
IBM WebSphere Application Server Network
Deployment, Version 5

Applications

���

Note
Before using this information, be sure to read the general information under “Trademarks and service marks” on page ix.

Compilation date: November 21, 2002

© Copyright International Business Machines Corporation 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Trademarks and service marks ix

Chapter 1. Welcome to Applications . . 1

Chapter 2. Using Web applications . . . 7
Web applications 7
web.xml file 8
Migrating Web application components 9
Default Application. 12

Snoop 12
HelloHTML 13
HitCount 13

Servlets 13
Developing servlets with WebSphere Application
Server extensions 14

Application lifecycle listeners and events . . . 14
Listener classes for servlet context and session
changes. 15
Example:
com.ibm.websphere.DBConnectionListener.java . 15
Servlet filtering 16
Filter, FilterChain, FilterConfig classes for servlet
filtering. 16
Example: com.ibm.websphere.LoggingFilter.java 16
Configuring page list servlet client configurations 17
autoRequestEncoding and autoResponseEncoding 21
autoRequestEncoding and autoResponseEncoding
encoding examples 21

JavaServer Pages files 22
Developing JavaServer Pages files with WebSphere
extensions 22

Tag libraries 23
tsx:dbconnect tag JavaServer Pages syntax . . . 23
dbquery tag JavaServer Pages syntax 24
dbmodify tag JavaServer Pages syntax 25
tsx:getProperty tag JavaServer Pages syntax and
examples 26
tsx:userid and tsx:passwd tag JavaServer Pages
syntax 27
tsx:repeat tag JavaServer Pages syntax 27
Example: Combining tsx:repeat and
tsx:getProperty JavaServer Pages tags. 28
Example: tsx:dbmodify tag syntax 28
Example: Using tsx:repeat JavaServer Pages tag
to iterate over a results set 28
JspBatchCompiler tool 31

Bean Scripting Framework 32
Example: Converting JavaScript source to the Bean
Scripting Framework 32
Scenario: Creating a Bean Scripting Framework
application 33

Scenario description 33
Developing the BSF application. 34
Deploying the BSF application 38

Example: Bean Scripting Framework code example 39

Developing Web applications 42
Web modules 43
Assembling Web Modules 43

Context parameters 45
Servlet mappings 45
Servlet caching 45
Web components 45
Web property extensions 45
Web resource collections 46
Welcome files. 46
Context parameter assembly settings 46
Initialization parameter assembly settings . . . 46
JavaServer Pages attribute assembly settings . . 47
Multipurpose Internet Mail Extensions (MIME)
filter assembly settings 49
Page list assembly settings 51
Security constraints 51
Security constraint assembly settings 51
Servlet mapping assembly settings 53
Tag library assembly settings 53
Welcome file assembly settings 54
Servlet caching configuration assembly settings 54
Web components assembly settings 56
Web modules assembly settings 58
Assembly property extensions 61
File serving attribute assembly settings 61
Invoker attribute assembly settings 61
Error page assembly settings 62
Web resource collections security constraint
properties 63

Troubleshooting tips for Web application
deployment 63
Modifying the default Web container configuration 65

Web container 65
Web container settings. 65
Web Container Services settings 66
Web module settings 67
Web Module Deployment settings 68

Web applications: Resources for learning 69

Chapter 3. Managing HTTP sessions 71
Sessions 71
Migrating HTTP sessions 72
Developing session management in servlets . . . 73

SessionSample.java 74
Assembling so that session data can be shared . . 75

Servlet API Behavior 75
Session security support 75

Security integration rules for HTTP sessions . . 76
Programmatic details and scenarios 76

Session management support 77
Configuring session management by level 78
Session tracking options 78

Session tracking with cookies 79
Session tracking with URL rewriting 79

© Copyright IBM Corp. 2002 iii

Session tracking with SSL information 80
Configuring session tracking 80

Serializing access to session data 81
Session Management settings 81
Cookie settings 83

Distributed sessions 84
Session recovery support 84

Distributed Environment settings 84
Configuring for database session persistence . . . 85

Switching to a multirow schema 85
Configuring tablespace and page sizes for DB2
session databases 86
Database settings 86
Multirow schema considerations 87

Memory-to-memory replication. 88
Configuring for memory to memory replication . . 90

Memory-to-memory sessions settings 90
Clustered session support 91
Tuning session management 91

Configuring scheduled invalidation 92
Configuring write contents 92
Configuring write frequency. 93
Base in-memory session pool size 94
Controlling write operations 94
Tuning parameter settings 95

Best practices for using HTTP Sessions 97
Managing HTTP sessions: Resources for learning: 100

Chapter 4. Using enterprise beans in
applications 101
Enterprise beans 101
Developing enterprise beans 102

Migrating enterprise bean code to the supported
specification 103
WebSphere extensions to the Enterprise
JavaBeans specification 106
Best practices for developing enterprise beans 107

Using access intent policies 108
Access intent policies 108
Applying access intent policies to methods . . 110
Access intent exceptions 111
Access intent assembly settings 112
Access intent best practices 114
Frequently asked questions: Access intent . . . 114

EJB modules. 116
Assembling EJB modules 116

CMP field assembly settings 118
Container transactions 118
Container transaction assembly settings . . . 118
EJB module assembly settings 120
Entity bean assembly settings 121
EJB local-reference assembly settings 130
Message-driven bean assembly settings. . . . 130
Method extensions 133
Method extension assembly settings 133
Method permissions 136
Method permission assembly settings 136
Query assembly settings. 137
References 137
EJB reference assembly settings 138
EJB relation assembly settings 139

Exclude list assembly settings 139
Security role assembly settings 140
Session bean assembly properties. 141

EJB containers 143
Managing EJB containers 144

EJB container settings 145
EJB container system properties 146
EJB cache settings 146
Container interoperability 147

Deploying EJB modules 150
EJB module collection 151
EJB module settings 151

Enterprise beans: Resources for learning 151

Chapter 5. Using message-driven
beans in applications 155
Message-driven beans - an overview 155

Message-driven beans - components. 156
Message-driven beans - transaction support . . 158

Designing an enterprise application to use
message-driven beans 158
Developing an enterprise application to use
message-driven beans 160

Migrating a JMS listener application to use
message-driven beans 162

Deploying an enterprise application to use
message-driven beans 163

Configuring deployment attributes for a
message-driven bean 164

Configuring message listener resources for
message-driven beans 166

Configuring the message listener service . . . 166
Adding a new listener port 170
Configuring a listener port 170
Deleting a listener port 171
Configuring security for message-driven beans 171
Administering listener ports 172

Important files for message-driven beans and
extended messaging 173
Troubleshooting message-driven beans 174
Message-driven beans samples 175

Chapter 6. Using application clients 177
Application clients 177

Application client functions 179
ActiveX application clients 180
Applet clients 181
J2EE application clients 182
Pluggable application clients 183
Thin application clients 185

Example: Migrating application clients 186
Migration tips for application clients 187

Installing application clients 188
Developing ActiveX application client code . . . 189

Starting an ActiveX application 189
JClassProxy and JObjectProxy classes 192
Java virtual machine initialization tips 196
Example: Developing ActiveX to enterprise bean
bridge, using Java proxy objects 196

iv IBM WebSphere Application Server Network Deployment, Version 5: Applications

Example: Calling Java methods in the ActiveX
to enterprise bean bridge 197
Java field programming tips 199
ActiveX to Java primitive data type conversion
values 199
Array tips for ActiveX application clients . . . 201
Error handling codes for ActiveX application
clients 201
Threading tips 202
Example: Viewing System.out message 203
Example: Enabling logging and tracing for
application clients 204
ActiveX client programming best practices . . 205

Developing applet client code 208
Accessing secure resources using the TCP/IP
protocol for applet clients 209
Applet client tag requirements. 210
Applet client code requirements 210

Developing J2EE application client code 211
J2EE application client class loading 214

Developing pluggable application client code. . . 216
Developing thin application client code. 217
Assembling Application Client Modules 217

Application client assembly settings 218
Deploying application clients 219

JDBC providers for application clients 220
Data sources for application clients 220
Configuring new data source providers (JDBC
providers) for application clients 221
Configuring new data sources for application
clients 224
Mail providers and mail sessions for the
Application Client Assembly Tool 224
Configuring mail providers and sessions for
application clients 225
Configuring new mail sessions for application
clients 227
URLs for application clients 228
URL providers for the Application Client
Resource Configuration Tool 228
Configuring new URL providers for application
clients 228
Configuring new URLs with the Application
Client Resource Configuration Tool 231
WebSphere asynchronous messaging using the
Java Message Service API for the Application
Client Resource Configuration Tool 231
Configuring Java messaging client resources . . 232
Configuring new connection factories for
application clients 263
Configuring new Java Message Service
destinations for application clients 264
Example: Configuring MQ Queue and Topic
connection factories and destination factories for
application clients 264
Example: Configuring WAS Queue and Topic
connection factories and destination factories for
application clients 266
Configuring new resource environment
providers for application clients 267

Configuring new resource environment entries
for application clients. 268

Managing application clients 269
Updating data source and data source provider
configurations with the Application Client
Resource Configuration Tool 270
Updating URLs and URL provider
configurations for application clients 270
Updating mail session configurations for
application clients 270
Updating Java Message Service provider,
connection factories, and destination
configurations for application clients 271
Updating MQ Java Message Service provider,
MQ connection factories, and MQ destination
configurations for application clients 271
Updating Resource Environment Entry and
Resource Environment Provider configurations
for application clients. 272
Removing application client resources 273

Running application clients. 274
launchClient tool 275

Application client troubleshooting tips 277

Chapter 7. Developing and managing
Web services 283
Web services 283
Developing a Simple Object Access Protocol client 283
Deploying Web services applications 285
Administering deployed Web services (XML-SOAP
administrative tool) 285
Securing Simple Object Access Protocol services 286

Migrating SOAP security 286
Securing Simple Object Access Protocol services
with HTTP basic authentication 287
Securing Simple Object Access Protocol services
on Secured Socket Layer. 287
Securing SOAP services on SSL with SOAP
Signature 288

UDDI4J specifications 290
Web services: Resources for learning. 290

Chapter 8. Enabling Web services to
use the Web Services Invocation
Framework 293
Goals of WSIF 293

WSIF - Web services are not just SOAP services 294
WSIF - tying client code to a particular protocol
implementation is restricting 294
WSIF - incorporating new bindings into client
code is hard 294
WSIF - multiple bindings can be used in flexible
ways 294
WSIF - a freer Web services environment
enables intermediaries 295

An overview of WSIF 295
WSIF architecture 295
Using WSIF with Web services that offer
multiple bindings 296
WSIF and WSDL 296

Contents v

WSIF usage scenarios. 297
Dynamic invocation 298

Using WSIF to invoke Web services 298
Using the WSIF providers 298
Developing a WSIF service 311
Using complex types 320
Using JNDI 321
Interacting with the WebSphere J2EE container 323
Running WSIF as a client 323

WSIF system management and administration . . 323
Maintaining the WSIF properties file 323
Enabling security for WSIF 324
WSIF troubleshooting tips 325

WSIF API 329
WSIF API reference: Creating a message for
sending to a port 330
WSIF API reference: Finding a port factory or
service. 331
WSIF API reference: Using ports 332

WSIF: Resources for learning 336

Chapter 9. Classloading 337
Classloaders 338
Classloader collection. 341

Classloader ID 342
Classloader Mode 342
Classloader settings 342

Migrating the classloader Module Visibility Mode
setting. 342
Classloading: Resources for learning. 343

Chapter 10. Using EJB query 345
EJB query language 345

Example: EJB queries 346
FROM clause 348
Inheritance in EJB query. 349
Path expressions 349
WHERE clause 350
Scalar functions 358
Aggregation functions 361
SELECT clause 362
ORDER BY clause 363
Subqueries 363
EJB query restrictions. 364
EJB Query: Reserved words 365
EJB query: BNF syntax 365
Comparison of EJB 2.0 specification and
WebSphere query language. 367

Chapter 11. Internationalizing
applications 369
Internationalization 369
Identifying localizable text 370
Creating message catalogs 371
Composing language-specific strings 371

Localization API support 372
LocalizableTextFormatter class. 373
Creating a formatter instance 375
Setting optional localization values 376
Composing complex strings 377

Generating localized text 379
Preparing the localizable-text package for
deployment 380

LocalizableTextEJBDeploy command 380
Internationalization: Resources for learning . . . 381

Chapter 12. Using the transaction
service 383
Transaction support in WebSphere Application
Server 383

Resource manager local transaction (RMLT) . . 384
Global transactions 385
Local transaction containment (LTC). 385
Local and global transaction considerations . . 389

Developing components to use transactions . . . 389
Setting transactional attributes in the
deployment descriptor 390
Using bean-managed transactions 391

Configuring transaction properties for an
application server 392

Transaction service settings 394
Managing active transactions 394
Managing transaction logging for optimum server
availability 395

Configuring transaction aspects of servers for
optimum availability 396
Moving a transaction log from one server to
another 397
Restarting an application server on a different
host 398

Transactional interoperation with non-WebSphere
application servers 399
Troubleshooting transactions 399
Transaction service exceptions 400

Standard exceptions 400
Heuristic exceptions 400

UserTransaction interface - methods available . . 401

Chapter 13. Using naming 403
Naming 404
New features for name space support 404
Name space logical view 405

Name space partitions 406
Initial context support 408

Initial contexts registered with the ORB as initial
references 408
Default initial contexts 409

Lookup names support in deployment descriptors
and thin clients 409

Relative names 410
Qualified names 410

JNDI support in WebSphere Application Server 412
Developing applications that use JNDI 412

Example: Getting the default initial context . . 415
Example: Getting an initial context by setting
the provider URL property 418
Example: Setting the provider URL property to
select a different root context as the initial
context 420
Example: Looking up an EJB home with JNDI 422

vi IBM WebSphere Application Server Network Deployment, Version 5: Applications

Example: Looking up a JavaMail session with
JNDI 424
JNDI interoperability considerations 424
JNDI caching 426
JNDI cache settings 427
Example: Controlling JNDI cache behavior from
a program 428
JNDI name syntax 429
INS name syntax 430
JNDI to CORBA name mapping considerations 430
Example: Setting the syntax used to parse name
strings. 430

Developing applications that use CosNaming
(CORBA Naming interface) 431

Example: Getting an initial context with
CosNaming 431
Example: Looking up an EJB home with
CosNaming 434

Configured name bindings 436
Configured binding types 437

Name space federation 438
Name space bindings. 440
Configuring and viewing name space bindings . . 440

String binding settings 440
CORBA object binding settings 441
Indirect lookup binding settings 442
EJB binding settings 442
Name space binding collection 443

Configuring name servers 443
Name server settings 444

Troubleshooting name space problems 444
dumpNameSpace tool 444
Example: Invoking the name space dump utility 446
Name space dump utility forjava: and
local:name space 447
Example: Invoking the name space dump utility
for java: andlocal: name spaces 449
Name space dump sample output 449

Naming and directories: Resources for learning . . 451

Chapter 14. Improving performance
through the dynamic cache service . . 453
Dynamic cache 453
Configuring globally the dynamic cache service 453

DynamicCache service settings 454
Configuring servlet caching 454
Configuring cache replication 455
Configuring the dynamic cache disk offload . . 457
Configuring Edge Side Include caching. . . . 457
Configuring external cache groups 458

Displaying cache information 462
Configuring cacheable objects with the
cachespec.xml file 462

Verifying the cacheable page 464
Cachespec.xml file. 464

Configuring command caching 469
Command class 470
CacheableCommandImpl class 470
Example: Caching a command object 471

Example: Caching Web services 472
Example: Configuring the dynamic cache 474

Chapter 15. Managing user profiles 477
User profile 477
UserProfileManager class 478
User profile development options 478

Extending the data represented in user profiles 478
Adding columns to the base user profile
implementation. 478
Extending the User Profile enterprise bean and
importing legacy databases 479
UPServletExample.java 479
UserProfileExtendedSample.java 481
UPServletExampleExtended.java 482
UserProfileExtended.java 484
UPServletExtended.java 485

userprofile.xml 487

Chapter 16. Assembling applications 489
Application assembly and J2EE applications . . . 490
Archive support in Version 5.0 491
Starting the Application Assembly Tool (AAT) . . 491
Migrating application modules from J2EE 1.2 to
J2EE 1.3 492

earconvert tool 493
Assembling new or modifying existing modules 493

Adding files to assembled modules 496
Resource environment reference assembly
settings 497
Resource Adapter Archive file assembly settings 498

Saving applications after assembly 501
Verifying archive files 502
Generating code for deployment 502

ejbdeploy tool 503
ejbdeploy syntax -- relationship to Application
Assembly Tool options 504

Chapter 17. Deploying and managing
applications 505
Enterprise applications 505
Installing a new application 505

Preparing for application install settings . . . 510
Example: Installing an EAR file using the
default bindings 514

Enterprise application collection 514
Name 515
Status 515
Enterprise application settings 515

Starting and stopping applications 518
Exporting applications 518
Exporting DDL files 518
Updating applications 519

Hot deployment and dynamic reloading . . . 520
Uninstalling applications 528
Deploying and managing applications: Resources
for learning 529

Contents vii

viii IBM WebSphere Application Server Network Deployment, Version 5: Applications

Trademarks and service marks

The following terms are trademarks of IBM Corporation in the United States, other
countries, or both:
v Everyplace
v iSeries
v IBM
v Redbooks
v ViaVoice
v WebSphere
v zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product and service names may be trademarks or service marks of
others.

© Copyright IBM Corp. 2002 ix

x IBM WebSphere Application Server Network Deployment, Version 5: Applications

Chapter 1. Welcome to Applications

The following items comprise the application programming model, including
numerous services available to support deployed applications.

Web modules

Use Web components such as servlets and JavaServer Pages files to develop
dynamic Web sites. Product extensions to the open source servlet and JSP APIs
enhance standard features, and provide additional functionality.

Web modules consist of the following application components, each performing a
different function:
v HTML and JSP pages provide the user interface and program logic
v Servlets coordinate work between other components of the application
v Bean Scripting Framework enables users to implement JavaScript code in JSP

applications

HTTP sessions are a key area of product support for Web modules. By managing
(HTTP sessions) for your Web applications, you can personalize a Web site for
individual customers. A session is a series of requests to a servlet, originating from
the same user at the same browser. Managing HTTP sessions allows servlets
running in a Web container to keep track of individual users. For example, a
servlet might use sessions to provide ″shopping carts″ to on-line shoppers.
Suppose the servlet is designed to record the items each shopper indicates he or
she will purchase from the Web site. It is important that the servlet be able to
associate incoming requests with particular shoppers. Otherwise, the servlet might
mistakenly add choices of Shopper 1 to the cart of Shopper 2.

EJB modules

IBM WebSphere Application Server provides broad support for enterprise beans,
including the Enterprise JavaBeans (EJB) 2.0 specification. The EJB 2.0 specification
introduces a container-managed persistence (CMP) 2.0 component model, which
provides a number of improvements to aid developer productivity and application
performance. In addition, this product continues to fully support enterprise beans
written to the CMP 1.1 programming model and deployed in previous versions of
this product; applications can use CMP 1.1 beans, CMP 2.0 beans, or a mixture of
both. CMP 1.1 beans can be directly carried forward in an EJB 1.1 ejb-jar module or
may be repackaged and combined with CMP 2.0 beans in an EJB 2.0 module.

For EJB 2.0 modules, a feature introduced in Version 5 of this product, called
access intent policies, eases the management of interactions between CMP beans
and their underlying datastores. Each policy sets such data access characteristics
such as access type (read or update) and transaction isolation that affect the
locking of resources, letting you choose the level of data integrity and performance
for your application.

Several excellent trade books that cover EJB 2.0 and the CMP 2.0 persistence model
are already available. A good way to locate some of these is to visit your favorite
online bookstore and search on the term Enterprise JavaBeans. For a more basic
orientation, see (″Enterprise beans: Resources for learning″).

© Copyright IBM Corp. 2002 1

Your application development might include asynchronous messaging, which the
product supports as a method of communication based on the Java Message
Service (JMS) programming interface.

The base JMS support enables IBM WebSphere Application Server applications to
exchange messages asynchronously with other JMS clients by using JMS
destinations (queues or topics). An application can explicitly poll for messages on a
destination.

The product also provides a message listener service that applications can use to
automatically retrieve messages from JMS destinations for processing by
message-driven beans, without the application having to explicitly poll JMS
destinations.

Refer to:
v ″Asynchronous messaging with WebSphere - an overview″ (not in this

document)
v ″Using JMS and messaging in applications″ (not in this document)
v (″Using message-driven beans in applications″)

Client modules

The product provides a CD-ROM and installation program for installing
application clients without installing the entire application server. This smaller
footprint is useful if you want to run client applications on multiple client
machines. For more information, see (″Installing application clients″).

Application clients follow several programming models with unique requirements
and suitability for different types of applications. Most of these models are only
available when you install the product. Models include:

ActiveX application client
Supported Windows platforms only; Client only

Applet client
Supported Windows platforms only; Client only

J2EE application client
All supported server platforms; All supported client platforms

Pluggable application client
Supported Windows platforms only, Sun JRE 1.3.1_03 or later (but not 1.4);
Thin application client programming model only (no J2EE programming
model); Client only

Thin application client
All supported client platforms

Web services

The Web services components included with this product version build upon the
Apache Simple Object Access Protocol (SOAP) 2.3-based capabilities delivered with
Version 4.0.x of the product.

New in this release is an open source implementation for a Web Services
Invocation Framework (WSIF).

2 IBM WebSphere Application Server Network Deployment, Version 5: Applications

An additional Web services component, ″IBM WebSphere Web Services for J2EE
Technology Preview″, is available for use with Version 5.0. It is a separate
download available at:

http://www7b.boulder.ibm.com/wsdd/downloads/techpreviews.html

and includes additional documentation. The Web services technology preview
supports emerging Java Web services standards like JAX-RPC and Web services for
J2EE. It is recommended that new development efforts use the Web Services
Technology Preview and follow these standards.

Additional features are available, such as UDDI Registry and Web Services
Gateway. See their description in ″Welcome to Servers″ (not in this document).

Application services

IBM WebSphere Application Server provides essential services to ease the building
of dynamic and flexible e-business applications. These services support and extend
the open standards of J2EE and Web services, with a focus on application reuse
and integration.
v Classloading

The WebSphere Application Server product provides several classloading modes,
policies, and features to enable you to deploy and run your applications
successfully. An application server provides an Application Classloader Policy
that enables you to control the isolation of applications in a server. If you want
applications to share classes, choose the SINGLE policy; otherwise choose the
MULTIPLE policy, which isolates the classloaders for each application.
Similarly, at the application level, you can choose a (WAR Classloader Policy)
that configures the isolation of Web modules within an application. If you
choose the policy APPLICATION, then each Web module in your application
can see the other Web module’s classes. A policy of MODULE creates a separate
classloader for each Web module resulting in isolation for each Web module’s
classes.
The classloader mode setting, which you can configure at the server, application,
or Web module level depending on your classloader policy, enables you to
control whether application classloaders override classes contained in base
run-time classloaders. By default, the WebSphere Application Server classloaders
have a classloader mode of PARENT_FIRST, which is the standard JDK mode
and does not allow the appplication classloader to override classes. You must
take care when using the PARENT_LAST classloader mode to make all
dependent classes available within the application or you might get
LinkageErrors or other classloader exceptions. For example, if you provide a
newer version of the Xerces.jar file and your application is using XSLT, you must
provide a compatible version of Xalan.jar within the application.
Finally, Version 5.0 of WebSphere Application Server introduces the concept of
classloader ″Managing shared libraries″ (not in this document). A shared library
is a CLASSPATH and a symbolic name for the classpath. You define shared
libraries at the cell, node, or server level and then associate the shared libraries
either with an application server (making the classes available to all applications
in the server) or with individual applications (making the classes available only
to the referencing application). This mechanism provides a convenient way to
make libraries of classes available to your applications outside of a standard
J2EE enterprise application (EAR) file for easier version management and space
efficiency.

v Internationalization

Chapter 1. Welcome to Applications 3

If your application component must support multiple locales, the
localizable-text API can help both developers and administrators through
central management of displayed strings. The developer separates strings into a
message catalog, which is then translated into the other languages required. All
message catalogs are then deployed with the application component. From then
on, the administrator can add or update message catalogs centrally as required.

v Transactions

IBM WebSphere Application Server applications can use transactions to
coordinate multiple updates to resources as atomic units (as indivisible units of
work) such that all or none of the updates are made permanent. The way that
applications use transactions depends on the type of application component, as
follows:
– A session bean can either use container-managed transactions (where the bean

delegates management of transactions to the container) or bean-managed
transactions (where the bean manages transactions itself)

– Entity beans use container-managed transactions
– Web components (servlets) use bean-managed transactions

The product is a transaction manager that supports the coordination of resource
managers through their XAResource interface and participates in distributed
global transactions with other OTS 1.2 compliant transaction managers (for
example J2EE 1.3 application servers). Applications can also be configured to
interact with databases, JMS queues, and JCA connectors through their local
transaction support when distributed transaction coordination is not required.

Resource managers that offer transaction support can be categorized into those
that support 2-phase coordination (by offering an XAResource interface) and
those that support only 1-phase coordination (for example through a
LocalTransaction interface). The IBM WebSphere Application Server transaction
support provides coordination, within a transaction, for any number of 2-phase
capable resource managers. It also enables a single 1-phase capable resource
manager to be used within a transaction in the absence of any other resource
managers, although a WebSphere transaction is not necessary in this case. With
the Last Participant Support of Enterprise Extensions, you can coordinate the use
of a single 1-phase commit (1PC) capable resource with any number of 2-phase
commit (2PC) capable resources in the same global transaction. At transaction
commit, the 2-phase commit resources are prepared first using the 2-phase
commit protocol, and if this is successful the 1-phase commit-resource is then
called to commit(one_phase). The 2-phase commit resources are then committed
or rolled back depending on the response of the 1-phase commit resource.

The ActivitySession service of Enterprise Extensions provides an alternative
unit-of-work (UOW) scope to that provided by global transaction contexts. It is a
distributed context that can be used to coordinate multiple 1-phase resource
managers. The product EJB container and deployment tooling support
ActivitySessions as an extension to the J2EE programming model. Enterprise
beans can be deployed with lifecycles that are influenced by ActivitySession
context, as an alternative to transaction context. An application can then interact
with a resource manager through its LocalTransaction interface for the period of
a client-scoped ActivitySession rather than just the duration of an EJB method.

v Naming

Naming clients use (Naming Services) primarily to access objects, such as EJB
homes, associated with applications installed on IBM WebSphere Application
Server. Objects are made available to clients by being bound into a name space.

4 IBM WebSphere Application Server Network Deployment, Version 5: Applications

A name space is under the control of a name server. In this product, there are
potentially many name servers, and the name spaces controlled by the various
name servers are federated together to form the view of a single name space.
Each name server presents the same logical view of the federated name spaces.
Name servers provided by this product are a CORBA CosNaming
implementation. IBM WebSphere Application Server provides a CosNaming
JNDI plug-in which enables clients to access the name servers through the JNDI
interface. Clients to EJB applications typically use JNDI to perform Naming
operations. Clients may access the name servers directly through the CORBA
programming model. The CosNaming interface is part of the CORBA
programming model. CORBA clients which need to access EJB homes or some
other objects bound to the name space would typically use the CORBA
CosNaming interface to perform Naming operations.

v Dynamic cache

Dynamic Cache improves application performance by caching outputs and
contents of outputs of Servlets, Java Server Pages files, Web Services and
Commands. On subsequent client requests to the same applications, Dynamic
cache intercepts these calls and responds by serving the output or the contents
of output from the cache.
Dynamic Cache in this product version includes:

Servlet/JSP caching
This caches output of dynamic servlets and JSP files by working with
Java virtual machine of the application server by intercepting calls to
service methods and serving Web pages from the cache. This improves
server response time, throughput and scalability.

Command caching
Commands that are written to the Command Architecture encapsulate
business logic tasks and provide a standard way to invoke the business
logic request. Command objects need to implement CacheableCommand
interface instead of TargetableCommand interface to cache. Like in
servlets and JSP caching, requests to execute business logic in the
command is intercepted by the cache. If a command with the same
request attributes are available in cache, output properties are copied
from the cached instance to the requested instance and returned without
executing the business logic again.

Web Services caching
Web service responses can be cached just like servlet and JSP results.
These requests are intercepted and cache ID computed based on how the
cache ID rules are specified in the cache policy. Hash of the whole
SOAPEnvelope can be used as a cache ID or it can be parsed and
service, operation and parameters to these operations used as cache ID.
If a cache entry is not found for the computed cache id, the request is
forwarded to the SOAP engine and the result is cached.

Edge Side Include caching
This provides the ability to cache, assemble and deliver dynamic web
pages at the edge of the enterprise network. Edge Side Includes (ESI) is
a simple markup language which enables dynamic web pages (which by
themselves are not so cache efficient) to be broken down into cacheable
fragments. These fragments are then cached on the edge of the network
and assembled into a single page upon user requests.

Distributed caching
Cache contents can be shared and replicated among servers by Dynamic

Chapter 1. Welcome to Applications 5

Caching using an underlying JMS based message broker system, DRS
(Data Replication Service). Sharing characteristics of individual cache
entry is configured using the cache policy specification.

v User profiles

Managing (user profiles) allows a company to maintain database tables
containing fields for demographic data of individual customers or other users on
the company system. For example, when a user repeatedly logs onto a Web site
that supports user profiles, the Web site can display headlines and advertising
tailored to the shopping preferences of that user. The site can address the user
by his or her logon name. User profile API is deprecated in the current release.

Assembly tools

The Application Assembly Tool and a command line deployment tool are provided
for packaging your application code components into the needed modules for
deployment onto the server.

See (″Assembling applications″).

EAR files are comprised of the following archives:
v Enterprise bean (JAR) files (known as (″EJB modules″))
v Web application (WAR) files (known as (″Web modules″))
v Application client (JAR) files (known as application client modules)
v Resource adapter (RAR) files (known as resource adapter modules)
v Optionally, additional JAR files containing dependent classes or other

components required by the application

The standard file extension of an Enterprise application file is .ear.

For a discussion of archives and Web components supported by the Application
Assembly Tool in Version 5, see (″Archive support in Version 5.0″).

See also, ″Assembling or packaging″ (not in this document).

Deployment

Tools, such as the WebSphere Administrative Console, are provided for installing
your modules onto the application server, then managing the installed modules in
their respective containers.

6 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Chapter 2. Using Web applications

A developer creates the files comprising a Web application, and then assembles the
Web application components into a Web module. Next, the deployer (typically the
developer in a unit-testing environment or the administrator in a production
environment) installs the Web application on the server.

Therefore the development process generally consists of the following steps:

Steps for this task
1. (Optional) Migrate existing Web applications to run in the new version of

WebSphere.
2. Design the Web application and develop its code artifacts: Servlets, JavaServer

Pages (JSP) files, and static files, as for example, images and Hyper Text
Markup Language (HTML) files.
See the ″Resources for learning″ article for links to design documentation.

3. (Optional) Implement JavaScript within JSP tags using the Bean Scripting
Framework (BSF).

4. Develop the Web application, using WebSphere Application Server extensions
to enhance its functionality.

5. Assemble the Web application into a Web module.
Web module assembly properties might include the ability to:
v Configure servlet page lists
v Configure servlet filters
v Serve servlets by class name
v Enable file serving

6. (Deploy the Web module or application module) that contains the Web
application.
Following deployment, you might find it handy to use the tool that enables
batch compiling of the JSP files for quicker initial response times.

7. (Optional) Troubleshoot your Web application.
8. (Optional) Modify the default Web container configuration in the application

server in which you deployed the Web module or application module
containing the Web application.

9. (Optional) (Manage the deployed Web application.).

Web applications
A Web application is comprised of one or more related servlets, JavaServer Pages
technology (JSP files), and Hyper Text Markup Language (HTML) files that you
can manage as a unit.

The files in a Web application are related in that they work together to perform a
business logic function.

For example, one of the WebSphere Application Server samples is a Simple
Greeting Web application. This application, comprised of a servlet and Web pages,
greets new users when the application is accessed.

© Copyright IBM Corp. 2002 7

The Web application is a concept supported by the Java Servlet Specification. Web
applications are typically packaged as .war files.

web.xml file
The web.xml file provides configuration and deployment information for the Web
components that comprise a Web application. Examples of Web components are
servlet parameters, servlet and JavaServer Pages (JSP) definitions, and Uniform
Resource Locators (URL) mappings.

The servlet 2.3 specification dictates the format of the web.xml file, which makes
this file portable among Java Two Enterprise Edition (J2EE) compliant products.

Location

The web.xml file must reside in the WEB-INF directory under the context of the
hierarchy of directories that exist for a Web application. For example, if the
application is client.war, then the web.xml file is placed in the install_root/client
war/WEB-INF directory.

Usage notes

v Is this file read-only?
No

v Is this file updated by a product component?
This file is updated by the Application Assembly Tool (AAT).

v If so, what triggers its update?
The AAT updates the web.xml file when you assemble Web components into a
Web module, or when you modify the properties of the Web components or the
Web module.

v How and when are the contents of this file used?
WebSphere Application Server functions use infomation in this file during the
configuration and deployment phases of Web application development.

Sample file entry
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.2//EN" "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app id="WebApp_1">
<display-name>Persistence Manager Web Client</display-name>
<description>Peristence Manager Web Client</description>
<servlet id="Servlet_1">

<servlet-name>CustomerLocalServlet</servlet-name>
<description>Local Customer Servlet</description>
<servlet-class>CustomerLocalServlet</servlet-class>

</servlet>
<servlet id="Servlet_2">

<servlet-name>CustomerServlet</servlet-name>
<description>Remote Customer Servlet</description>
<servlet-class>CustomerServlet</servlet-class>

</servlet>
<servlet id="Servlet_3">

<servlet-name>CreditCardServlet</servlet-name>
<description>Credit Card Servlet - PM Verification</description>
<servlet-class>CreditCardServlet</servlet-class>

</servlet>
<servlet-mapping id="ServletMapping_1">
<servlet-name>CustomerLocalServlet</servlet-name>

8 IBM WebSphere Application Server Network Deployment, Version 5: Applications

<url-pattern>/CustomerLocal</url-pattern>
</servlet-mapping>
<servlet-mapping id="ServletMapping_2">

<servlet-name>CustomerServlet</servlet-name>
<url-pattern>/Customer</url-pattern>

</servlet-mapping>
<servlet-mapping id="ServletMapping_3">

<servlet-name>CreditCardServlet</servlet-name>
<url-pattern>/CreditCard</url-pattern>

</servlet-mapping>
<welcome-file-list id="WelcomeFileList_1">

<welcome-file>index.html</welcome-file>
</welcome-file-list>
<security-role id="SecurityRole_1">

<description>Everyone role</description>
<role-name>Everyone Role</role-name>

</security-role>
<security-role id="SecurityRole_2">

<description>AllAuthenticated role</description>
<role-name>All Role</role-name>

</security-role>
<security-role id="SecurityRole_3">

<description>Deny all access role</description>
<role-name>DenyAllRole</role-name>

</security-role>
</web-app>

Migrating Web application components
Supported open specification levels in WebSphere Application Server Version 5 are
documented in article, Migrating APIs and specifications.

Migration of Web applications deployed in WebSphere Application Server Version
4.x is not necessary; version 2.2 of the servlet specification and version 1.1 of the
JavaServerPages (JSP) specification are still supported. However, where there are
behavioral differences between the Java Two Enterprise Edition (J2EE) 1.2 and J2EE
1.3 specifications, bear in mind that J2EE 1.3 specifications are implemented in
WebSphere Application Server Version 5 and will override any J2EE 1.2 behaviors.

Servlet migration might be a concern if your application:
v implements a WebSphere internal servlet to bypass a WebSphere Application

Server Version 4.x single application path restriction.
v extends a PageListServlet that relies on configuration information in the servlet

configuration XML file.
v uses a servlet to generate Hyper Text Markup Language (HTML) output.
v calls the response.sendRedirect() method for a servlet using the

encodeRedirectURL function or executing within a non-context root.

JSP migration might be a concern if your application references JSP page
implementation classes in unnamed packages, or if you install WebSphere
Application Server Version 4.x EAR files (deployed in Version 4.x with the JSP
Precompile option), in Version 5.

Follow these steps if migration issues apply to your Web application:

Steps for this task
1. Use WebSphere Application Server Version 5 package names for any

WebSphere Application Server Version 4.x internal servlets, which are
implemented in your application.

Chapter 2. Using Web applications 9

In WebSphere Application Server Version 4.x, Web modules with a context root
setting of / are not supported. Accessing Web modules with this root context
results in HTTP 404 - File not Found errrors.
To bypass the errors, and to enable the serving of static files from the root
context, WebSphere Application Server Version 4.x users are advised to add the
servlet class, com.ibm.servlet.engine.webapp.SimpleFileServlet, to their Web
module.
The Version 4.x single path limitation does not exist in Version 5. However,
users who choose to use the
com.ibm.servlet.engine.webapp.SimpleFileServlet in Version 5 must do one
of the following:
v Rename com.ibm.servlet.engine.webapp.SimpleFileServlet to

com.ibm.ws.webcontainer.servlet.SimpleFileServlet.
v Open the EAR file in the Application Assembly Tool (AAT) and enable the

SimpleFileServlet static file setting.

The following list identifies the other internal servlets affected by the Version 5
package name change:
v DefaultErrorReporter
v AutoInvoker

Use the Version 5 package name, com.ibm.ws.webcontainer.servlet.><servlet
class name> for these servlets.

2. Use the WASPostUpgrade tool to migrate servlets that extend PageListServlet
and rely on configuration information in the associated XML servlet
configuration file.
In Version 4.x, the XML servlet configuration file provides configuration data
for page lists and augments servlet configuration information. This file is
named as either <servlet class name>.servlet or <servlet class
name>.servlet, and is stored in the same directory as the servlet class file.
The XML servlet configuration file is not supported in WebSphere Application
Server Version 5.

