or Web
module for deployment to the application server.

Servlets run on a Java-enabled Web server and extend the capabilities of a Web
server, similar to the way applets run on a browser and extend the capabilities of a
browser.

Servlets can support dynamic Web page content, provide database access, serve
multiple clients at one time, and filter data.

For the purposes of IBM WebSphere Application Server, discussions of servlets

focus on Hyper Text Transfer Protocol (HTTP) servlets, which serve Web-based
clients.

Chapter 2. Using Web applications 13

Developing servlets with WebSphere Application Server extensions

14

Several WebSphere Application Server extensions are provided for enhancing your
servlets. This task provides a summary of the extensions that you can utilize.

Steps for this task

1. Review the supported specifications.

Create Java components, referring to the Servlet specifications from Sun
Microsystems.

See [Resources for learning] for links to coding specifications and examples.

The application server includes its own packages that extend and add to the
Java Servlet Application Programming Interface (API). These extensions and
additions make it easier to manage session states, create personalized Web
pages, generate better servlet error reports, and access databases. Locate the
Javadoc for the application server APIs in the product
install_root\web\apidocs directory.

All the public WebSphere Application Server APIs are located in the
com.ibm.websphere. .. packages.

2. Use your favorite integrated development environment (IDE), or a text editor,
to develop or migrate code artifacts that meet the specifications.

3. Test the code artifacts.

What to do next

|Assemble your code artifacts|into a Web module as a prerequisite to deploying the
code to the application server.

Application lifecycle listeners and events

Application lifecycle listeners and events, now part of the Servlet API, enable you
to notify interested listeners when servlet contexts and sessions change. For
example, you can notify users when attributes change and if sessions or servlet
contexts are created or destroyed.

The lifecycle listeners give the application developer greater control over
interactions with ServletContext and HttpSession objects. Servlet context listeners
manage resources at an application level. Session listeners manage resources
associated with a series of requests from a single client. Listeners are available for
lifecycle events and for attribute modification events. The listener developer creates
a class that implements the javax listener interface, corresponding to the desired
listener functionality.

At application startup time, the container uses introspection to create an instance
of your listener class and registers it with the appropriate event generator.

When a servlet context is created, the contextInitialized method of your listener
class is invoked, which creates the database connection for the servlets in your
application to use, if this context is for your application.

When the servlet context is destroyed, your contextDestroyed method is invoked,
which releases the database connection, if this context is for your application.

IBM WebSphere Application Server Network Deployment, Version 5: Applications

Listener classes for servlet context and session changes

The following methods are defined as part of the
javax.servlet.ServietContextListener interface:

e void contextInitialized(ServietContextEvent) - Notification that the Web
application is ready to process requests.

Place code in this method to see if the created context is for your Web
application and if it is, allocate a database connection and store the connection in
the servlet context.

* void contextDestroyed(ServietContextEvent) -Notification that the servlet
context is about to shut down.

Place code in this method to see if the created context is for your Web
application and if it is, close the database connection stored in the servlet
context.

Two new listener interfaces are defined as part of the javax.servlet package:
* ServletContextListener

e ServletContextAttributeListener

One new filter interface is defined as part of the javax.servlet package:
* FilterChain interface - methods: doFilter()

Two new event classes are defined as part of the javax.servlet package:
* ServletContextEvent
* ServletContextAttributeEvent

Three new listener interfaces are defined as part of the javax.servlet.http package:
* HttpSessionListener

* HttpSessionAttributeListener

* HttpSessionActivationListener

One new event class is defined as part of the javax.servlet.http package:
* HttpSessionEvent

Example: com.ibm.websphere.DBConnectionListener.java

The following example shows how to create a servlet context listener:
package com.ibm.websphere;

import java.io.*;
import javax.servlet.x;

public class DBConnectionListener implements ServletContextListener
{

// implement the required context init method

void contextInitialized(ServletContextEvent sce)

{

1

// implement the required context init method
void contextDestroyed(ServletContextEvent sce)
{
1

Chapter 2. Using Web applications 15

Servlet filtering

Servlet filtering is an integral part of the Servlet 2.3 API. Servlet filtering provides
a new type of object called a filter that can transform a request or modify a
response.

You can chain filters together so that a group of filters can act on the input and
output of a specified resource or group of resources.

Filters typically include logging filters, image conversion filters, encryption filters,
and Multipurpose Internet Mail Extensions (MIME) type filters (functionally
equivalent to the servlet chaining). Although filters are not servlets, their lifecycle
is very similar.

Filters are handled in the following manner:

e The Web container determines whether it needs to construct a FilterChain
containing the LoggingFilter for the requested resource.

The FilterChain begins with the invocation of the LoggingFilter and ends with
the invocation of the requested resource.

* If other filters need to go in the chain, the Web container places them after the
LoggingFilter and before the requested resource.

* The Web container then instantiates and initializes the LoggingFilter (if it was
not done previously) and invokes its doFilter(FilterConfig) method to start
the chain.

e The LoggingFilter preprocesses the request and response objects and then
invokes the filter chain doFilter(ServletRequest, ServietResponse) method.

This method passes the processing to the next resource in the chain (in this case,
the requested resource).

* Upon return from the filter chain doFilter(ServietRequest, ServletResponse)
method, the LoggingFilter performs post-processing on the request and
response object before sending the response back to the client.

Filter, FilterChain, FilterConfig classes for servlet filtering
The following interfaces are defined as part of the javax.servlet package:
* Filter interface - methods: doFilter(), getFilterConfig(), setFilterConfig()
* FilterChain interface - methods: doFilter()

¢ FilterConfig interface - methods: getFilterName(), getInitParameter(),
getInitParameterNames(), getServletContext()

The following classes are defined as part of the javax.servlet.http package:
* HttpServletRequestWrapper - methods: See the Servlet 2.3 Specification
* HttpServletResponseWrapper - methods: See the Servlet 2.3 Specification

Example: com.ibm.websphere.LoggingFilter.java

The following example shows how to implement a filter:
package com.ibm.websphere;

import java.io.*;
import javax.servlet.x*;

public class LoggingFilter implements Filter

{
File _loggingFile = null;

16 1BM WebSphere Application Server Network Deployment, Version 5: Applications

// implement the required init method
public void init(FilterConfig fc)
{

// create the logging file

XXX

}

// implement the required doFilter method...this is where
// most of the work is done
public void doFilter(ServietRequest request, ServletResponse response,
FilterChain chain)
{
try
{
// add request info to the log file
synchronized(_loggingFile)
{

}

// pass the request on to the next resource in the chain
chain.doFilter(request, response);

XXX 3

1
catch (Throwable t)
{

}

// handle problem...
}

// implement the required destroy method
public void destroy()
{

// make sure Togging file is closed
_ToggingFile.close();

}

Configuring page list servlet client configurations

You can define PageListServlet configuration information in the IBM Web
Extensions file. The IBM Web Extensions file is created and stored in the Web
Applications archive (WAR) file by the IBM WebSphere Application Assembly Tool
(AAT)

To configure and implement page lists:

Steps for this task

1. Use the PageList Extensions tab in the Application Assembly Tool (AAT) to
configure page list information.

2. Add the callPage() method to your servlet to invoke a JavaServer Page (JSP)
file in response to a client request.

The PageListServlet has a callPage() method that invokes a JSP file in
response to the HTTP request for a page in a page list. The callPage() method
can be invoked in one of the following ways:

* callPage(String pageName, HttpServletRequest request,
HttpServietResponse response)

where the method arguments are:

— pageName - a page name defined in the PageListServlet configuration
— request - the HttpServletRequest object

— response - the HttpServletResponse object

Chapter 2. Using Web applications 17

* callPage(String miName, String pageName, HttpServletRequest request,
HttpServietResponse response)

where the method arguments are:
— mlName - a markup language type
— pageName - a page name defined in the PageListServlet configuration

request - the HttpServletRequest object
— response - the HttpServletResponse object

3. Use the PageList Servlet client type detection support to determine the markup
language type a calling client requires for the response.

Page lists

Page lists allow you to avoid hardcoding URLs in servlets and JSP files. A page list
specifies the location where a request is to be forwarded, but automatically tailors
that location depending on the MIME type of the servlet. These properties allow
you to specify a markup language and an associated MIME type. For the given
MIME type, you also specify a set of pages to invoke.

WebSphere Application Server supplies the PageListServlet, which you can use to
call a JavaServer Pages (JSP) file by name based on the configuration data in the
client_types.xml file. This file maps a JSP file to a Uniform Resource Identifier
(URI). When the URI is invoked, it specifies another JSP file in a Web module. This
support allows you to access multiple Uniform Resource Locators (URLs) without
hard-coding them in your servlets.

You can also logically group page lists according to the markup language type, as
for example, Hypertext Markup Language (HTML) or Wireless Markup Language
(WML). This allows applications, using servlets that extend the PageListServlet, to
call JSP files that return the proper markup-language type for the client request.
For example, if a request originates from a PDA device that requires WML data
and is sent to a servlet that extends the PageListServlet, the servlet can call a JSP
file that returns a WML response.

Client type detection support

In addition to providing the page list mapping capability, the PageListServlet also
provides Client Type Detection support. A servlet determines the markup language
type that a calling client needs in the response, using the configuration information
in the client_types.xml file.

Client type detection support allows a servlet, extending the PageListServlet, to call
an appropriate JavaServer Pages (JSP) file. The servlet invokes the callPage()
method, which calls a JSP file based on the markup-language type of the request.

client_types.xml

The client_types.xml file provides client type detection support for servlets
extending PageListServlet. Using the configuration data in the cTient_types.xmI
file, servlets can determine the language type that calling clients require for the
response.

The client type detection support allows servlets to call appropriate JavaServer
Pages (JSP) files with the callPage() method. Servlets select JSP files based on the
markup-language type of the request.

Servlets must use the following version of the callPage() method to determine the
markup language type required by the client:

callPage(String mIName, String pageName, HttpServletRequest request, HttpServletResponse response)

18 IBM WebSphere Application Server Network Deployment, Version 5: Applications

where the arguments are:

* mlName - a markup language type

* pageName - a page name defined in the PageListServlet configuration
* request - the HttpServletRequest object

* response - the HttpServletResponse object

Review the |Extending PageListServleﬂ code example to see how the callPage()
method is invoked by a servlet.

In the example, the client type detection method,

getMLTypeFromRequest (HttpServletRequestrequest), provided by the
PageListServlet, inspects the HttpServletRequest object request headers, and
searches for a match in the client_types.xml file.

The client type detection method does the following:

* Uses the input HttpServletRequest and the client_types.xml file, to check for a
matching HTTP request name and value.

* Returns the markup-language value configured for the <client-type> element, if
a match is found.

If multiple matches are found, this method returns the markup-language for the
first <client-type> element for which a match is found.

* If no match is found, returns the value of the markup-language for the default
page defined in the PageListServlet configuration.

Location
The client_types.xml file is located in the <install_root>/properties directory.

Usage notes
* Is this file read-only?
No
* Is this file updated by a product component?
No
* If so, what triggers its update?
This file is created and updated manually by users.
¢ How and when are the contents of this file used?

Servlets, extending PageListServlet, use this file to determine the language type
that calling clients require for the response.

Sample file entry

<?xml version="1.0" >

<IDOCTYPE clients [

<!IELEMENT client-type (description, markup-language,request-header+)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT markup-Tlanguage (#PCDATA)>

<!ELEMENT request-header (name, value)>

<!ELEMENT clients (client-type+)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT value (#PCDATA)>]>

<clients>
<client-type>
<description>IBM Speech Client</description>
<markup-Tlanguage>VXML</markup-language>
<request-header>

Chapter 2. Using Web applications 19

<name>user-agent</name>
<value>IBM VoiceXML pre-release version 000303</value>
</request-header>
<request-header>
<name>accept</name>
<value>text/vxml</value>
</request-header>
</client-type>
<client-type>
<description>WML Browser</description>
<markup-Tlanguage>WML</markup-Tanguage>
<request-header>
<name>accept</name>
<value>text/x-wap.wml</value>
</request-header>
<request-header>
<name>accept</name>
<value>text/vnd.wap.xml</value>
</request-header>
</client-type>
</clients>

Example: Extending PageListServiet

The following example shows how a servlet extends the PageListServlet class and
determines the markup-language type required by the client. The servlet then uses
the callPage() method to call an appropriate JavaServer Pages (JSP) file. In this
example, the JSP file that provides the the correct markup-language for the
response is Hello.page.

public class HelloPervasiveServlet extends PagelListServlet implements Serializable
{
/*
* doGet -- Process incoming HTTP GET requests
*/
public void doGet(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException
{
// This is the name of the page to be called:
String pageName = "Hello.page";

// First check if the servlet was invoked with a

// queryString that contains

// a markup-Tanguage value.

// For example, if this is how the servlet is invoked:
// http://localhost/servliets/HeloPervasive?mlname=VXML
// then use the following method:

String miname= getMLNameFromRequest(request);

// 1f no markup language type is provided in the
//queryString, then try to determine
// the client type from the request, and use the markup-Tanguage
// name configured in the client_types.xml file.
if (mIName == null)
{
mIName = getMLTypeFromRequest(request);

try
{

// Serve the request page.

callPage(mIName, pageName, request, response);
catch (Exception e)

handleError(miName, request, response, e);

}
}

20 1BM WebSphere Application Server Network Deployment, Version 5: Applications

autoRequestEncoding and autoResponseEncoding

Two new WebSphere Application Server extensions are available in Version 5,
autoRequestEncoding and autoResponseEncoding.

In WebSphere Application Server Version 5, the Web container no longer
automatically sets request and response encodings, and response content types.
Programmers are expected to set these values using available methods in the
Servlet 2.3 Specification. If programmers choose not to use the character encoding
methods, they can specify the autoRequestEncoding and autoResponseEncoding
extensions, which enable the application server to set the encoding values and
content type.

The values of the autoRequestEncoding and autoResponseEncoding extensions are
either true or false. The default value for both extensions is false. If the value is
false for both autoRequestEncoding and autoResponseEncoding, then the request
and response character encoding is set to the Servlet 2.3 Specification default,
which is ISO—8859-1. Also, If the value is set to false for a response, the Web
container cannot set a response content type.

Use the Application Assembly Tool (AAT) to change the default values for the
autoRequestEncoding and autoResponseEncoding extensions.

Review the autoRequestEncoding and autoResponseEncoding encoding examples for
a description of Web container behavior when these values are set to true.

autoRequestEncoding and autoResponseEncoding encoding
examples

The default value of the autoRequestEncoding and autoResponseEncoding
extensions is false, which means that both the request and response character
encoding is set to the Servlet 2.3 Specification default of ISO-8859-1. Different
character encodings are possible if the client defines character encoding in the
request header, or if the code includes the setCharacterEncoding(String encoding)
method. Also, If the value is set to false for a response, the Web container cannot
set a response content type.

If the autoRequestEncoding value is set to true, and the client did not specify
character encoding in the request header, and the code does not include the
setCharacterEncoding(String encoding) method, the Web container tries to
determine the correct character encoding for the request parameters and data.

The Web container performs each step in the following list until a match is found:
* Looks at the character set (charset) in the Content-Type header.

* Attempts to map the servers locale to a character set using defined properties.

¢ Attempts to use the DEFAULT_CLIENT_ENCODING system property, if one is set.

* Uses the ISO-8859-1 character encoding as the default.

If the autoResponsetEncoding value is set to true, and the client did not specify

character encoding in the request header, and the code does not include the

setCharacterEncoding(String encoding) method, the Web container does the

following:

* Attempts to determine the response content type and character encoding from
information in the request header.

* Uses the ISO-8859-1 character encoding as the default.

Chapter 2. Using Web applications 21

JavaServer Pages files

JavaServer Pages (JSP) files are application building blocks coded to the Sun
Microsystems JavaServer Pages (JSP) Specification.

JSP files enable the separation of the Hypertext Markup Language (HTML) code
from the business logic in Web pages so that HTML programmers and Java
programmers can more easily collaborate in creating and maintaining pages.

The IBM extensions to the JSP Specification include JSP tags that resemble HTML
tags making it easy for HTML authors to add the power of Java technology to Web
pages, without being experts in Java programming.

JSP files support a division of roles:

HTML authors
Develop JSP files that access databases and reusable Java components, such
as servlets and beans.

Java programmers
Create the reusable Java components and provide the HTML authors with
the component names and attributes.

Database administrators
Provide the HTML authors with the name of the database access and table
information.

Developing JavaServer Pages files with WebSphere extensions

Several IBM WebSphere extensions are provided for enhancing your JavaServer
Pages (JSP) files. This task provides a summary of the extensions that you can
utilize.

Steps for this task
1. Review the supported specifications.

Create Java components, referring to the JSP specifications from Sun
Microsystems.

See [Resources for learning|for links to coding specifications and examples.

WebSphere Application Server Version 3.5 added IBM extensions to the base
Application Programming Interfaces (APIs). Since the JavaServer Pages (JSP) 1.1
and JSP 1.2 Specifications are backward compatible to the JSP 1.0 Specifications,
you can invoke the APIs with the IBM extensions without modification.

The extensions belong to these categories:

Syntax for variable data
Put variable fields in JSP files and have servlets and beans dynamically
replace the variables with values from a database when the JSP output
is returned to the browser.

Syntax for database access
Add a database connection to a Web page and then use that connection
to query or update the database. You can provide the user ID and
password for the database connection at request time, or you can hard
code the user ID and password within the JSP file.

2. Use your favorite integrated development environment (IDE), or a text editor,
to develop or migrate code artifacts that meet the specifications.

3. Test the code artifacts.

22 IBM WebSphere Application Server Network Deployment, Version 5: Applications

4. (Optional) [Batch compile your JSP files|if necessary.

Tag libraries

Java ServerPages (JSP) tag libraries contain classes for common tasks such as
processing forms and accessing databases from JSP files.

Tag libraries encapsulate, as simple tags, core functionality common to many Web
applications. The Java Standard Tag Library (JSTL) supports common
programming tasks such as iteration and conditional processing, and provides tags
for:

* manipulating XML documents
 supporting internationalization

* using Structured Query Language (SQL)

Tag libraries also introduce the concept of an expression language to simplify page
development, and include a version of the JSP expression language.

A tag library has two parts - a Tag Library Descriptor (TLD) file and a JAR file.

tsx:dbconnect tag JavaServer Pages syntax

Use the <tsx:dbconnect> tag to specify information needed to make a connection to
a Java Database Connectivity (JDBC) or an Open Database Connectivity (ODBC)
database.

The <tsx:dbconnect> syntax does not establish the connection. Use the
<tsx:dbquery> and <tsx:dbmodify> syntax instead to reference a <tsx:dbconnect>
tag in the same JavaServer Pages (JSP) file to establish the connection.

When the JSP file compiles into a servlet, the Java processor adds the Java coding
for the <tsx:dbconnect> syntax to the servlet service() method, which means a new
database connection is created for each request for the JSP file.

This section describes the syntax of the <tsx:dbconnect> tag.

<tsx:dbconnect id="connection_id"
userid="db_user" passwd="user_password"
url="jdbc:subprotocol :database"
driver="database_driver_name"
Jjndiname="JNDI_context/logical_name">
</tsx:dbconnect>

where:

e id
Represents a required identifier. The scope is the JSP file. This identifier is
referenced by the connection attribute of a <tsx:dbquery> tag.

* userid

Represents an optional attribute that specifies a valid user ID for the database
that you want to access. Specify this attribute to add the attribute and its value
to the request object.

Although the userid attribute is optional, you must provide the user ID. See
[<tsx:userid> and <tsx:passwd>| for an alternative to hard coding this information
in the JSP file.

e passwd

Chapter 2. Using Web applications 23

Represents an optional attribute that specifies the user password for the userid
attribute. (This attribute is not optional if the userid attribute is specified.) If you
specify this attribute, the attribute and its value are added to the request object.

Although the passwd attribute is optional, you must provide the password. See
[<tsx:userid> and <tsx:passwd>| for an alternative to hard coding this attribute in
the JSP file.

e url and driver

Respresents a required attribute if you want to establish a database connection.
You must provide the URL and driver.

The application server supports connection to JDBC databases and ODBC
databases.

— For a JDBC database, the URL consists of the following colon-separated
elements: jdbc, the subprotocol name, and the name of the database to access.
An example for a connection to the Sample database included with IBM DB2
is:
url="jdbc:db2:sample"
driver="COM.ibm.db2.jdbc.app.DB2Driver"

— For an ODBC database, use the Sun JDBC-to-ODBC bridge driver included in
their Java2 Software Developers Kit (SDK) or another vendor’s ODBC driver.

The url attribute specifies the location of the database. The driver attribute
specifies the name of the driver to use in establishing the database
connection.

If the database is an ODBC database, you can use an ODBC driver or the Sun
JDBC-to-ODBC bridge. If you want to use an ODBC driver, refer to the driver
documentation for instructions on specifying the database location with the
url attribute and the driver name.

If you use the bridge, the url syntax is jdbc:odbc:<database>. An example
follows:

url="jdbc:odbc:autos"
driver="sun.jdbc.odbc.JdbcOdbcDriver"

Note: To enable the application server to access the ODBC database, use the
ODBC Data Source Administrator to add the ODBC data source to the System
DSN configuration. To access the ODBC Administrator, click the ODBC icon
on the Windows NT Control Panel.
* jndiname
Represents an optional attribute that identifies a valid context in the application
server Java Naming and Directory Interface (JNDI) naming context and the
logical name of the data source in that context. The Web administrator
configures the context using an administrative client such as the WebSphere
Administrative Console.

If you specify the jndiname attribute, the JSP processor ignores the driver and
url attributes on the <tsx:dbconnect> tag.

An empty element (such as <url></url>) is valid.

dbquery tag JavaServer Pages syntax

Use the <tsx:dbquery> tag to establish a connection to a database, submit database
queries, and return the results set.

The <tsx:dbquery> tag does the following:

24 1BM WebSphere Application Server Network Deployment, Version 5: Applications

1. References a <tsx:dbconnect> tag in the same JavaServer Pages (JSP) file and
uses the information the tag provides to determine the database URL and
driver. You can also obtain the user ID and password from the <tsx:dbconnect>
tag if those values are provided in the <tsx:dbconnect> tag.

2. Establishes a new connection
3. Retrieves and caches data in the results object.
4. Closes the connection and releases the connection resource.

This section describes the syntax of the <tsx:dbquery> tag.

<%-- SELECT commands and (optional) JSP syntax can be placed

within the tsx:dbquery. --%>

<%-- Any other syntax, including HTML comments, are not valid. --%>
<tsx:dbquery id="query_id"

connection="connection_id"

limit="value" >

</tsx:dbquery>

where:
+ id
Represents the identifier of this query. The scope is the JSP file. Use id to

reference the query. For example, from the <tsx:getProperty> tag, use id to
display the query results.

The id becomes the name of a bean that contains the results set. The bean
properties are dynamic and the property names are the names of the columns in
the results set. If you want different column names, use the SQL keyword for
specifying an alias on the SELECT command. In the following example, the
database table contains columns named FNAME and LNAME, but the SELECT
statement uses the AS keyword to map those column names to FirstName and
LastName in the results set:
Select FNAME, LNAME AS FirstName, LastName from Employee where FNAME='Jim'

* connection

Represents the identifier of a <tsx:dbconnect> tag in this JSP file. The
<tsx:dbconnect> tag provides the database URL, driver name, and optionally, the
user ID and password for the connection.

* limit
Represents an optional attribute that constrains the maximum number of records
returned by a query. If this attribute is not specified, no limit is used. In such a
case, the effective limit is determined by the number of records and the system
caching capability.

¢ SELECT command and JSP syntax

Represents the only valid SQL command, SELECT. The <tsx:dbquery> tag must
return a results set. Refer to your database documentation for information about
the SELECT command. See other articles in this section for a description of JSP
syntax for variable data and inline Java code.

dbmodify tag JavaServer Pages syntax

The <tsx:dbmodify> tag establishes a connection to a database and then adds
records to a database table.

The <tsx:dbmodify> tag does the following;:

1. References a <tsx:dbconnect> tag in the same JavaServer Pages (JSP) file and
uses the information provided by that tag to determine the database URL and
driver.

Chapter 2. Using Web applications 25

Note: You can also obtain the user ID and password from the <tsx:dbconnect>
tag if those values are provided in the <tsx:dbconnect> tag.

2. Establishes a new connection.
3. Updates a table in the database.
4. Closes the connection and releases the connection resource.

This section describes the syntax of the <tsx:dbmodify> tag.

<%-- Any valid database update commands can be placed within the DBMODIFY tag. -->
<%-- Any other syntax, including HTML comments, are not valid. -->

<tsx:dbmodify connection="connection_id">

</tsx:dbmodify>

where:
* connection

Represents the identifier of a <DBCONNECT> tag in this JSP file. The
<DBCONNECT> tag provides the database URL, driver name, and (optionally)
the user ID and password for the connection.

¢ Database commands

Represents valid database commands. Refer to your database documentation for
details

tsx:getProperty tag JavaServer Pages syntax and examples

The <tsx:getProperty> tag gets the value of a bean to display in a JavaServer
Pages (JSP) file.

This IBM extension of the Sun JSP <jsp:getProperty> tag implements all of the
<jsp:getProperty> function and adds the ability to introspect a database bean
created using the IBM extension <tsx:dbquery> or <tsx:dbmodify>.

Note: You cannot assign the value from this tag to a variable. The value, generated
as output from this tag, displays in the browser window.

This section describes the syntax of the <tsx:getProperty> tag:

<tsx:getProperty name="bean_name"
property="property name" />

where:

* name
Represents the name of the bean declared by the id attribute of a <tsx:dbquery>
syntax within the JSP file. See for an explanation. The value of
this attribute is case-sensitive.

° property

Represents the property of the bean to access for substitution. The value of the
attribute is case-sensitive and is the locale-independent name of the property.

Tag example:

<tsx:getProperty name="userProfile" property="username" />
<tsx:getProperty name="request" property=request.getParameter("corporation") />

In most cases, the value of the property attribute is just the property name.
However, to access the request bean or to access a property of a property (sub
property), specify the full form of the property attribute. The full form also gives
you the option to specify an index for indexed properties. You can specify the

26 1BM WebSphere Application Server Network Deployment, Version 5: Applications

optional index as a constant (such as 2), or an index like the one described in the
tag. Some examples using the full form of the property attribute
follow:

<tsx:getProperty name="staffQuery" property=address(currentAddressIndex) />
<tsx:getProperty name="shoppingCart" property=items(4).price />

<tsx:getProperty name="fooBean" property=foo(2).bat(3).boo.far />

tsx:userid and tsx:passwd tag JavaServer Pages syntax

With the <tsx:userid> and <tsx:passwd> tags, you do not have to hard code a user
ID and password in the <tsx:dbconnect> tag.

Use the <tsx:userid> and <tsx:passwd> tags to accept user input for the values and
then add that data to the request object. You can access the request object with a
JavaServer Pages (JSP) file, such as the [SPEmployee.jsp example that requests the
database connection.

You must use <tsx:userid> and <tsx:passwd> tags within a <tsx:dbconnect> tag.

This section describes the syntax of the <tsx:userid> and <tsx:passwd> tags.

<tsx:dbconnect id="connection_id"
<userid>
<tsx:getProperty name="request"
property=request.getParameter("userid") />
</userid>
<passwd>
<tsx:getProperty name="request"
property=request.getParameter("passwd") />
</passwd>
url="protocol :database_name:database_table"
driver="JDBC driver_name">
</tsx:dbconnect>

where:
* <tsx:getProperty>

Represents the syntax as a mechanism for embedding variable data.
* userid

Represents a reference to the request parameter that contains the user ID. You
must add the parameter to the request object that passes to this JSP file. You can
set the attribute and its value in the request object, using an HTML form or a
URL query string to pass the user-specified request parameters.

* passwd

Represents a reference to the request parameter that contains the password. Add
the parameter to the request object that passes to this JSP file. You can set the
attribute and its value in the request object, using an HTML form or a URL
query string, to pass user-specified values.

tsx:repeat tag JavaServer Pages syntax
The <tsx:getProperty> tag repeats a block of HTML tagging.

Use the <tsx:repeat> syntax to iterate over a database query results set. The
<tsx:repeat> syntax iterates from the start value to the end value until one of the
following conditions is met:

* The end value is reached.
* An exception is thrown.

Chapter 2. Using Web applications 27

28

The output of a <tsx:repeat> block is buffered until the block completes. If an
exception is thrown before a block completes, no output is written for that block.

This section describes the syntax of the <tsx:repeat> tag:

<tsx:repeat index=name
start="starting_index"
end="ending_index">
</tsx:repeat>

where:
¢ index

Represents an optional name used to identify the index of this repeat block. The
value is case-sensitive and its scope is the JSP file.

¢ start

Represents an optional starting index value for this repeat block. The default is
0.

* end

Represents an optional ending index value for this repeat block. The maximum
value is 2,147,483,647.

If the value of the end attribute is less than the value of the start attribute, the
end attribute is ignored.

Example: Combining tsx:repeat and tsx:getProperty
JavaServer Pages tags

The following code snippet shows you how to code these tags:

<tsx:repeat>

<tr>
<td><tsx:getProperty name="empgs" property="EMPNO" />
<tsx:getProperty name="empgs" property="FIRSTNME" />
<tsx:getProperty name="empqgs" property="WORKDEPT" />
<tsx:getProperty name="empgs" property="EDLEVEL" />
</td>

</tr>

</tsx:repeat>

Example: tsx:dbmodify tag syntax

In the following example, a new employee record is added to a database. The
values of the fields are based on user input from this JavaServer Pages (JSP) file
and referenced in the database commands using the <tsx:getProperty> tag.

<tsx:dbmodify connection="conn" >

insert into EMPLOYEE

(EMPNO, FIRSTNME ,MIDINIT,LASTNAME ,WORKDEPT,EDLEVEL) values

('<tsx:getProperty name="request" property=request.getParameter("EMPNO") />',
'<tsx:getProperty name="request" property=request.getParameter("FIRSTNME") />',
'<tsx:getProperty name="request" property=request.getParameter("MIDINIT") />',
'<tsx:getProperty name="request" property=request.getParameter("LASTNAME") />',
'<tsx:getProperty name="request" property=request.getParameter("WORKDEPT") />',
<tsx:getProperty name="request" property=request.getParameter("EDLEVEL") />)
</tsx:dbmodify>

Example: Using tsx:repeat JavaServer Pages tag to iterate
over a results set

The <tsx:repeat> tag iterates over a results set. The results set is contained within a
bean. The bean can be a static bean, for example, a bean created by using the IBM
WebSphere Studio database wizard, or a dynamically generated bean, for example,

IBM WebSphere Application Server Network Deployment, Version 5: Applications

a bean generated by the <tsx:dbquery> syntax. The following table is a graphic
representation of the contents of a bean called, myBean:

coll col2 col3
row0 friends Romans countrymen
row1l bacon lettuce tomato
row?2 May June July

Some observations about the bean:

¢ The column names in the database table become the property names of the bean.
The <tsx:dbquery> section describes a technique for mapping the column names

to different property names.

* The bean properties are indexed. For example, myBean.get (Col1(row2)) returns

May.

¢ The query results are in the rows. The <tsx:repeat> tag iterates over the rows,

beginning at the start row.

The following table compares using the <tsx:repeat> tag to iterate over a static
bean, versus a dynamically generated bean:

Static Bean Example

<tsx:repeat> Bean Example

myBean.class

// Code to get a connection

// Code to get the data
Select * from myTable;

// Code to close the connection

JSP file

<tsx:repeat index=abc>
<tsx:getProperty name="myBean"
property="coll(abc)" />
</tsx:repeat>

Notes:
* The bean (myBean.class) is a static bean.

* The method to access the bean properties
is myBean.get(property (index)).

* You can omit the property index, in which
case the index of the enclosing
<tsx:repeat> tag is used. You can also
omit the index on the <tsx:repeat> tag.

* The <tsx:repeat> tag iterates over the bean
properties row by row, beginning with the
start row.

JSP file

<tsx:dbconnect id="conn"
userid="alice"passwd="test"
url="jdbc:db2:sample"
driver="COM.ibm.db2.jdbc.app.DB2Driver">
</tsx:dbconnect >

<tsx:dbquery id="dynamic"

connection="conn" >
Select * from myTable;

</tsx:dbquery>

<tsx:repeat index=abc>
<tsx:getProperty name="dynamic"
property="coll(abc)" />
</tsx:repeat>

Notes:

* The bean (dynamic) is generated by the
<tsx:dbquery> tag and does not exist until
the syntax executes.

* The method to access the bean properties
is dynamic.getValue("property”, index).

* You can omit the property index, in which
case the index of the enclosing
<tsx:repeat> tag is used. You can also
omit the index on the <tsx:repeat> tag.

* The <tsx:repeat> tag syntax iterates over
the bean properties row by row, beginning
with the start row.

Chapter 2. Using Web applications 29

Implicit and explicit indexing

Examples 1, 2, and 3 show how to use the <tsx:repeat> tag. The examples produce
the same output if all indexed properties have 300 or fewer elements. If there are
more than 300 elements, Examples 1 and 2 display all elements, while Example 3
shows only the first 300 elements.

Example 1 shows implicit indexing with the default start and default end index. The
bean with the smallest number of indexed properties restricts the number of times
the loop repeats.

<table>

<tsx:repeat>

<tr><td><tsx:getProperty name="servicelLocationsQuery"
property="city" /></tr></td>
<tr><td><tsx:getProperty name="servicelLocationsQuery"
property="address" /></tr></td>
<tr><td><tsx:getProperty name="servicelLocationsQuery"
property="telephone" /></tr></td>

</tsx:repeat>

</table>

Example 2 shows indexing, starting index, and ending index:

<table>

<tsx:repeat index=myIndex start=0 end=2147483647>
<tr><td><tsx:getProperty name="servicelLocationsQuery"
property=city(myIndex) /></tr></td>
<tr><td><tsx:getProperty name="servicelLocationsQuery"
property=address (myIndex) /></tr></td>
<tr><td><tsx:getProperty name="servicelLocationsQuery"
property=telephone(myIndex) /></tr></td>
</tsx:repeat>

</table>

Example 3 shows explicit indexing and ending index with implicit starting index.
Although the index attribute is specified, you can still implicitly index the indexed
property city because the (myIndex) tag is not required.

<table>

<tsx:repeat index=myIndex end=299>

<tr><td>

<tsx:getProperty name="servicelLocationsQuery" property="city" /t>
</tr></td>

<tr><td>

<tsx:getProperty name="servicelocationsQuery"
property="address(myIndex)" />

</tr></td>

<tr><td><tsx:getProperty name="servicelLocationsQuery"
property="telephone(myIndex)" />

</tr></td>

</tsx:repeat>

</table>

Nesting <tsx:repeat> blocks

You can nest <tsx:repeat> blocks. Each block is separately indexed. This capability
is useful for interleaving properties on two beans, or properties that have
subproperties. In the example, two <tsx:repeat> blocks are nested to display the list
of songs on each compact disc in the user’s shopping cart.

<tsx:repeat index=cdindex>

<hl><tsx:getProperty name="shoppingCart" property=cds.title /></hl>

<table>

<tsx:repeat>

<tr><td><tsx:getProperty name="shoppingCart" property=cds(cdindex).playlist />

30 IBM WebSphere Application Server Network Deployment, Version 5: Applications

</td></tr>
</table>
</tsx:repeat>
</tsx:repeat>

JspBatchCompiler tool

As an IBM enhancement to JavaServer Pages support, IBM WebSphere Application
Server provides a batch JSP compiler. Use this function to batch compile your JSP
files and thereby enable faster responses to the initial client requests for the JSP
files on your production Web server.

Batch compiling makes the first request for a JSP file much faster because the JSP
file is translated and compiled into a servlet. Batch compiling is also useful as a
fast way to resynchronize all of the JSP files for an application.

To use the JSP batch compiler for JSP files, enter the following command on a
single line at an operating system command prompt:

JspBatchCompiler -enterpriseapp.name <name>
[-webmodule.name <name>]
[-cell.name <name>]
[-node.name <name>]
[-server.name <name>]
[-filename <jsp name>]
[-keepgenerated <true|false>]
[-verbose <true|false>]
[-deprecation <true|false>]

If the names specified for these arguments are comprised of two or more words
separated by spaces, you must add quotation marks around the names.

where:
* enterpriseapp.name

Represents the name of the enterprise application you want to compile.
* webmodule.name

Represents the name of the specific Web module that you want to compile. If
this argument is not set, all Web modules in the enterprise application are
compiled.

e cell.name

Represents the name of the cell in which the application is deployed. The default
is BaseApplicationServerCell.

¢ node.name

Represents the name of the node in which the application is deployed. The
default is DefaultNode.

¢ server.name

Represents the name of the server in which the application is deployed. The
default is serverl.

¢ filename

Represents the name of a single JSP file that you want to compile. If this
argument is not set, all files in the Web module are compiled. Alternatively, if
filename is set to the name of a directory, only the JSP files in that directory are
compiled.

* keepgenerated
Represents the option to save or erase the generated files.

Chapter 2. Using Web applications 31

If set to yes, WebSphere Application Server saves the generated .java files used
for compilation on your server. By default, this argument is set to no and the
.java files are erased after the class files have compiled.

e verbose

Indicates the compiler should generate verbose output while compiling the
generated sources.

* deprecation

Indicates the compiler should generate deprecation warnings while compiling
the generated sources.

Bean Scripting Framework

The Bean Scripting Framework (BSF) enables you to use scripting language
functions in your Java server-side applications. This framework also extends
scripting languages so that you can use existing Java classes and Java beans in the
JavaScript language.

With BSF, you can write scripts that create, manipulate and access values from Java
objects, or you can write Java programs that evaluate and access results from
scripts.

WebSphere Application Server provides the Bean Scripting Framework, which
consists of a BSF manager, a BSF engine, and a scripting engine.

BSF provides an access mechanism to Java objects for the scripting languages it
supports, so that both the scripting language and theJava code can access code
exclusive functions. The access mechanism is implemented through a registry of
objects maintained by BSF.

BSF in WebSphere Application Server supports the Rhino ECMAScript.

The "Resources for Learning” article provides external BSF links that document
future supported languages.

Example: Converting JavaScript source to the Bean Scripting
Framework

JavaScript code is one of the most popular languages of Web developers. This
language supports the following base objects, plus additional objects from the
Document Object Model:

* array

* date

* math

* number

* string

Server-side JavaScript code supports the same base objects, and additional objects
that support user access to databases, file systems and e-mail systems.

Like client-side JavaScript code, server-side JavaScript code is also platform,
browser, and language independent.

32 IBM WebSphere Application Server Network Deployment, Version 5: Applications

You can convert server-side JavaScript applications to the Bean Scripting
Framework. This article describes how to perform this conversion.

Server-side JavaScript source code

Suppose you have the following server-side JavaScript application:

<html>

<head>

<title>Hello World server-side JavaScript example</title>
</head>

<body>

</body>

</html>

<server>
function writePage()

write("<center>Hello World</center>");
</server>

Converting server-side JavaScript source code to the Bean Scripting Framework
(BSF)

Make the following changes to the JavaScript source code to enable BSF:

<%@ page language="javascript" %>

<html>

<head>

<title>Hello World server-side BSF/JavaScript example</title>
</head>

<body>

</body>

</html>

<

o°

out.printin("<center>Hello World</center>");
>

N

Review the other BSF reference articles for deployment information and additional
programming examples.

Scenario: Creating a Bean Scripting Framework application

Scenario description

Programming skills in JavaScript code are more prevalent than programming skills
using JavaServer Pages (JSP) tags. Using the Bean Scripting Framework, JavaScript
programmers can gradually introduce JSP tags in their JavaScript applications
without completely rewriting the source code. The BSF method not only reduces
the potential of programming errors, but also provides a painless way to learn a
new technology.

The following scenario illustrates how to implement a BSF application using
JavaScript within JSP tags.

Chapter 2. Using Web applications 33

34

Developing the BSF application

At ABC elementary school, John Doe teaches third grade mathematics. He wants to
help his students memorize their multiplication tables, and thinks a small
Web-based quiz could help meet his objective. However, John Doe only knows
JavaScript.

Using the Bean Scripting Framework to help leverage his JavaScript skills, John
Doe creates two JSP files, multiplication_test.jsp and
multiplication_scoring.jsp.

In the multiplication_test.jsp file, John Doe uses both client-side and server-side
JavaScript code to generate a test of 100 random multiplication questions,
displayed using a three minute timer. He then writes the
multiplication_scoring.jsp file to read the data submitted by the
multiplication_test.jsp file and to generate the scoring results.

John Doe creates the following two files:

multiplication_test.jsp:

<html>

<head>

<title>Multiplication Practice Test</title>
<script language="javascript">

var countMin=3;

var countSec=0;

function updateDisplay (min, sec) {

var disp;
if (min <= 9) disp = " 0"
else disp = " "3

disp += (min + ":");

if (sec <= 9) disp += ("0" + sec);
else disp += sec;

return(disp);

}
function countDown() {
countSec--;
if (countSec == -1) {
countSec = 59;
countMin--;
1
document.multtest.counter.value = updateDisplay(countMin, countSec);
if((countMin == 0) &&(countSec == 0)) document.multtest.submit();
else var down = setTimeout("countDown();", 1000);
1
</script>
</head>

<body bgcolor="#ffffff" onLoad="countDown();">

<%@ page Tanguage="javascript" %>

<h1>Three Minute Multiplication Drill</hl>

<hr>

<h2>Remember: this is an opportunity to excel!</h2>

<p>

<form method="POST" name="multtest" action="multiplication_scoring.jsp">
<div align="center">

<table>

<tr>

<td>

<h3>Time left:

<input type="text" name="counter" size="9" value="03:00" readonly>
</h3>

</td>

<td>

<input type="submit" value="Submit for scoring!">

</td>

IBM WebSphere Application Server Network Deployment, Version 5: Applications

</tr>

</table>

<table border="1">

<%

var newrow = 0;

var g_num = 0;

function addQuestion(numl, num2) {
if (newrow == 0) out.printin("<tr>");
out.printin("<td>");

out.printin(numl + " x " + num2 + " = ");
out.printIn("</td><td>");
out.print("<input name=\"" + g num + "|" + numl + ":" + num2 + "\" ");

out.printin("type=\"text\" size=\"10\">");
out.printin("</td>");
if (newrow == 3) {

out.printin("</tr>");

newrow = 0;
else newrow++;
q_numt+;

for (var i = 0; i < 100; i++) {
var randl = Math.ceil(Math.random() * 12);
var rand2 = Math.ceil(Math.random() * 12);
addQuestion(randl, rand2);

L

</table>

</div>

</form>

</body>

</html>

multiplication_scoring.jsp:
<html>
<head>
<title>Multiplication Practice Test Results</title>
</head>
<body bgcolor="#ffffff">
<%@ page language="javascript" %>
<hl>Multiplication Drill Score</hl>
<hr>
<div align="center">
<table border="1">
<tr><th>Problem</th>
<th>Correct Answer</th><th>Your Answer
</th></tr>
<%
var total_score = 0;
function score (current, posl, pos2) {
var multiplier = current.substring(posl + 1, pos2);
var multiplicand = current.substring(pos2 + 1, current.length());
var your_product = request.getParameterValues(current)[0];
var true_product = multiplier * multiplicand;
out.printin("<tr>");
out.printin("<td>" + multiplier + " x " + multiplicand + " = </td>");
out.printin("<td>" + true product + "</td>");
if (your_product == true_product) {
total_score++;
out.print("<td bgcolor=\"\#00ff00\">");

else {
out.print("<td bgcolor=\"\#ffo000\">");

out.printin(your_product + "</td>");
out.printin("</tr>");
1

var equations = request.getParameterNames();

Chapter 2. Using Web applications

35

while(equations.hasMoreETements()) {
var currElt = equations.nextElement();
var splitPosl = currElt.index0f("|");
var splitPos2 = currElt.index0f(":");
if (splitPosl >=0 && splitPos2 >= 0) score(currElt, splitPosl, splitPos2);

}

%>

</table>

<h2>Total Score: <%= total_score %></h2>

<h3>Try again?</h3>
</div>

</body>

</htm1>

Follow these steps to see how John Doe uses BSF to implement JavaScript in a JSP
application:

Steps for this task
1. Give your files a .jsp extension.