3. Set a content type if your servlet generates Hyper Text Markup Language
(HTML) output.
The default behavior of the Web container changed in WebSphere Application
Server Version 5. If the servlet developer does not specify a content type in the
servlet then the container is forbidden to set one automatically. Without an
explicit content type setting, the content type is set to null. The Netscape
browser displays HTML source as plain text with a null content type setting.
To resolve this problem, do one of the following:
v Explicitly set a content type in your servlet.
v Open the WAR file in the Application Assembly Tool (AAT) and enable the

autoResponseEncoding static file setting.
4. Set the Java environment variable,

com.ibm.websphere.sendredirect.compatibility, to true if you want your
URLs interpreted relative to the application root.
The default value of the Java environment variable
com.ibm.websphere.sendredirect.compatibility changed in WebSphere
Application Server Version 5. In Version 4, the default setting of this variable is
true. In Version 5, the setting is false.
When this variable is set to false, if a URL has a leading slash, the URL is
interpreted relative to the Web module/application root. However, if the URL

10 IBM WebSphere Application Server Network Deployment, Version 5: Applications

does not have a leading slash, it is interpreted relative to the Web container
root (also known as the Web server document root). Therefore, if an application
has a WAR file that has a context root of myPledge_app and a servlet that has a
servlet mapping of /Intranet/, a JSP file in the WAR file cannot access the
servlet when its encodeRedirectURL is set to /Intranet/myPledge. The JSP file
can access the servlet if the encodeRedirectURL is set to
myPledge_app/Intranet/myPlege, or if the
com.ibm.websphere.sendredirect.compatibility variable is set to true.
See the Setting the sendredirect variable article for more information.

5. Use the WASPostUpgrade tool to migrate WebSphere Version 4.x enterprise
applications to Version 5.
Note: The WebSphere Application Server Version 4.x JSP page implementation
class files are not compatible with the WebSphere Application Server Version 5
JSP container.
The WASPostUpgrade tool automatically precompiles JSP files, which ensures the
JSP page implementation class files are compatible with Version 5.
If you install Version 4.x EAR files, deployed with the JSP Precompile option,
in Version 5, and you choose not to follow the migration path, do one of the
following:
v Select the Pre-compile JSP option in the administrative console Install New

Application window.
See article (Installing a new application) for more information.

v Specify the -preCompileJSPs option when using the Wsadmin tool.
6. Import your classes if your application uses unnamed packages.

Section 8.2 of the JSP 1.2 specification states:
The JSP container creates a JSP page implementation class
for each JSP page. The name of the JSP page implementation
class is implementation dependent.
The JSP page implementation object belongs to an implementation-dependent
named package. The package used may vary between one JSP and another, so
minimal assumptions should be made. The unnamed package should not be used
without an explicit import of the class.

For example, if myBeanClass is in the unnamed package, and you reference it in
a jsp:useBean tag, then you must explicitly import myBeanClass with the page
directive import attribute, as shown in the following example:

<%@page import="myBeanClass" %>
. . .

<jsp:useBean id="myBean" class="myBeanClass" scope="session"/>

In WebSphere Application Server Version 5, the JSP engine creates JSP page
implementation classes in the org.apache.jsp package. If a class in the
unnamed package is not explicitly imported, then the javac compiler assumes
the class is in package org.apache.jsp, and the compilation fails.

Note: Avoid using the unnamed package altogether because of a change made
in JDK 1.4 that will affect the JSP 2.0 specification. WebSphere Application
Server Version 5 ships with JDK 1.3.1, so this is not an issue with the Version 5
JSP engine, but it will become an issue in future releases.

The Incompatibilities section of the version 1.4.Java 2 Platform, Standard Edition
(J2SE) documentation states:
The compiler now rejects import statements that import a type
from the unnamed namespace.
Previous versions of the compiler would accept such import declarations,

Chapter 2. Using Web applications 11

even though they were arguably not allowed by the language
(because the type name appearing in the import clause is not in scope).
The specification is being clarified to state clearly that you
cannot have a simple name in an import statement, nor can you
import from the unnamed namespace.

To summarize, the syntax:

import SimpleName;

is no longer legal. Nor is the syntax:

import ClassInUnnamedNamespace.Nested;

which would import a nested class from the unnamed namespace.
To fix such problems in your code, move all of the
classes from the unnamed namespace into a named namespace.

What to do next

See ″Resources for learning″ for links to the J2SE, JSP, and Servlet specification
documentation.

Default Application
The IBM WebSphere Application Server provides a default configuration that
allows administrators to easily verify that the Application Server is running. When
the product is installed, it includes an application server called server1 and an
enterprise application called Default Application.

Default Application contains a Web Module called DefaultWebApplication and an
enterprise bean JAR file called Increment. The Default Application provides a number
of servlets, described below. These servlets are available in the product.

For additional code examples, visit the Samples Gallery. Learn how to locate and
install the Samples Gallery by viewing the Samples Gallery reference page.

The URL for accessing Samples is: http://localhost:9080/WSamples/

Snoop
Use the Snoop servlet to retrieve information about a servlet request. This servlet
returns the following information:
v Servlet initialization parameters
v Servlet context initialization parameters
v URL invocation request parameters
v Perferred client locale
v Context path
v User principal
v Request headers and their values
v Request parameter names and their values
v HTTPS protocol information
v Servlet request attributes and their values
v HTTP session information
v Session attributes and their values

12 IBM WebSphere Application Server Network Deployment, Version 5: Applications

The Snoop servlet includes security configuration so that when WebSphere Security
is enabled, clients must supply a user ID and password to execute the servlet.

The URL for the Snoop servlet is: http://localhost:9080/snoop/.

HelloHTML
Use the HelloHTML pervasive servlet to exercise the PageList support provided by
the WebSphere Web container. This servlet extends the PageListServlet, which
provides APIs that allow servlets to call other Web resources by name or, when
using the Client Type detection support, by type.

You can invoke the Hello servlet from an HTML browser, speech client, or most
Wireless Application Protocol (WAP) enabled browsers using the URL:
http://localhost:9080/HelloHTML.jsp/.

HitCount
Use the HitCount Demonstration application to demonstrate incrementing a
counter using a variety of methods, including:
v A servlet instance variable
v An HTTP session
v An enterprise bean

You can instruct the servlet to execute any of these methods within a transaction
that you can ommit or roll back. If the transaction is committed, the counter is
incremented. If the transaction is rolled back, the counter is not incremented.

The enterprise bean method uses a Container- Managed Persistence enterprise
bean that persists the counter value to a Cloudscape database. This enterprise bean
is configured to use the Default Datasource, which is set to the DefaultDB
database.

When using the enterprise bean method, you can instruct the servlet to look up the
enterprise bean, either in the WebSphere global namespace, or in the namespace
local to the application.

The URL for the HitCount application is: http://localhost:9080/HitCount.jsp/.

Servlets
Servlets are Java programs that use the Java Servlet Application Programming
Interface (API). You must package servlets in a Web ARchive (WAR) file or Web
module for deployment to the application server.

Servlets run on a Java-enabled Web server and extend the capabilities of a Web
server, similar to the way applets run on a browser and extend the capabilities of a
browser.

Servlets can support dynamic Web page content, provide database access, serve
multiple clients at one time, and filter data.

For the purposes of IBM WebSphere Application Server, discussions of servlets
focus on Hyper Text Transfer Protocol (HTTP) servlets, which serve Web-based
clients.

Chapter 2. Using Web applications 13

Developing servlets with WebSphere Application Server extensions
Several WebSphere Application Server extensions are provided for enhancing your
servlets. This task provides a summary of the extensions that you can utilize.

Steps for this task
1. Review the supported specifications.

Create Java components, referring to the Servlet specifications from Sun
Microsystems.
See Resources for learning for links to coding specifications and examples.
The application server includes its own packages that extend and add to the
Java Servlet Application Programming Interface (API). These extensions and
additions make it easier to manage session states, create personalized Web
pages, generate better servlet error reports, and access databases. Locate the
Javadoc for the application server APIs in the product
install_root\web\apidocs directory.
All the public WebSphere Application Server APIs are located in the
com.ibm.websphere... packages.

2. Use your favorite integrated development environment (IDE), or a text editor,
to develop or migrate code artifacts that meet the specifications.

3. Test the code artifacts.

What to do next

Assemble your code artifacts into a Web module as a prerequisite to deploying the
code to the application server.

Application lifecycle listeners and events
Application lifecycle listeners and events, now part of the Servlet API, enable you
to notify interested listeners when servlet contexts and sessions change. For
example, you can notify users when attributes change and if sessions or servlet
contexts are created or destroyed.

The lifecycle listeners give the application developer greater control over
interactions with ServletContext and HttpSession objects. Servlet context listeners
manage resources at an application level. Session listeners manage resources
associated with a series of requests from a single client. Listeners are available for
lifecycle events and for attribute modification events. The listener developer creates
a class that implements the javax listener interface, corresponding to the desired
listener functionality.

At application startup time, the container uses introspection to create an instance
of your listener class and registers it with the appropriate event generator.

When a servlet context is created, the contextInitialized method of your listener
class is invoked, which creates the database connection for the servlets in your
application to use, if this context is for your application.

When the servlet context is destroyed, your contextDestroyed method is invoked,
which releases the database connection, if this context is for your application.

14 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Listener classes for servlet context and session changes
The following methods are defined as part of the
javax.servlet.ServletContextListener interface:
v void contextInitialized(ServletContextEvent) - Notification that the Web

application is ready to process requests.
Place code in this method to see if the created context is for your Web
application and if it is, allocate a database connection and store the connection in
the servlet context.

v void contextDestroyed(ServletContextEvent) -Notification that the servlet
context is about to shut down.
Place code in this method to see if the created context is for your Web
application and if it is, close the database connection stored in the servlet
context.

Two new listener interfaces are defined as part of the javax.servlet package:
v ServletContextListener
v ServletContextAttributeListener

One new filter interface is defined as part of the javax.servlet package:
v FilterChain interface - methods: doFilter()

Two new event classes are defined as part of the javax.servlet package:
v ServletContextEvent
v ServletContextAttributeEvent

Three new listener interfaces are defined as part of the javax.servlet.http package:
v HttpSessionListener
v HttpSessionAttributeListener
v HttpSessionActivationListener

One new event class is defined as part of the javax.servlet.http package:
v HttpSessionEvent

Example: com.ibm.websphere.DBConnectionListener.java
The following example shows how to create a servlet context listener:
package com.ibm.websphere;

import java.io.*;
import javax.servlet.*;

public class DBConnectionListener implements ServletContextListener
{

// implement the required context init method
void contextInitialized(ServletContextEvent sce)
{
}

// implement the required context init method
void contextDestroyed(ServletContextEvent sce)
{
}

}

Chapter 2. Using Web applications 15

Servlet filtering
Servlet filtering is an integral part of the Servlet 2.3 API. Servlet filtering provides
a new type of object called a filter that can transform a request or modify a
response.

You can chain filters together so that a group of filters can act on the input and
output of a specified resource or group of resources.

Filters typically include logging filters, image conversion filters, encryption filters,
and Multipurpose Internet Mail Extensions (MIME) type filters (functionally
equivalent to the servlet chaining). Although filters are not servlets, their lifecycle
is very similar.

Filters are handled in the following manner:
v The Web container determines whether it needs to construct a FilterChain

containing the LoggingFilter for the requested resource.
The FilterChain begins with the invocation of the LoggingFilter and ends with
the invocation of the requested resource.

v If other filters need to go in the chain, the Web container places them after the
LoggingFilter and before the requested resource.

v The Web container then instantiates and initializes the LoggingFilter (if it was
not done previously) and invokes its doFilter(FilterConfig) method to start
the chain.

v The LoggingFilter preprocesses the request and response objects and then
invokes the filter chain doFilter(ServletRequest, ServletResponse) method.
This method passes the processing to the next resource in the chain (in this case,
the requested resource).

v Upon return from the filter chain doFilter(ServletRequest, ServletResponse)
method, the LoggingFilter performs post-processing on the request and
response object before sending the response back to the client.

Filter, FilterChain, FilterConfig classes for servlet filtering
The following interfaces are defined as part of the javax.servlet package:
v Filter interface - methods: doFilter(), getFilterConfig(), setFilterConfig()
v FilterChain interface - methods: doFilter()
v FilterConfig interface - methods: getFilterName(), getInitParameter(),

getInitParameterNames(), getServletContext()

The following classes are defined as part of the javax.servlet.http package:
v HttpServletRequestWrapper - methods: See the Servlet 2.3 Specification
v HttpServletResponseWrapper - methods: See the Servlet 2.3 Specification

Example: com.ibm.websphere.LoggingFilter.java
The following example shows how to implement a filter:
package com.ibm.websphere;

import java.io.*;
import javax.servlet.*;

public class LoggingFilter implements Filter
{

File _loggingFile = null;

16 IBM WebSphere Application Server Network Deployment, Version 5: Applications

// implement the required init method
public void init(FilterConfig fc)
{

// create the logging file
xxx;

}

// implement the required doFilter method...this is where
// most of the work is done

public void doFilter(ServletRequest request, ServletResponse response,
FilterChain chain)

{
try
{

// add request info to the log file
synchronized(_loggingFile)
{

xxx;
}

// pass the request on to the next resource in the chain
chain.doFilter(request, response);

}
catch (Throwable t)
{

// handle problem...
}

}

// implement the required destroy method
public void destroy()
{

// make sure logging file is closed
_loggingFile.close();

}
}

Configuring page list servlet client configurations
You can define PageListServlet configuration information in the IBM Web
Extensions file. The IBM Web Extensions file is created and stored in the Web
Applications archive (WAR) file by the IBM WebSphere Application Assembly Tool
(AAT)

To configure and implement page lists:

Steps for this task
1. Use the PageList Extensions tab in the Application Assembly Tool (AAT) to

configure page list information.
2. Add the callPage() method to your servlet to invoke a JavaServer Page (JSP)

file in response to a client request.
The PageListServlet has a callPage() method that invokes a JSP file in
response to the HTTP request for a page in a page list. The callPage() method
can be invoked in one of the following ways:
v callPage(String pageName, HttpServletRequest request,

HttpServletResponse response)

where the method arguments are:
– pageName - a page name defined in the PageListServlet configuration
– request - the HttpServletRequest object
– response - the HttpServletResponse object

Chapter 2. Using Web applications 17

v callPage(String mlName, String pageName, HttpServletRequest request,
HttpServletResponse response)

where the method arguments are:
– mlName - a markup language type
– pageName - a page name defined in the PageListServlet configuration
– request - the HttpServletRequest object
– response - the HttpServletResponse object

3. Use the PageList Servlet client type detection support to determine the markup
language type a calling client requires for the response.

Page lists
Page lists allow you to avoid hardcoding URLs in servlets and JSP files. A page list
specifies the location where a request is to be forwarded, but automatically tailors
that location depending on the MIME type of the servlet. These properties allow
you to specify a markup language and an associated MIME type. For the given
MIME type, you also specify a set of pages to invoke.

WebSphere Application Server supplies the PageListServlet, which you can use to
call a JavaServer Pages (JSP) file by name based on the configuration data in the
client_types.xml file. This file maps a JSP file to a Uniform Resource Identifier
(URI). When the URI is invoked, it specifies another JSP file in a Web module. This
support allows you to access multiple Uniform Resource Locators (URLs) without
hard-coding them in your servlets.

You can also logically group page lists according to the markup language type, as
for example, Hypertext Markup Language (HTML) or Wireless Markup Language
(WML). This allows applications, using servlets that extend the PageListServlet, to
call JSP files that return the proper markup-language type for the client request.
For example, if a request originates from a PDA device that requires WML data
and is sent to a servlet that extends the PageListServlet, the servlet can call a JSP
file that returns a WML response.

Client type detection support
In addition to providing the page list mapping capability, the PageListServlet also
provides Client Type Detection support. A servlet determines the markup language
type that a calling client needs in the response, using the configuration information
in the client_types.xml file.

Client type detection support allows a servlet, extending the PageListServlet, to call
an appropriate JavaServer Pages (JSP) file. The servlet invokes the callPage()
method, which calls a JSP file based on the markup-language type of the request.

client_types.xml
The client_types.xml file provides client type detection support for servlets
extending PageListServlet. Using the configuration data in the client_types.xml
file, servlets can determine the language type that calling clients require for the
response.

The client type detection support allows servlets to call appropriate JavaServer
Pages (JSP) files with the callPage() method. Servlets select JSP files based on the
markup-language type of the request.

Servlets must use the following version of the callPage() method to determine the
markup language type required by the client:

callPage(String mlName, String pageName, HttpServletRequest request, HttpServletResponse response)

18 IBM WebSphere Application Server Network Deployment, Version 5: Applications

where the arguments are:
v mlName - a markup language type
v pageName - a page name defined in the PageListServlet configuration
v request - the HttpServletRequest object
v response - the HttpServletResponse object

Review the Extending PageListServlet code example to see how the callPage()
method is invoked by a servlet.

In the example, the client type detection method,
getMLTypeFromRequest(HttpServletRequestrequest), provided by the
PageListServlet, inspects the HttpServletRequest object request headers, and
searches for a match in the client_types.xml file.

The client type detection method does the following:
v Uses the input HttpServletRequest and the client_types.xml file, to check for a

matching HTTP request name and value.
v Returns the markup-language value configured for the <client-type> element, if

a match is found.
If multiple matches are found, this method returns the markup-language for the
first <client-type> element for which a match is found.

v If no match is found, returns the value of the markup-language for the default
page defined in the PageListServlet configuration.

Location

The client_types.xml file is located in the <install_root>/properties directory.

Usage notes

v Is this file read-only?
No

v Is this file updated by a product component?
No

v If so, what triggers its update?
This file is created and updated manually by users.

v How and when are the contents of this file used?
Servlets, extending PageListServlet, use this file to determine the language type
that calling clients require for the response.

Sample file entry
<?xml version="1.0" >
<!DOCTYPE clients [
<!ELEMENT client-type (description, markup-language,request-header+)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT markup-language (#PCDATA)>
<!ELEMENT request-header (name, value)>
<!ELEMENT clients (client-type+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT value (#PCDATA)>]>
<clients>

<client-type>
<description>IBM Speech Client</description>
<markup-language>VXML</markup-language>
<request-header>

Chapter 2. Using Web applications 19

<name>user-agent</name>
<value>IBM VoiceXML pre-release version 000303</value>

</request-header>
<request-header>

<name>accept</name>
<value>text/vxml</value>

</request-header>
</client-type>
<client-type>

<description>WML Browser</description>
<markup-language>WML</markup-language>

<request-header>
<name>accept</name>
<value>text/x-wap.wml</value>

</request-header>
<request-header>

<name>accept</name>
<value>text/vnd.wap.xml</value>

</request-header>
</client-type>

</clients>

Example: Extending PageListServlet
The following example shows how a servlet extends the PageListServlet class and
determines the markup-language type required by the client. The servlet then uses
the callPage() method to call an appropriate JavaServer Pages (JSP) file. In this
example, the JSP file that provides the the correct markup-language for the
response is Hello.page.
public class HelloPervasiveServlet extends PageListServlet implements Serializable
{

/*
* doGet -- Process incoming HTTP GET requests
*/

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException
{

// This is the name of the page to be called:
String pageName = "Hello.page";

// First check if the servlet was invoked with a
// queryString that contains
// a markup-language value.
// For example, if this is how the servlet is invoked:
// http://localhost/servlets/HeloPervasive?mlname=VXML
// then use the following method:
String mlname= getMLNameFromRequest(request);

// If no markup language type is provided in the
//queryString, then try to determine
// the client type from the request, and use the markup-language
// name configured in the client_types.xml file.

if (mlName == null)
{

mlName = getMLTypeFromRequest(request);
}
try
{

// Serve the request page.
callPage(mlName, pageName, request, response);
}
catch (Exception e)
{

handleError(mlName, request, response, e);
}

}
}

20 IBM WebSphere Application Server Network Deployment, Version 5: Applications

autoRequestEncoding and autoResponseEncoding
Two new WebSphere Application Server extensions are available in Version 5,
autoRequestEncoding and autoResponseEncoding.

In WebSphere Application Server Version 5, the Web container no longer
automatically sets request and response encodings, and response content types.
Programmers are expected to set these values using available methods in the
Servlet 2.3 Specification. If programmers choose not to use the character encoding
methods, they can specify the autoRequestEncoding and autoResponseEncoding
extensions, which enable the application server to set the encoding values and
content type.

The values of the autoRequestEncoding and autoResponseEncoding extensions are
either true or false. The default value for both extensions is false. If the value is
false for both autoRequestEncoding and autoResponseEncoding, then the request
and response character encoding is set to the Servlet 2.3 Specification default,
which is ISO—8859-1. Also, If the value is set to false for a response, the Web
container cannot set a response content type.

Use the Application Assembly Tool (AAT) to change the default values for the
autoRequestEncoding and autoResponseEncoding extensions.

Review the autoRequestEncoding and autoResponseEncoding encoding examples for
a description of Web container behavior when these values are set to true.

autoRequestEncoding and autoResponseEncoding encoding
examples

The default value of the autoRequestEncoding and autoResponseEncoding
extensions is false, which means that both the request and response character
encoding is set to the Servlet 2.3 Specification default of ISO-8859-1. Different
character encodings are possible if the client defines character encoding in the
request header, or if the code includes the setCharacterEncoding(String encoding)
method. Also, If the value is set to false for a response, the Web container cannot
set a response content type.

If the autoRequestEncoding value is set to true, and the client did not specify
character encoding in the request header, and the code does not include the
setCharacterEncoding(String encoding) method, the Web container tries to
determine the correct character encoding for the request parameters and data.

The Web container performs each step in the following list until a match is found:
v Looks at the character set (charset) in the Content-Type header.
v Attempts to map the servers locale to a character set using defined properties.
v Attempts to use the DEFAULT_CLIENT_ENCODING system property, if one is set.
v Uses the ISO-8859-1 character encoding as the default.

If the autoResponsetEncoding value is set to true, and the client did not specify
character encoding in the request header, and the code does not include the
setCharacterEncoding(String encoding) method, the Web container does the
following:
v Attempts to determine the response content type and character encoding from

information in the request header.
v Uses the ISO-8859-1 character encoding as the default.

Chapter 2. Using Web applications 21

JavaServer Pages files
JavaServer Pages (JSP) files are application building blocks coded to the Sun
Microsystems JavaServer Pages (JSP) Specification.

JSP files enable the separation of the Hypertext Markup Language (HTML) code
from the business logic in Web pages so that HTML programmers and Java
programmers can more easily collaborate in creating and maintaining pages.

The IBM extensions to the JSP Specification include JSP tags that resemble HTML
tags making it easy for HTML authors to add the power of Java technology to Web
pages, without being experts in Java programming.

JSP files support a division of roles:

HTML authors
Develop JSP files that access databases and reusable Java components, such
as servlets and beans.

Java programmers
Create the reusable Java components and provide the HTML authors with
the component names and attributes.

Database administrators
Provide the HTML authors with the name of the database access and table
information.

Developing JavaServer Pages files with WebSphere extensions
Several IBM WebSphere extensions are provided for enhancing your JavaServer
Pages (JSP) files. This task provides a summary of the extensions that you can
utilize.

Steps for this task
1. Review the supported specifications.

Create Java components, referring to the JSP specifications from Sun
Microsystems.
See Resources for learning for links to coding specifications and examples.
WebSphere Application Server Version 3.5 added IBM extensions to the base
Application Programming Interfaces (APIs). Since the JavaServer Pages (JSP) 1.1
and JSP 1.2 Specifications are backward compatible to the JSP 1.0 Specifications,
you can invoke the APIs with the IBM extensions without modification.
The extensions belong to these categories:

Syntax for variable data
Put variable fields in JSP files and have servlets and beans dynamically
replace the variables with values from a database when the JSP output
is returned to the browser.

Syntax for database access
Add a database connection to a Web page and then use that connection
to query or update the database. You can provide the user ID and
password for the database connection at request time, or you can hard
code the user ID and password within the JSP file.

2. Use your favorite integrated development environment (IDE), or a text editor,
to develop or migrate code artifacts that meet the specifications.

3. Test the code artifacts.

22 IBM WebSphere Application Server Network Deployment, Version 5: Applications

4. (Optional) Batch compile your JSP files if necessary.

Tag libraries
Java ServerPages (JSP) tag libraries contain classes for common tasks such as
processing forms and accessing databases from JSP files.

Tag libraries encapsulate, as simple tags, core functionality common to many Web
applications. The Java Standard Tag Library (JSTL) supports common
programming tasks such as iteration and conditional processing, and provides tags
for:
v manipulating XML documents
v supporting internationalization
v using Structured Query Language (SQL)

Tag libraries also introduce the concept of an expression language to simplify page
development, and include a version of the JSP expression language.

A tag library has two parts - a Tag Library Descriptor (TLD) file and a JAR file.

tsx:dbconnect tag JavaServer Pages syntax
Use the <tsx:dbconnect> tag to specify information needed to make a connection to
a Java Database Connectivity (JDBC) or an Open Database Connectivity (ODBC)
database.

The <tsx:dbconnect> syntax does not establish the connection. Use the
<tsx:dbquery> and <tsx:dbmodify> syntax instead to reference a <tsx:dbconnect>
tag in the same JavaServer Pages (JSP) file to establish the connection.

When the JSP file compiles into a servlet, the Java processor adds the Java coding
for the <tsx:dbconnect> syntax to the servlet service() method, which means a new
database connection is created for each request for the JSP file.

This section describes the syntax of the <tsx:dbconnect> tag.
<tsx:dbconnect id="connection_id"

userid="db_user" passwd="user_password"
url="jdbc:subprotocol:database"
driver="database_driver_name"
jndiname="JNDI_context/logical_name">

</tsx:dbconnect>

where:
v id

Represents a required identifier. The scope is the JSP file. This identifier is
referenced by the connection attribute of a <tsx:dbquery> tag.

v userid

Represents an optional attribute that specifies a valid user ID for the database
that you want to access. Specify this attribute to add the attribute and its value
to the request object.
Although the userid attribute is optional, you must provide the user ID. See
<tsx:userid> and <tsx:passwd> for an alternative to hard coding this information
in the JSP file.

v passwd

Chapter 2. Using Web applications 23

Represents an optional attribute that specifies the user password for the userid
attribute. (This attribute is not optional if the userid attribute is specified.) If you
specify this attribute, the attribute and its value are added to the request object.
Although the passwd attribute is optional, you must provide the password. See
<tsx:userid> and <tsx:passwd> for an alternative to hard coding this attribute in
the JSP file.

v url and driver

Respresents a required attribute if you want to establish a database connection.
You must provide the URL and driver.
The application server supports connection to JDBC databases and ODBC
databases.
– For a JDBC database, the URL consists of the following colon-separated

elements: jdbc, the subprotocol name, and the name of the database to access.
An example for a connection to the Sample database included with IBM DB2
is:
url="jdbc:db2:sample"
driver="COM.ibm.db2.jdbc.app.DB2Driver"

– For an ODBC database, use the Sun JDBC-to-ODBC bridge driver included in
their Java2 Software Developers Kit (SDK) or another vendor’s ODBC driver.
The url attribute specifies the location of the database. The driver attribute
specifies the name of the driver to use in establishing the database
connection.
If the database is an ODBC database, you can use an ODBC driver or the Sun
JDBC-to-ODBC bridge. If you want to use an ODBC driver, refer to the driver
documentation for instructions on specifying the database location with the
url attribute and the driver name.
If you use the bridge, the url syntax is jdbc:odbc:<database>. An example
follows:
url="jdbc:odbc:autos"
driver="sun.jdbc.odbc.JdbcOdbcDriver"

Note: To enable the application server to access the ODBC database, use the
ODBC Data Source Administrator to add the ODBC data source to the System
DSN configuration. To access the ODBC Administrator, click the ODBC icon
on the Windows NT Control Panel.

v jndiname

Represents an optional attribute that identifies a valid context in the application
server Java Naming and Directory Interface (JNDI) naming context and the
logical name of the data source in that context. The Web administrator
configures the context using an administrative client such as the WebSphere
Administrative Console.
If you specify the jndiname attribute, the JSP processor ignores the driver and
url attributes on the <tsx:dbconnect> tag.

An empty element (such as <url></url>) is valid.

dbquery tag JavaServer Pages syntax
Use the <tsx:dbquery> tag to establish a connection to a database, submit database
queries, and return the results set.

The <tsx:dbquery> tag does the following:

24 IBM WebSphere Application Server Network Deployment, Version 5: Applications

1. References a <tsx:dbconnect> tag in the same JavaServer Pages (JSP) file and
uses the information the tag provides to determine the database URL and
driver. You can also obtain the user ID and password from the <tsx:dbconnect>
tag if those values are provided in the <tsx:dbconnect> tag.

2. Establishes a new connection
3. Retrieves and caches data in the results object.
4. Closes the connection and releases the connection resource.

This section describes the syntax of the <tsx:dbquery> tag.
<%-- SELECT commands and (optional) JSP syntax can be placed
within the tsx:dbquery. --%>
<%-- Any other syntax, including HTML comments, are not valid. --%>
<tsx:dbquery id="query_id"
connection="connection_id"
limit="value" >
</tsx:dbquery>

where:
v id

Represents the identifier of this query. The scope is the JSP file. Use id to
reference the query. For example, from the <tsx:getProperty> tag, use id to
display the query results.
The id becomes the name of a bean that contains the results set. The bean
properties are dynamic and the property names are the names of the columns in
the results set. If you want different column names, use the SQL keyword for
specifying an alias on the SELECT command. In the following example, the
database table contains columns named FNAME and LNAME, but the SELECT
statement uses the AS keyword to map those column names to FirstName and
LastName in the results set:
Select FNAME, LNAME AS FirstName, LastName from Employee where FNAME=’Jim’

v connection

Represents the identifier of a <tsx:dbconnect> tag in this JSP file. The
<tsx:dbconnect> tag provides the database URL, driver name, and optionally, the
user ID and password for the connection.

v limit

Represents an optional attribute that constrains the maximum number of records
returned by a query. If this attribute is not specified, no limit is used. In such a
case, the effective limit is determined by the number of records and the system
caching capability.

v SELECT command and JSP syntax
Represents the only valid SQL command, SELECT. The <tsx:dbquery> tag must
return a results set. Refer to your database documentation for information about
the SELECT command. See other articles in this section for a description of JSP
syntax for variable data and inline Java code.

dbmodify tag JavaServer Pages syntax
The <tsx:dbmodify> tag establishes a connection to a database and then adds
records to a database table.

The <tsx:dbmodify> tag does the following:
1. References a <tsx:dbconnect> tag in the same JavaServer Pages (JSP) file and

uses the information provided by that tag to determine the database URL and
driver.

Chapter 2. Using Web applications 25

Note: You can also obtain the user ID and password from the <tsx:dbconnect>
tag if those values are provided in the <tsx:dbconnect> tag.

2. Establishes a new connection.
3. Updates a table in the database.
4. Closes the connection and releases the connection resource.

This section describes the syntax of the <tsx:dbmodify> tag.
<%-- Any valid database update commands can be placed within the DBMODIFY tag. -->
<%-- Any other syntax, including HTML comments, are not valid. -->
<tsx:dbmodify connection="connection_id">
</tsx:dbmodify>

where:
v connection

Represents the identifier of a <DBCONNECT> tag in this JSP file. The
<DBCONNECT> tag provides the database URL, driver name, and (optionally)
the user ID and password for the connection.

v Database commands
Represents valid database commands. Refer to your database documentation for
details

tsx:getProperty tag JavaServer Pages syntax and examples
The <tsx:getProperty> tag gets the value of a bean to display in a JavaServer
Pages (JSP) file.

This IBM extension of the Sun JSP <jsp:getProperty> tag implements all of the
<jsp:getProperty> function and adds the ability to introspect a database bean
created using the IBM extension <tsx:dbquery> or <tsx:dbmodify>.

Note: You cannot assign the value from this tag to a variable. The value, generated
as output from this tag, displays in the browser window.

This section describes the syntax of the <tsx:getProperty> tag:
<tsx:getProperty name="bean_name"

property="property_name" />

where:
v name

Represents the name of the bean declared by the id attribute of a <tsx:dbquery>
syntax within the JSP file. See <tsx:dbquery> for an explanation. The value of
this attribute is case-sensitive.

v property

Represents the property of the bean to access for substitution. The value of the
attribute is case-sensitive and is the locale-independent name of the property.

Tag example:
<tsx:getProperty name="userProfile" property="username" />
<tsx:getProperty name="request" property=request.getParameter("corporation") />

In most cases, the value of the property attribute is just the property name.
However, to access the request bean or to access a property of a property (sub
property), specify the full form of the property attribute. The full form also gives
you the option to specify an index for indexed properties. You can specify the

26 IBM WebSphere Application Server Network Deployment, Version 5: Applications

optional index as a constant (such as 2), or an index like the one described in the
<tsx:repeat> tag. Some examples using the full form of the property attribute
follow:
<tsx:getProperty name="staffQuery" property=address(currentAddressIndex) />
<tsx:getProperty name="shoppingCart" property=items(4).price />
<tsx:getProperty name="fooBean" property=foo(2).bat(3).boo.far />

tsx:userid and tsx:passwd tag JavaServer Pages syntax
With the <tsx:userid> and <tsx:passwd> tags, you do not have to hard code a user
ID and password in the <tsx:dbconnect> tag.

Use the <tsx:userid> and <tsx:passwd> tags to accept user input for the values and
then add that data to the request object. You can access the request object with a
JavaServer Pages (JSP) file, such as the JSPEmployee.jsp example that requests the
database connection.

You must use <tsx:userid> and <tsx:passwd> tags within a <tsx:dbconnect> tag.

This section describes the syntax of the <tsx:userid> and <tsx:passwd> tags.
<tsx:dbconnect id="connection_id"

<userid>
<tsx:getProperty name="request"
property=request.getParameter("userid") />
</userid>
<passwd>
<tsx:getProperty name="request"
property=request.getParameter("passwd") />
</passwd>
url="protocol:database_name:database_table"
driver="JDBC_driver_name">
</tsx:dbconnect>

where:
v <tsx:getProperty>

Represents the syntax as a mechanism for embedding variable data.
v userid

Represents a reference to the request parameter that contains the user ID. You
must add the parameter to the request object that passes to this JSP file. You can
set the attribute and its value in the request object, using an HTML form or a
URL query string to pass the user-specified request parameters.

v passwd

Represents a reference to the request parameter that contains the password. Add
the parameter to the request object that passes to this JSP file. You can set the
attribute and its value in the request object, using an HTML form or a URL
query string, to pass user-specified values.

tsx:repeat tag JavaServer Pages syntax
The <tsx:getProperty> tag repeats a block of HTML tagging.

Use the <tsx:repeat> syntax to iterate over a database query results set. The
<tsx:repeat> syntax iterates from the start value to the end value until one of the
following conditions is met:
v The end value is reached.
v An exception is thrown.

Chapter 2. Using Web applications 27

The output of a <tsx:repeat> block is buffered until the block completes. If an
exception is thrown before a block completes, no output is written for that block.

This section describes the syntax of the <tsx:repeat> tag:
<tsx:repeat index=name
start="starting_index"
end="ending_index">
</tsx:repeat>

where:
v index

Represents an optional name used to identify the index of this repeat block. The
value is case-sensitive and its scope is the JSP file.

v start

Represents an optional starting index value for this repeat block. The default is
0.

v end

Represents an optional ending index value for this repeat block. The maximum
value is 2,147,483,647.
If the value of the end attribute is less than the value of the start attribute, the
end attribute is ignored.

Example: Combining tsx:repeat and tsx:getProperty
JavaServer Pages tags

The following code snippet shows you how to code these tags:
<tsx:repeat>
<tr>

<td><tsx:getProperty name="empqs" property="EMPNO" />
<tsx:getProperty name="empqs" property="FIRSTNME" />
<tsx:getProperty name="empqs" property="WORKDEPT" />
<tsx:getProperty name="empqs" property="EDLEVEL" />
</td>

</tr>
</tsx:repeat>

Example: tsx:dbmodify tag syntax
In the following example, a new employee record is added to a database. The
values of the fields are based on user input from this JavaServer Pages (JSP) file
and referenced in the database commands using the <tsx:getProperty> tag.
<tsx:dbmodify connection="conn" >
insert into EMPLOYEE
(EMPNO,FIRSTNME,MIDINIT,LASTNAME,WORKDEPT,EDLEVEL) values
(’<tsx:getProperty name="request" property=request.getParameter("EMPNO") />’,
’<tsx:getProperty name="request" property=request.getParameter("FIRSTNME") />’,
’<tsx:getProperty name="request" property=request.getParameter("MIDINIT") />’,
’<tsx:getProperty name="request" property=request.getParameter("LASTNAME") />’,
’<tsx:getProperty name="request" property=request.getParameter("WORKDEPT") />’,
<tsx:getProperty name="request" property=request.getParameter("EDLEVEL") />)
</tsx:dbmodify>

Example: Using tsx:repeat JavaServer Pages tag to iterate
over a results set

The <tsx:repeat> tag iterates over a results set. The results set is contained within a
bean. The bean can be a static bean, for example, a bean created by using the IBM
WebSphere Studio database wizard, or a dynamically generated bean, for example,

28 IBM WebSphere Application Server Network Deployment, Version 5: Applications

a bean generated by the <tsx:dbquery> syntax. The following table is a graphic
representation of the contents of a bean called, myBean:

col1 col2 col3

row0 friends Romans countrymen

row1 bacon lettuce tomato

row2 May June July

Some observations about the bean:
v The column names in the database table become the property names of the bean.

The <tsx:dbquery> section describes a technique for mapping the column names
to different property names.

v The bean properties are indexed. For example, myBean.get(Col1(row2)) returns
May.

v The query results are in the rows. The <tsx:repeat> tag iterates over the rows,
beginning at the start row.

The following table compares using the <tsx:repeat> tag to iterate over a static
bean, versus a dynamically generated bean:

Static Bean Example <tsx:repeat> Bean Example

myBean.class

// Code to get a connection

// Code to get the data
Select * from myTable;

// Code to close the connection

JSP file

<tsx:repeat index=abc>
<tsx:getProperty name="myBean"
property="col1(abc)" />

</tsx:repeat>

Notes:

v The bean (myBean.class) is a static bean.

v The method to access the bean properties
is myBean.get(property (index)).

v You can omit the property index, in which
case the index of the enclosing
<tsx:repeat> tag is used. You can also
omit the index on the <tsx:repeat> tag.

v The <tsx:repeat> tag iterates over the bean
properties row by row, beginning with the
start row.

JSP file

<tsx:dbconnect id="conn"
userid="alice"passwd="test"
url="jdbc:db2:sample"
driver="COM.ibm.db2.jdbc.app.DB2Driver">
</tsx:dbconnect >

<tsx:dbquery id="dynamic"
connection="conn" >

Select * from myTable;
</tsx:dbquery>

<tsx:repeat index=abc>
<tsx:getProperty name="dynamic"
property="col1(abc)" />

</tsx:repeat>

Notes:

v The bean (dynamic) is generated by the
<tsx:dbquery> tag and does not exist until
the syntax executes.

v The method to access the bean properties
is dynamic.getValue(″property″, index).

v You can omit the property index, in which
case the index of the enclosing
<tsx:repeat> tag is used. You can also
omit the index on the <tsx:repeat> tag.

v The <tsx:repeat> tag syntax iterates over
the bean properties row by row, beginning
with the start row.

Chapter 2. Using Web applications 29

Implicit and explicit indexing
Examples 1, 2, and 3 show how to use the <tsx:repeat> tag. The examples produce
the same output if all indexed properties have 300 or fewer elements. If there are
more than 300 elements, Examples 1 and 2 display all elements, while Example 3
shows only the first 300 elements.

Example 1 shows implicit indexing with the default start and default end index. The
bean with the smallest number of indexed properties restricts the number of times
the loop repeats.
<table>
<tsx:repeat>
<tr><td><tsx:getProperty name="serviceLocationsQuery"
property="city" /></tr></td>
<tr><td><tsx:getProperty name="serviceLocationsQuery"
property="address" /></tr></td>
<tr><td><tsx:getProperty name="serviceLocationsQuery"
property="telephone" /></tr></td>
</tsx:repeat>
</table>

Example 2 shows indexing, starting index, and ending index:
<table>
<tsx:repeat index=myIndex start=0 end=2147483647>
<tr><td><tsx:getProperty name="serviceLocationsQuery"
property=city(myIndex) /></tr></td>
<tr><td><tsx:getProperty name="serviceLocationsQuery"
property=address(myIndex) /></tr></td>
<tr><td><tsx:getProperty name="serviceLocationsQuery"
property=telephone(myIndex) /></tr></td>
</tsx:repeat>
</table>

Example 3 shows explicit indexing and ending index with implicit starting index.
Although the index attribute is specified, you can still implicitly index the indexed
property city because the (myIndex) tag is not required.
<table>
<tsx:repeat index=myIndex end=299>
<tr><td>
<tsx:getProperty name="serviceLocationsQuery" property="city" /t>
</tr></td>
<tr><td>
<tsx:getProperty name="serviceLocationsQuery"
property="address(myIndex)" />
</tr></td>
<tr><td><tsx:getProperty name="serviceLocationsQuery"
property="telephone(myIndex)" />
</tr></td>
</tsx:repeat>
</table>

Nesting <tsx:repeat> blocks
You can nest <tsx:repeat> blocks. Each block is separately indexed. This capability
is useful for interleaving properties on two beans, or properties that have
subproperties. In the example, two <tsx:repeat> blocks are nested to display the list
of songs on each compact disc in the user’s shopping cart.
<tsx:repeat index=cdindex>
<h1><tsx:getProperty name="shoppingCart" property=cds.title /></h1>
<table>
<tsx:repeat>
<tr><td><tsx:getProperty name="shoppingCart" property=cds(cdindex).playlist />

30 IBM WebSphere Application Server Network Deployment, Version 5: Applications

</td></tr>
</table>
</tsx:repeat>
</tsx:repeat>

JspBatchCompiler tool
As an IBM enhancement to JavaServer Pages support, IBM WebSphere Application
Server provides a batch JSP compiler. Use this function to batch compile your JSP
files and thereby enable faster responses to the initial client requests for the JSP
files on your production Web server.

Batch compiling makes the first request for a JSP file much faster because the JSP
file is translated and compiled into a servlet. Batch compiling is also useful as a
fast way to resynchronize all of the JSP files for an application.

To use the JSP batch compiler for JSP files, enter the following command on a
single line at an operating system command prompt:
JspBatchCompiler -enterpriseapp.name <name>

[-webmodule.name <name>]
[-cell.name <name>]
[-node.name <name>]
[-server.name <name>]
[-filename <jsp name>]
[-keepgenerated <true|false>]
[-verbose <true|false>]
[-deprecation <true|false>]

If the names specified for these arguments are comprised of two or more words
separated by spaces, you must add quotation marks around the names.

where:
v enterpriseapp.name

Represents the name of the enterprise application you want to compile.
v webmodule.name

Represents the name of the specific Web module that you want to compile. If
this argument is not set, all Web modules in the enterprise application are
compiled.

v cell.name

Represents the name of the cell in which the application is deployed. The default
is BaseApplicationServerCell.

v node.name

Represents the name of the node in which the application is deployed. The
default is DefaultNode.

v server.name

Represents the name of the server in which the application is deployed. The
default is server1.

v filename

Represents the name of a single JSP file that you want to compile. If this
argument is not set, all files in the Web module are compiled. Alternatively, if
filename is set to the name of a directory, only the JSP files in that directory are
compiled.

v keepgenerated

Represents the option to save or erase the generated files.

Chapter 2. Using Web applications 31

If set to yes, WebSphere Application Server saves the generated .java files used
for compilation on your server. By default, this argument is set to no and the
.java files are erased after the class files have compiled.

v verbose

Indicates the compiler should generate verbose output while compiling the
generated sources.

v deprecation

Indicates the compiler should generate deprecation warnings while compiling
the generated sources.

Bean Scripting Framework
The Bean Scripting Framework (BSF) enables you to use scripting language
functions in your Java server-side applications. This framework also extends
scripting languages so that you can use existing Java classes and Java beans in the
JavaScript language.

With BSF, you can write scripts that create, manipulate and access values from Java
objects, or you can write Java programs that evaluate and access results from
scripts.

WebSphere Application Server provides the Bean Scripting Framework, which
consists of a BSF manager, a BSF engine, and a scripting engine.

BSF provides an access mechanism to Java objects for the scripting languages it
supports, so that both the scripting language and theJava code can access code
exclusive functions. The access mechanism is implemented through a registry of
objects maintained by BSF.

BSF in WebSphere Application Server supports the Rhino ECMAScript.

The ″Resources for Learning″ article provides external BSF links that document
future supported languages.

Example: Converting JavaScript source to the Bean Scripting
Framework

JavaScript code is one of the most popular languages of Web developers. This
language supports the following base objects, plus additional objects from the
Document Object Model:
v array
v date
v math
v number
v string

Server-side JavaScript code supports the same base objects, and additional objects
that support user access to databases, file systems and e-mail systems.

Like client-side JavaScript code, server-side JavaScript code is also platform,
browser, and language independent.

32 IBM WebSphere Application Server Network Deployment, Version 5: Applications

You can convert server-side JavaScript applications to the Bean Scripting
Framework. This article describes how to perform this conversion.

Server-side JavaScript source code

Suppose you have the following server-side JavaScript application:
<html>
<head>
<title>Hello World server-side JavaScript example</title>
</head>
<body>

</body>
</html>

<server>
function writePage()

write("<center>Hello World</center>");
</server>

Converting server-side JavaScript source code to the Bean Scripting Framework
(BSF)

Make the following changes to the JavaScript source code to enable BSF:
<%@ page language="javascript" %>
<html>
<head>
<title>Hello World server-side BSF/JavaScript example</title>
</head>
<body>

</body>
</html>

<%
out.println("<center>Hello World</center>");

%>

Review the other BSF reference articles for deployment information and additional
programming examples.

Scenario: Creating a Bean Scripting Framework application

Scenario description
Programming skills in JavaScript code are more prevalent than programming skills
using JavaServer Pages (JSP) tags. Using the Bean Scripting Framework, JavaScript
programmers can gradually introduce JSP tags in their JavaScript applications
without completely rewriting the source code. The BSF method not only reduces
the potential of programming errors, but also provides a painless way to learn a
new technology.

The following scenario illustrates how to implement a BSF application using
JavaScript within JSP tags.

Chapter 2. Using Web applications 33

Developing the BSF application
At ABC elementary school, John Doe teaches third grade mathematics. He wants to
help his students memorize their multiplication tables, and thinks a small
Web-based quiz could help meet his objective. However, John Doe only knows
JavaScript.

Using the Bean Scripting Framework to help leverage his JavaScript skills, John
Doe creates two JSP files, multiplication_test.jsp and
multiplication_scoring.jsp.

In the multiplication_test.jsp file, John Doe uses both client-side and server-side
JavaScript code to generate a test of 100 random multiplication questions,
displayed using a three minute timer. He then writes the
multiplication_scoring.jsp file to read the data submitted by the
multiplication_test.jsp file and to generate the scoring results.

John Doe creates the following two files:
multiplication_test.jsp:
<html>
<head>
<title>Multiplication Practice Test</title>
<script language="javascript">
var countMin=3;
var countSec=0;
function updateDisplay (min, sec) {

var disp;
if (min <= 9) disp = " 0";
else disp = " ";
disp += (min + ":");
if (sec <= 9) disp += ("0" + sec);
else disp += sec;
return(disp);

}
function countDown() {

countSec--;
if (countSec == -1) {

countSec = 59;
countMin--;

}
document.multtest.counter.value = updateDisplay(countMin, countSec);
if((countMin == 0) &&(countSec == 0)) document.multtest.submit();
else var down = setTimeout("countDown();", 1000);

}
</script>
</head>
<body bgcolor="#ffffff" onLoad="countDown();">
<%@ page language="javascript" %>
<h1>Three Minute Multiplication Drill</h1>
<hr>
<h2>Remember: this is an opportunity to excel!</h2>
<p>
<form method="POST" name="multtest" action="multiplication_scoring.jsp">
<div align="center">
<table>
<tr>
<td>
<h3>Time left:
<input type="text" name="counter" size="9" value="03:00" readonly>
</h3>
</td>
<td>
<input type="submit" value="Submit for scoring!">
</td>

34 IBM WebSphere Application Server Network Deployment, Version 5: Applications

</tr>
</table>
<table border="1">
<%
var newrow = 0;
var q_num = 0;
function addQuestion(num1, num2) {

if (newrow == 0) out.println("<tr>");
out.println("<td>");
out.println(num1 + " x " + num2 + " = ");
out.println("</td><td>");
out.print("<input name=\"" + q_num + "|" + num1 + ":" + num2 + "\" ");
out.println("type=\"text\" size=\"10\">");
out.println("</td>");
if (newrow == 3) {

out.println("</tr>");
newrow = 0;

}
else newrow++;
q_num++;

}
for (var i = 0; i < 100; i++) {

var rand1 = Math.ceil(Math.random() * 12);
var rand2 = Math.ceil(Math.random() * 12);
addQuestion(rand1, rand2);

}
%>
</table>
</div>
</form>
</body>
</html>

multiplication_scoring.jsp:
<html>
<head>
<title>Multiplication Practice Test Results</title>
</head>
<body bgcolor="#ffffff">
<%@ page language="javascript" %>
<h1>Multiplication Drill Score</h1>
<hr>
<div align="center">
<table border="1">
<tr><th>Problem</th>
<th>Correct Answer</th><th>Your Answer
</th></tr>
<%
var total_score = 0;
function score (current, pos1, pos2) {

var multiplier = current.substring(pos1 + 1, pos2);
var multiplicand = current.substring(pos2 + 1, current.length());
var your_product = request.getParameterValues(current)[0];
var true_product = multiplier * multiplicand;
out.println("<tr>");
out.println("<td>" + multiplier + " x " + multiplicand + " = </td>");
out.println("<td>" + true_product + "</td>");
if (your_product == true_product) {

total_score++;
out.print("<td bgcolor=\"\#00ff00\">");

}
else {

out.print("<td bgcolor=\"\#ff0000\">");
}
out.println(your_product + "</td>");
out.println("</tr>");

}
var equations = request.getParameterNames();

Chapter 2. Using Web applications 35

while(equations.hasMoreElements()) {
var currElt = equations.nextElement();
var splitPos1 = currElt.indexOf("|");
var splitPos2 = currElt.indexOf(":");
if (splitPos1 >=0 && splitPos2 >= 0) score(currElt, splitPos1, splitPos2);

}
%>
</table>
<h2>Total Score: <%= total_score %></h2>
<h3>Try again?</h3>
</div>
</body>
</html>

Follow these steps to see how John Doe uses BSF to implement JavaScript in a JSP
application:

Steps for this task
1. Give your files a .jsp extension.
2. Use server-side JavaScript code in your application.

The multiplication_test.jsp file incorporates both client-side and server-side
JavaScript. Server-side JavaScript is similar to client-side JavaScript; the primary
difference consists of using a different set of objects. Whereas client-side
Javascript programmers invoke document and window objects, server-side
JavaScript programmers, using the Bean Scripting Framework, invoke a set of
objects provided by the JSP technology. Also, client-side scripts are enclosed in
<script> tags, but server-side scripts use JSP scriptlet and expression tags.
Examine the following blocks of code:
<script language="javascript">
var countMin=3;
var countSec=0;
function updateDisplay (min, sec) {

var disp;
if (min <= 9) disp = " 0";
else disp = " ";
disp += (min + ":");
if (sec <= 9) disp += ("0" + sec);
else disp += sec;
return(disp);

}
function countDown() {

countSec--;
if (countSec == -1) {

countSec = 59;
countMin--;

}
document.multtest.counter.value = updateDisplay(countMin, countSec);
if((countMin == 0) && (countSec == 0)) document.multtest.submit();
else var down = setTimeout("countDown();", 1000);

}
</script>
....
<body bgcolor="#ffffff" onLoad="countDown();">
...
<form method="POST" name="multtest" action="multiplication_scoring.jsp">
...
<input type="text" name="counter" size="9" value="03:00" readonly>
...

36 IBM WebSphere Application Server Network Deployment, Version 5: Applications

The JavaScript code contained in the <script> block implements a timer set
within the <input> field named counter. The onLoad event handler in the
<body> tag causes the browser to load and execute the code when the the page
is loaded.

The document.multtest.submit() statement causes the form named multtest to
be submitted when the timer expires.

3. Identify the code to the BSF function.
The following code example, from the multiplication_test.jsp file, displays
the use of a JSP directive. This directive tells the WebSphere Application Server
BSF function that this file is using the JavaScript language, and that the
JavaScript code is enclosed by the <% ... %> scriptlet tags. The out implicit JSP
object in this code example, creates the body section of a table from 100
randomly generated questions.
...
<%@ page language="javascript" %>
...
<%
var newrow = 0;
var q_num = 0;

function addQuestion(num1, num2) {
if (newrow == 0) out.println("<tr>");

out.println("<td>");
out.println(num1 + " x " + num2 + " = ");
out.println("</td><td>");
out.print("<input name=\"" + q_num + "|" + num1 + ":" + num2 + "\" ");
out.println("type=\"text\" size=\"10\">");
out.println("</td>");

if (newrow == 3) {
out.println("</tr>");
newrow = 0;

}
else newrow++;

q_num++;
}

for (var i = 0; i < 100; i++) {
var rand1 = Math.ceil(Math.random() * 12);
var rand2 = Math.ceil(Math.random() * 12);

addQuestion(rand1, rand2);
}

%>
...

4. Read the results.
To score the results of the practice drill, John Doe uses the request implicit JSP
object in the multiplication_scoring.jsp file to obtain the POST data created
within the <form> tags in the multiplication_test.jsp file.
The multiplication_scoring.jsp file uses the POST data to build an output file
containing the original question, the student’s answer, and the correct answer,
and then prints the text in a table format using the out implicit object.
The following code example from the multiplication_scoring.jsp file
illustrates the use of the request and out JSP objects:

Chapter 2. Using Web applications 37

...
<%@ page language="javascript" %>
...
<%
var total_score = 0;
function score (current, pos1, pos2) {

var multiplier = current.substring(pos1 + 1, pos2);
var multiplicand = current.substring(pos2 + 1, current.length());
var your_product = request.getParameterValues(current)[0];
var true_product = multiplier * multiplicand;
out.println("<tr>");
out.println("<td>" + multiplier + " x " + multiplicand + " = </td>");
out.println("<td>" + true_product + "</td>");
if (your_product == true_product) {

total_score++;
out.print("<td bgcolor=\"\#00ff00\">");

}
else {

out.print("<td bgcolor=\"\#ff0000\">");
}
out.println(your_product + "</td>");
out.println("</tr>");

}
var equations = request.getParameterNames();
while(equations.hasMoreElements()) {

var currElt = equations.nextElement();
var splitPos1 = currElt.indexOf("|");
var splitPos2 = currElt.indexOf(":");
if (splitPos1 >=0 && splitPos2 >= 0)

score(currElt, splitPos1, splitPos2);
}

%>
...
<h2>Total Score: <%= total_score %></h2>
...

Note: Although using separate scriptlet blocks of code for different portions of
a conditional expression is common in JSP files implemented in Java, it is
invalid for JSP files implemented using JavaScript through the Bean Scripting
Framework. The JavaScript code must be entirely contained within the scriptlet
tags.

The following code example illustrates invalid usage:
<% if (pass == 0) %>

<i>pass is true</i>
<% else %>

<i>pass is not true</i>

Deploying the BSF application
You assemble and deploy BSF applications in the same manner as JSP applications.
Review the (Assembling applications) article for more information.

Deploy the BSF code examples in WebSphere Application Server to view this
applications processing and output. Use the following quick steps to deploy the
application.

Note: The intent of these ″quick steps″ is to provide you with instant application
output. However, the supported method for deployment is the same as for
standard JSP files.

Steps for this task

38 IBM WebSphere Application Server Network Deployment, Version 5: Applications

1. Use the DefaultApplication to add your BSF files.
Copy your .jsp files to the DefaultApplication directory: <application server
install directory> /installedApps/<node
name>/DefaultApplication.ear/DefaultApplication.war

2. Start the application server.
3. Open a browser and request your BSF application

Use the following URL to request your application:
http://hostName:9080/<JSP file name>.jsp

Example: Bean Scripting Framework code example
The following code examples show how to implement JavaScript using the Bean
Scripting Framework (BSF).

For a quick demonstration of the BSF function, copy these code examples into 2
separate files, and deploy them in WebSphere Application Server using the
instructions in the BSF scenario article.

Multiplication practice test
<html>
<head>
<title>Multiplication Practice Test</title>
<!--
This file and its companion, multiplication_score.jsp, illustrate the
use of ECMAScript within the BSF framework. The task is a simple
timed math quiz, which is 3 minutes in duration. When the quiz ends,
the score is computed and displayed.
Users are then asked if they wish to try
the quiz again.
-->

<!--
This code fragment displays and updates the quiz
countdown in client side JavaScript code.
-->
<script language="javascript">
var countMin=3;
var countSec=0;

// This code computes the current countdown time.
function updateDisplay (min, sec) {

var disp;

if (min <= 9) disp = " 0";
else disp = " ";

disp += (min + ":");

if (sec <= 9) disp += ("0" + sec);
else disp += sec;

return(disp);
}

//This code fragment displays the current countdown time in the
user’s browser window,
//and submits the results for scoring when the countdown ends.

function countDown() {
countSec--;
if (countSec == -1) {

Chapter 2. Using Web applications 39

countSec = 59;
countMin--;

}
document.multtest.counter.value = updateDisplay(countMin, countSec);
if((countMin == 0) && (countSec == 0)) document.multtest.submit();
else var down = setTimeout("countDown();", 1000);

}

</script>
</head>
<body bgcolor="#ffffff" onLoad="countDown();">

<!--
The body of the quiz runs as JavaServer Pages (JSP) code using BSF.
The code outputs the problems in table format using the POST method
and invokes the scoring module when the user chooses to
end the quiz or when the countdown ends.
-->
<%@ page language="javascript" %>

<h1>Three Minute Multiplication Drill</h1>
<hr>

<h2>Remember: this is an opportunity to excel!</h2>
<p>

<form method="POST" name="multtest" action="multiplication_scoring.jsp">
<div align="center">
<table>
<tr>
<td>
<h3>Time left:
<input type="text" name="counter" size="9" value="03:00" readonly>
</h3>
</td>
<td>
<input type="submit" value="Submit for scoring!">
</td>
</tr>
</table>
<table border="1">
<%
var newrow = 0;
var q_num = 0;

// This code generates a new random multiplication problem up to
// the number twelve, and
// enters it into the table of problems.

function addQuestion(num1, num2) {
if (newrow == 0) out.println("<tr>");

out.println("<td>");
out.println(num1 + " x " + num2 + " = ");
out.println("</td><td>");
out.print("<input name=\"" + q_num + "|" + num1 + ":" + num2 + "\" ");
out.println("type=\"text\" size=\"10\">");
out.println("</td>");

if (newrow == 3) {
out.println("</tr>");
newrow = 0;

}
else newrow++;

q_num++;
}

40 IBM WebSphere Application Server Network Deployment, Version 5: Applications

//This code obtains two random operands and formats 100 quiz problems.

for (var i = 0; i < 100; i++) {
var rand1 = Math.ceil(Math.random() * 12);
var rand2 = Math.ceil(Math.random() * 12);

addQuestion(rand1, rand2);
}

%>
</table>
</div>
</form>

</body>
</html>

Multiplication practice test results
<html>
<head>
<title>Multiplication Practice Test Results</title>
</head>
<body bgcolor="#ffffff">

<!--
This JSP code is invoked when the user submits a math quiz for scoring,
or when the quiz countdown expires. The JSP code tabulates the problem
list, the correct answer,
the user’s answer, and scores the test. It then offers the user an
opportunity to try the quiz again.
-->
<%@ page language="javascript" %>

<h1>Multiplication Drill Score</h1>
<hr>

<div align="center">
<table border="1">
<tr><th>Problem</th><th>Correct Answer</th><th>Your Answer</th></tr>
<%
var total_score = 0;

// This code parses the submitted form, extracts the a problem generated by the
// multiplication_test.jsp file, outputs it, computes the correct answer,
// and displays this information and the user answer. The code scores
// the quiz using a running sum of correct answers.

function score (current, pos1, pos2) {
var multiplier = current.substring(pos1 + 1, pos2);
var multiplicand = current.substring(pos2 + 1, current.length());
var your_product = request.getParameterValues(current)[0];
var true_product = multiplier * multiplicand;

out.println("<tr>");
out.println("<td>" + multiplier + " x " + multiplicand + " = </td>");
out.println("<td>" + true_product + "</td>");

if (your_product == true_product) {
total_score++;
out.print("<td bgcolor=\"\#00ff00\">");

}
else {

out.print("<td bgcolor=\"\#ff0000\">");
}

Chapter 2. Using Web applications 41

out.println(your_product + "</td>");
out.println("</tr>");

}

// This is the main body of the scoring application. It parses the posted quiz,
// and calls the score() function to score remaining problems.

var equations = request.getParameterNames();
while(equations.hasMoreElements()) {

var currElt = equations.nextElement();
var splitPos1 = currElt.indexOf("|");
var splitPos2 = currElt.indexOf(":");

if (splitPos1 >=0 && splitPos2 >= 0) score(currElt, splitPos1, splitPos2);
}

%>
</table>

<h2>Total Score: <%= total_score %></h2>
<h3>Try again?</h3>
</div>

</body>
</html>

Developing Web applications
Before you begin

Design a Web application and the components that it needs.

For general Web application design information, see ″Resources for learning.″

There are two basic approaches to selecting tools for developing Web applications:
v You can use one of the available integrated development environments (IDEs).

IDE tools automatically generate significant parts of the servlet and JavaServer
Pages (JSP) code, and Hypertext Markup Language (HTML) files. They also
contain integrated tools for packaging and testing the Web application
components. The IBM WebSphere Application Developer product is the
recommended IDE. For more information, see the documentation for that
product.

v If you decide to develop Web components without an IDE, you need at least an
ASCII text editor. You can also use tools available in the Java Software
Development Kit (SDK) and in this product to assemble, test, and deploy the
Web application components.

The following steps support the second approach, development without an IDE.

Steps for this task
1. If necessary, migrate any pre-existing code to the required version of the servlet

and JSP specification.
2. Write and compile the components of the Web application.

What to do next

Assemble the application components in one or more Web modules.

42 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Web modules
A Web module represents a Web application. A Web module is created by
assembling servlets, JavaServer Pages (JSP) files, and static content such as
HyperText Markup Language (HTML) pages into a single deployable unit. Web
modules are stored in Web archive (WAR) files, which are standard Java archive
files.

A Web module contains:
v One or more servlets, JSP files, and HTML files.
v A deployment descriptor, stored in an Extensible Markup Language (XML) file.

The file, named web.xml, declares the contents of the module. It contains
information about the structure and external dependencies of Web components
in the module and describes how the components are used at run time.

You can create Web modules as standalone applications, or you can combine Web
modules with other modules to create J2EE applications. You install and run a Web
module in the Web container of an application server.

Assembling Web Modules
Before you begin

If you want to use existing J2EE 1.2 Web modules in your J2EE 1.3 application,
migrate them to J2EE 1.3 first.

Assemble a Web module to contain servlets, JSP files, and related code artifacts.
(Group enterprise beans, client code, and resource adapter code in separate
modules).

A Web module can be installed as a standalone application or can be combined
with other modules into an enterprise application.

The Application Assembly Tool (AAT) provides flexibility in assembling Web
modules. Options described below include:
v Importing an existing Web module (WAR file)
v Creating a new Web module
v Copying code artifacts (such as servlets) from one Web module into a new Web

module

Although you can input various properties for Web archives, available properties
are specific to the Servlet, JSP, and J2EE specification level.

Steps for this task
1. (″Starting the Application Assembly Tool (AAT)″)
2. Select File>New>Web Module.

The navigation tree now displays various sets of properties for configuring the
new Web module.

3. (Optional) Use the property dialog shown in the AAT workspace to change the
default file name and location.
a. It is recommended that you change the display name so that it differs from

the file name.

Chapter 2. Using Web applications 43

b. If you like, change the temporary location of the Web module from the
default location, install_root/bin.

4. Add at least one Web component (servlet or JSP file) to the module.
You must add at least one Web component, using one of the following
methods.
v Import an existing WAR file containing Web components.

a. In the navigation tree, right-click the Web Components folder.
b. Select Import from its right-click menu.
c. Use the file browser to locate and select the archive file for the module.
d. Click Open. The Web applications in the selected archive are displayed.
e. Select a Web application. Its Web components are displayed in the

workspace.
f. Select the servlets or JSP files to be added and click Add. The components

are displayed in the Selected Components window.
g. Click OK. The properties associated with the archive are also imported.

The property dialog boxes in the workspace are populated automatically
with values.

h. Double-click the Web Components icon to verify that the servlets or JSP
files are included in the module.

i. Double-click the Web Components icon to verify that the servlets or JSP
files are included in the module.

j. (″Saving applications after assembly″)
v Copy and paste archive files from an existing module.
v Create a new Web component.

a. In the navigation tree, right-click the Web Components folder.
b. Select New from its right-click menu.
c. When the new module is displayed, enter a component name and choose

a component type.
d. Use the file browser to locate and select the archive file for the module.
e. Click the plus sign (+) to verify its contents and enter assembly

properties.
f. In the New Web Component property dialog box, click OK.
g. Verify that the Web component has been added to the module by

double-clicking the Web components icon in the navigation tree.
h. Click the component to view its corresponding property dialog box in the

bottom portion of the pane.
5. Enter assembly properties for each Web component.

a. Click the plus sign (+) next to the each component to reveal its property
groups.

b. Right-click each property group’s icon and click New to display properties
in the workspace.

6. Specify additional properties for the Web module.
Right-click each property group’s icon. Choose New to add new values, or edit
existing values in the property pane. (Click Help for descriptions of the
settings).
Note that if you add a security constraint, you must add at least one Web
resource collection.

7. Add any other files needed by the application.

44 IBM WebSphere Application Server Network Deployment, Version 5: Applications

v In the navigation tree, click the plus sign (+) next to the Files icon.
Right-click Add Class Files, Add JAR Files, or Add Resource Files. Select
Add Files.

v Add files, using the Add Files dialog.
8. (″Saving applications after assembly″)

What to do next

Assemble zero or more other new modules of your choice:
v (″Assembling EJB modules″)
v (″Assembling Application Client Modules″)
v ″Assembling Resource Adapter modules″ (not in this document)

You can also (″Migrating application modules from J2EE 1.2 to J2EE 1.3 ″).

Another option is to proceed directly to (″Assembling new or modifying existing
modules″). While assembling an application module, you can create any new
modules that you need.

Context parameters
A servlet context defines a server’s view of the Web application within which the
servlet is running. The context also allows a servlet to access resources available to
it.

Using the context, a servlet can log events, obtain URL references to resources, and
set and store attributes that other servlets in the context can use. These properties
declare a Web application’s parameters for its context. They convey setup
information, such as a webmaster’s e-mail address or the name of a system that
holds critical data.

Servlet mappings
A servlet mapping is a correspondence between a client request and a servlet.

Servlet containers use URL paths to map client requests to servlets, and follow the
URL path-mapping rules as specified in the Java Servlet specification. The
container uses the URI from the request, minus the context path, as the path to
map to a servlet. The container chooses the longest matching available context path
from the list of Web applications that it hosts.

Servlet caching
Dynamic caching can be used to improve the performance of servlet and
JavaServer Pages (JSP) files by serving requests from an in-memory cache. Cache
entries contain the servlet’s output, results of the servlet’s execution, and metadata.

Web components
A web component is a servlet, Java Server Page (JSP), or HTML file. One or more
web components make up a web module.

Web property extensions
Web property extensions are IBM extensions to the standard deployment
descriptors for Web applications. These extensions include mime filtering and
servlet caching.

Chapter 2. Using Web applications 45

Web resource collections
A Web resource collection defines a set of URL patterns (resources) and HTTP
methods belonging to the resource.

HTTP methods handle HTTP-based requests, such as GET, POST, PUT, and
DELETE. A URL pattern is a partial Uniform Resource Locator that acts as a
template for matching the pattern with existing full URLs in an attempt to find a
valid file.

Welcome files
A Welcome file is an entry point file (for example, index.html) for a group of
related HTML files.

Welcome files are located by using a group of partial URIs. The Web container uses
the partial URIs to find a valid file when the initial URI is not found.

Context parameter assembly settings
A servlet context defines the server view of the Web application within which the
servlet is running. The context also allows a servlet to access resources available to
it. Using the context, a servlet can log events, obtain URL references to resources,
and set and store attributes that other servlets in the context can use.

Access this page by traversing the following path in the Application Assembly
Tool:
Web Modules > component_instance

Parameter name (Required, String)
Specifies the name of a parameter, for example, dataSourceName.

Data type String

Parameter value (Required, String)
Specifies the value of a parameter, for example, jdbc/sample.

Data type String

Description
Contains a description of the context parameter.

Data type String

Initialization parameter assembly settings
Use this page to specify the initialization parameters that are sent to a servlet in its
HttpConfig object when the servlet is first started.

Access this page by traversing the following path in the Application Assembly
Tool:
Web Modules >
component_instance >
Web Components

Parameter name (Required, String)
Specifies the name of an initialization parameter.

46 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Data type String

Parameter value (Required, String)
Specifies the value of the initialization parameter.

Data type String

Description
Contains text describing the use of the parameter.

Data type String

JavaServer Pages attribute assembly settings
Use the JavaServer Pages (JSP) attributes page to set JSP attributes that are used by
servlets that implement JSP processing behavior.

Access this page by traversing the following path in the Application Assembly
Tool:
Web Modules > component_instance > Assembly Property Extensions

JSP Attribute (Name)
Specifies the name of an attribute.

Data type String

JSP Attribute (Value)
Specifies the value of an attribute.

Data type String

The WebSphere JSP container supports the following JSP attributes:

classdebuginfo
Indicates the compiler should include debugging information in the generated
classfile.

classdebuginfo true or false

Default is false.

classpath
Specifies an additional classpath for compiling the generated servlets.

classpath classpath or null

Default is null.

deprecation
Indicates the compiler should generate deprecation warnings when compiling the
generated Java source.

deprecation true or false

Chapter 2. Using Web applications 47

Default is false.

ieClassID
Indicates the Java plugin COM class ID for Internet Explorer. The <jsp:plugin> tags
use this value.

ieClassID classid

Default is clsid:8AD9C840-044E-11D1-B3E9-00805F499D93.

javaEncoding
Indicates the Java platform encoding to use to generate the JSP page servlet.

javaEncoding encoding value

Default is UTF-8.

jspCompilerPath
Indicates the path of the compiler to use for compiling JSP pages.

jspCompilerPath path name or null

Default is null.

keepgenerated
Indicates the Java files generated by the JSP compiler during the translation phase
of the processing should be kept.

keepgenerated true or false

Default is false.

largefile
Specifies support for large files. When the Java code is generated, the HTML data
in a JSP file is stored separately instead of being saved as constant string data in
the generated servlet.

largefile true or false

Default is false.

mappedfile
Indicates the compiler should generate Java source that includes a print statement
for every line in the JSP file. Use this option for debugging purposes only. It is not
recommended for production environments because the mappedfile option
generates too many out.print() statements.

mappedfile true or false

Default is false.

scratchdir
Specifies the directory where the generated classfiles are created.

48 IBM WebSphere Application Server Network Deployment, Version 5: Applications

scratchdir directory name.

Default is [WAS_INSTALL_ROOT]/temp.

Note: The system property com.ibm.websphere.servlet.temp.dir can be used to
set the scratchdir option on a server-wide basis. This setting, if it is present,
overrides the system property.

usePageTagPool
Enables or disables the reuse of custom tag handlers on an individual JavaServer
Page basis.

usePageTagPool true or false

Default is false.

The note in the useThreadTagPool attribute description also applies to
theusePageTagPool attribute.

useThreadTagPool
Enables or disables the reuse of custom tag handlers on a per request thread basis.

useThreadTagPool true or false

Default is false.

The note in the useThreadTagPool attribute description also applies to
theusePageTagPool attribute.

Note: Enabling custom tag handler reuse might reveal problems in your tag
handler code regarding the tags ability to be reused. A custom tag handler should
always do two things:
1. The release() method of the tag handler should reset its state and release any

private resources that it might have used. The JSP engine guarantees the
release() method will be called before the tag handler is garbage collected.

2. In the doEndTag() method, all instance states associated with this instance must
be reset.

verbose
Indicates the compiler should generate verbose output when compiling the
generated Java source code.

verbose true or false

Default is false.

Multipurpose Internet Mail Extensions (MIME) filter assembly
settings

Use this page to configure Multipurpose Internet Mail Extensions (MIME) filters.

Access this page by traversing the following path in the Application Assembly
Tool:

Chapter 2. Using Web applications 49

Web Modules > component_instance > Assembly Property Extensions

Component name (Required, String)
Specifies the name of the servlet or JavaServer Pages(TM) (JSP) file. This name
must be unique within the Web module.

Data type String

Display name
Specifies a short name that is intended for display by GUIs.

Data type String

Description
Contains a description of the servlet or JSP file.

Data type String

Component type
Specifies the type of Web component. Valid values are servlet or JSP file.

Data type String

Class name (Required, String)
Specifies the full path name for the servlet class.

Data type String

JSP file (Required, String)
Specifies the full path name for the JSP file.

Data type String

Load on startup
Indicates whether this servlet loads at the startup of the Web application.

The default is false (the check box is not selected). Also specifies a positive integer
indicating the order in which to load the servlet. Lower integers are loaded before
higher integers. If no value is specified, or if the value specified is not a positive
integer, the container is free to load the servlet at any time in the startup sequence.

Data type String

Small icon
Specifies a JPEG or GIF file containing a small image (16x16 pixels). Use the image
as an icon to represent the Web component in a GUI.

Data type JPEG, GIF

Large icon
Specifies a JPEG or GIF file containing a large image (32x32 pixels). Use the image
as an icon to represent the Web component in a GUI.

Data type JPEG, GIF

50 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Page list assembly settings
Page lists allow you to avoid hardcoding URLs in servlets and JSP files.

Access this page by traversing the following path in theApplication AssemblyTool:
Web Modules > component_instance > Web Components

Name
Specifies the name of the markup language—for example, Hypertext Markup
Language (HTML), Wireless Markup Language (WML), and Voice Extensible
Markup Language (VXML).

Data type String

MIME Type
Specifies the Multi-Purpose Internet Mail Extensions (MIME) type of the markup
language, for example, text/html and text/x-vxml.

Data type String

Error Page
Specifies the name of an error page.

Data type String

Default Page
Specifies the name of a default page.

Data type String

Pages - Name
Specifies the name of the page to serve, for example, StockQuoteRequest.page.

Data type String

Pages - URI
Specifies the URI of the page to serve, for example,
examples/StockQuoteHTMLRequest.jsp.

Data type String

Security constraints
Security constraints declare how Web content is to be protected.

These properties associate security constraints with one or more Web resource
collections. A constraint consists of a Web resource collection, an authorization
constraint, and a user data constraint.

Security constraint assembly settings
Use the Security constraints panel to configure security constraints.

Chapter 2. Using Web applications 51

To view this AAT panel, open an existing or create a new Web module. Right-click
Security Constraints from the left navigation menu. Click New.

Security constraints declare how to protect Web content. These properties associate
security constraints with one or more Web resource collections. A constraint
consists of a Web resource collection, an authorization constraint, and a user data
constraint.
v A Web resource collection is a set of resources (URL patterns) and HTTP

methods on those resources. All requests that contain a request path that
matches the URL pattern described in the Web resource collection is subject to
the constraint. If no HTTP methods are specified, then the security constraint
applies to all HTTP methods.

v An authorization constraint is a set of roles that users must be granted in order
to access the resources described by the Web resource collection. If a user who
requests access to a specified URI is not granted at least one of the roles
specified in the authorization constraint, the user is denied access to that
resource.

v A user data constraint indicates that the transport layer of the client/server
communications process must satisfy the requirement of either guaranteeing
content integrity (preventing tampering in transit) or guaranteeing
confidentiality (preventing reading while in transit).

If multiple security constraints are specified, the container uses the ″first match
wins″ rule when processing a request to determine what authentication method to
use, or what authorization to allow

Security constraint name
Specifies the name of the security constraint.

Data type String

Authorization Constraints - Roles
Specifies the user roles that are permitted access to this resource collection.

Data type String

Authorization Constraints - Description
Contains a description of the authorization constraints

Data type String

User Data Constraints - Transport guarantee
Indicates how data communicated between the client and the server is to be
protected.

Specifies that the protection for communications between the client and server is
None, Integral, or Confidential.
v None means that the application does not require any transport guarantees.
v Integral means that the application requires that the data sent between the client

and the server must be sent in such a way that it cannot be changed in transit.
v Confidential means that the application requires that the data must be

transmitted in a way that prevents other entities from observing the contents of
the transmission.

52 IBM WebSphere Application Server Network Deployment, Version 5: Applications

In most cases, Integral or Confidential indicates that the use of SSL is required.

Data type String

User Data Constraints - Description
Contains a description of the user data constraints.

Data type String

Servlet mapping assembly settings
A servlet mapping is a correspondence between a client request and a servlet.

Access this page by traversing the following path in the Application Assembly
Tool:
Web Modules > component_instance

URL pattern (Required, String)
Specifies the URL pattern of the mapping.

The URL pattern must conform to the Servlet specification. Use the following
syntax:
v A string beginning with a slash character (/) and ending with the slash and

asterisk characters (/*) represents a path mapping.
v A string beginning with the characters *. represents an extension mapping.
v All other strings are used as exact matches only.
v A string containing only the slash character (/) indicates that the servlet

specified by the mapping becomes the default servlet of the application. In this
case, the servlet path is the request Uniform Resource Identifier (URI) minus the
context path, and the path information is null.