2. Use server-side JavaScript code in your application.

The multiplication_test.jsp file incorporates both client-side and server-side
JavaScript. Server-side JavaScript is similar to client-side JavaScript; the primary
difference consists of using a different set of objects. Whereas client-side
Javascript programmers invoke document and window objects, server-side
JavaScript programmers, using the Bean Scripting Framework, invoke a set of
objects provided by the JSP technology. Also, client-side scripts are enclosed in
<script> tags, but server-side scripts use JSP scriptlet and expression tags.

Examine the following blocks of code:

<script language="javascript">

var countMin=3;

var countSec=0;

function updateDisplay (min, sec) {

var disp;
if (min <= 9) disp = " 0"
else disp = " "

disp += (min + ":");

if (sec <= 9) disp += ("0" + sec);
else disp += sec;

return(disp);

1
function countDown() {
countSec--;
if (countSec == -1) {
countSec = 59;
countMin--;
}
document.multtest.counter.value = updateDisplay(countMin, countSec);
if((countMin == 0) && (countSec == 0)) document.multtest.submit();
else var down = setTimeout("countDown();", 1000);
1
</script>

<body bgcolor="#ffffff" onLoad="countDown();">
<form method="POST" name="multtest" action="multiplication_scoring.jsp">

<input type="text" name="counter" size="9" value="03:00" readonly>

36 IBM WebSphere Application Server Network Deployment, Version 5: Applications

The JavaScript code contained in the <script> block implements a timer set
within the <input> field named counter. The onLoad event handler in the
<body> tag causes the browser to load and execute the code when the the page
is loaded.

The document.multtest.submit() statement causes the form named multtest to
be submitted when the timer expires.

Identify the code to the BSF function.

The following code example, from the multiplication_test.jsp file, displays
the use of a JSP directive. This directive tells the WebSphere Application Server
BSF function that this file is using the JavaScript language, and that the
JavaScript code is enclosed by the <% ... %> scriptlet tags. The out implicit JSP
object in this code example, creates the body section of a table from 100
randomly generated questions.

<%@ page language="javascript" %>
<%

var newrow = 0;

var q_num = 0;

function addQuestion(numl, num2) {
if (newrow == 0) out.printin("<tr>");

out.printin("<td>");

out.printin(numl + " x " + num2 + " = ");
out.printin("</td><td>");
out.print("<input name=\"" + q_num + "|" + numl + ":" + num2 + "\" ");

out.printin("type=\"text\" size=\"10\">");
out.printin("</td>");

if (newrow == 3) {
out.printin("</tr>");
newrow = 0;

}

else newrow+t+;
q_num++;
for (var i = 0; i < 100; i++) {

var randl = Math.ceil(Math.random() * 12);
var rand2 = Math.ceil(Math.random() * 12);

addQuestion(randl, rand2);
1

0,
%>

Read the results.

To score the results of the practice drill, John Doe uses the request implicit JSP
object in the muTtiplication_scoring.jsp file to obtain the POST data created
within the <form> tags in the multiplication_test.jsp file.

The multiplication_scoring.jsp file uses the POST data to build an output file
containing the original question, the student’s answer, and the correct answer,
and then prints the text in a table format using the out implicit object.

The following code example from the multiplication_scoring.jsp file
illustrates the use of the request and out JSP objects:

Chapter 2. Using Web applications 37

<%@ page Tanguage="javascript" %>

<%
var total_score = 0;
function score (current, posl, pos2) {
var multiplier = current.substring(posl + 1, pos2);
var multiplicand = current.substring(pos2 + 1, current.length());
var your_product = request.getParameterValues(current)[0];
var true_product = multiplier * multiplicand;
out.printTn("<tr>");
out.printin("<td>" + multiplier + " x " + multiplicand + " = </td>");
out.printin("<td>" + true_product + "</td>");
if (your_product == true_product) {
total_score++;
out.print("<td bgcolor=\"\#00ffo0\">");

}

else {
out.print("<td bgcolor=\"\#ffoo00\">");
1

out.printin(your_product + "</td>");
out.printin("</tr>");
1
var equations = request.getParameterNames();
while(equations.hasMoreElements()) {
var currElt = equations.nextElement();
var splitPosl = currElt.index0f("|");
var splitPos2 = currElt.index0f(":");
if (splitPosl >=0 && splitPos2 >= 0)
score(currElt, splitPosl, splitPos2);

}

[
%>

<h2>Total Score: <%= total_score %></h2>

Note: Although using separate scriptlet blocks of code for different portions of
a conditional expression is common in JSP files implemented in Java, it is
invalid for JSP files implemented using JavaScript through the Bean Scripting
Framework. The JavaScript code must be entirely contained within the scriptlet
tags.

The following code example illustrates invalid usage:

<% if (pass == 0) %>
<i>pass is true</i>

<% else %>
<i>pass is not true</i>

Deploying the BSF application

You assemble and deploy BSF applications in the same manner as JSP applications.
Review the (Assembling applications) article for more information.

Deploy the [BSF code exampleg in WebSphere Application Server to view this
applications processing and output. Use the following quick steps to deploy the
application.

Note: The intent of these "quick steps” is to provide you with instant application
output. However, the supported method for deployment is the same as for
standard JSP files.

Steps for this task

38 IBM WebSphere Application Server Network Deployment, Version 5: Applications

1.

Use the [DefaultApplication| to add your BSF files.

Copy your . jsp files to the DefaultApplication directory: <application server
install directory> /installedApps/<node
name>/DefaultApplication.ear/DefaultApplication.war

Start the application server.

Open a browser and request your BSF application
Use the following URL to request your application:
http://hostName:9080/<JSP file name>.jsp

Example: Bean Scripting Framework code example

The following code examples show how to implement JavaScript using the Bean
Scripting Framework (BSF).

For a quick demonstration of the BSF function, copy these code examples into 2
separate files, and deploy them in WebSphere Application Server using the
instructions in the BSF scenario article.

Multiplication practice test

<html>

<head>

<title>Multiplication Practice Test</title>

<l--

This file and its companion, multiplication_score.jsp, illustrate the
use of ECMAScript within the BSF framework. The task is a simple
timed math quiz, which is 3 minutes in duration. When the quiz ends,
the score is computed and displayed.

Users are then asked if they wish to try

the quiz again.

-

<l--

This code fragment displays and updates the quiz
countdown in client side JavaScript code.

-

<script language="javascript">
var countMin=3;
var countSec=0;

// This code computes the current countdown time.
function updateDisplay (min, sec) {

}

var disp;

if (min <= 9) disp = " 0"
else disp = " "3

disp += (min + ":");

if (sec <= 9) disp += ("0" + sec);
else disp += sec;

return(disp);

//This code fragment displays the current countdown time in the
user's browser window,
//and submits the results for scoring when the countdown ends.

function countDown() {

countSec--;
if (countSec == -1) {

Chapter 2. Using Web applications 39

40

countSec = 59;
countMin--;

}

document.multtest.counter.value = updateDisplay(countMin, countSec);
if((countMin == 0) && (countSec == 0)) document.multtest.submit();

else var down = setTimeout("countDown();", 1000);

}

</script>
</head>
<body bgcolor="#ffffff" onLoad="countDown();">

<l--

The body of the quiz runs as JavaServer Pages (JSP) code using BSF.
The code outputs the problems in table format using the POST method
and invokes the scoring module when the user chooses to

end the quiz or when the countdown ends.

-

<%@ page language="javascript" %>

<h1>Three Minute Multiplication Drill</hl>
<hr>

<h2>Remember: this is an opportunity to excel!</h2>
<p>

<form method="POST" name="multtest" action="multiplication_scoring.jsp">

<div align="center">

<table>

<tr>

<td>

<h3>Time Teft:

<input type="text" name="counter" size="9" value="03:00" readonly>
</h3>

</td>

<td>

<input type="submit" value="Submit for scoring!">
</td>

</tr>

</table>

<table border="1">

<%

var newrow = 0;

var q_num = 0;

// This code generates a new random multiplication problem up to
// the number twelve, and
// enters it into the table of problems.

function addQuestion(numl, num2) {
if (newrow == 0) out.printIn("<tr>");

out.printin("<td>");
out.printin(numl + " x " + num2 + " = ");
out.printin("</td><td>");

out.print("<input name=\"" + q_num + "|" + numl + ":" + num2 + "\"

out.printin("type=\"text\" size=\"10\">");
out.printin("</td>");

if (newrow == 3) {
out.printin("</tr>");
newrow = 0;

1

else newrow++;

g_num++;

IBM WebSphere Application Server Network Deployment, Version 5: Applications

")s

//This code obtains two random operands and formats 100 quiz problems.

for (var i = 0; i < 100; i++) {
var randl = Math.ceil(Math.random() * 12);
var rand2 = Math.ceil(Math.random() * 12);

addQuestion(randl, rand2);
1

%>
</table>
</div>
</form>

</body>
</html>

Multiplication practice test results

<html>

<head>

<title>Multiplication Practice Test Results</title>
</head>

<body bgcolor="#ffffff">

<l--

This JSP code is invoked when the user submits a math quiz for scoring,
or when the quiz countdown expires. The JSP code tabulates the problem
list, the correct answer,

the user's answer, and scores the test. It then offers the user an
opportunity to try the quiz again.

-

<%@ page Tanguage="javascript" %>

<h1>Multiplication Drill Score</hl>
<hr>

<div align="center">

<table border="1">

<tr><th>Problem</th><th>Correct Answer</th><th>Your Answer</th></tr>
<%

var total_score = 0;

// This code parses the submitted form, extracts the a problem generated by the
// multiplication test.jsp file, outputs it, computes the correct answer,

// and displays this information and the user answer. The code scores

// the quiz using a running sum of correct answers.

function score (current, posl, pos2) {
var multiplier = current.substring(posl + 1, pos2);
var multiplicand = current.substring(pos2 + 1, current.length());
var your product = request.getParameterValues(current)[0];
var true_product = multiplier * multiplicand;

out.printin("<tr>");
out.printin("<td>" + multiplier + " x " + multiplicand + " = </td>");
out.printin("<td>" + true_product + "</td>");

if (your_product == true_ product) {
total_score++;
out.print("<td bgcolor=\"\#00ff00\">");

else {
out.print("<td bgcolor=\"\#ffo000\">");
1

Chapter 2. Using Web applications

41

out.printin(your_product + "</td>");
out.printin("</tr>");

// This is the main body of the scoring application. It parses the posted quiz,
// and calls the score() function to score remaining problems.

var equations = request.getParameterNames();
while(equations.hasMoreElements()) {
var currkElt = equations.nextElement();
var splitPosl = currElt.index0f("|");
var splitPos2 = currElt.index0f(":");

if (splitPosl >=0 && splitPos2 >= 0) score(currElt, splitPosl, splitPos2);
1

9
Zz>

</table>

<h2>Total Score: <%= total_score %></h2>
<h3>Try again?</h3>
</div>

</body>
</html>

Developing Web applications

42

Before you begin

Design a Web application and the components that it needs.
For general Web application design information, see "Resources for learning.”

There are two basic approaches to selecting tools for developing Web applications:

* You can use one of the available integrated development environments (IDEs).
IDE tools automatically generate significant parts of the servlet and JavaServer
Pages (JSP) code, and Hypertext Markup Language (HTML) files. They also
contain integrated tools for packaging and testing the Web application
components. The IBM WebSphere Application Developer product is the
recommended IDE. For more information, see the documentation for that
product.

* If you decide to develop Web components without an IDE, you need at least an
ASCII text editor. You can also use tools available in the Java Software
Development Kit (SDK) and in this product to assemble, test, and deploy the
Web application components.

The following steps support the second approach, development without an IDE.

Steps for this task

1. If necessary, [migrate any pre-existing code|to the required version of the servlet
and JSP specification.

2. Write and compile the components of the Web application.

What to do next

[Assemble the application components in one or more Web modules)

IBM WebSphere Application Server Network Deployment, Version 5: Applications

Web modules

A Web module represents a Web application. A Web module is created by
assembling servlets, JavaServer Pages (JSP) files, and static content such as
HyperText Markup Language (HTML) pages into a single deployable unit. Web
modules are stored in Web archive (WAR) files, which are standard Java archive
files.

A Web module contains:
* One or more servlets, JSP files, and HTML files.
* A deployment descriptor, stored in an Extensible Markup Language (XML) file.

The file, named web.xm1, declares the contents of the module. It contains
information about the structure and external dependencies of Web components
in the module and describes how the components are used at run time.

You can create Web modules as standalone applications, or you can combine Web
modules with other modules to create J2EE applications. You install and run a Web
module in the Web container of an application server.

Assembling Web Modules

Before you begin

If you want to use existing J2EE 1.2 Web modules in your J2EE 1.3 application,
migrate them to J2EE 1.3 first.

Assemble a Web module to contain servlets, JSP files, and related code artifacts.
(Group enterprise beans, client code, and resource adapter code in separate
modules).

A Web module can be installed as a standalone application or can be combined
with other modules into an enterprise application.

The Application Assembly Tool (AAT) provides flexibility in assembling Web
modules. Options described below include:

* Importing an existing Web module (WAR file)
¢ Creating a new Web module

* Copying code artifacts (such as servlets) from one Web module into a new Web
module

Although you can input various properties for Web archives, available properties
are specific to the Servlet, JSP, and J2EE specification level.

Steps for this task
1. ("Starting the Application Assembly Tool (AAT)")
2. Select File>New>Web Module.

The navigation tree now displays various sets of properties for configuring the
new Web module.

3. (Optional) Use the property dialog shown in the AAT workspace to change the
default file name and location.

a. Itis recommended that you change the display name so that it differs from
the file name.

Chapter 2. Using Web applications 43

b. If you like, change the temporary location of the Web module from the
default location, install_root/bin.

4. Add at least one Web component (servlet or JSP file) to the module.

You must add at least one Web component, using one of the following
methods.

* Import an existing WAR file containing Web components.

a.

®oo0o0o

j-

In the navigation tree, right-click the Web Components folder.

Select Import from its right-click menu.

Use the file browser to locate and select the archive file for the module.
Click Open. The Web applications in the selected archive are displayed.

Select a Web application. Its Web components are displayed in the
workspace.

Select the servlets or JSP files to be added and click Add. The components
are displayed in the Selected Components window.

Click OK. The properties associated with the archive are also imported.
The property dialog boxes in the workspace are populated automatically
with values.

Double-click the Web Components icon to verify that the servlets or JSP
files are included in the module.

Double-click the Web Components icon to verify that the servlets or JSP
files are included in the module.

("Saving applications after assembly”)

* Copy and paste archive files from an existing module.

* Create a new Web component.

a.
b.
c.

In the navigation tree, right-click the Web Components folder.
Select New from its right-click menu.

When the new module is displayed, enter a component name and choose
a component type.

d. Use the file browser to locate and select the archive file for the module.

e. Click the plus sign (+) to verify its contents and enter assembly

—h

g.

h.

properties.
In the New Web Component property dialog box, click OK.

Verify that the Web component has been added to the module by
double-clicking the Web components icon in the navigation tree.

Click the component to view its corresponding property dialog box in the
bottom portion of the pane.

5. Enter assembly properties for each Web component.

a. Click the plus sign (+) next to the each component to reveal its property
groups.

b. Right-click each property group’s icon and click New to display properties
in the workspace.

6. Specify additional properties for the Web module.

Right-click each property group’s icon. Choose New to add new values, or edit
existing values in the property pane. (Click Help for descriptions of the
settings).

Note that if you add a security constraint, you must add at least one Web
resource collection.

7. Add any other files needed by the application.

44 1BM WebSphere Application Server Network Deployment, Version 5: Applications

* In the navigation tree, click the plus sign (+) next to the Files icon.
Right-click Add Class Files, Add JAR Files, or Add Resource Files. Select
Add Files.

* Add files, using the Add Files dialog.
8. ("Saving applications after assembly”)

What to do next

Assemble zero or more other new modules of your choice:

* ("Assembling EJB modules”)

* ("Assembling Application Client Modules”)

* "Assembling Resource Adapter modules” (not in this document)

You can also ("Migrating application modules from J2EE 1.2 to J2EE 1.3 ").

Another option is to proceed directly to ("Assembling new or modifying existing
modules”). While assembling an application module, you can create any new
modules that you need.

Context parameters

A servlet context defines a server’s view of the Web application within which the
servlet is running. The context also allows a servlet to access resources available to
it.

Using the context, a servlet can log events, obtain URL references to resources, and
set and store attributes that other servlets in the context can use. These properties
declare a Web application’s parameters for its context. They convey setup
information, such as a webmaster’s e-mail address or the name of a system that
holds critical data.

Servilet mappings

A servlet mapping is a correspondence between a client request and a servlet.

Servlet containers use URL paths to map client requests to servlets, and follow the
URL path-mapping rules as specified in the Java Servlet specification. The
container uses the URI from the request, minus the context path, as the path to
map to a servlet. The container chooses the longest matching available context path
from the list of Web applications that it hosts.

Servlet caching

Dynamic caching can be used to improve the performance of servlet and
JavaServer Pages (JSP) files by serving requests from an in-memory cache. Cache
entries contain the servlet’s output, results of the servlet’s execution, and metadata.

Web components

A web component is a servlet, Java Server Page (JSP), or HTML file. One or more
web components make up a web module.

Web property extensions

Web property extensions are IBM extensions to the standard deployment
descriptors for Web applications. These extensions include mime filtering and
servlet caching.

Chapter 2. Using Web applications 45

Web resource collections

A Web resource collection defines a set of URL patterns (resources) and HTTP
methods belonging to the resource.

HTTP methods handle HTTP-based requests, such as GET, POST, PUT, and
DELETE. A URL pattern is a partial Uniform Resource Locator that acts as a
template for matching the pattern with existing full URLs in an attempt to find a
valid file.

Welcome files

A Welcome file is an entry point file (for example, index.html) for a group of
related HTML files.

Welcome files are located by using a group of partial URIs. The Web container uses
the partial URIs to find a valid file when the initial URI is not found.

Context parameter assembly settings

A servlet context defines the server view of the Web application within which the
servlet is running. The context also allows a servlet to access resources available to
it. Using the context, a servlet can log events, obtain URL references to resources,
and set and store attributes that other servlets in the context can use.

Access this page by traversing the following path in the Application Assembly
Tool:

Web Modules > component_instance

Parameter name (Required, String)
Specifies the name of a parameter, for example, dataSourceName.

Data type String

Parameter value (Required, String)
Specifies the value of a parameter, for example, jdbc/sample.

Data type String

Description
Contains a description of the context parameter.

Data type String

Initialization parameter assembly settings

Use this page to specify the initialization parameters that are sent to a servlet in its
HttpConfig object when the servlet is first started.

Access this page by traversing the following path in the Application Assembly
Tool:

Web Modules >
component_instance >
Web Components

Parameter name (Required, String)
Specifies the name of an initialization parameter.

46 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Data type String

Parameter value (Required, String)
Specifies the value of the initialization parameter.

Data type String

Description
Contains text describing the use of the parameter.

Data type String

JavaServer Pages attribute assembly settings

Use the JavaServer Pages (JSP) attributes page to set JSP attributes that are used by
servlets that implement JSP processing behavior.

Access this page by traversing the following path in the Application Assembly
Tool:

Web Modules > component_instance > Assembly Property Extensions

JSP Attribute (Name)

Specifies the name of an attribute.

Data type String

JSP Attribute (Value)

Specifies the value of an attribute.

Data type String

The WebSphere JSP container supports the following JSP attributes:

classdebuginfo

Indicates the compiler should include debugging information in the generated
classfile.

classdebuginfo true or false

Default is false.

classpath
Specifies an additional classpath for compiling the generated servlets.

classpath classpath or null

Default is null.

deprecation
Indicates the compiler should generate deprecation warnings when compiling the
generated Java source.

deprecation true or false

Chapter 2. Using Web applications 47

Default is false.

ieClassID
Indicates the Java plugin COM class ID for Internet Explorer. The <jsp:plugin> tags
use this value.

ieClassID classid

Default is c1sid:8AD9C840-044E-11D1-B3E9-00805F499D93.

javaEncoding
Indicates the Java platform encoding to use to generate the JSP page servlet.

javaEncoding encoding value

Default is UTF-8.

jspCompilerPath
Indicates the path of the compiler to use for compiling JSP pages.

jspCompilerPath path name or null

Default is null.

keepgenerated
Indicates the Java files generated by the JSP compiler during the translation phase
of the processing should be kept.

keepgenerated true or false

Default is false.

largefile

Specifies support for large files. When the Java code is generated, the HTML data
in a JSP file is stored separately instead of being saved as constant string data in
the generated servlet.

largefile true or false

Default is false.

mappedfile

Indicates the compiler should generate Java source that includes a print statement
for every line in the JSP file. Use this option for debugging purposes only. It is not
recommended for production environments because the mappedfile option
generates too many out.print() statements.

mappedfile true or false
Default is false.

scratchdir
Specifies the directory where the generated classfiles are created.

48 IBM WebSphere Application Server Network Deployment, Version 5: Applications

scratchdir directory name.

Default is [WAS_INSTALL_ROOT]/temp.

Note: The system property com.ibm.websphere.serviet.temp.dir can be used to
set the scratchdir option on a server-wide basis. This setting, if it is present,
overrides the system property.

usePageTagPool

Enables or disables the reuse of custom tag handlers on an individual JavaServer
Page basis.

usePageTagPool true or false

Default is false.

The note in the useThreadTagPool attribute description also applies to
theusePageTagPool attribute.

useThreadTagPool

Enables or disables the reuse of custom tag handlers on a per request thread basis.

useThreadTagPool true or false

Default is false.

The note in the useThreadTagPool attribute description also applies to
theusePageTagPool attribute.

Note: Enabling custom tag handler reuse might reveal problems in your tag
handler code regarding the tags ability to be reused. A custom tag handler should
always do two things:

1. The release() method of the tag handler should reset its state and release any
private resources that it might have used. The JSP engine guarantees the
release() method will be called before the tag handler is garbage collected.

2. In the doEndTag() method, all instance states associated with this instance must
be reset.

verbose
Indicates the compiler should generate verbose output when compiling the
generated Java source code.

verbose true or false

Default is false.

Multipurpose Internet Mail Extensions (MIME) filter assembly
settings
Use this page to configure Multipurpose Internet Mail Extensions (MIME) filters.

Access this page by traversing the following path in the Application Assembly
Tool:

Chapter 2. Using Web applications 49

Web Modules > component_instance > Assembly Property Extensions

Component name (Required, String)
Specifies the name of the servlet or JavaServer Pages(TM) (JSP) file. This name
must be unique within the Web module.

Data type String
Display name
Specifies a short name that is intended for display by GUIs.

Data type String

Description
Contains a description of the servlet or JSP file.

Data type String

Component type
Specifies the type of Web component. Valid values are servlet or JSP file.

Data type String

Class name (Required, String)
Specifies the full path name for the servlet class.

Data type String

JSP file (Required, String)
Specifies the full path name for the JSP file.

Data type String

Load on startup
Indicates whether this servlet loads at the startup of the Web application.

The default is false (the check box is not selected). Also specifies a positive integer
indicating the order in which to load the servlet. Lower integers are loaded before
higher integers. If no value is specified, or if the value specified is not a positive
integer, the container is free to load the servlet at any time in the startup sequence.

Data type String

Small icon
Specifies a JPEG or GIF file containing a small image (16x16 pixels). Use the image
as an icon to represent the Web component in a GUL

Data type JPEG, GIF

Large icon
Specifies a JPEG or GIF file containing a large image (32x32 pixels). Use the image
as an icon to represent the Web component in a GUL

Data type JPEG, GIF

50 1BM WebSphere Application Server Network Deployment, Version 5: Applications

Page list assembly settings
Page lists allow you to avoid hardcoding URLSs in servlets and JSP files.

Access this page by traversing the following path in theApplication AssemblyTool:
Web Modules > component_instance > Web Components

Name

Specifies the name of the markup language—for example, Hypertext Markup
Language (HTML), Wireless Markup Language (WML), and Voice Extensible
Markup Language (VXML).

Data type String

MIME Type
Specifies the Multi-Purpose Internet Mail Extensions (MIME) type of the markup
language, for example, text/html and text/x-vxml.

Data type String

Error Page
Specifies the name of an error page.

Data type String

Default Page

Specifies the name of a default page.

Data type String

Pages - Name
Specifies the name of the page to serve, for example, StockQuoteRequest.page.

Data type String
Pages - URI

Specifies the URI of the page to serve, for example,
examples/StockQuoteHTMLRequest. jsp.

Data type String

Security constraints

Security constraints declare how Web content is to be protected.
These properties associate security constraints with one or more Web resource

collections. A constraint consists of a Web resource collection, an authorization
constraint, and a user data constraint.

Security constraint assembly settings

Use the Security constraints panel to configure security constraints.

Chapter 2. Using Web applications 51

To view this AAT panel, open an existing or create a new Web module. Right-click
Security Constraints from the left navigation menu. Click New.

Security constraints declare how to protect Web content. These properties associate
security constraints with one or more Web resource collections. A constraint
consists of a Web resource collection, an authorization constraint, and a user data
constraint.

* A Web resource collection is a set of resources (URL patterns) and HTTP
methods on those resources. All requests that contain a request path that
matches the URL pattern described in the Web resource collection is subject to
the constraint. If no HTTP methods are specified, then the security constraint
applies to all HTTP methods.

* An authorization constraint is a set of roles that users must be granted in order
to access the resources described by the Web resource collection. If a user who
requests access to a specified URI is not granted at least one of the roles
specified in the authorization constraint, the user is denied access to that
resource.

* A user data constraint indicates that the transport layer of the client/server
communications process must satisfy the requirement of either guaranteeing
content integrity (preventing tampering in transit) or guaranteeing
confidentiality (preventing reading while in transit).

If multiple security constraints are specified, the container uses the "first match
wins” rule when processing a request to determine what authentication method to
use, or what authorization to allow

Security constraint name
Specifies the name of the security constraint.

Data type String

Authorization Constraints - Roles
Specifies the user roles that are permitted access to this resource collection.

Data type String

Authorization Constraints - Description
Contains a description of the authorization constraints

Data type String

User Data Constraints - Transport guarantee
Indicates how data communicated between the client and the server is to be

protected.

Specifies that the protection for communications between the client and server is
None, Integral, or Confidential.

* None means that the application does not require any transport guarantees.

* Integral means that the application requires that the data sent between the client
and the server must be sent in such a way that it cannot be changed in transit.

* Confidential means that the application requires that the data must be
transmitted in a way that prevents other entities from observing the contents of
the transmission.

52 IBM WebSphere Application Server Network Deployment, Version 5: Applications

In most cases, Integral or Confidential indicates that the use of SSL is required.

Data type String

User Data Constraints - Description
Contains a description of the user data constraints.

Data type String

Serviet mapping assembly settings
A servlet mapping is a correspondence between a client request and a servlet.

Access this page by traversing the following path in the Application Assembly
Tool:

Web Modules > component_instance

URL pattern (Required, String)
Specifies the URL pattern of the mapping.

The URL pattern must conform to the Servlet specification. Use the following

syntax:

* A string beginning with a slash character (/) and ending with the slash and
asterisk characters (/%) represents a path mapping.

* A string beginning with the characters *. represents an extension mapping.
* All other strings are used as exact matches only.

* A string containing only the slash character (/) indicates that the servlet
specified by the mapping becomes the default servlet of the application. In this
case, the servlet path is the request Uniform Resource Identifier (URI) minus the
context path, and the path information is null.

Data type String

Serviet (Required, String)

Specifies the name of the servlet associated with the URL pattern.

Data type String

Tag library assembly settings
Use this page to define the tag library parameters.

Access this page by traversing the following path in the Application Assembly
Tool:

Web Modules > component_instance

Java ServerPages (JSP) tag libraries contain classes for common tasks such as
processing forms and accessing databases from JSP files.

Tag library file name (Required, String)
Specifies a file name relative to the location of the web.xml document, identifying a
tag library used in the Web application.

Data type String

Chapter 2. Using Web applications 53

Tag library location (Required, String)
Contains the location, as a resource relative to the root of the Web application,
where you can find the Tag Library Definition file for the tag library.

Data type String

Welcome file assembly settings
Use this page to configure your welcome page.

Access this page by traversing the following path in the Application Assembly
Tool:

Web Modules > component_instance

Welcome file (Required, String)
The Welcome file list is an ordered list of partial URLs with no trailing or leading
slash characters (/).

The Web server appends each file in the order specified and checks whether a
resource in the Web archive (WAR) file is mapped to that request Uniform
Resource Identifier (URI). The container forwards the request to the first resource
in the WAR file that matches.

Data type String

Servlet caching configuration assembly settings

Use this page to configure your cache groups.

Access this page by traversing the following path in theApplication AssemblyTool:
Web Modules > component_instance > Assembly Property Extensions

The properties on the General tab define a cache group and govern how long an
entry remains in the cache. The properties on the ID Generation tab define how
cache IDs are built and the criteria used to cache or invalidate entries. The
properties on the Advanced tab define external cache groups and specify custom
interfaces for handling servlet caching.

Caching group name
Specifies a name for the group of servlets or JavaServer Pages (JSP) files to cache.

Priority
Defines the default priority for cached servlets. Specify as an integer. The default
value is 1.

Priority is an extension of the Least Recently Used (LRU) caching algorithm. It
represents the number of cycles through the LRU algorithm that an entry is
guaranteed to stay in the cache. The priority represents the length of time that an
entry remains in the cache before becoming eligible for removal. On each cycle of
the algorithm, the priority of an entry is decremented. When the priority reaches
zero, the entry is eligible for invalidation. If an entry is requested while in the
cache, its priority is reset to the priority value. Regardless of the priority value and
the number of requests, an entry is invalidated when its timeout occurs. Consider
increasing the priority of a servlet or JSP file when it is difficult to calculate the
output of the servlet or JSP file or when the servlet or JSP file is executed more
often than average. Priority values should be low. Higher values do not yield

54 1BM WebSphere Application Server Network Deployment, Version 5: Applications

much improvement but use extra LRU cycles. Use timeout to guarantee the
validity of an entry. Use priority to rank the relative importance of one entry to
other entries. Giving all entries equal priority results in a standard LRU cache that
increases performance significantly.

Timeout
Specifies the length of time, in seconds, that a created cache entry remains in the
cache.

When this time elapses, the entry is removed from the cache. If the timeout is zero
or a negative number, the entry does not time out. It is removed when the cache is
full or programmatically, from within an application.

Invalidate only
Specifies that invalidations for a servlet take place, but that no servlet caching is
performed.

For example, you can use this property to prevent caching of control servlets.
Control servlets treat HTTP requests as commands and execute those commands.
By default, this check box is not selected.

Caching group members
Specifies the names of the servlets or JSP files to cache. The URIs are determined
from the servlet mappings.

Use URIs for cache ID building
Specifies whether or not to use the URI of the requested servlet to create a cache
ID. By default, URIs are used.

Use specified string

Specifies a string representing a combination of request and session variables to
use for creating cache IDs. This property defines request and session variables, and
the cache uses the values of these variables to create IDs for the entries.

Variables - ID
Specifies the name of a request parameter, request attribute, session parameter, or
cookie.

Variables - Type
Specifies the type of variable inidcated in the ID field. The valid values are Request
parameter, Request attribute, Session parameter, or Cookie.

Variables - Method

Specifies the name of a method in the request attribute or session parameter. The
output of this method is used to generate cache entry IDs. If this value is not
specified, the toString method is used by default.

Variables - Data ID

Specifies a string that, combined with the value of the variable, generates a group
name for the cache entry. The cache entry is placed in this group. You can
invalidate this group.

Variables - Invalidate ID
Specifies a string that is combined with the value of the variable on the request or
session to form a group name. The cache invalidates the group name.

Chapter 2. Using Web applications 55

Required

Specifies whether a value must exist in the request. If this check box is selected,
and either the request parameter, request attribute, session parameter, or the
method is not specified, the request is not cached.

External cache groups - Group name
Specifies the name of the external cache group to which this servlet is published.

ID generator
Specifies a user-written interface for handling parameters, attributes, and sessions.

The value must represent a full package and class name of a class extending
com.ibm.websphere.servlet.cache.IdGenerator. The properties specified in the
Application Assembly Tool are used and passed to the IdGenerator in the initialize
method inside a com.ibm.websphere.servlet.cache.CacheConfig object.

Data type String

Meta data generator
Specifies a user-written interface for handling invalidation, priority levels, and
external cache groups.

The value must represent the full package and class name of a class extending
com.ibm.websphere.servlet.cache.MetaDataGenerator. The properties specified in
the Application Assembly Tool are used and passed to the MetaDataGenerator in
the initialize method inside a com.ibm.websphere.servlet.cache.CacheConfig object.

Data type String

Web components assembly settings

Use this page to set the assembly properties for the components that make up a
Web module.

Access this page by traversing the following path in theApplication AssemblyTool:

Web Modules > component_instance > Web Components

Component name
Specifies the name of the servlet or JavaServer Pages(TM) (JSP) file. This name
must be unique within the Web module.

Data type String
Display name
Specifies a short name that is intended for display by GUIs.

Data type String

Description
Contains a description of the servlet or JSP file.

Data type String

Component type
Specifies the type of Web component. Valid values are servlet or JSP file.

56 1BM WebSphere Application Server Network Deployment, Version 5: Applications

Data type String

Class name
Specifies the full path name for the servlet class.

Data type String

JSP file
Specifies the full path name for the JSP file.

Data type String

Load on startup
Indicates whether this servlet loads at the startup of the Web application. The

default is false (the check box is not selected).

This field also specifies a positive integer indicating the order in which the servlet
is to load. Lower integers are loaded before higher integers. If no value is
specified, or if the value specified is not a positive integer, the container is free to
load the servlet at any time in the startup sequence.

Data type Boolean
Default False

Small icon
Specifies a JPEG or GIF file containing a small image (16x16 pixels). Use the image

as an icon to represent the Web component in a GUL

Data type String

Large icon
Specifies a JPEG or GIF file containing a large image (32x32 pixels). Use the image
as an icon to represent the Web component in a GUL

Data type String

Run as role name

Enter a role name that represents the user account under which the servlet
executes. The default role name is blank, which indicates the servlet runs under
the user that logged into the application server. The role name of "all role”
indicates the servlet can execute under different users.

Data type String

Description

In this optional field, enter a description that explains the importance of the role,
and where and how the role can be used.

Data type String

Run as role mode
Indicates a security role that is defined in the enterprise application.

Chapter 2. Using Web applications 57

Data type String

Unresolved action

This ouptut field defines a behavior for a transaction that does not complete
successfully. For example, a servlet does not have to specify rollback in its code.
Rollback occurs automatically if the servlet initiates a transaction and the
transaction does not complete but rollback is specified as the unresolved action.

Data type String

Web modules assembly settings

Use this page to set the assembly properties for web modules. Web modules are
composed of one or more web components.

File name
Specifies the file name of the Web module, relative to the top level of the
application package.

Alternative DD
Specifies the file name for an alternative deployment descriptor file to use instead
of the original deployment descriptor file in the module’s JAR file.

This file is the postassembly version of the deployment descriptor file. (The
original deployment descriptor file can be edited to resolve dependencies and
security information. Directing the use of the alternative deployment descriptor
allows you to keep the original deployment descriptor file intact). The value of the
Alternative DD property must be the full path name of the deployment descriptor
file relative to the module’s root directory. By convention, the file is in the ALT-INF
directory. If this property is not specified, the deployment descriptor file is read
directly from the module’s JAR file.

Context root

Specifies the context root of the Web application. The context root is combined
with the defined servlet mapping (from the WAR file) to compose the full URL
that users type to access the servlet.

For example, if the context root is /gettingstarted and the servlet mapping is
MySession, then the URL is http:/ /host:port/gettingstarted / MySession.

Classpath
Specifies the class path for resources used by the Web application, relative to the
ear file..

If your Web application requires access to classes within an ear file, specify the
relative path of the classes in this field.

Display name
Specifies a short name that is intended to be displayed by GUISs.

Description
Contains a description of the Web module.

Distributable
Specifies that this Web application is programmed appropriately to be deployed
into a distributed servlet container.

58 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Small icon
Specifies a JPEG or GIF file containing a small image (16x16 pixels). The image is
used as an icon to represent the module in a GUL

Large icon
Specifies a JPEG or GIF file containing a large image (32x32 pixels). The image is

used as an icon to represent the module in a GUL

Session configuration
Indicates that session configuration information is present. Checking this box

makes the Session timeout property editable.

Session timeout
Specifies a time period, in seconds, after which a client is considered inactive. The

default value is zero, indicating that the session timeout never expires.

Login configuration -- Authentication method

Specifies an authentication method to use. As a prerequisite to gaining access to
any Web resources protected by an authorization constraint, a user must
authenticate by using the configured mechanism.

A Web application can authenticate a user to a Web server by using one of the
following mechanisms: HTTP basic authentication, HTTP digest authentication,
HTTPS client authentication, and form-based authentication.

e HTTP basic authentication is not a secure protocol because the user password is
transmitted with a simple Base64 encoding and the target server is not
authenticated. In basic authentication, the Web server requests a Web client to
authenticate the user and passes a string called the realm of the request in which
the user is to be authenticated.

* HTTP digest authentication transmits the password in encrypted form.

* HTTPS client authentication uses HTTPS (HTTP over SSL) and requires the user
to possess a public key certificate.

* Form-based authentication allows the developer to control the appearance of
login screens.

The Login configuration properties are used to configure the authentication
method that should be used, the realm name that should be used for HTTP basic
authentication, and the attributes that are needed by the form-based login
mechanism. Valid values for this property are Unspecified, Basic, Digest, Form, and
Client certification.

Note:

HTTP digest authentication is not supported as a login configuration in this
product. Also, not all login configurations are supported in all of the product’s
global security authentication mechanisms (Local Operating system, LTPA, and
custom pluggable user registry). HTTP basic authentication and form-based login
authentication are the only authentication methods supported by the Local
Operating system user registry. LTPA and the custom pluggable user registry are
capable of supporting HTTP basic authentication, form-based login, and HTTPS
client authentication.

Login configuration -- Realm name
Specifies the realm name to use in HTTP basic authorization. It is based on a user

name and password, sent as a string (with a simple Base64 encoding).

Chapter 2. Using Web applications 59

An HTTP realm is a string that allows URIs to be grouped together. For example, if
a user accesses a secured resource on a Web server within the "finance realm,”
subsequent access to the same or different resource within the same realm does not
result in a repeat prompt for a user ID and password.

Login configuration -- Login page
Specifies the location of the login form. If form-based authentication is not used,
this property is disabled.

Form Login Config -- Error page
Specifies the location of the error page. If form-based authentication is not used,
this property is disabled.

Reload interval
Specifies a time interval, in seconds, in which the Web application’s file system is
scanned for updated files. The default is 0 (zero).

Reloading enabled
Specifies whether file reloading is enabled. The default is false.

Default error page
Specifies a file name for the default error page. If no other error page is specified
in the application, this error page is used.

Additional classpath
Specifies the full class path that will be used to reference classes outside of those
specified in the archive.

If your Web application requires access to classes not contained in the archive file,
specify the full path for those classes in this field.

File serving enabled

Specifies whether file serving is enabled. File serving allows the application to
serve static file types, such as HTML and GIF. File serving can be disabled if the
application contains only dynamic components. The default value is true.

Directory browsing enabled

Specifies whether directory browsing is enabled. Directory browsing allows the
application to browse disk directories. Directory browsing can be disabled if, you
want to protect data. The default value is true.

Serve servilets by classhame
Specifies whether a servlet can be served by requesting its class name.

Usually, servlets are served only through a URI reference. The class name is the
actual name of the servlet on disk. For example, a file named SnoopServlet.java
compiles into SnoopServlet.class. (This is the class name.) SnoopServlet.class is
normally invoked by specifying snoop in the URL However, if Serve Servlets by
Classname is enabled, the servlet is invoked by specifying SnoopServlet. The
default value is true.

Virtual hostname

Specifies a virtual host name. A virtual host is a configuration enabling a single
host machine to resemble multiple host machines. This property allows you to
bind the application to a virtual host in order to enable execution on that virtual
host.

60 1BM WebSphere Application Server Network Deployment, Version 5: Applications

Filter mappings

Specifies the filter mapping declarations in this application. The container uses the
filter mapping declarations to decide on the type and order of filters to apply to a
request.

After the container matches the request URI to a servlet, for each filter mapping
element, it determines what filters to apply based on the servlet name or the URL
pattern, depending on the style specified. Filters are invoked in the same order as
the one specified in the list of filter mapping elements. The value that you specify
for the filter name must be the same value as that specified in the
<filter><filtername> sub-element declarations in the deployment descriptor.

Assembly property extensions

Use this panel to configure WebSphere Application Server specific Web module
extensions, or also referred to as assembly property extensions.

This panel lists the extensions that can be configured through the tool.

Reach the applicable extension panel by clicking on the panel name in the
navigation at the left, or by double-clicking the attribute name in the list provided.

Access this page by traversing the following path in theApplication AssemblyTool:
Web Modules > component_instance > Assembly Property Extensions

Assembly properties for a Web module include:

* File serving attributes

* Invoker attributes

* JavaServer Pages (JSP) attributes

* Multipurpose Internet Mail Extensions (MIME) filters
* Servlet caching configurations

File serving attribute assembly settings

File serving allows a Web application to serve static file types, such as HTML.
File-serving attributes are used by the servlet that implements file-serving behavior.