Data type String

Servlet (Required, String)
Specifies the name of the servlet associated with the URL pattern.

Data type String

Tag library assembly settings
Use this page to define the tag library parameters.

Access this page by traversing the following path in the Application Assembly
Tool:
Web Modules > component_instance

Java ServerPages (JSP) tag libraries contain classes for common tasks such as
processing forms and accessing databases from JSP files.

Tag library file name (Required, String)
Specifies a file name relative to the location of the web.xml document, identifying a
tag library used in the Web application.

Data type String

Chapter 2. Using Web applications 53

Tag library location (Required, String)
Contains the location, as a resource relative to the root of the Web application,
where you can find the Tag Library Definition file for the tag library.

Data type String

Welcome file assembly settings
Use this page to configure your welcome page.

Access this page by traversing the following path in the Application Assembly
Tool:
Web Modules > component_instance

Welcome file (Required, String)
The Welcome file list is an ordered list of partial URLs with no trailing or leading
slash characters (/).

The Web server appends each file in the order specified and checks whether a
resource in the Web archive (WAR) file is mapped to that request Uniform
Resource Identifier (URI). The container forwards the request to the first resource
in the WAR file that matches.

Data type String

Servlet caching configuration assembly settings
Use this page to configure your cache groups.

Access this page by traversing the following path in theApplication AssemblyTool:
Web Modules > component_instance > Assembly Property Extensions

The properties on the General tab define a cache group and govern how long an
entry remains in the cache. The properties on the ID Generation tab define how
cache IDs are built and the criteria used to cache or invalidate entries. The
properties on the Advanced tab define external cache groups and specify custom
interfaces for handling servlet caching.

Caching group name
Specifies a name for the group of servlets or JavaServer Pages (JSP) files to cache.

Priority
Defines the default priority for cached servlets. Specify as an integer. The default
value is 1.

Priority is an extension of the Least Recently Used (LRU) caching algorithm. It
represents the number of cycles through the LRU algorithm that an entry is
guaranteed to stay in the cache. The priority represents the length of time that an
entry remains in the cache before becoming eligible for removal. On each cycle of
the algorithm, the priority of an entry is decremented. When the priority reaches
zero, the entry is eligible for invalidation. If an entry is requested while in the
cache, its priority is reset to the priority value. Regardless of the priority value and
the number of requests, an entry is invalidated when its timeout occurs. Consider
increasing the priority of a servlet or JSP file when it is difficult to calculate the
output of the servlet or JSP file or when the servlet or JSP file is executed more
often than average. Priority values should be low. Higher values do not yield

54 IBM WebSphere Application Server Network Deployment, Version 5: Applications

much improvement but use extra LRU cycles. Use timeout to guarantee the
validity of an entry. Use priority to rank the relative importance of one entry to
other entries. Giving all entries equal priority results in a standard LRU cache that
increases performance significantly.

Timeout
Specifies the length of time, in seconds, that a created cache entry remains in the
cache.

When this time elapses, the entry is removed from the cache. If the timeout is zero
or a negative number, the entry does not time out. It is removed when the cache is
full or programmatically, from within an application.

Invalidate only
Specifies that invalidations for a servlet take place, but that no servlet caching is
performed.

For example, you can use this property to prevent caching of control servlets.
Control servlets treat HTTP requests as commands and execute those commands.
By default, this check box is not selected.

Caching group members
Specifies the names of the servlets or JSP files to cache. The URIs are determined
from the servlet mappings.

Use URIs for cache ID building
Specifies whether or not to use the URI of the requested servlet to create a cache
ID. By default, URIs are used.

Use specified string
Specifies a string representing a combination of request and session variables to
use for creating cache IDs. This property defines request and session variables, and
the cache uses the values of these variables to create IDs for the entries.

Variables - ID
Specifies the name of a request parameter, request attribute, session parameter, or
cookie.

Variables - Type
Specifies the type of variable inidcated in the ID field. The valid values are Request
parameter, Request attribute, Session parameter, or Cookie.

Variables - Method
Specifies the name of a method in the request attribute or session parameter. The
output of this method is used to generate cache entry IDs. If this value is not
specified, the toString method is used by default.

Variables - Data ID
Specifies a string that, combined with the value of the variable, generates a group
name for the cache entry. The cache entry is placed in this group. You can
invalidate this group.

Variables - Invalidate ID
Specifies a string that is combined with the value of the variable on the request or
session to form a group name. The cache invalidates the group name.

Chapter 2. Using Web applications 55

Required
Specifies whether a value must exist in the request. If this check box is selected,
and either the request parameter, request attribute, session parameter, or the
method is not specified, the request is not cached.

External cache groups - Group name
Specifies the name of the external cache group to which this servlet is published.

ID generator
Specifies a user-written interface for handling parameters, attributes, and sessions.

The value must represent a full package and class name of a class extending
com.ibm.websphere.servlet.cache.IdGenerator. The properties specified in the
Application Assembly Tool are used and passed to the IdGenerator in the initialize
method inside a com.ibm.websphere.servlet.cache.CacheConfig object.

Data type String

Meta data generator
Specifies a user-written interface for handling invalidation, priority levels, and
external cache groups.

The value must represent the full package and class name of a class extending
com.ibm.websphere.servlet.cache.MetaDataGenerator. The properties specified in
the Application Assembly Tool are used and passed to the MetaDataGenerator in
the initialize method inside a com.ibm.websphere.servlet.cache.CacheConfig object.

Data type String

Web components assembly settings
Use this page to set the assembly properties for the components that make up a
Web module.

Access this page by traversing the following path in theApplication AssemblyTool:
Web Modules > component_instance > Web Components

Component name
Specifies the name of the servlet or JavaServer Pages(TM) (JSP) file. This name
must be unique within the Web module.

Data type String

Display name
Specifies a short name that is intended for display by GUIs.

Data type String

Description
Contains a description of the servlet or JSP file.

Data type String

Component type
Specifies the type of Web component. Valid values are servlet or JSP file.

56 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Data type String

Class name
Specifies the full path name for the servlet class.

Data type String

JSP file
Specifies the full path name for the JSP file.

Data type String

Load on startup
Indicates whether this servlet loads at the startup of the Web application. The
default is false (the check box is not selected).

This field also specifies a positive integer indicating the order in which the servlet
is to load. Lower integers are loaded before higher integers. If no value is
specified, or if the value specified is not a positive integer, the container is free to
load the servlet at any time in the startup sequence.

Data type Boolean
Default False

Small icon
Specifies a JPEG or GIF file containing a small image (16x16 pixels). Use the image
as an icon to represent the Web component in a GUI.

Data type String

Large icon
Specifies a JPEG or GIF file containing a large image (32x32 pixels). Use the image
as an icon to represent the Web component in a GUI.

Data type String

Run as role name
Enter a role name that represents the user account under which the servlet
executes. The default role name is blank, which indicates the servlet runs under
the user that logged into the application server. The role name of ″all role″
indicates the servlet can execute under different users.

Data type String

Description
In this optional field, enter a description that explains the importance of the role,
and where and how the role can be used.

Data type String

Run as role mode
Indicates a security role that is defined in the enterprise application.

Chapter 2. Using Web applications 57

Data type String

Unresolved action
This ouptut field defines a behavior for a transaction that does not complete
successfully. For example, a servlet does not have to specify rollback in its code.
Rollback occurs automatically if the servlet initiates a transaction and the
transaction does not complete but rollback is specified as the unresolved action.

Data type String

Web modules assembly settings
Use this page to set the assembly properties for web modules. Web modules are
composed of one or more web components.

File name
Specifies the file name of the Web module, relative to the top level of the
application package.

Alternative DD
Specifies the file name for an alternative deployment descriptor file to use instead
of the original deployment descriptor file in the module’s JAR file.

This file is the postassembly version of the deployment descriptor file. (The
original deployment descriptor file can be edited to resolve dependencies and
security information. Directing the use of the alternative deployment descriptor
allows you to keep the original deployment descriptor file intact). The value of the
Alternative DD property must be the full path name of the deployment descriptor
file relative to the module’s root directory. By convention, the file is in the ALT-INF
directory. If this property is not specified, the deployment descriptor file is read
directly from the module’s JAR file.

Context root
Specifies the context root of the Web application. The context root is combined
with the defined servlet mapping (from the WAR file) to compose the full URL
that users type to access the servlet.

For example, if the context root is /gettingstarted and the servlet mapping is
MySession, then the URL is http://host:port/gettingstarted/MySession.

Classpath
Specifies the class path for resources used by the Web application, relative to the
ear file..

If your Web application requires access to classes within an ear file, specify the
relative path of the classes in this field.

Display name
Specifies a short name that is intended to be displayed by GUIs.

Description
Contains a description of the Web module.

Distributable
Specifies that this Web application is programmed appropriately to be deployed
into a distributed servlet container.

58 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Small icon
Specifies a JPEG or GIF file containing a small image (16x16 pixels). The image is
used as an icon to represent the module in a GUI.

Large icon
Specifies a JPEG or GIF file containing a large image (32x32 pixels). The image is
used as an icon to represent the module in a GUI.

Session configuration
Indicates that session configuration information is present. Checking this box
makes the Session timeout property editable.

Session timeout
Specifies a time period, in seconds, after which a client is considered inactive. The
default value is zero, indicating that the session timeout never expires.

Login configuration -- Authentication method
Specifies an authentication method to use. As a prerequisite to gaining access to
any Web resources protected by an authorization constraint, a user must
authenticate by using the configured mechanism.

A Web application can authenticate a user to a Web server by using one of the
following mechanisms: HTTP basic authentication, HTTP digest authentication,
HTTPS client authentication, and form-based authentication.
v HTTP basic authentication is not a secure protocol because the user password is

transmitted with a simple Base64 encoding and the target server is not
authenticated. In basic authentication, the Web server requests a Web client to
authenticate the user and passes a string called the realm of the request in which
the user is to be authenticated.

v HTTP digest authentication transmits the password in encrypted form.
v HTTPS client authentication uses HTTPS (HTTP over SSL) and requires the user

to possess a public key certificate.
v Form-based authentication allows the developer to control the appearance of

login screens.

The Login configuration properties are used to configure the authentication
method that should be used, the realm name that should be used for HTTP basic
authentication, and the attributes that are needed by the form-based login
mechanism. Valid values for this property are Unspecified, Basic, Digest, Form, and
Client certification.

Note:

HTTP digest authentication is not supported as a login configuration in this
product. Also, not all login configurations are supported in all of the product’s
global security authentication mechanisms (Local Operating system, LTPA, and
custom pluggable user registry). HTTP basic authentication and form-based login
authentication are the only authentication methods supported by the Local
Operating system user registry. LTPA and the custom pluggable user registry are
capable of supporting HTTP basic authentication, form-based login, and HTTPS
client authentication.

Login configuration -- Realm name
Specifies the realm name to use in HTTP basic authorization. It is based on a user
name and password, sent as a string (with a simple Base64 encoding).

Chapter 2. Using Web applications 59

An HTTP realm is a string that allows URIs to be grouped together. For example, if
a user accesses a secured resource on a Web server within the ″finance realm,″
subsequent access to the same or different resource within the same realm does not
result in a repeat prompt for a user ID and password.

Login configuration -- Login page
Specifies the location of the login form. If form-based authentication is not used,
this property is disabled.

Form Login Config -- Error page
Specifies the location of the error page. If form-based authentication is not used,
this property is disabled.

Reload interval
Specifies a time interval, in seconds, in which the Web application’s file system is
scanned for updated files. The default is 0 (zero).

Reloading enabled
Specifies whether file reloading is enabled. The default is false.

Default error page
Specifies a file name for the default error page. If no other error page is specified
in the application, this error page is used.

Additional classpath
Specifies the full class path that will be used to reference classes outside of those
specified in the archive.

If your Web application requires access to classes not contained in the archive file,
specify the full path for those classes in this field.

File serving enabled
Specifies whether file serving is enabled. File serving allows the application to
serve static file types, such as HTML and GIF. File serving can be disabled if the
application contains only dynamic components. The default value is true.

Directory browsing enabled
Specifies whether directory browsing is enabled. Directory browsing allows the
application to browse disk directories. Directory browsing can be disabled if, you
want to protect data. The default value is true.

Serve servlets by classname
Specifies whether a servlet can be served by requesting its class name.

Usually, servlets are served only through a URI reference. The class name is the
actual name of the servlet on disk. For example, a file named SnoopServlet.java
compiles into SnoopServlet.class. (This is the class name.) SnoopServlet.class is
normally invoked by specifying snoop in the URI. However, if Serve Servlets by
Classname is enabled, the servlet is invoked by specifying SnoopServlet. The
default value is true.

Virtual hostname
Specifies a virtual host name. A virtual host is a configuration enabling a single
host machine to resemble multiple host machines. This property allows you to
bind the application to a virtual host in order to enable execution on that virtual
host.

60 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Filter mappings
Specifies the filter mapping declarations in this application. The container uses the
filter mapping declarations to decide on the type and order of filters to apply to a
request.

After the container matches the request URI to a servlet, for each filter mapping
element, it determines what filters to apply based on the servlet name or the URL
pattern, depending on the style specified. Filters are invoked in the same order as
the one specified in the list of filter mapping elements. The value that you specify
for the filter name must be the same value as that specified in the
<filter><filtername> sub-element declarations in the deployment descriptor.

Assembly property extensions
Use this panel to configure WebSphere Application Server specific Web module
extensions, or also referred to as assembly property extensions.

This panel lists the extensions that can be configured through the tool.

Reach the applicable extension panel by clicking on the panel name in the
navigation at the left, or by double-clicking the attribute name in the list provided.

Access this page by traversing the following path in theApplication AssemblyTool:
Web Modules > component_instance > Assembly Property Extensions

Assembly properties for a Web module include:
v File serving attributes
v Invoker attributes
v JavaServer Pages (JSP) attributes
v Multipurpose Internet Mail Extensions (MIME) filters
v Servlet caching configurations

File serving attribute assembly settings
File serving allows a Web application to serve static file types, such as HTML.
File-serving attributes are used by the servlet that implements file-serving behavior.

Access this page by traversing the following path in the Application AssemblyTool:
Web Modules > component_instance > Assembly Property Extensions

File Serving Attribute (Name)
Specifies the name of an attribute.

Data type String

File Serving Attribute (Value)
Specifies the value of an attribute.

Data type String

Invoker attribute assembly settings
Invoker attributes are used by the servlet that implements the invocation behavior.

Chapter 2. Using Web applications 61

Access this page by traversing the following path in the Application Assembly
Tool:
Web Modules > component_instance > Assembly Property Extensions

Invoker Attribute (Name)
Specifies the name of an attribute.

Data type String

Invoker Attribute (Value)
Specifies the value of an attribute.

Data type String

Error page assembly settings
Error page locations allow a servlet to find and serve a URI to a client based on a
specified error status code or exception type. These properties are used if the error
handler is another servlet or JSP file.

Access this page by traversing the following path in the Application Assembly
Tool:
Web Modules > component_instance

The error page properties specify a mapping between an error code or exception
type and the path of a resource in the Web application. The container examines the
list in the order that it is defined, and attempts to match the error condition by
status code or by exception class. On the first successful match of the error
condition, the container serves back the resource defined in the Location property.

Error code
Indicates that the error condition is a status code.

Data type Integer

Error Code (Required, String)
Specifies an HTTP error code, for example, 404.

Data type String

Exception
Indicates that the error condition is an exception type.

Data type String

Exception type name (Required, String)
Specifies an exception type.

Data type String

Location (Required, String)
Contains the location of the error-handling resource in the Web application.

Data type String

62 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Web resource collections security constraint properties
A Web resource collection defines a set of URL patterns or resources and HTTP
methods belonging to the resource, which define the security constraints for a Web
component.

Access this page by traversing the following path in the Application Assembly
Tool:
Web Modules > component_instance

HTTP methods handle HTTP-based requests, such as GET, POST, PUT, and
DELETE. A URL pattern is a partial Uniform Resource Locator that acts as a
template for matching the pattern with existing full URLs in an attempt to find a
valid file.

Web resource name
Specifies the name of a Web resource collection.

Data type String

Web resource description
Contains a description of the Web resource collection.

HTTP methods
Specifies the HTTP methods to which the security constraints apply. If no HTTP
methods are specified, then the security constraint applies to all HTTP methods.
The valid values are GET, POST, PUT, DELETE, HEAD, OPTIONS, and TRACE.

Data type String

URL pattern
Specifies URL patterns for resources in a Web application. All requests that contain
a request path that matches the URL pattern are subject to the security constraint.

Data type String

Troubleshooting tips for Web application deployment
Deployment of a Web application is successful if you can access the application by
typing a Uniform Resource Locator (URL) in a browser, or if you can access the
application by following a link.

If you cannot access your application, follow these steps to eliminate some
common errors that can occur during migration or deployment.

Web module does not run in WebSphere Application Server Version 5.

Symptom Your Web module does not run when you
migrate it to Version 5

Problem In Version 4.x, the classpath setting that
affected visibility was Module Visibility Mode.
In Version 5, you must use classloader
policies to set visibility.

Chapter 2. Using Web applications 63

Recommended response Reassemble an existing module, or change
the visibility settings in the classloader
policies.

See article (Migration of module visibility
modes from Version 4.x) for more
information and examples.

Welcome page is not visible.

Symptom You cannot access an application with a Web
path of:

/webapp/myapp
Problem The default welcome page for a Web

application is assumed to be index.html. You
cannot access the default page of the myapp
application unless it is named index.html.

Recommended response To identify a different welcome page, modify
the properties of the Web module during
assembly. See article Assembling Web
modules for more information.

HTML files are not found.

Symptom Your Web application ran successfully on
prior versions, but now you encounter errors
that the welcome page (typically index.html),
or referenced HTML files are not found:

Error 404: File not found: Banner.html
Error 404: File not found: HomeContent.html

Problem For security and consistency reasons, Web
application URLs are now case-sensitive on
all operating systems.

Suppose the content of the index page is as
follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 5.0 Frameset//EN">
<HTML>
<TITLE>
Insurance Home Page
</TITLE>

<frameset rows="18,80">
<frame src="Banner.html" name="BannerFr
<frame src="HomeContent.html" name="HomeCont
</frameset>

</HTML>

However the actual file names in the
\WebSphere\AppServer\installedApps\...
directory where the application is deployed
are:

banner.html
homecontent.html

Recommended response To correct this problem, modify the index.html
file to change the names Banner.html and
HomeContent.html to banner.html and
homecontent.html to match the names of the
files in the deployed application.

64 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Modifying the default Web container configuration
Before you begin

If you choose not to use the default application server, create an application server
instance.

An application server instance contains a single instance of a Web container, which
is created automatically when an application server is created.

The Web container is created initially with default properties values suitable for
simple Web applications. However, these values might not be appropriate for more
complex Web applications.

Your application is complex if it requires any of the following features:
v virtual host
v servlet caching
v special client request loads
v persistent HTTP session support
v special HTTP transport settings

Modify the following properties if you have a complex application:

Steps for this task
1. (Optional) Modify the Web container General Properties if your Web

application requires a virtual host, other than the default_host, or requires
servlet caching.

2. (Optional) Modify the Web Container Additional Properties Thread Pool
setting if your application handles special client request loads.

3. (Optional) Modify the Web Container Additional Properties Session
Management setting if your application requires persistent HTTP session support.

4. (Optional) Modify the Web Container Additional Properties HTTP transports
setting if your application requires one of the following HTTP transport
settings:
v unique hostname and port for client access
v SSL enablement

Web container
A Web container handles requests for servlets, JavaServer Pages (JSP) files, and
other types of files that include server-side code. The Web container creates servlet
instances, loads and unloads servlets, creates and manages request and response
objects, and performs other servlet management tasks.

The Web server plug-ins, provided by the WebSphere Application Server, help
supported Web servers pass servlet requests to Web containers.

Web container settings
Use this page to configure the container settings.

Access this page by traversing the following path in the Web console:
Servers > Application Servers > server_instance > Web container

Chapter 2. Using Web applications 65

Configuration - General Properties

Default virtual host
Specifies a virtual host is a configuration enabling a single host machine to
resemble multiple host machines. Resources associated with one virtual host
cannot share data with resources associated with another virtual host, even if the
virtual hosts share the same physical machine.

Select a virtual host option:

Default Host
The product provides a default virtual host with some common aliases,
such as the machine IP address, short host name, and fully qualified host
name. The alias comprises the first part of the path for accessing a resource
such as a servlet. For example, it is localhost:9080 in the request
http://localhost:9080/myServlet.

Admin Host
This is another name for the application server; also known as server1 in
the base installation. This process supports the use of the administrative
console.

Servlet caching
Specifies that if a servlet is invoked once and it generates output to be cached, a
cache entry is created containing not only the output, but also side effects of the
invocation. These side effects can include calls to other servlets or Java Server
Pages (JSP) files, as well as metadata about the entry, including timeout and entry
priority information.

Enable servlet caching
Check this box to enable servlet caching.

Web Container Services settings
Use this page to configure container services settings.

Access this page by traversing the following path in the Web console:
Servers > Application Servers > server_instance > Web container > Additional Properties

Can Be Grown
Specifies the number of threads to increase beyond the maximum size configured
for the pool.

Data type Boolean
Default False

Default Priority
Specifies the default priority for servlets that you can cache. This setting
determines how long an entry stays in a full cache. The recommended value is 1.

Data type Integer
Default Not applicable
Range 1-3

Dynamic Properties
Specifies a set of name-value pairs for configuring properties beyond those
displayed in the interface.

66 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Data type String

Enable servlet caching
Enable the servlet and JavaServer Pages (JSP) dynamic Java Naming and Directory
Interface (JNDI) caching feature.

Data type Boolean
Default True

HTTP Transport
Specifies the HTTP transports associated with this Web container.

Data type String

Inactivity Timeout
Specifies the time after which a thread is reclaimed due to inactivity.

Data type Integer
Units seconds

Installed Web Modules
Specifies the Web modules installed into the Web container of this server.

Data type String

Maximum Size
Specifies the maximum number of threads to allow in the pool.

Data type Integer

Minimum Size
Specifies the minimum number of threads to allow in the pool.

Data type Integer
Units Threads

Session Manager
Specifies the Session Manager associated with this Web container.

Data type String

Thread Pool
Specifies the thread pool settings for the Web container.

Data type String

Web module settings
Use this page to configure Web module settings.

Access this page by traversing the following path in the Web console:
Enterprise Application > application_instance > Web Module

Chapter 2. Using Web applications 67

URI
Specifies a URI that, when resolved relative to the application URL, specifies the
location of the module archive contents on a file system. The URI must match the
ModuleRef URI in the deployment descriptor of an application if the module was
packaged as part of a deployed application or enterprise archive (EAR) file.

Name
Specifies the unique display name for the module.

Alternate DD
Specifies the file name for an alternative deployment descriptor file to use instead
of the original deployment descriptor file in the module JAR file.

This file is the post-assembly version of the deployment descriptor file. You can edit
the original deployment descriptor file to resolve dependencies and security
information. Specifying the use of the alternative deployment descriptor keeps the
original deployment descriptor file intact.

The value of the Alternate DD property must be the full path name of the
deployment descriptor file, relative to the module root directory. By convention,
the file is in the ALT-INF directory. If this property is not specified, the deployment
descriptor file is read from the module JAR file.

Starting weight
Specifies the order in which modules are started. Lower weighted modules are
started before higher weighted modules.

Prefer WEB-INF Classes
Specifies classes to load in WEB-INF before any other classes. Implementing the
application class loader is recommended so that classes and resources packaged
within the WAR file load before classes and resources residing in container-wide
library JAR files.

Initial State
Specifies the default state of this application at server startup.

Web Module Deployment settings
Use this page to configure an instance of Web module deployment.

Access this page by traversing the following path in the Web console:
Enterprise Application > application_instance > Web Module > Web Module_instance

URI
Specifies a URI that, when resolved relative to the application URL, specifies the
location of the module archive contents on a file system. The URI must match the
ModuleRef URI in the deployment descriptor of an application if the module was
packaged as part of a deployed application or enterprise archive (EAR) file.

Alternate DD
Specifies the file name for an alternative deployment descriptor file to use instead
of the original deployment descriptor file in the module JAR file.

This file is the post-assembly version of the deployment descriptor file. You can edit
the original deployment descriptor file to resolve dependencies and security
information. Specifying the use of the alternative deployment descriptor keeps the
original deployment descriptor file intact.

68 IBM WebSphere Application Server Network Deployment, Version 5: Applications

The value of the Alternate DD property must be the full path name of the
deployment descriptor file, relative to the module root directory. By convention,
the file is in the ALT-INF directory. If this property is not specified, the deployment
descriptor file is read from the module JAR file.

Starting weight
Specifies the order in which modules are started. Lower weighted modules are
started before higher weighted modules.

Classloader Mode
Specifies whether the classloader should search in the parent classloader or in the
application classloader first to load a class. The standard for JDK classloaders and
WebSphere classloaders is PARENT_FIRST. By specifying PARENT_LAST, your
application can override classes contained in the parent classloader, but this action
can potentially result in ClassCastException or LinkageErrors if you have mixed
use of overriden classes and non-overriden classes.

The options are PARENT_FIRST and PARENT_LAST. The default is to search in
the parent classloader before searching in the application classloader to load a
class.

Data type String
Default PARENT_FIRST

Web applications: Resources for learning
Use the following links to find relevant supplemental information about Web
applications. The information resides on IBM and non-IBM Internet sites, whose
sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

View links to additional information about:
v Programming model and decisions
v Programming instructions and examples
v Programming specifications

v J2EE BluePrints for Web applications

http://java.sun.com/blueprints/guidelines/designing_enterprise_applications/
web_tier/index.html

v Redbook on the design and implementation of Servlets, JSP files, and
enterprise beans

http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/
sg245754.html?OpenDocument

v Redbook on Servlet and JSP file Programming

http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/
sg245755.html?OpenDocument

v Sun’s JavaTM Tutorial on Servlets

http://java.sun.com/docs/books/tutorial/servlets/index.html

Chapter 2. Using Web applications 69

http://java.sun.com/blueprints/guidelines/designing_enterprise_applications/web_tier/index.html
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications/web_tier/index.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg245754.html?OpenDocument
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg245754.html?OpenDocument
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg245755.html?OpenDocument
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg245755.html?OpenDocument
http://java.sun.com/docs/books/tutorial/servlets/index.html

v Introduction to JavaServer Pages - Tutorial

http://www-4.ibm.com/software/webservers/appserv/education.html#online

v Bean Scripting Framework description

http://www.mozilla.org/rhino/bsf.html

v Web delivered samples in the Samples Gallery

http://www7b.software.ibm.com/wsdd/library/samples/AppServer.html

v Java 2 Software Development Kit (SDK)

http://java.sun.com/j2se/1.3/

v Servlet 2.3 Specification

http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html

v JavaServer Pages 1.2 Specification

http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html

v Differences between JavaScript and ECMAScript

http://www.webstandards.org/learn/resources/javascript/index.html

v ISO 8859 Specifications

http://www.iso.org/iso/en/CatalogueListPage.CatalogueList

70 IBM WebSphere Application Server Network Deployment, Version 5: Applications

http://www-4.ibm.com/software/webservers/appserv/education.html#online
http://www.mozilla.org/rhino/bsf.html
http://www7b.software.ibm.com/wsdd/library/samples/AppServer.html
http://java.sun.com/j2se/1.3/
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://www.webstandards.org/learn/resources/javascript/index.html
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList

Chapter 3. Managing HTTP sessions

IBM WebSphere Application Server provides a service for managing HTTP
sessions: Session Manager. The key activities for session management are
summarized below.

Before you begin these steps, make sure you are familiar with the programming
model for accessing HTTP session support in the applications following the Servlet
2.3 API.

Steps for this task
1. Plan your approach to session management, which could include session

tracking, session recovery, and session clustering.
2. Create or modify your own applications to use session support to maintain

sessions on behalf of Web applications.
3. (Assemble your application.)
4. (Deploy your application.)
5. Ensure the administrator appropriately configures session management in the

administrative domain.
6. Adjust configuration settings and perform other tuning activities for optimal

use of sessions in your environment.

Sessions
A session is a series of requests to a servlet, originating from the same user at the
same browser.

Sessions allow applications running in a Web container to keep track of individual
users.

For example, a servlet might use sessions to provide ″shopping carts″ to online
shoppers. Suppose the servlet is designed to record the items each shopper
indicates he or she wants to purchase from the Web site. It is important that the
servlet be able to associate incoming requests with particular shoppers. Otherwise,
the servlet might mistakenly add Shopper_1’s choices to the cart of Shopper_2.

A servlet distinguishes users by their unique session IDs. The session ID arrives
with each request. If the user’s browser is cookie-enabled, the session ID is stored
as a cookie. As an alternative, the session ID can be conveyed to the servlet by
URL rewriting, in which the session ID is appended to the URL of the servlet or
JavaServer Pages (JSP) file from which the user is making requests. For requests
over HTTPS or Secure Sockets Layer (SSL), Another alternative is to use SSL
information to identify the session.

© Copyright IBM Corp. 2002 71

Migrating HTTP sessions
Note: In Version 5 default write frequency mode is TIME_BASED_WRITES, which
is different from Version 4.0 and 3.5 default mode of END_OF_SERVICE.

Migrating from Version 4.0

No programmatic changes are required to migrate from version 4.0 to version 5.

Migrating from Version 3.5

If you have Version 3.5 applications running in Servlet 2.1 mode, some of the
following Version 5 differences might influence how you choose to track and
manage sessions.

Steps for this task
1. During application development, modify session-related APIs as needed.

Some API changes are required in order to redeploy existing applications on
Version 5. These include changes to the HttpSession API itself as well as issues
associated with moving to support for the Servlet 2.3 specification. Certain
Servlet 2.1 API methods have been deprecated in Servlet 2.3 API . These
deprecated APIs still work in Version 5.0, but they may be removed in a future
version of the API. Changes are summarized in the following list:
v Replace instances of getValue() with getAttribute()
v Replace instances of getValueNames() with getAttributeNames()
v Replace instances of removeValue() with removeAttribute()
v Replace instances of putValue() with setAttribute()

2. During application development, modify Web application behavior as needed.
In accordance with the Servlet 2.3 specification, HttpSession objects must be
scoped within a single Web application context; they may not be shared
between contexts. This means that a session can no longer span Web
applications. Objects added to a session by a servlet or JSP in one Web
application cannot be accessed from another Web application. The same session
ID may be shared (because the same cookie is in use), but each Web application
will have a unique session associated with the session ID. Version 5 provides a
feature that can be used to extend scope of a session to enterprise application.

3. Use administrative tools to configure Session Manager security settings as
needed.
Relative to session security, the default Session Manager setting for Integrate
Security is now false. This is different from the default setting in some earlier
releases.

4. Use administrative tools to configure the JSP enabler and application server as
needed.
In Version 3.5 of the product, JSP files that contained the usebean tag with
scope set to session did not always work properly when session persistence
was enabled. Specifically, the JSP writer needed to write a scriplet to explicitly
set the attribute (that is, to call setAttribute()) if it was changed as part of JSP
processing.
Two new features in Version 5.0 help address this problem:
v You can set dosetattribute to true on the JSP InitParameter.
v You can set the Write Contents option to Write all.

72 IBM WebSphere Application Server Network Deployment, Version 5: Applications

The differences between the two solutions are summarized in the following
table:

Applies to Configured at Action

dosetattribute set to
true

JSP JSP enabler Assures that JSP
session-scoped beans
always call
setAttribute()

Write Contents
option set to Write all

servlet or JSP application server All session data
(changed or
unchanged) is
written to the
external location

If session persistence is enabled and a class reload for the Web application
occurs, the sessions associated with the Web application are maintained in the
persistent store and will be available after the reload.

Developing session management in servlets
This information, combined with the coding example SessionSample.java, provides
a programming model for implementing sessions in your own servlets.

Steps for this task
1. Get the HttpSession object.

To obtain a session, use the getSession() method of the
javax.servlet.http.HttpServletRequest object in the Java Servlet 2.3 API.
When you first obtain the HttpSession object, the Session Management facility
uses one of three ways to establish tracking of the session: cookies, URL
rewriting, or Secure Sockets Layer (SSL) information.
Assume the Session Management facility uses cookies. In such a case, the
Session Management facility creates a unique session ID and typically sends it
back to the browser as a cookie. Each subsequent request from this user (at the
same browser) passes the cookie containing the session ID, and the Session
Management facility uses this ID to find the user’s existing HttpSession object.
In Step 1 of the code sample, the Boolean(create) is set to true so that the
HttpSession object is created if it does not already exist. (With the Servlet 2.3
API, the javax.servlet.http.HttpServletRequest.getSession() method with no
boolean defaults to true and creates a session if one does not already exist for
this user.)

2. Store and retrieve user-defined data in the session.
After a session is established, you can add and retrieve user-defined data to the
session. The HttpSession object has methods similar to those in
java.util.Dictionary for adding, retrieving, and removing arbitrary Java objects.
In Step 2 of the code sample, the servlet reads an integer object from the
HttpSession, increments it, and writes it back. You can use any name to identify
values in the HttpSession object. The code sample uses the name
sessiontest.counter.
Because the HttpSession object is shared among servlets that the user might
access, consider adopting a site-wide naming convention to avoid conflicts.

3. (Optional) Output an HTML response page containing data from the
HttpSession object.

Chapter 3. Managing HTTP sessions 73

4. Provide feedback to the user that an action has taken place during the session.
You may want to pass HTML code to the client browser indicating that an
action has occurred.
For example, in step 3 of the code sample, the servlet generates a Web page
that is returned to the user and displays the value of the sessiontest.counter
each time the user visits that Web page during the session.

5. (Optional) Notify Listeners.
Objects stored in a session that implement the
javax.servlet.http.HttpSessionBindingListener interface are notified when the
session is preparing to end and become invalidated. This notice enables you to
perform post-session processing, including permanently saving the data
changes made during the session to a database.

6. End the session.
You can end a session:
v Automatically with the Session Management facility if a session is inactive

for a specified time. The administrators provide a way to specify the amount
of time after which to invalidate a session.

v By coding the servlet to call the invalidate() method on the session object.

SessionSample.java
import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SessionSample extends HttpServlet {
public void doGet (HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

// Step 1: Get the Session object

boolean create = true;
HttpSession session = request.getSession(create);

// Step 2: Get the session data value

Integer ival = (Integer)
session.getAttribute ("sessiontest.counter");
if (ival == null) ival = new Integer (1);
else ival = new Integer (ival.intValue () + 1);
session.setAttribute ("sessiontest.counter", ival);

// Step 3: Output the page

response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<html>");
out.println("<head><title>Session Tracking Test<

/title></head>");
out.println("<body>");
out.println("<h1>Session Tracking Test</h1>");
out.println ("You have hit this page " + ival + " times" +

"
");
out.println ("Your " + request.getHeader("Cookie"));
out.println("</body></html>");

}
}

74 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Assembling so that session data can be shared
In accordance with the Servlet 2.3 API specification, by default the Session
Management facility supports session scoping by Web module only. Only servlets
in the same Web module can access the data associated with a particular session.
WebSphere Application Server provides an option that you can use to extend the
scope of the session attributes to an enterprise application. Therefore, you can
share session attributes across all the Web modules in an enterprise application.
This option is provided as an IBM extension.

Restriction: To use this option, you must install all the Web modules in the
enterprise application on a given server. You cannot split up Web modules in the
enterprise application by servers. For example, with an enterprise application
containing two Web modules, you cannot use this option when one Web module is
installed on one server and second Web module is installed on a different server.
In such split installations, applications might share session attributes across Web
modules using distributed sessions, but session data integrity is lost when
concurrent access to a session is made in different Web modules. It also severely
restricts use of some Session Management features, like TIME_BASED_WRITES.
For enterprise applications on which this option is enabled, the Session
Management configuration on the Web module inside the enterprise application is
ignored. Then Session Management configuration defined on enterprise application
is used if Session Management is overwritten at the enterprise application level.
Otherwise, the Session Management configuration on the Web container is used.

Do the following to share session data across Web modules in an enterprise
application:

Steps for this task
1. Launch the (Application Assembly Tool) (AAT).
2. Click the application (EAR file) you want to share.
3. Click the IBM extension tab.
4. Click Shared httpsession context.
5. Click Apply.

Make sure the class definition of attributes put into session are available to all
the Web modules in the enterprise application.

6. Save the application (EAR) file.

Servlet API Behavior
If shared HttpSession context is turned on in an enterprise application, HttpSession
listeners defined in all the Web modules inside the enterprise application are
invoked for session events. The order of listener invocation is not guaranteed.

Session security support
You can integrate HTTP sessions and security in IBM WebSphere Application
Server. When security integration is enabled in the Session Management facility
and a session is accessed in a protected resource, you can access that session only
in protected resources from then on. You cannot mix secured and unsecured
resources accessing sessions when security integration is turned on. Security
integration in the Session Management facility is not supported in form-based
login with SWAM.

Chapter 3. Managing HTTP sessions 75

Security integration rules for HTTP sessions
Only authenticated users can access sessions created in secured pages and are
created under the identity of the authenticated user. Only this authenticated user
can access these sessions in other secured pages. To protect these sessions from
unauthorized users, you cannot access them from an unsecure page.

Programmatic details and scenarios
IBM WebSphere Application Server maintains the security of individual sessions.

An identity or user name, readable by the
com.ibm.websphere.servlet.session.IBMSession interface, is associated with a
session. An unauthenticated identity is denoted by the user name anonymous. IBM
WebSphere Application Server includes the
com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException class,
which is used when a session is requested without the necessary credentials.

The Session Management facility uses the WebSphere Application Server security
infrastructure to determine the authenticated identity associated with a client
HTTP request that either retrieves or creates a session. WebSphere Application
Server security determines identity using certificates, LPTA, and other methods.

After obtaining the identity of the current request, the Session Management facility
determines whether to return the session requested using a getSession() call or not.

The following table lists possible scenarios in which security integration is enabled
with outcomes dependent on whether the HTTP request is authenticated and
whether a valid session ID and user name was passed to the Session Management
facility.

Unauthenticated HTTP
request is used to retrieve a
session

HTTP request is
authenticated, with an
identity of ″FRED″ used to
retrieve a session

No session ID was passed in
for this request, or the ID is
for a session that is no longer
valid

A new session is created. The
user name is anonymous

A new session is created. The
user name is FRED

A session ID for a valid
session is passed in. The
current session user name is
″anonymous″

The session is returned. The session is returned.
Session Management changes
the user name to FRED

A session ID for a valid
session is passed in. The
current session user name is
FRED

The session is not returned.
An
UnauthorizedSessionRequest
Exception error is thrown*

The session is returned.

A session ID for a valid
session is passed in. The
current session user name is
BOB

The session is not returned.
An
UnauthorizedSessionRequest
Exception error is thrown*

The session is not returned.
An
UnauthorizedSessionRequest
Exception error is thrown*

* A com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException error
is thrown to the servlet.

76 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Session management support
WebSphere Application Server provides facilities, grouped under the heading
Session Management, that support the javax.servlet.http.HttpSession interface
described in the Servlet API specification.

In accordance with the Servlet 2.3 API specification, the Session Management
facility supports session scoping by Web module only. Only servlets in the same
Web module can access the data associated with a particular session. Multiple
requests from the same browser, each specifying a unique Web application, result
in multiple sessions with a shared session ID. You can invalidate any of the
sessions that share a session ID without affecting the other sessions.

You can configure a session timeout for each Web application. A Web application
timeout value of 0 (the default value) means that the invalidation timeout value
from the Session Management facility is used.

When an HTTP client interacts with a servlet, the state information associated with
a series of client requests is represented as an HTTP session and identified by a
session ID. Session Management is responsible for managing HTTP sessions,
providing storage for session data, allocating session IDs, and tracking the session
ID associated with each client request through the use of cookies or URL rewriting
techniques. Session Management can store session-related information in several
ways:
v In application server memory (the default). This information cannot be shared

with other application servers.
v In a database. This storage option is known as database persistent sessions.
v In another WebSphere Application Server instance. This storage option is

known as memory-to-memory sessions.

The last two options are referred to as distributed sessions. Distributed sessions are
essential for using HTTP sessions for failover facility. When an application server
receives a request associated with a session ID that it currently does not have in
memory, it can obtain the required session state by accessing the external store
(database or memory-to-memory). If distributed session support is not enabled, an
application server cannot access session information for HTTP requests that are
sent to servers other than the one where the session was originally created. Session
Management implements caching optimizations to minimize the overhead of
accessing the external store, especially when consecutive requests are routed to the
same application server.

Storing session states in an external store also provides a degree of fault tolerance.
If an application server goes offline, the state of its current sessions is still available
in the external store. This availability enables other application servers to continue
processing subsequent client requests associated with that session.

Saving session states to an external location does not completely guarantee their
preservation in case of a server failure. For example, if a server fails while it is
modifying the state of a session, some information is lost and subsequent
processing using that session can be affected. However, this situation represents a
very small period of time when there is a risk of losing session information.

The drawback to saving session states in an external store is that accessing the
session state in an external location can use valuable system resources. Session
Management can improve system performance by caching the session data at the

Chapter 3. Managing HTTP sessions 77

server level. Multiple consecutive requests that are directed to the same server can
find the required state data in the cache, reducing the number of times that the
actual session state is accessed in external store and consequently reducing the
overhead associated with external location access.

Configuring session management by level
When you configure session management at the Web container level, all
applications and the respective Web modules in the Web container normally inherit
that configuration, setting up a basic default configuration for the applications and
Web modules below it.

However, you can set up different configurations individually for specific
applications and Web modules that vary from the Web container default. These
different configurations override the default for these applications and Web
modules only.

Note: When you overwrite the default session management settings on the
application level, all the Web modules below that application inherit this new
setting unless they too are set to overwrite these settings.

Steps for this task
1. Open the Administrative console.
2. Select the level that this configuration applies to:

v For the web container level:
a. Click Servers > Application Servers.
b. Select a server from the list of application servers.
c. Under Additional Properties, click Web Container.

v For the enterprise application level:
a. Click Applications > Applications.
b. Select an applications from the list of applications.

v For the Web module level:
a. Click Applications > Applications.
b. Select an applications from the list of applications.
c. Under Related Items, click Web Modules defined for this Application.
d. Click a Web module from the list of Web modules.

3. Under Additional Properties, click Session Management.
4. Make whatever changes you need to manage sessions
5. (Optional) If you are working on the Web module or application level and

want these settings to override the inherited Session Management settings,
select Overwrite.

6. Click Apply and Save.

Session tracking options
There are several options for session tracking, depending on what sort of tracking
method you want to use:
v Session tracking with cookies
v Session tracking with URL rewriting
v Session tracking with SSL information

78 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Session tracking with cookies
Tracking sessions with cookies is the default. No special programming is required
to track sessions with cookies.

Session tracking with URL rewriting
An application that uses URL rewriting to track sessions must adhere to certain
programming guidelines. The application developer needs to do the following:
v Program servlets to encode URLs
v Supply a servlet or Java Server Pages (JSP) file as an entry point to the

application

Using URL rewriting also requires that you enable URL rewriting in the Session
Management facility.

Note: In certain cases, clients cannot accept cookies. Therefore, you cannot use
cookies as a session tracking mechanism. Applications can use URL rewriting as a
substitute.

Program session servlets to encode URLs

Depending on whether the servlet is returning URLs to the browser or redirecting
them, include either encodeURL() or encodeRedirectURL() in the servlet code.
Examples demonstrating what to replace in your current servlet code follow.

Rewrite URLs to return to the browser

Suppose you currently have this statement:
out.println("catalog<a>");

Change the servlet to call the encodeURL method before sending the URL to the
output stream:
out.println("<a href=\"");
out.println(response.encodeURL ("/store/catalog"));
out.println("\">catalog");

Rewrite URLs to redirect

Suppose you currently have the following statement:
response.sendRedirect ("http://myhost/store/catalog");

Change the servlet to call the encodeRedirectURL method before sending the URL
to the output stream:
response.sendRedirect (response.encodeRedirectURL

("http://myhost/store/catalog"));

The encodeURL() and encodeRedirectURL() methods are part of the
HttpServletResponse object. These calls check to see if URL rewriting is configured
before encoding the URL. If it is not configured, the calls return the original URL.

If both cookies and URL rewriting are enabled and response.encodeURL() or
encodeRedirectURL() is called, the URL is encoded, even if the browser making the
HTTP request processed the session cookie.

Chapter 3. Managing HTTP sessions 79

You can also configure session support to enable protocol switch rewriting. When
this option is enabled, the product encodes the URL with the session ID for
switching between HTTP and HTTPS protocols.

Supply a servlet or JSP file as an entry point

The entry point to an application (such as the initial screen presented) may not
require the use of sessions. However, if the application in general requires session
support (meaning some part of it, such as a servlet, requires session support), then
after a session is created, all URLs are encoded in perpetuate the session ID for the
servlet (or other application component) requiring the session support.

The following example shows how you can embed Java code within a JSP file:
<%
response.encodeURL ("/store/catalog");
%>

Session tracking with SSL information
No special programming is required to track sessions with Secure Sockets Layer
(SSL) information.

To use SSL information, turn on Enable SSL Tracking in the Session Management
property sheet. Because the SSL session ID is negotiated between the Web browser
and HTTP server, this ID cannot survive an HTTP server failure. However, the
failure of an application server does not affect the SSL session ID if an external
HTTP Server is present between WebSphere Application Server and the browser.

SSL tracking is supported for the IBM HTTP Server and iPlanet Web servers only.
You can control the lifetime of an SSL session ID by configuring options in the Web
server. For example, in the IBM HTTP Server, set the configuration variable
SSLV3TIMEOUT to provide an adequate lifetime for the SSL session ID. An
interval that is too short can cause a premature termination of a session. Also,
some Web browsers might have their own timers that affect the lifetime of the SSL
session ID. These Web browsers may not leave the SSL session ID active long
enough to serve as a useful mechanism for session tracking. Internal Http Server of
WebSphere also supports SSL Tracking.

When using the SSL session ID as the session tracking mechanism in a cloned
environment, use either cookies or URL rewriting to maintain session affinity. The
cookie or rewritten URL contains session affinity information that enables the Web
server to properly route a session back to the same server for each request.

Configuring session tracking
To configure session tracking, complete the following:

Steps for this task
1. Go to the appropriate level of Session Management.
2. Specify which session tracking mechanism you want to pass the session ID

between the browser and the servlet:
v To track sessions with cookies, click Enable Cookies.

To change the cookie settings, click Modify.
v To track sessions with URL rewriting, click Enable URL Rewriting.

80 IBM WebSphere Application Server Network Deployment, Version 5: Applications

If you want to enable protocol switch rewriting, click Enable protocol switch
rewriting.

v To track sessions with SSL information, click Enable SSL ID tracking.
3. Click Apply.
4. Click Save.
5. Define the session recovery characteristics.

Serializing access to session data
The Servlet API supports concurrent access to a session in a given server instance.
WebSphere Application Server provides an option to prevent the concurrent access
to a session in a given server instance so that concurrent modification of a session
does not occur in a given server instance. This prevention is achieved by
synchronizing the requests based on session. When this feature is turned on, a
session is obtained for the request before invoking the servlet and requests are
synchronized by locking the session for the servlet execution time. Note that
synchronization is based on the memory copy of session. So this feature cannot
serialize requests across servers based on session when session affinity fails.

Restriction: Use this feature only when concurrent modification of the same
session data is possible and is not desirable by the application. This feature has
overhead of serializing the requests based on a session.

Do the following to synchronize session access:

Steps for this task
1. Select the level of Session Management on which you want to serialize session

access.
2. Under Serialize Session access, click Allow serial access.
3. In the Maximum wait time box, type the amount of time, in milliseconds, a

servlet waits on a session before continuing execution. The default is 120000
milliseconds or two minutes.

4. (Optional) Select Allow access on timeout if you want the servlet execution to
abort when the session request times out. This selection creates error logs. If
you do not select this box, the request is executed normally.

5. Click Apply.
6. Click Save.

Session Management settings
Use this page to manage HTTP session support. This support includes specifying a
session tracking mechanism, setting maximum in-memory session count,
controlling overflow, and configuring session timeout.

To view this administrative console page, click Servers > Application Servers >
server_name > Web Container > Session Management.

Overwrite Session Management
Specifies whether or not these Session Management settings take precedence over
those normally inherited from a higher level for the current application or Web
module.

By default, Web modules inherit Session Management settings from the application
level above it, and applications inherit Session Management settings from the Web
container level above it.

Chapter 3. Managing HTTP sessions 81

Session tracking mechanism
Specifies a mechanism for HTTP session management.

Mechanism Function
Enable SSL ID Tracking Specifies that session tracking uses Secure

Sockets Layer (SSL) information as a session
ID. Enabling SSL tracking takes precedence
over cookie-based session tracking and URL
rewriting.

Enable Cookies Specifies that session tracking uses cookies to
carry session IDs. If cookies are enabled,
session tracking recognizes session IDs that
arrive as cookies and tries to use cookies for
sending session IDs. If cookies are not
enabled, session tracking uses URL rewriting
instead of cookies (if URL rewriting is
enabled).

Enabling cookies takes precedence over URL
rewriting. Do not disable cookies in the
Session Management facility of the
application server that is running the
administrative application because this action
causes the administrative application not to
function after a restart of the server. As an
alternative, run the administrative
application in a separate process from your
applications.

Click Modify to change these settings.
Enable URL Rewriting Specifies that the Session Management

facility uses rewritten URLs to carry the
session IDs. If URL rewriting is enabled, the
Session Management facility recognizes
session IDs that arrive in the URL if the
encodeURL method is called in the servlet.

Enable Protocol Switch Rewriting Specifies that the session ID is added to a
URL when the URL requires a switch from
HTTP to HTTPS or from HTTPS to HTTP. If
rewriting is enabled, the session ID is
required to go between HTTP and HTTPS.

Maximum in-memory session count
Specifies the maximum number of sessions to maintain in memory.

The meaning differs depending on whether you are using in-memory or
distributed sessions. For in-memory sessions, this value specifies the number of
sessions in the base session table. Use the Allow Overflow property to specify
whether to limit sessions to this number for the entire Session Management facility
or to allow additional sessions to be stored in secondary tables. For distributed
sessions, this value specifies the size of the memory cache for sessions. When the
session cache has reached its maximum size and a new session is requested, the
Session Management facility removes the least recently used session from the cache
to make room for the new one.

Overflow
Specifies that the number of sessions in memory can exceed the value specified by
the Max In Memory Session Count property. This option is valid only in
nondistributed sessions mode.

82 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Session timeout
Specifies how long a session can go unused before it is no longer valid. Specify
either Set timeout or No timeout. Specify the value in minutes greater than or
equal to two.

The value of this setting is used as a default when the session timeout is not
specified in a Web module deployment descriptor. Note that to preserve
performance, the invalidation timer is not accurate to the second. When the Write
Frequency is time based, ensure that this value is least twice as large as the write
interval.

Security integration
Specifies that when security integration is enabled, the Session Management facility
associates the identity of users with their HTTP sessions

Serialize session access
Specifies that concurrent session access in a given server is not allowed.

Maximum wait time Specifies the maximum amount of time a
servlet request waits on an HTTP session
before continuing execution. This parameter
is optional and expressed in milliseconds.
The default is 120000, or 2 minutes. Under
normal conditions, a servlet request waiting
for access to an HTTP session gets notified
by the request that currently owns the given
HTTP session when the request finishes.

Session access on timeout Specifies whether the request executes the
servlet or aborts servlet execution in the
event of a timeout and creates error logs.
This parameter is optional and expressed as
the boolean true or false. If the value is false,
multiple servlet requests that have timed out
concurrently, execute concurrently. The
default value is true, servlet execution aborts.

Cookie settings
Use this page to configure cookie settings for session management.

To view this administrative console page, click Servers > Application Servers >
server_name > Web Container > Session Management > Enable Cookies.

Cookie name
Specifies a unique name for the session management cookie. The servlet
specification requires the name JSESSIONID. However, for flexibility this value can
be configured.

Secure cookies
Specifies that the session cookies include the secure field. Enabling the feature
restricts the exchange of cookies to HTTPS sessions only.

Cookie domain
Specifies the domain field of a session tracking cookie. This value controls whether
or not a browser sends a cookie to particular servers. For example, if you specify a
particular domain, session cookies are sent to hosts in that domain. The default
domain is the server.

Chapter 3. Managing HTTP sessions 83

Cookie path
Specifies that a cookie is sent to the URL designated in the path. Specify any string
representing a path on the server. ″/″ indicates root directory. Specify a value to
restrict the paths to which the cookie will be sent. By restricting paths, you prevent
the cookie from going to certain URLs on the server. If you specify the root
directory, the cookie is sent no matter which path on the given server is accessed.

Cookie maximum age
Specifies the amount of time that the cookie lives on the client browser. Specify
that the cookie lives only as long as the current browser session, or to a maximum
age. If you choose the maximum age option, specify the age in seconds. This value
corresponds to the Time to Live (TTL) value described in the Cookie specification.

Default is the current browser session which is equivalent to setting the value to
-1.

Distributed sessions
WebSphere Application Server provides the following session mechanisms in a
distributed environment:
v Database Session persistence, where sessions are stored in the database

specified.
v Memory-to-memory Session replication, where sessions are stored in one or

more specified WebSphere Application Server instances.

When a session contains attributes that implement HttpSessionActivationListener,
notification occurs anytime the session is activated (that is, session is read to the
memory cache) or passivated (that is, session leaves the memory cache).
Passivation can occur because of a server shutdown or when the session memory
cache is full and an older session is removed from the memory cache to make
room for a newer session. It is not guaranteed that a session is passivated in one
application server prior to being activated in another.

Session recovery support
For session recovery support, WebSphere Application Server provides distributed
session support in the form of database sessions and memory-to-memory
replication. Use session recovery support under the following conditions:
v When the user’s session data must be maintained across a server restart
v When the user’s session data is too valuable to lose through an unexpected

server failure

All the attributes set in a session must implement java.io.Serializable if the session
requires external storage. In general, consider making all objects held by a session
serialized, even if immediate plans do not call for session recovery support. If the
Web site grows, and session recovery support becomes necessary, the transition
occurs transparently to the application if the sessions only hold serialized objects.
If not, a switch to session recovery support requires coding changes to make the
session contents serialized.

Distributed Environment settings
Use this page to specify a type for saving a session in a distributed environment.

84 IBM WebSphere Application Server Network Deployment, Version 5: Applications

To view this administrative console page, click Servers > Application Servers >
server_name > Web Container > Session Management > Distributed Environment
Settings.

Distributed Environment
Specifies a type of distributed environment for saving a session in.

None Specifies that the Session Management
facility discards the session data when the
server shuts down.

Database Specifies that the Session Management
facility stores session information in the data
source specified by the data source
connection settings. Click Modify to change
these data source settings.

Memory to memory replication Specifies that the Session Management
facility copies the session data into another
WebSphere instance. Click Advanced to
specify the replicator to use.

Configuring for database session persistence
To configure the Session Management facility for database session persistence,
complete the following:

Steps for this task
1. Create a JDBC Driver.
2. Create a data source pointing to an existing database, using the JDBC driver

that you created. Note the JNDI name of the data source.
3. Go to the appropriate level of Session Management.
4. Click Distributed Environment Settings

5. Select and click Database.
6. Specify the Data Source JNDI name from step 2.
7. Specify the database user ID and password for accessing the database.
8. Retype the password for confirmation.
9. (Optional) Configure a table space and page sizes for DB2 session databases.

10. (Optional) Switch to a multirow schema.
11. Click OK.
12. (Optional) If you want to change the tuning parameters, click Custom Tuning

Parameters and select a setting or customize one.
13. Click Apply.
14. Click Save.

Switching to a multirow schema
By default, a single session maps to a single row in the database table used to hold
sessions. With this setup, there are hard limits to the amount of user-defined,
application-specific data that WebSphere Application Server can access.

Steps for this task
1. Modify the Session Management facility properties to switch from single to

multirow schema.

Chapter 3. Managing HTTP sessions 85

2. Manually drop the database table or delete all the rows in the database table
that the product uses to maintain HttpSession objects.
To drop the table:
a. Determine which data source configuration Session Management is using.
b. In the data source configuration, look up the database name.
c. Use the database facilities to connect to the database.
d. Drop the SESSIONS table.

Configuring tablespace and page sizes for DB2 session
databases

If you are using DB2 for session persistence, you can increase the page size to
optimize performance for writing large amounts of data to the database. Page sizes
of 8K, 16K, and 32K are supported.

To use a page size other than the default (4K), do the following:

Steps for this task
1. If the SESSIONS table already exists, drop it from the DB2 database.
2. Create a new DB2 buffer pool and table space, specifying the same page size

(8K, 16K or 32K) for both, and assign the new buffer pool to this table space.
DB2 Connect to session
DB2 CREATE BUFFERPOOL sessionBP SIZE 1000 PAGESIZE 8K
DB2 Connect reset
DB2 Connect to session
DB2 CREATE TABLESPACE sessionTS PAGESIZE 8K MANAGED BY SYSTEM

USING (’D:\DB2\NODE0000\SQL00005\sessionTS.0’) BUFFERPOOL sessionBP
DB2 Connect reset

Refer to DB2 product documentation for details.
3. Configure the correct table space name and page size in the Session

Management facility.
Page size is referred to as row size on the Session Management page.)

Results

When the product is restarted, the Session Management facility creates a new
SESSIONS table in the specified tablespace based on the indicated page size.

Database settings
Use this page to specify the settings for database session support.

To view this administrative console page, click Servers > Application Servers >
server_name > Web Container > Session Management > Distributed Environment
Settings > Database.

Datasource JNDI Name
Specifies the datasource description

The JNDI name of the non-XA enabled data source from which Session
Management obtains database connections. For example, if the JNDI name of the
datasource is ″jdbc/sessions″, specify ″jdbc/sessions.″ The data source represents a

86 IBM WebSphere Application Server Network Deployment, Version 5: Applications

pool of database connections and a configuration for that pool (such as the pool
size). The data source must already exist as a configured resource in the
environment.

User ID
Specifies the user ID for database access

Password
Specifies the password for database access

Confirm Password
Specifies the password a second time to ensure it recorded correctly.

DB2 Row Size
Specifies the tablespace page size configured for the sessions table, if using a DB2
database. Possible values are 4, 8, 16, and 32 kilobytes (K). The default row size is
4K.

The default row size is 4K. In DB2, it can be updated to a larger value. This can
help database performance in some environments. When this value is other than 4,
you must specify Table Space Name to use. For 4K pages, the Table Space Name is
optional.

Table Space Name
Specifies that tablespace to be used for the sessions table.

This value is required when the DB2 Page Size is other than 4K.

Use Multirow Sessions
Specifies that each instance of application data be placed in a separate row in the
database, allowing larger amounts of data to be stored for each session. This action
can yield better performance in certain usage scenarios. If using multirow schema
is not enabled, instances of application data can be placed in the same row.

Multirow schema considerations
IBM WebSphere Application Server supports the use of a multirow schema option
in which each piece of application specific data is stored in a separate row of the
database. With this setup, the total amount of data you can place in a session is
now bound only by the database capacities. The only practical limit that remains is
the size of the session attribute object.

The multirow schema potentially has performance benefits in certain usage
scenarios, such as when larger amounts of data are stored in the session but only
small amounts are specifically accessed during a given servlet processing of an
HTTP request. In such a scenario, avoiding unneeded Java object serialization is
beneficial to performance.

Understand that switching between multirow and single row is not a trivial
proposition.

In addition to allowing larger session records, using multirow schema can yield
performance benefits. However, it requires a little work to switch from single-row
to multirow schema, as shown in the instructions below.

Chapter 3. Managing HTTP sessions 87

Coding considerations and test environment
Consider configuring direct single-row usage to one database and multirow usage
to another database while you verify which option suits your application needs.
(Do this in code by switching the data source used; then monitor performance.)

Programming issue Application scenario

Reasons to use single-row v You can read or write all values with just
one record read and write.

v This takes up less space in a database
because you are guaranteed that each
session is only one record long.

Reasons not to use single-row 2-megabyte limit of stored data per session.

Reasons to use multirow v The application can store an unlimited
amount of data; that is, you are limited
only by the size of the database and a
2-megabyte-per-record limit.

v The application can read individual fields
instead of the whole record. When large
amounts of data are stored in the session
but only small amounts are specifically
accessed during servlet processing of an
HTTP request, multirow sessions can
improve performance by avoiding
unneeded Java object serialization.

Reasons not to use multirow If data is small in size, you probably do not
want the extra overhead of multiple row
reads when you can store everything in one
row.

In the case of multirow usage, design your application data objects not to have
references to each other, to prevent circular references. For example, suppose you
are storing two objects A and B in the session using HttpSession.put(..) method,
and A contains a reference to B. In the multirow case, because objects are stored in
different rows of the database, when objects A and B are retrieved later, the object
graph between A and B is different than stored. A and B behave as independent
objects.

Memory-to-memory replication
WebSphere Application Server supports session replication to another WebSphere
Application Server instance. This support is referred to as memory-to-memory session
replication. In this mode, sessions can be replicated to one or more WebSphere
Application Server instances to address a single-point of failure (SPOF).

The WebSphere Application Server instance in which the session is currently
processed is referred to as the owner of the session. In a clustered environment,
session affinity in the WebSphere Application Server plug-in routes the requests for
a given session to the same server. If the current owner server instance of the
session fails, then the WebSphere Application Server plug-in will route the requests
to the another appropriate server in the cluster. This server either retrieves the
session from a server that has the backup copy of the session or it retrieves the

88 IBM WebSphere Application Server Network Deployment, Version 5: Applications

session from its own backup copy store, and the session resides there. The server
now becomes the owner of the session and affinity is now maintained to this
server.

A WebSphere Application Server instance can serve servlets and at the same time
act as a backup store for sessions owned by other WebSphere Application Server
instances. You can also set up a WebSphere Application Server instance so that it
only stores backups of other WebSphere Application Server sessions. This storage
option is controlled by the mode parameter. When configuring the Session
Management facility for memory-to-memory replication, you can choose Session
Management can Server mode, Client Mode, or Both. The default is Both.

In Server mode, the Session Management facility acts as a backup store for sessions
owned by other WebSphere Application Server instances. In Client mode, the
Session Management facility publishes the session to other WebSphere Application
Server instances and retrieves the session from other WebSphere Application Server
instances when the session is not in local memory. In Both mode, the Session
Management facility acts as a backup store for sessions owned by other servers
and also publishes owned sessions to other WebSphere Application Server
instances.

When a session is created or updated in a WebSphere Application Server instance,
the session leverages one of the replicator entries under the replication domain that
is configured with the Session Management facility. This session gets replicated to
the WebSphere Application Server instances that also connect to the same
replicator domain and are acting either in Server or Both mode (in other words,
they are not just replicated ″clients″).

In a cluster, by default, sessions are replicated in all the servers in the cluster that
are connected to the same replicator domain. This replication can be redundant if
there are large number of servers in a cluster. The Session Management facility has
an option to partition the servers into groups when storing sessions. You can view
the Replicator as having n partitions. The default is 10 partitions. By default the
Session Management facility running in Server mode listens to all the partitions on
the replicator. When a session is created in this facility, it is written to one of the
partitions on the replicator. A partition is selected using mod of ten on number of
sessions created (that is, number of sessions created is 10%). You can configure the
Session Management facility on each server to listen to only certain partitions. In a
cluster environment having large number of servers, some servers can be
configured to listen on some partitions and others on a different partitions. Note
that all the servers are still logically linked together through the replicator domain
and you can retrieve a session in any server in the cluster. The size of the
replication domain is set under ″manage internal replication″ in the Environment
tab. Configure which groups and partitions a specific Session Management facility
listens to under Session Management. There is also an option to replicate the
session to only one other server (the single replica option under ″manage internal
replication″). When this option is chosen, the one single server in the replication
domain is selected during session creation, and all updates to the session are only
replicated to that single server.

Chapter 3. Managing HTTP sessions 89

Configuring for memory to memory replication
To configure the Session Management facility for memory-to-memory replication,
complete the following:

Steps for this task
1. Create a replication domain and replicator.
2. Go to the appropriate level of Session Management.
3. Click Distributed Environment Settings

4. (Optional) If no replicator has been created for any server, a note appears
stating this. In this situation, click Memory to Memory Replication to cause
the Internal Replication Domain wizard to appear.
This wizard leads you through the process of creating a replication domain
and a replicator. After you have created a replication domain and a replicator,
begin again with step 2.

5. (Optional) If a replicator has been created and associated with this or another
server, select Memory to Memory Replication and click Apply.
If a replicator is associated with this server, that replicator is used. If a
replicator is not associated with this server, a replicator associated with
another server is used.

6. (Optional) If you want to change replicator for memory-to-memory
replication, click Memory to Memory Replication, select a replication domain
and a replicator from the lists, and specify the Listen to partition IDs. If the
replicator is on a different cell, specify an IP address, port details, Listen to
partition IDs. If you want to change the runtime mode, select the appropriate
setting. When you have finished changing the replicator, click Apply

7. Click OK.
8. (Optional) If you want to change the tuning parameters, click Custom Tuning

Parameters and select a setting or customize one.
9. Click Apply.

10. Click Save.

Memory-to-memory sessions settings
Use this page to configure memory-to-memory sessions.

To view the Memory-to-memory Sessions page, click Servers > Application
Servers > server_name > Web Container > Session Management > Distributed
Environment Settings > Memory to Memory Replication.

Replication
Use one of these options to select the replicator for the Session Management
facility to use for memory to memory replication.

Select replicator from the following domain

Specifies a replicator from a replication domain .

Click this option, and select a domain. Then click Apply to show all the replicators
in that domain. Select the replicator in that domain.

Select replicator from another domain

Specifies a replicator in another domain that is not managed by this cell.

90 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Click this option, and then type the IP address and the port number of the
replicator.

Listen to partition groups
Specifies partitions to which the Session Management facility when running in
Server mode listens to for Memory-to-memory session replication. The number of
partitions is defined in the Manage Internal Replication pages. For Server mode
and Both mode, the default is all partitions.

Runtime mode
Select the mode in which this server has to run: Both, Client and Server. The mode
implies whether data is only sent (client), only received (server), or both. The
default is both.

Clustered session support
A clustered environment supports load balancing, where the workload is
distributed among the application servers that compose the cluster. In a cluster
environment, the same Web application must exist on each of the servers that can
access the session. You can accomplish this setup by installing an application onto
a cluster definition. Each of the servers in the group can then access the Web
application

In a clustered environment, the Session Management facility requires an affinity
mechanism so that all requests for a particular session are directed to the same
application server instance in the cluster. This requirement conforms to the Servlet
2.3 specification in that multiple requests for a session cannot coexist in multiple
application servers. One such solution provided by IBM WebSphere Application
Server is session affinity in a cluster; this solution is available as part of the
WebSphere Application Server plug-ins for Web servers. It also provides for better
performance because the sessions are cached in memory. In clustered environments
other than WebSphere Application Server clusters, you must use an affinity
mechanism (for example, IBM WebSphere Edge Server affinity).

If one of the servers in the cluster fails, it is possible for the request to reroute to
another server in the cluster. If distributed sessions support is enabled, the new
server can access session data from the database or another WebSphere Application
Server instance. You can retrieve the session data only if a new server has access to
an external location from which it can retrieve the session.

Tuning session management
IBM WebSphere Application Server session support has features for tuning session
performance and operating characteristics, particularly when sessions are
configured in a distributed environment. These options support the administrator
flexibility in determining the performance and failover characteristics for their
environment.

The table summarizes the features, including whether they apply to sessions
tracked in memory, in a database, with memory-to-memory replication, or all.
Click a feature for details about the feature. Some features are easily manipulated
using administrative settings; others require code or database changes.

Chapter 3. Managing HTTP sessions 91

Feature or option Goal Applies to sessions in
memory, database, or
memory-to-memory

Write frequency Minimize database write
operations.

Database and
Memory-to-Memory

Session affinity Access the session in the
same application server
instance.

All

Multirow schema Fully utilize database
capacities.

Database

Base in-memory session pool
size

Fully utilize system capacity
without overburdening
system.

All

Write contents Allow flexibility in
determining what session
data to write

Database and
Memory-to-Memory

Scheduled invalidation Minimize contention between
session requests and
invalidation of sessions by
the Session Management
facility. Minimize write
operations to database for
updates to last access time
only.

Database and
Memory-to-Memory

Tablespace and row size Increase efficiency of write
operations to database.

Database (DB2 only)

Configuring scheduled invalidation
You can set specific times for the Session Management facility to scan for
invalidated sessions in a distributed environment. When used with distributed
sessions, this feature has the following benefits:
v You can schedule the scan for invalidated sessions for times of low application

server activity, avoiding contention between invalidation scans of database or
another WebSphere Application Server instance and read and write operations to
service HTTP session requests.

v Significantly fewer external write operations can occur when running with the
End of Service Method write mode because the last access time of the server
does not require writing out each HTTP session request. (Manual Update and
Time Based Write options already minimize the writing of the last access time.)

Usage considerations
v With scheduled invalidation configured, HttpSession timeouts are not strictly

enforced. Instead, all invalidation processing is handled at the configured
invalidation times.

v HttpSessionBindingListener processing is handled at the configured invalidation
times unless the HttpSession.invalidate() method is explicitly called.

v The HttpSession.invalidate() method immediately invalidates the session from
both the session cache and the external store.

Configuring write contents
In Session Management, you can configure which session data is written to the
database or to another WebSphere instance, depending on whether you are using

92 IBM WebSphere Application Server Network Deployment, Version 5: Applications

database pesistent sessions or memory to memory replication. This flexibility
allows for fewer code changes for the JSP writer when the application will be
operating in a clustered environment. The following options are available in
Session Management for tuning what is to be written back:
v Write changed (the default) - Write only session data properties that have been

updated through setAttribute() and removeAttribute() method calls.
v Write all - Write all session data properties.

The Write all setting might benefit servlet and JSP writers who change Java
objects’ states that reside as attributes in HttpSession and do not call
HttpSession.setAttribute().

However, the use of Write all could result in more data being written back than is
necessary. If this situation applies to you, consider combining the use of Write all
with Time-based write to boost performance overall. As always, be sure to
evaluate the advantages and disadvantages for your installation.

With either Write Contents setting, when a session is first created, complete session
information is written, including all of the objects bound to the session. When
using database session persistence, in subsequent session requests, what is written
to the database depends on whether a single-row or multirow schema has been set
for the session database, as follows:

Write Contents setting Behavior with single-row
schema

Behavior with multirow
schema

Write changed If any session attribute is
updated, all objects bound to
the session are written.

Only the session data
modified through
setAttribute() or
removeAttribute() calls is
written.

Write all All bound session attributes
are written.

All session attributes that
currently reside in the cache
are written. If the session has
never left the cache, all
session attributes are written.

Steps for this task
1. Go to the appropriate level of Session Management.
2. Click Distributed Environment Settings
3. Click Custom Tuning Parameters.
4. Select Custom Settings, and click Modify.
5. Select the appropriate write contents setting.

Configuring write frequency
In the Session Management facility, you can configure the frequency for writing
session data to the database or to a WebSphere instance, depending on whether
you use database distributed sessions or memory-to-memory replication. This
flexibility enables you to weigh session performance gains against varying degrees
of failover support. The following options are available in the Session Management
facility for tuning write frequency:
v END_OF_SERVICE - Write session data at the end of the servlet service()

method call.

Chapter 3. Managing HTTP sessions 93

v MANUAL_UPDATE - Write session data only when the servlet calls the
IBMSession.sync() method.

v TIME_BASED_WRITE (the default) - Write session data at periodic intervals, in
seconds (called the write interval).

When a session is first created, session information is always written at the end of
the service() call.

Base in-memory session pool size
The base in-memory session pool size number has different meanings, depending
on session support configuration:
v With in-memory sessions, session access is optimized for up to this number of

sessions.
v With distributed sessions (meaning, when sessions are stored in a database or in

another WebSphere Application Server instance); it also specifies the cache size
and the number of last access time updates saved in manual update mode.

For distributed sessions, when the session cache has reached its maximum size and
a new session is requested, the Session Management facility removes the least
recently used session from the cache to make room for the new one.

General memory requirements for the hardware system, and the usage
characteristics of the e-business site, determines the optimum value.

Note that increasing the base in-memory session pool size can necessitate
increasing the heap sizes of the Java processes for the corresponding WebSphere
Application Servers.

Overflow in nondistributed sessions
By default, the number of sessions maintained in memory is specified by base
in-memory session pool size. If you do not wish to place a limit on the number of
sessions maintained in memory and allow overflow, set overflow to true.

Allowing an unlimited amount of sessions can potentially exhaust system memory
and even allow for system sabotage. Someone could write a malicious program
that continually hits your site and creates sessions, but ignores any cookies or
encoded URLs and never utilizes the same session from one HTTP request to the
next.

When overflow is disallowed, the Session Management facility still returns a
session with the HttpServletRequest getSession(true) method when the memory
limit is reached, and this is an invalid session that is not saved.

With the WebSphere Application Server extension to HttpSession,
com.ibm.websphere.servlet.session.IBMSession, an isOverflow() method returns
true if the session is such an invalid session. An application can check this status
and react accordingly.

Controlling write operations
You can manually control when modified session data is written out to the
database or to another WebSphere Application Server instance by using the sync()
method in the com.ibm.websphere.servlet.session.IBMSession interface, which
extends the javax.servlet.http.HttpSession interface. By calling the sync() method
from the service() method of a servlet, you send any changes in the session to the

94 IBM WebSphere Application Server Network Deployment, Version 5: Applications

external location. When MANUAL_UPDATE is selected as the write frequency
mode, session data changes are written to an external location only if the
application calls the sync() method. If the sync() method is not called, session data
changes are lost when a session object leaves the server cache. With
END_OF_SERVICE or TIME_BASE_WRITE is the write frequency mode, the
session data changes are written out whenever the sync() method is called. If the
sync() method is not called, changes are written out at the end of service method
or on a time interval basis based on the write frequency mode selected.

IBMSession iSession = (IBMSession) request.getSession();
iSession.setAttribute("name", "Bob");

//force write to external store
iSession.sync()

Tuning parameter settings
Use this page to set tuning parameters for distributed sessions.

To view this administrative console page, click Servers > Application Servers >
server_name > Web Container > Session Management > Distributed Environment
Settings > Custom Tuning Parameters.

Tuning Level
Specifies that the Session Management facility provides certain predefined settings
that affect performance.

Select one of these predefined settings or customize a setting.

To customize a setting, select one of the predefined settings that comes closest to
the setting you want, click Custom settings, make your changes, and then click
OK.

Predefined options and their settings follow:

Very high (optimize for performance):

Write frequency TIME_BASED_WRITES
Write interval 300 sec
Write Contents Only updated attributes
Schedule Sessions Clean up true
First Hour 00

High:

Write frequency TIME_BASED_WRITES
Write interval 300 sec
Write Contents All session attributes

Medium:

Write frequency END_OF_SERVICE
Write Contents Only updated attributes

Low (optimize for failover)

Chapter 3. Managing HTTP sessions 95

Write frequency END_OF_SERVICE
Write Contents All session attributes

Write frequency
Specifies when the session writes to the database or another WebSphere
Application Server instance happens.

End of servlet service A session writes to a database or another
WebSphere Application Server instance after
the servlet completes execution.

Manual update A programmatic sync on the IBMSession
object is required to write the session data to
the database or another WebSphere
Application Server instance.

Time based Session data writes to the database or
another WebSphere Application Server
instance based on the specified Write Interval
value.

Write contents
Specifies whether updated attributes are only written to the external location or all
of the session attributes are written to the external location, regardless of whether
or not they changed. The external location can be either a database or another
application server instance.

Schedule sessions cleanup
Specifies when to clean the invalid sessions from a database or another application
server instance.

Specify sessions cleanup schedule

Enables the scheduled invalidation process for cleaning up the invalidated HTTP
sessions from the external location. Enable this option to reduce the number of
updates to a database or another application server instance required to keep the
HTTP sessions alive. When this option is not enabled, the invalidator process runs
every few minutes to remove invalidated HTTP sessions.

When this option is enabled, specify the two hours of a day for the process to
clean up the invalidated sessions in the external location. Specify the times when
there is the least activity in the application servers. An external location can be
either a database or another application server instance.

First Time of Day

Indicates the first hour during which the invalidated sessions are cleared from the
external location. Specify this value as a positive integer between 0 and 23. This
value is valid only when schedule invalidation is enabled.

Second Time of Day

Indicates the second hour during which the invalidated sessions are cleared from
the external location. Specify this value as a positive integer between 0 and 23.
This value is valid only when schedule invalidation is enabled.

96 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Best practices for using HTTP Sessions
v Release HttpSession objects using

javax.servlet.http.HttpSession.invalidate() when finished.

HttpSession objects live inside the Web container until:
– The application explicitly and programmatically releases it using the

javax.servlet.http.HttpSession.invalidate() method; quite often,
programmatic invalidation is part of an application logout function.