Access this page by traversing the following path in the Application AssemblyTool:
Web Modules > component_instance > Assembly Property Extensions

File Serving Attribute (Name)

Specifies the name of an attribute.

Data type String

File Serving Attribute (Value)

Specifies the value of an attribute.

Data type String

Invoker attribute assembly settings

Invoker attributes are used by the servlet that implements the invocation behavior.

Chapter 2. Using Web applications 61

Access this page by traversing the following path in the Application Assembly
Tool:

Web Modules > component _instance > Assembly Property Extensions

Invoker Attribute (Name)
Specifies the name of an attribute.

Data type String

Invoker Attribute (Value)

Specifies the value of an attribute.

Data type String

Error page assembly settings

Error page locations allow a servlet to find and serve a URI to a client based on a
specified error status code or exception type. These properties are used if the error
handler is another servlet or JSP file.

Access this page by traversing the following path in the Application Assembly
Tool:

Web Modules > component_instance

The error page properties specify a mapping between an error code or exception
type and the path of a resource in the Web application. The container examines the
list in the order that it is defined, and attempts to match the error condition by
status code or by exception class. On the first successful match of the error
condition, the container serves back the resource defined in the Location property.

Error code
Indicates that the error condition is a status code.

Data type Integer

Error Code (Required, String)
Specifies an HTTP error code, for example, 404.

Data type String

Exception
Indicates that the error condition is an exception type.

Data type String

Exception type name (Required, String)
Specifies an exception type.

Data type String
Location (Required, String)
Contains the location of the error-handling resource in the Web application.

Data type String

62 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Web resource collections security constraint properties

A Web resource collection defines a set of URL patterns or resources and HTTP
methods belonging to the resource, which define the security constraints for a Web
component.

Access this page by traversing the following path in the Application Assembly
Tool:

Web Modules > component_instance

HTTP methods handle HTTP-based requests, such as GET, POST, PUT, and
DELETE. A URL pattern is a partial Uniform Resource Locator that acts as a

template for matching the pattern with existing full URLs in an attempt to find a
valid file.

Web resource name
Specifies the name of a Web resource collection.

Data type String

Web resource description
Contains a description of the Web resource collection.

HTTP methods

Specifies the HTTP methods to which the security constraints apply. If no HTTP
methods are specified, then the security constraint applies to all HTTP methods.
The valid values are GET, POST, PUT, DELETE, HEAD, OPTIONS, and TRACE.

Data type String

URL pattern
Specifies URL patterns for resources in a Web application. All requests that contain
a request path that matches the URL pattern are subject to the security constraint.

Data type String

Troubleshooting tips for Web application deployment

Deployment of a Web application is successful if you can access the application by
typing a Uniform Resource Locator (URL) in a browser, or if you can access the
application by following a link.

If you cannot access your application, follow these steps to eliminate some
common errors that can occur during migration or deployment.

Web module does not run in WebSphere Application Server Version 5.

Symptom Your Web module does not run when you
migrate it to Version 5

Problem In Version 4.x, the classpath setting that
affected visibility was Module Visibility Mode.
In Version 5, you must use classloader
policies to set visibility.

Chapter 2. Using Web applications 63

64

Recommended response

Welcome page is not visible.

Symptom

Problem

Recommended response

HTML files are not found.

Symptom

Problem

Recommended response

Reassemble an existing module, or change
the visibility settings in the classloader
policies.

See article (Migration of module visibility
modes from Version 4.x) for more
information and examples.

You cannot access an application with a Web
path of:

/webapp/myapp
The default welcome page for a Web
application is assumed to be index.html. You
cannot access the default page of the myapp
application unless it is named index.html.
To identify a different welcome page, modify
the properties of the Web module during

assembly. See article

odules| for more information.

Your Web application ran successfully on

prior versions, but now you encounter errors

that the welcome page (typically index.html),

or referenced HTML files are not found:
Error 404: File not found: Banner.html
Error 404: File not found: HomeContent.html

For security and consistency reasons, Web

application URLs are now case-sensitive on

all operating systems.

Suppose the content of the index page is as
follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 5.0 Frameset//EN">
<HTML>

<TITLE>

Insurance Home Page

</TITLE>
<frameset rows="18,80">
<frame src="Banner.html" name="BannerFr
<frame src="HomeContent.html" name="HomeCont
</frameset>

</HTML>

However the actual file names in the
\WebSphere\AppServer\installedApps\...
directory where the application is deployed
are:

banner.html

homecontent.html

To correct this problem, modify the index.html
file to change the names Banner.html and
HomeContent.html to banner.html and
homecontent.html to match the names of the
files in the deployed application.

IBM WebSphere Application Server Network Deployment, Version 5: Applications

Modifying the default Web container configuration

Before you begin

If you choose not to use the default application server, create an application server
instance.

An application server instance contains a single instance of a Web container, which
is created automatically when an application server is created.

The Web container is created initially with default properties values suitable for
simple Web applications. However, these values might not be appropriate for more
complex Web applications.

Your application is complex if it requires any of the following features:
e virtual host

* servlet caching

* special client request loads

* persistent HTTP session support

* special HTTP transport settings

Modify the following properties if you have a complex application:

Steps for this task

1. (Optional) Modify the Web container General Properties if your Web
application requires a virtual host, other than the default_host, or requires
servlet caching.

2. (Optional) Modify the Web Container Additional Properties Thread Pool
setting if your application handles special client request loads.

3. (Optional) Modify the Web Container Additional Properties Session
Management setting if your application requires persistent HTTP session support.

4. (Optional) Modify the Web Container Additional Properties HTTP transports
setting if your application requires one of the following HTTP transport
settings:

* unique hostname and port for client access
¢ SSL enablement

Web container

A Web container handles requests for servlets, JavaServer Pages (JSP) files, and
other types of files that include server-side code. The Web container creates servlet
instances, loads and unloads servlets, creates and manages request and response
objects, and performs other servlet management tasks.

The Web server plug-ins, provided by the WebSphere Application Server, help
supported Web servers pass servlet requests to Web containers.

Web container settings

Use this page to configure the container settings.

Access this page by traversing the following path in the Web console:
Servers > Application Servers > server_instance > Web container

Chapter 2. Using Web applications 65

Configuration - General Properties

Default virtual host
Specifies a virtual host is a configuration enabling a single host machine to

resemble multiple host machines. Resources associated with one virtual host
cannot share data with resources associated with another virtual host, even if the
virtual hosts share the same physical machine.

Select a virtual host option:

Default Host
The product provides a default virtual host with some common aliases,
such as the machine IP address, short host name, and fully qualified host
name. The alias comprises the first part of the path for accessing a resource
such as a servlet. For example, it is Tocalhost:9080 in the request
http://localhost:9080/myServiet.

Admin Host
This is another name for the application server; also known as serverl in
the base installation. This process supports the use of the administrative
console.

Servlet caching

Specifies that if a servlet is invoked once and it generates output to be cached, a
cache entry is created containing not only the output, but also side effects of the
invocation. These side effects can include calls to other servlets or Java Server
Pages (JSP) files, as well as metadata about the entry, including timeout and entry
priority information.

Enable servlet caching
Check this box to enable servlet caching.

Web Container Services settings
Use this page to configure container services settings.

Access this page by traversing the following path in the Web console:

Servers > Application Servers > server_instance > Web container > Additional Properties

Can Be Grown
Specifies the number of threads to increase beyond the maximum size configured

for the pool.

Data type Boolean
Default False

Default Priority
Specifies the default priority for servlets that you can cache. This setting
determines how long an entry stays in a full cache. The recommended value is 1.

Data type Integer
Default Not applicable
Range 1-3

Dynamic Properties
Specifies a set of name-value pairs for configuring properties beyond those
displayed in the interface.

66 1BM WebSphere Application Server Network Deployment, Version 5: Applications

Data type String

Enable servlet caching

Enable the servlet and JavaServer Pages (JSP) dynamic Java Naming and Directory

Interface (JNDI) caching feature.

Data type Boolean
Default True

HTTP Transport
Specifies the HTTP transports associated with this Web container.

Data type String

Inactivity Timeout
Specifies the time after which a thread is reclaimed due to inactivity.

Data type Integer
Units seconds

Installed Web Modules

Specifies the Web modules installed into the Web container of this server.

Data type String

Maximum Size
Specifies the maximum number of threads to allow in the pool.

Data type Integer

Minimum Size
Specifies the minimum number of threads to allow in the pool.

Data type Integer
Units Threads

Session Manager
Specifies the Session Manager associated with this Web container.

Data type String

Thread Pool
Specifies the thread pool settings for the Web container.

Data type String

Web module settings

Use this page to configure Web module settings.

Access this page by traversing the following path in the Web console:
Enterprise Application > application_instance > Web Module

Chapter 2. Using Web applications

67

URI

Specifies a URI that, when resolved relative to the application URL, specifies the
location of the module archive contents on a file system. The URI must match the
ModuleRef URI in the deployment descriptor of an application if the module was
packaged as part of a deployed application or enterprise archive (EAR) file.

Name
Specifies the unique display name for the module.

Alternate DD
Specifies the file name for an alternative deployment descriptor file to use instead
of the original deployment descriptor file in the module JAR file.

This file is the post-assembly version of the deployment descriptor file. You can edit
the original deployment descriptor file to resolve dependencies and security
information. Specifying the use of the alternative deployment descriptor keeps the
original deployment descriptor file intact.

The value of the Alternate DD property must be the full path name of the
deployment descriptor file, relative to the module root directory. By convention,
the file is in the ALT-INF directory. If this property is not specified, the deployment
descriptor file is read from the module JAR file.

Starting weight
Specifies the order in which modules are started. Lower weighted modules are
started before higher weighted modules.

Prefer WEB-INF Classes

Specifies classes to load in WEB-INF before any other classes. Implementing the
application class loader is recommended so that classes and resources packaged
within the WAR file load before classes and resources residing in container-wide
library JAR files.

Initial State
Specifies the default state of this application at server startup.

Web Module Deployment settings

Use this page to configure an instance of Web module deployment.

Access this page by traversing the following path in the Web console:
Enterprise Application > application_instance > Web Module > Web Module_instance

URI

Specifies a URI that, when resolved relative to the application URL, specifies the
location of the module archive contents on a file system. The URI must match the
ModuleRef URI in the deployment descriptor of an application if the module was
packaged as part of a deployed application or enterprise archive (EAR) file.

Alternate DD
Specifies the file name for an alternative deployment descriptor file to use instead
of the original deployment descriptor file in the module JAR file.

This file is the post-assembly version of the deployment descriptor file. You can edit
the original deployment descriptor file to resolve dependencies and security
information. Specifying the use of the alternative deployment descriptor keeps the
original deployment descriptor file intact.

68 IBM WebSphere Application Server Network Deployment, Version 5: Applications

The value of the Alternate DD property must be the full path name of the
deployment descriptor file, relative to the module root directory. By convention,
the file is in the ALT-INF directory. If this property is not specified, the deployment
descriptor file is read from the module JAR file.

Starting weight
Specifies the order in which modules are started. Lower weighted modules are
started before higher weighted modules.

Classloader Mode

Specifies whether the classloader should search in the parent classloader or in the
application classloader first to load a class. The standard for JDK classloaders and
WebSphere classloaders is PARENT_FIRST. By specifying PARENT_LAST, your
application can override classes contained in the parent classloader, but this action
can potentially result in ClassCastException or LinkageErrors if you have mixed
use of overriden classes and non-overriden classes.

The options are PARENT_FIRST and PARENT_LAST. The default is to search in
the parent classloader before searching in the application classloader to load a

class.
Data type String
Default PARENT_FIRST

Web applications: Resources for learning

Use the following links to find relevant supplemental information about Web
applications. The information resides on IBM and non-IBM Internet sites, whose
sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

View links to additional information about:
* Programming model and decisions
* Programming instructions and examples

* Programming specifications

< Y J2EE BluePrints for Web applications

http:/ /java.sun.com/blueprints/guidelines/designing_enterprise_applications/|
web_tier /index.html]|

* » Redbook on the design and implementation of Servlets, JSP files, and
enterprise beans

http:/ /publib-b.boulder.ibm.com /Redbooks.nsf/RedbookAbstracts /|
52245754 html1?OpenDocument]

* » Redbook on Servlet and JSP file Programming

http:/ /publib-b.boulder.ibm.com /Redbooks.nsf/Redbook Abstracts/ |
52245755 html?OpenDocument]

« ' Sun’s JavaTM Tutorial on Servlets

[http:/ /java.sun.com /docs/books / tutorial /servlets /index.html|

Chapter 2. Using Web applications 69

http://java.sun.com/blueprints/guidelines/designing_enterprise_applications/web_tier/index.html
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications/web_tier/index.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg245754.html?OpenDocument
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg245754.html?OpenDocument
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg245755.html?OpenDocument
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg245755.html?OpenDocument
http://java.sun.com/docs/books/tutorial/servlets/index.html

« % Introduction to JavaServer Pages - Tutorial

[http: / /www-4.ibm.com /software /webservers /appserv / education.html#online|

* & Bean Scripting Framework description

[http: / /www.mozilla.org /rhino/bsf.html|

* & Web delivered samples in the Samples Gallery

[http:/ /www7b.software.ibm.com /wsdd /library /samples/ AppServer.htm]|
* & Java 2 Software Development Kit (SDK)

[http:/ /java.sun.com /j2se /1.3 /|
* & Servlet 2.3 Specification

[http:/ /jcp.org /aboutJava/communityprocess/ first /jsr053 /index.html|

+ & JavaServer Pages 1.2 Specification

[http:/ /icp.org/aboutJava/communityprocess/ first /jsr053 /index.html|
+ & Differences between JavaScript and ECMAScript

[http: / /www.webstandards.org /learn / resources /javascript/index.html]
+ &= ISO 8859 Specifications

[http:/ /www.iso.org/iso/en/CatalogueListPage.CatalogueList|

70 IBM WebSphere Application Server Network Deployment, Version 5: Applications

http://www-4.ibm.com/software/webservers/appserv/education.html#online
http://www.mozilla.org/rhino/bsf.html
http://www7b.software.ibm.com/wsdd/library/samples/AppServer.html
http://java.sun.com/j2se/1.3/
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://www.webstandards.org/learn/resources/javascript/index.html
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList

Chapter 3. Managing HTTP sessions

IBM WebSphere Application Server provides a service for managing HTTP
sessions: Session Manager. The key activities for session management are
summarized below.

Before you begin these steps, make sure you are familiar with the programming
model for accessing HTTP session support in the applications following the Servlet
2.3 APL

Steps for this task

1. Plan your approach to session management, which could include
[tracking] ession recovery] and [session clustering|

2. Create or modify your own applications to use session support to maintain
sessions on behalf of Web applications.

3. (Assemble your application.)
4. (Deploy your application.)

5. Ensure the administrator appropriately |configures session management]in the
administrative domain.

6. Adjust [configuration settings|and perform other [tuning activities for optimal
use of sessions in your environment.

Sessions

A session is a series of requests to a servlet, originating from the same user at the
same browser.

Sessions allow applications running in a Web container to keep track of individual
users.

For example, a servlet might use sessions to provide "shopping carts” to online
shoppers. Suppose the servlet is designed to record the items each shopper
indicates he or she wants to purchase from the Web site. It is important that the
servlet be able to associate incoming requests with particular shoppers. Otherwise,
the servlet might mistakenly add Shopper_1’s choices to the cart of Shopper_2.

A servlet distinguishes users by their unique session IDs. The session ID arrives
with each request. If the user’s browser is cookie-enabled, the session ID is stored
as a cookie. As an alternative, the session ID can be conveyed to the servlet by
URL rewriting, in which the session ID is appended to the URL of the servlet or
JavaServer Pages (JSP) file from which the user is making requests. For requests
over HTTPS or Secure Sockets Layer (SSL), Another alternative is to use SSL
information to identify the session.

© Copyright IBM Corp. 2002 71

Migrating HTTP sessions

Note: In Version 5 default write frequency mode is TIME_BASED_WRITES, which
is different from Version 4.0 and 3.5 default mode of END_OF_SERVICE.

Migrating from Version 4.0

No programmatic changes are required to migrate from version 4.0 to version 5.
Migrating from Version 3.5

If you have Version 3.5 applications running in Servlet 2.1 mode, some of the
following Version 5 differences might influence how you choose to track and

manage sessions.

Steps for this task

1. During application development, modify session-related APIs as needed.

Some API changes are required in order to redeploy existing applications on
Version 5. These include changes to the HttpSession API itself as well as issues
associated with moving to support for the Servlet 2.3 specification. Certain
Servlet 2.1 API methods have been deprecated in Servlet 2.3 API . These
deprecated APIs still work in Version 5.0, but they may be removed in a future
version of the API. Changes are summarized in the following list:

* Replace instances of getValue() with getAttribute()

* Replace instances of getValueNames() with getAttributeNames()

* Replace instances of removeValue() with removeAttribute()

* Replace instances of putValue() with setAttribute()

2. During application development, modify Web application behavior as needed.
In accordance with the Servlet 2.3 specification, HttpSession objects must be
scoped within a single Web application context; they may not be shared
between contexts. This means that a session can no longer span Web
applications. Objects added to a session by a servlet or JSP in one Web
application cannot be accessed from another Web application. The same session
ID may be shared (because the same cookie is in use), but each Web application

will have a unique session associated with the session ID. Version 5 provides a
feature that can be used to extend scope of a session to enterprise application.

3. Use administrative tools to configure Session Manager security settings as
needed.

Relative to session security, the default Session Manager setting for Integrate
Security is now false. This is different from the default setting in some earlier
releases.

4. Use administrative tools to configure the JSP enabler and application server as
needed.

In Version 3.5 of the product, JSP files that contained the usebean tag with
scope set to session did not always work properly when session persistence
was enabled. Specifically, the JSP writer needed to write a scriplet to explicitly
set the attribute (that is, to call setAttribute()) if it was changed as part of JSP
processing.

Two new features in Version 5.0 help address this problem:
* You can set dosetattribute to true on the JSP InitParameter.

* You can set the Write Contents option to Write all.

72 IBM WebSphere Application Server Network Deployment, Version 5: Applications

The differences between the two solutions are summarized in the following

table:

Applies to

Configured at

Action

dosetattribute set to
true

JspP

JSP enabler

Assures that JSP
session-scoped beans

always call
setAttribute()

Write Contents
option set to Write all

All session data
(changed or
unchanged) is
written to the
external location

servlet or JSP application server

If session persistence is enabled and a class reload for the Web application
occurs, the sessions associated with the Web application are maintained in the
persistent store and will be available after the reload.

Developing session management in servlets

This information, combined with the coding example SessionSample java, provides
a programming model for implementing sessions in your own servlets.

Steps for this task

1.

Get the HttpSession object.

To obtain a session, use the getSession() method of the
javax.servlet.http. HttpServletRequest object in the Java Servlet 2.3 APL

When you first obtain the HttpSession object, the Session Management facility
uses one of three ways to establish tracking of the session: cookies, URL
rewriting, or Secure Sockets Layer (SSL) information.

Assume the Session Management facility uses cookies. In such a case, the
Session Management facility creates a unique session ID and typically sends it
back to the browser as a cookie. Each subsequent request from this user (at the
same browser) passes the cookie containing the session ID, and the Session
Management facility uses this ID to find the user’s existing HttpSession object.

In Step 1 of the code sample, the Boolean(create) is set to true so that the
HttpSession object is created if it does not already exist. (With the Servlet 2.3
API, the javax.servlet.http.HttpServletRequest.getSession() method with no
boolean defaults to true and creates a session if one does not already exist for
this user.)

Store and retrieve user-defined data in the session.

After a session is established, you can add and retrieve user-defined data to the
session. The HttpSession object has methods similar to those in

java.util. Dictionary for adding, retrieving, and removing arbitrary Java objects.
In Step 2 of the code sample, the servlet reads an integer object from the
HttpSession, increments it, and writes it back. You can use any name to identify
values in the HttpSession object. The code sample uses the name
sessiontest.counter.

Because the HttpSession object is shared among servlets that the user might
access, consider adopting a site-wide naming convention to avoid conflicts.

(Optional) Output an HTML response page containing data from the
HttpSession object.

Chapter 3. Managing HTTP sessions 73

4. Provide feedback to the user that an action has taken place during the session.
You may want to pass HTML code to the client browser indicating that an
action has occurred.

For example, in step 3 of the code sample, the servlet generates a Web page
that is returned to the user and displays the value of the sessiontest.counter
each time the user visits that Web page during the session.

5. (Optional) Notify Listeners.

Objects stored in a session that implement the
javax.servlet.http.HttpSessionBindingListener interface are notified when the
session is preparing to end and become invalidated. This notice enables you to
perform post-session processing, including permanently saving the data
changes made during the session to a database.

6. End the session.
You can end a session:

* Automatically with the Session Management facility if a session is inactive
for a specified time. The administrators provide a way to specify the amount
of time after which to invalidate a session.

* By coding the servlet to call the invalidate() method on the session object.

SessionSample.java

import java.io.*;

import java.util.x;

import javax.servlet.x;
import javax.servlet.http.*;

public class SessionSample extends HttpServlet {
public void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

// Step 1: Get the Session object

boolean create = true;
HttpSession session = request.getSession(create);

// Step 2: Get the session data value

Integer ival = (Integer)

session.getAttribute ("sessiontest.counter");

if (ival == null) ival = new Integer (1);

else ival = new Integer (ival.intValue () + 1);
session.setAttribute ("sessiontest.counter", ival);

// Step 3: Output the page

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.printIn("<html>");

out.printin("<head><title>Session Tracking Test<
/title></head>");

out.printin("<body>");

out.printin("<h1>Session Tracking Test</h1>");

out.printin ("You have hit this page " + ival + " times" +
"
") ;

out.println ("Your " + request.getHeader("Cookie"));

out.printin("</body></htm1>");

74 1BM WebSphere Application Server Network Deployment, Version 5: Applications

Assembling so that session data can be shared

In accordance with the Servlet 2.3 API specification, by default the Session
Management facility supports session scoping by Web module only. Only servlets
in the same Web module can access the data associated with a particular session.
WebSphere Application Server provides an option that you can use to extend the
scope of the session attributes to an enterprise application. Therefore, you can
share session attributes across all the Web modules in an enterprise application.
This option is provided as an IBM extension.

Restriction: To use this option, you must install all the Web modules in the
enterprise application on a given server. You cannot split up Web modules in the
enterprise application by servers. For example, with an enterprise application
containing two Web modules, you cannot use this option when one Web module is
installed on one server and second Web module is installed on a different server.
In such split installations, applications might share session attributes across Web
modules using distributed sessions, but session data integrity is lost when
concurrent access to a session is made in different Web modules. It also severely
restricts use of some Session Management features, like TIME_BASED_WRITES.
For enterprise applications on which this option is enabled, the Session
Management configuration on the Web module inside the enterprise application is
ignored. Then Session Management configuration defined on enterprise application
is used if Session Management is overwritten at the enterprise application level.
Otherwise, the Session Management configuration on the Web container is used.

Do the following to share session data across Web modules in an enterprise
application:

Steps for this task

1. Launch the (Application Assembly Tool) (AAT).

2. Click the application (EAR file) you want to share.

Click the IBM extension tab.

Click Shared httpsession context.

Click Apply.

Make sure the class definition of attributes put into session are available to all
the Web modules in the enterprise application.

6. Save the application (EAR) file.

ok w»

Servlet APl Behavior

If shared HttpSession context is turned on in an enterprise application, HttpSession
listeners defined in all the Web modules inside the enterprise application are
invoked for session events. The order of listener invocation is not guaranteed.

Session security support

You can integrate HTTP sessions and security in IBM WebSphere Application
Server. When security integration is enabled in the Session Management facility
and a session is accessed in a protected resource, you can access that session only
in protected resources from then on. You cannot mix secured and unsecured
resources accessing sessions when security integration is turned on. Security
integration in the Session Management facility is not supported in form-based
login with SWAM.

Chapter 3. Managing HTTP sessions 75

Security integration rules for HTTP sessions

Only authenticated users can access sessions created in secured pages and are
created under the identity of the authenticated user. Only this authenticated user
can access these sessions in other secured pages. To protect these sessions from
unauthorized users, you cannot access them from an unsecure page.

Programmatic details and scenarios

IBM WebSphere Application Server maintains the security of individual sessions.

An identity or user name, readable by the
com.ibm.websphere.servlet.session.IBMSession interface, is associated with a
session. An unauthenticated identity is denoted by the user name anonymous. IBM
WebSphere Application Server includes the
com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException class,
which is used when a session is requested without the necessary credentials.

The Session Management facility uses the WebSphere Application Server security
infrastructure to determine the authenticated identity associated with a client
HTTP request that either retrieves or creates a session. WebSphere Application
Server security determines identity using certificates, LPTA, and other methods.

After obtaining the identity of the current request, the Session Management facility
determines whether to return the session requested using a getSession() call or not.

The following table lists possible scenarios in which security integration is enabled
with outcomes dependent on whether the HTTP request is authenticated and
whether a valid session ID and user name was passed to the Session Management
facility.

Unauthenticated HTTP
request is used to retrieve a
session

HTTP request is
authenticated, with an
identity of "FRED" used to
retrieve a session

A new session is created. The
user name is FRED

A new session is created. The
user name is anonymous

No session ID was passed in
for this request, or the ID is
for a session that is no longer
valid

A session ID for a valid The session is returned. The session is returned.

session is passed in. The
current session user name is
"anonymous”

Session Management changes
the user name to FRED

A session ID for a valid
session is passed in. The
current session user name is
FRED

The session is not returned.
An
UnauthorizedSessionRequest
Exception error is thrown*

The session is returned.

A session ID for a valid
session is passed in. The
current session user name is
BOB

The session is not returned.
An
UnauthorizedSessionRequest
Exception error is thrown*

The session is not returned.
An
UnauthorizedSessionRequest
Exception error is thrown*

* A com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException error

is thrown to the servlet.

IBM WebSphere Application Server Network Deployment, Version 5: Applications

Session management support

WebSphere Application Server provides facilities, grouped under the heading
Session Management, that support the javax.servlet.http. HttpSession interface
described in the Servlet API specification.

In accordance with the Servlet 2.3 API specification, the Session Management
facility supports session scoping by Web module only. Only servlets in the same
Web module can access the data associated with a particular session. Multiple
requests from the same browser, each specifying a unique Web application, result
in multiple sessions with a shared session ID. You can invalidate any of the
sessions that share a session ID without affecting the other sessions.

You can configure a session timeout for each Web application. A Web application
timeout value of 0 (the default value) means that the invalidation timeout value
from the Session Management facility is used.

When an HTTP client interacts with a servlet, the state information associated with
a series of client requests is represented as an HTTP session and identified by a
session ID. Session Management is responsible for managing HTTP sessions,
providing storage for session data, allocating session IDs, and tracking the session
ID associated with each client request through the use of cookies or URL rewriting
techniques. Session Management can store session-related information in several
ways:
* In application server memory (the default). This information cannot be shared
with other application servers.

* In a database. This storage option is known as database persistent sessions.

* In another WebSphere Application Server instance. This storage option is
known as memory-to-memory sessions.

The last two options are referred to as distributed sessions. Distributed sessions are
essential for using HTTP sessions for failover facility. When an application server
receives a request associated with a session ID that it currently does not have in
memory, it can obtain the required session state by accessing the external store
(database or memory-to-memory). If distributed session support is not enabled, an
application server cannot access session information for HTTP requests that are
sent to servers other than the one where the session was originally created. Session
Management implements caching optimizations to minimize the overhead of
accessing the external store, especially when consecutive requests are routed to the
same application server.

Storing session states in an external store also provides a degree of fault tolerance.
If an application server goes offline, the state of its current sessions is still available
in the external store. This availability enables other application servers to continue
processing subsequent client requests associated with that session.

Saving session states to an external location does not completely guarantee their
preservation in case of a server failure. For example, if a server fails while it is
modifying the state of a session, some information is lost and subsequent
processing using that session can be affected. However, this situation represents a
very small period of time when there is a risk of losing session information.

The drawback to saving session states in an external store is that accessing the

session state in an external location can use valuable system resources. Session
Management can improve system performance by caching the session data at the

Chapter 3. Managing HTTP sessions 77

server level. Multiple consecutive requests that are directed to the same server can
find the required state data in the cache, reducing the number of times that the
actual session state is accessed in external store and consequently reducing the
overhead associated with external location access.

Configuring session management by level

When you configure session management at the Web container level, all
applications and the respective Web modules in the Web container normally inherit
that configuration, setting up a basic default configuration for the applications and
Web modules below it.

However, you can set up different configurations individually for specific
applications and Web modules that vary from the Web container default. These
different configurations override the default for these applications and Web
modules only.

Note: When you overwrite the default session management settings on the
application level, all the Web modules below that application inherit this new
setting unless they too are set to overwrite these settings.

Steps for this task
1. Open the Administrative console.

2. Select the level that this configuration applies to:
* For the web container level:
a. Click Servers > Application Servers.
b. Select a server from the list of application servers.
c. Under Additional Properties, click Web Container.
* For the enterprise application level:
a. Click Applications > Applications.
b. Select an applications from the list of applications.
* For the Web module level:
a. Click Applications > Applications.
b. Select an applications from the list of applications.
c. Under Related Items, click Web Modules defined for this Application.
d. Click a Web module from the list of Web modules.
3. Under Additional Properties, click Session Management.
4. Make whatever changes you need to manage sessions

5. (Optional) If you are working on the Web module or application level and
want these settings to override the inherited Session Management settings,
select Overwrite.

6. Click Apply and Save.

Session tracking options
There are several options for session tracking, depending on what sort of tracking
method you want to use:
 Session tracking with cookies
* Session tracking with URL rewriting

 Session tracking with SSL information

78 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Session tracking with cookies

Tracking sessions with cookies is the default. No special programming is required
to track sessions with cookies.

Session tracking with URL rewriting
An application that uses URL rewriting to track sessions must adhere to certain
programming guidelines. The application developer needs to do the following;:
* Program servlets to encode URLs

e Supply a servlet or Java Server Pages (JSP) file as an entry point to the
application

Using URL rewriting also requires that you enable URL rewriting in the Session
Management facility.

Note: In certain cases, clients cannot accept cookies. Therefore, you cannot use
cookies as a session tracking mechanism. Applications can use URL rewriting as a
substitute.

Program session servlets to encode URLs

Depending on whether the servlet is returning URLs to the browser or redirecting
them, include either encodeURL() or encodeRedirectURL() in the servlet code.
Examples demonstrating what to replace in your current servlet code follow.

Rewrite URLs to return to the browser

Suppose you currently have this statement:
out.printin("catalog<a>");

Change the servlet to call the encodeURL method before sending the URL to the
output stream:

out.printin("<a href=\"");
out.printin(response.encodeURL ("/store/catalog"));
out.printin("\">catalog");

Rewrite URLs to redirect

Suppose you currently have the following statement:
response.sendRedirect ("http://myhost/store/catalog");

Change the servlet to call the encodeRedirectURL method before sending the URL
to the output stream:

response.sendRedirect (response.encodeRedirectURL
("http://myhost/store/catalog"));

The encodeURL() and encodeRedirectURL() methods are part of the
HttpServletResponse object. These calls check to see if URL rewriting is configured
before encoding the URL. If it is not configured, the calls return the original URL.

If both cookies and URL rewriting are enabled and response.encodeURL() or

encodeRedirectURLY() is called, the URL is encoded, even if the browser making the
HTTP request processed the session cookie.

Chapter 3. Managing HTTP sessions 79

You can also configure session support to enable protocol switch rewriting. When
this option is enabled, the product encodes the URL with the session ID for
switching between HTTP and HTTPS protocols.

Supply a servlet or JSP file as an entry point

The entry point to an application (such as the initial screen presented) may not
require the use of sessions. However, if the application in general requires session
support (meaning some part of it, such as a servlet, requires session support), then
after a session is created, all URLs are encoded in perpetuate the session ID for the
servlet (or other application component) requiring the session support.

The following example shows how you can embed Java code within a JSP file:
<

response.encodeURL ("/store/catalog");

0,
%>

Session tracking with SSL information

No special programming is required to track sessions with Secure Sockets Layer
(SSL) information.

To use SSL information, turn on Enable SSL Tracking in the Session Management
property sheet. Because the SSL session ID is negotiated between the Web browser
and HTTP server, this ID cannot survive an HTTP server failure. However, the
failure of an application server does not affect the SSL session ID if an external
HTTP Server is present between WebSphere Application Server and the browser.

SSL tracking is supported for the IBM HTTP Server and iPlanet Web servers only.
You can control the lifetime of an SSL session ID by configuring options in the Web
server. For example, in the IBM HTTP Server, set the configuration variable
SSLV3TIMEOUT to provide an adequate lifetime for the SSL session ID. An
interval that is too short can cause a premature termination of a session. Also,
some Web browsers might have their own timers that affect the lifetime of the SSL
session ID. These Web browsers may not leave the SSL session ID active long
enough to serve as a useful mechanism for session tracking. Internal Http Server of
WebSphere also supports SSL Tracking.

When using the SSL session ID as the session tracking mechanism in a cloned
environment, use either cookies or URL rewriting to maintain session affinity. The
cookie or rewritten URL contains session affinity information that enables the Web
server to properly route a session back to the same server for each request.

Configuring session tracking

To configure session tracking, complete the following;:

Steps for this task

1. Go to the appropriate level of [Session Management|

2. Specify which session tracking mechanism you want to pass the session 1D
between the browser and the servlet:

e To track sessions with cookies, click Enable Cookies.
To change the cookie settings, click Modify.
* To track sessions with URL rewriting, click Enable URL Rewriting.

80 IBM WebSphere Application Server Network Deployment, Version 5: Applications

If you want to enable protocol switch rewriting, click Enable protocol switch
rewriting.
* To track sessions with SSL information, click Enable SSL ID tracking.
3. Click Apply.
4. Click Save.
5. Define the [session recovery] characteristics.

Serializing access to session data

The Servlet API supports concurrent access to a session in a given server instance.
WebSphere Application Server provides an option to prevent the concurrent access
to a session in a given server instance so that concurrent modification of a session
does not occur in a given server instance. This prevention is achieved by
synchronizing the requests based on session. When this feature is turned on, a
session is obtained for the request before invoking the servlet and requests are
synchronized by locking the session for the servlet execution time. Note that
synchronization is based on the memory copy of session. So this feature cannot
serialize requests across servers based on session when session affinity fails.

Restriction: Use this feature only when concurrent modification of the same
session data is possible and is not desirable by the application. This feature has
overhead of serializing the requests based on a session.

Do the following to synchronize session access:

Steps for this task

1. Belect the level of Session Management{ on which you want to serialize session
access.

2. Under Serialize Session access, click Allow serial access.

3. In the Maximum wait time box, type the amount of time, in milliseconds, a
servlet waits on a session before continuing execution. The default is 120000
milliseconds or two minutes.

4. (Optional) Select Allow access on timeout if you want the servlet execution to
abort when the session request times out. This selection creates error logs. If
you do not select this box, the request is executed normally.

5. Click Apply.
6. Click Save.

Session Management settings

Use this page to manage HTTP session support. This support includes specifying a
session tracking mechanism, setting maximum in-memory session count,
controlling overflow, and configuring session timeout.

To view this administrative console page, click Servers > Application Servers >
server_name > Web Container > Session Management.

Overwrite Session Management

Specifies whether or not these Session Management settings take precedence over
those normally inherited from a higher level for the current application or Web
module.

By default, Web modules inherit Session Management settings from the application
level above it, and applications inherit Session Management settings from the Web
container level above it.

Chapter 3. Managing HTTP sessions 81

Session tracking mechanism
Specifies a mechanism for HTTP session management.

Mechanism Function

Enable SSL ID Tracking Specifies that session tracking uses Secure
Sockets Layer (SSL) information as a session
ID. Enabling SSL tracking takes precedence
over cookie-based session tracking and URL
rewriting.

Enable Cookies Specifies that session tracking uses cookies to
carry session IDs. If cookies are enabled,
session tracking recognizes session IDs that
arrive as cookies and tries to use cookies for
sending session IDs. If cookies are not
enabled, session tracking uses URL rewriting
instead of cookies (if URL rewriting is
enabled).

Enabling cookies takes precedence over URL
rewriting. Do not disable cookies in the
Session Management facility of the
application server that is running the
administrative application because this action
causes the administrative application not to
function after a restart of the server. As an
alternative, run the administrative
application in a separate process from your
applications.

Click Modify to change these settings.
Enable URL Rewriting Specifies that the Session Management
facility uses rewritten URLs to carry the
session IDs. If URL rewriting is enabled, the
Session Management facility recognizes
session IDs that arrive in the URL if the
encodeURL method is called in the servlet.
Enable Protocol Switch Rewriting Specifies that the session ID is added to a
URL when the URL requires a switch from
HTTP to HTTPS or from HTTPS to HTTP. If
rewriting is enabled, the session ID is
required to go between HTTP and HTTPS.

Maximum in-memory session count
Specifies the maximum number of sessions to maintain in memory.

The meaning differs depending on whether you are using in-memory or
distributed sessions. For in-memory sessions, this value specifies the number of
sessions in the base session table. Use the Allow Overflow property to specify
whether to limit sessions to this number for the entire Session Management facility
or to allow additional sessions to be stored in secondary tables. For distributed
sessions, this value specifies the size of the memory cache for sessions. When the
session cache has reached its maximum size and a new session is requested, the
Session Management facility removes the least recently used session from the cache
to make room for the new one.

Overflow
Specifies that the number of sessions in memory can exceed the value specified by

the Max In Memory Session Count property. This option is valid only in
nondistributed sessions mode.

82 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Session timeout

Specifies how long a session can go unused before it is no longer valid. Specify
either Set timeout or No timeout. Specify the value in minutes greater than or
equal to two.

The value of this setting is used as a default when the session timeout is not
specified in a Web module deployment descriptor. Note that to preserve
performance, the invalidation timer is not accurate to the second. When the Write
Frequency is time based, ensure that this value is least twice as large as the write
interval.

Security integration
Specifies that when security integration is enabled, the Session Management facility
associates the identity of users with their HTTP sessions

Serialize session access
Specifies that concurrent session access in a given server is not allowed.

Maximum wait time Specifies the maximum amount of time a
servlet request waits on an HTTP session
before continuing execution. This parameter
is optional and expressed in milliseconds.
The default is 120000, or 2 minutes. Under
normal conditions, a servlet request waiting
for access to an HTTP session gets notified
by the request that currently owns the given
HTTP session when the request finishes.

Session access on timeout Specifies whether the request executes the
servlet or aborts servlet execution in the
event of a timeout and creates error logs.
This parameter is optional and expressed as
the boolean true or false. If the value is false,
multiple servlet requests that have timed out
concurrently, execute concurrently. The
default value is true, servlet execution aborts.

Cookie settings
Use this page to configure cookie settings for session management.

To view this administrative console page, click Servers > Application Servers >
server_name > Web Container > Session Management > Enable Cookies.

Cookie name

Specifies a unique name for the session management cookie. The servlet
specification requires the name JSESSIONID. However, for flexibility this value can
be configured.

Secure cookies
Specifies that the session cookies include the secure field. Enabling the feature
restricts the exchange of cookies to HTTPS sessions only.

Cookie domain

Specifies the domain field of a session tracking cookie. This value controls whether
or not a browser sends a cookie to particular servers. For example, if you specify a
particular domain, session cookies are sent to hosts in that domain. The default
domain is the server.

Chapter 3. Managing HTTP sessions 83

Cookie path

Specifies that a cookie is sent to the URL designated in the path. Specify any string
representing a path on the server. "/" indicates root directory. Specify a value to
restrict the paths to which the cookie will be sent. By restricting paths, you prevent
the cookie from going to certain URLs on the server. If you specify the root
directory, the cookie is sent no matter which path on the given server is accessed.

Cookie maximum age

Specifies the amount of time that the cookie lives on the client browser. Specify
that the cookie lives only as long as the current browser session, or to a maximum
age. If you choose the maximum age option, specify the age in seconds. This value
corresponds to the Time to Live (TTL) value described in the Cookie specification.

Default is the current browser session which is equivalent to setting the value to
-1.

Distributed sessions

WebSphere Application Server provides the following session mechanisms in a
distributed environment:

* Database Session persistence, where sessions are stored in the database
specified.

* Memory-to-memory Session replication, where sessions are stored in one or
more specified WebSphere Application Server instances.

When a session contains attributes that implement HttpSessionActivationListener,
notification occurs anytime the session is activated (that is, session is read to the
memory cache) or passivated (that is, session leaves the memory cache).
Passivation can occur because of a server shutdown or when the session memory
cache is full and an older session is removed from the memory cache to make
room for a newer session. It is not guaranteed that a session is passivated in one
application server prior to being activated in another.

Session recovery support

For session recovery support, WebSphere Application Server provides distributed
session support in the form of database sessions and memory-to-memory
replication. Use session recovery support under the following conditions:

* When the user’s session data must be maintained across a server restart

* When the user’s session data is too valuable to lose through an unexpected
server failure

All the attributes set in a session must implement java.io.Serializable if the session
requires external storage. In general, consider making all objects held by a session
serialized, even if immediate plans do not call for session recovery support. If the
Web site grows, and session recovery support becomes necessary, the transition
occurs transparently to the application if the sessions only hold serialized objects.
If not, a switch to session recovery support requires coding changes to make the
session contents serialized.

Distributed Environment settings

Use this page to specify a type for saving a session in a distributed environment.

84 IBM WebSphere Application Server Network Deployment, Version 5: Applications

To view this administrative console page, click Servers > Application Servers >
server_name > Web Container > Session Management > Distributed Environment
Settings.

Distributed Environment
Specifies a type of distributed environment for saving a session in.

None Specifies that the Session Management

facility discards the session data when the
server shuts down.

Database Specifies that the Session Management

facility stores session information in the data
source specified by the data source
connection settings. Click Modify to change
these data source settings.

Memory to memory replication Specifies that the Session Management

facility copies the session data into another
WebSphere instance. Click Advanced to
specify the replicator to use.

Configuring for database session persistence

To configure the Session Management facility for database session persistence,
complete the following:

Steps for this task

1.
2.

© N O A

9.
10.
11.
12.

13.
14.

Create a JDBC Diriver.

Create a data source pointing to an existing database, using the JDBC driver
that you created. Note the J]NDI name of the data source.

Go to the appropriate level of [Session Management|

Click Distributed Environment Settings

Select and click Database.

Specify the Data Source JNDI name from step 2.

Specify the database user ID and password for accessing the database.
Retype the password for confirmation.

(Optional) Configure a [table space and page sizes|for DB2 session databases.
(Optional) Switch to a jmultirow schema]
Click OK.