– WebSphere Application Server destroys the allocated HttpSession when it
expires (default = 1800 seconds or 30 minutes). The WebSphere Application
Server can only maintain a certain number of HTTP sessions in memory
based on Session Management settings. In case of distributed sessions, when
maximum cache limit is reached in memory, the Session Management facility
removes the least recently used (LRU) one from cache to make room for a
session.

.
v Avoid trying to save and reuse the HttpSession object outside of each servlet

or JSP file.

The HttpSession object is a function of the HttpRequest (you can get it only
through the req.getSession() method), and a copy of it is valid only for the life of
the service() method of the servlet or JSP file. You cannot cache the HttpSession
object and refer to it outside the scope of a servlet or JSP file.

v Implement the Serializable class when developing new objects to be stored in
the HTTP session.

This action allows the object to properly serialize when using distributed
sessions. Without this extension, the object cannot serialize correctly and throws
an error. An example of this follows:
public class MyObject implements java.io.Serializable {...}

Make sure all instance variable objects that are not marked transient are
serializable.

v The HTTPSession API does not dictate transactional behavior for sessions.

Distributed HTTPSession support does not guarantee transactional integrity of
an attribute in a failover scenario or when session affinity is broken. Use
transactionally aware resources like enterprise Java beans to guarantee the
transaction integrity required by your application.

v Ensure the Java objects you add to a session are in the correct class path.

If you add Java objects to a session, place the class files for those objects in the
correct classpath (the Application Classpath if utilizing sharing across Web
modules in an enterprise application, or the WebModule Classpath if using the
Servlet 2.2-complaint session sharing) or in the directory containing other
servlets used in WebSphere Application Server. In the case of session clustering,
this action applies to every node in the cluster.
Because the HttpSession object is shared among servlets that the user might
access, consider adopting a site-wide naming convention to avoid conflicts.

v Avoid storing large object graphs in the HttpSession object.

In most applications each servlet only requires a fraction of the total session
data. However, by storing the data in the HttpSession object as one large object,
an application forces WebSphere Application Server to process all of it each time.

v Utilize Session Affinity to help achieve higher cache hits in the WebSphere
Application Server.

Chapter 3. Managing HTTP sessions 97

WebSphere Application Server has functionality in the HTTP Server plug-in to
help with session affinity. The plug-in will read the cookie data (or encoded
URL) from the browser and helps direct the request to the appropriate
application or clone based on the assigned session key. This functionality
increases use of the in-memory cache and reduces hits to the database or
another WebSphere Application Server instance

v Maximize use of session affinity and avoid breaking affinity.

Using session affinity properly can enhance the performance of the WebSphere
Application Server. Session affinity in the WebSphere Application Server
environment is a way to maximize the in-memory cache of session objects and
reduce the amount of reads to the database or another WebSphere Application
Server instance. Session affinity works by caching the session objects in the
server instance of the application with which a user is interacting. If the
application is deployed in multiple servers of a server group, the application can
direct the user to any one of the servers. If the users starts on server1 and then
comes in on server2 a little later, the server must write all of the session
information to the external location so that the server instance in which server2
is running can read the database. You can avoid this database read using session
affinity. With session affinity, the user starts on server1 for the first request; then
for every successive request, the user is directed back to server1. Server1 has to
look only at the cache to get the session information; server1 never has to make
a call to the session database to get the information.
You can improve performance by not breaking session affinity. Some suggestions
to help avoid breaking session affinity are:
– Combine all Web applications into a single application server instance, if

possible, and use modeling or cloning to provide failover support.
– Create the session for the frame page, but do not create sessions for the pages

within the frame when using multiframe JSP files. (See discussion later in this
topic.)

v When using multi-framed pages, follow these guidelines:

– Create a session in only one frame or before accessing any frame sets. For
example, assuming there is no session already associated with the browser
and a user accesses a multi-framed JSP file, the browser issues concurrent
requests for the JSP files. Because the requests are not part of any session, the
JSP files end up creating multiple sessions and all of the cookies are sent back
to the browser. The browser honors only the last cookie that arrives.
Therefore, only the client can retrieve the session associated with the last
cookie. Creating a session before accessing multi-framed pages that utilize JSP
files is recommended.

– By default, JSPs get a HTTPSession using request.getSession(true) method.
So by default JSPs create a new session if none exists for the client. Each JSP
page in the browser is requesting a new session, but only one session is used
per browser instance. A developer can use <% @ page session=″false″ %> to
turn off the automatic session creation from the JSP files that will not access
the session. Then if the page needs access to the session information, the
developer can use <%HttpSession session =
javax.servlet.http.HttpServletRequest.getSession(false); %> to get the
already existing session that was created by the original session creating JSP
file. This action helps prevent breaking session affinity on the initial loading
of the frame pages.

– Update session data using only one frame. When using framesets, requests
come into the HTTP server concurrently. Modifying session data within only
one frame so that session changes are not overwritten by session changes in
concurrent frameset is recommended.

98 IBM WebSphere Application Server Network Deployment, Version 5: Applications

– Avoid using multi-framed JSP files where the frames point to different Web
applications. This action results in losing the session created by another Web
application because the JSESSIONID cookie from the first Web application
gets overwritten by the JSESSIONID created by the second Web application.

v Secure all of the pages (not just some) when applying security to servlets or
JSP files that use sessions with security integration enabled, .

When it comes to security and sessions, it is all or nothing. It does not make
sense to protect access to session state only part of the time. When security
integration is enabled in the Session Management facility, all resources from
which a session is created or accessed must be either secured or unsecured. You
cannot mix secured and unsecured resources.
The problem with securing only a couple of pages is that sessions created in
secured pages are created under the identity of the authenticated user. Only the
same user can access sessions in other secured pages. To protect these sessions
from use by unauthorized users, you cannot access these sessions from an
unsecure page. When a request from an unsecure page occurs, access is denied
and an UnauthorizedSessionRequestException error is thrown.
(UnauthorizedSessionRequestException is a runtime exception; it is logged for
you.)

v Use manual update and either the sync() method or time-based write in
applications that read session data, and update infrequently.

With END_OF_SERVICE as write frequency, when an application uses sessions
and anytime data is read from or written to that session, the LastAccess time
field updates. If database sessions are used, a new write to the database is
produced. This activity is a performance hit that you can avoid using the
Manual Update option and having the record written back to the database only
when data values update, not on every read or write of the record.
To use manual update, turn it on in the Session Management Service. (See the
tables above for location information.) Additionally, the application code must
use the com.ibm.websphere.servlet.session.IBMSession class instead of the
generic HttpSession. Within the IBMSession object there is a method called
sync(). This method tells the WebSphere Application Server to write the data in
the session object to the database. This activity helps the developer to improve
overall performance by having the session information persist only when
necessary.
Note: An alternative to using the manual updates is to utilize the timed updates
to persist data at different time intervals. This action provides similar results as
the manual update scheme.

v Implement the following suggestions to achieve high performance:
– If your applications do not change the session data frequently, use Manual

Update and the sync() function (or timed interval update) to efficiently persist
session information.

– Keep the amount of data stored in the session as small as possible. With the
ease of using sessions to hold data, sometimes too much data is stored in the
session objects. Determine a proper balance of data storage and performance
to effectively use sessions.

– Use a dedicated database for the session database. Avoid using the
application database. This helps to avoid contention for JDBC connections and
allows for better database performance.

– Verify that you have the latest e-fixes for the WebSphere Application Server.
v Utilize the following tools to help monitor session performance.

Chapter 3. Managing HTTP sessions 99

– Run the com.ibm.servlet.personalization.sessiontracking.IBMTrackerDebug
servlet. - To run this servlet, you must have the servlet invoker running in the
Web application you want to run this from. Or, you can explicitly configure
this servlet in the application you want to run.

– Use the WebSphere Application Server Resource Analyzer which comes with
WebSphere Application Server to monitor active sessions and statistics for the
WebSphere Application Server environment.

– Use database tracking tools such as ″Monitoring″ in DB2. (See the respective
documentation for the database system used.)

Managing HTTP sessions: Resources for learning:
Use the following links to find relevant supplemental information about HTTP
sessions. The information resides on IBM and non-IBM Internet sites, whose
sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

View links to additional information about:
v Programming model and decisions
v Programming instructions and examples
v Programming specifications

v Best practices (http://www7b.software.ibm.com/wsdd/zones/bp/)

v HTTP Session Persistence Best Practices
(http://www7b.software.ibm.com/wsdd/library/techarticles/
0209_draeger/draeger.html)

v Improving session persistence performance with DB2
(http://www7b.software.ibm.com/dmdd/library/techarticle/
0203kitchlu/0203kitchlu.html)

v Persistent client state HTTP cookies specification
(http://www.netscape.com/newsref/std/cookie_spec.html)

v Java Servlet documentation, tutorials, and examples site
(http://java.sun.com/products/servlet/docs.html)

v Java Servlet 2.3 API specification download site
(http://java.sun.com/products/servlet/download.html)

v J2EE 1.3 specification download site
(http://java.sun.com/j2ee/download.html)

100 IBM WebSphere Application Server Network Deployment, Version 5: Applications

http://www7b.software.ibm.com/wsdd/zones/bp/
http://www7b.software.ibm.com/wsdd/library/techarticles/0209_draeger/draeger.html
http://www7b.software.ibm.com/wsdd/library/techarticles/0209_draeger/draeger.html
http://www7b.software.ibm.com/dmdd/library/techarticle/0203kitchlu/0203kitchlu.html
http://www7b.software.ibm.com/dmdd/library/techarticle/0203kitchlu/0203kitchlu.html
http://www.netscape.com/newsref/std/cookie_spec.html
http://java.sun.com/products/servlet/docs.html
http://java.sun.com/products/servlet/download.html
http://java.sun.com/j2ee/download.html

Chapter 4. Using enterprise beans in applications

Steps for this task
1. Design a J2EE application and the enterprise beans that it needs.

See “Enterprise beans: Resources for learning” on page 151 for links to design
information that is specific to enterprise beans.

2. Develop any enterprise beans that your application will use.
3. Prepare for assembly. For your EJB 2.x-compliant entity beans, decide on an

appropriate access intent policy.
4. Assemble the beans into one or more EJB modules. This includes ″Securing

EJB applications″ (not in this document).
5. Assemble the modules into a J2EE application.
6. For a given application server, update the EJB container configuration if

needed for the application to be deployed.
7. Deploy the application in an application server.
8. Test the modules.

v As needed, debug problems with the container.
v Debug access and deployment problems.

9. Assemble the production application.
10. Deploy the application to a production environment.
11. Manage the application:

a. Manage installed EJB modules.
After an application has been installed, you can manage its EJB modules
individually through administrative console settings.

b. Manage other aspects of the J2EE application.
12. Update the module and redeploy it.
13. Tune the application.

Enterprise beans
An enterprise bean is a Java component that can be combined with other resources
to create J2EE applications. There are three types of enterprise beans, entity beans,
session beans, and message-driven beans.

All beans reside in EJB containers, which provide an interface between the beans
and the application server on which they reside.

Entity beans store permanent data. Entity beans with container-managed
persistence (CMP) require connections to a form of persistent storage. This storage
might be a database, an existing legacy application, a file, or other types of
persistent storage. Entity beans with bean-managed persistence manage permanent
data in whichever manner is defined in the bean code. This can include writing to
databases or XML files, for example.

Session beans do not require database access, although they can obtain it indirectly
as needed through entity beans. Session beans can also obtain direct access to
databases (and other resources) through the use of resource references. Session
beans can be either stateful or stateless.

© Copyright IBM Corp. 2002 101

New in the Enterprise JavaBeans (EJB) specification, version 2.0, message-driven
beans enable asynchronous message servicing. The EJB container and a Java
Message Service (JMS) provider work together to process messages. When a
message arrives from another application component through JMS, the EJB
container forwards it through an onMessage() call to a message-driven bean
instance, which then processes the message. In other respects, message-driven
beans are similar to stateless session beans.

Beans that require data access use data sources, which are administrative resources
that define pools of connections to persistent storage mechanisms.

For more information about enterprise beans, see “Enterprise beans: Resources for
learning” on page 151.

Developing enterprise beans
Before you begin

Design a J2EE application and the enterprise beans that it needs.
v For general design information, see “Enterprise beans: Resources for learning”

on page 151.
v Before developing entity beans with container-managed persistence (CMP), read

“Concurrency control” on page 108.

There are two basic approaches to selecting tools for developing enterprise beans:
v You can use one of the available integrated development environments (IDEs).

IDE tools automatically generate significant parts of the enterprise bean code
and contain integrated tools for packaging and testing enterprise beans. The IBM
WebSphere Application Developer product is the recommended IDE. For more
information, see the documentation for that product.

v If you have decided to develop enterprise beans without an IDE, you need at
least an ASCII text editor. You can also use a Java development tool that does
not support enterprise bean development. You can then use tools available in the
Java Software Development Kit (SDK) and in this product to assemble, test, and
deploy the beans.

The following steps primarily support the second approach, development without
an IDE.

Steps for this task
1. If necessary, migrate any pre-existing code to the required version of the

Enterprise JavaBeans specification.
2. Write and compile the components of the enterprise bean.

v At a minimum, an EJB 1.1 session bean requires a bean class, a home
interface, and a remote interface. An EJB 1.1 entity bean requires a bean class,
a primary-key class, a home interface, and a remote interface.

v At a minimum, an EJB 2.0 session bean requires a bean class, a home or local
home interface, and a remote or local interface. An EJB 2.0 entity bean
requires a bean class, a primary-key class, a remote home or local home
interface, and a remote or local interface. The types of interfaces go together:
If you implement a local interface, you must define a local home interface as
well.

v Available only through EJB 2.0, a message-driven bean requires only a bean
class.

102 IBM WebSphere Application Server Network Deployment, Version 5: Applications

3. (Optional) (CMP entity beans for EJB 1.1 only: an IBM extension) Create a
finder helper interface for each CMP entity bean that contains specialized
finder methods (other than the findByPrimaryKey method).
The following logic is required for each finder method (other than the
findByPrimaryKey method) contained in the home interface of an entity bean
with CMP:
v The logic must be defined in a public interface named NameBeanFinderHelper,

where Name is the name of the enterprise bean (for example,
AccountBeanFinderHelper).

v The logic must be contained in a String constant named
findMethodNameWhereClause, where findMethodName is the name of the finder
method. The String constant can contain zero or more question marks (?) that
are replaced from left to right with the value of the finder method’s
arguments when that method is called.

4. (CMP entity beans for EJB 2.0 only) Define finder queries with EJB Query
Language (EJB QL).
With EJB QL, you define finders in terms of CMP fields and container-managed
relationships, as follows:
v Public finders are visible in the bean’s home interface. Implemented in the

bean class, they return only remote interfaces and collection types.
v Private finders, expressed as SELECT statements, are used only within the

bean class. They can return both local and remote interfaces, dependent
values, other CMP field types, and collection types.

5. (Entity beans only) Create a database schema for the entity bean’s persistent
data.
v For entity beans with CMP, you must store the bean’s persistent data in one

of the supported databases. The Application Assembly Tool automatically
generates SQL code for creating database tables for CMP entity beans. If your
CMP beans require complex database mappings, it is recommended that you
use the WSAD product to generate code for the database tables.

v For entity beans with bean-managed persistence (BMP), you can create the
database and database table by using the database tools or use an existing
database and database table.

For more information on creating databases and database tables, consult your
database documentation.

What to do next

Assemble the beans in one or more EJB modules.

Migrating enterprise bean code to the supported specification
Support for Version 2.0 of the Enterprise JavaBeans (EJB) specification is new for
Version 5 of this product. Migration of enterprise beans deployed in Version 4.0.x
of this product is not generally necessary; Version 1.1 of the EJB specification is still
supported. Follow these steps as appropriate for your application deployment.

Steps for this task
1. Modify enterprise bean code for changes in the specification.

v For Version 1.0 beans, migrate at least to Version 1.1.

Chapter 4. Using enterprise beans in applications 103

v As stated previously, migration from Version 1.1 to Version 2.0 of the EJB
specification is not required for redeployment on this version of the product.
However, if your application requires the capabilities of Version 2.0, migrate
your Version 1.1-compliant code.
Note: The EJB Version 2.0 specification mandates that prior to the EJB
container’s executing a findByMethod query, the state of all enterprise beans
enlisted in the current transaction be synchronized with the persistent store.
(This is so the query is performed against current data.) If Version 1.1 beans
are reassembled into an EJB 2.0-compliant module, the EJB container
synchronizes the state of Version 1.1 beans as well as that of Version 2.0
beans. As a result, you might notice some change in application behavior
even though the application code for the Version 1.1 beans has not been
changed.

2. Modify enterprise bean code for changes in deployment requirements.
If the enterprise beans were previously deployed in Version 3.0.x of this
product, modify import statements to match standard package names. In
Version 3.0.2.x, the following standard packages were present under
nonstandard names:
javax.sql.*
javax.transaction.*

Any code using WebSphere data sources, including BMP entity beans and
session beans that access databases, must be modified.

3. You might have to modify code for some EJB 1.1-compliant modules that were
not migrated to Version 2.0. Use the following information to help you decide.
v Some stub classes for deployed enterprise beans have changed in the Java 2

SDK, Version 1.3.
v The task of generating deployment code for enterprise beans changed

significantly significantly for EJB 1.1-compliant modules relative to EJB
1.0-compliant modules.

v If the CMP beans write to databases with mixed-case table or column names
and you used IBM VisualAge for Java, Version 3.5.x, to generate the original
deployment code, you cannot simply reassemble the beans in this product.
You must export the original EJB project from the VisualAge for Java product
as an EJB 1.1 JAR. This preserves the metadata needed to generate the correct
deployment code for mixed-case database tables and columns. For more
information, see the documentation for the Deployment Tool for Enterprise
JavaBeans.

For detailed information about source and binary compatibility between
deployed versions, see “Enterprise beans: Resources for learning” on page 151.

4. Reassemble and redeploy all modules to incorporate migrated code.

Migrating enterprise bean code from Version 1.0 to Version 1.1
The following information generally applies to any enterprise bean that currently
complies with Version 1.0 of the Enterprise JavaBeans (EJB) specification. For more
information about migrating code for beans produced with the IBM WebSphere
Studio Application Developer tool, see the documentation for that product. For
more information about migrating code in general, see “Enterprise beans:
Resources for learning” on page 151.

Steps for this task

104 IBM WebSphere Application Server Network Deployment, Version 5: Applications

1. In session beans, replace all uses of javax.jts.UserTransaction with
javax.transaction.UserTransaction. Entity beans may no longer use the
UserTransaction interface at all.

2. In finder methods for entity beans, include FinderException in the throws
clause.

3. Remove throws of java.rmi.RemoteException; throw javax.ejb.EJBException
instead.
However, continue to include RemoteException in the throws clause of home
and remote interfaces as required by the use of Remote Method Invocation
(RMI).

4. Remove uses of the finalize() method.
5. Replace calls to getCallerIdentity() with calls to getCallerPrincipal().

The use of getCallerIdentity() is deprecated.
6. Replace calls to isCallerInRole(Identity) with calls to isCallerinRole (String).

The use of isCallerInRole(Identity) and java.security.Identity is deprecated.
7. Replace calls to getEnvironment() in favor of JNDI lookup.

As an example, change the following code:
String homeName =

aLink.getEntityContext().getEnvironment().getProperty("TARGET_HOME_NAME");
if (homeName == null) homeName = "TARGET_HOME_NAME";

The updated code would look something like the following:
Context env = (Context)(new InitialContext()).lookup("java:comp/env");
String homeName = (String)env.lookup("ejb10-properties/TARGET_HOME_NAME");

8. In ejbCreate methods for an entity bean with container-managed persistence
(CMP), return the bean’s primary key class instead of void.

9. Add the getHomeHandle() method to home interfaces.
public javax.ejb.HomeHandle getHomeHandle() {return null;}

What to do next

Consider enhancements to match the following changes in the specification:
v Primary keys for entity beans can be of type java.lang.String.
v Finder methods for entity beans return java.util.Collection.
v Check the format of any JNDI names being used. Local name spaces are also

supported.
v Security is defined by role, and isolation levels are defined at the method level

rather than at the bean level.

Migrating enterprise bean code from Version 1.1 to Version 2.0
Enterprise JavaBeans (EJB) Version 2.0-compliant beans may be assembled only in
an EJB 2.0-compliant module, although an EJB 2.0-compliant module can contain a
mixture of Version 1.x and Version 2.0 beans.

The EJB Version 2.0 specification mandates that prior to the EJB container’s
executing a findByMethod query, the state of all enterprise beans enlisted in the
current transaction be synchronized with the persistent store. (This is so the query
is performed against current data.) If Version 1.1 beans are reassembled into an EJB
2.0-compliant module, the EJB container synchronizes the state of Version 1.1 beans
as well as that of Version 2.0 beans. As a result, you might notice some change in
application behavior even though the application code for the Version 1.1 beans
has not been changed.

Chapter 4. Using enterprise beans in applications 105

The following information generally applies to any enterprise bean that currently
complies with Version 1.1 of the EJB specification. For more information about
migrating code for beans produced with the IBM WebSphere Studio Application
Developer tool, see the documentation for that product. For more information
about migrating code in general, see “Enterprise beans: Resources for learning” on
page 151.

Steps for this task
1. In beans with container-managed persistence (CMP) version 1.x, replace each

CMP field with abstract get and set methods.
In doing so, you must make each bean class abstract.

2. In beans with CMP version 1.x, change all occurrences of this.field = value
to setField(value).

3. In each CMP bean, create abstract get and set methods for the primary key.
4. In beans with CMP version 1.x, create an EJB Query Language statement for

each finder method.
5. In finder methods for beans with CMP version 1.x, return java.util.Collection

instead of java.util.Enumeration.
6. Update handling of non-application exceptions.

v To report non-application exceptions, throw javax.ejb.EJBException instead of
java.rmi.RemoteException.

v Modify rollback behavior as needed: In EJB versions 1.1 and 2.0, all
non-application exceptions thrown by the bean instance result in the rollback
of the transaction in which the instance is running; the instance is discarded.
In EJB 1.0, the container does not roll back the transaction or discard the
instance if it throws java.rmi.RemoteException.

7. Update rollback behavior as the result of application exceptions.
v In EJB versions 1.1 and 2.0, an application exception does not cause the EJB

container to automatically roll back a transaction.
v In EJB Version 1.1, the container performs the rollback only if the instance

has called setRollbackOnly() on its EJBContext object.
v In EJB Version 1.0, the container is required to roll back a transaction when

an application exception is passed through a transaction boundary started by
the container.

WebSphere extensions to the Enterprise JavaBeans
specification

This article outlines extensions to the Enterprise JavaBeans (EJB) specification that
IBM provides with this product:

Inheritance in enterprise beans

In the Java language, inheritance is the creation of a new class from an existing class
or a new interface from an existing interface. This product supports two forms of
inheritance: standard class inheritance and EJB inheritance.

In standard class inheritance, the home interface, remote interface, or enterprise
bean class inherits properties and methods from base classes that are not
themselves enterprise bean classes or interfaces.

106 IBM WebSphere Application Server Network Deployment, Version 5: Applications

By contrast in enterprise bean inheritance, an enterprise bean inherits properties
(such as container-managed persistence (CMP) fields and container-managed
relationship (CMR) fields), methods, and method-level control descriptor attributes
from another enterprise bean.

For more information, see the documentation for the IBM WebSphere Studio
Application Developer product.

Optimistic concurrency control for container-managed persistence

This product supports optimistic concurrency control of data access.

Access intents for EJB persistence

This product supports the application of named data-access policies at the method
level.

Performance enhancements

Through the lifetime-in-cache settings, this product provides a way for you to
improve performance for beans that are only occasionally updated. For more
information, see “Entity bean assembly settings” on page 121.

Some enterprise beans created with the IBM WebSphere Studio Application
Developer product can utilize read-ahead for loading a bean and its related beans in
a single database operation. An entire object graph or any part of the graph can be
preloaded by configuring a finder method to use read-ahead.

Assembly and deployment extensions

This product supports IBM extensions of assembly and deployment options. IBM
extensions are clearly marked in reference topics for assembly settings.

Best practices for developing enterprise beans
Use the following guidelines when designing and developing enterprise beans:
v Use a stateless session bean to act as the entry point for business logic. For more

information about using session facades, see “Enterprise beans: Resources for
learning” on page 151.

v Entity beans should use container-managed persistence.
v In an Enterprise JavaBeans (EJB) Version 2.0 environment, use local interfaces to

improve communication between enterprise beans in the same Java virtual
machine.
Local calls avoid the overhead of RMI/IIOP and use pass-by-reference semantics
instead of pass-by-value. For each call, the caller and callee beans share the state
of arguments. EJB 2.0 beans can have both a local and remote interface but more
typically have one or the other.

v For communicating with remote clients, provide remote and remote home
interfaces. For communicating with local clients like servlets, entity beans, and
message-driven beans, provide local and local home interfaces.

Chapter 4. Using enterprise beans in applications 107

Using access intent policies
You can use access intent policies to help the product run-time environment
manage various aspects of Enterprise JavaBeans (EJB) persistence. You apply access
intent policies to methods of EJB Version 2.0 entity beans by using the Application
Assembly Tool. This product provides a set of default access intent policies.

Steps for this task
1. Apply access intent policies to methods of CMP entity beans.

Access intent policies
An access intent policy is a named set of properties (access intents) that governs
data access for Enterprise JavaBeans (EJB) persistence. You can assign a policy to
individual methods on an entity bean’s home, remote, or local interfaces during
assembly. Access intents are settable only within EJB Version 2.x-compliant
modules for entity beans with CMP Version 2.x.

This product supplies a number of access intent policies that specify permutations
of read intent and concurrency control; the pessimistic/update policy can be
qualified further. The selected policy determines the appropriate isolation level and
locking strategy used by the run-time environment.

Access intent policies are specifically designed to supplant the use of isolation level
and access intent method-level modifiers found in the extended deployment
descriptor for EJB version 1.1 enterprise beans. You cannot specify isolation level
and read-only modifiers for EJB version 2.0 enterprise beans.

Access intent policies are named and defined at the module level. A module can
have one or many such policies. Policies are assigned, and apply, to individual
methods of the declared interfaces of entity beans and their associated home
interfaces. A policy is acted upon by the combination of the EJB container and
persistence manager.

For entity beans that are backed by tables with nullable columns, use an optimistic
policy with caution. Nullable columns are automatically excluded from
overqualified updates at deployment time; concurrent changes to a nullable field
might result in lost updates. When used with the IBM WebSphere Studio
Application Developer product, this product provides support for selecting a
subset of the nonnullable columns that are to be reflected in the overqualified
update statement that is generated in the deployment code to support optimistic
policies.

A method that is configured with a read-only policy that causes a bean to be
activated can cause problems if updates are attempted within the same transaction.
Those changes will not be committed, and an exception will be thrown because
data integrity might be compromised.

Concurrency control
Concurrency control is the management of contention for data resources. A
concurrency control scheme is considered pessimistic when it locks a given resource
early in the data-access transaction and does not release it until the transaction is
closed. A concurrency control scheme is considered optimistic when locks are
acquired and released over a very short period of time at the end of a transaction.

108 IBM WebSphere Application Server Network Deployment, Version 5: Applications

The objective of optimistic concurrency is to minimize the time over which a given
resource would be unavailable for use by other transactions. This is especially
important with long-running transactions, which under a pessimistic scheme
would lock up a resource for unacceptably long periods of time.

Under an optimistic scheme, locks are obtained immediately before a read
operation and released immediately afterwards. Update locks are obtained
immediately before an update operation and held until the end of the transaction.

To enable optimistic concurrency, this product uses an overqualified update scheme to
test whether the underlying data source has been updated by another transaction
since the beginning of the current transaction. With this scheme, the columns
marked for update and their original values are added explicitly through a
WHERE clause in the UPDATE statement so that the statement fails if the
underlying column values have been changed. As a result, this scheme can provide
column-level concurrency control; pessimistic schemes can control concurrency at
the row level only.

Optimistic schemes typically perform this type of test only at the end of a
transaction. If the underlying columns have not been updated since the beginning
of the transaction, pending updates to container-managed persistence fields are
committed and the locks are released. If locks cannot be acquired or if some other
transaction has updated the columns since the beginning of the current transaction,
the transaction is rolled back: All work performed within the transaction is lost.

Pessimistic and optimistic concurrency schemes require different transaction
isolation levels. Enterprise beans that participate in the same transaction and
require different concurrency control schemes cannot operate on the same
underlying data connection.

Whether or not to use optimistic concurrency depends on the type of transaction.
Transactions with a high penalty for failure might be better managed with a
pessimistic scheme. (A high-penalty transaction is one for which recovery would
be risky or resource-intensive.) For low-penalty transactions, it is often worth the
risk of failure to gain efficiency through the use of an optimistic scheme. In
general, optimistic concurrency is more efficient when update collisions are
expected to be infrequent; pessimistic concurrency is more efficient when update
collisions are expected to occur often.

Read-ahead hints
Read-ahead schemes enable applications to minimize the number of database
roundtrips by retrieving a working set of container-managed persistence (CMP)
beans for the transaction within one query. Read-ahead involves activating the
requested CMP beans and caching the data for their related beans, which ensures
that data is present for the beans that are most likely to be needed next by an
application. A read-ahead hint is a canonical representation of the related beans that
are to be read. It is associated with a finder method for the requested bean type,
which must be an EJB 2.x-compliant CMP entity bean.

Read-ahead hints can be set only through the Add Access Intent wizard of the IBM
WebSphere Studio Application Developer product. In the wizard, the Read Ahead
Hint check box is enabled only with access intent policies with optimistic
concurrency.

Chapter 4. Using enterprise beans in applications 109

Read-ahead is limited to optimistic policies because locking persistent data store
for all beans represented in the hint would be more likely to cause lock conflicts,
and optimistic policies do not obtain locks until immediately before the database
operation.

Currently, only findByPrimaryKey methods can have read-ahead hints. Only beans
related to the requested beans by a container-managed relationship (CMR), either
directly or indirectly through other beans, can be read ahead.

A read-ahead hint takes the form of a character string. You do not have to provide
the string; the wizard generates it for you based on CMRs defined for the bean.
The following example is provided as supplemental information only.

Suppose a CMP bean type A has a finder method that returns instances of bean A.
A read-ahead hint for this method is specified using the following notation:
RelB.RelC; RelD

Interpret the preceding notation as follows:
v Bean type A has a CMR with bean types B and D.
v Bean type B has a CMR with bean type C.

For each bean of type A that is retrieved from the database, its directly-related B
and D beans and its indirectly-related C beans are also retrieved. The order of the
retrieved bean data columns in each row of the result set is the same as their order
in the read-ahead hint: an A bean, a B bean (or null), a C bean (or null), a D bean
(or null). For hints in which the same relationship is mentioned more than once
(for example, RelB.RelC;RelB.RelE), a bean’s data columns appear only once, at
the position it first appears in the hint.

The tokens shown in the notation (RelB and so on) must be CMR field names for
the relationships as defined in the deployment descriptor for the bean. In indirect
relationships such as RelB.RelC, RelC is a CMR field name defined in the
deployment descriptor for bean type B.

For more information about how to set read-ahead hints, see the documentation
for the Websphere Studio Application Developer product.

Applying access intent policies to methods
You apply an access intent policy to a method, or set of methods, in an
application’s entity beans through the Application Assembly Tool (AAT).

Steps for this task
1. Start the AAT.
2. Create or edit the application EAR file.

For example, to change attributes of an existing application, select File >
Open, then select the EAR file.

3. Select EJB Modules > moduleName > Access Intent.
4. To configure a new access intent policy, right-click and select New.
5. On the New Access Intent panel, specify a name and a description.

These attributes are provided as a convenience to the developer and are not
used at run time.

6. To select the methods to which the access intent policy should apply, click
Add beside the Methods table.

110 IBM WebSphere Application Server Network Deployment, Version 5: Applications

7. From the Applied access intent list, select an access intent policy.
8. (Optional) To override an attribute defined in the applied policy, click Add

beside the Access intent attribute overrides table.
9. Click OK to exit the New Access Intent panel.

10. Save your configuration by selecting File > Save.

Access intent exceptions
The following exceptions are thrown in response to the application of access intent
policies:

com.ibm.ws.ejbpersistence.utilpm.PersistenceManagerException
If the method that drives the ejbLoad() method is configured to be
read-only but updates are then made within the transaction that loaded the
bean’s state, an exception is thrown during invocation of the ejbStore()
method, and the transaction is rolled back. Likewise, the ejbRemove()
method cannot succeed in a transaction that is set as read-only. If an
update hint is applied to methods of entity beans with bean-managed
persistence, the same behavior and exception results. The forwarded
exception object contains the message string PMGR1103E: update instance
level read only bean beanName

This exception is also thrown if the applied access intent policy cannot be
honored because a finder, ejbSelect, or container-managed relationship
(CMR) accessor method returns an inherently read-only result. The
forwarded exception object contains the message string PMGR1001: No such
DataAccessSpec - methodName

The most common occurrence of this error is when a custom finder that
contains a read-only EJB Query Language (EJB QL) statement is called with
an applied access intent of wsPessimisticUpdate or wsPessimisticUpdate-
Exclusive. These policies require the use of a FOR UPDATE clause on the
SQL SELECT statement to be executed, but a read-only query cannot
support FOR UPDATE. Other examples of read-only queries include joins;
the use of ORDER BY, GROUP BY, and DISTINCT keywords.

To eliminate the exception, edit the EJB query so that it does not return an
inherently read-only result or change the access intent policy being
applied.
v If an update access is required, change the applied access intent setting

to wsPessimisticUpdate-WeakestLockAtLoad or wsOptimisticUpdate.
v If update access is not truly required, use wsPessimisticRead or

wsOptimisticRead.
v If connection sharing between entity beans is required, use

wsPessimisticUpdate-WeakestLockAtLoad or wsPessimisticRead.

com.ibm.websphere.ejb.container.CollectionCannotBeFurtherAccessed
If a lazy collection is driven after it is no longer in scope, and beyond what
has already been locally buffered, a CollectionCannotBeFurtherAccessed
exception is thrown.

com.ibm.ws.exception.RuntimeWarning
If an application is configured incorrectly, a run-time warning exception is
thrown as the application starts; startup is ended. You can validate an
application’s configuration by choosing the verify function in the
WebSphere Application Assembly Tool. Some examples of misconfiguration
include:
v A method configured with two different access intent policies

Chapter 4. Using enterprise beans in applications 111

v A method configured with an undefined access intent policy

javax.ejb.NoSuchEntityException
If an update fails under optimistic concurrency because fields changed
within another transaction between load and store requests, a
NoSuchEntityException is raised and the commit fails.

Depending on the access intent policy used, an exception might also be thrown on
an entity bean with container-managed persistence (CMP) version 2.0 that has one
or more CMR fields. If this occurs, the default setting (wsPessimisticUpdate-
WeakestLockAtLoad) can be used.

If application needs require that another policy be used, the application code must
be changed so that all CMR accessor methods are called from business logic within
the CMP entity bean rather than from a session bean. Furthermore, an entity bean
cannot be added or removed from a CMR collection unless the add or remove
method of the CMR collection is called from business logic in the entity bean
rather than from a session bean.

Access intent assembly settings
Access intent policies contain data-access settings for use by the persistence
manager. Specify one or more methods and associate an access intent policy with
each method.

These settings are applicable only for EJB 2.x-compliant entity beans that are
packaged in EJB 2.x-compliant modules. Connection sharing between beans with
bean-managed persistence and those with container-managed persistence is
possible if they all use the same access intent policy.

Name
Specifies a name for the mapping between an access intent policy and one or more
methods.

Description
Contains text that describes the mapping.

Methods - Name
Specifies the name of an enterprise bean method, or the asterisk character (*). The
asterisk is used to denote all of the methods of an enterprise bean’s remote and
home interfaces.

Methods - Enterprise bean
Specifies which enterprise bean contains the methods indicated in the Name
setting.

Methods - Type
Used to distinguish between a method with the same signature that is defined in
both the home and remote interface. Use Unspecified if an access intent policy
applies to all methods of the bean.

Data type String
Range Valid values are Home, Remote,Local, LocalHome or Unspecified

Methods - Parameters
Contains a list of fully qualified Java type names of the method parameters. This
setting is used to identify a single method among multiple methods with an
overloaded method name.

112 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Applied access intent
Specifies how the container must manage data access for persistence.

Data type String
Default wsPessimisticUpdate-WeakestLockAtLoad. However, this policy cannot

be used with Oracle; see the table that follows.
Range Valid settings are wsPessimisticUpdate, wsPessimisticUpdate-

NoCollision, wsPessimisticUpdate-Exclusive, wsPessimisticUpdate-
WeakestLockAtLoad, wsPessimisticRead, wsOptimisticUpdate, or
wsOptimisticRead. Only wsPessimisticRead and wsOptimisticRead are
valid when class-level caching is enabled in the EJB container.

This product supports lazy collections. For each segment of a collection, iterating
through the collection (next()) does not trigger a remote method call to retrieve the
next remote reference. Two policies (wsPessimisticUpdate and
wsPessimisticUpdate-Exclusive) are extremely lazy; the collection increment size
is set to 1 to avoid overlocking the application. The other policies have a collection
increment size of 25.

If a method is not configured with an access intent policy, the run-time
environment typically uses wsPessimisticUpdate-WeakestLockAtLoad by default. If,
however, the Lifetime in cache property is set on the bean, the default value of
Applied access intent is wsOptimisticRead; updates are not permitted. If a method
of a Lifetime in cache-configured bean is configured with an access intent policy
that permits updates, the application will not run until the method or bean is
reconfigured.

Additional information about valid settings follows:

Profile name Concurrency
control

Access type Transaction isolation

wsPessimisticRead (Note 1) pessimistic read For Oracle, read
committed. Otherwise,
repeatable read

wsPessimisticUpdate (Note
2)

pessimistic update For Oracle, read
committed. Otherwise,
repeatable read

wsPessimisticUpdate-
Exclusive (Note 3)

pessimistic update serializable

wsPessimisticUpdate-
NoCollision (Note 4)

pessimistic update read committed

wsPessimisticUpdate-
WeakestLockAtLoad (Note
5)

pessimistic update Repeatable read

wsOptimisticRead optimistic read read committed

wsOptimisticUpdate (Note
6)

optimistic update read committed

Chapter 4. Using enterprise beans in applications 113

Profile name Concurrency
control

Access type Transaction isolation

Notes:

1. Read locks are held for the duration of the transaction.

2. The generated SELECT FOR UPDATE query grabs locks at the beginning of the
transaction.

3. SELECT FOR UPDATE is generated; locks are held for the duration of the transaction.

4. A plain SELECT query is generated. No locks are held, but updates are permitted.
Relative to wsPessimisticUpdate, this difference results in generally better transaction
throughput.