(Optional) If you want to change the tuning parameters, click Custom Tuning
Parameters and [select a setting| or lcustomize one]

Click Apply.
Click Save.

Switching to a multirow schema

By default, a single session maps to a single row in the database table used to hold
sessions. With this setup, there are hard limits to the amount of user-defined,
application-specific data that WebSphere Application Server can access.

Steps for this task

1.

Modify the Session Management facility properties to switch from single to
multirow schema.

Chapter 3. Managing HTTP sessions 85

2. Manually drop the database table or delete all the rows in the database table
that the product uses to maintain HttpSession objects.

To drop the table:

a. Determine which data source configuration Session Management is using.
b. In the data source configuration, look up the database name.

C. Use the database facilities to connect to the database.

d. Drop the SESSIONS table.

Configuring tablespace and page sizes for DB2 session
databases

If you are using DB2 for session persistence, you can increase the page size to
optimize performance for writing large amounts of data to the database. Page sizes
of 8K, 16K, and 32K are supported.

To use a page size other than the default (4K), do the following:

Steps for this task
1. If the SESSIONS table already exists, drop it from the DB2 database.

2. Create a new DB2 buffer pool and table space, specifying the same page size
(8K, 16K or 32K) for both, and assign the new buffer pool to this table space.

DB2 Connect to session
DB2 CREATE BUFFERPOOL sessionBP SIZE 1000 PAGESIZE 8K
DB2 Connect reset
DB2 Connect to session
DB2 CREATE TABLESPACE sessionTS PAGESIZE 8K MANAGED BY SYSTEM
USING ('D:\DB2\NODEOOOO\SQLOOOO5\sessionTS.0') BUFFERPOOL sessionBP
DB2 Connect reset

Refer to DB2 product documentation for details.

3. Configure the correct table space name and page size in the Session
Management facility.

Page size is referred to as row size on the Session Management page.)
Results

When the product is restarted, the Session Management facility creates a new
SESSIONS table in the specified tablespace based on the indicated page size.

Database settings

Use this page to specify the settings for database session support.

To view this administrative console page, click Servers > Application Servers >
server_name > Web Container > Session Management > Distributed Environment
Settings > Database.

Datasource JNDI Name
Specifies the datasource description

The JNDI name of the non-XA enabled data source from which Session

Management obtains database connections. For example, if the JNDI name of the
datasource is "jdbc/sessions”, specify "jdbc/sessions.” The data source represents a

86 IBM WebSphere Application Server Network Deployment, Version 5: Applications

pool of database connections and a configuration for that pool (such as the pool
size). The data source must already exist as a configured resource in the
environment.

User ID

Specifies the user ID for database access

Password
Specifies the password for database access

Confirm Password
Specifies the password a second time to ensure it recorded correctly.

DB2 Row Size

Specifies the tablespace page size configured for the sessions table, if using a DB2
database. Possible values are 4, 8, 16, and 32 kilobytes (K). The default row size is
4K.

The default row size is 4K. In DB2, it can be updated to a larger value. This can
help database performance in some environments. When this value is other than 4,
you must specify Table Space Name to use. For 4K pages, the Table Space Name is
optional.

Table Space Name
Specifies that tablespace to be used for the sessions table.

This value is required when the DB2 Page Size is other than 4K.

Use Multirow Sessions

Specifies that each instance of application data be placed in a separate row in the
database, allowing larger amounts of data to be stored for each session. This action
can yield better performance in certain usage scenarios. If using multirow schema
is not enabled, instances of application data can be placed in the same row.

Multirow schema considerations

IBM WebSphere Application Server supports the use of a multirow schema option
in which each piece of application specific data is stored in a separate row of the
database. With this setup, the total amount of data you can place in a session is
now bound only by the database capacities. The only practical limit that remains is
the size of the session attribute object.

The multirow schema potentially has performance benefits in certain usage
scenarios, such as when larger amounts of data are stored in the session but only
small amounts are specifically accessed during a given servlet processing of an
HTTP request. In such a scenario, avoiding unneeded Java object serialization is
beneficial to performance.

Understand that switching between multirow and single row is not a trivial
proposition.

In addition to allowing larger session records, using multirow schema can yield

performance benefits. However, it requires a little work to switch from single-row
to multirow schema, as shown in the instructions below.

Chapter 3. Managing HTTP sessions 87

Coding considerations and test environment

Consider configuring direct single-row usage to one database and multirow usage
to another database while you verify which option suits your application needs.
(Do this in code by switching the data source used; then monitor performance.)

Programming issue Application scenario

Reasons to use single-row * You can read or write all values with just

one record read and write.

* This takes up less space in a database
because you are guaranteed that each
session is only one record long.

Reasons not to use single-row 2-megabyte limit of stored data per session.

Reasons to use multirow * The application can store an unlimited

amount of data; that is, you are limited
only by the size of the database and a
2-megabyte-per-record limit.

* The application can read individual fields
instead of the whole record. When large
amounts of data are stored in the session
but only small amounts are specifically
accessed during servlet processing of an
HTTP request, multirow sessions can
improve performance by avoiding
unneeded Java object serialization.

Reasons not to use multirow If data is small in size, you probably do not
want the extra overhead of multiple row
reads when you can store everything in one
row.

In the case of multirow usage, design your application data objects not to have
references to each other, to prevent circular references. For example, suppose you
are storing two objects A and B in the session using HttpSession.put(..) method,
and A contains a reference to B. In the multirow case, because objects are stored in
different rows of the database, when objects A and B are retrieved later, the object
graph between A and B is different than stored. A and B behave as independent
objects.

Memory-to-memory replication

88

WebSphere Application Server supports session replication to another WebSphere
Application Server instance. This support is referred to as memory-to-memory session
replication. In this mode, sessions can be replicated to one or more WebSphere
Application Server instances to address a single-point of failure (SPOF).

The WebSphere Application Server instance in which the session is currently
processed is referred to as the owner of the session. In a clustered environment,
session affinity in the WebSphere Application Server plug-in routes the requests for
a given session to the same server. If the current owner server instance of the
session fails, then the WebSphere Application Server plug-in will route the requests
to the another appropriate server in the cluster. This server either retrieves the
session from a server that has the backup copy of the session or it retrieves the

IBM WebSphere Application Server Network Deployment, Version 5: Applications

session from its own backup copy store, and the session resides there. The server
now becomes the owner of the session and affinity is now maintained to this
server.

A WebSphere Application Server instance can serve servlets and at the same time
act as a backup store for sessions owned by other WebSphere Application Server
instances. You can also set up a WebSphere Application Server instance so that it
only stores backups of other WebSphere Application Server sessions. This storage
option is controlled by the mode parameter. When configuring the Session
Management facility for memory-to-memory replication, you can choose Session
Management can Server mode, Client Mode, or Both. The default is Both.

In Server mode, the Session Management facility acts as a backup store for sessions
owned by other WebSphere Application Server instances. In Client mode, the
Session Management facility publishes the session to other WebSphere Application
Server instances and retrieves the session from other WebSphere Application Server
instances when the session is not in local memory. In Both mode, the Session
Management facility acts as a backup store for sessions owned by other servers
and also publishes owned sessions to other WebSphere Application Server
instances.

When a session is created or updated in a WebSphere Application Server instance,
the session leverages one of the replicator entries under the replication domain that
is configured with the Session Management facility. This session gets replicated to
the WebSphere Application Server instances that also connect to the same
replicator domain and are acting either in Server or Both mode (in other words,
they are not just replicated "clients”).

In a cluster, by default, sessions are replicated in all the servers in the cluster that
are connected to the same replicator domain. This replication can be redundant if
there are large number of servers in a cluster. The Session Management facility has
an option to partition the servers into groups when storing sessions. You can view
the Replicator as having n partitions. The default is 10 partitions. By default the
Session Management facility running in Server mode listens to all the partitions on
the replicator. When a session is created in this facility, it is written to one of the
partitions on the replicator. A partition is selected using mod of ten on number of
sessions created (that is, number of sessions created is 10%). You can configure the
Session Management facility on each server to listen to only certain partitions. In a
cluster environment having large number of servers, some servers can be
configured to listen on some partitions and others on a different partitions. Note
that all the servers are still logically linked together through the replicator domain
and you can retrieve a session in any server in the cluster. The size of the
replication domain is set under "manage internal replication” in the Environment
tab. Configure which groups and partitions a specific Session Management facility
listens to under Session Management. There is also an option to replicate the
session to only one other server (the single replica option under "manage internal
replication”). When this option is chosen, the one single server in the replication
domain is selected during session creation, and all updates to the session are only
replicated to that single server.

Chapter 3. Managing HTTP sessions 89

Configuring for memory to memory replication

To configure the Session Management facility for memory-to-memory replication,
complete the following:

Steps for this task

1. Create a replication domain and replicator.

. Go to the appropriate level of [Session Management

2
3. Click Distributed Environment Settings
4

(Optional) If no replicator has been created for any server, a note appears
stating this. In this situation, click Memory to Memory Replication to cause
the Internal Replication Domain wizard to appear.

This wizard leads you through the process of creating a replication domain
and a replicator. After you have created a replication domain and a replicator,
begin again with step 2.

5. (Optional) If a replicator has been created and associated with this or another
server, select Memory to Memory Replication and click Apply.

If a replicator is associated with this server, that replicator is used. If a
replicator is not associated with this server, a replicator associated with
another server is used.

6. (Optional) If you want to change replicator for memory-to-memory
replication, click Memory to Memory Replication, select a replication domain
and a replicator from the lists, and specify the Listen to partition IDs. If the
replicator is on a different cell, specify an IP address, port details, Listen to
partition IDs. If you want to change the runtime mode, select the appropriate
setting. When you have finished changing the replicator, click Apply

7. Click OK.

8. (Optional) If you want to change the tuning parameters, click Custom Tuning
Parameters and [select a setting| or lcustomize one}

9. Click Apply.
10. Click Save.

Memory-to-memory sessions settings

Use this page to configure memory-to-memory sessions.
To view the Memory-to-memory Sessions page, click Servers > Application

Servers > server_name > Web Container > Session Management > Distributed
Environment Settings > Memory to Memory Replication.

Replication

Use one of these options to select the replicator for the Session Management
facility to use for memory to memory replication.

Select replicator from the following domain

Specifies a replicator from a replication domain .

Click this option, and select a domain. Then click Apply to show all the replicators
in that domain. Select the replicator in that domain.

Select replicator from another domain

Specifies a replicator in another domain that is not managed by this cell.

90 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Click this option, and then type the IP address and the port number of the
replicator.

Listen to partition groups

Specifies partitions to which the Session Management facility when running in
Server mode listens to for Memory-to-memory session replication. The number of
partitions is defined in the Manage Internal Replication pages. For Server mode
and Both mode, the default is all partitions.

Runtime mode
Select the mode in which this server has to run: Both, Client and Server. The mode

implies whether data is only sent (client), only received (server), or both. The
default is both.

Clustered session support

A clustered environment supports load balancing, where the workload is
distributed among the application servers that compose the cluster. In a cluster
environment, the same Web application must exist on each of the servers that can
access the session. You can accomplish this setup by installing an application onto
a cluster definition. Each of the servers in the group can then access the Web
application

In a clustered environment, the Session Management facility requires an affinity
mechanism so that all requests for a particular session are directed to the same
application server instance in the cluster. This requirement conforms to the Servlet
2.3 specification in that multiple requests for a session cannot coexist in multiple
application servers. One such solution provided by IBM WebSphere Application
Server is session affinity in a cluster; this solution is available as part of the
WebSphere Application Server plug-ins for Web servers. It also provides for better
performance because the sessions are cached in memory. In clustered environments
other than WebSphere Application Server clusters, you must use an affinity
mechanism (for example, IBM WebSphere Edge Server affinity).

If one of the servers in the cluster fails, it is possible for the request to reroute to
another server in the cluster. If distributed sessions support is enabled, the new
server can access session data from the database or another WebSphere Application
Server instance. You can retrieve the session data only if a new server has access to
an external location from which it can retrieve the session.

Tuning session management

IBM WebSphere Application Server session support has features for tuning session
performance and operating characteristics, particularly when sessions are
configured in a distributed environment. These options support the administrator
flexibility in determining the performance and failover characteristics for their
environment.

The table summarizes the features, including whether they apply to sessions
tracked in memory, in a database, with memory-to-memory replication, or all.
Click a feature for details about the feature. Some features are easily manipulated
using administrative settings; others require code or database changes.

Chapter 3. Managing HTTP sessions 91

Feature or option Goal Applies to sessions in
memory, database, or
memory-to-memory

Write frequency Minimize database write Database and
operations. Memory-to-Memory

Session affinity Access the session in the All
same application server
instance.

Multirow schema Fully utilize database Database
capacities.

Base in-memory session pool | Fully utilize system capacity | All

size without overburdening
system.

Write contents Allow flexibility in Database and
determining what session Memory-to-Memory
data to write

Scheduled invalidation Minimize contention between | Database and
session requests and Memory-to-Memory

invalidation of sessions by
the Session Management
facility. Minimize write
operations to database for
updates to last access time
only.

Tablespace and row size Increase efficiency of write Database (DB2 only)
operations to database.

Configuring scheduled invalidation

You can set specific times for the Session Management facility to scan for
invalidated sessions in a distributed environment. When used with distributed
sessions, this feature has the following benefits:

* You can schedule the scan for invalidated sessions for times of low application
server activity, avoiding contention between invalidation scans of database or
another WebSphere Application Server instance and read and write operations to
service HTTP session requests.

* Significantly fewer external write operations can occur when running with the
End of Service Method write mode because the last access time of the server
does not require writing out each HTTP session request. (Manual Update and
Time Based Write options already minimize the writing of the last access time.)

Usage considerations

* With scheduled invalidation configured, HttpSession timeouts are not strictly
enforced. Instead, all invalidation processing is handled at the configured
invalidation times.

* HttpSessionBindingListener processing is handled at the configured invalidation
times unless the HttpSession.invalidate() method is explicitly called.

* The HttpSession.invalidate() method immediately invalidates the session from
both the session cache and the external store.

Configuring write contents

In Session Management, you can configure which session data is written to the
database or to another WebSphere instance, depending on whether you are using

92 IBM WebSphere Application Server Network Deployment, Version 5: Applications

database pesistent sessions or memory to memory replication. This flexibility
allows for fewer code changes for the JSP writer when the application will be
operating in a clustered environment. The following options are available in
Session Management for tuning what is to be written back:

* Write changed (the default) - Write only session data properties that have been
updated through setAttribute() and removeAttribute() method calls.

* Write all - Write all session data properties.

The Write all setting might benefit servlet and JSP writers who change Java
objects’ states that reside as attributes in HttpSession and do not call
HttpSession.setAttribute().

However, the use of Write all could result in more data being written back than is
necessary. If this situation applies to you, consider combining the use of Write all
with Time-based write to boost performance overall. As always, be sure to
evaluate the advantages and disadvantages for your installation.

With either Write Contents setting, when a session is first created, complete session
information is written, including all of the objects bound to the session. When
using database session persistence, in subsequent session requests, what is written
to the database depends on whether a single-row or multirow schema has been set
for the session database, as follows:

Write Contents setting Behavior with single-row Behavior with multirow
schema schema
Write changed If any session attribute is Only the session data
updated, all objects bound to | modified through
the session are written. setAttribute() or
removeAttribute() calls is
written.
Write all All bound session attributes | All session attributes that
are written. currently reside in the cache
are written. If the session has
never left the cache, all
session attributes are written.

Steps for this task
1. Go to the appropriate level of [Session Management]

2. Click Distributed Environment Settings

3. Click Custom Tuning Parameters.

4. Select Custom Settings, and click Modify.

5. Select the appropriate write contents setting.

Configuring write frequency

In the Session Management facility, you can configure the frequency for writing
session data to the database or to a WebSphere instance, depending on whether
you use database distributed sessions or memory-to-memory replication. This
flexibility enables you to weigh session performance gains against varying degrees
of failover support. The following options are available in the Session Management
facility for tuning write frequency:

* END_OF_SERVICE - Write session data at the end of the servlet service()
method call.

Chapter 3. Managing HTTP sessions 93

* MANUAL_UPDATE - Write session data only when the servlet calls the
IBMSession.sync() method.

. ITIME_BASED_WRITE| (the default) - Write session data at periodic intervals, in
seconds (called the write interval).

When a session is first created, session information is always written at the end of
the service() call.

Base in-memory session pool size

The base in-memory session pool size number has different meanings, depending
on session support configuration:

* With in-memory sessions, session access is optimized for up to this number of
sessions.

* With distributed sessions (meaning, when sessions are stored in a database or in
another WebSphere Application Server instance); it also specifies the cache size
and the number of last access time updates saved in manual update mode.

For distributed sessions, when the session cache has reached its maximum size and
a new session is requested, the Session Management facility removes the least
recently used session from the cache to make room for the new one.

General memory requirements for the hardware system, and the usage
characteristics of the e-business site, determines the optimum value.

Note that increasing the base in-memory session pool size can necessitate
increasing the heap sizes of the Java processes for the corresponding WebSphere
Application Servers.

Overflow in nondistributed sessions

By default, the number of sessions maintained in memory is specified by base
in-memory session pool size. If you do not wish to place a limit on the number of
sessions maintained in memory and allow overflow, set overflow to true.

Allowing an unlimited amount of sessions can potentially exhaust system memory
and even allow for system sabotage. Someone could write a malicious program
that continually hits your site and creates sessions, but ignores any cookies or
encoded URLs and never utilizes the same session from one HTTP request to the
next.

When overflow is disallowed, the Session Management facility still returns a
session with the HttpServletRequest getSession(true) method when the memory
limit is reached, and this is an invalid session that is not saved.

With the WebSphere Application Server extension to HttpSession,
com.ibm.websphere.servlet.session.IBMSession, an isOverflow() method returns
true if the session is such an invalid session. An application can check this status
and react accordingly.

Controlling write operations

You can manually control when modified session data is written out to the
database or to another WebSphere Application Server instance by using the sync()
method in the com.ibm.websphere.servlet.session.IBMSession interface, which
extends the javax.servlet.http.HttpSession interface. By calling the sync() method
from the service() method of a servlet, you send any changes in the session to the

94 1BM WebSphere Application Server Network Deployment, Version 5: Applications

external location. When MANUAL_UPDATE is selected as the write frequency
mode, session data changes are written to an external location only if the
application calls the sync() method. If the sync() method is not called, session data
changes are lost when a session object leaves the server cache. With
END_OF_SERVICE or TIME_BASE_WRITE is the write frequency mode, the
session data changes are written out whenever the sync() method is called. If the
sync() method is not called, changes are written out at the end of service method
or on a time interval basis based on the write frequency mode selected.

IBMSession iSession = (IBMSession) request.getSession();
iSession.setAttribute("name", "Bob");

//force write to external store
iSession.sync()

Tuning parameter settings

Use this page to set tuning parameters for distributed sessions.

To view this administrative console page, click Servers > Application Servers >
server_name > Web Container > Session Management > Distributed Environment
Settings > Custom Tuning Parameters.

Tuning Level

Specifies that the Session Management facility provides certain predefined settings
that affect performance.

Select one of these predefined settings or customize a setting.

To customize a setting, select one of the predefined settings that comes closest to
the setting you want, click Custom settings, make your changes, and then click
OK.

Predefined options and their settings follow:

Very high (optimize for performance):

Write frequency TIME_BASED_WRITES
Write interval 300 sec

Write Contents Only updated attributes
Schedule Sessions Clean up true

First Hour 00

High:

Write frequency TIME_BASED_WRITES

Write interval 300 sec

Write Contents All session attributes

Medium:

Write frequency END_OF_SERVICE

Write Contents Only updated attributes

Low (optimize for failover)

Chapter 3. Managing HTTP sessions 95

Write frequency END_OF_SERVICE
Write Contents All session attributes

Write frequency
Specifies when the session writes to the database or another WebSphere
Application Server instance happens.

End of servlet service A session writes to a database or another
WebSphere Application Server instance after
the servlet completes execution.

Manual update A programmatic sync on the IBMSession
object is required to write the session data to
the database or another WebSphere
Application Server instance.

Time based Session data writes to the database or
another WebSphere Application Server
instance based on the specified Write Interval
value.

Write contents

Specifies whether updated attributes are only written to the external location or all
of the session attributes are written to the external location, regardless of whether
or not they changed. The external location can be either a database or another
application server instance.

Schedule sessions cleanup
Specifies when to clean the invalid sessions from a database or another application
server instance.

Specify sessions cleanup schedule

Enables the scheduled invalidation process for cleaning up the invalidated HTTP
sessions from the external location. Enable this option to reduce the number of
updates to a database or another application server instance required to keep the
HTTP sessions alive. When this option is not enabled, the invalidator process runs
every few minutes to remove invalidated HTTP sessions.

When this option is enabled, specify the two hours of a day for the process to
clean up the invalidated sessions in the external location. Specify the times when
there is the least activity in the application servers. An external location can be
either a database or another application server instance.

First Time of Day

Indicates the first hour during which the invalidated sessions are cleared from the
external location. Specify this value as a positive integer between 0 and 23. This
value is valid only when schedule invalidation is enabled.

Second Time of Day

Indicates the second hour during which the invalidated sessions are cleared from

the external location. Specify this value as a positive integer between 0 and 23.
This value is valid only when schedule invalidation is enabled.

96 1BM WebSphere Application Server Network Deployment, Version 5: Applications

Best practices for using HTTP Sessions

* Release HttpSession objects using
javax.servlet.http.HttpSession.invalidate() when finished.

HttpSession objects live inside the Web container until:

— The application explicitly and programmatically releases it using the
javax.servlet.http.HttpSession.invalidate() method; quite often,
programmatic invalidation is part of an application logout function.

— WebSphere Application Server destroys the allocated HttpSession when it
expires (default = 1800 seconds or 30 minutes). The WebSphere Application
Server can only maintain a certain number of HTTP sessions in memory
based on Session Management settings. In case of distributed sessions, when
maximum cache limit is reached in memory, the Session Management facility
removes the least recently used (LRU) one from cache to make room for a
session.

* Avoid trying to save and reuse the HttpSession object outside of each servlet
or JSP file.

The HttpSession object is a function of the HttpRequest (you can get it only
through the req.getSession() method), and a copy of it is valid only for the life of
the service() method of the servlet or JSP file. You cannot cache the HttpSession
object and refer to it outside the scope of a servlet or JSP file.

e Implement the Serializable class when developing new objects to be stored in
the HTTP session.

This action allows the object to properly serialize when using distributed
sessions. Without this extension, the object cannot serialize correctly and throws
an error. An example of this follows:

public class MyObject implements java.io.Serializable {...}

Make sure all instance variable objects that are not marked transient are
serializable.

e The HTTPSession API does not dictate transactional behavior for sessions.

Distributed HTTPSession support does not guarantee transactional integrity of
an attribute in a failover scenario or when session affinity is broken. Use
transactionally aware resources like enterprise Java beans to guarantee the
transaction integrity required by your application.

* Ensure the Java objects you add to a session are in the correct class path.

If you add Java objects to a session, place the class files for those objects in the
correct classpath (the Application Classpath if utilizing sharing across Web
modules in an enterprise application, or the WebModule Classpath if using the
Servlet 2.2-complaint session sharing) or in the directory containing other
servlets used in WebSphere Application Server. In the case of session clustering,
this action applies to every node in the cluster.

Because the HttpSession object is shared among servlets that the user might
access, consider adopting a site-wide naming convention to avoid conflicts.

* Avoid storing large object graphs in the HttpSession object.

In most applications each servlet only requires a fraction of the total session
data. However, by storing the data in the HttpSession object as one large object,
an application forces WebSphere Application Server to process all of it each time.

 Utilize Session Affinity to help achieve higher cache hits in the WebSphere
Application Server.

Chapter 3. Managing HTTP sessions 97

WebSphere Application Server has functionality in the HTTP Server plug-in to
help with session affinity. The plug-in will read the cookie data (or encoded
URL) from the browser and helps direct the request to the appropriate
application or clone based on the assigned session key. This functionality
increases use of the in-memory cache and reduces hits to the database or
another WebSphere Application Server instance

* Maximize use of session affinity and avoid breaking affinity.

Using session affinity properly can enhance the performance of the WebSphere
Application Server. Session affinity in the WebSphere Application Server
environment is a way to maximize the in-memory cache of session objects and
reduce the amount of reads to the database or another WebSphere Application
Server instance. Session affinity works by caching the session objects in the
server instance of the application with which a user is interacting. If the
application is deployed in multiple servers of a server group, the application can
direct the user to any one of the servers. If the users starts on serverl and then
comes in on server2 a little later, the server must write all of the session
information to the external location so that the server instance in which server2
is running can read the database. You can avoid this database read using session
affinity. With session affinity, the user starts on serverl for the first request; then
for every successive request, the user is directed back to serverl. Serverl has to
look only at the cache to get the session information; serverl never has to make
a call to the session database to get the information.

You can improve performance by not breaking session affinity. Some suggestions
to help avoid breaking session affinity are:

— Combine all Web applications into a single application server instance, if
possible, and use modeling or cloning to provide failover support.

— Create the session for the frame page, but do not create sessions for the pages
within the frame when using multiframe JSP files. (See discussion later in this
topic.)

* When using multi-framed pages, follow these guidelines:

— Create a session in only one frame or before accessing any frame sets. For
example, assuming there is no session already associated with the browser
and a user accesses a multi-framed JSP file, the browser issues concurrent
requests for the JSP files. Because the requests are not part of any session, the
JSP files end up creating multiple sessions and all of the cookies are sent back
to the browser. The browser honors only the last cookie that arrives.
Therefore, only the client can retrieve the session associated with the last
cookie. Creating a session before accessing multi-framed pages that utilize JSP
files is recommended.

— By default, JSPs get a HTTPSession using request.getSession(true) method.
So by default JSPs create a new session if none exists for the client. Each JSP
page in the browser is requesting a new session, but only one session is used
per browser instance. A developer can use <% @ page session="false” %> to
turn off the automatic session creation from the JSP files that will not access
the session. Then if the page needs access to the session information, the
developer can use <%HttpSession session =
javax.servlet.http.HttpServletRequest.getSession(false); %> to get the
already existing session that was created by the original session creating JSP
file. This action helps prevent breaking session affinity on the initial loading
of the frame pages.

— Update session data using only one frame. When using framesets, requests
come into the HTTP server concurrently. Modifying session data within only
one frame so that session changes are not overwritten by session changes in
concurrent frameset is recommended.

98 IBM WebSphere Application Server Network Deployment, Version 5: Applications

— Avoid using multi-framed JSP files where the frames point to different Web
applications. This action results in losing the session created by another Web
application because the JSESSIONID cookie from the first Web application
gets overwritten by the JSESSIONID created by the second Web application.

* Secure all of the pages (not just some) when applying security to servlets or
JSP files that use sessions with security integration enabled, .

When it comes to security and sessions, it is all or nothing. It does not make
sense to protect access to session state only part of the time. When security
integration is enabled in the Session Management facility, all resources from
which a session is created or accessed must be either secured or unsecured. You
cannot mix secured and unsecured resources.

The problem with securing only a couple of pages is that sessions created in
secured pages are created under the identity of the authenticated user. Only the
same user can access sessions in other secured pages. To protect these sessions
from use by unauthorized users, you cannot access these sessions from an
unsecure page. When a request from an unsecure page occurs, access is denied
and an UnauthorizedSessionRequestException error is thrown.
(UnauthorizedSessionRequestException is a runtime exception; it is logged for
you.)

* Use manual update and either the sync() method or time-based write in
applications that read session data, and update infrequently.

With END_OF_SERVICE as write frequency, when an application uses sessions
and anytime data is read from or written to that session, the LastAccess time
field updates. If database sessions are used, a new write to the database is
produced. This activity is a performance hit that you can avoid using the
Manual Update option and having the record written back to the database only
when data values update, not on every read or write of the record.

To use manual update, turn it on in the Session Management Service. (See the
tables above for location information.) Additionally, the application code must
use the com.ibm.websphere.serviet.session.IBMSession class instead of the
generic HttpSession. Within the IBMSession object there is a method called
sync(). This method tells the WebSphere Application Server to write the data in
the session object to the database. This activity helps the developer to improve
overall performance by having the session information persist only when
necessary.

Note: An alternative to using the manual updates is to utilize the timed updates

to persist data at different time intervals. This action provides similar results as

the manual update scheme.
* Implement the following suggestions to achieve high performance:

— If your applications do not change the session data frequently, use Manual
Update and the sync() function (or timed interval update) to efficiently persist
session information.

— Keep the amount of data stored in the session as small as possible. With the
ease of using sessions to hold data, sometimes too much data is stored in the
session objects. Determine a proper balance of data storage and performance
to effectively use sessions.

— Use a dedicated database for the session database. Avoid using the
application database. This helps to avoid contention for JDBC connections and
allows for better database performance.

— Verify that you have the latest e-fixes for the WebSphere Application Server.

* Utilize the following tools to help monitor session performance.

Chapter 3. Managing HTTP sessions 99

— Run the com.ibm.servlet.personalization.sessiontracking.IBMTrackerDebug
servlet. - To run this servlet, you must have the servlet invoker running in the
Web application you want to run this from. Or, you can explicitly configure
this servlet in the application you want to run.

— Use the WebSphere Application Server Resource Analyzer which comes with
WebSphere Application Server to monitor active sessions and statistics for the
WebSphere Application Server environment.

— Use database tracking tools such as "Monitoring” in DB2. (See the respective
documentation for the database system used.)

Managing HTTP sessions: Resources for learning:

Use the following links to find relevant supplemental information about HTTP
sessions. The information resides on IBM and non-IBM Internet sites, whose
sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

View links to additional information about:
* Programming model and decisions
* Programming instructions and examples

* Programming specifications

B Best practices (http:/ /www7b.software.ibm.com /wsdd /zones/bp/|)

‘4 HTTP Session Persistence Best Practices
(http:/ /www7b.software.ibm.com/wsdd /library /techarticles /|
[0209_draeger/draeger.html)

. (L' Improving session persistence performance with DB2
(http:/ /www7b.software.ibm.com/dmdd /library /techarticle /|
[0203Kitchlu/0203kitchlu.html)

* & Persistent client state HTTP cookies specification
(http:/ /www.netscape.com /newsref /std /cookie_spec.html)

¢ v Java Servlet documentation, tutorials, and examples site
(http:/ /java.sun.com /products/servlet/docs.html)

» & Java Servlet 2.3 API specification download site
(http:/ /java.sun.com /products/servlet/download.html)

* & J2EE 1.3 specification download site
(http:/ /java.sun.com /j2ee/download.html)

100 1BM WebSphere Application Server Network Deployment, Version 5: Applications

http://www7b.software.ibm.com/wsdd/zones/bp/
http://www7b.software.ibm.com/wsdd/library/techarticles/0209_draeger/draeger.html
http://www7b.software.ibm.com/wsdd/library/techarticles/0209_draeger/draeger.html
http://www7b.software.ibm.com/dmdd/library/techarticle/0203kitchlu/0203kitchlu.html
http://www7b.software.ibm.com/dmdd/library/techarticle/0203kitchlu/0203kitchlu.html
http://www.netscape.com/newsref/std/cookie_spec.html
http://java.sun.com/products/servlet/docs.html
http://java.sun.com/products/servlet/download.html
http://java.sun.com/j2ee/download.html

Chapter 4. Using enterprise beans in applications

Steps for this task

1.

10.
11.

12.
13.

Design a J2EE application and the enterprise beans that it needs.

See [“Enterprise beans: Resources for learning” on page 151| for links to design
information that is specific to enterprise beans.

[Develop any enterprise beans|that your application will use.

Prepare for assembly. For your EJB 2.x-compliant entity beans,

|appr0priate access intent policyl

|[Assemble the beans|into one or more EJB modules. This includes "Securing
EJB applications” (not in this document).

Assemble the modules into a J2EE application.

For a given application server, [update the EJB container configuration|if
needed for the application to be deployed.

[Deploy the application|in an application server.

Test the modules.

¢ As needed, debug problems with the container.

* Debug access and deployment problems.
Assemble the production application.

Deploy the application to a production environment.
Manage the application:

a. Manage installed EJB modules.

After an application has been installed, you can manage its EJB modules
individually through administrative console settings|

b. Manage other aspects of the J2EE application.
Update the module and redeploy it.

Tune the application.

Enterprise beans

An enterprise bean is a Java component that can be combined with other resources
to create J2EE applications. There are three types of enterprise beans, entity beans,
session beans, and message-driven beans.

All beans reside in EJB containers, which provide an interface between the beans
and the application server on which they reside.

Entity beans store permanent data. Entity beans with container-managed
persistence (CMP) require connections to a form of persistent storage. This storage
might be a database, an existing legacy application, a file, or other types of
persistent storage. Entity beans with bean-managed persistence manage permanent
data in whichever manner is defined in the bean code. This can include writing to
databases or XML files, for example.

Session beans do not require database access, although they can obtain it indirectly
as needed through entity beans. Session beans can also obtain direct access to
databases (and other resources) through the use of resource references. Session
beans can be either stateful or stateless.

© Copyright IBM Corp. 2002

101

New in the Enterprise JavaBeans (E]JB) specification, version 2.0, message-driven
beans enable asynchronous message servicing. The E]JB container and a Java
Message Service (JMS) provider work together to process messages. When a
message arrives from another application component through JMS, the EJB
container forwards it through an onMessage() call to a message-driven bean
instance, which then processes the message. In other respects, message-driven
beans are similar to stateless session beans.

Beans that require data access use data sources, which are administrative resources
that define pools of connections to persistent storage mechanisms.

For more information about enterprise beans, see|“Enterprise beans: Resources for]
learning” on page 151}

Developing enterprise beans

Before you begin

Design a J2EE application and the enterprise beans that it needs.

* Before developing entity beans with container-managed persistence (CMP), read
[“Concurrency control” on page 108}

* For ieneral design information, see [“Enterprise beans: Resources for learning”]

There are two basic approaches to selecting tools for developing enterprise beans:

* You can use one of the available integrated development environments (IDEs).
IDE tools automatically generate significant parts of the enterprise bean code
and contain integrated tools for packaging and testing enterprise beans. The IBM
WebSphere Application Developer product is the recommended IDE. For more
information, see the documentation for that product.

 If you have decided to develop enterprise beans without an IDE, you need at
least an ASCII text editor. You can also use a Java development tool that does
not support enterprise bean development. You can then use tools available in the
Java Software Development Kit (SDK) and in this product to assemble, test, and
deploy the beans.

The following steps primarily support the second approach, development without
an IDE.

Steps for this task

1. If necessary, [migrate any pre-existing code|to the required version of the
Enterprise JavaBeans specification.

2. Write and compile the components of the enterprise bean.

e At a minimum, an EJB 1.1 session bean requires a bean class, a home
interface, and a remote interface. An EJB 1.1 entity bean requires a bean class,
a primary-key class, a home interface, and a remote interface.

e At a minimum, an EJB 2.0 session bean requires a bean class, a home or local
home interface, and a remote or local interface. An EJB 2.0 entity bean
requires a bean class, a primary-key class, a remote home or local home
interface, and a remote or local interface. The types of interfaces go together:
If you implement a local interface, you must define a local home interface as
well.

* Available only through EJB 2.0, a message-driven bean requires only a bean
class.

102 1BM WebSphere Application Server Network Deployment, Version 5: Applications

3. (Optional) (CMP entity beans for EJB 1.1 only: an IBM extension) Create a
finder helper interface for each CMP entity bean that contains specialized
finder methods (other than the findByPrimaryKey method).

The following logic is required for each finder method (other than the
findByPrimaryKey method) contained in the home interface of an entity bean
with CMP:

* The logic must be defined in a public interface named NameBeanFinderHelper,
where Name is the name of the enterprise bean (for example,
AccountBeanFinderHelper).

* The logic must be contained in a String constant named
findMethodNameWhereClause, where findMethodName is the name of the finder
method. The String constant can contain zero or more question marks (?) that
are replaced from left to right with the value of the finder method’s
arguments when that method is called.

4. (CMP entity beans for EJB 2.0 only) Define finder queries with EJB Query
Language (EJB QL).
With EJB QL, you define finders in terms of CMP fields and container-managed
relationships, as follows:

* Public finders are visible in the bean’s home interface. Implemented in the
bean class, they return only remote interfaces and collection types.

* Private finders, expressed as SELECT statements, are used only within the
bean class. They can return both local and remote interfaces, dependent
values, other CMP field types, and collection types.

5. (Entity beans only) Create a database schema for the entity bean’s persistent
data.

* For entity beans with CMP, you must store the bean’s persistent data in one
of the supported databases. The Application Assembly Tool automatically
generates SQL code for creating database tables for CMP entity beans. If your
CMP beans require complex database mappings, it is recommended that you
use the WSAD product to generate code for the database tables.

* For entity beans with bean-managed persistence (BMP), you can create the
database and database table by using the database tools or use an existing
database and database table.

For more information on creating databases and database tables, consult your
database documentation.

What to do next

|[Assemble the beans in one or more EJB modules.|

Migrating enterprise bean code to the supported specification

Support for Version 2.0 of the Enterprise JavaBeans (E]JB) specification is new for
Version 5 of this product. Migration of enterprise beans deployed in Version 4.0.x
of this product is not generally necessary; Version 1.1 of the E]JB specification is still
supported. Follow these steps as appropriate for your application deployment.

Steps for this task

1. Modify enterprise bean code for changes in the specification.

« For Version 1.0 beans, [migrate at least to Version 1.1}

Chapter 4. Using enterprise beans in applications 103

* As stated previously, migration from Version 1.1 to Version 2.0 of the EJB
specification is not required for redeployment on this version of the product.
However, if your application requires the capabilities of Version 2.0,
[your Version 1.1-compliant codel

Note: The EJB Version 2.0 specification mandates that prior to the EJB
container’s executing a findByMethod query, the state of all enterprise beans
enlisted in the current transaction be synchronized with the persistent store.
(This is so the query is performed against current data.) If Version 1.1 beans
are reassembled into an EJB 2.0-compliant module, the EJB container
synchronizes the state of Version 1.1 beans as well as that of Version 2.0
beans. As a result, you might notice some change in application behavior
even though the application code for the Version 1.1 beans has not been
changed.

2. Modify enterprise bean code for changes in deployment requirements.

If the enterprise beans were previously deployed in Version 3.0.x of this
product, modify import statements to match standard package names. In
Version 3.0.2.x, the following standard packages were present under
nonstandard names:

javax.sql.=
javax.transaction.*

Any code using WebSphere data sources, including BMP entity beans and
session beans that access databases, must be modified.

3. You might have to modify code for some EJB 1.1-compliant modules that were
not migrated to Version 2.0. Use the following information to help you decide.

* Some stub classes for deployed enterprise beans have changed in the Java 2
SDK, Version 1.3.

* The task of generating deployment code for enterprise beans changed
significantly significantly for EJB 1.1-compliant modules relative to EJB
1.0-compliant modules.

¢ If the CMP beans write to databases with mixed-case table or column names
and you used IBM VisualAge for Java, Version 3.5.x, to generate the original
deployment code, you cannot simply reassemble the beans in this product.
You must export the original EJB project from the VisualAge for Java product
as an EJB 1.1 JAR. This preserves the metadata needed to generate the correct
deployment code for mixed-case database tables and columns. For more
information, see the documentation for the Deployment Tool for Enterprise
JavaBeans.

For detailed information about source and binary compatibility between
deployed versions, see|“Enterprise beans: Resources for learning” on page 151}

4. Reassemble and redeploy all modules to incorporate migrated code.

Migrating enterprise bean code from Version 1.0 to Version 1.1
The following information generally applies to any enterprise bean that currently
complies with Version 1.0 of the Enterprise JavaBeans (E]JB) specification. For more
information about migrating code for beans produced with the IBM WebSphere
Studio Application Developer tool, see the documentation for that product. For
more information about migrating code in general, see [‘Enterprise beans:|
[Resources for learning” on page 151}

Steps for this task

104 1BM WebSphere Application Server Network Deployment, Version 5: Applications

1. In session beans, replace all uses of javax.jts.UserTransaction with
javax.transaction.UserTransaction. Entity beans may no longer use the
UserTransaction interface at all.

2. In finder methods for entity beans, include FinderException in the throws
clause.

3. Remove throws of java.rmi.RemoteException; throw javax.ejb.EJBException
instead.

However, continue to include RemoteException in the throws clause of home
and remote interfaces as required by the use of Remote Method Invocation
(RMI).

4. Remove uses of the finalize() method.

5. Replace calls to getCallerIdentity() with calls to getCallerPrincipal().
The use of getCallerldentity() is deprecated.

6. Replace calls to isCallerInRole(Identity) with calls to isCallerinRole (String).
The use of isCallerInRole(Identity) and java.security.Identity is deprecated.

7. Replace calls to getEnvironment() in favor of JNDI lookup.
As an example, change the following code:

String homeName =
aLink.getEntityContext().getEnvironment().getProperty("TARGET _HOME_NAME");
if (homeName == null) homeName = "TARGET_HOME_NAME";

The updated code would look something like the following:

Context env = (Context)(new InitialContext()).lookup("java:comp/env");
String homeName = (String)env.lookup("ejbl0-properties/TARGET _HOME_NAME");

8. In ejbCreate methods for an entity bean with container-managed persistence
(CMP), return the bean’s primary key class instead of void.

9. Add the getHomeHandle() method to home interfaces.
public javax.ejb.HomeHandle getHomeHandle() {return null;}

What to do next

Consider enhancements to match the following changes in the specification:
* Primary keys for entity beans can be of type java.lang.String.
 Finder methods for entity beans return java.util.Collection.

* Check the format of any JNDI names being used. Local name spaces are also
supported.

* Security is defined by role, and isolation levels are defined at the method level
rather than at the bean level.

Migrating enterprise bean code from Version 1.1 to Version 2.0
Enterprise JavaBeans (E]JB) Version 2.0-compliant beans may be assembled only in
an EJB 2.0-compliant module, although an E]JB 2.0-compliant module can contain a
mixture of Version 1.x and Version 2.0 beans.

The EJB Version 2.0 specification mandates that prior to the EJB container’s
executing a findByMethod query, the state of all enterprise beans enlisted in the
current transaction be synchronized with the persistent store. (This is so the query
is performed against current data.) If Version 1.1 beans are reassembled into an EJB
2.0-compliant module, the EJB container synchronizes the state of Version 1.1 beans
as well as that of Version 2.0 beans. As a result, you might notice some change in
application behavior even though the application code for the Version 1.1 beans
has not been changed.

Chapter 4. Using enterprise beans in applications 105

The following information generally applies to any enterprise bean that currently
complies with Version 1.1 of the EJB specification. For more information about
migrating code for beans produced with the IBM WebSphere Studio Application
Developer tool, see the documentation for that product. For more information
about migrating code in general, see [“Enterprise beans: Resources for learning” on|

page 151

Steps for this task

1. In beans with container-managed persistence (CMP) version 1.x, replace each
CMP field with abstract get and set methods.