5. The generated SELECT query does not include FOR UPDATE; locks are escalated by the
persistent store at storage time if updates were made.

Do not use this policy with Oracle; doing so results in a NoSuchDataAccessSpec
exception. Comparable alternatives are wsPessimisticUpdate-NoCollision or
wsOptimisticUpdate. If you choose wsOptimisticUpdate, be sure to review the rules for
forming overqualified-update query predicates. Certain column types (for example,
BLOB) are ineligible for inclusion in the overqualified-update query predicate and
might affect your design.

6. Generated overqualified-update query forces failure if CMP column values have
changed since the beginning of the transaction.

Access intent best practices
This topic outlines issues to consider when applying access intent policies to
Enterprise JavaBeans (EJB) methods.
v Start with defaults. The default access intent policy (wsPessimisticUpdate-

WeakestLockAtLoad) loads persistent data with the weakest lock that is supported
by the persistent store (typically a read lock). Updates are allowed, and the
database is permitted to undertake lock escalation when necessary. This option
generally works best for most EJB application patterns. After your application is
built and running, you can more finely tune certain access paths in your
application.

v Don’t mix access types. Avoid using both pessimistic and optimistic policies in
the same transaction. For most databases, pessimistic and optimistic policies use
different isolation levels. This results in multiple database connections, which
prevents you from taking advantage of the performance benefits possible
through connection sharing.

v Access intent for the ejbSelect method must be applied indirectly. Because
ejbSelect methods are not exposed through a home, remote, or local interface,
you cannot apply a policy to them directly. An ejbSelect method is called by a
home or business method, so apply the appropriate policy to the home or
business method that governs the behavior of the ejbSelect method.

v Take care when applying wsPessimisticUpdate-NoCollision. This policy does
not ensure data integrity. No database locks are held, so concurrent transactions
can overwrite each other’s updates. Use this policy only if you can be sure that
only one transaction will attempt to update persistent store at any given time.

Frequently asked questions: Access intent
I have not applied any access intent policies at all. My application runs just fine
with a DB2 database, but it fails with an Oracle database with the following
message: com.ibm.ws.ejbpersistence.utilpm.PersistenceManagerException:
PMGR1001E: No such DataAccessSpec :FindAllCustomers. The backend datastore
does not support the SQLStatement needed by this AccessIntent: (pessimistic

114 IBM WebSphere Application Server Network Deployment, Version 5: Applications

update-weakestLockAtLoad)(collections: transaction/25) (resource manager
prefetch: 0) (AccessIntentImpl@d23690a). Why?

If you have not configured access intent, all of your data is accessed under
the default access intent policy (wsPessimisticUpdate-WeakestLockAtLoad).
On DB2 databases, the weakest lock is a shared one, and the query runs
without a FOR UPDATE clause. On Oracle databases, however, the
weakest lock is an update lock; this means that the SQL query must
contain a FOR UPDATE clause. However, not every SQL statement
necessarily supports FOR UPDATE; for example, if the query is being run
against multiple tables in a join, FOR UPDATE is not supported.

To avoid this problem, try either of the following:
v Modify your SQL query or reconfigure your application so that an

update lock is supported
v Apply an access intent policy that supports optimistic concurrency

I am calling a finder method from one entity bean to another, and I get an
InconsistentAccessIntentException at run time. Why?

This behavior suggests that the second entity bean was previously loaded
in the same transaction. This could happen if you called a multifinder
method that returned the second bean instance with access intent policy X
applied; you are now trying to load the second bean again by calling its
findByPrimaryKey method with access intent Y applied. Both methods
must have the same access intent policy applied.

Likewise, you might have called a container-managed relationship (CMR)
accessor method that included the second entity bean. Like a multifinder
method, this would have caused the second bean to be loaded under the
access intent policy applied to the business method of the first entity bean.

To avoid this problem, ensure that your code does not load the same bean
instance twice within the same transaction with different access intent
policies applied.

I have two beans in a container-managed relationship. I call findByPrimaryKey()
on the first bean and then call getBean2(), a CMR accessor method, on the
returned instance. At that point, I get an InconsistentAccessIntentException.
Why? You are probably using read-ahead. When you loaded the first bean, you

caused the second bean to be loaded under the access intent policy applied
to the finder method for the first bean. However, your CMR accessor
method from the first bean to the second had a different access intent
policy applied. CMR accessor methods are really finder methods in
disguise; the run-time environment behaves as if you were trying to
change the access intent for an instance you have already read from
persistent store.

To avoid this problem, ensure that the findByPrimaryKey() and CMR
accessor methods have the same access intent policy applied when you are
using read-ahead.

I have a bean with a one-to-many relationship to a second bean. The first bean
has a pessimistic-update intent policy applied. When I try to add an instance of
the second bean to the first bean’s collection, I get an
UpdateCannotProceedWithIntegrityException. Why?

The second bean probably has a read intent policy applied. When you add
the second bean to the first bean’s collection, you are not updating the first
bean’s state, you are implicitly modifying the second bean’s state. (The
second bean contains a foreign key to the first bean, which is modified.)

Chapter 4. Using enterprise beans in applications 115

To avoid this problem, ensure that both ends of the relationship have an
update intent policy applied if you expect to change the relationship at run
time.

EJB modules
An EJB module is used to assemble one or more enterprise beans into a single
deployable unit. An EJB module is stored in a standard Java archive (JAR) file.

An EJB module contains the following:
v One or more deployable enterprise beans.
v A deployment descriptor, stored in an Extensible Markup Language (XML) file.

This file declares the contents of the module, defines the structure and external
dependencies of the beans in the module, and describes how the beans are to be
used at run time.

An EJB module can be used as a standalone application, or it can be combined
with other EJB modules, or with Web modules, to create a J2EE application. An EJB
module is installed and run in an enterprise bean container.

For more information about EJB modules, see “Enterprise beans: Resources for
learning” on page 151.

Assembling EJB modules
Before you begin

If you want to use existing Java 2 Platform, Enterprise Edition (J2EE) Version 1.2
modules in your J2EE Version 1.3 application, migrate them to the Version 1.3
specification first.

Assemble an Enterprise JavaBeans (EJB) module to contain enterprise beans and
related code artifacts. Group Web components, client code, and resource adapter
code in separate modules.

An EJB module can be installed as a standalone application or can be combined
with other modules into an enterprise application.

The Application Assembly Tool (AAT) provides flexibility in assembling EJB
modules. Options described below include:
v Importing an existing EJB module (EJB JAR file)
v Creating a new EJB module
v Copying code artifacts (such as entity beans) from one EJB module into a new

EJB module

Steps for this task
1. Start the AAT.
2. Select File>New>EJB Module.

The navigation tree displays various sets of properties for configuring the new
EJB module.

3. (Optional) Use the property dialog shown in the AAT workspace to change the
default file name and location.

116 IBM WebSphere Application Server Network Deployment, Version 5: Applications

a. It is recommended that you change the display name so that it differs from
the file name.

b. If you like, change the temporary location of the EJB module from the
default location, install_root/bin.

4. Add at least one EJB component to the module.
v Add at least one enterprise bean to the EJB component.

– Import an existing JAR or EAR file containing EJB components.
a. In the Navigation pane, right-click the EJB Components icon.
b. Select Import from the pop-up menu.
c. Click Browse to locate the archive file to import.
d. Click Open to display the contents of the archive file.
e. Select an EJB application from the archive file.
f. Select the servlets or JSP files to be added and click Add to display the

components in the Selected Components window.
g. Click OK to add the selected components.

– Copy and paste values from an existing module.
– Create a new EJB component.

a. In the Navigation pane, right-click the EJB Components icon.
b. Select New from the pop-up menu.
c. Enter the component name and archive type.
d. Select class files.
e. Click OK in the New EJB Component property dialog.
f. Enter properties for the EJB component as needed.

5. Enter assembly properties for each bean.
a. Click the plus sign (+) next to the component instance to show property

groups.
b. Right-click the icon for a property group.
c. Select New from the pop-up menu to add new values, or edit existing

values in the property pane.
6. Add any other files needed by the application.

a. Right-click the Files icon.
b. Select Add Files from the pop-up menu.
c. Select Browse to navigate the directory structure.
d. Click Select to open an archive.
e. Select the files to add and click Add.
f. In the Selected Files window, click OK to add the files.

What to do next

Assemble any other new modules of your choice:
v EJB modules
v Application client modules
v Resource adapter modules

You can also migrate existing modules.

Chapter 4. Using enterprise beans in applications 117

Another option is assembling a new application module. While assembling
module). While assembling an application module, you can create any new
modules that you need.

CMP field assembly settings
In Enterprise JavaBeans (EJB) Version 1.1-compliant beans, container-managed
persistence (CMP) fields define the variables in the bean class for which the
container must handle persistence management. In EJB Version 2.0-compliant
beans, these are replaced by abstract get and set methods; generated code provides
the implementation of these abstract methods.

Name
Specifies a subset of public variables in the enterprise bean’s implementation class.

Container transactions
Container transaction properties specify how an EJB container is to manage
transaction scopes for the enterprise bean’s method invocations. A transaction
attribute is mapped to one or more methods.

Container transaction assembly settings
Container transaction settings specify how an EJB container is to manage
transaction scopes for the enterprise bean’s method invocations. Specify one or
more methods and associate a transaction attribute with each method.

Name
Specifies a name for the mapping between a transaction attribute and one or more
methods.

Description
Contains text that describes the mapping.

Transaction attribute
Specifies how the container must manage the transaction boundaries when
delegating a method invocation to an enterprise bean’s business method.

Data type String
Default Required
Range For all but message-driven beans, valid values are Mandatory, Never, Not

Supported, Required, Requires New, Supports. For session beans, Bean
Managed is also valid. For message-driven beans, only Bean Managed, Not
Supported, and Required are valid.

Additional information about valid values follows:

Bean Managed
Notifies the container that the bean class directly handles transaction
demarcation. This setting can be specified for session beans and (in EJB 2.0
implementations only) for message-driven beans, and it cannot be specified
for individual bean methods.

Mandatory
Directs the container to always call the bean method within the transaction
context associated with the client. If the client attempts to invoke the bean
method without a transaction context, the container throws the

118 IBM WebSphere Application Server Network Deployment, Version 5: Applications

javax.jts.TransactionRequiredException exception to the client. The
transaction context is passed to any EJB object or resource accessed by an
enterprise bean method.

EJB clients that access these entity beans must do so within an existing
transaction. For other enterprise beans, the enterprise bean or bean method
must implement the Bean Managed value or use the Required or Requires
New value. For non-enterprise bean EJB clients, the client must access a
transaction by using the javax.transaction.UserTransaction interface.

Never Directs the container to invoke bean methods without a transaction
context.
v If the client calls a bean method from within a transaction context, the

container throws the java.rmi.RemoteException exception.
v If the client calls a bean method from outside a transaction context, the

container behaves in the same way as if the Not Supported transaction
attribute was set. The client must call the method without a transaction
context.

Not Supported
Directs the container to call the bean method without a transaction context.
If a client calls a bean method from within a transaction context, the
container suspends the association between the transaction and the current
thread before invoking the method on the enterprise bean instance. The
container then resumes the suspended association when the method
invocation returns. The suspended transaction context is not passed to any
enterprise bean objects or resources that are used by this bean method.

Required
Directs the container to call the bean method within a transaction context.
If a client calls a bean method from within a transaction context, the
container calls the bean method within the client transaction context. If a
client calls a bean method outside a transaction context, the container
creates a new transaction context and calls the bean method from within
that context. The transaction context is passed to any enterprise bean
objects or resources that are used by this bean method.

Requires New
Directs the container to always call the bean method within a new
transaction context, regardless of whether the client calls the method
within or outside a transaction context. The transaction context is passed to
any enterprise bean objects or resources that are used by this bean method.

Supports
Directs the container to call the bean method within a transaction context if
the client calls the bean method within a transaction. If the client calls the
bean method without a transaction context, the container calls the bean
method without a transaction context. The transaction context is passed to
any enterprise bean objects or resources that are used by this bean method.

Methods - Name
Specifies the name of an enterprise bean method, or the asterisk character (*). The
asterisk is used to denote all methods of an enterprise bean’s remote and home
interfaces.

Methods - Enterprise bean
Specifies which enterprise bean contains the methods indicated in the Name
setting.

Chapter 4. Using enterprise beans in applications 119

Methods - Type
Used to distinguish between a method with the same signature that is defined in
both the home and remote interface. Use Unspecified if a transaction attribute
applies to all methods of the bean.

Data type String
Range Valid values for EJB 1.1 implementations are Home, Remote, or

Unspecified. For EJB 2.0 implementations, Local and LocalHome are also
valid.

Methods - Parameters
Contains a list of fully qualified Java type names of the method parameters. This
setting is used to identify a single method among multiple methods with an
overloaded method name.

EJB module assembly settings
An EJB module is used to assemble enterprise beans into a single deployable unit.
An EJB module contains one or more enterprise beans and a deployment
descriptor.

File name
Specifies the file name of the EJB module, relative to the top level of the
application package.

Alternate DD
Specifies a deployment descriptor to be used at run time instead of the one
installed in the module.

Classpath
The path that contains additional classes required by the application that are not
contained in the module’s archive file. The class loader uses this path. Specify the
values relative to the root of the EAR file and separate the values with spaces.
Absolute values that refer to files or directories on the hard drive are ignored.

To specify classes that are not in JAR files but are in the root of the EAR file, use a
period and forward slash (./). Consider the following example directory structure
in which the file myapp.ear contains an EJB module named myejb.jar. Additional
classes reside in class1.jar and class2.zip. A class named xyz.class is not packaged
in a JAR file but is in the root of the EAR file.
myapp.ear/myejb.jar
myapp.ear/class1.jar
myapp.ear/class2.zip
myapp.ear/xyz.class

Specify class1.jar class2.zip ./ as the value of the Classpath setting. (Name
only the directory for .class files.)

Display name
Specifies a short name that is intended to be displayed by GUIs.

Description
Contains text that describes the module.

EJB client JAR
Specifies the location of a JAR file that contains a subset of deployed classes
needed by the client.

120 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Small icon
Specifies the name of a JPEG or GIF file that contains a small image (16x16 pixels).
The image is used as an icon to represent the module in a GUI.

Large icon
Specifies the name of a JPEG or GIF file that contains a large image (32x32 pixels).
The image is used as an icon to represent the module in a GUI.

Generalizations - Subtype
Information about this property is not available.

This property is an IBM extension to the standard J2EE deployment descriptor.

Generalizations - Supertype
Information about this property is not available.

This property is an IBM extension to the standard J2EE deployment descriptor.

EJB relationships - Name
The logical name for a container-managed relationship between EJB 2.0-compliant
entity beans.

Default data source - JNDI name
Specifies the default JNDI name for the data source. This default is used if binding
information is not specified in the deployment descriptor for an individual
enterprise bean.

Default CMP connection factory
Specifies the JNDI name for a CMP connection factory. This setting is applicable
only for EJB 2.x-compliant CMP beans.

Default authorization - User ID
Specifies the default user ID for connecting to an enterprise bean’s data store.

Default authorization - Password
Specifies the default password for connecting to an enterprise bean’s data store.

Entity bean assembly settings
An entity bean encapsulates persistent data, which is stored in a data source, and
associated methods to manipulate that data.

EJB name
Specifies a logical name for the enterprise bean. This name must be unique within
the EJB module. There is no relationship between this name and the JNDI name.

Display name
Specifies a short name that is intended to be displayed by GUIs.

Description
Contains text that describes the entity bean.

EJB class
Specifies the full name of the enterprise bean class (for example,
com.ibm.ejs.doc.account.AccountBean).

Remote - Home
(Required for EJB 1.x) Specifies the full name of the enterprise bean’s home
interface class (for example, com.ibm.ejs.doc.account.AccountHome).

Chapter 4. Using enterprise beans in applications 121

Remote - Interface
(Required for EJB 1.x) Specifies the full name of the enterprise bean’s remote
interface class (for example, com.ibm.ejs.doc.account.Account).

Local interface - Home
(Required for EJB 1.x) Specifies the full name of the enterprise bean’s local home
interface class (for example, com.ibm.ejs.doc.account.AccountLocalHome).

Local interface - Interface
(Required for EJB 1.x) Specifies the full name of the enterprise bean’s local
interface class (for example, com.ibm.ejs.doc.account.AccountLocal).

Persistence type
Specifies whether an entity bean manages its own persistent storage or whether
storage is managed by the container.

Data type String
Range Valid values are Bean managed and Container managed.

Reentrant
Specifies whether the entity bean is reentrant. If an enterprise bean is reentrant, it
can call methods on itself or call another bean that calls a method on the calling
bean. Only entity beans can be reentrant.

If an entity bean is not reentrant and a bean instance is executing a client request
in a transaction context and another client using the same transaction context
makes a request on the same bean instance, the EJB container throws the
java.rmi.RemoteException exception to the second client. If a bean is reentrant, the
container cannot distinguish this type of illegal loopback call from a legal
concurrent call, so the bean must be coded to detect illegal loopback calls.

Primary key class
Specifies the full name of the bean’s primary key class (for example,
com.ibm.ejs.doc.account.AccountKey). Composite primary keys map to multiple
fields in the entity bean class (or to data structures built from the primitive Java
data types) and must be encapsulated in a primary key class.

More complicated enterprise beans are likely to have composite primary keys, with
multiple instance variables representing the primary key. A subset of the
container-managed fields is used to define the primary key class associated with
each instance of an enterprise bean.

Primary key field
Specifies the name of a simple primary key. Simple primary keys map to a single
field in the entity bean class and are made up of primitive Java data types (such as
integer or long). If exactly one CMP field is the primary key, it can be specified
here.

Data type String
Range Valid values are the name of any one CMP field or Compound key, which

appears when the primary key class is set

Version
Specifies the version of EJB specification with which a container-managed
persistence (CMP) entity bean complies.

Data type String

122 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Range Valid values are 1.x or 2.x

Abstract schema name
Specifies the name of the abstract schema type of an EJB Version 2.x CMP entity
bean. It is used in EJB Query Language (QL) queries.

For example, the abstract schema name might be Order for an entity bean whose
local interface is com.acme.commerce.Order.

Small icon
Specifies the name of a JPEG or GIF file that contains a small image (16x16 pixels).
The image is used as an icon to represent the entity bean in a GUI.

Large icon
Specifies the name of a JPEG or GIF file that contains a large image (32x32 pixels).
The image is used as an icon to represent the entity bean in a GUI.

Security identity
Specifies that a principal’s credential properties are to be handled as indicated in
the Run-As mode property. If this setting is enabled, the Run-As mode property
can be edited.

Run-As mode
Specifies the credential information to be used by the security service to determine
the permissions that a principal has on various resources.

At appropriate points, the security service determines whether the principal is
authorized to use a particular resource based on the principal’s permissions. If the
method call is authorized, the security service acts on the principal’s credential
properties according to the Run-As mode setting of the enterprise bean.

Data type Enumerated integer
Range Valid values are Use identity of caller and Use identity assigned to

specified role

Additional information about valid settings follows:

Use identity of caller
The security service makes no changes to the principal’s credential
properties.

Use identity assigned to specified role
A principal that has been assigned to the specified security role is used for
the execution of the bean’s methods. This association is part of the
application binding in which the role is associated with a user ID and
password of a user who is granted that role.

Role name
Specifies the name of a security role. If Run-As mode is set to Use identity
assigned to specified role, a principal that has been granted this role is used.

Description
Contains further information about the security role.

Concurrency control
Specifies how the bean is to handle concurrent access to its data. This setting is
applicable only for EJB 1.x-compliant entity beans.

Chapter 4. Using enterprise beans in applications 123

This property is an IBM extension to the standard J2EE deployment descriptor.

Data type String
Range Valid values are Optimistic or Pessimistic

Inheritance root
Specifies whether the enterprise bean is at the root of an inheritance hierarchy.

This property is an IBM extension to the standard J2EE deployment descriptor.

Bean Cache - Activate at
Specifies the point at which an enterprise bean is activated and placed in the cache.
Removal from the cache and passivation is also governed by this setting.

This property is an IBM extension to the standard J2EE deployment descriptor.

Data type String
Default Transaction
Range Valid values are Once, Transaction, and Activity session

More information about valid values follows:

Once Indicates that the bean is activated when it is first accessed in the server
process, and passivated (and removed from the cache) at the discretion of
the container, for example, when the cache becomes full.

Transaction
Indicates that the bean is activated at the start of a transaction and
passivated (and removed from the cache) at the end of the transaction.

Activity session
Indicates that the bean is activated and passivated as follows:
v On an ActivitySession boundary, if an ActivitySession context is present

on activation
v On a transaction boundary, if a transaction context (but no

ActivitySession context) is present on activation
v Otherwise, on an invocation boundary

The values of the Activate at and Load at settings govern which commit options
are used, as follows:
v For Commit Option A (implies exclusive DB access), use Activate at = Once and

Load at = Activation.
This option reduces database I/O (avoids calls to the ejbLoad function) but
serializes all transactions accessing the bean instance. Option A can increase
memory usage by maintaining more objects in the cache, but could provide
better response time if bean instances are not generally accessed concurrently by
multiple transactions. To use Option A successfully, you must also set
Concurrency control to Pessimistic.
Note for Network Deployment users: When workload management is enabled,
Option A cannot be used.

v For Commit Option B (implies shared DB access), use Activate at = Once, Load
at = Transaction.
Option B can increase memory usage by maintaining more objects in the cache.
However, because each transaction creates its own copy of an object, there can
be multiple copies of an instance in memory at any given time (one per

124 IBM WebSphere Application Server Network Deployment, Version 5: Applications

transaction), requiring that the database be accessed at each transaction. If an
enterprise bean contains a significant number of calls to the ejbActivate function,
using Option B can be beneficial because the required object is already in the
cache. Otherwise, this option does not provide significant benefit over Option A.

v For Commit Option C (implies shared DB access), use Activate at = Transaction
and Load at = Transaction.
This option can reduce memory usage by maintaining fewer objects in the cache;
however, there can be multiple copies of an instance in memory at any given
time (one per transaction). This option can reduce transaction contention for
enterprise bean instances that are accessed concurrently but not updated.

Bean Cache - Load at
Specifies when the bean loads its state from the database. The value of this setting
implies whether the container has exclusive or shared access to the database.

This property is an IBM extension to the standard J2EE deployment descriptor.

Data type String
Default Transaction
Range Valid values are Activation and Transaction

Additional information about valid values follows:

Activation
Indicates that the bean is loaded when it is activated (regardless of
Activate at setting) and implies that the container has exclusive access to
the database.

Transaction
Indicates that the bean is loaded at the start of a transaction and implies
that the container has shared access to the database.

The Activate at and Load at settings govern which commit options are used. The
commit options themselves are described in the Enterprise JavaBeans specification.
For more information about setting this setting to achieve a given commit
behavior, see Bean Cache - Activate at.

Commit option
Specifies which commit option is used as a result of bean cache settings. The
commit options themselves are described in the Enterprise JavaBeans specification.

Data type String
Range Valid values are A, B, and C

Local Transactions - Unresolved action
Specifies the action that the EJB container must take if resources are uncommitted
by an application in a local transaction.

This property is an IBM extension to the standard J2EE deployment descriptor.
This setting is applicable only when Resolution control is set to Application. A
local transaction context is created when a method runs in what the EJB
specification refers to as an unspecified transaction context.

Data type String
Default Rollback
Range Valid values are Commit and Rollback

Chapter 4. Using enterprise beans in applications 125

Additional information about these settings follows:

Commit
At end of the local transaction context, the container instructs all
unresolved local transactions to commit.

Rollback
(Default) At end of the local transaction context, the container instructs all
unresolved local transactions to roll back.

Local Transactions - Resolution control
Specifies how the local transaction is to be resolved before the local transaction
context ends: by the application through user code or by the EJB container.

This property is an IBM extension to the standard J2EE deployment descriptor.

Data type String
Range Valid values are Application and ContainerAtBoundary

Additional information about these settings follows:

Application
When this setting is used, your code must either commit or roll back the
local transaction. If this does not occur, the runtime environment logs a
warning and automatically commits or rolls back the connection as
specified by the Unresolved action setting.

ContainerAtBoundary
When this setting is used, the container takes responsibility for resolving
each local transaction. This provides you with a programming model
similar to global transactions in which your code simply gets a connection
and performs work within it. User code does not have to handle local
transactions.
v

– If the Boundary attribute is set to ActivitySession, then the local
transactions are enlisted as ActivitySession resources and directed to
complete by the ActivitySession.

– If the the Boundary attribute is set to BeanMethod, then the local
transactions are committed at method end by the container.

Connections are never committed automatically by the resource adapter
when this value is configured for the bean Unresolved action is not
used. An application cannot call Connection.LocalTransaction.begin()
when using this policy and receives an exception from the resource
adapter if it does so.

When using a Resolution control of ContainAtBoundary, applications
must get connection handles after the local transaction context boundary
has been started by the container. The application should close the
connection before the end of the boundary, although any work
performed on the connection is not committed or rolled back until the
local transaction context ends. This model of connection usage is
sometimes referred to as the ″get-use-close″ model.

126 IBM WebSphere Application Server Network Deployment, Version 5: Applications

This value is supported only for EJB components that use
container-managed transactions or ActivitySessions. It is not supported
for web components or for enterprise beans that use bean-managed
transactions or ActivitySessions.

Local Transactions - Boundary
Specifies the duration of a local transaction context.

This property is an IBM extension to the standard J2EE deployment descriptor.

Data type String
Default BeanMethod
Range Valid values are BeanMethod and ActivitySession

Additional information about valid settings follows:

BeanMethod
When this setting is used, the local transaction begins when the method
begins and ends when the method ends.

ActivitySession
When this setting is used, the local transaction must be resolved within the
scope of any ActivitySession in which it was started or, if no
ActivitySession context is present, within the same bean method in which
it was started.

This property can be changed on WAS Enterprise only.

Local Relationship Roles - Name
Within a local relationship between EJB 1.x-compliant entity beans, the logical
name for the view an entity bean presents to other beans in the relationship.

For example, in a relationship between Account and Customer beans, the role of
the Account instance relative to the Customer instance might be savingsAccount.

This property is an IBM extension to the standard J2EE deployment descriptor.
This is separate from the container-managed relationships defined in the Enterprise
JavaBeans specification, Version 2.0.

Local Relationship Roles - Source EJB Name
The name of the entity bean for which the role is defined.

This property is an IBM extension to the standard J2EE deployment descriptor.

Local Relationship Roles - is Forward
Specifies how deployment code for navigating the relationship is generated. This
setting is applicable only for navigable relationships.

If isForward is enabled (set to true), deployment code is generated in the source
bean. That is, navigation of the relationship proceeds forward from the source to the
target.

Otherwise, deployment code is generated in the target bean. That is, navigation of
the relationship proceeds from the target to the source.

Chapter 4. Using enterprise beans in applications 127

This property is an IBM extension to the standard J2EE deployment descriptor. For
more information, see the documentation for the Deployment Tool for Enterprise
JavaBeans.

Local Relationship Roles - is Navigable
Specifies whether data in related beans may be retrieved through queries to the
source bean.

This property is an IBM extension to the standard J2EE deployment descriptor.

Lifetime in cache
The lifetime, in seconds, of cached data for an instance of this bean type.

This value indicates how long the cached data is to exist beyond the end of the
transaction in which the data was retrieved. This might avoid another retrieval
from persistent storage if the same bean instance were to be used in later
transactions. How this value is interpreted depends on the value of Lifetime in
cache usage.

This property is an IBM extension to the standard J2EE deployment descriptor.

Data type Long
Units Seconds
Default 0
Range 0 to 261 - 1

Lifetime in cache usage
Indicates how the lifetime-in-cache setting is to be used by the caching mechanism.

This property is an IBM extension to the standard J2EE deployment descriptor.

If your application uses CMP beans in which the underlying data changes
infrequently, you might gain significantly better performance by using this setting
with Lifetime in cache. Typically, data read from persistent storage is held
temporarily in an internal cache until the state of the instance is restored. Cached
data normally does not persist beyond state restoration or the end of the
transaction in which the finder method was called. By setting Lifetime in cache
usage to a value other than Off, you indicate that the cached data is to be held for
a longer time, potentially hours or days, before invalidating the version of the data
in the cache and fetching a new version. Avoiding a trip to persistent storage
greatly speeds up access to such beans by applications.

In addition, the use of a value other than Off requires that finders on the bean
have an access type of Read, because EJB applications are not permitted to update
such CMP beans.
v For EJB 1.x-compliant beans, see Access intent - access type.
v For EJB 2.x-compliant beans, see Applied access intent.

Setting Bean Cache - Activate at to activation and Bean Cache - Load at to Once
also minimizes retrievals from persistent storage. However, this settings
combination might not be supported by certain CMP beans because it results in the
ejbLoad() method being called once instead of at the beginning of each transaction
in which they are used. The lifetime-in-cache settings combination is independent
of CMP bean implementation, though it does incur the modest overhead of calling
ejbLoad() on each use.

128 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Data type Enumerated int
Units Not applicable
Default 0 (Off)
Range Valid values are Clock Time, Elapsed Time, Week Time, or Off

Additional information about valid values follows:

Off When this value is used, the value of Lifetime in cache is ignored. Beans
of this type are cached only in a transaction-scoped cache. The cached data
for this instance expires after the transaction in which it was retrieved is
completed.

Elapsed Time
When this value is used, the value of Lifetime in cache is added to the
time at which the transaction in which the bean instance was retrieved is
completed. The resulting value becomes the time at which the cached data
expires. The value of Lifetime in cache can add up to minutes, hours,
days, and so on.

Clock Time
When this value is used, the value of Lifetime in cache represents a
particular time of day. The value is added to the immediately preceeding
or following midnight to calculate a future time value, which is then
treated as for Elapsed Time. Using Clock Time enables you to specify that
all instances of this bean type are to have their cached data invalidated at,
for example, 3 AM, no matter when they were retrieved. This is important
if, for example, the data underlying this bean type is batch-updated at 3
AM every day.

The selection of midnight (preceding or following) depends on the value of
Lifetime in cache. If Lifetime in cache plus the value that represents the
preceeding midnight is earlier than the current time, the following
midnight is used.

When you use Clock Time, the value of Lifetime in cache is not supposed
to represent more than 24 hours. If it does, the cache manager subtracts
24-hour increments from it until a value less than or equal to 24 hours is
achieved. To invalidate data at midnight, set Lifetime in cache to 0.

Week Time
Usage of this value is the same as for Clock Time, except that the value of
Lifetime in cache is added to the preceeding or following Sunday
midnight (11:59 PM Saturday plus 1 minute). When Week Time is used, the
value of Lifetime in cache can represent more than 24 hours but not more
than 7 days.

JNDI name
Specifies the JNDI name of the bean’s home interface. This is the name under
which the enterprise bean’s home interface is registered and therefore, is the name
that must be specified when an EJB client does a lookup of the home interface.

Data source - JNDI name
Specifies the JNDI name for the bean’s data source.

Default Authorization - User ID
Specifies the default user ID for connecting to a data source.

Default Authorization - Password
Specifies the default password for connecting to a data source.

Chapter 4. Using enterprise beans in applications 129

CMP Resource - JNDI name
Specifies the JNDI name for the resource by which CMP data is stored.

CMP Resource - Resource authentication
Specifies the scope at which resources are to be authenticated: by the container or
by the resource.

EJB local-reference assembly settings
For EJB 2.0-compliant beans, the EJB local reference element declares a reference to
another enterprise bean’s local home interface.

Name
Specifies the name of an EJB reference.

This is the JNDI name that the servlet code uses to get a reference to the enterprise
bean. The following example illustrates how this element is specified in the
deployment descriptor:
<ejb-ref-name>ejb/Payroll</ejb-ref-name>

Description
Contains a description of the parent element.

This can include any information that the EJB archive-file producer wants to
provide to the consumer of the EJB archive file.

Link
Used in the ejb-ref element to specify that an EJB reference is linked to an
enterprise bean in the encompassing web-application package.

The value of the link element must be the EJB name of an enterprise bean in the
same web-application package. The following example illustrates how this element
is specified in the deployment descriptor:
<ejb-link>EmployeeRecord</ejb-link>

Local interface
Specifies the fully-qualified name of the enterprise bean’s local interface.

Local home
Specifies the fully-qualified name of the enterprise bean’s local home interface.

Type
Specifies the expected type of the referenced enterprise bean.

Message-driven bean assembly settings
Use this page to configure the assembly properties of message-driven beans

For more information about the effect of JMS properties, such as message selectors
and message acknowledgement, see the WebSphere MQ Using Java book,

SC34-5456 or ″Messaging Systems and the Java Message Service″
(http://developer.java.sun.com/developer/technicalArticles/
Networking/messaging/).

The following notebook pages are available:

General properties
Specify general assembly properties for the message bean.

130 IBM WebSphere Application Server Network Deployment, Version 5: Applications

v EJB name
v Display name
v Description
v EJB class
v Transaction type

Advanced properties
Specify advanced assembly properties for the message bean.
v Message selector
v Acknowledge mode
v Destination type

Bindings properties
Specify bindings assembly properties for the message bean.

EJB name
The logical name for the message bean (as an enterprise bean)

The logical name for the message bean (as an enterprise bean). This name must be
unique within the EJB module. There is no relationship between this name and the
JNDI name.

Data type String
Units Not applicable
Default Null
Range Up to 30 ASCII characters

Display name
A short name that is intended to be displayed by graphical user interfaces

Data type String
Units Not applicable
Default Null
Range Up to 30 ASCII characters

Description
A description of the message bean, for administrive use

Data type String
Units Not applicable
Default Null
Range Up to 30 ASCII characters

EJB class
The full package name of the message bean class

Specify the full package name of the message bean class, for example,
com.ibm.ejs.doc.account.MessageBean. You can either type the class name or click
Browse to locate an existing class file.

Data type String
Units Not applicable
Default Null
Range Up to 30 ASCII characters

Chapter 4. Using enterprise beans in applications 131

Transaction type
Whether the message bean manages its own transactions or the container manages
transactions on behalf of the bean

Whether the message bean manages its own transactions or the container manages
transactions on behalf of the bean. All messages retrieved from a specific
destination have the same transactional behavior. To enable the transactional
behavior that you want, you must configure the JMS destination with the same
transactional behavior as you configure for the message bean.

Data type Enum
Units Not applicable
Default Bean
Range

Bean The message bean manages its own transactions

Container
The container manages transactions on behalf of the bean

Message selector
The JMS message selector to be used to determine which messages the message
bean receives

The JMS message selector to be used to determine which messages the message
bean receives; for example:
JMSType=’car’ AND color=’blue’ AND weight>2500

The selector string can refer to fields in the JMS message header and fields in the
message properties. Message selectors cannot reference message body values.

Data type String
Units Not applicable
Default Null
Range A String, up to 30 ASCII characters, whose syntax is based on a subset

of the SQL92 conditional expression syntax.

Acknowledge mode
How the session acknowledges any messages it receives.

This property applies only to message-driven beans that uses bean-managed
transaction demarcation (Transaction type is set to Bean).

Data type Enum
Units Not applicable
Default Auto Acknowledge
Range

Auto Acknowledge
The session automatically acknowledges a message when it has
either successfully returned from a call to receive, or the
message listener it has called to process the message
successfully returns.

Dups OK Acknowledge
The session lazily acknowledges the delivery of messages. This
is likely to result in the delivery of some duplicate messages if
JMS fails, so it should be used only by consumers that are
tolerant of duplicate messages.

132 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Destination type
Whether the message bean uses a queue or topic destination.

Data type Enum
Units Not applicable
Default Null
Range

Queue The message bean uses a queue destination.

Topic The message bean uses a topic destination.

Listener port name
The name of the listener port for this message bean.

The name of the listener port for this message bean (as defined on the WebSphere
administrative console).

Data type String
Units Not applicable
Default Null
Range Up to 30 ASCII characters

Method extensions
Method extensions are IBM extensions to the standard deployment descriptors for
enterprise beans.

Method extension properties are used to define transaction isolation levels for
methods, to control the delegation of a principal’s credentials, and to define
custom finder methods.

Method extension assembly settings
Method extensions are IBM extensions to the standard J2EE deployment
descriptors for Enterprise JavaBeans (EJB) Version 1.x-compliant beans. Method
extension settings define transaction isolation levels for methods and control the
delegation of a principal’s credentials.

Method type
Specifies the type of the enterprise bean method.

Data type String
Range Valid values are Home, Remote, and Unspecified.

Name
Specifies the name of an enterprise bean method, or the asterisk character (*). The
asterisk is used to denote all methods of an enterprise bean’s remote and home
interfaces.

Parameters
Contains a list of fully qualified Java type names of the method parameters. Used
to identify a single method among multiple methods with an overloaded method
name.

Isolation level attributes
The transaction isolation level determines how isolated one transaction is from
another. This can be set for individual methods in an enterprise bean or for all

Chapter 4. Using enterprise beans in applications 133

methods in the enterprise bean. An asterisk is used to indicate all methods in the
bean. This setting is not applicable for EJB 2.x-compliant beans.

Within a transactional context, the isolation level associated with the first method
call becomes the required isolation level for all methods called within that
transaction. If a method is called with a different isolation level from that of the
first method, the java.rmi.RemoteException exception is thrown.

Isolation level
Specifies the level of transactional isolation.

The container uses the transaction isolation level attribute as follows:
v Session beans and entity beans with bean-managed persistence (BMP): For each

database connection used by the bean, the container sets the transaction isolation
level at the start of each transaction unless the bean explicitly sets the isolation
level on the connection.

v Entity beans with container-managed persistence (CMP): The container generates
database access code that implements the specified isolation level.

Data type String
Range Valid values are Serializable, Repeatable read, Read committed, and

Read uncommitted

Serializable
This level prohibits the following types of reads:
v Dirty reads, in which a transaction reads a database row containing

uncommitted changes from a second transaction.
v Nonrepeatable reads, in which one transaction reads a row, a second

transaction changes the same row, and the first transaction rereads the
row and gets a different value.

v Phantom reads, in which one transaction reads all rows that satisfy an
SQL WHERE condition, a second transaction inserts a row that also
satisfies the WHERE condition, and the first transaction applies the same
WHERE condition and gets the row inserted by the second transaction.

Repeatable read
This level prohibits dirty reads and nonrepeatable reads, but it allows
phantom reads.

Read committed
This level prohibits dirty reads but allows nonrepeatable reads and
phantom reads.

Read uncommitted
This level allows dirty reads, nonrepeatable reads, and phantom reads.

Access intent - Intent type
Specifies whether to load the enterprise bean as read-only or for update. This
setting is applicable only for EJB 1.x-compliant beans.