In doing so, you must make each bean class abstract.

2. In beans with CMP version 1.x, change all occurrences of this.field = value
to setField(value).

3. In each CMP bean, create abstract get and set methods for the primary key.

4. In beans with CMP version 1.x, create an EJB Query Language statement for
each finder method.

5. In finder methods for beans with CMP version 1.x, return java.util.Collection
instead of java.util. Enumeration.

6. Update handling of non-application exceptions.

* To report non-application exceptions, throw javax.ejb.EJBException instead of
java.rmi.RemoteException.

* Modify rollback behavior as needed: In EJB versions 1.1 and 2.0, all
non-application exceptions thrown by the bean instance result in the rollback
of the transaction in which the instance is running; the instance is discarded.
In EJB 1.0, the container does not roll back the transaction or discard the
instance if it throws java.rmi.RemoteException.

7. Update rollback behavior as the result of application exceptions.

* In EJB versions 1.1 and 2.0, an application exception does not cause the EJB
container to automatically roll back a transaction.

* In E]JB Version 1.1, the container performs the rollback only if the instance
has called setRollbackOnly() on its EJBContext object.

* In EJB Version 1.0, the container is required to roll back a transaction when
an application exception is passed through a transaction boundary started by
the container.

WebSphere extensions to the Enterprise JavaBeans
specification

This article outlines extensions to the Enterprise JavaBeans (EJB) specification that
IBM provides with this product:

Inheritance in enterprise beans

In the Java language, inheritance is the creation of a new class from an existing class
or a new interface from an existing interface. This product supports two forms of
inheritance: standard class inheritance and EJB inheritance.

In standard class inheritance, the home interface, remote interface, or enterprise

bean class inherits properties and methods from base classes that are not
themselves enterprise bean classes or interfaces.

106 1BM WebSphere Application Server Network Deployment, Version 5: Applications

By contrast in enterprise bean inheritance, an enterprise bean inherits properties
(such as container-managed persistence (CMP) fields and container-managed
relationship (CMR) fields), methods, and method-level control descriptor attributes
from another enterprise bean.

For more information, see the documentation for the IBM WebSphere Studio
Application Developer product.

Optimistic concurrency control for container-managed persistence
This product supports optimistic concurrency control of data access.
Access intents for EJB persistence

This product supports the application of named data-access policies at the method
level.

Performance enhancements
Through the lifetime-in-cache settings, this product provides a way for you to

improve performance for beans that are only occasionally updated. For more
information, see [“Entity bean assembly settings” on page 121|

Some enterprise beans created with the IBM WebSphere Studio Application
Developer product can utilize read-ahead for loading a bean and its related beans in
a single database operation. An entire object graph or any part of the graph can be
preloaded by configuring a finder method to use read-ahead.

Assembly and deployment extensions

This product supports IBM extensions of and deployment options. IBM
extensions are clearly marked in reference topics for assembly settings.

Best practices for developing enterprise beans
Use the following guidelines when designing and developing enterprise beans:

» Use a stateless session bean to act as the entry point for business logic. For more
information about using session facades, see|“Enterprise beans: Resources forf
[learning” on page 151}

* Entity beans should use container-managed persistence.

* In an Enterprise JavaBeans (EJB) Version 2.0 environment, use local interfaces to
improve communication between enterprise beans in the same Java virtual
machine.

Local calls avoid the overhead of RMI/IIOP and use pass-by-reference semantics
instead of pass-by-value. For each call, the caller and callee beans share the state
of arguments. EJB 2.0 beans can have both a local and remote interface but more
typically have one or the other.

* For communicating with remote clients, provide remote and remote home
interfaces. For communicating with local clients like servlets, entity beans, and
message-driven beans, provide local and local home interfaces.

Chapter 4. Using enterprise beans in applications 107

Using access intent policies

You can use access intent policies to help the product run-time environment
manage various aspects of Enterprise JavaBeans (EJB) persistence. You apply access
intent policies to methods of EJB Version 2.0 entity beans by using the Application
Assembly Tool. This product provides a set of default access intent policies.

Steps for this task
1. |Apply access intent policies to methods|of CMP entity beans.

Access intent policies

An access intent policy is a named set of properties (access intents) that governs
data access for Enterprise JavaBeans (EJB) persistence. You can assign a policy to
individual methods on an entity bean’s home, remote, or local interfaces during
assembly. Access intents are settable only within EJB Version 2.x-compliant
modules for entity beans with CMP Version 2.x.

This product supplies a number of access intent policies that specify permutations
of read intent and concurrency control; the pessimistic/update policy can be
qualified further. The selected policy determines the appropriate isolation level and
locking strategy used by the run-time environment.

Access intent policies are specifically designed to supplant the use of isolation level
and access intent method-level modifiers found in the extended deployment
descriptor for EJB version 1.1 enterprise beans. You cannot specify isolation level
and read-only modifiers for EJB version 2.0 enterprise beans.

Access intent policies are named and defined at the module level. A module can
have one or many such policies. Policies are assigned, and apply, to individual
methods of the declared interfaces of entity beans and their associated home
interfaces. A policy is acted upon by the combination of the EJB container and
persistence manager.

For entity beans that are backed by tables with nullable columns, use an optimistic
policy with caution. Nullable columns are automatically excluded from
overqualified updates at deployment time; concurrent changes to a nullable field
might result in lost updates. When used with the IBM WebSphere Studio
Application Developer product, this product provides support for selecting a
subset of the nonnullable columns that are to be reflected in the overqualified
update statement that is generated in the deployment code to support optimistic
policies.

A method that is configured with a read-only policy that causes a bean to be
activated can cause problems if updates are attempted within the same transaction.
Those changes will not be committed, and an exception will be thrown because
data integrity might be compromised.

Concurrency control

Concurrency control is the management of contention for data resources. A
concurrency control scheme is considered pessimistic when it locks a given resource
early in the data-access transaction and does not release it until the transaction is
closed. A concurrency control scheme is considered optimistic when locks are
acquired and released over a very short period of time at the end of a transaction.

108 1BM WebSphere Application Server Network Deployment, Version 5: Applications

The objective of optimistic concurrency is to minimize the time over which a given
resource would be unavailable for use by other transactions. This is especially
important with long-running transactions, which under a pessimistic scheme
would lock up a resource for unacceptably long periods of time.

Under an optimistic scheme, locks are obtained immediately before a read
operation and released immediately afterwards. Update locks are obtained
immediately before an update operation and held until the end of the transaction.

To enable optimistic concurrency, this product uses an overqualified update scheme to
test whether the underlying data source has been updated by another transaction
since the beginning of the current transaction. With this scheme, the columns
marked for update and their original values are added explicitly through a
WHERE clause in the UPDATE statement so that the statement fails if the
underlying column values have been changed. As a result, this scheme can provide
column-level concurrency control; pessimistic schemes can control concurrency at
the row level only.

Optimistic schemes typically perform this type of test only at the end of a
transaction. If the underlying columns have not been updated since the beginning
of the transaction, pending updates to container-managed persistence fields are
committed and the locks are released. If locks cannot be acquired or if some other
transaction has updated the columns since the beginning of the current transaction,
the transaction is rolled back: All work performed within the transaction is lost.

Pessimistic and optimistic concurrency schemes require different transaction
isolation levels. Enterprise beans that participate in the same transaction and
require different concurrency control schemes cannot operate on the same
underlying data connection.

Whether or not to use optimistic concurrency depends on the type of transaction.
Transactions with a high penalty for failure might be better managed with a
pessimistic scheme. (A high-penalty transaction is one for which recovery would
be risky or resource-intensive.) For low-penalty transactions, it is often worth the
risk of failure to gain efficiency through the use of an optimistic scheme. In
general, optimistic concurrency is more efficient when update collisions are
expected to be infrequent; pessimistic concurrency is more efficient when update
collisions are expected to occur often.

Read-ahead hints

Read-ahead schemes enable applications to minimize the number of database
roundtrips by retrieving a working set of container-managed persistence (CMP)
beans for the transaction within one query. Read-ahead involves activating the
requested CMP beans and caching the data for their related beans, which ensures
that data is present for the beans that are most likely to be needed next by an
application. A read-ahead hint is a canonical representation of the related beans that
are to be read. It is associated with a finder method for the requested bean type,
which must be an EJB 2.x-compliant CMP entity bean.

Read-ahead hints can be set only through the Add Access Intent wizard of the IBM
WebSphere Studio Application Developer product. In the wizard, the Read Ahead
Hint check box is enabled only with access intent policies with optimistic
concurrency.

Chapter 4. Using enterprise beans in applications 109

Read-ahead is limited to optimistic policies because locking persistent data store
for all beans represented in the hint would be more likely to cause lock conflicts,
and optimistic policies do not obtain locks until immediately before the database
operation.

Currently, only findByPrimaryKey methods can have read-ahead hints. Only beans
related to the requested beans by a container-managed relationship (CMR), either
directly or indirectly through other beans, can be read ahead.

A read-ahead hint takes the form of a character string. You do not have to provide
the string; the wizard generates it for you based on CMRs defined for the bean.
The following example is provided as supplemental information only.

Suppose a CMP bean type A has a finder method that returns instances of bean A.
A read-ahead hint for this method is specified using the following notation:
RelB.RelC; RelD

Interpret the preceding notation as follows:
* Bean type A has a CMR with bean types B and D.
* Bean type B has a CMR with bean type C.

For each bean of type A that is retrieved from the database, its directly-related B
and D beans and its indirectly-related C beans are also retrieved. The order of the
retrieved bean data columns in each row of the result set is the same as their order
in the read-ahead hint: an A bean, a B bean (or null), a C bean (or null), a D bean
(or null). For hints in which the same relationship is mentioned more than once
(for example, RelB.RelC;RelB.RelE), a bean’s data columns appear only once, at
the position it first appears in the hint.

The tokens shown in the notation (RelB and so on) must be CMR field names for
the relationships as defined in the deployment descriptor for the bean. In indirect
relationships such as RelB.RelC, RelC is a CMR field name defined in the
deployment descriptor for bean type B.

For more information about how to set read-ahead hints, see the documentation
for the Websphere Studio Application Developer product.

Applying access intent policies to methods

You apply an access intent policy to a method, or set of methods, in an
application’s entity beans through the Application Assembly Tool (AAT).

Steps for this task
1. Start the AAT.
2. Create or edit the application EAR file.

For example, to change attributes of an existing application, select File >
Open, then select the EAR file.

3. Select EJB Modules > moduleName > Access Intent.
4. To configure a new access intent policy, right-click and select New.

5. On the New Access Intent panel, specify a name and a description.

These attributes are provided as a convenience to the developer and are not
used at run time.

6. To select the methods to which the access intent policy should apply, click
Add beside the Methods table.

110 1BM WebSphere Application Server Network Deployment, Version 5: Applications

7. From the Applied access intent list, select an access intent policy.

8. (Optional) To override an attribute defined in the applied policy, click Add
beside the Access intent attribute overrides table.

9. Click OK to exit the New Access Intent panel.

10. Save your configuration by selecting File > Save.

Access intent exceptions

The following exceptions are thrown in response to the application of access intent
policies:

com.ibm.ws.ejbpersistence.utilpm.PersistenceManagerException
If the method that drives the ejpLoad() method is configured to be
read-only but updates are then made within the transaction that loaded the
bean’s state, an exception is thrown during invocation of the ejbStore()
method, and the transaction is rolled back. Likewise, the ejpRemove()
method cannot succeed in a transaction that is set as read-only. If an
update hint is applied to methods of entity beans with bean-managed
persistence, the same behavior and exception results. The forwarded
exception object contains the message string PMGR1103E: update instance
level read only bean beanName

This exception is also thrown if the applied access intent policy cannot be
honored because a finder, ejbSelect, or container-managed relationship
(CMR) accessor method returns an inherently read-only result. The
forwarded exception object contains the message string PMGR1001: No such
DataAccessSpec - methodName

The most common occurrence of this error is when a custom finder that
contains a read-only E]JB Query Language (EJB QL) statement is called with
an applied access intent of wsPessimisticUpdate or wsPessimisticUpdate-
Exclusive. These policies require the use of a FOR UPDATE clause on the
SQL SELECT statement to be executed, but a read-only query cannot
support FOR UPDATE. Other examples of read-only queries include joins;
the use of ORDER BY, GROUP BY, and DISTINCT keywords.

To eliminate the exception, edit the EJB query so that it does not return an

inherently read-only result or change the access intent policy being

applied.

* If an update access is required, change the applied access intent setting
to wsPessimisticUpdate-WeakestLockAtLoad or wsOptimisticUpdate.

* If update access is not truly required, use wsPessimisticRead or
wsOptimisticRead.

* If connection sharing between entity beans is required, use
wsPessimisticUpdate-WeakestLockAtLoad or wsPessimisticRead.

com.ibm.websphere.ejb.container.CollectionCannotBeFurtherAccessed
If a lazy collection is driven after it is no longer in scope, and beyond what
has already been locally buffered, a CollectionCannotBeFurtherAccessed
exception is thrown.

com.ibm.ws.exception.RuntimeWarning
If an application is configured incorrectly, a run-time warning exception is
thrown as the application starts; startup is ended. You can validate an
application’s configuration by choosing the verify function in the
WebSphere Application Assembly Tool. Some examples of misconfiguration
include:

* A method configured with two different access intent policies

Chapter 4. Using enterprise beans in applications 111

¢ A method configured with an undefined access intent policy

javax.ejb.NoSuchEntityException
If an update fails under optimistic concurrency because fields changed
within another transaction between load and store requests, a
NoSuchEntityException is raised and the commit fails.

Depending on the access intent policy used, an exception might also be thrown on
an entity bean with container-managed persistence (CMP) version 2.0 that has one
or more CMR fields. If this occurs, the default setting (wsPessimisticUpdate-
WeakestLockAtLoad) can be used.

If application needs require that another policy be used, the application code must
be changed so that all CMR accessor methods are called from business logic within
the CMP entity bean rather than from a session bean. Furthermore, an entity bean
cannot be added or removed from a CMR collection unless the add or remove
method of the CMR collection is called from business logic in the entity bean
rather than from a session bean.

Access intent assembly settings

Access intent policies contain data-access settings for use by the persistence
manager. Specify one or more methods and associate an access intent policy with
each method.

These settings are applicable only for EJB 2.x-compliant entity beans that are
packaged in EJB 2.x-compliant modules. Connection sharing between beans with
bean-managed persistence and those with container-managed persistence is
possible if they all use the same access intent policy.

Name
Specifies a name for the mapping between an access intent policy and one or more
methods.

Description
Contains text that describes the mapping.

Methods - Name

Specifies the name of an enterprise bean method, or the asterisk character (*). The
asterisk is used to denote all of the methods of an enterprise bean’s remote and
home interfaces.

Methods - Enterprise bean
Specifies which enterprise bean contains the methods indicated in the Name
setting.

Methods - Type

Used to distinguish between a method with the same signature that is defined in
both the home and remote interface. Use Unspecified if an access intent policy
applies to all methods of the bean.

Data type String
Range Valid values are Home, Remote,Local, LocalHome or Unspecified

Methods - Parameters

Contains a list of fully qualified Java type names of the method parameters. This
setting is used to identify a single method among multiple methods with an
overloaded method name.

112 1BM WebSphere Application Server Network Deployment, Version 5: Applications

Applied access intent
Specifies how the container must manage data access for persistence.

Data type String

Default wsPessimisticUpdate-WeakestLockAtLoad. However, this policy cannot
be used with Oracle; see the table that follows.

Range Valid settings are wsPessimisticUpdate, wsPessimisticUpdate-

NoCollision, wsPessimisticUpdate-Exclusive, wsPessimisticUpdate-
WeakestLockAtLoad, wsPessimisticRead, wsOptimisticUpdate, or
wsOptimisticRead. Only wsPessimisticRead and wsOptimisticRead are
valid when class-level caching is enabled in the EJB container.

This product supports lazy collections. For each segment of a collection, iterating
through the collection (next()) does not trigger a remote method call to retrieve the
next remote reference. Two policies (wsPessimisticUpdate and
wsPessimisticUpdate-Exclusive) are extremely lazy; the collection increment size
is set to 1 to avoid overlocking the application. The other policies have a collection
increment size of 25.

If a method is not configured with an access intent policy, the run-time
environment typically uses wsPessimisticUpdate-WeakestLockAtLoad by default. If,
however, the [Lifetime in cache| property is set on the bean, the default value of
Applied access intent is wsOptimisticRead; updates are not permitted. If a method
of a Lifetime in cache-configured bean is configured with an access intent policy
that permits updates, the application will not run until the method or bean is
reconfigured.

Additional information about valid settings follows:

Profile name Concurrency Access type |Transaction isolation
control
wsPessimisticRead (Note 1) | pessimistic read For Oracle, read

committed. Otherwise,
repeatable read

wsPessimisticUpdate (Note | pessimistic update For Oracle, read

2) committed. Otherwise,
repeatable read

wsPessimisticUpdate- pessimistic update serializable

Exclusive (Note 3)

wsPessimisticUpdate- pessimistic update read committed

NoCollision (Note 4)

wsPessimisticUpdate- pessimistic update Repeatable read

WeakestLockAtLoad (Note

5)

wsOptimisticRead optimistic read read committed

wsOptimisticUpdate (Note | optimistic update read committed

6)

Chapter 4. Using enterprise beans in applications 113

Profile name Concurrency Access type |Transaction isolation
control

Notes:
1. Read locks are held for the duration of the transaction.

2. The generated SELECT FOR UPDATE query grabs locks at the beginning of the
transaction.

3. SELECT FOR UPDATE is generated; locks are held for the duration of the transaction.

4. A plain SELECT query is generated. No locks are held, but updates are permitted.
Relative to wsPessimisticUpdate, this difference results in generally better transaction
throughput.

5. The generated SELECT query does not include FOR UPDATE; locks are escalated by the
persistent store at storage time if updates were made.

Do not use this policy with Oracle; doing so results in a NoSuchDataAccessSpec
exception. Comparable alternatives are wsPessimisticUpdate-NoCollision or
wsOptimisticUpdate. If you choose wsOptimisticUpdate, be sure to review the rules for
forming overqualified-update query predicates. Certain column types (for example,
BLOB) are ineligible for inclusion in the overqualified-update query predicate and
might affect your design.

6. Generated overqualified-update query forces failure if CMP column values have
changed since the beginning of the transaction.

Access intent best practices

This topic outlines issues to consider when applying access intent policies to
Enterprise JavaBeans (EJB) methods.

* Start with defaults. The default access intent policy (wsPessimisticUpdate-
WeakestLockAtLoad) loads persistent data with the weakest lock that is supported
by the persistent store (typically a read lock). Updates are allowed, and the
database is permitted to undertake lock escalation when necessary. This option
generally works best for most E]JB application patterns. After your application is
built and running, you can more finely tune certain access paths in your
application.

* Don’t mix access types. Avoid using both pessimistic and optimistic policies in
the same transaction. For most databases, pessimistic and optimistic policies use
different isolation levels. This results in multiple database connections, which
prevents you from taking advantage of the performance benefits possible
through connection sharing.

* Access intent for the ejbSelect method must be applied indirectly. Because
ejbSelect methods are not exposed through a home, remote, or local interface,
you cannot apply a policy to them directly. An ejbSelect method is called by a
home or business method, so apply the appropriate policy to the home or
business method that governs the behavior of the ejbSelect method.

* Take care when applying wsPessimisticUpdate-NoCollision. This policy does
not ensure data integrity. No database locks are held, so concurrent transactions
can overwrite each other’s updates. Use this policy only if you can be sure that
only one transaction will attempt to update persistent store at any given time.

Frequently asked questions: Access intent

I have not applied any access intent policies at all. My application runs just fine
with a DB2 database, but it fails with an Oracle database with the following
message: com.ibm.ws.ejbpersistence.utilpm.PersistenceManagerException:
PMGR10O1E: No such DataAccessSpec :FindAl11Customers. The backend datastore
does not support the SQLStatement needed by this AccessIntent: (pessimistic

114 1BM WebSphere Application Server Network Deployment, Version 5: Applications

update-weakestLockAtLoad) (collections: transaction/25) (resource manager
prefetch: 0) (AccessIntentImpl@d23690a). Why?

If you have not configured access intent, all of your data is accessed under
the default access intent policy (wsPessimisticUpdate-WeakestLockAtLoad).
On DB2 databases, the weakest lock is a shared one, and the query runs
without a FOR UPDATE clause. On Oracle databases, however, the
weakest lock is an update lock; this means that the SQL query must
contain a FOR UPDATE clause. However, not every SQL statement
necessarily supports FOR UPDATE; for example, if the query is being run
against multiple tables in a join, FOR UPDATE is not supported.

To avoid this problem, try either of the following:

¢ Modify your SQL query or reconfigure your application so that an
update lock is supported

* Apply an access intent policy that supports optimistic concurrency

I am calling a finder method from one entity bean to another, and I get an
InconsistentAccessIntentException at run time. Why?

This behavior suggests that the second entity bean was previously loaded
in the same transaction. This could happen if you called a multifinder
method that returned the second bean instance with access intent policy X
applied; you are now trying to load the second bean again by calling its
findByPrimaryKey method with access intent Y applied. Both methods
must have the same access intent policy applied.

Likewise, you might have called a container-managed relationship (CMR)
accessor method that included the second entity bean. Like a multifinder
method, this would have caused the second bean to be loaded under the
access intent policy applied to the business method of the first entity bean.

To avoid this problem, ensure that your code does not load the same bean
instance twice within the same transaction with different access intent
policies applied.

I have two beans in a container-managed relationship. I call findByPrimaryKey()
on the first bean and then call getBean2(), a CMR accessor method, on the
returned instance. At that point, I get an InconsistentAccessIntentException.

Why?

You are probably using read-ahead. When you loaded the first bean, you
caused the second bean to be loaded under the access intent policy applied
to the finder method for the first bean. However, your CMR accessor
method from the first bean to the second had a different access intent
policy applied. CMR accessor methods are really finder methods in
disguise; the run-time environment behaves as if you were trying to
change the access intent for an instance you have already read from
persistent store.

To avoid this problem, ensure that the findByPrimaryKey() and CMR
accessor methods have the same access intent policy applied when you are
using read-ahead.

I have a bean with a one-to-many relationship to a second bean. The first bean
has a pessimistic-update intent policy applied. When I try to add an instance of
the second bean to the first bean’s collection, I get an
UpdateCannotProceedWithIntegrityException. Why?

The second bean probably has a read intent policy applied. When you add
the second bean to the first bean’s collection, you are not updating the first
bean’s state, you are implicitly modifying the second bean’s state. (The
second bean contains a foreign key to the first bean, which is modified.)

Chapter 4. Using enterprise beans in applications 115

To avoid this problem, ensure that both ends of the relationship have an
update intent policy applied if you expect to change the relationship at run
time.

EJB modules

An EJB module is used to assemble one or more enterprise beans into a single
deployable unit. An EJB module is stored in a standard Java archive (JAR) file.

An EJB module contains the following:
* One or more deployable enterprise beans.

* A deployment descriptor, stored in an Extensible Markup Language (XML) file.
This file declares the contents of the module, defines the structure and external
dependencies of the beans in the module, and describes how the beans are to be
used at run time.

An EJB module can be used as a standalone application, or it can be combined
with other EJB modules, or with Web modules, to create a J2EE application. An EJB
module is installed and run in an enterprise bean container.

For more information about EJB modules, see [“Enterprise beans: Resources for]
learning” on page 151|

Assembling EJB modules

Before you begin

If you want to use existing Java 2 Platform, Enterprise Edition (J2EE) Version 1.2
modules in your J2EE Version 1.3 application, migrate them to the Version 1.3
specification first.

Assemble an Enterprise JavaBeans (EJB) module to contain enterprise beans and
related code artifacts. Group Web components, client code, and resource adapter
code in separate modules.

An E]JB module can be installed as a standalone application or can be combined
with other modules into an enterprise application.

The Application Assembly Tool (AAT) provides flexibility in assembling E]B
modules. Options described below include:

* Importing an existing EJB module (EJB JAR file)
* Creating a new E]JB module

* Copying code artifacts (such as entity beans) from one EJB module into a new
EJB module

Steps for this task
1. Start the AAT.
2. Select File>New>EJB Module.

The navigation tree displays various sets of properties for configuring the new
EJB module.

3. (Optional) Use the property dialog shown in the AAT workspace to change the
default file name and location.

116 1BM WebSphere Application Server Network Deployment, Version 5: Applications

a. Itis recommended that you change the display name so that it differs from
the file name.

b. If you like, change the temporary location of the EJB module from the
default location, install_root/bin.

4. Add at least one E]JB component to the module.

* Add at least one enterprise bean to the EJB component.

— Import an existing JAR or EAR file containing EJB components.

a.

g.

In the Navigation pane, right-click the EJB Components icon.

b. Select Import from the pop-up menu.

c. Click Browse to locate the archive file to import.
d.
e
f.

Click Open to display the contents of the archive file.

. Select an EJB application from the archive file.

Select the servlets or JSP files to be added and click Add to display the
components in the Selected Components window.

Click OK to add the selected components.

— Copy and paste values from an existing module.

— Create a new E]JB component.

a. In the Navigation pane, right-click the EJB Components icon.
b. Select New from the pop-up menu.

C.
d
e
f.

Enter the component name and archive type.

. Select class files.
. Click OK in the New EJB Component property dialog.
Enter properties for the E]JB component as needed.

5. Enter assembly properties for each bean.

a. Click the plus sign (+) next to the component instance to show property
groups.

b. Right-click the icon for a property group.

c. Select New from the pop-up menu to add new values, or edit existing
values in the property pane.

6. Add any other files needed by the application.
a. Right-click the Files icon.

. Select Add Files from the pop-up menu.

. Select Browse to navigate the directory structure.

. Select the files to add and click Add.

b
c
d. Click Select to open an archive.
e
f.

In the Selected Files window, click OK to add the files.

What to do next

Assemble any other new modules of your choice:
* EJB modules
* Application client modules

* Resource adapter modules

You can also migrate existing modules.

Chapter 4. Using enterprise beans in applications 117

Another option is assembling a new application module. While assembling
module). While assembling an application module, you can create any new
modules that you need.

CMP field assembly settings

In Enterprise JavaBeans (E]JB) Version 1.1-compliant beans, container-managed
persistence (CMP) fields define the variables in the bean class for which the
container must handle persistence management. In EJB Version 2.0-compliant
beans, these are replaced by abstract get and set methods; generated code provides
the implementation of these abstract methods.

Name
Specifies a subset of public variables in the enterprise bean’s implementation class.

Container transactions

Container transaction properties specify how an EJB container is to manage
transaction scopes for the enterprise bean’s method invocations. A transaction
attribute is mapped to one or more methods.

Container transaction assembly settings

Container transaction settings specify how an EJB container is to manage
transaction scopes for the enterprise bean’s method invocations. Specify one or
more methods and associate a transaction attribute with each method.

Name
Specifies a name for the mapping between a transaction attribute and one or more
methods.

Description
Contains text that describes the mapping.

Transaction attribute
Specifies how the container must manage the transaction boundaries when
delegating a method invocation to an enterprise bean’s business method.

Data type String
Default Required
Range For all but message-driven beans, valid values are Mandatory, Never, Not

Supported, Required, Requires New, Supports. For session beans, Bean
Managed is also valid. For message-driven beans, only Bean Managed, Not
Supported, and Required are valid.

Additional information about valid values follows:

Bean Managed
Notifies the container that the bean class directly handles transaction
demarcation. This setting can be specified for session beans and (in EJB 2.0
implementations only) for message-driven beans, and it cannot be specified
for individual bean methods.

Mandatory
Directs the container to always call the bean method within the transaction
context associated with the client. If the client attempts to invoke the bean
method without a transaction context, the container throws the

118 IBM WebSphere Application Server Network Deployment, Version 5: Applications

javax.jts.TransactionRequiredException exception to the client. The
transaction context is passed to any EJB object or resource accessed by an
enterprise bean method.

EJB clients that access these entity beans must do so within an existing
transaction. For other enterprise beans, the enterprise bean or bean method
must implement the Bean Managed value or use the Required or Requires
New value. For non-enterprise bean E]B clients, the client must access a
transaction by using the javax.transaction.UserTransaction interface.

Never Directs the container to invoke bean methods without a transaction
context.

e If the client calls a bean method from within a transaction context, the
container throws the java.rmi.RemoteException exception.

e If the client calls a bean method from outside a transaction context, the
container behaves in the same way as if the Not Supported transaction
attribute was set. The client must call the method without a transaction
context.

Not Supported

Directs the container to call the bean method without a transaction context.
If a client calls a bean method from within a transaction context, the
container suspends the association between the transaction and the current
thread before invoking the method on the enterprise bean instance. The
container then resumes the suspended association when the method
invocation returns. The suspended transaction context is not passed to any
enterprise bean objects or resources that are used by this bean method.

Required
Directs the container to call the bean method within a transaction context.
If a client calls a bean method from within a transaction context, the
container calls the bean method within the client transaction context. If a
client calls a bean method outside a transaction context, the container
creates a new transaction context and calls the bean method from within
that context. The transaction context is passed to any enterprise bean
objects or resources that are used by this bean method.

Requires New
Directs the container to always call the bean method within a new
transaction context, regardless of whether the client calls the method
within or outside a transaction context. The transaction context is passed to
any enterprise bean objects or resources that are used by this bean method.

Supports
Directs the container to call the bean method within a transaction context if
the client calls the bean method within a transaction. If the client calls the
bean method without a transaction context, the container calls the bean
method without a transaction context. The transaction context is passed to
any enterprise bean objects or resources that are used by this bean method.

Methods - Name

Specifies the name of an enterprise bean method, or the asterisk character (*). The
asterisk is used to denote all methods of an enterprise bean’s remote and home
interfaces.

Methods - Enterprise bean
Specifies which enterprise bean contains the methods indicated in the Name
setting.

Chapter 4. Using enterprise beans in applications 119

Methods - Type

Used to distinguish between a method with the same signature that is defined in
both the home and remote interface. Use Unspecified if a transaction attribute
applies to all methods of the bean.

Data type String

Range Valid values for EJB 1.1 implementations are Home, Remote, or
Unspecified. For EJB 2.0 implementations, Local and LocalHome are also
valid.

Methods - Parameters

Contains a list of fully qualified Java type names of the method parameters. This
setting is used to identify a single method among multiple methods with an
overloaded method name.

EJB module assembly settings

An E]JB module is used to assemble enterprise beans into a single deployable unit.
An EJB module contains one or more enterprise beans and a deployment
descriptor.

File name
Specifies the file name of the EJB module, relative to the top level of the
application package.

Alternate DD
Specifies a deployment descriptor to be used at run time instead of the one
installed in the module.

Classpath

The path that contains additional classes required by the application that are not
contained in the module’s archive file. The class loader uses this path. Specify the
values relative to the root of the EAR file and separate the values with spaces.
Absolute values that refer to files or directories on the hard drive are ignored.

To specify classes that are not in JAR files but are in the root of the EAR file, use a
period and forward slash (./). Consider the following example directory structure
in which the file myapp.ear contains an EJB module named myejb.jar. Additional
classes reside in classl.jar and class2.zip. A class named xyz.class is not packaged
in a JAR file but is in the root of the EAR file.

myapp.ear/myejb.jar

myapp.ear/classl.jar

myapp.ear/class2.zip
myapp.ear/xyz.class

Specify classl.jar class2.zip ./ as the value of the Classpath setting. (Name
only the directory for .class files.)

Display name
Specifies a short name that is intended to be displayed by GUISs.

Description
Contains text that describes the module.

EdJB client JAR

Specifies the location of a JAR file that contains a subset of deployed classes
needed by the client.

120 1BM WebSphere Application Server Network Deployment, Version 5: Applications

Small icon
Specifies the name of a JPEG or GIF file that contains a small image (16x16 pixels).

The image is used as an icon to represent the module in a GUIL

Large icon
Specifies the name of a JPEG or GIF file that contains a large image (32x32 pixels).
The image is used as an icon to represent the module in a GUIL

Generalizations - Subtype
Information about this property is not available.

This property is an IBM extension to the standard J2EE deployment descriptor.

Generalizations - Supertype
Information about this property is not available.

This property is an IBM extension to the standard J2EE deployment descriptor.

EJB relationships - Name
The logical name for a container-managed relationship between EJB 2.0-compliant
entity beans.

Default data source - JNDI name

Specifies the default JNDI name for the data source. This default is used if binding
information is not specified in the deployment descriptor for an individual
enterprise bean.

Default CMP connection factory
Specifies the JNDI name for a CMP connection factory. This setting is applicable
only for EJB 2.x-compliant CMP beans.

Default authorization - User ID
Specifies the default user ID for connecting to an enterprise bean’s data store.

Default authorization - Password
Specifies the default password for connecting to an enterprise bean’s data store.

Entity bean assembly settings

An entity bean encapsulates persistent data, which is stored in a data source, and
associated methods to manipulate that data.

EJB name
Specifies a logical name for the enterprise bean. This name must be unique within
the EJB module. There is no relationship between this name and the JNDI name.

Display name
Specifies a short name that is intended to be displayed by GUISs.

Description
Contains text that describes the entity bean.

EJB class
Specifies the full name of the enterprise bean class (for example,
com.ibm.ejs.doc.account.AccountBean).

Remote - Home

(Required for EJB 1.x) Specifies the full name of the enterprise bean’s home
interface class (for example, com.ibm.ejs.doc.account. AccountHome).

Chapter 4. Using enterprise beans in applications 121

Remote - Interface
(Required for EJB 1.x) Specifies the full name of the enterprise bean’s remote
interface class (for example, com.ibm.ejs.doc.account.Account).

Local interface - Home
(Required for EJB 1.x) Specifies the full name of the enterprise bean’s local home
interface class (for example, com.ibm.ejs.doc.account. AccountLocalHome).

Local interface - Interface
(Required for EJB 1.x) Specifies the full name of the enterprise bean’s local

interface class (for example, com.ibm.ejs.doc.account. AccountLocal).

Persistence type
Specifies whether an entity bean manages its own persistent storage or whether

storage is managed by the container.

Data type String
Range Valid values are Bean managed and Container managed.
Reentrant

Specifies whether the entity bean is reentrant. If an enterprise bean is reentrant, it
can call methods on itself or call another bean that calls a method on the calling
bean. Only entity beans can be reentrant.

If an entity bean is not reentrant and a bean instance is executing a client request
in a transaction context and another client using the same transaction context
makes a request on the same bean instance, the EJB container throws the
java.rmi.RemoteException exception to the second client. If a bean is reentrant, the
container cannot distinguish this type of illegal loopback call from a legal
concurrent call, so the bean must be coded to detect illegal loopback calls.

Primary key class

Specifies the full name of the bean’s primary key class (for example,
com.ibm.ejs.doc.account.AccountKey). Composite primary keys map to multiple
fields in the entity bean class (or to data structures built from the primitive Java
data types) and must be encapsulated in a primary key class.

More complicated enterprise beans are likely to have composite primary keys, with
multiple instance variables representing the primary key. A subset of the
container-managed fields is used to define the primary key class associated with
each instance of an enterprise bean.

Primary key field

Specifies the name of a simple primary key. Simple primary keys map to a single
field in the entity bean class and are made up of primitive Java data types (such as
integer or long). If exactly one CMP field is the primary key, it can be specified

here.

Data type String

Range Valid values are the name of any one CMP field or Compound key, which
appears when the primary key class is set

Version

Specifies the version of EJB specification with which a container-managed
persistence (CMP) entity bean complies.

Data type String

122 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Range Valid values are 1.x or 2.x

Abstract schema name
Specifies the name of the abstract schema type of an EJB Version 2.x CMP entity
bean. It is used in EJB Query Language (QL) queries.

For example, the abstract schema name might be Order for an entity bean whose
local interface is com.acme.commerce.Order.

Small icon
Specifies the name of a JPEG or GIF file that contains a small image (16x16 pixels).
The image is used as an icon to represent the entity bean in a GUL

Large icon
Specifies the name of a JPEG or GIF file that contains a large image (32x32 pixels).
The image is used as an icon to represent the entity bean in a GUL

Security identity

Specifies that a principal’s credential properties are to be handled as indicated in
the Run-As mode property. If this setting is enabled, the Run-As mode property
can be edited.

Run-As mode
Specifies the credential information to be used by the security service to determine
the permissions that a principal has on various resources.

At appropriate points, the security service determines whether the principal is
authorized to use a particular resource based on the principal’s permissions. If the
method call is authorized, the security service acts on the principal’s credential
properties according to the Run-As mode setting of the enterprise bean.

Data type Enumerated integer
Range Valid values are Use identity of caller and Use identity assigned to
specified role

Additional information about valid settings follows:

Use identity of caller
The security service makes no changes to the principal’s credential
properties.

Use identity assigned to specified role
A principal that has been assigned to the specified security role is used for
the execution of the bean’s methods. This association is part of the
application binding in which the role is associated with a user ID and
password of a user who is granted that role.

Role name
Specifies the name of a security role. If Run-As mode is set to Use identity
assigned to specified role, a principal that has been granted this role is used.

Description
Contains further information about the security role.

Concurrency control
Specifies how the bean is to handle concurrent access to its data. This setting is
applicable only for EJB 1.x-compliant entity beans.

Chapter 4. Using enterprise beans in applications 123

124

This property is an IBM extension to the standard J2EE deployment descriptor.

Data type String
Range Valid values are Optimistic or Pessimistic

Inheritance root
Specifies whether the enterprise bean is at the root of an inheritance hierarchy.

This property is an IBM extension to the standard J2EE deployment descriptor.

Bean Cache - Activate at
Specifies the point at which an enterprise bean is activated and placed in the cache.
Removal from the cache and passivation is also governed by this setting.

This property is an IBM extension to the standard J2EE deployment descriptor.

Data type String
Default Transaction
Range Valid values are Once, Transaction, and Activity session

More information about valid values follows:

Once Indicates that the bean is activated when it is first accessed in the server
process, and passivated (and removed from the cache) at the discretion of
the container, for example, when the cache becomes full.

Transaction
Indicates that the bean is activated at the start of a transaction and
passivated (and removed from the cache) at the end of the transaction.

Activity session
Indicates that the bean is activated and passivated as follows:

* On an ActivitySession boundary, if an ActivitySession context is present
on activation

* On a transaction boundary, if a transaction context (but no
ActivitySession context) is present on activation

* Otherwise, on an invocation boundary

The values of the Activate at and Load at settings govern which commit options
are used, as follows:

e For Commit Option A (implies exclusive DB access), use Activate at = Once and
Load at = Activation.

This option reduces database 1/O (avoids calls to the ejpbLoad function) but
serializes all transactions accessing the bean instance. Option A can increase
memory usage by maintaining more objects in the cache, but could provide
better response time if bean instances are not generally accessed concurrently by
multiple transactions. To use Option A successfully, you must also set
Concurrency control to Pessimistic.
Note for Network Deployment users: When workload management is enabled,
Option A cannot be used.

¢ For Commit Option B (implies shared DB access), use Activate at = Once, Load
at = Transaction.
Option B can increase memory usage by maintaining more objects in the cache.
However, because each transaction creates its own copy of an object, there can
be multiple copies of an instance in memory at any given time (one per

IBM WebSphere Application Server Network Deployment, Version 5: Applications

transaction), requiring that the database be accessed at each transaction. If an
enterprise bean contains a significant number of calls to the ejbActivate function,
using Option B can be beneficial because the required object is already in the
cache. Otherwise, this option does not provide significant benefit over Option A.

* For Commit Option C (implies shared DB access), use Activate at = Transaction
and Load at = Transaction.

This option can reduce memory usage by maintaining fewer objects in the cache;
however, there can be multiple copies of an instance in memory at any given
time (one per transaction). This option can reduce transaction contention for
enterprise bean instances that are accessed concurrently but not updated.

Bean Cache - Load at
Specifies when the bean loads its state from the database. The value of this setting

implies whether the container has exclusive or shared access to the database.

This property is an IBM extension to the standard J2EE deployment descriptor.

Data type String
Default Transaction
Range Valid values are Activation and Transaction

Additional information about valid values follows:

Activation
Indicates that the bean is loaded when it is activated (regardless of
Activate at setting) and implies that the container has exclusive access to
the database.

Transaction
Indicates that the bean is loaded at the start of a transaction and implies
that the container has shared access to the database.

The Activate at and Load at settings govern which commit options are used. The
commit options themselves are described in the Enterprise JavaBeans specification.
For more information about setting this setting to achieve a given commit
behavior, see Bean Cache - Activate at.

Commit option
Specifies which commit option is used as a result of bean cache settings. The
commit options themselves are described in the Enterprise JavaBeans specification.

Data type String
Range Valid values are A, B, and C

Local Transactions - Unresolved action
Specifies the action that the EJB container must take if resources are uncommitted

by an application in a local transaction.

This property is an IBM extension to the standard J2EE deployment descriptor.
This setting is applicable only when Resolution control is set to Application. A
local transaction context is created when a method runs in what the EJB
specification refers to as an unspecified transaction context.

Data type String
Default Rollback
Range Valid values are Commit and Rollback

Chapter 4. Using enterprise beans in applications 125

Additional information about these settings follows:

Commit
At end of the local transaction context, the container instructs all
unresolved local transactions to commit.

Rollback
(Default) At end of the local transaction context, the container instructs all
unresolved local transactions to roll back.

Local Transactions - Resolution control
Specifies how the local transaction is to be resolved before the local transaction
context ends: by the application through user code or by the EJB container.

This property is an IBM extension to the standard J2EE deployment descriptor.

Data type String
Range Valid values are Application and ContainerAtBoundary

Additional information about these settings follows:

Application
When this setting is used, your code must either commit or roll back the
local transaction. If this does not occur, the runtime environment logs a
warning and automatically commits or rolls back the connection as
specified by the Unresolved action setting.

ContainerAtBoundary
When this setting is used, the container takes responsibility for resolving
each local transaction. This provides you with a programming model
similar to global transactions in which your code simply gets a connection
and performs work within it. User code does not have to handle local
transactions.

— If the Boundary attribute is set to ActivitySession, then the local
transactions are enlisted as ActivitySession resources and directed to
complete by the ActivitySession.

— If the the Boundary attribute is set to BeanMethod, then the local
transactions are committed at method end by the container.

Connections are never committed automatically by the resource adapter
when this value is configured for the bean Unresolved action is not
used. An application cannot call Connection.LocalTransaction.begin()
when using this policy and receives an exception from the resource
adapter if it does so.

When using a Resolution control of ContainAtBoundary, applications
must get connection handles after the local transaction context boundary
has been started by the container. The application should close the
connection before the end of the boundary, although any work
performed on the connection is not committed or rolled back until the
local transaction context ends. This model of connection usage is
sometimes referred to as the "get-use-close” model.

126 1BM WebSphere Application Server Network Deployment, Version 5: Applications

This value is supported only for EJB components that use
container-managed transactions or ActivitySessions. It is not supported
for web components or for enterprise beans that use bean-managed
transactions or ActivitySessions.

Local Transactions - Boundary
Specifies the duration of a local transaction context.

This property is an IBM extension to the standard J2EE deployment descriptor.

Data type String
Default BeanMethod
Range Valid values are BeanMethod and ActivitySession

Additional information about valid settings follows:

BeanMethod
When this setting is used, the local transaction begins when the method
begins and ends when the method ends.

ActivitySession
When this setting is used, the local transaction must be resolved within the
scope of any ActivitySession in which it was started or, if no
ActivitySession context is present, within the same bean method in which
it was started.

This property can be changed on WAS Enterprise only.

Local Relationship Roles - Name
Within a local relationship between EJB 1.x-compliant entity beans, the logical
name for the view an entity bean presents to other beans in the relationship.

For example, in a relationship between Account and Customer beans, the role of
the Account instance relative to the Customer instance might be savingsAccount.

This property is an IBM extension to the standard J2EE deployment descriptor.
This is separate from the container-managed relationships defined in the Enterprise
JavaBeans specification, Version 2.0.

Local Relationship Roles - Source EJB Name
The name of the entity bean for which the role is defined.

This property is an IBM extension to the standard J2EE deployment descriptor.

Local Relationship Roles - is Forward
Specifies how deployment code for navigating the relationship is generated. This
setting is applicable only for navigable relationships.

If isForward is enabled (set to true), deployment code is generated in the source
bean. That is, navigation of the relationship proceeds forward from the source to the

target.

Otherwise, deployment code is generated in the target bean. That is, navigation of
the relationship proceeds from the target to the source.

Chapter 4. Using enterprise beans in applications 127

128

This property is an IBM extension to the standard J2EE deployment descriptor. For
more information, see the documentation for the Deployment Tool for Enterprise
JavaBeans.

Local Relationship Roles - is Navigable
Specifies whether data in related beans may be retrieved through queries to the
source bean.

This property is an IBM extension to the standard J2EE deployment descriptor.

Lifetime in cache
The lifetime, in seconds, of cached data for an instance of this bean type.

This value indicates how long the cached data is to exist beyond the end of the
transaction in which the data was retrieved. This might avoid another retrieval
from persistent storage if the same bean instance were to be used in later
transactions. How this value is interpreted depends on the value of Lifetime in
cache usage.

This property is an IBM extension to the standard J2EE deployment descriptor.

Data type Long
Units Seconds
Default 0

Range 0to2% -1

Lifetime in cache usage
Indicates how the lifetime-in-cache setting is to be used by the caching mechanism.

This property is an IBM extension to the standard J2EE deployment descriptor.

If your application uses CMP beans in which the underlying data changes
infrequently, you might gain significantly better performance by using this setting
with Lifetime in cache. Typically, data read from persistent storage is held
temporarily in an internal cache until the state of the instance is restored. Cached
data normally does not persist beyond state restoration or the end of the
transaction in which the finder method was called. By setting Lifetime in cache
usage to a value other than 0ff, you indicate that the cached data is to be held for
a longer time, potentially hours or days, before invalidating the version of the data
in the cache and fetching a new version. Avoiding a trip to persistent storage
greatly speeds up access to such beans by applications.

In addition, the use of a value other than 0ff requires that finders on the bean
have an access type of Read, because E]JB applications are not permitted to update
such CMP beans.

* For EJB 1.x-compliant beans, see[Access intent - access typel

* For EJB 2.x-compliant beans, see|Applied access intentl

Setting Bean Cache - Activate at to activation and Bean Cache - Load at to Once
also minimizes retrievals from persistent storage. However, this settings
combination might not be supported by certain CMP beans because it results in the
ejbLoad() method being called once instead of at the beginning of each transaction
in which they are used. The lifetime-in-cache settings combination is independent
of CMP bean implementation, though it does incur the modest overhead of calling
ejbLoad() on each use.

IBM WebSphere Application Server Network Deployment, Version 5: Applications

Data type Enumerated int

Units Not applicable
Default 0 (0ff)
Range Valid values are Clock Time, Elapsed Time, Week Time, or Off

Additional information about valid values follows:

Off When this value is used, the value of Lifetime in cache is ignored. Beans
of this type are cached only in a transaction-scoped cache. The cached data
for this instance expires after the transaction in which it was retrieved is
completed.

Elapsed Time
When this value is used, the value of Lifetime in cache is added to the
time at which the transaction in which the bean instance was retrieved is
completed. The resulting value becomes the time at which the cached data
expires. The value of Lifetime in cache can add up to minutes, hours,
days, and so on.

Clock Time
When this value is used, the value of Lifetime in cache represents a
particular time of day. The value is added to the immediately preceeding
or following midnight to calculate a future time value, which is then
treated as for Elapsed Time. Using Clock Time enables you to specify that
all instances of this bean type are to have their cached data invalidated at,
for example, 3 AM, no matter when they were retrieved. This is important
if, for example, the data underlying this bean type is batch-updated at 3
AM every day.

The selection of midnight (preceding or following) depends on the value of
Lifetime in cache. If Lifetime in cache plus the value that represents the
preceeding midnight is earlier than the current time, the following
midnight is used.

When you use Clock Time, the value of Lifetime in cache is not supposed
to represent more than 24 hours. If it does, the cache manager subtracts
24-hour increments from it until a value less than or equal to 24 hours is
achieved. To invalidate data at midnight, set Lifetime in cache to 0.

Week Time
Usage of this value is the same as for Clock Time, except that the value of
Lifetime in cache is added to the preceeding or following Sunday
midnight (11:59 PM Saturday plus 1 minute). When Week Time is used, the
value of Lifetime in cache can represent more than 24 hours but not more
than 7 days.

JNDI name

Specifies the JNDI name of the bean’s home interface. This is the name under
which the enterprise bean’s home interface is registered and therefore, is the name
that must be specified when an EJB client does a lookup of the home interface.

Data source - JNDI name
Specifies the JNDI name for the bean’s data source.

Default Authorization - User ID
Specifies the default user ID for connecting to a data source.

Default Authorization - Password
Specifies the default password for connecting to a data source.

Chapter 4. Using enterprise beans in applications 129

CMP Resource - JNDI name
Specifies the JNDI name for the resource by which CMP data is stored.

CMP Resource - Resource authentication
Specifies the scope at which resources are to be authenticated: by the container or
by the resource.

EJB local-reference assembly settings

For EJB 2.0-compliant beans, the EJB local reference element declares a reference to
another enterprise bean’s local home interface.

Name
Specifies the name of an EJB reference.

This is the JNDI name that the servlet code uses to get a reference to the enterprise
bean. The following example illustrates how this element is specified in the
deployment descriptor:

<ejb-ref-name>ejb/Payroll</ejb-ref-name>

Description
Contains a description of the parent element.

This can include any information that the EJB archive-file producer wants to
provide to the consumer of the EJB archive file.

Link
Used in the ejb-ref element to specify that an EJB reference is linked to an
enterprise bean in the encompassing web-application package.

The value of the link element must be the EJB name of an enterprise bean in the
same web-application package. The following example illustrates how this element
is specified in the deployment descriptor:

<ejb-Tink>EmployeeRecord</ejb-1ink>

Local interface
Specifies the fully-qualified name of the enterprise bean’s local interface.

Local home
Specifies the fully-qualified name of the enterprise bean’s local home interface.

Type

Specifies the expected type of the referenced enterprise bean.

Message-driven bean assembly settings
Use this page to configure the assembly properties of message-driven beans

For more information about the effect of JMS properties, such as message selectors
and message acknowledgement, see the WebSphere MQ Using Java book,

SC34-5456 or @ "Messaging Systems and the Java Message Service”
(http:/ /developerjava.sun.com/developer/technical Articles/
Networking /messaging/).

The following notebook pages are available:

General properties
Specify general assembly properties for the message bean.

130 IBM WebSphere Application Server Network Deployment, Version 5: Applications

* EJB name
* Display name
¢ Description
* EJB class
* Transaction type
Advanced properties
Specify advanced assembly properties for the message bean.
* Message selector
¢ Acknowledge mode
* Destination type
Bindings properties
Specify bindings assembly properties for the message bean.

EJB name
The logical name for the message bean (as an enterprise bean)

The logical name for the message bean (as an enterprise bean). This name must be
unique within the EJB module. There is no relationship between this name and the
JNDI name.

Data type String

Units Not applicable

Default Null

Range Up to 30 ASCII characters

Display name
A short name that is intended to be displayed by graphical user interfaces

Data type String

Units Not applicable

Default Null

Range Up to 30 ASCII characters
Description

A description of the message bean, for administrive use
Data type String

Units Not applicable

Default Null

Range Up to 30 ASCII characters
EJB class

The full package name of the message bean class

Specify the full package name of the message bean class, for example,
com.ibm.ejs.doc.account.MessageBean. You can either type the class name or click
Browse to locate an existing class file.

Data type String

Units Not applicable

Default Null

Range Up to 30 ASCII characters

Chapter 4. Using enterprise beans in applications 131

Transaction type
Whether the message bean manages its own transactions or the container manages

transactions on behalf of the bean

Whether the message bean manages its own transactions or the container manages
transactions on behalf of the bean. All messages retrieved from a specific
destination have the same transactional behavior. To enable the transactional
behavior that you want, you must configure the JMS destination with the same
transactional behavior as you configure for the message bean.

Data type Enum

Units Not applicable
Default Bean

Range

Bean The message bean manages its own transactions

Container
The container manages transactions on behalf of the bean

Message selector
The JMS message selector to be used to determine which messages the message
bean receives

The JMS message selector to be used to determine which messages the message
bean receives; for example:

JMSType="'car' AND color="'blue' AND weight>2500

The selector string can refer to fields in the JMS message header and fields in the
message properties. Message selectors cannot reference message body values.

Data type String

Units Not applicable

Default Null

Range A String, up to 30 ASCII characters, whose syntax is based on a subset

of the SQLI92 conditional expression syntax.

Acknowledge mode
How the session acknowledges any messages it receives.

This property applies only to message-driven beans that uses bean-managed
transaction demarcation (Transaction type is set to Bean).

Data type Enum

Units Not applicable
Default Auto Acknowledge
Range

Auto Acknowledge
The session automatically acknowledges a message when it has
either successfully returned from a call to receive, or the
message listener it has called to process the message
successfully returns.

Dups OK Acknowledge
The session lazily acknowledges the delivery of messages. This
is likely to result in the delivery of some duplicate messages if
JMS fails, so it should be used only by consumers that are
tolerant of duplicate messages.

132 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Destination type
Whether the message bean uses a queue or topic destination.

Data type Enum

Units Not applicable
Default Null

Range

Queue The message bean uses a queue destination.

Topic The message bean uses a topic destination.

Listener port name
The name of the listener port for this message bean.

The name of the listener port for this message bean (as defined on the WebSphere
administrative console).

Data type String

Units Not applicable

Default Null

Range Up to 30 ASCII characters

Method extensions

Method extensions are IBM extensions to the standard deployment descriptors for
enterprise beans.

Method extension properties are used to define transaction isolation levels for
methods, to control the delegation of a principal’s credentials, and to define
custom finder methods.

Method extension assembly settings

Method extensions are IBM extensions to the standard J2EE deployment
descriptors for Enterprise JavaBeans (EJB) Version 1.x-compliant beans. Method
extension settings define transaction isolation levels for methods and control the
delegation of a principal’s credentials.

Method type
Specifies the type of the enterprise bean method.

Data type String
Range Valid values are Home, Remote, and Unspecified.
Name

Specifies the name of an enterprise bean method, or the asterisk character (*). The
asterisk is used to denote all methods of an enterprise bean’s remote and home
interfaces.

Parameters

Contains a list of fully qualified Java type names of the method parameters. Used
to identify a single method among multiple methods with an overloaded method
name.

Isolation level attributes
The transaction isolation level determines how isolated one transaction is from
another. This can be set for individual methods in an enterprise bean or for all

Chapter 4. Using enterprise beans in applications 133

methods in the enterprise bean. An asterisk is used to indicate all methods in the
bean. This setting is not applicable for EJB 2.x-compliant beans.

Within a transactional context, the isolation level associated with the first method
call becomes the required isolation level for all methods called within that
transaction. If a method is called with a different isolation level from that of the
first method, the java.rmi.RemoteException exception is thrown.

Isolation level
Specifies the level of transactional isolation.

The container uses the transaction isolation level attribute as follows:

* Session beans and entity beans with bean-managed persistence (BMP): For each
database connection used by the bean, the container sets the transaction isolation
level at the start of each transaction unless the bean explicitly sets the isolation
level on the connection.

* Entity beans with container-managed persistence (CMP): The container generates
database access code that implements the specified isolation level.

Data type String
Range Valid values are Serializable, Repeatable read, Read committed, and
Read uncommitted

Serializable
This level prohibits the following types of reads:

* Dirty reads, in which a transaction reads a database row containing
uncommitted changes from a second transaction.

* Nonrepeatable reads, in which one transaction reads a row, a second
transaction changes the same row, and the first transaction rereads the
row and gets a different value.

* Phantom reads, in which one transaction reads all rows that satisfy an
SQL WHERE condition, a second transaction inserts a row that also
satisfies the WHERE condition, and the first transaction applies the same
WHERE condition and gets the row inserted by the second transaction.

Repeatable read
This level prohibits dirty reads and nonrepeatable reads, but it allows
phantom reads.

Read committed
This level prohibits dirty reads but allows nonrepeatable reads and
phantom reads.

Read uncommitted
This level allows dirty reads, nonrepeatable reads, and phantom reads.

Access intent - Intent type
Specifies whether to load the enterprise bean as read-only or for update. This
setting is applicable only for EJB 1.x-compliant beans.

This setting is applicable for the following types of beans:
* EJB l.x-compliant entity beans

 Enterprise beans with CMP version 1.x that are packaged in EJB 2.x-compliant
modules

134 1BM WebSphere Application Server Network Deployment, Version 5: Applications

To specify the access intent for EJB 2.x-compliant beans, select an access intent
policy.

Data type String
Range Valid values are Read or Update

Finder descriptor - User

Specifies that the user has provided a finder helper class in the entity bean’s home
interface. The class contains specialized finder methods. This setting is applicable
only for EJB 1.x-compliant entity beans.

Finder descriptor - EJB QL
Describes the semantics of a finder method that uses EJB QL (Enterprise JavaBeans
query language). This setting is applicable only for EJB 1.x-compliant entity beans.

EJB QL is a declarative, SQL-like language that is intended to be compiled to the
target language of the persistent datastore used by a persistence manager. The
language is independent of the bean’s mapping to a relational datastore and is
therefore portable. The EJB query specifies a search based on the persistent
attributes and relationships of the bean. An EJB query can contain the following
clauses:

¢ SELECT (optional), which specifies the EJB objects to return

¢ FROM (required), which specifies the collections of objects to which the query is
to be applied

¢ WHERE (optional), which contains search predicates over the collections
* ORDER BY (optional), which specifies the ordering of the resulting collection

Finder descriptor - Full SELECT
Describes the semantics of a finder method that uses an SQL SELECT clause. For

information on restrictions, see the documentation for the Deployment Tool for
Enterprise JavaBeans.

Finder descriptor - WHERE clause

Describes the semantics of a finder method that uses an SQL. WHERE clause. This
clause restricts the results that are returned by the query. For information on
restrictions, see the documentation for the Deployment Tool for Enterprise
JavaBeans.

Security identity

Specifies whether a principal’s credential settings are to be handled as indicated in
the Run-As mode setting. If this is enabled, the Run-As mode setting can be
edited.

Description
Contains further information about the security instructions.

Run-As mode
Specifies the credential information to be used by the security service to determine
the permissions that a principal has on various resources.

At appropriate points, the security service determines whether the principal is
authorized to use a particular resource based on the principal’s permissions. If the
method call is authorized, the security service acts on the principal’s credential
settings according to the Run-As mode setting of the enterprise bean.

Data type Enumerated integer

Chapter 4. Using enterprise beans in applications 135

Range Valid values are Use identity of caller, Use identity of EJB server,
and Use identity assigned to specified role

Additional information about valid values for this setting follows:

Use identity of caller
The security service makes no changes to the principal’s credential settings.

Use identity of E]JB server
The security service alters the principal’s credential settings to match the
credential settings associated with the EJB server.

Use identity assigned to specified role
A principal that has been assigned to the specified security role is used for
the execution of the bean’s methods. This association is part of the
application binding in which the role is associated with a user ID and
password of a user who is granted that role.

Role name
Specifies the name of a security role. If Run-As mode is set to Use identity
assigned to specified role, a principal that has been granted this role is used.

Description
Contains further information about the security role.

Method permissions

A method permission is a mapping between one or more security roles and one or
more methods that a member of the role can call.

Method permission assembly settings

A method permission is a mapping between one or more security roles and one or
more methods that a member of the role can call. Assembly settings for method
permissions include an optional description, a list of security role names, and a list
of methods. The security roles must be defined, and the methods must be defined
in the enterprise bean’s remote or home interfaces.

Method permission name
Specifies a name for the mapping between method permissions and security roles.

Description
Contains text that describes the mapping between method permissions and
security roles.

Methods - Name

Specifies the name of an enterprise bean method, or the asterisk (*) character. The
asterisk is used to denote all the methods of an enterprise bean’s remote and home
interfaces.

Methods - Enterprise bean
Specifies the name of the enterprise bean that contains the method.

Methods - Type

Distinguishes between a method with the same signature that is defined in both
the home and remote interface. Use Unspecified if a method permission applies to
all methods of a bean.

Data type String

136 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Range Valid values are Unspecified, Remote, or Home.

Methods - Parameters

Contains a list of fully qualified Java type names of the method parameters. This
setting is used to identify a single method among multiple methods with an
overloaded method name.

Unchecked

Specifies whether the method permission is checked before the method is run.

Roles - Role name
Specifies the name of the security role that must be granted in order to call the
method.

Query assembly settings
Use these to specify a finder or SELECT query.

A query element contains the following;:

¢ Optional description of the query

* Name of the finder or SELECT method that uses the query

* The return type of mapping, if it is used

* Whether the query is for a SELECT method

* EJB query language (EJB QL) query string that defines the query

Queries that are expressed in EJB QL must use the ejb-ql element to specify the
query. If a query cannot be expressed in EJB QL, describe the semantics of the
query by using the description element and leave the ejb-ql element empty.

Name

Contains the name of an enterprise bean method or the asterisk (*) character. An
asterisk in the method-name element denotes all methods of an enterprise bean’s
remote and home interfaces.

Parameters
Contains a list of the fully-qualified Java names of the method parameters.

Result type
Used in the query element to indicate whether a returned abstract schema type for
a SELECT method should be mapped to an EJBLocalObject or EJBObject type.

References

References are logical names used to locate external resources for enterprise
applications. References are defined in the application’s deployment descriptor file.
At deployment, the references are bound to the physical location (global JNDI
name) of the resource in the target operational environment.

This product supports the following types of references:

* An EJB reference is a logical name used to locate the home interface of an
enterprise bean.

* A resource reference is a logical name used to locate a connection factory object.

These objects define connections to external resources such as databases and
messaging systems. The container makes references available in a JNDI naming
subcontext. By convention, references are organized as follows:

Chapter 4. Using enterprise beans in applications 137

* EJB references are made available in the java:comp/env/ejb subcontext.
* Resource references are made available as follows:

— JDBC DataSource references are declared in the java:comp/env/jdbc
subcontext.

— JMS connection factories are declared in the java:comp/env/jms subcontext.

— JavaMail connection factories are declared in the java:comp/env/mail
subcontext.

— URL connection factories are declared in the java:comp/env/url subcontext.

EJB reference assembly settings

An EJB reference is a logical name used to locate the home interface of an
enterprise bean used by an application.

At deployment, the EJB reference is bound to the enterprise bean’s home in the
target operational environment. The container makes the application’s EJB
references available in a JNDI naming context. It is recommended that references to
enterprise beans be organized in the ejb subcontext of the application’s
environment (in java:comp/env/ejb).

Name
Specifies the JNDI name of the enterprise bean’s home interface relative to the
java:comp/env context.

For example, if ejb/EmplRecord is specified, the referring code looks up the
enterprise bean’s home interface at java:comp/env/ejb/EmplRecord. This JNDI
name is an alias used by the code (the actual J]NDI name is specified on the
Binding tab).

Description
Contains text that describes the EJB reference.

Link

Used to link an EJB reference to an enterprise bean in the current module (the
same module as the one making the reference) or in another module within the
same J2EE application. This setting specifies the name of the target enterprise bean.

The target enterprise bean can be in any EJB module in the same J2EE application
as the referring module. To avoid having to rename enterprise beans to have
unique names within an J2EE application, specify the path name of the E]JB archive
file that contains the referenced enterprise bean and append the target bean’s
name, separated by a # symbol (for example,
...products/product.jar#ProductEJB). The path name is relative to the referring
module’s archive file specification. If a link is not specified, the reference must be
resolved to a JNDI name during installation.

Home
Specifies the fully qualified name of the enterprise bean’s home interface (for
example, com.ibm.ejbs.EmplRecordHome).

Remote
Specifies the fully qualified name of the enterprise bean’s remote interface (for
example, com.ibm.ejbs.EmplRecord).

Type

Specifies the expected type of the referenced enterprise bean.

138 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Data type String

Default None; must be set
Range Entity or Session
JNDI name

Binding information that is used by the run-time environment to resolve the
location of a resource.

For EJB references, the value of this setting must match the JNDI name of the
enterprise bean as it was specified on the Binding tab for the EJB module that
contains the bean.

EJB relation assembly settings

An EJB relation describes a relationship between two entity beans with
container-managed persistence.

The name of the relationship, if specified, is unique within an EJB archive file.

Description
Contains text to describe the EJB relationship role.

Source EJB

Specifies the source of the role that participates in a relationship.

Multiplicity

Specifies the multiplicity of the role that participates in a relation.

Cascade delete
Within a particular relationship, specifies that the lifetime of one or more entity
beans is dependent on the lifetime of another entity bean.

Cascade delete can be specified only for an EJB relationship role contained in an
EJB relation in which the other EJB relationship role specifies a multiplicity of one.

CMR field

Enables the declaration of a container-managed relationship (CMR) field.

The CMR field describes the bean provider’s view of a relationship. It consists of
an optional description and the name and class type of the source enterprise bean’s
role in a relationship.

Exclude list assembly settings

The exclude list indicates which methods in the enterprise beans may not be
called. You should also configure security for the enterprise bean so that access to
the listed methods is not permitted.

This capability applies only to Enterprise JavaBeans (EJB) Version 2.x-compliant
beans. For more information about exclude lists, see the EJB specification.

Description
Provides additional information about this exclude list.

Methods - Name

Specifies the name of an enterprise bean method, or the asterisk (*) character. The
asterisk is used to denote all the methods of an enterprise bean’s remote and home
interfaces.

Chapter 4. Using enterprise beans in applications 139

140

Methods - Enterprise bean
Specifies the name of the enterprise bean that contains the method.

Methods - Type

Distinguishes between a method with the same signature that is defined in both
the home and remote interface. Use Unspecified if the exclusion applies to all
methods of a bean.

Data type String
Range Valid values are Unspecified, Remote, or Home

Methods - Parameters

Contains a list of fully qualified Java type names of the method parameters. This
setting is used to identify a single method among multiple methods with an
overloaded method name.

Security role assembly settings

A security role is a logical grouping of principals. Access to operations (such as
enterprise-bean methods) is controlled by granting access to a role.

Role name

Specifies the name of a security role that is unique to an application. This setting
applies only when you are specifying security roles at the application level (EAR
file).

Description

Contains text that describes the application-specific security role. This setting
applies only when you are specifying security roles at the application level (EAR
file).

Binding - Groups - Name

Specifies the user groups that are granted the application-specific security role.
This setting applies only when you are specifying security roles at the application
level (EAR file).

Binding - Users - Name

Specifies the users that are granted the application-specific security role. This
setting applies only when you are specifying security roles at the application level
(EAR file).

Binding - Special Subjects - Name

Specifies one of two special categories of authenticate users to which
application-specific security roles can be granted: Everyone or A11. This setting
applies only when you are specifying security roles at the application level (EAR
file).

If the special subject A11 is granted a role, any user who can authenticate by using
a valid user ID and password is considered to be granted that role.

If the special subject Everyone is granted a role, all users, including those who did
not authenticate, are granted the role. In other words, a method on an enterprise
bean or a URI is unprotected if any of the required roles for that method are
granted to the special subject Everyone.

Data type String
Range Valid values are Al1 or Everyone

IBM WebSphere Application Server Network Deployment, Version 5: Applications

Session bean assembly properties

A session bean encapsulates transient data that is associated with a particular EJB
client. Unlike data in an entity bean, the data in a session bean is not stored in a
persistent data source.

EJB name
Specifies a logical name for the enterprise bean. This name must be unique within

the EJB module. There is no relationship between this name and the JNDI name.

Display name
Specifies a short name that is intended to be displayed by GUISs.

Description
Contains text that describes the session bean.

EJB class
Specifies the full name of the enterprise bean class (for example,
com.ibm.ejs.doc.account.AccountBean).

Remote - Home
Specifies the full name of the enterprise bean’s home interface class (for example,
com.ibm.ejs.doc.account. AccountHome).

Remote - Interface
Specifies the full name of the enterprise bean’s remote interface class (for example,
com.ibm.ejs.doc.account. Account).

Local interface - Home
Specifies the full name of the enterprise bean’s home interface class (for example,
com.ibm.ejs.doc.account.AccountLocalHome).

Local interface - Interface
Specifies the full name of the enterprise bean’s local interface class (for example,
com.ibm.ejs.doc.account.AccountLocal).

Session type
Specifies whether the enterprise bean maintains a conversational state (is stateful)

or does not (is stateless).

Data type String
Range Valid values are Stateful and Stateless

Transaction type
Specifies whether the enterprise bean manages its own transactions or whether the
container manages transactions on behalf of the bean.

Data type String
Range Valid values are Container or Bean
Small icon

Specifies the name of a JPEG or GIF file that contains a small image (16x16 pixels).
The image is used as an icon to represent the session bean in a GUL

Large icon

Specifies the name of a JPEG or GIF file that contains a large image (32x32 pixels).
The image is used as an icon to represent the session bean in a GUL

Chapter 4. Using enterprise beans in applications 141

Security identity

Specifies whether a principal’s credential properties are to be handled as indicated
in the Run-As mode property. If this setting is enabled (that is, set to true), the
Run-As mode setting can be edited.

Description
Contains further information about the security instructions.

Run-As mode
Specifies the credential information to be used by the security service to determine
the permissions that a principal has on various resources.

At appropriate points, the security service determines whether the principal is
authorized to use a particular resource based on the principal’s permissions. If the
method call is authorized, the security service acts on the principal’s credential
properties according to the Run-As mode setting of the enterprise bean.

Data type Enumerated integer
Range Valid values are Use identity of caller and Use identity assigned to
specified role

Additional information about valid values for this setting follows:

Use identity of caller
The security service makes no changes to the principal’s credential
properties.

Use identity assigned to specified role
A principal that has been assigned to the specified security role is used for
the execution of the bean’s methods. This association is part of the
application binding in which the role is associated with a user ID and
password of a user who is granted that role.

Role name
Specifies the name of a security role. If Run-As mode is set to Use identity
assigned to specified role, a principal that has been granted this role is used.

Description
Contains further information about the security role.

Timeout
This property applies only to stateful session beans.

This property is an IBM extension to the standard J2EE deployment descriptor.

Data type Integer
Units Seconds

Inheritance root
Specifies whether the enterprise bean is at the root of an inheritance hierarchy.

This property is an IBM extension to the standard J2EE deployment descriptor.

Bean Cache - Activate at
Specifies the point at which an enterprise bean is activated and placed in the cache.

Removal from the cache and passivation is also governed by this setting. This
setting applies to stateful session beans only (not to stateless beans).

142 1BM WebSphere Application Server Network Deployment, Version 5: Applications

This property is an IBM extension to the standard J2EE deployment descriptor.

Data type String
Default Once
Range Valid values are Once and Transaction

Additional information about valid values follows:

Once Indicates that the bean is activated when it is first accessed in the server
process, and passivated (and removed from the cache) at the discretion of
the container, for example, when the cache becomes full.

Transaction
Indicates that the bean is activated at the start of a transaction and
passivated (and removed from the cache) at the end of the transaction.

Local Transactions - Unresolved action

Specifies the action the container must take if resources are uncommitted by an
application in a local transaction. A local transaction context is created when a
method runs in what the EJB specification refers to as an unspecified transaction
context.

This property is an IBM extension to the standard J2EE deployment descriptor.

Data type String
Default RoTTback
Range Valid values are Commit and Rollback

Local Transactions - Boundary
This property does not apply to session beans.

This property is an IBM extension to the standard J2EE deployment descriptor.
JNDI name

Specifies the JNDI name of the bean’s home interface. This is the name under
which the enterprise bean’s home interface is registered and therefore, is the name
that must be specified when an EJB client does a lookup of the home interface.

EJB containers

An Enterprise JavaBeans (E]JB) container provides a run-time environment for
enterprise beans within the application server. The container handles all aspects of
an enterprise bean’s operation within the application server and acts as an
intermediary between the user-written business logic within the bean and the rest
of the application server environment.

One or more EJB modules, each containing one or more enterprise beans, can be
installed in a single container.

The EJB container provides many services to the enterprise bean, including the
following:

* Beginning, committing, and rolling back transactions as necessary.

* Maintaining pools of enterprise bean instances ready for incoming requests and
moving these instances between the inactive pools and an active state, ensuring
that threading conditions within the bean are satisfied.

Chapter 4. Using enterprise beans in applications 143

* Most importantly, automatically synchronizing data in an entity bean’s instance
variables with corresponding data items stored in persistent storage.

By dynamically maintaining a set of active bean instances and synchronizing bean
state with persistent storage when beans are moved into and out of active state,
the container makes it possible for an application to manage many more bean
instances than could otherwise simultaneously be held in the application server’s
memory. In this respect, an EJB container provides services similar to virtual
memory within an operating system.

Between transactions, the state of an entity bean can be cached. The EJB container
supports option A, B, and C caching.

* With option A caching, the application server assumes that the entity bean is
used within a single container. Clients of that bean must direct their requests to
the bean instance within that container. The entity bean has exclusive access to
the underlying database, which means that the bean cannot be cloned or
participate in workload management if option A caching is used.

* With option B caching, the entity bean remains active in the cache throughout
the transaction but is reloaded at the start of each method call.

* With option C caching (the default), the entity bean is always reloaded from the
database at the beginning of each transaction. A client can attempt to access the
bean and start a new transaction on any container that has been configured to
host that bean. This is similar to the session clustering facility described for
HTTP sessions in that the entity bean’s state is maintained in a shared database
that can be accessed from any server when required.

This product supports the cloning of stateful session bean home objects among
multiple application servers. However, it does not support the cloning of a specific
instance of a stateful session bean. Each instance of a particular stateful session
bean can exist in just one application server and can be accessed only by directing
requests to that particular application server. State information for a stateful
session bean cannot be maintained across multiple members of a server cluster.

For more information about EJB containers, see [“Enterprise beans: Resources for]
llearning” on page 151}

Managing EJB containers

Each application server can have a single EJB container; one is created
automatically for you when the application server is created. The following steps
are to be performed only as needed to improve performance after the EJB
application has been deployed.

Steps for this task
1. (Optional) Adjust E]JB container settings.
2. (Optional) Adjust EJB cache settings.

What to do next

If adjustments do not improve performance, consider adjusting access intent
policies for entity beans, reassembling the module, and redeploying the module in
the application.

144 1BM WebSphere Application Server Network Deployment, Version 5: Applications

EJB container settings

Use this page to configure and manage a specific EJB container.

To view this administrative console page, click Servers > Application Servers >
serverName > EJB Container.

Passivation directory
Specifies the directory into which the container saves the persistent state of

passivated stateful session beans.

Beans are passivated when the number of active bean instances becomes greater
than the cache size specified in the container configuration. When a stateful bean is
passivated, the container serializes the bean instance to a file in the passivation
directory and discards the instance from the bean cache. If, at a later time, a
request arrives for the passivated bean instance, the container retrieves it from the
passivation directory, deserializes it, returns it to the cache, and dispatches the
request to it. If any step fails (for example, if the bean instance is no longer in the
passivation directory), the method invocation fails.

Inactive pool cleanup interval
Specifies the interval at which the container examines the pools of available bean

instances to determine if some instances can be deleted to reduce memory usage.

Data type Integer
Units Milliseconds
Range Greater than 0

Default datasource JNDI name

Specifies the JNDI name of a data source to use if no data source is specified
during application deployment. This setting is not applicable for EJB 2.x-compliant
CMP beans.

Servlets and enterprise beans use data sources to obtain these connections. When
configuring a container, you can specify a default data source for the container.
This data source becomes the default data source used by any entity beans
installed in the container that use container-managed persistence (CMP).

The default data source for a container is secure. When specifying it, you must
provide a user ID and password for accessing the data source.

Specifying a default data source is optional if each CMP entity bean in the
container has a data source specified in its configuration. If a default data source is
not specified and a CMP entity bean is installed in the container without
specifying a data source for that bean, applications cannot use that CMP entity
bean.

Initial state
Specifies the execution state requested when the server first starts.

Data type String
Default Started
Range Valid values are Started and Stopped

Chapter 4. Using enterprise beans in applications 145

EJB container system properties

In addition to the settings accessible from the administrative console, you can set
the following system property by command-line scripting;:

com.ibm.websphere.ejbcontainer.poolSize
Specifies the size of entity-bean pools. If you do not specify a default
value, the container defaults of 50 and 500 are used.

Set the pool size for a given entity bean as follows:
beantype = min, max[:beantype = min, max...]

beantype is the J2EE name of the bean, formed by concatenating the
application name, the # character, the module name, the # character, and
the name of the bean class. min and max are the minimum and maximum
pool sizes, respectively, for that bean type. Do not specify the square
brackets shown in the previous prototype; they denote optional additional
bean types that you can specify after the first. Each bean-type specification
is delimited by a colon (:).

Use an asterisk (*) as the value of beantype to indicate that all bean types
are to use those values unless overridden by an exact bean-type
specification somewhere else in the string, as follows:

*=30,100

To specify that a default value be used, omit either min or max but retain
the comma (,) between the two values, as follows (split for publication):

SMApp#PerfModule#TunerBean=54,
:SMApp#SMModule#TypeBean=100,200

You can specify the bean types in any order within the string.

EJB cache settings

Use this page to configure and manage the cache for a specific EJB container.

To view this administrative console page, click Servers > Application Servers >
serverName > EJB Container > EJB Cache Settings.

Cleanup interval

Specifies the interval at which the container attempts to remove unused items from
the cache in order to reduce the total number of items to the value of the cache
size.

The cache manager tries to maintain some unallocated entries that can be allocated
quickly as needed. A background thread attempts to free some entries while
maintaining some unallocated entries. If the thread runs while the application
server is idle, then when the application server needs to allocate new cache entries,
it does not pay the performance cost of removing entries from the cache. In
general, increase this parameter as the cache size increases.

Data type Integer

Units Milliseconds
Range Greater than 0
Cache size

Specifies the number of buckets in the active instance list within the EJB container.

146 1BM WebSphere Application Server Network Deployment, Version 5: Applications

A bucket can contain more than one active enterprise bean instance, but
performance is maximized if each bucket in the table has a minimum number of
instances assigned to it. When the number of active instances within the container
exceeds the number of buckets (that is, the cache size), the container periodically
attempts to reduce the number of active instances in the table by passivating some
of the active instances. For the best balance of performance and memory usage, set
this value to the maximum number of active instances expected during a typical

workload.

Data type Integer

Units Buckets in the hash table

Range Greater than 0. The container selects the next largest prime number

equal to or greater than the specified value.

Container interoperability

Container interoperability describes the ability of WebSphere Application Server
clients and servers at different versions to successfully negotiate differences in
native Enterprise JavaBeans (E]JB) Version 1.1 finder methods support and Java 2
Platform, Enterprise Edition (J2EE) Version 1.3 compliance.

At one time, there were significant interoperability problems among WebSphere
Application Server, versions 4.0.x and 3.5.x distributed, and Version 4.0.x for
zSeries. The introduction of interoperable versions of some class types solved these
problems for distributed versions 3.5.6, 4.0.3, and 5 as well as for zSeries Version
4.0.x.

Older 4.0.x and 3.5.x client and application server versions do not support the
interoperability classes, which makes them uninteroperable with versions that use
the classes. The system property com.ibm.websphere.container.portable remedies this
situation by enabling newer versions of the application server to turn off the
interoperability classes. This lets a more recent application server return class types
that are interoperable with an older client.

Depending on the value of com.ibm.websphere.container.portable, application
servers at versions 5, 4.0.3 and later, and 3.5.6 and later, return different classes for
the following:

* Enumerations and collections returned by EJB 1.1 finder methods
* EJBMetaData
* Handles to:

— Entity beans

— Session beans

— Home interfaces

If the property is set to false, application servers return the old class types, to
enable interoperability with versions 3.5.5 and earlier, and 4.0.2 and earlier. If the
property is set to true, application servers return the new classes.

Instructions for setting the com.ibm.websphere.container.portable property are in
the release notes for versions 3.5.6 and later, and 4.0.3 and later. The following
tables show interoperability characteristics for various version combinations of
application servers and clients as well as default property values for each
combination.

Chapter 4. Using enterprise beans in applications 147

Interoperability of Version 3.5.x client with Version 5 application server

Clients at Version 3.5.5 and earlier are not interoperable with Version 5 servers

when using:

* EJBMetaData

* Enumerations returned by E]JB 1.x finder methods

e Handles to entity beans
If you would like to use updated Handle classes in EJB 2.x-compliant beans but
have one of the older clients (versions 3.5.5 and earlier) installed, set the system
property com.ibm.websphere.container.portable.finder to false. With this setting

in place, the Version 5 application server uses the updated handles but returns
the enumerations and collections that were used in the earlier clients.

To interoperate with Version 5 application servers, you must upgrade all Version

3.5.x clients to Version 3.5.6 or later.

Interoperability of Version 5 client with Version 3.5.x application server

Client at Version 5,
using this function

Application server at
Version 3.5.6,
property true

Application server at
Version 3.5.6,
property false

Application server at
Version 3.5.5 and
earlier

bean

(default)
EJBMetaData Does not work across | Works Does not work
domains
Handle to session Works Works Does not work

Handle to entity bean

Does not work across
domains

Does not work across
domains

Does not work across
domains

Enumeration

Works

Works

Works

returned by EJB 1.x
finder method

Interoperability of Version 4.0.x client with Version 5 application server

Ideally, all 4.0.x clients that use Version 5 application servers should be at Version
4.0.3 or later.

Version 5 application servers return the interoperability class types by default
(true). This can cause interoperability problems for distributed clients at versions
4.0.1 or 4.0.2. In particular, problems can occur with collections and enumerations
returned by EJB 1.1 finder methods.

Although it is strongly discouraged, you can set
com.ibm.websphere.container.portable to false on a Version 5 application server.
This causes the application server to return the old class types, providing
interoperability with clients at Version 4.0.2 and earlier. This is discouraged
because:

* The Version 5 application server instance would become non-J2EE 1.3 compliant
with regard to handles, home interface handles, and EJBMetaData.

e EJB 1.x finder methods return collection and enumeration objects that do not
originate from ejbportable jar.

* Interoperability restrictions still exist with the property set to false.

148 1BM WebSphere Application Server Network Deployment, Version 5: Applications

¢ Version 5 client handles to entity beans and home interfaces do not work across
domains for the server you set to false.

If you would like to use updated Handle classes in EJB 2.x-compliant beans but
have one of the older clients (versions 4.0.2 and earlier) installed, set the system
property com.ibm.websphere.container.portable.finder to false. With this setting
in place, the Version 5 application server uses the updated handles but returns
the enumerations and collections that were used in the earlier clients.

Interoperability of client at Version 4.0.2 and earlier with Version 5 application
server

Client at Version 4.0.2 and | Application server at Application server at

earlier, using this function | Version 5, property true Version 5, property false
(default)

EJBMetaData Does not work Works for 4.0.2 client

Handle to session bean Does not work Works

Handle to entity bean Does not work Does not work across cells

Enumeration returned by EJB | Does not work Works

1.x finder method

Collection returned by EJB Does not work Works

1.x finder method

Handle to home interface Does not work Does not work across cells

If you would like to use updated Handle classes in EJB 2.x-compliant beans but
have one of the older clients (versions 3.5.5 and earlier, and 4.0.2 and earlier)
installed, set the system property com.ibm.websphere.container.portable.finder to
false. With this setting in place, the Version 5 server uses the new Handle classes
but returns the older enumeration and collection classes.

Interoperability of client at Version 4.0.3 and later with Version 5 application
server

Clients at Version 4.0.3 and later work well with Version 5 application servers.
However, if you set the com.ibm.websphere.container.portable to false, client
handles to entity beans and home interfaces do not work across domains for the
server you set to false.

Client at Version 4.0.3 and | Application server at Application server at

later, using this function Version 5, property true Version 5, property false
(default)

EJBMetaData Works Works

Handle to session bean Works Works

Handle to entity bean Works Does not work across cells

Enumeration returned by EJB | Works Works

1.x finder method

Collection returned by EJB Works Works

1.x finder method

Handle to home interface Works Does not work across cells

Interoperability of Version 5 client with Version 4.0.x application server

Chapter 4. Using enterprise beans in applications 149

Clients at Version 5 work well with Version 4.0.3 application servers if you set
com.ibm.websphere.container.portable to true. Client handles to entity beans and
home interfaces do not work across domains for any Version 4.0.3 server with
com.ibm.websphere.container.portable at the default value, false. Version 5 client
handles to application servers at Version 4.0.2 and earlier also have restrictions.

Client at Version 5,
using this function

Application server at
Version 4.0.3,

Application server at
Version 4.0.3,

Application server at
Version 4.0.2 or

interface

domains

property true property false earlier
(default)
EJBMetaData Works Works Works for 4.0.2 server
only
Handle to session Works Works Works
bean
Handle to entity bean | Works Does not work across | Does not work across
domains domains
Enumeration Works Works Works
returned by EJB 1.x
finder method
Collection returned Works Works Works
by EJB 1.x finder
method
Handle to home Works Does not work across | Does not work across

domains

Interoperability of zSeries Version 4.0.x client with Version 5 application server

The only valid configuration for container interoperability with zSeries Version
4.0.x clients is the default configuration for the Version 5 application server.

Interoperability of Version 5 client with zSeries Version 4.0.x application server

Version 5 clients should work with a zSeries Version 4.0.x application server with
the correct interoperability fixes described in the zSeries documentation. The
interoperability characteristics should be the same as for a Version 4.0.3 distributed
application server with the property set to true.

Client at Version 5, using this function zSeries application server at Version 4.0.x
EJBMetaData Works

Handle to session bean Works

Handle to entity bean Works

Enumeration returned by EJB 1.x finder Works

method

Collection returned by EJB 1.x finder Works

method

Handle to home interface Works

Deploying EJB

150

modules

Before you begin

IBM WebSphere Application Server Network Deployment, Version 5: Applications

[Assemble one or more EJB modules, assemble one or more Web modules, and
assemble them into a J2EE application.

Steps for this task

1. Prepare the deployment environment.

2. Deploy the application.

3. [Update the configuration for each EJB moduld as needed for the deployment
environment.

What to do next

The next step is to test and debug the module.

EJB module collection
Use this page to manage the EJB modules deployed in a specific application.

To view this administrative console page, click Applications > Applications >
applicationName > EJB modules. Click the check boxes to select one or more of the
EJB modules in your collection.

URI

When resolved relative to the application URL, this specifies the location of the
module’s archive contents on a file system. The URI matches the <ejb> or <web>
tag in the <module> tag of the application deployment descriptor.

EJB module settings

Use this page to configure and manage a specific deployed EJB module.

To view this administrative console page, click Applications > Applications >
applicationName > EJB modules > moduleName.

URI

When resolved relative to the application URL, this specifies the location of the
module archive contents on a file system. The URI must match the URI of a
ModuleRef URI in the deployment descriptor of the deployed application (EAR).

Alternate DD
Specifies a deployment descriptor to be used at run time instead of the one
installed in the module.

Starting weight
Specifies the order in which modules are started when the server starts. The
module with the lowest starting weight is started first.

Data type Integer
Default 1
Range 0 to 100

Enterprise beans: Resources for learning

Use the following links to find relevant supplemental information about enterprise
beans. The information resides on IBM and non-IBM Internet sites, whose sponsors
control the technical accuracy of the information.

Chapter 4. Using enterprise beans in applications 151

These links are provided for convenience. Often, the information is not specific to
this product but is useful all or in part for understanding the product. When
possible, links are provided to technical papers and Redbooks that supplement the
broad coverage of the release documentation with in-depth examinations of
particular product areas.

View links to additional information about:

* Planning, business scenarios, and IT architecture
* Programming model and decisions

* Programming instructions and examples

* Programming specifications

Planning, business scenarios, and IT architecture

o |Mastering Enterprise]avaBeansl
(http:/ /www.theserverside.com/books/masteringE]B/index.jsp)

A comprehensive treatment of Enterprise JavaBeans (EJB) programming in
nonprintable form (PDF). One must be registered to download the PDEF, but
registration is free. Information about purchasing a hardcopy is available on the
Web site.

* Enterprise JavaBeans by Richard Monson-Haefel (O’Reilly and Associates, Inc.:
Third Edition, 2001)

Programming model and decisions

- W [Read all about EJB 2.0|(http:/ /www.ibm.com/developerworks /library /jw-
ejb20/index.html)

A comprehensive overview of the specification.

. ‘U |The J2EE Tutorial| (http:/ /java.sun.com/j2ee/tutorial /1_3-fcs/index.html)

This set of articles by Sun Microsystems covers several E]B-related topics,
including the basic programming models, persistence, and EJB Query Language.

Programming instructions and examples

« + |Rules and Patterns for Session Facades|
(http:/ /www?7b.boulder.ibm.com/wsdd/library/
techarticles/0106_brown/sessionfacades.html)

EJB programming practice: Fronting entity beans with a session-bean facade.

+ v [WebSphere Application Server Development Best Practices for|
[Performance and Scalability| (http:/ /www-
4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf)

Programming practice for enterprise beans and other types of J2EE components.

+ G [Optimistic Locking in IBM WebSphere Application Server 4.0.2]
(http:/ /www7b.boulder.ibm.com/wsdd/)

Examples of the effect of optimistic concurrency on application behavior.
Although the paper is based on a previous version of this product, the data
access issues discussed in it are current.

This paper does not seem to be available directly by URL. To view this paper,
visit the specified URL and search on "optimistic Tocking”

Programming specifications

152 IBM WebSphere Application Server Network Deployment, Version 5: Applications

http://www.theserverside.com/books/masteringEJB/index.jsp
http://www.ibm.com/developerworks/library/jw-ejb20/index.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0106_brown/sessionfacades.html
http://www-4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf
http://www-4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf
http://www7b.boulder.ibm.com/wsdd/

+ & [What's new in the Enterprise JavaBeans 2.0 Specification?|
(http:/ /java.sun.com/products/ejb/2.0.html)
You can also download the specification itself from this URL.
+ & [JavaTM 2 Platform: Compatibility with Previous Releases|
(http:/ /java.sun.com/products/jdk/1.3/compatibility. html)
This Sun Microsystems article includes both source and binary compatibility
issues.

Chapter 4. Using enterprise beans in applications 153

http://java.sun.com/products/ejb/2.0.html
http://java.sun.com/products/jdk/1.3/compatibility.html

154 1BM WebSphere Application Server Network Deployment, Version 5: Applications

Chapter 5. Using message-driven beans in applications

WebSphere Application Server supports asynchronous messaging as a method of
communication based on the Java Message Service (JMS) programming interface.

Message-driven beans (a type of enterprise bean defined in the EJB 2.0
specification) extend the base JMS support and the Enterprise JavaBean component
model to provide automatic asynchronous messaging. When a message arrives on
a destination, a listener passes the message to a new instance of a user-developed
message-driven bean for processing.

You can use WebSphere Studio Application Developer to develop applications that
use message-driven beans. You can use the WebSphere Application Server runtime
tools, like the administrative console, to deploy and administer applications that
use message-driven beans.

For more information about implementing WebSphere enterprise applications that
use message-drive beans, see the following topics:

+ |An overview of message-driven beans|

+ [Designing an enterprise application to use a message-driven bean|

* [Developing an enterprise application to use a message-driven bean|

+ [Deploying an enterprise application to use a message-driven bear|

+ [Configuring message listener resources for message-driven beans|

* [Troubleshooting problems with message-driven beans|

Message-driven beans - an overview

WebSphere Application Server supports automatic asynchronous messaging with
message-driven beans (a type of enterprise bean defined in the EJB 2.0 specification).
Messaging with message-driven beans is shown in the figure [Message-driven|
beans and the message listener service}

The support for message-driven beans is based on the message listener service,
which comprises a listener manager that controls and monitors one or more listeners.
Each listener monitors a JMS destination for incoming messages. When a message
arrives on the destination, the listener passes the message to a new instance of a
user-developed message-driven bean (an enterprise bean) for processing. The
listener then looks for the next message without waiting for the bean to return.

Messages arriving at a destination being processed by a listener have no client
credentials associated with them; the messages are anonymous. Security depends
on the role specified by the RunAs Identity for the message-driven bean as an EJB
component. For more information about E]JB security, see "E]JB component security”
(not in this document).

You are recommended to develop a message-driven bean to delegate the business
processing of incoming messages to another enterprise bean, to provide clear
separation of message handling and business processing. This also enables the
business processing to be invoked by either the arrival of incoming messages or,
for example, from a WebSphere J2EE client.

© Copyright IBM Corp. 2002 155

Message-driven beans and the message listener service. This figure shows an
incoming message being passed by a JMS listener to a message-driven bean, which
passes the message on to a business logic bean for business processing. This
messaging is controlled by the listener manager. For more information, see the text
that accompanies this figure.

JMS Message

JMS destination Message-driven
bean

client

JMS destination

A 4

EJB

_ Business logic Enterprise
client bean application
D
JDBC

Message-driven beans - components

The WebSphere Application Server support for message-driven beans is based on
JMS message listeners and the message listener service, and builds on the base
support for JMS. The main components of WebSphere Application Server support
for message-driven beans are shown in the following figure and described after the
figure:

The main components for message-driven beans. This figure shows the main
components of WebSphere support for message-driven beans, from JMS provider
through a connection to a destination, listener port, then deployed message-driven
bean that processes the message retrieved from the destination. Each listener port
defines the association between a connection factory, destination, and a deployed
message-driven bean. The other main components are the message listener service,
which comprises a listener for each listener port, all controlled by the same listener
manager. For more information, see the text that accompanies this figure.

156 1BM WebSphere Application Server Network Deployment, Version 5: Applications

WebSphere Application Server

Message-driven beans CMDB2)

A 4 A
Listener service
Listener
manager O ------------------------------- B it M LP3[s. _
7@
Listeners C} » LP2l¢---""""]
Listener
A
ports
U e S S8 e
JMS server Connegtlon
factories
D1 D2 D3 Destinations
r 3 r 3 r 3
Message j Connections

JMS destinations

JMS Provider

The message listener service is an extension to the JMS functions of the JMS provider
and provides a listener manager, which controls and monitors one or more JMS
listeners.

Each listener monitors either a J]MS queue destination (for point-to-point
messaging) or a JMS topic destination (for publish/subscribe messaging).

A connection factory is used to create connections with the JMS provider for a
specific JMS queue or topic destination. Each connection factory encapsulates the
configuration parameters needed to create a connection to a JMS destination.

A listener port defines the association between a connection factory, a destination,
and a deployed message-driven bean. Listener ports are used to simplify the
administration of the associations between these resources.

When a deployed message-driven bean is installed, it is associated with a listener
port and the listener for a destination. When a message arrives on the destination,
the listener passes the message to a new instance of a message-driven bean for
processing.

When an application server is started, it initializes the listener manager based on
the configuration data. The listener manager creates a dynamic session thread pool
for use by listeners, creates and starts listeners, and during server termination
controls the cleanup of listener message service resources. Each listener completes
several steps for the JMS destination that it is to monitor, including;:

* Creating a JMS server session pool, and allocating JMS server sessions and
session threads for incoming messages.

Chapter 5. Using message-driven beans in applications 157

¢ Interfacing with JMS ASF to create JMS connection consumers to listen for
incoming messages.

* If specified, starting a transaction and requesting that it is committed (or rolled
back) when the EJB method has completed.

* Processing incoming messages by invoking the onMessage() method of the
specified enterprise bean.

Message-driven beans - transaction support

Message-driven beans can handle messages read from JMS destinations within the
scope of a transaction. If transaction handling is specified for a JMS destination, the
JMS listener starts a global transaction before it reads any incoming message from
that destination. When the message-driven bean processing has finished, the JMS
listener commits or rolls back the transaction (using JTA transaction control).

Note:

* All messages retrieved from a specific destination have the same transactional
behavior.

If messages are queued to be sent within a global transaction they are sent when
the transaction is committed. If the processing of a message causes the transaction
to be rolled back, then the message that caused the bean instance to be invoked is
left on the JMS destination.

You can configure the Maximum retries property of the listener port to define the
maximum number of times the listener attempts to read a message from a
destination. When the Max retries limit is reached, the listener for that destination
is stopped. When you have resolved the problem, you must then restart the
listener.

Designing an enterprise application to use message-driven beans

This topic describes things to consider when designing an enterprise application to
use message-driven beans.

The considerations in this topic are based on a generic enterprise application that
uses one message-driven bean to retrieve messages from a JMS queue destination
and passes the messages on to another enterprise bean that implements the
business logic.

To design an enterprise application to use message-driven beans, complete the
following steps:

Steps for this task
1. Identify the JMS resources that the application is to use.

This helps to identify the properties of resources that need to be used within
the application and configured as application deployment descriptors or within
WebSphere Application Server.

JMS resource type Properties

Queue connection factory Name: SamplePtoPQueueConnectionFactory

JNDI Name: Sample/JMS/QCF

Queue destination Name: Q1
JNDI Name: Sample/JMS/Q1

158 I1BM WebSphere Application Server Network Deployment, Version 5: Applications

JMS resource type

Properties

Listener port (for the
destination)

Name: SamplePtoPListenerPort

Connection Factory JNDI Name: Sample/JMS/QCF
Destination JNDI Name: Sample/JMS/Q1
Maximum Sessions: 5

Maximum Retries: 10

Maximum Messages: 1

Message-driven bean
(deployment properties)

Name: JMSppSampleMDBBean

Transaction type: Container

Destination type: Queue

Listener port name: SamplePtoPListenerPort

Business logic bean

Name: MylLogicBean

Ensure that you use consistent values where needed; for example, the JNDI
names for the connection factory and destination must be the same for both
those resources and the equivalent properties of the listener port.

Separation of business logic.

You are recommended to develop a message-driven bean to delegate the
business processing of incoming messages to another enterprise bean. This
provides clear separation of message handling and business processing. This
also enables the business processing to be invoked by either the arrival of
incoming messages or, for example, from a WebSphere J2EE client.

3. Security considerations.

Messages arriving at a destination being processed by a listener have no client
credentials associated with them; the messages are anonymous. Security

depends on the role specified by the RunAs Identity for the message-driven
bean as an EJB component. For more information about EJB security, see "E]B
component security” (not in this document).

General JMS considerations

For Publish/Subscribe messaging, choose the JMS server port to be used
depending on your needs for transactions or performance:

Queued port

The TCP/IP port number of the listener port used for all point-to-point
and Publish/Subscribe support.

Direct port

The TCP/IP port number of the listener port used for direct TCP/IP

connection (non-transactional, non-persistent, and non-durable
subscriptions only) for Publish/Subscribe support.

Note: Message-driven beans cannot use the direct listener port for
Publish/Subscribe support. Therefore, any topic connection factory
configured with Portset to Direct cannot be used with message-driven

beans.

A non-durable subscriber can only be used in the same transactional context
(for example, a global transaction or an unspecified transaction context) that

existed when the subscriber was created. For more information about this
context restriction, see "The effect of transaction context on non-durable
subscribers” (not in this document).

Chapter 5. Using message-driven beans in applications

159

Developing an enterprise application to use message-driven beans

Use this task to develop an enterprise application to use a message-driven bean.
The message-driven bean is invoked by a JMS listener when a message arrives on
the input queue that the listener is monitoring.

You are recommended to develop the message-driven bean to delegate the
business processing of incoming messages to another enterprise bean, to provide
clear separation of message handling and business processing. This also enables
the business processing to be invoked by either the arrival of incoming messages
or, for example, from a WebSphere J2EE client. Responses can be handled by
another enterprise bean acting as a sender bean, or handled in the message-driven
bean.

You develop an enterprise application to use a message-driven bean like any other
enterprise bean, except that a message-driven bean does not have a home interface
or a remote interface.

This topic describes how to develop a completely new message-driven bean class.
If you have a WAS 4.0 enterprise application that uses the JMS listener, you can
migrate that application to use message-driven beans, as described in |Migrating a|
[WAS 4.0 JMS listener application to use message-driven beans)

For more information about writing the message-driven bean class, see Creating a
message-driven bean in the WebSphere Studio help bookshelf.

To develop an enterprise application to use a message-driven bean, complete the
following steps:

Steps for this task

1. Creating the Enterprise Application project, as described in the WebSphere
Studio article .

2. Creating the message-driven bean class.

You can use the New Enterprise Bean wizard of WebSphere Studio Application
Developer to create an enterprise bean with a bean type of Message-driven
bean. The wizard creates appropriate methods for the type of bean.

By convention, the message bean class is named nameBean, where name is the
name you assign to the message bean; for example:

public class MyJMSppMDBBean implements MessageDrivenBean, Messagelistener

The message-driven bean class must define and implement the following
methods:
¢ onMessage(message), which must meet the following requirements:

— The method must have a single argument of type javax.jms.Message.

— The throws clause must not define any application exceptions.

— If the message-driven bean is configured to use bean-managed
transactions, it must call the javax.transaction.UserTransaction interface to
scope the transactions. Because these calls occur inside the onMessage()
method, the transaction scope does not include the initial message receipt.

This means the application server is given one attempt to process the
message.

160 1BM WebSphere Application Server Network Deployment, Version 5: Applications

To handle the message within the onMessage() method (for example, to pass
the message on to another enterprise bean), you use standard JMS. (This is
known as bean-managed messaging.)

* ejbCreate()

You must define and implement an ejbCreate method for each way in which
you want a new instance of an enterprise bean to be created.

* ejbRemove().

This method is invoked by the container when a client invokes the remove
method inherited by the enterprise bean’s home interface from the
javax.ejb.EJBHome interface. This method must contain any code that you
want to execute before an enterprise bean instance is removed from the
container (and the associated data is removed from the data source).

For example, the following code extract shows how to access the text and the
JMS MessagelD, from a JMS message of type TextMessage:

Code example: The onMessage() method of a message bean. This figure
shows a code extract for a basic onMessage() method of a sample
message-driven bean. The method unpacks the incoming text message to
extract the text and message identifier and calls a private putMessage method
(defined within the same message bean class) to put the message onto another
queue.

public void onMessage(javax.jms.Message msg)

{
null;
null;

String text
String messagelD

try

{
text = ((TextMessage)msg).getText();

System.out.printin("senderBean.onMessage(), msg text2: "+text);

/1

// store the message id to use as the Correlator value

//
messageID = msg.getJMSMessagelID();

// Call a private method to put the message onto another queue
putMessage (messagelID, text);

}

catch (Exception err)

{
}

return;

err.printStackTrace();

}

The result of this step is a message-driven bean that can be assembled into an
.EAR file for deployment.

3. Assembling and packaging the application for deployment.

You can use WebSphere Studio to assemble and package the application for
deployment.

Results

The result of this task is an .EAR file, containing an application message-driven
bean, that can be deployed in WebSphere Application Server.

Chapter 5. Using message-driven beans in applications 161

What to do next

After you have developed an enterprise application to use message-driven beans,
configure and deploy the application; for example, define the listener ports for the
message-driven beans and, optionally, change the deployment descriptor attributes
for the application. For more information about configuring and deploying an
application that uses message-driven beans, see |”Deploying an enterprise|
lapplication to use message-driven beans’|

Migrating a JMS listener application to use message-driven
beans

Use this task to migrate an enterprise application that uses message beans with the
JMS Listener from WebSphere Application Server 4.0 to use EJB 2.0 message-driven
beans.

This task uses a command line utility, mb2mdb, that takes as its input either a
deployed MessageBean.jar module or a deployed Enterprise Application (.ear) that
contains a message bean, along with the JMS listener configuration XML file that
defines the WebSphere Application Server 4.0 message beans. The result is a new
jar/.ear module that can then be deployed directly into a WebSphere Application
Server 5.0 application server.

You can display the usage help for the migration utility, by typing the command
mb2mdb at a command line.

To migrate a WebSphere Application Server 4.0 enterprise application that uses
message beans to use EJB 2.0 message-driven beans, type the following command
at an operating system command line:

mb2mdb inputMB. jar-ear jmsListenerConfig.xml workingDirectory outputMDB.jar-ear
options

Where:

inputMB.jar-ear
The name of the deployed WebSphere Application Server 4.0 jar or ear file
containing a stateless session message bean.

jmsListenerConfig.xml
The name of the XML configuration file used to configure the WebSphere
Application Server 4.0 JMS listeners.

workingDirectory
The name of a new or existing directory that is used to generate the new
message-driven bean and package the outputMDB jar or .ear file.

Note: By default, the tool clears the working directory after it has
completed. If you want to preserve the contents of the working directory,
you must specify the -keep option.

outputMDB.jar-ear
The name of the output jar or .ear file for the migrated message-driven
bean application.

options
An optional set of parameters that you can use to control the mb2mdb
utility.

-keep This prevents the tool from clearing out the working directory after
completion.

162 1BM WebSphere Application Server Network Deployment, Version 5: Applications

-verbose
This causes the tool to display informational messages as to the
progress of the migration and its parameters.

-map listenerHome=bindingHome
This option provides a mechanism to map between the
JNDIHomeName specified for a listener in the JMS listener
configuration XML file and the default binding home name
specified in the inputMB.jar-ear file.

If the jmsListenerConfig.xml file contains a deployed EJB home JNDI
name that is different to the default binding within the
inputMB.jar-ear, use this option to map between the two names.

This enables you to install the output .jar or .ear file for the
message-driven bean into an application server and bind the bean
with a different JNDIHomeName than is specified in the bean’s
bindings.xmi.

Results

The result of this task is a new .jar or .ear file for a message-driven bean that can
then be deployed directly into a WebSphere Application Server 5.0 application
server.

To successfully install the jar or .ear file, you need to bind the message-driven
bean against a listener port defined to the message listener service of the
application server. You need to have used the WebSphere Application Server
administrative console to define the listener port, which defines the JMS connection
factory and destination that a message-driven bean bound to it listens on. For more
information about installing and configuring a .jar or .ear file for a message-driven
bean, see [Deploying an enterprise application to use message-driven beans]

Deploying an enterprise application to use message-driven beans

Use this task to deploy an enterprise application to use message-driven beans.

This task description assumes that you have an .EAR file, which contains an
application enterprise bean with code for message-driven beans, that can be
deployed in WebSphere Application Server.

To deploy an enterprise application to use message-driven beans, complete the
following steps:

Steps for this task

1. Use the WebSphere administrative console to define the listener ports for the
application, as described in[Adding a new listener port]

2. For each message-driven bean in the application, use the application assembly
tool to configure the deployment attributes to match the listener port
definitions, as described in|"Configuring deployment attributes for a|
[message-driven bean’}

3. Use the WebSphere administrative console to install the application

This stage is a standard WebSphere Application Server task, as described in
[“Installing a new application” on page 505

Chapter 5. Using message-driven beans in applications 163

When you install the application, you are prompted to specify the name of the
listener port that the application is to use for late responses. Select the listener
port, then click OK.

Configuring deployment attributes for a message-driven bean

Use this task to configure the message-driven beans deployment attributes for an
enterprise bean, to override the deployment attributes defined within the
application EAR file.

This task description assumes that you have an EAR file, which contains an
application enterprise bean developed as a message-driven bean, that can be
deployed in WebSphere Application Server.

Note: After deployment code has been generated for an application, the deployable
archive is renamed with the prefix Deployed_ . Any subsequent changes to the
archive from within the Application Assembly Tool are applied to the version of
the archive that existed prior to code generation. To see changes reflected in your
application, you must regenerate deployment code and re-install the deployable
archive.

To configure the message-driven beans deployment attributes for an enterprise
bean, use the the application assembly tool to configure the deployment attributes
of the application to match the listener port definitions:

Steps for this task
1. Launch the Application Assembly Tool.
2. Create or edit the application EAR file.

For example, to change attributes of an existing application, click File-> Open
then select the the EAR file.

3. In the navigation pane, select the message-driven bean instance; for example,
expand ejb_module_instance-> Message-driven beans then select the bean
instance.

A property dialog notebook for the message-driven bean is displayed in the
property pane.
4. Specify general deployment properties.
a. In the property pane, select the General tab.
b. Specify the following properties:
Transaction type

Whether the message bean manages its own transactions or the
container manages transactions on behalf of the bean. All messages
retrieved from a specific destination have the same transactional
behavior. To enable the transactional behavior that you want, you

must configure the J]MS destination with the same transactional
behavior as you configure for the message bean.

Bean The message bean manages its own transactions

Container
The container manages transactions on behalf of the bean

5. Specify advanced deployment properties.
a. In the property pane, select the Advanced tab.
b. Specify the following properties:

164 1BM WebSphere Application Server Network Deployment, Version 5: Applications

Message selector
The JMS message selector to be used to determine which messages
the message bean receives; for example:

JMSType="'car' AND color='bTue' AND weight>2500

The selector string can refer to fields in the JMS message header
and fields in the message properties. Message selectors cannot
reference message body values.

Acknowledge mode
How the session acknowledges any messages it receives.

This property applies only to message-driven beans that uses
bean-managed transaction demarcation (Transaction type is set to
Bean).

Auto Acknowledge
The session automatically acknowledges a message when it
has either successfully returned from a call to receive, or the
message listener it has called to process the message
successfully returns.

Dups OK Acknowledge
The session lazily acknowledges the delivery of messages.
This is likely to result in the delivery of some duplicate
messages if JMS fails, so it should be used only by
consumers that are tolerant of duplicate messages.

As defined in the EJB specification, clients cannot use using
Message.acknowledge() to acknowledge messages. If a value of
CLIENT_ACKNOWLEDGE is passed on the createxxxSession call,
then messages are automatically acknowledged by the application
server and Message.acknowledge() is not used.

Destination type
Whether the message bean uses a queue or topic destination.

Queue
The message bean uses a queue destination.

Topic The message bean uses a topic destination.

Subscription durability
Whether a JMS topic subscription is durable or non-durable.

Durable
A subscriber registers a durable subscription with a unique
identity that is retained by JMS. Subsequent subscriber
objects with the same identity resume the subscription in
the state it was left in by the earlier subscriber. If there is no
active subscriber for a durable subscription, JMS retains the
subscription’s messages until they are received by the
subscription or until they expire.

Nondurable
Non-durable subscriptions last for the lifetime of their
subscriber object. This means that a client sees the messages

Chapter 5. Using message-driven beans in applications 165

published on a topic only while its subscriber is active. If
the subscriber is not active, the client is missing messages
published on its topic.

A non-durable subscriber can only be used in the same
transactional context (for example, a global transaction or an
unspecified transaction context) that existed when the
subscriber was created. For more information about this
context restriction, see "The effect of transaction context on
non-durable subscribers” (not in this document).

Specify bindings deployment properties.
a. In the property pane, select the Bindings tab.
b. Specify the following property:
Listener port name
The name of the listener port for this message-driven bean.

To apply the changes and close the Application Assembly Tool, click OK.
Otherwise, to apply the values but keep the property dialog open for additional
edits, click Apply.

(Optional) To see changes reflected in your application, regenerate deployment
code and reinstall the deployable archive.

Configuring message listener resources for message-driven beans

Use the following tasks to configure resources needed by the message listener
service to support message-driven beans.

+ [Configuring the message listener service]|

+ [Adding a new listener port]

+ [Configuring a listener port

* [Configuring security for message-driven beans|

Configuring the message listener service

Use this task to configure the properties of the message listener service for an
application server.

To configure the properties of the message listener service for an application server,
use the administrative console to complete the following steps:

Steps for this task

1.

N o oA

In the navigation pane, select Servers-> Application Servers

This displays a table of the application servers in the administrative domain.
In the content pane, click the name of the application server.

This displays the properties of the application server in the content pane.

In the Additional Properties table, select Message Listener Service

This displays the Message Listener Service properties in the content pane.

Specify appropriate [properties of the message listener servicel
Click OK.

Save your configuration.

(Optional) To have the changed configuration take effect, stop then restart the
Application Server.

166 1BM WebSphere Application Server Network Deployment, Version 5: Applications

Message listener service
The message listener service is an extension to the JMS functions of the JMS

provider. It provides a listener manager that controls and monitors one or more
JMS listeners, which each monitor a JMS destination on behalf of a deployed
message-driven bean.

Name: The name by which the message listener service is known for
administrative purposes.

Data type String

Units En_US ASCII characters
Default MsgLService

Range 1 through 30 ASCII characters

Description: A description of the message listener service, for administrative
purposes

Data type String

Units En_US ASCII characters
Default Null

Range 1 through 30 ASCII characters

Thread pool: Select this link to display the service thread pool properties.

Data type Not applicable
Units Not applicable
Default Not applicable
Range Not applicable

Custom Properties: Custom properties of the message listener service.

MQJMS.POOLING.TIMEOUT: The number of milliseconds after which a
connection in the pool is destroyed if it has not been used.

An MQSimpleConnectionManager allocates connections on a most-recently-used
basis, and destroys connections on a least-recently-used basis. By default, a
connection is destroyed if it has not been used for five minutes.

Data type Integer
Units Milliseconds
Default 5 minutes
Range

MQJMS.POOLING.THRESHOLD: The maximum number of unused connections
in the pool.

An MQSimpleConnectionManager allocates connections on a most-recently-used
basis, and destroys connections on a least-recently-used basis. By default, a
connection is destroyed if there are more than ten unused connections in the pool.

Data type Integer

Units Number of connections
Default 10

Range

Chapter 5. Using message-driven beans in applications 167

MAX.RECOVERY.RETRIES: The maximum number of times that the listener
service tries to get a message from a listener port before the associated listener is
stopped, in the range 0 through 2147483647.

Data type Integer

Units Retry attempts

Default 0 (no retries)

Range 0 (no retries) through 2147483647

RECOVERY.RETRY.INTERVAL: The time in seconds between retry attempts by
the listener service to get a message from a listener port.

Data type Integer

Units Seconds

Default 10

Range 1 through 2147483647

Message listener port collection: The message listener ports configured in the
administrative domain

This panel displays a list of the message listener ports configured in the
administrative domain. Each listener port is used with a message-driven bean to
automatically receive messages from an associated JMS destination. You can use
this panel to add new listener ports or to change the properties of existing listener
ports. For more information about the property fields for listener ports, see
[Listener port properties|

Listener port settings: A listener port is used to simplify administration of the
association between a connection factory, destination, and deployed
message-driven bean.

Use this panel to view or change the configuration properties of the selected
listener port.

Initial state: The state that you want the listener port to have when the
application server is next restarted

Data type Enum

Units Not applicable
Default Started

Range

Started When the application server is next started, the listener port
is started automatically.

Stopped
When the application server is next started, the listener port
is not started automatically. If message-driven beans are to
use this listener port on the application server, the system
administrator must start the port manually or select the
Started value of this property then restart the application
server.

Description: A description of the listener port, for administrative purposes
Data type String

Units En_US ASCII characters

168 1BM WebSphere Application Server Network Deployment, Version 5: Applications

Default Null
Range 1 through 30 ASCII characters

Listener port: The name by which the listener port is known for administrative
purposes.

Data type String

Units En_US ASCII characters
Default Null

Range 1 through 30 ASCII characters

Connection factory JNDI name: The JNDI name for the J]MS connection factory to
be used by the listener port; for example, jms/connFactoryl.

Data type String

Units En_US ASCII characters
Default Null

Range 1 through 30 ASCII characters

Destination JNDI name: The JNDI name for the destination to be used by the
listener port; for example, jms/destnl.

If the extended messaging service is to use this listener port to handle late
responses, the value of this property must match the JMS response destination on
the output port used by the sender bean. Also cannot use a temporary destination
for late responses.

Data type String

Units En_US ASCII characters
Default Null

Range 1 through 30 ASCII characters

Maximum sessions: The maximum number of concurrent JMS server sessions
used by a listener to process messages, in the range 1 through 2147483647.

The maximum number of concurrent JMS server sessions used by a listener to
process messages for its associated message-driven bean.

Data type Integer

Units Sessions

Default 1

Range 1 through 2147483647

Maximum retries: The maximum number of times that the listener tries to deliver
a message before the listener is stopped, in the range 0 through 2147483647.

The maximum number of times that the listener tries to deliver a message to a
message-driven bean instance before the listener is stopped.

Data type Integer

Units Retry attempts

Default 0 (no retries)

Range 0 (no retries) through 2147483647

Chapter 5. Using message-driven beans in applications 169

170

Maximum messages: The maximum number of messages that the listener can
process in one JMS server session, in the range 0 through 2147483647.

The maximum number of messages that a listener can process in one JMS server

session.

Data type Integer

Units Number of messages
Default 1

Range 1 through 2147483647

Adding a new listener port

Use this task to add a new listener port to the message listener service, so that
message-driven beans can be associated with the port to retrieve messages.

To add a new listener port, use the administrative console to complete the
following steps:

Steps for this task

1. In the navigation pane, select Servers-> Application Servers

This displays a table of the application servers in the administrative domain.
2. In the content pane, click the name of the application server.
This displays the properties of the application server in the content pane.
3. In the Additional Properties table, select Message Listener Service
This displays the Message Listener Service properties in the content pane.
4. In the content pane, select Listener Ports.
This displays a list of the listener ports.
In the content pane, click New.

Specify appropriate [properties for the listener port
Click OK.

To save your configuration, click Save on the task bar of the Administrative
console window.

© N o>

9. (Optional) To have the changed configuration take effect, stop then restart the
application server.

Results

If enabled, the listener port is started automatically when a message-driven bean
associated with that port is installed.

Configuring a listener port

Use this task to change the properties of an existing listener port, used by
message-driven beans associated with the port to retrieve messages.

To configure the properties of a listener port, use the administrative console to
complete the following steps:

Steps for this task

1. In the navigation pane, select Servers-> Application Servers

IBM WebSphere Application Server Network Deployment, Version 5: Applications

This displays a table of the application servers in the administrative domain.
In the content pane, click the name of the application server.

This displays the properties of the application server in the content pane.

In the Additional Properties table, select Message Listener Service

This displays the Message Listener Service properties in the content pane.

In the content pane, click Listener Ports.

This displays a list of the listener ports.

Click the listener port that you want to modify.

This displays the properties of the listener port in the content pane.

Specify appropriate [properties for the listener port,
Click OK.

To save your configuration, click Save on the task bar of the Administrative
console window.

(Optional) To have the changed configuration take effect, stop then restart the
application server.

Deleting a listener port

Use this task to delete a listener port from the message listener service, to prevent
message-driven beans associated with the port from retrieving messages.

To delete a listener port, use the administrative console to complete the following
steps:

Steps for this task

1.

In the navigation pane, select Servers-> Application Servers

This displays a table of the application servers in the administrative domain.
In the content pane, click the name of the application server.

This displays the properties of the application server in the content pane.

In the Additional Properties table, select Message Listener Service

This displays the Message Listener Service properties in the content pane.

In the content pane, select Listener Ports.

This displays a list of the listener ports.

In the content pane, select the checkbox for the listener port that you want to
delete.

Click Delete. This action stops the port (needed to allow the port to be deleted)
then deletes the port.

To save your configuration, click Save on the task bar of the Administrative
console window.

(Optional) To have the changed configuration take effect, stop then restart the
application server.

Configuring security for message-driven beans

Use this task to configure resource security and security permissions for
message-driven beans.

Messages arriving at a listener port have no client credentials associated with
them. The messages are anonymous.

Chapter 5. Using message-driven beans in applications 171

To call secure enterprise beans from a message-driven bean, the message-driven
bean needs to be configured with a RunAs Identity deployment descriptor.
Security depends on the role specified by the RunAs Identity for the
message-driven bean as an EJB component.

For more information about EJB security, see "EJB component security” (not in this
document). For more information about configuring security for your application,
see Assembling secured applications.

Administering listener ports

Use the following tasks to administer listener ports, which each define the
association between a connection factory, a destination, and a message-driven bean.

You can use the WebSphere administrative console to administer listener ports, as
described in the following tasks.

+ [Adding a new listener port]

Use this task to create a new listener port, to specify a new association between
a connection factory, a destination, and a message-driven bean. This enables
deployed message-driven beans associated with the port to retrieve messages
from the destination.

+ [Configuring a listener port

Use this task to view or change the configuration properties of a listener port.

+ [Starting a listener port|

Use this task to start a listener port manually.

+ [Stopping a listener port

Use this task to stop a listener port manually.

Note: If configured as enabled, a listener port is started automatically when a
message-driven bean associated with that port is installed. You do not normally
need to start or stop a listener port manually.

Starting a listener port
Use this task to start a listener port on an application server, to enable the listeners
for message-driven beans associated with the port to retrieve messages.

A listener is active, that is able to receive messages from a destination, if the
deployed message-driven bean, listener port, and message listener service are all
started. Although you can start these components in any order, they must all be in
a started state before the listener can retrieve messages.

If configured as enabled, a listener port is started automatically when a
message-driven bean associated with that port is installed. However, you can start
a listener port manually, as described in this topic.

When a listener port is started, the listener manager tries to start the listeners for
each message-driven bean associated with the port. If a message-driven bean is
stopped, the port is started but the listener is not started, and remains stopped. If
you start a message-driven bean, the related listener is started.

To start a listener port on an application server, use the administrative console to
complete the following steps:

Steps for this task

172 IBM WebSphere Application Server Network Deployment, Version 5: Applications

1. (Optional) If you want the listener for a deployed message-driven bean to be
able to receive messages at the port, check that the message-driven bean has
been started.

2. In the navigation pane, select Servers-> Application Servers
This displays a table of the application servers in the administrative domain.
3. In the content pane, click the name of the application server.
This displays the properties of the application server in the content pane.
4. In the Additional Properties table, select Message Listener Service
This displays the Message Listener Service properties in the content pane.
5. In the content pane, select Listener Ports.
This displays a list of the listener ports.
6. (Optional) Select the checkbox for the listener port that you want to start.
7. Click Start.

8. To save your configuration, click Save on the task bar of the Administrative
console window.

Stopping a listener port
Use this task to stop a listener port on an application server, to prevent the

listeners for message-driven beans associated with the port from retrieving
messages.

When you stop a listener port as described in this topic, the listener manager stops
the listeners for all message-driven beans associated with the port.

To stop a listener port on an application server, use the administrative console to
complete the following steps:

Steps for this task
1. In the navigation pane, select Servers-> Application Servers

This displays a table of the application servers in the administrative domain.
2. In the content pane, click the name of the application server.
This displays the properties of the application server in the content pane.
3. In the Additional Properties table, select Message Listener Service
This displays the Message Listener Service properties in the content pane.
4. In the content pane, select Listener Ports.
This displays a list of the listener ports.
5. (Optional) In the content pane, select the listener port that you want to stop.
6. Click Stop.
7. To save your configuration, click Save on the task bar of the Administrative
console window.

8. (Optional) To have the changed configuration take effect, stop then restart the
application server.

Important files for message-driven beans and extended messaging

The following files in the WAS_HOME/temp directory are important for the
operation of the WebSphere Application Server messaging service, so should not be
deleted. If you do need to delete the WAS_HOME/temp directory or other files in
it, ensure that you preserve the following files.

Chapter 5. Using message-driven beans in applications 173

server_name-durableSubscriptions.ser

You should not delete this file, because the messaging service uses it to
keep track of durable subscriptions for message-driven beans. If you
uninstall an application that contains a message-driven bean, this file is
used to unsubscribe the durable subscription.

server_name-AsyncMessageRequestLog.ser

You should not delete this file, because the messaging service uses it to
keep track of late responses that need to be delivered to the late response
message handler for the extended messaging provider.

Troubleshooting message-driven beans

Use this overview task to help resolve a problem that you think is related to
message-driven beans.

Message-driven beans support uses the standard WebSphere Application Server
troubleshooting facilities. If you encounter a problem that you think might be
related to the message-driven beans, complete the following stages:

Steps for this task

1.

Check for messages about message-driven beans in the application server’s
SystemOut log at was_home\logs\server\SystemOut.

Look in the SystemOut log for messages that indicate a problem with JMS
resources for message-driven beans, such as listener ports.

Check for more messages in the application server’s SystemOut log.

If the JMS server is running, but you have problems accessing JMS resources,
check the SystemOut log file, which should contain more error messages and
extra details about the problem.

Check the Release Notes for specific problems and workarounds

The section Possible Problems and Suggested Fixes of the Release Notes, available
from the WebSphere Application Server library web site, is updated regularly to
contain information about known defects and their workarounds. Check the
latest version of the Release Notes for any information about your problem. If
the Release Notes does not contain any information about your problem, you
can also search the Technotes database on the WebSphere Application Server
web site.

Check that message listener service has started.

The message listener service is an extension to the JMS functions of the J]MS
provider. It provides a listener manager that controls and monitors one or more
JMS listeners, which each monitor a JMS destination on behalf of a deployed
message-driven bean.

Check your JMS resource configurations

If the WebSphere Messaging functions seem to be running properly (the JMS
server is running without problems), check that the JMS resources have been
configured correctly. For example, check that the listener ports have been
configured correctly and have been started.

Check for problems with the WebSphere Messaging functions

For more information about troubleshooting WebSphere Messaging, see the
related topics.

(Optional) Get a detailed exception dump for messaging.

174 1BM WebSphere Application Server Network Deployment, Version 5: Applications

If the information obtained in the preceding steps is still inconclusive, you can
enable the application server debug trace for the "Messaging” group to provide
a detailed exception dump.

Message-driven beans samples

The following examples are provided to illustrate use of the message-driven beans
support:

* Point-to-point samples:
— "Tutorial: Creating JMS message sample”

This tutorial is designed to help you develop and deploy a JMS message
sample application that tests the WebSphere Application Server
message-driven beans support in a point-to-point scenario. This sample
illustrates how to develop and deploy an application that comprises the
following components:

- AJava/JMS program that writes a message to a queue.

- A message-driven bean that is invoked by a JMS listener when a message
arrives on a defined queue.

For more information about this sample, see the samples article "Tutorial:
Creating JMS message sample” at
WAS_HOME/Enterprise/samples/messaging/doc/PtoP/wsb1dPtoP.xml (if you
have installed the samples option).

— "Sample: Message Listener (point-to-point)”

This sample is designed to demonstrate the use and behavior of
message-driven beans for a simple point-to-point scenario. This sample uses
the J]MS message sample deployed in the sample above.

For more information about this sample, see the samples article "Sample:
Message Listener (Point-to-Point)” at
WAS_HOME/Enterprise/samples/messaging/doc/PtoP/wsrunPtoP.xml (if you
have installed the samples option).

 Publish/subscribe samples
— "Tutorial: Creating JMS message publish/subscribe sample”

This tutorial is designed to help you develop and deploy a JMS message
sample application that tests the WebSphere Application Server
message-driven beans support in a publish/subscribe scenario. This sample
illustrates how to develop and deploy an application that comprises the
following components:

- A client program that starts the message sequence by publishing a message
to a selected topic.

- A message-driven bean that is invoked by a JMS listener when the broker
passes a message to the listener from a topic to which it has subscribed.

For more information about this sample, see the samples article "Tutorial:
Creating JMS message publish/subscribe sample” at
WAS_HOME/Enterprise/samples/messaging/doc/PubSub/wsb1dPubSub.xml (if you
have installed the samples option).

— "Sample: Message Listener (publish/subscribe)”

This sample is designed to demonstrate the use and behavior of
message-driven beans for a simple publish/subscribe scenario. This sample
uses the JMS message sample deployed in the publish/subscribe sample
above.

Chapter 5. Using message-driven beans in applications 175

For more information about this sample, see the samples article "Sample:
Message Listener (publish/subscribe)” at
WAS_HOME/Enterprise/samples/messaging/doc/PubSub/wsrunPubSub.xml (if you
have installed the samples option).

176 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Chapter 6. Using application clients

An application client module is a JAR (Java ARchive) file containing a client for
accessing a Java application.

Steps for this task
1. [Decide on a type of application client|

2. Develop the application client code.

Develop ActiveX application client code.|

Develop applet client code.

Develop J2EE application client code]

Develop pluggable application client code |

Develop thin application client code.|

Usage scenario

View the Samples gallery for more information about application clients. Before
you run the basicCalculator Sample, ensure the JMS Server is started.

Application clients

In a traditional client server environment, the client requests a service and the
server fulfills the request. Multiple clients use a single server. Clients can also
access several different servers. This model persists for Java clients except now
these requests make use of a client run-time environment.

In this model, the client application requires a servlet to communicate with the
enterprise bean, and the servlet must reside on the same machine as the
WebSphere Application Server.

With WebSphere Application Server V5.0, application clients now consist of the
following models:

* ActiveX application client

* Applet client

* J2EE application client

* Pluggable application client
* Thin application client

The ActiveX application client model, uses the Java Native Interface (JNI)
architecture to programmatically access the Java virtual machine (JVM) APL
Therefore the JVM code exists in the same process space as the ActiveX application
(Visual Basic, VBScript, or Active Server Pages (ASP)) and remains attached to the
process until that process terminates.

In the Applet client model, a Java applet embeds in a HyperText Markup Language
(HTML) document residing on a remote client machine from the WebSphere

Application Server. With this type of client, the user accesses an enterprise bean in
the WebSphere Application Server through the Java applet in the HTML document.

© Copyright IBM Corp. 2002 177

The J2EE application client is a Java application program that accesses enterprise
beans, Java Database Connectivity (JDBC), and Java Message Service message
queues. The J2EE application client program runs on client machines. This program
follows the same Java programming model as other Java programs; however, the
J2EE application client depends on the application client run time to configure its
execution environment, and uses the Java Naming and Directory Interface (JNDI)
name space to access resources.

The Pluggable and thin application clients provide a lightweight Java client
programming model. These clients are best suited in situations where a Java client
application exists but the application needs enhancements to use enterprise beans,
or where the client application requires a thinner, more lightweight environment
than the one offered by the J2EE application client. The difference between the thin
application client and the pluggable application client is that the thin application
client includes a Java virtual machine (JVM) API, and the pluggable application
client requires the user to provide this code. The pluggable application client uses
the Sun Java Development Kit, and the thin application client uses the IBM
Developer Kit For the Java Platform.

The J2EE application client programming model provides the benefits of the J2EE
platform for the Java client application. The J2EE application client offers the
ability to seamlessly develop, assemble, deploy and launch a client application. The
tooling provided with the WebSphere platform supports the seamless integration of
these stages to help the developer create a client application from start to finish.

When you develop a client application using and adhering to the J2EE platform,
you can put the client application code from one J2EE platform implementation to
another. The client application package can require redeployment using each J2EE
platform deployment tool, but the code that comprises the client application does
not change.

The application client run time supplies a container that provides access to system
services for the client application code. The client application code must contain a
main method. The application client run time invokes this main method after the
environment initializes and runs until the Java virtual machine code terminates.

The J2EE platform allows the application client to use nicknames or short names,
defined within the client application deployment descriptor. These deployment
descriptors identify enterprise beans or local resources (JDBC, Java Message Service
(JMS), JavaMail and URL APIs) for simplified resolution through JNDI use. This
simplified resolution to the enterprise bean reference and local resource reference
also eliminates changes to the client application code, when the underlying object
or resource either changes or moves to a different server. When these changes
occur, the application client can require redeployment.

The application client also provides initialization of the run-time environment for
the client application. The deployment descriptor defines this unique initialization
for each client application. The application client run time also provides support
for security authentication to the enterprise beans and local resources.

The application client uses the RMI-IIOP protocol. Using this protocol enables the
client application to access enterprise bean references and to use CORBA services
provided by the J2EE platform implementation. Use of the RMI-IIOP protocol and
the accessibility of CORBA services assist users in developing a client application
that requires access to both enterprise bean references and CORBA object
references.

178 IBM WebSphere Application Server Network Deployment, Version 5: Applications

When you combine the J2EE and CORBA environments or programming models in
one client application, you must understand the differences between the two
programming models to use and manage each appropriately.

View the Samples gallery for more information about application clients. Before

you run the basicCalculator Sample, ensure the JMS Server is started.

Application client functions

Use the following table to identify the available functions in the different types of

clients:

Available
functions

ActiveX
client

Applet
client

J2EE client

Pluggable
client

Thin client

Provides all the
benefits of a J2EE
platform

Yes

No

Yes

No

No

Portable across all
J2EE platforms

No

Yes

Provides the
necessary run-time
to support
communication
between client and
server

Yes

Yes

Yes

Yes

Yes

Allows the use of
nicknames in the
deployment
descriptors

Yes

Yes

Supports use of the
RMI-TIOP protocol

Yes

Yes

Yes

Browser based
application

No

Yes

Enables
development of
client applications
that can access
enterprise bean
references and
CORBA object
references

Yes

Yes

Yes

Enables the
initialization of the
client application
run-time
environment

Yes

Yes

Supports security
authentication to
enterprise beans

Yes

Limited

Yes

Yes

Yes

Supports security
authentication to
local resources

Yes

Yes

Chapter 6. Using application clients 179

Requires Yes No Yes Yes Yes
distribution of
application to
client machines

Enables access to | Yes No No No No
enterprise beans
and other Java
classes through
Visual Basic,
VBScript, and
Active Server
Pages (ASP) code

Provides a No Yes No Yes Yes
lightweight client
suitable for
download

Enables access to | Yes Yes Yes Yes Yes
Java Naming and
Directory Interface
(JNDI) for
enterprise bean
resolution

Runs on client No No No Yes No
machines that use
the Sun Java
Runtime
Environment

Supports CORBA | No No Yes No No
services (using
CORBA services
can render the
application client
code nonportable)

ActiveX application clients

WebSphere Application Server provides an ActiveX to EJB bridge that enables
ActiveX programs to access WebSphere Enterprise JavaBeans through a set of
ActiveX automation objects.

The bridge accomplishes this by loading the Java virtual machine (JVM) into any
ActiveX automation container such as Visual Basic, VBScript, and Active Server
Pages (ASP).

There are two main environments in which the ActiveX to EJB bridge runs:

* Client applications, such as Visual Basic and VBScript, are programs that a user
starts from the command line, desktop icon, or Start menu shortcut.

* Client services, such as Active Server Pages, are programs started by some
automated means like the Services control panel applet.

The ActiveX to EJB bridge uses the Java Native Interface (JNI) architecture to
programmatically access the JVM code. Therefore the JVM code exists in the same
process space as the ActiveX application (Visual Basic, VBScript, or ASP) and
remains attached to the process until that process terminates. To create JVM code,
an ActiveX client program calls the X]BInit() method of the X]B.JClassFactory

180 I1BM WebSphere Application Server Network Deployment, Version 5: Applications

object. For more information about creating JVM code for an ActiveX program, see
[ActiveX to EJB bridge, initializing JVM code|

After an ActiveX client program has initialized the JVM code, the program calls
several methods to create a proxy object for the Java class. When accessing a Java
class or object, the real Java object exists in the JVM code; the automation container
contains the proxy for that Java object. The ActiveX program can use the proxy
object to access the Java class, object fields, and methods. For more information
about using Java proxy objects, see |ActiveX to EJB bridge, using Java proxy obiectsl.
For more information about calling methods and access fields, see[ActiveX to EJB]
bridge, calling Java methods|and [ActiveX to EJB bridge, accessing Java fields]

The client program performs primitive data type conversion through the COM
IDispatch interface (use of the IUnknown interface is not directly supported).
Primitive data types are automatically converted between native Automation types
and Java types. All other types are handled automatically by the Proxy Objects For
more information about data type conversion, see [ActiveX to EJB bridge)|
konverting data typesl

Any exceptions thrown in Java code are encapsulated and re-thrown as a COM
error, from which the ActiveX program can determine the actual Java exceptions.
For more information about handling exceptions, see [ActiveX to EJB bridge,|

handling errors|

The ActiveX to EJB bridge supports both free-threaded and apartment-threaded
access and implements the Free Threaded Marshaler to work in a hybrid
environment such as Active Server Pages. For more information about the support
for threading, see|ActiveX to EJB bridge, using threading|

Applet clients

The applet client provides a browser-based Java run time capable of interacting
with enterprise beans directly, instead of indirectly through a servlet.

This client is designed to support users who want a browser-based Java client
application programming environment that provides a richer and more robust
environment than the one offered by the Applet > Servlet > enterprise bean
model.

The programming model for this client is a cross between the Java application thin
client and a servlet client. When accessing enterprise beans from this client, the
applet can consider the enterprise bean object references as CORBA object
references.

No tooling support exists for this client to develop, assemble or deploy the applet.
You are responsible for developing the applet, generating the necessary client
bindings for the enterprise beans and CORBA objects, and bundling these pieces
together to install or download to the client machine. The Java applet client
provides the necessary run time to support communication between the client and
the server.

Client side bindings generate using the (Application Assembly Tool). An applet can
utilize these bindings, or you can generate client side bindings using the rmic
command that is part of the IBM Developer Kit, Java edition, installed with the
WebSphere Application Server.

Chapter 6. Using application clients 181

182

The Applet client uses the RMI-IIOP protocol. Using this protocol enables the
applet to access enterprise bean references and CORBA object references, but the
applet is restricted in using some supported CORBA services.

If you combine the enterprise bean and CORBA environments in one applet, you
must understand the differences between the two programming models, and you
must use and manage each appropriately.

The applet client provides the run time to support the J2EE applet client. The
applet client does not have tooling support for developing, assembling or
deploying the applet. The applet client run time is provided through the Java
applet browser plug-in that you install on the client machine using the WebSphere
Application Server Client CD.

The applet environment restricts access to external resources from the browser
run-time environment. You can make some of these resources available to the
applet by setting the correct security policy settings in the WebSphere Application
Server client.policy file. If given the correct set of permissions, the applet client
must explicitly create the connection to the resource using the appropriate API.
This client does not perform initialization of any service that the client applet can
need. For example, the client application is responsible for the initialization of the
naming service, either through CosNaming or Java Naming and Directory Interface
(JNDI) APIs.

J2EE application clients

The J2EE application client programming model provides the benefits of Java TM 2
Platform Enterprise Edition (J2EE).

The J2EE platform offers the ability to seamlessly develop, assemble, deploy and
launch a client application. The tooling provided with the WebSphere platform
supports the seamless integration of these stages to help the developer create a
client application from start to finish.

When you develop a client application using and adhering to the J2EE platform,
you can put the client application code from one J2EE platform implementation to
another. The client application package can require redeployment using each J2EE
platform deployment tool, but the code that comprises the client application does
not change.

The J2EE application client run time supplies a container that provides access to
system services for the application client code. The J2EE application client code
must contain a main method. The J2EE application client run time invokes this
main method after the environment initializes and runs until the Java virtual
machine application terminates.

Application clients can use nicknames or short names, defined within the client
application deployment descriptor with the J2EE platform. These deployment
descriptors identify enterprise beans or local resources (Java Database Connectivity
(JDBC), Java Message Service (JMS), JavaMail and URL APIs) for simplified
resolution through JNDI use. This simplified resolution to the enterprise bean
reference and local resource reference also eliminates changes to the application
client code, when the underlying object or resource either changes or moves to a
different server. When these changes occur, the application client can require
redeployment.

IBM WebSphere Application Server Network Deployment, Version 5: Applications

The J2EE application client also provides initialization of the run-time environment
for the client application. The deployment descriptor defines this unique
initialization for each client application. The J2EE application client run time also
provides support for security authentication to the enterprise beans and local
resources.

The J2EE application client uses the RMI-IIOP protocol. Using this protocol enables
the client application to access enterprise bean references and to use CORBA
services provided by the J2EE platform implementation. Use of the RMI-IIOP
protocol and the accessibility of CORBA services assist users in developing a client
application that requires access to both enterprise bean references and CORBA
object references.

When you combine the J2EE and the CORBA enterprise edition environments or
programming models in one client application, you must understand the
differences between the two programming models to use and manage each
appropriately.

Pluggable application clients

The pluggable application client provides a lightweight, downloadable Java
application run-time capable of interacting with enterprise beans.

The pluggable application client requires that you have previously installed the
Sun Java Runtime Environment (JRE) files. In all other aspects, the pluggable
application client, and the thin application client are similar.

This client is designed to support those users who want a lightweight Java client
application programming environment, without the overhead of the J2EE platform
on the client machine. The programming model for this client is heavily influenced
by the CORBA programming model, but supports access to enterprise beans.

When accessing enterprise beans from this client, the client application can
consider the enterprise beans object references as CORBA object references.

Tooling does not exist on the client, it exists on the server. You are responsible for
developing the client application, generating the necessary client bindings for the

enterprise bean and CORBA objects, and bundling these pieces together, install on
the client machine.

The pluggable application client provides the necessary run-time to support the
communication needs between the client and the server.

The pluggable application client uses the RMI-IIOP protocol. Using this protocol
enables the client application to access not only enterprise bean references and
CORBA object references, but also allows the client application to use any
supported CORBA services. Using the RMI-IIOP protocol along with the
accessibility of CORBA services can assist a user in developing a client application
that needs to access both enterprise bean references and CORBA object references.

When you combine the J2EE and CORBA environments in one client application,
you must understand the differences between the two programming models, to use

and manage each appropriately.

The pluggable application client run time provides the necessary support for the
client application for object resolution, security, Reliability Availability and

Chapter 6. Using application clients 183

Servicability (RAS), and other services. However, this client does not support a
container that provides easy access to these services. For example, no support
exists for using nicknames for enterprise beans or local resource resolution. When
resolving to an enterprise bean (using either Java Naming and Directory Interface
(JNDI) or CosNaming) sources, the client application must know the location of the
name server and the fully qualified name used when the reference was bound into
the name space. When resolving to a local resource, the client application cannot
resolve to the resource through a JNDI lookup. Instead the client application must
explicitly create the connection to the resource using the appropriate API (JDBC,
Java Message Service (JMS), and so on). This client does not perform initialization
of any of the services that the client application might require. For example, the
client application is responsible for the initialization of the naming service, either
through CosNaming or JNDI APlIs.

The pluggable application client offers access to most of the available client
services in the J2EE application client. However, you cannot access the services in
the pluggable client as easily as you can in the J2EE application client. The J2EE
client has the advantage of performing a simple Java Naming and Directory
Interface (JNDI) name space lookup to access the desired service or resource. The
pluggable client must code explicitly for each resource in the client application. For
example, looking up an enterprise bean Home requires the following code in a
J2EE application client:

java.lang.Object ejbHome=initialContext.lookup("java:/comp/env/ejb/MyEJBHome");

MyEJBHome= (MyEJBHome) javax.rmi.PortableRemoteObject.narrow
(ejbHome ,MyEJBHome.class);

However, you need more explicit code in a Java pluggable application client:

java.lang.Object ejbHome=initialContext.lookup("the/fully/qualified/path/to/
actual/home/in/namespace/MyEJBHome") ;

MyEJBHome=(MyEJBHome) javax.rmi.PortableRemoteObject.narrow

(ejbHome ,MyEJBHome.class);

In this example, the J2EE application client accesses a logical name from the
Jjava:/comp name space. The J2EE client run time resolves that name to the
physical location and returns the reference to the client application. The pluggable
client, must know the fully qualified physical location of the enterprise bean Home
in the name space. If this location changes, the pluggable client application must
also change the value placed on the lookup() statement.

In the J2EE client, the client application is protected from these changes because it
uses the logical name. A change can require a redeployment of the EAR file, but
the actual client application code remains the same.

The pluggable application client is a traditional Java application that contains a
main function. The WebSphere pluggable application client provides run-time
support for accessing remote enterprise beans, and provides the implementation
for various services (security, Workload Management (WLM), and others). This
client can also access CORBA objects and CORBA based services. When using both
environments in one client application, you need to understand the differences
between the enterprise bean and CORBA programming models to manage both
environments.

For instance, the CORBA programming model requires the CORBA CosNaming
name service for object resolution in a name space. The enterprise beans
programming model requires the JNDI name service. The client application must
initialize and properly manage these two naming services.

184 I1BM WebSphere Application Server Network Deployment, Version 5: Applications

Another difference applies to the enterprise bean model. Use the Java Naming and
Directory Interface (JNDI) implementation in the enterprise bean model to initialize
the Object Request Broker (ORB). The client application is unaware that an ORB is
present. The CORBA model, however, requires the client application to explicitly
initialize the ORB through the ORB.1init() static method.

The pluggable application client provides a batch command that you can use to set
the CLASSPATH and JAVA_HOME environment variables to enable the pluggable
application client run time.

Thin application clients

The thin application client provides a lightweight, downloadable Java application
run time capable of interacting with enterprise beans.

This client is designed to support those users who want a lightweight Java client
application programming environment, without the overhead of the J2EE platform
on the client machine. The programming model for this client is heavily influenced
by the CORBA programming model, but supports access to enterprise beans.

When accessing enterprise beans from this client, the client application can
consider the enterprise beans object references as CORBA object references.

Tooling does not exist on the client, it exists on the server. You are responsible for
developing the client application, generating the necessary client bindings for the
enterprise bean and CORBA objects, and bundling these pieces together to install
on the client machine.

The thin application client provides the necessary run-time to support the
communication needs between the client and the server.

The thin application client uses the RMI-IIOP protocol. Using this protocol enables
the client application to access not only enterprise bean references and CORBA
object references, but also allows the client application to use any supported
CORBA services. Using the RMI-IIOP protocol along with the accessibility of
CORBA services can assist a user in developing a client application that needs to
access both enterprise bean references and CORBA object references.

When you combine the J2EE and CORBA environments in one client application,
you must understand the differences between the two programming models, to use
and manage each appropriately.

The thin application client run time provides the necessary support for the client
application for object resolution, security, Reliability Availability and Servicability
(RAS), and other services. However, this client does not support a container that
provides easy access to these services. For example, no support exists for using
nicknames for enterprise beans or local resource resolution. When resolving to an
enterprise bean (using either Java Naming and Directory Interface (JNDI) or
CosNaming) sources, the client application must know the location of the name
server and the fully qualified name used when the reference was bound into the
name space. When resolving to a local resource, the client application cannot
resolve to the resource through a JNDI lookup. Instead the client application must
explicitly create the connection to the resource using the appropriate API (JDBC,
Java Message Service (JMS), and so on). This client does not perform initialization

Chapter 6. Using application clients 185

of any of the services that the client application might require. For example, the
client application is responsible for the initialization of the naming service, either
through CosNaming or JNDI APlIs.

The thin application client offers access to most of the available client services in
the J2EE application client. However, you cannot access the services in the thin
client as easily as you can in the J2EE application client. The J2EE client has the
advantage of performing a simple Java Naming and Directory Interface (JNDI)
name space lookup to access the desired service or resource. The thin client must
code explicitly for each resource in the client application. For example, looking up
an enterprise bean Home requires the following code in a J2EE application client:

java.lang.Object ejbHome=initialContext.lookup("java:/comp/env/ejb/MyEJBHome");
MyEJBHome=(MyEJBHome) javax.rmi.PortableRemoteObject.narrow(ejbHome ,MyEJBHome.class);

However, you need more explicit code in a Java thin application client:

java.lang.Object ejbHome=initialContext.lookup("the/fully/qualified/path/to/actual/
home/in/namespace/MyEJBHome") ;
MyEJBHome=(MyEJBHome) javax.rmi.PortableRemoteObject.narrow(ejbHome,MyEJBHome.class);

In this example, the J2EE application client accesses a logical name from the
Jjava:/comp name space. The J2EE client run time resolves that name to the
physical location and returns the reference to the client application. The thin client
must know the fully qualified physical location of the enterprise bean Home in the
name space. If this location changes, the thin client application must also change
the value placed on the lookup() statement.

In the J2EE client, the client application is protected from these changes because it
uses the logical name. A change might require a redeployment of the EAR file, but
the actual client application code remains the same.

The thin application client is a traditional Java application that contains a main
function. The WebSphere thin application client provides run-time support for
accessing remote enterprise beans, and provides the implementation for various
services (security, Workload Management (WLM), and others). This client can also
access CORBA objects and CORBA based services. When using both environments
in one client application, you need to understand the differences between the
enterprise bean and CORBA programming models to manage both environments.

For instance, the CORBA programming model requires the CORBA CosNaming
name service for object resolution in a name space. The enterprise beans
programming model requires the JNDI name service. The client application must
initialize and properly manage these two naming services.

Another difference applies to the enterprise bean model. Use the Java Naming and
Directory Interface (JNDI) implementation in the enterprise bean model to initialize
the Object Request Broker (ORB). The client application is unaware that an ORB is
present. The CORBA model, however, requires the client application to explicitly
initialize the ORB through the ORB.1init() static method.

The thin application client provides a batch command that you can use to set the
CLASSPATH and JAVA_HOME environment variables to enable the thin
application client run time.

Example: Migrating application clients

Use the ClientUpgrade command to migrate application clients.

186 1BM WebSphere Application Server Network Deployment, Version 5: Applications

The command file is located in the bin subdirectory of the <WAS_install_root<, or
the <ND_install_root< directory. By default, the WAS_install_root for WebSphere
Application Server and WebSphere Application Server Enterprise is:

* Windows NT or Windows 2000 operating platforms -
<drive>\WebSphere\AppServer directory

* AIX or UNIX-based operating platforms - /usr/WebSphere/AppServer directory

By default, the ND_install_root for WebSphere Application Server Network
Deployment is:

* Windows NT or Windows 2000 operating platforms -
<drive>\WebSphere\DeploymentManager directory

* AIX or UNIX-based operating platforms - /usr/WebSphere/DeploymentManager
directory

The command uses the
com.ibm.websphere.migration.clientupgrade.ClientUpgrade class.

Syntax

ClientUpgrade EAR file [-clientJdar client_jar]
[-traceString trace_spec [-traceFile file _name]]

Parameters

Supported arguments include the following:

EAR_file
Use this parameter to specify the fully qualified path to the EAR file that
contains client JAR files to process.

-clientJar
Use this optional parameter to specify a JAR file for processing. If not
specified, the program transforms all client JAR files in the EAR file.

-traceString -traceFile
Use these optional parameters to gather trace information for IBM Service
personnel. Specify a trace_spec of "+=all=enabled” (with quotation marks)
to gather all trace information.

Examples

The following example demonstrates correct syntax:
ClientUpgrade EAR _file -clientdar ejbJdarFile

Migration tips for application clients
Tips for migrating thin application client code:

* The Java invocation used to run thin application clients has changed in Version
5.0. You must specify -Xbootclasspath/p:%WAS_BOOTCLASSPATH% on Windows
systems or -Xbootclasspath/p:$WAS_BOOTCLASSPATH on Unix systems when you
invoke the Java command. Set the WAS_BOOTCLASSPATH environment variable in
one of the following;:

— setupClient.bat for Windows systems or setupClient.sh for Unix systems
— setupCmdLine.bat for Windows systems or setupCmdLine.sh for Unix systems

Tips for migrating J2EE application client code:

Chapter 6. Using application clients 187

* If your J2EE application client uses resource references and you have configured
those resources using the Application Client Resource Configuration Tool

(ACRCT), you must run the ClientUpgrade command to migrate the resource

configuration information in WebSphere Application Server V5.

Installing application clients

Before you begin

Application clients do not require the IBM WebSphere Application Server base.
They are supported at the level of the operating system.

Before you install the pluggable application client, you must have one of the
following Sun Java Runtime Environment (JRE) levels on your system: 1.3.1_03 and
all levels up to but not including 1.4. Similar Sun Java Development Kit (JDK)
levels are required to install the pluggable application client Samples.

Steps for this task

1. Issue the following command, according to platform, at a command line:
install.sh for AIX
Install.sh for Solaris
install.exe for Windows
The WebSphere Application Server client install wizard appears.

2. Click next, to continue.

3. Select a language from the drop-down menu and click OK.

If you have an earlier version of the WebSphere Application Server client
installed on your machine, an information window appears.

4. Click Yes to all to overwrite this older version.

5. Read the license agreement, and select the radio button next to I accept the
terms in the license agreement. Click next.

6. Choose a setup type and click next.

7. Choose the features you want to install and click Next.

8. Click Yes, if you want to install the Samples development environment.

9. Click Next, to install the WebSphere Application Server client to the default
directory. Click Browse, to install the WebSphere Application Server client to a
different directory.

10. Click Next.

11. Enter the host name of the server machine, and click Next.
Specify a port number if you are not using the default port.

12. Click Next, to install.
A progress window appears. If you chose to install the applet client, an
information window appears.

13. Choose yes to overwrite the existing JRE registry entry. Choose no to return to
the feature panel.

14. Click Finish to exit the wizard, after the WebSphere Application Server client
installs.

Results

Application clients are installed on your machine.

188 I1BM WebSphere Application Server Network Deployment, Version 5: Applications

Developing ActiveX application client code

Before you begin

This topic provides an outline for developing an ActiveX program, such as Visual
Basic, VBScript, and Active Server Pages, to use the WebSphere ActiveX to E]B
bridge to access enterprise beans.

This topic assumes that you are familiar with ActiveX programming. You should
also consider the information given in ActiveX to EJB bridge, good programming
guidelines.

To use the ActiveX to EJB bridge to access a Java class, develop your ActiveX
program to complete the following steps:

Steps for this task
1. Create an instance of the XJB.JClassFactory object.

2. Create JVM code within the ActiveX program process, by calling the X]BInit()
method of the XJB.JClassFactory object.

After the ActiveX program has created an X]JB.JClassFactory object and called
the XJBInit() method, the JVM code is initialized and ready for use.

3. Create a proxy object for the Java class, by using the X]B.JClassFactory
FindClass() and NewInstance() methods.

The ActiveX program can use the proxy object to access the Java class, object
fields, and methods.

4. Call methods on the Java class, using the Java method invocation syntax, and
access Java fields as required.

5. Use the helper functions to do the conversion in cases where automatic
conversion is not possible. You can convert between the following data types:

* Java Byte and Visual Basic Byte
* Visual Basic Currency types and Java 64-bit

6. Implement methods to handle any errors returned from the Java class. In Visual
Basic or VBScript, use the Err.Number and Err.Description fields to determine
the actual Java error.

What to do next

After you develop the ActiveX client code, jstart the ActiveX application}

Starting an ActiveX application
Before you begin

To run an ActiveX client application that is to use the ActiveX to EJB bridge, you
must perform some initial configuration to set appropriate environment variables
and to enable the ActiveX to EJB bridge to find its XJB.JAR file and the Java
run-time. This initial configuration sets up the environment within which the
ActiveX client application can run.

To perform the required configuration, complete one or more of the following
subtasks:

Steps for this task
1. Btarting an ActiveX application and configuring service programs

Chapter 6. Using application clients 189

2. [Starting an ActiveX application and configuring non-service programs|

Starting an ActiveX application and configuring service

programs
Before you begin

To run an ActiveX service program such as Active Server Page (ASP) that is to use
the ActiveX to EJB bridge, you must perform some initial configuration to set
appropriate environment variables and to enable the ActiveX to E]JB bridge to find
its XJB.JAR file and the Java run-time. This configuration sets up the environment
within which the ActiveX service program can run.

The X]B.JClassFactory must find the Java run-time Dynamic Link Library (DLL)
when initializing. In a service program such as Internet Information Server you
cannot specify a path for its processes independently; you must set the process
paths in the system PATH variable. This limitation means that you can only have a
single JVM version available on a machine using ASP.

To add the JRE directories to your System path, complete one of the following
subtasks:

Steps for this task
1. On Windows 2000, complete the following substeps:

a. Open the Control Panel, then double-click the System icon.
Click the Advanced tab on the System Properties window.
Click Environment Variables.

Edit the Path variable in the System Variables window.

® oo o

Add the following to the beginning of the path displayed in the Variable
Value input box:

C:\WebSphere\AppClient\Java\jre\bin;C:\WebSphere\AppClient\
Java\jre\bin\classic;

where C:\WebSphere\AppClient is the directory in which you installed the
WebSphere Java client

f. Click OK in the Edit System Variable window to apply the changes.
g. Click OK in the Environment Variables window.
h. Click OK in the System Properties window.
i. Restart Windows 2000.
2. On Windows NT, complete the following substeps:
a. Open the Control Panel, then double-click the System icon.
b. Click the Environment tab on the System Properties window.
C. In the System Variables window, edit the Path variable.
d

. Add the following to the beginning of the path displayed in the Value input
box:

C:\WebSphere\AppClient\Java\jre\bin;C:\WebSphere\AppClient\
Java\jre\bin\classic;

Where C:\WebSphere\AppClient is the directory in which you installed the
WebSphere Java client

e. Click Set to apply the changes.
f. Click OK.
g. Restart Windows NT.

190 1BM WebSphere Application Server Network Deployment, Version 5: Applications

What to do next

After you change the System PATH variable you must reboot the Internet
Information Server machine so that Internet Information Server can see the change.

Starting an ActiveX application and configuring non-service

programs
Before you begin

To run an ActiveX program initiated from an icon or command-line (a non-service
program) that is to use the ActiveX to E]JB bridge, you must perform some initial
configuration to set appropriate environment variables and to enable the ActiveX
to EJB bridge to find its XJB.JAR file and the Java runtime. This uses a batch file to
set up the environment within which the ActiveX program can run.

To perform the required configuration, complete the following steps:

Steps for this task

1. (Optional) Edit the setupCmdLineX]B.bat file to specify appropriate values for
the environment variables required by the ActiveX to E]JB bridge. For more
information about these environment variables, see ActiveX to EJB bridge,
environment and configuration.

For more information about creating a JVM for an ActiveX program, see
ActiveX to EJB bridge, initializing the JVM.
After the ActiveX program has created an XJB.JClassFactory object and called
the XJBInit() method, the JVM is initialized and ready for use.
2. Start the ActiveX client application by using one of the following methods:
* Use the launchClientX]B.bat file to start the application; for example:
TaunchClientXJB MyApplication.exe parml parm2

or
TaunchClientXJB MyApplication.vbp
* Use the setupCmdLineX]B.bat file to create an environment in which the

application can be run, then start the application from within that
environment.

setupCmdLineXJB.bat, launchClientXJB.bat, and other ActiveX
batch files

This topic provides reference information about the aids that client applications
and client services can use to access the ActiveX to EJB bridge. These enable the
ActiveX to EJB bridge to find its XJB.JAR file and the Java run-time.

Location

The include file is located in the <was_client_home<\aspIncludes directory. You can
include the file into your ASP application with the following syntax in your ASP

page:
<-- #include virtual ="/WSASPIncludes/setupASPXJB.inc" -->

This assumes that you have created a virtual directory in Internet Information
Server called WSASPIncludes that points to the <was_client_home<\aspIncludes

directory.

Usage notes

Chapter 6. Using application clients 191

The following batch files are provided for client applications to use the ActiveX to
EJB bridge:
* setupCmdLineX]JB.bat
Sets the client environment variables.
* launchClientX]JB.bat

Calls the setupCmdLineXJB.bat file and launches the application you specify as
its arguments; for example:

launchClientXJB.bat myapp.exe parml parm2

or
launchClientXJB MyApplication.vbp
» Active Server Pages (ASP) include file

An include file is provided for ASP users to automatically set the following

page-level (local) environment variables:

— com_ibm_websphere_javahome Path to the Java run-time directory installed
with the WebSphere Advanced Server Client.

— com_ibm_websphere_washome Path to the WebSphere Advanced Server
Client directory.

— com_ibm_websphere_namingfactory Sets the Java java.naming.factory.initial
system property.

— com_ibm_websphere_computername (Optional) Name of the computer
where the WebSphere Advanced Server Client is installed. If you intend to
talk to a single specific computer, you are recommended to change this value
to become the server name that you intend to access.

* System Settings

To enable the ActiveX to EJB bridge to access the Java run-time Dynamic Link

Library (DLL), the following directories must exist in the system PATH

environment variable:

was_client_home\java\jre\bin;was_client_home\java\jre\bin\classic

Where was_client_home is the name of the directory where you installed the
WebSphere Application Server Client (for example, C:\WebSphere\AppClient).

Note: This technique enables only one Java run-time to activate on a machine,
therefore all client services on that machine must use the same Java run-time.
Client applications do not have this limitation because they each have their own
private, non-system scope.

JClassProxy and JObjectProxy classes

This topic provides reference information about the object classes of the ActiveX to
EJB bridge.

JClassFactory is the object used to access the majority of JVM features. It handles
JVM initialization, accessing classes and creating class instances (objects). The
majority of tasks for accessing your Java classes and objects are handled with the
JClassProxy and JObjectProxy objects.
* X]JBInit(String astrJavaParameterArray())
Initializes the JVM environment using an array of strings that represent the
command line parameters you would normally send to the java.exe file.
If you have invalid parameters in the XJBInit() string array, the following error
results:

192 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Error: 0x6002 "XJBJINI::Init() Failed to create VM" when calling XJBInit()

If you have C++ logging enabled, the activity log displays the invalid parameter.
JClassProxy FindClass(String strClassName)

Uses the current thread class loader to load the specified fully qualified class
name and returns a JClassProxy object representing the Java Class object.

JObjectProxy Newlnstance()

Creates a Class instance for the specified JClassProxy object using the
parameters supplied to call the Class Constructor. For more information about
using JMethodArgs, see ActiveX to EJB bridge, calling Java methods.
JObjectProxy NewInstance(JClassFactory obj, Variant vArgl, Variant vArg2,

Variant vArg3, ...)
JObjectProxy NewInstance(JClassFactory obj, JMethodArgs args)

JMethodArgs GetArgsContainer()
Returns a JMethodArgs object (Class instance).

You can create a JClassProxy object from the JClassFactory.FindClass() method
and also from any Java method call that would normally return a Java Class
object. You can use this object as if you had direct access to the Java Class object.
All of the class static methods and fields are accessible as are the java.lang.Class
methods. In case of a clash between static method names of the reflected user
class and those of the java.lang.Class (for example, getName()), the reflected
static methods would execute first.

For example, the following is a static method called getName(). The
java.lang.Class object also has a method called getName():

— In Java:
class foof

foo() {};

public static String getName(){return "abcdef";}
public static String getName2(){return "ghijkl";}
public String toString2(){return "xyz";}

}

— In Visual Basic:

Dim clsFoo as Object
set clsFoo = oXJB.FindClass("foo")
clsFoo.getName() ' Returns "abcdef" from the static foo class
clsFoo.getName2() ' Returns "ghijk1" from the static foo class
clsFoo.toString() ' Returns "class foo" from the java.lang.Class object.
oFoo = oXJB.NewInstance(clsFoo)
oFoo.toString() ' Returns some text from the java.lang.Object's

' toString() method which foo inherits from.
oFoo.toString2() ' Returns "xyz" from the foo class instance

You can create a JObjectProxy object from the JClassFactory.NewInstance()
method, and can be created from any Java method call that would normally
return a Class instance object. You can use this object as if you had direct
access to the Java object and can access all the static methods and fields of the
object. All of object instance methods and fields are accessible (including
those accessible through inheritance).

The JMethodArgs object is created from the JClassFactory.GetArgsContainer()
method. Use this object as a container for method and constructor arguments.
You must use this object when overriding the object type when calling a
method (for example, when sending a java.lang.String JProxyObject to a
constructor that normally takes a java.lang.Object type).

Chapter 6. Using application clients 193

There are two groups of methods to add arguments to the collection: Add
and Set. You can use Add to add arguments in the order that they are
declared. Alternatively, you can use Set to set an argument based on its
position in the argument list (where the first argument is in position 1).

For example, if you had a Java Object Foo that took a constructor of Foo(int,
String, Object), you could use a J]MethodArgs object as shown in the
following code extract:

Dim oArgs as Object
set oArgs = oXJB.GetArgsContainer()

0Args.AddInt (CLng(12345))
oArgs.AddString("Apples")
oArgs.AddObject("java.lang.0Object", oSomeJObjectProxy)

Dim clsFoo as Object

Dim oFoo as Object

set clsFoo = oXJB.FindClass("com.mypackage.foo")
set oFoo = oXJB.NewInstance(clsFoo, oArgs)

' To reuse the oArgs object, just clear it and use the add method

' again, or alternatively, use the Set method to reset the parameters
' Here, we will use Set

oArgs.SetInt (1, CLng(22222))

oArgs.SetString(2, "Bananas")

oArgs.SetObject(3, "java.lang.Object", oSomeOtherJObjectProxy)

Dim oFoo2 as Object
set oF002 = oXJB.NewInstance(clsFoo, 0Args)
¢ AddObject (String strObjectTypeName, Object 0Arg)

Adds an arbitrary object to the argument container in the next available position,
casting the object to the class name specified in the first parameter. Arrays are
specified using the traditional [] syntax; for example:

AddObject ("java.lang.Object[][]", oMy2DArrayOfFooObjects)

or
AddObject ("int[]", oMyArrayOfInts)
* AddByte (Byte byteArg)

Adds a primitive byte value to the argument container in the next available
position.

* AddBoolean (Boolean bArg)

Adds a primitive boolean value to the argument container in the next available
position.

e AddShort (Integer iArg)

Adds a primitive short value to the argument container in the next available
position.

* AddInt (Long 1Arg)

Adds a primitive int value to the argument container in the next available
position.

* AddLong (Currency cyArg)

Adds a primitive long value to the argument container in the next available
position.

* AddFloat (Single fArg)

194 1BM WebSphere Application Server Network Deployment, Version 5: Applications

Adds a primitive float value to the argument container in the next available
position.

AddDouble (Double dArg)

Adds a primitive double value to the argument container in the next available
position.

AddChar (String strArg)

Adds a primitive char value to the argument container in the next available
position.

AddString (String strArg)

Adds the argument in string form to the argument container in the next
available position.

SetObject (Integer iArgPosition, String strObjectTypeName, Object 0Arg)

Adds an arbitrary object to the argument container in the specified position
casting it to the class name or primitive type name specified in the second
parameter. Arrays are specified using the traditional [] syntax; for example:

SetObject(1, "java.lang.Object[][]", oMy2DArrayOfFooObjects)

or
SetObject(2, "int[]", MyArrayOflInts)

SetByte (Integer iArgPosition, Byte byteArg)

Sets a primitive byte value to the argument container in the position specified.
SetBoolean (Integer iArgPosition, Boolean bArg)

Sets a primitive boolean value to the argument container in the position
specified.

SetShort (Integer iArgPosition, Integer iArg)

Sets a primitive short value to the argument container in the position specified.
SetInt (Integer iArgPosition, Long 1Arg)

Sets a primitive int value to the argument container in the position specified.
SetLong (Integer iArgPosition, Currency cyArg)

Sets a primitive long value to the argument container in the position specified.
SetFloat (Integer iArgPosition, Single fArg)

Sets a primitive float value to the argument container in the position specified.
SetDouble (Integer iArgPosition, Double dArg)

Sets a primitive double value to the argument container in the position specified.
SetChar (Integer iArgPosition, String strArg)

Sets a primitive char value to the argument container in the position specified.
SetString (Integer iArgPosition, String strArg)

Sets a java.lang.String value to the argument container in the position specified.
Object Item(Integer iArgPosition)

Returns the value of an argument at a specific argument position.

Clear()

Removes all arguments from the container and resets the next available position
to one.

Long Count()
Returns the number of arguments in the container.

Chapter 6. Using application clients 195

Java virtual machine initialization tips

Initialize the Java virtual machine (JVM) code with the ActiveX to enterprise
JavaBeans bridge. For an ActiveX client program (Visual Basic, VBScript, or ASP) to
access Java classes or objects, the first step that the program must do is to create
JVM code within its process. To create JVM code, the ActiveX program calls the
XJBInit() method of the XJB.JClassFactory object. When an X]JB.JClassFactory object
is created and the X]JBInit() method called, the JVM is initialized and ready to use.

To enable the X]JB.JClassFactory to find the Java run-time Description Definition
Language (DLL) when initializing, the JRE bin and bin\classic directories must
exist in the system path environment variable.

The X]BInit() method accepts only one parameter; an array of strings. Each
string in the array represents a command line argument that for a Java program
you would normally specify on the Java.exe command line. This string interface
is used to set the classpath, stack size, heap size, and debug settings. You can get
a listing of these parameters by typing java -? from the command line.

If you set a parameter incorrectly, you receive a 0x6002 "Failed to initialize VM"
error message.

Due to the current limitations of Java Native Interface (JNI), you cannot unload
or reinitialize JVM code after it has loaded. Therefore, after XJBInit() has been
called once, subsequent calls have no effect other than to create a duplicate
JClassFactory object for you to access. It is best to store your X]B.JClassFactory
object globally and continue to reuse that object.

The following Visual Basic extract shows an example of initializing JVM code:

Dim oXJB as Object

set oXJB = CreateObject("XJB.JClassFactory")

Dim astrJavalnitProps(0) as String

astrJavalnitProps(0) = _
"-Djava.class.path=.;c:\myjavaclasses;c:\myjars\myjar.jar"

0XJB.XJBInit(astrJavalnitProps)

Example: Developing ActiveX to enterprise bean bridge, using
Java proxy objects

To use Java proxy objects with the ActiveX to enterprise JavaBeans bridge:

After an ActiveX client program (Visual Basic, VBScript, or ASP) has initialized
the XJB.JClassFactory (and thereby the JVM), it can access Java classes and
initialize Java objects. To do this, the client program uses the X]B.JClassFactory
FindClass() and NewlInstance() methods.

In Java programming there are two ways to access Java classes: direct invocation
through the Java compiler, and through the Java Reflection interface. Because the
ActiveX to Java bridge needs no compilation and is a complete runtime interface
to Java, it depends on the latter Reflection interface to access its classes, objects,
methods, and fields. The X]B.JClassFactory FindClass() and NewInstance()
methods behave very similarly to the Java Class.forName() and the
Method.invoke() and Field.invoke() methods.

XJB.JClassFactory.FindClass() takes the fully-qualified class name as its only
parameter and returns a Proxy Object (JClassProxy). You can use the returned
Proxy object like a normal Java Class object and call static methods and access
static fields. You can also create a Class Instance (or object) from it, as described
below. For example, the following Visual Basic code extract returns a Proxy
object for the Java class java.lang.Integer:

Dim c1sMyString as Object
Set clsMyString = oXJB.FindClass("java.lang.Integer")

196 1BM WebSphere Application Server Network Deployment, Version 5: Applications

 After the proxy is created, you can access its static information directly. For
example, you can use the following code extract to convert a decimal integer to
its hexadecimal representation.

Dim strHexValue as String
strHexValue = clsMyString.toHexString(CLng(255))

* The equivalent Java syntax is: static String toHexString(int i). Because ints
in Java programming are really 32-bits (which translates to Long in VB), the
CLng() function converts the value from the default int to a long. Also, even
though the toHexString() function returns a java.lang.String, the code extract
does not return an Object Proxy. Instead, the returned java.lang.String is
automatically converted to a native Visual Basic String.

To create an object from a class, you use the JClassFactory.NewInstance()
method. This method creates an Object Instance and takes whatever parameters
your Class Constructor needs. Once the object is created, you have access to all
of its public instance methods and fields. For example, you can use the
following Visual