This setting is applicable for the following types of beans:
v EJB 1.x-compliant entity beans
v Enterprise beans with CMP version 1.x that are packaged in EJB 2.x-compliant

modules

134 IBM WebSphere Application Server Network Deployment, Version 5: Applications

To specify the access intent for EJB 2.x-compliant beans, select an access intent
policy.

Data type String
Range Valid values are Read or Update

Finder descriptor - User
Specifies that the user has provided a finder helper class in the entity bean’s home
interface. The class contains specialized finder methods. This setting is applicable
only for EJB 1.x-compliant entity beans.

Finder descriptor - EJB QL
Describes the semantics of a finder method that uses EJB QL (Enterprise JavaBeans
query language). This setting is applicable only for EJB 1.x-compliant entity beans.

EJB QL is a declarative, SQL-like language that is intended to be compiled to the
target language of the persistent datastore used by a persistence manager. The
language is independent of the bean’s mapping to a relational datastore and is
therefore portable. The EJB query specifies a search based on the persistent
attributes and relationships of the bean. An EJB query can contain the following
clauses:
v SELECT (optional), which specifies the EJB objects to return
v FROM (required), which specifies the collections of objects to which the query is

to be applied
v WHERE (optional), which contains search predicates over the collections
v ORDER BY (optional), which specifies the ordering of the resulting collection

Finder descriptor - Full SELECT
Describes the semantics of a finder method that uses an SQL SELECT clause. For
information on restrictions, see the documentation for the Deployment Tool for
Enterprise JavaBeans.

Finder descriptor - WHERE clause
Describes the semantics of a finder method that uses an SQL WHERE clause. This
clause restricts the results that are returned by the query. For information on
restrictions, see the documentation for the Deployment Tool for Enterprise
JavaBeans.

Security identity
Specifies whether a principal’s credential settings are to be handled as indicated in
the Run-As mode setting. If this is enabled, the Run-As mode setting can be
edited.

Description
Contains further information about the security instructions.

Run-As mode
Specifies the credential information to be used by the security service to determine
the permissions that a principal has on various resources.

At appropriate points, the security service determines whether the principal is
authorized to use a particular resource based on the principal’s permissions. If the
method call is authorized, the security service acts on the principal’s credential
settings according to the Run-As mode setting of the enterprise bean.

Data type Enumerated integer

Chapter 4. Using enterprise beans in applications 135

Range Valid values are Use identity of caller, Use identity of EJB server,
and Use identity assigned to specified role

Additional information about valid values for this setting follows:

Use identity of caller
The security service makes no changes to the principal’s credential settings.

Use identity of EJB server
The security service alters the principal’s credential settings to match the
credential settings associated with the EJB server.

Use identity assigned to specified role
A principal that has been assigned to the specified security role is used for
the execution of the bean’s methods. This association is part of the
application binding in which the role is associated with a user ID and
password of a user who is granted that role.

Role name
Specifies the name of a security role. If Run-As mode is set to Use identity
assigned to specified role, a principal that has been granted this role is used.

Description
Contains further information about the security role.

Method permissions
A method permission is a mapping between one or more security roles and one or
more methods that a member of the role can call.

Method permission assembly settings
A method permission is a mapping between one or more security roles and one or
more methods that a member of the role can call. Assembly settings for method
permissions include an optional description, a list of security role names, and a list
of methods. The security roles must be defined, and the methods must be defined
in the enterprise bean’s remote or home interfaces.

Method permission name
Specifies a name for the mapping between method permissions and security roles.

Description
Contains text that describes the mapping between method permissions and
security roles.

Methods - Name
Specifies the name of an enterprise bean method, or the asterisk (*) character. The
asterisk is used to denote all the methods of an enterprise bean’s remote and home
interfaces.

Methods - Enterprise bean
Specifies the name of the enterprise bean that contains the method.

Methods - Type
Distinguishes between a method with the same signature that is defined in both
the home and remote interface. Use Unspecified if a method permission applies to
all methods of a bean.

Data type String

136 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Range Valid values are Unspecified, Remote, or Home.

Methods - Parameters
Contains a list of fully qualified Java type names of the method parameters. This
setting is used to identify a single method among multiple methods with an
overloaded method name.

Unchecked
Specifies whether the method permission is checked before the method is run.

Roles - Role name
Specifies the name of the security role that must be granted in order to call the
method.

Query assembly settings
Use these to specify a finder or SELECT query.

A query element contains the following:
v Optional description of the query
v Name of the finder or SELECT method that uses the query
v The return type of mapping, if it is used
v Whether the query is for a SELECT method
v EJB query language (EJB QL) query string that defines the query

Queries that are expressed in EJB QL must use the ejb-ql element to specify the
query. If a query cannot be expressed in EJB QL, describe the semantics of the
query by using the description element and leave the ejb-ql element empty.

Name
Contains the name of an enterprise bean method or the asterisk (*) character. An
asterisk in the method-name element denotes all methods of an enterprise bean’s
remote and home interfaces.

Parameters
Contains a list of the fully-qualified Java names of the method parameters.

Result type
Used in the query element to indicate whether a returned abstract schema type for
a SELECT method should be mapped to an EJBLocalObject or EJBObject type.

References
References are logical names used to locate external resources for enterprise
applications. References are defined in the application’s deployment descriptor file.
At deployment, the references are bound to the physical location (global JNDI
name) of the resource in the target operational environment.

This product supports the following types of references:
v An EJB reference is a logical name used to locate the home interface of an

enterprise bean.
v A resource reference is a logical name used to locate a connection factory object.

These objects define connections to external resources such as databases and
messaging systems. The container makes references available in a JNDI naming
subcontext. By convention, references are organized as follows:

Chapter 4. Using enterprise beans in applications 137

v EJB references are made available in the java:comp/env/ejb subcontext.
v Resource references are made available as follows:

– JDBC DataSource references are declared in the java:comp/env/jdbc
subcontext.

– JMS connection factories are declared in the java:comp/env/jms subcontext.
– JavaMail connection factories are declared in the java:comp/env/mail

subcontext.
– URL connection factories are declared in the java:comp/env/url subcontext.

EJB reference assembly settings
An EJB reference is a logical name used to locate the home interface of an
enterprise bean used by an application.

At deployment, the EJB reference is bound to the enterprise bean’s home in the
target operational environment. The container makes the application’s EJB
references available in a JNDI naming context. It is recommended that references to
enterprise beans be organized in the ejb subcontext of the application’s
environment (in java:comp/env/ejb).

Name
Specifies the JNDI name of the enterprise bean’s home interface relative to the
java:comp/env context.

For example, if ejb/EmplRecord is specified, the referring code looks up the
enterprise bean’s home interface at java:comp/env/ejb/EmplRecord. This JNDI
name is an alias used by the code (the actual JNDI name is specified on the
Binding tab).

Description
Contains text that describes the EJB reference.

Link
Used to link an EJB reference to an enterprise bean in the current module (the
same module as the one making the reference) or in another module within the
same J2EE application. This setting specifies the name of the target enterprise bean.

The target enterprise bean can be in any EJB module in the same J2EE application
as the referring module. To avoid having to rename enterprise beans to have
unique names within an J2EE application, specify the path name of the EJB archive
file that contains the referenced enterprise bean and append the target bean’s
name, separated by a # symbol (for example,
...products/product.jar#ProductEJB). The path name is relative to the referring
module’s archive file specification. If a link is not specified, the reference must be
resolved to a JNDI name during installation.

Home
Specifies the fully qualified name of the enterprise bean’s home interface (for
example, com.ibm.ejbs.EmplRecordHome).

Remote
Specifies the fully qualified name of the enterprise bean’s remote interface (for
example, com.ibm.ejbs.EmplRecord).

Type
Specifies the expected type of the referenced enterprise bean.

138 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Data type String
Default None; must be set
Range Entity or Session

JNDI name
Binding information that is used by the run-time environment to resolve the
location of a resource.

For EJB references, the value of this setting must match the JNDI name of the
enterprise bean as it was specified on the Binding tab for the EJB module that
contains the bean.

EJB relation assembly settings
An EJB relation describes a relationship between two entity beans with
container-managed persistence.

The name of the relationship, if specified, is unique within an EJB archive file.

Description
Contains text to describe the EJB relationship role.

Source EJB
Specifies the source of the role that participates in a relationship.

Multiplicity
Specifies the multiplicity of the role that participates in a relation.

Cascade delete
Within a particular relationship, specifies that the lifetime of one or more entity
beans is dependent on the lifetime of another entity bean.

Cascade delete can be specified only for an EJB relationship role contained in an
EJB relation in which the other EJB relationship role specifies a multiplicity of one.

CMR field
Enables the declaration of a container-managed relationship (CMR) field.

The CMR field describes the bean provider’s view of a relationship. It consists of
an optional description and the name and class type of the source enterprise bean’s
role in a relationship.

Exclude list assembly settings
The exclude list indicates which methods in the enterprise beans may not be
called. You should also configure security for the enterprise bean so that access to
the listed methods is not permitted.

This capability applies only to Enterprise JavaBeans (EJB) Version 2.x-compliant
beans. For more information about exclude lists, see the EJB specification.

Description
Provides additional information about this exclude list.

Methods - Name
Specifies the name of an enterprise bean method, or the asterisk (*) character. The
asterisk is used to denote all the methods of an enterprise bean’s remote and home
interfaces.

Chapter 4. Using enterprise beans in applications 139

Methods - Enterprise bean
Specifies the name of the enterprise bean that contains the method.

Methods - Type
Distinguishes between a method with the same signature that is defined in both
the home and remote interface. Use Unspecified if the exclusion applies to all
methods of a bean.

Data type String
Range Valid values are Unspecified, Remote, or Home

Methods - Parameters
Contains a list of fully qualified Java type names of the method parameters. This
setting is used to identify a single method among multiple methods with an
overloaded method name.

Security role assembly settings
A security role is a logical grouping of principals. Access to operations (such as
enterprise-bean methods) is controlled by granting access to a role.

Role name
Specifies the name of a security role that is unique to an application. This setting
applies only when you are specifying security roles at the application level (EAR
file).

Description
Contains text that describes the application-specific security role. This setting
applies only when you are specifying security roles at the application level (EAR
file).

Binding - Groups - Name
Specifies the user groups that are granted the application-specific security role.
This setting applies only when you are specifying security roles at the application
level (EAR file).

Binding - Users - Name
Specifies the users that are granted the application-specific security role. This
setting applies only when you are specifying security roles at the application level
(EAR file).

Binding - Special Subjects - Name
Specifies one of two special categories of authenticate users to which
application-specific security roles can be granted: Everyone or All. This setting
applies only when you are specifying security roles at the application level (EAR
file).

If the special subject All is granted a role, any user who can authenticate by using
a valid user ID and password is considered to be granted that role.

If the special subject Everyone is granted a role, all users, including those who did
not authenticate, are granted the role. In other words, a method on an enterprise
bean or a URI is unprotected if any of the required roles for that method are
granted to the special subject Everyone.

Data type String
Range Valid values are All or Everyone

140 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Session bean assembly properties
A session bean encapsulates transient data that is associated with a particular EJB
client. Unlike data in an entity bean, the data in a session bean is not stored in a
persistent data source.

EJB name
Specifies a logical name for the enterprise bean. This name must be unique within
the EJB module. There is no relationship between this name and the JNDI name.

Display name
Specifies a short name that is intended to be displayed by GUIs.

Description
Contains text that describes the session bean.

EJB class
Specifies the full name of the enterprise bean class (for example,
com.ibm.ejs.doc.account.AccountBean).

Remote - Home
Specifies the full name of the enterprise bean’s home interface class (for example,
com.ibm.ejs.doc.account.AccountHome).

Remote - Interface
Specifies the full name of the enterprise bean’s remote interface class (for example,
com.ibm.ejs.doc.account.Account).

Local interface - Home
Specifies the full name of the enterprise bean’s home interface class (for example,
com.ibm.ejs.doc.account.AccountLocalHome).

Local interface - Interface
Specifies the full name of the enterprise bean’s local interface class (for example,
com.ibm.ejs.doc.account.AccountLocal).

Session type
Specifies whether the enterprise bean maintains a conversational state (is stateful)
or does not (is stateless).

Data type String
Range Valid values are Stateful and Stateless

Transaction type
Specifies whether the enterprise bean manages its own transactions or whether the
container manages transactions on behalf of the bean.

Data type String
Range Valid values are Container or Bean

Small icon
Specifies the name of a JPEG or GIF file that contains a small image (16x16 pixels).
The image is used as an icon to represent the session bean in a GUI.

Large icon
Specifies the name of a JPEG or GIF file that contains a large image (32x32 pixels).
The image is used as an icon to represent the session bean in a GUI.

Chapter 4. Using enterprise beans in applications 141

Security identity
Specifies whether a principal’s credential properties are to be handled as indicated
in the Run-As mode property. If this setting is enabled (that is, set to true), the
Run-As mode setting can be edited.

Description
Contains further information about the security instructions.

Run-As mode
Specifies the credential information to be used by the security service to determine
the permissions that a principal has on various resources.

At appropriate points, the security service determines whether the principal is
authorized to use a particular resource based on the principal’s permissions. If the
method call is authorized, the security service acts on the principal’s credential
properties according to the Run-As mode setting of the enterprise bean.

Data type Enumerated integer
Range Valid values are Use identity of caller and Use identity assigned to

specified role

Additional information about valid values for this setting follows:

Use identity of caller
The security service makes no changes to the principal’s credential
properties.

Use identity assigned to specified role
A principal that has been assigned to the specified security role is used for
the execution of the bean’s methods. This association is part of the
application binding in which the role is associated with a user ID and
password of a user who is granted that role.

Role name
Specifies the name of a security role. If Run-As mode is set to Use identity
assigned to specified role, a principal that has been granted this role is used.

Description
Contains further information about the security role.

Timeout
This property applies only to stateful session beans.

This property is an IBM extension to the standard J2EE deployment descriptor.

Data type Integer
Units Seconds

Inheritance root
Specifies whether the enterprise bean is at the root of an inheritance hierarchy.

This property is an IBM extension to the standard J2EE deployment descriptor.

Bean Cache - Activate at
Specifies the point at which an enterprise bean is activated and placed in the cache.
Removal from the cache and passivation is also governed by this setting. This
setting applies to stateful session beans only (not to stateless beans).

142 IBM WebSphere Application Server Network Deployment, Version 5: Applications

This property is an IBM extension to the standard J2EE deployment descriptor.

Data type String
Default Once
Range Valid values are Once and Transaction

Additional information about valid values follows:

Once Indicates that the bean is activated when it is first accessed in the server
process, and passivated (and removed from the cache) at the discretion of
the container, for example, when the cache becomes full.

Transaction
Indicates that the bean is activated at the start of a transaction and
passivated (and removed from the cache) at the end of the transaction.

Local Transactions - Unresolved action
Specifies the action the container must take if resources are uncommitted by an
application in a local transaction. A local transaction context is created when a
method runs in what the EJB specification refers to as an unspecified transaction
context.

This property is an IBM extension to the standard J2EE deployment descriptor.

Data type String
Default Rollback
Range Valid values are Commit and Rollback

Local Transactions - Boundary
This property does not apply to session beans.

This property is an IBM extension to the standard J2EE deployment descriptor.

JNDI name
Specifies the JNDI name of the bean’s home interface. This is the name under
which the enterprise bean’s home interface is registered and therefore, is the name
that must be specified when an EJB client does a lookup of the home interface.

EJB containers
An Enterprise JavaBeans (EJB) container provides a run-time environment for
enterprise beans within the application server. The container handles all aspects of
an enterprise bean’s operation within the application server and acts as an
intermediary between the user-written business logic within the bean and the rest
of the application server environment.

One or more EJB modules, each containing one or more enterprise beans, can be
installed in a single container.

The EJB container provides many services to the enterprise bean, including the
following:
v Beginning, committing, and rolling back transactions as necessary.
v Maintaining pools of enterprise bean instances ready for incoming requests and

moving these instances between the inactive pools and an active state, ensuring
that threading conditions within the bean are satisfied.

Chapter 4. Using enterprise beans in applications 143

v Most importantly, automatically synchronizing data in an entity bean’s instance
variables with corresponding data items stored in persistent storage.

By dynamically maintaining a set of active bean instances and synchronizing bean
state with persistent storage when beans are moved into and out of active state,
the container makes it possible for an application to manage many more bean
instances than could otherwise simultaneously be held in the application server’s
memory. In this respect, an EJB container provides services similar to virtual
memory within an operating system.

Between transactions, the state of an entity bean can be cached. The EJB container
supports option A, B, and C caching.
v With option A caching, the application server assumes that the entity bean is

used within a single container. Clients of that bean must direct their requests to
the bean instance within that container. The entity bean has exclusive access to
the underlying database, which means that the bean cannot be cloned or
participate in workload management if option A caching is used.

v With option B caching, the entity bean remains active in the cache throughout
the transaction but is reloaded at the start of each method call.

v With option C caching (the default), the entity bean is always reloaded from the
database at the beginning of each transaction. A client can attempt to access the
bean and start a new transaction on any container that has been configured to
host that bean. This is similar to the session clustering facility described for
HTTP sessions in that the entity bean’s state is maintained in a shared database
that can be accessed from any server when required.

This product supports the cloning of stateful session bean home objects among
multiple application servers. However, it does not support the cloning of a specific
instance of a stateful session bean. Each instance of a particular stateful session
bean can exist in just one application server and can be accessed only by directing
requests to that particular application server. State information for a stateful
session bean cannot be maintained across multiple members of a server cluster.

For more information about EJB containers, see “Enterprise beans: Resources for
learning” on page 151.

Managing EJB containers
Each application server can have a single EJB container; one is created
automatically for you when the application server is created. The following steps
are to be performed only as needed to improve performance after the EJB
application has been deployed.

Steps for this task
1. (Optional) Adjust EJB container settings.
2. (Optional) Adjust EJB cache settings.

What to do next

If adjustments do not improve performance, consider adjusting access intent
policies for entity beans, reassembling the module, and redeploying the module in
the application.

144 IBM WebSphere Application Server Network Deployment, Version 5: Applications

EJB container settings
Use this page to configure and manage a specific EJB container.

To view this administrative console page, click Servers > Application Servers >
serverName > EJB Container.

Passivation directory
Specifies the directory into which the container saves the persistent state of
passivated stateful session beans.

Beans are passivated when the number of active bean instances becomes greater
than the cache size specified in the container configuration. When a stateful bean is
passivated, the container serializes the bean instance to a file in the passivation
directory and discards the instance from the bean cache. If, at a later time, a
request arrives for the passivated bean instance, the container retrieves it from the
passivation directory, deserializes it, returns it to the cache, and dispatches the
request to it. If any step fails (for example, if the bean instance is no longer in the
passivation directory), the method invocation fails.

Inactive pool cleanup interval
Specifies the interval at which the container examines the pools of available bean
instances to determine if some instances can be deleted to reduce memory usage.

Data type Integer
Units Milliseconds
Range Greater than 0

Default datasource JNDI name
Specifies the JNDI name of a data source to use if no data source is specified
during application deployment. This setting is not applicable for EJB 2.x-compliant
CMP beans.

Servlets and enterprise beans use data sources to obtain these connections. When
configuring a container, you can specify a default data source for the container.
This data source becomes the default data source used by any entity beans
installed in the container that use container-managed persistence (CMP).

The default data source for a container is secure. When specifying it, you must
provide a user ID and password for accessing the data source.

Specifying a default data source is optional if each CMP entity bean in the
container has a data source specified in its configuration. If a default data source is
not specified and a CMP entity bean is installed in the container without
specifying a data source for that bean, applications cannot use that CMP entity
bean.

Initial state
Specifies the execution state requested when the server first starts.

Data type String
Default Started
Range Valid values are Started and Stopped

Chapter 4. Using enterprise beans in applications 145

EJB container system properties
In addition to the settings accessible from the administrative console, you can set
the following system property by command-line scripting:

com.ibm.websphere.ejbcontainer.poolSize
Specifies the size of entity-bean pools. If you do not specify a default
value, the container defaults of 50 and 500 are used.

Set the pool size for a given entity bean as follows:
beantype = min, max[:beantype = min, max...]

beantype is the J2EE name of the bean, formed by concatenating the
application name, the # character, the module name, the # character, and
the name of the bean class. min and max are the minimum and maximum
pool sizes, respectively, for that bean type. Do not specify the square
brackets shown in the previous prototype; they denote optional additional
bean types that you can specify after the first. Each bean-type specification
is delimited by a colon (:).

Use an asterisk (*) as the value of beantype to indicate that all bean types
are to use those values unless overridden by an exact bean-type
specification somewhere else in the string, as follows:
*=30,100

To specify that a default value be used, omit either min or max but retain
the comma (,) between the two values, as follows (split for publication):
SMApp#PerfModule#TunerBean=54,

:SMApp#SMModule#TypeBean=100,200

You can specify the bean types in any order within the string.

EJB cache settings
Use this page to configure and manage the cache for a specific EJB container.

To view this administrative console page, click Servers > Application Servers >
serverName > EJB Container > EJB Cache Settings.

Cleanup interval
Specifies the interval at which the container attempts to remove unused items from
the cache in order to reduce the total number of items to the value of the cache
size.

The cache manager tries to maintain some unallocated entries that can be allocated
quickly as needed. A background thread attempts to free some entries while
maintaining some unallocated entries. If the thread runs while the application
server is idle, then when the application server needs to allocate new cache entries,
it does not pay the performance cost of removing entries from the cache. In
general, increase this parameter as the cache size increases.

Data type Integer
Units Milliseconds
Range Greater than 0

Cache size
Specifies the number of buckets in the active instance list within the EJB container.

146 IBM WebSphere Application Server Network Deployment, Version 5: Applications

A bucket can contain more than one active enterprise bean instance, but
performance is maximized if each bucket in the table has a minimum number of
instances assigned to it. When the number of active instances within the container
exceeds the number of buckets (that is, the cache size), the container periodically
attempts to reduce the number of active instances in the table by passivating some
of the active instances. For the best balance of performance and memory usage, set
this value to the maximum number of active instances expected during a typical
workload.

Data type Integer
Units Buckets in the hash table
Range Greater than 0. The container selects the next largest prime number

equal to or greater than the specified value.

Container interoperability
Container interoperability describes the ability of WebSphere Application Server
clients and servers at different versions to successfully negotiate differences in
native Enterprise JavaBeans (EJB) Version 1.1 finder methods support and Java 2
Platform, Enterprise Edition (J2EE) Version 1.3 compliance.

At one time, there were significant interoperability problems among WebSphere
Application Server, versions 4.0.x and 3.5.x distributed, and Version 4.0.x for
zSeries. The introduction of interoperable versions of some class types solved these
problems for distributed versions 3.5.6, 4.0.3, and 5 as well as for zSeries Version
4.0.x.

Older 4.0.x and 3.5.x client and application server versions do not support the
interoperability classes, which makes them uninteroperable with versions that use
the classes. The system property com.ibm.websphere.container.portable remedies this
situation by enabling newer versions of the application server to turn off the
interoperability classes. This lets a more recent application server return class types
that are interoperable with an older client.

Depending on the value of com.ibm.websphere.container.portable, application
servers at versions 5, 4.0.3 and later, and 3.5.6 and later, return different classes for
the following:
v Enumerations and collections returned by EJB 1.1 finder methods
v EJBMetaData
v Handles to:

– Entity beans
– Session beans
– Home interfaces

If the property is set to false, application servers return the old class types, to
enable interoperability with versions 3.5.5 and earlier, and 4.0.2 and earlier. If the
property is set to true, application servers return the new classes.

Instructions for setting the com.ibm.websphere.container.portable property are in
the release notes for versions 3.5.6 and later, and 4.0.3 and later. The following
tables show interoperability characteristics for various version combinations of
application servers and clients as well as default property values for each
combination.

Chapter 4. Using enterprise beans in applications 147

Interoperability of Version 3.5.x client with Version 5 application server

Clients at Version 3.5.5 and earlier are not interoperable with Version 5 servers
when using:
v EJBMetaData
v Enumerations returned by EJB 1.x finder methods
v Handles to entity beans

If you would like to use updated Handle classes in EJB 2.x-compliant beans but
have one of the older clients (versions 3.5.5 and earlier) installed, set the system
property com.ibm.websphere.container.portable.finder to false. With this setting
in place, the Version 5 application server uses the updated handles but returns
the enumerations and collections that were used in the earlier clients.

To interoperate with Version 5 application servers, you must upgrade all Version
3.5.x clients to Version 3.5.6 or later.

Interoperability of Version 5 client with Version 3.5.x application server

Client at Version 5,
using this function

Application server at
Version 3.5.6,
property true

Application server at
Version 3.5.6,
property false
(default)

Application server at
Version 3.5.5 and
earlier

EJBMetaData Does not work across
domains

Works Does not work

Handle to session
bean

Works Works Does not work

Handle to entity bean Does not work across
domains

Does not work across
domains

Does not work across
domains

Enumeration
returned by EJB 1.x
finder method

Works Works Works

Interoperability of Version 4.0.x client with Version 5 application server

Ideally, all 4.0.x clients that use Version 5 application servers should be at Version
4.0.3 or later.

Version 5 application servers return the interoperability class types by default
(true). This can cause interoperability problems for distributed clients at versions
4.0.1 or 4.0.2. In particular, problems can occur with collections and enumerations
returned by EJB 1.1 finder methods.

Although it is strongly discouraged, you can set
com.ibm.websphere.container.portable to false on a Version 5 application server.
This causes the application server to return the old class types, providing
interoperability with clients at Version 4.0.2 and earlier. This is discouraged
because:
v The Version 5 application server instance would become non-J2EE 1.3 compliant

with regard to handles, home interface handles, and EJBMetaData.
v EJB 1.x finder methods return collection and enumeration objects that do not

originate from ejbportable.jar.
v Interoperability restrictions still exist with the property set to false.

148 IBM WebSphere Application Server Network Deployment, Version 5: Applications

v Version 5 client handles to entity beans and home interfaces do not work across
domains for the server you set to false.
If you would like to use updated Handle classes in EJB 2.x-compliant beans but
have one of the older clients (versions 4.0.2 and earlier) installed, set the system
property com.ibm.websphere.container.portable.finder to false. With this setting
in place, the Version 5 application server uses the updated handles but returns
the enumerations and collections that were used in the earlier clients.

Interoperability of client at Version 4.0.2 and earlier with Version 5 application
server

Client at Version 4.0.2 and
earlier, using this function

Application server at
Version 5, property true
(default)

Application server at
Version 5, property false

EJBMetaData Does not work Works for 4.0.2 client

Handle to session bean Does not work Works

Handle to entity bean Does not work Does not work across cells

Enumeration returned by EJB
1.x finder method

Does not work Works

Collection returned by EJB
1.x finder method

Does not work Works

Handle to home interface Does not work Does not work across cells

If you would like to use updated Handle classes in EJB 2.x-compliant beans but
have one of the older clients (versions 3.5.5 and earlier, and 4.0.2 and earlier)
installed, set the system property com.ibm.websphere.container.portable.finder to
false. With this setting in place, the Version 5 server uses the new Handle classes
but returns the older enumeration and collection classes.

Interoperability of client at Version 4.0.3 and later with Version 5 application
server

Clients at Version 4.0.3 and later work well with Version 5 application servers.
However, if you set the com.ibm.websphere.container.portable to false, client
handles to entity beans and home interfaces do not work across domains for the
server you set to false.

Client at Version 4.0.3 and
later, using this function

Application server at
Version 5, property true
(default)

Application server at
Version 5, property false

EJBMetaData Works Works

Handle to session bean Works Works

Handle to entity bean Works Does not work across cells

Enumeration returned by EJB
1.x finder method

Works Works

Collection returned by EJB
1.x finder method

Works Works

Handle to home interface Works Does not work across cells

Interoperability of Version 5 client with Version 4.0.x application server

Chapter 4. Using enterprise beans in applications 149

Clients at Version 5 work well with Version 4.0.3 application servers if you set
com.ibm.websphere.container.portable to true. Client handles to entity beans and
home interfaces do not work across domains for any Version 4.0.3 server with
com.ibm.websphere.container.portable at the default value, false. Version 5 client
handles to application servers at Version 4.0.2 and earlier also have restrictions.

Client at Version 5,
using this function

Application server at
Version 4.0.3,
property true

Application server at
Version 4.0.3,
property false
(default)

Application server at
Version 4.0.2 or
earlier

EJBMetaData Works Works Works for 4.0.2 server
only

Handle to session
bean

Works Works Works

Handle to entity bean Works Does not work across
domains

Does not work across
domains

Enumeration
returned by EJB 1.x
finder method

Works Works Works

Collection returned
by EJB 1.x finder
method

Works Works Works

Handle to home
interface

Works Does not work across
domains

Does not work across
domains

Interoperability of zSeries Version 4.0.x client with Version 5 application server

The only valid configuration for container interoperability with zSeries Version
4.0.x clients is the default configuration for the Version 5 application server.

Interoperability of Version 5 client with zSeries Version 4.0.x application server

Version 5 clients should work with a zSeries Version 4.0.x application server with
the correct interoperability fixes described in the zSeries documentation. The
interoperability characteristics should be the same as for a Version 4.0.3 distributed
application server with the property set to true.

Client at Version 5, using this function zSeries application server at Version 4.0.x

EJBMetaData Works

Handle to session bean Works

Handle to entity bean Works

Enumeration returned by EJB 1.x finder
method

Works

Collection returned by EJB 1.x finder
method

Works

Handle to home interface Works

Deploying EJB modules
Before you begin

150 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Assemble one or more EJB modules, assemble one or more Web modules, and
assemble them into a J2EE application.

Steps for this task
1. Prepare the deployment environment.
2. Deploy the application.
3. Update the configuration for each EJB module as needed for the deployment

environment.

What to do next

The next step is to test and debug the module.

EJB module collection
Use this page to manage the EJB modules deployed in a specific application.

To view this administrative console page, click Applications > Applications >
applicationName > EJB modules. Click the check boxes to select one or more of the
EJB modules in your collection.

URI
When resolved relative to the application URL, this specifies the location of the
module’s archive contents on a file system. The URI matches the <ejb> or <web>
tag in the <module> tag of the application deployment descriptor.

EJB module settings
Use this page to configure and manage a specific deployed EJB module.

To view this administrative console page, click Applications > Applications >
applicationName > EJB modules > moduleName.

URI
When resolved relative to the application URL, this specifies the location of the
module archive contents on a file system. The URI must match the URI of a
ModuleRef URI in the deployment descriptor of the deployed application (EAR).

Alternate DD
Specifies a deployment descriptor to be used at run time instead of the one
installed in the module.

Starting weight
Specifies the order in which modules are started when the server starts. The
module with the lowest starting weight is started first.

Data type Integer
Default 1
Range 0 to 100

Enterprise beans: Resources for learning
Use the following links to find relevant supplemental information about enterprise
beans. The information resides on IBM and non-IBM Internet sites, whose sponsors
control the technical accuracy of the information.

Chapter 4. Using enterprise beans in applications 151

These links are provided for convenience. Often, the information is not specific to
this product but is useful all or in part for understanding the product. When
possible, links are provided to technical papers and Redbooks that supplement the
broad coverage of the release documentation with in-depth examinations of
particular product areas.

View links to additional information about:
v Planning, business scenarios, and IT architecture
v Programming model and decisions
v Programming instructions and examples
v Programming specifications

Planning, business scenarios, and IT architecture

v Mastering Enterprise JavaBeans
(http://www.theserverside.com/books/masteringEJB/index.jsp)
A comprehensive treatment of Enterprise JavaBeans (EJB) programming in
nonprintable form (PDF). One must be registered to download the PDF, but
registration is free. Information about purchasing a hardcopy is available on the
Web site.

v Enterprise JavaBeans by Richard Monson-Haefel (O’Reilly and Associates, Inc.:
Third Edition, 2001)

Programming model and decisions

v Read all about EJB 2.0 (http://www.ibm.com/developerworks/library/jw-
ejb20/index.html)
A comprehensive overview of the specification.

v The J2EE Tutorial (http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html)
This set of articles by Sun Microsystems covers several EJB-related topics,
including the basic programming models, persistence, and EJB Query Language.

Programming instructions and examples

v Rules and Patterns for Session Facades
(http://www7b.boulder.ibm.com/wsdd/library/
techarticles/0106_brown/sessionfacades.html)
EJB programming practice: Fronting entity beans with a session-bean facade.

v WebSphere Application Server Development Best Practices for
Performance and Scalability (http://www-
4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf)
Programming practice for enterprise beans and other types of J2EE components.

v Optimistic Locking in IBM WebSphere Application Server 4.0.2
(http://www7b.boulder.ibm.com/wsdd/)
Examples of the effect of optimistic concurrency on application behavior.
Although the paper is based on a previous version of this product, the data
access issues discussed in it are current.
This paper does not seem to be available directly by URL. To view this paper,
visit the specified URL and search on ″optimistic locking″

Programming specifications

152 IBM WebSphere Application Server Network Deployment, Version 5: Applications

http://www.theserverside.com/books/masteringEJB/index.jsp
http://www.ibm.com/developerworks/library/jw-ejb20/index.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0106_brown/sessionfacades.html
http://www-4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf
http://www-4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf
http://www7b.boulder.ibm.com/wsdd/

v What’s new in the Enterprise JavaBeans 2.0 Specification?
(http://java.sun.com/products/ejb/2.0.html)
You can also download the specification itself from this URL.

v JavaTM 2 Platform: Compatibility with Previous Releases
(http://java.sun.com/products/jdk/1.3/compatibility.html)
This Sun Microsystems article includes both source and binary compatibility
issues.

Chapter 4. Using enterprise beans in applications 153

http://java.sun.com/products/ejb/2.0.html
http://java.sun.com/products/jdk/1.3/compatibility.html

154 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Chapter 5. Using message-driven beans in applications

WebSphere Application Server supports asynchronous messaging as a method of
communication based on the Java Message Service (JMS) programming interface.

Message-driven beans (a type of enterprise bean defined in the EJB 2.0
specification) extend the base JMS support and the Enterprise JavaBean component
model to provide automatic asynchronous messaging. When a message arrives on
a destination, a listener passes the message to a new instance of a user-developed
message-driven bean for processing.

You can use WebSphere Studio Application Developer to develop applications that
use message-driven beans. You can use the WebSphere Application Server runtime
tools, like the administrative console, to deploy and administer applications that
use message-driven beans.

For more information about implementing WebSphere enterprise applications that
use message-drive beans, see the following topics:
v An overview of message-driven beans
v Designing an enterprise application to use a message-driven bean
v Developing an enterprise application to use a message-driven bean
v Deploying an enterprise application to use a message-driven bean
v Configuring message listener resources for message-driven beans
v Troubleshooting problems with message-driven beans

Message-driven beans - an overview
WebSphere Application Server supports automatic asynchronous messaging with
message-driven beans (a type of enterprise bean defined in the EJB 2.0 specification).
Messaging with message-driven beans is shown in the figure Message-driven
beans and the message listener service.

The support for message-driven beans is based on the message listener service,
which comprises a listener manager that controls and monitors one or more listeners.
Each listener monitors a JMS destination for incoming messages. When a message
arrives on the destination, the listener passes the message to a new instance of a
user-developed message-driven bean (an enterprise bean) for processing. The
listener then looks for the next message without waiting for the bean to return.

Messages arriving at a destination being processed by a listener have no client
credentials associated with them; the messages are anonymous. Security depends
on the role specified by the RunAs Identity for the message-driven bean as an EJB
component. For more information about EJB security, see ″EJB component security″
(not in this document).

You are recommended to develop a message-driven bean to delegate the business
processing of incoming messages to another enterprise bean, to provide clear
separation of message handling and business processing. This also enables the
business processing to be invoked by either the arrival of incoming messages or,
for example, from a WebSphere J2EE client.

© Copyright IBM Corp. 2002 155

Message-driven beans and the message listener service. This figure shows an
incoming message being passed by a JMS listener to a message-driven bean, which
passes the message on to a business logic bean for business processing. This
messaging is controlled by the listener manager. For more information, see the text
that accompanies this figure.

Message-driven beans - components
The WebSphere Application Server support for message-driven beans is based on
JMS message listeners and the message listener service, and builds on the base
support for JMS. The main components of WebSphere Application Server support
for message-driven beans are shown in the following figure and described after the
figure:

The main components for message-driven beans. This figure shows the main
components of WebSphere support for message-driven beans, from JMS provider
through a connection to a destination, listener port, then deployed message-driven
bean that processes the message retrieved from the destination. Each listener port
defines the association between a connection factory, destination, and a deployed
message-driven bean. The other main components are the message listener service,
which comprises a listener for each listener port, all controlled by the same listener
manager. For more information, see the text that accompanies this figure.

156 IBM WebSphere Application Server Network Deployment, Version 5: Applications

The message listener service is an extension to the JMS functions of the JMS provider
and provides a listener manager, which controls and monitors one or more JMS
listeners.

Each listener monitors either a JMS queue destination (for point-to-point
messaging) or a JMS topic destination (for publish/subscribe messaging).

A connection factory is used to create connections with the JMS provider for a
specific JMS queue or topic destination. Each connection factory encapsulates the
configuration parameters needed to create a connection to a JMS destination.

A listener port defines the association between a connection factory, a destination,
and a deployed message-driven bean. Listener ports are used to simplify the
administration of the associations between these resources.

When a deployed message-driven bean is installed, it is associated with a listener
port and the listener for a destination. When a message arrives on the destination,
the listener passes the message to a new instance of a message-driven bean for
processing.

When an application server is started, it initializes the listener manager based on
the configuration data. The listener manager creates a dynamic session thread pool
for use by listeners, creates and starts listeners, and during server termination
controls the cleanup of listener message service resources. Each listener completes
several steps for the JMS destination that it is to monitor, including:
v Creating a JMS server session pool, and allocating JMS server sessions and

session threads for incoming messages.

Chapter 5. Using message-driven beans in applications 157

v Interfacing with JMS ASF to create JMS connection consumers to listen for
incoming messages.

v If specified, starting a transaction and requesting that it is committed (or rolled
back) when the EJB method has completed.

v Processing incoming messages by invoking the onMessage() method of the
specified enterprise bean.

Message-driven beans - transaction support
Message-driven beans can handle messages read from JMS destinations within the
scope of a transaction. If transaction handling is specified for a JMS destination, the
JMS listener starts a global transaction before it reads any incoming message from
that destination. When the message-driven bean processing has finished, the JMS
listener commits or rolls back the transaction (using JTA transaction control).

Note:

v All messages retrieved from a specific destination have the same transactional
behavior.

If messages are queued to be sent within a global transaction they are sent when
the transaction is committed. If the processing of a message causes the transaction
to be rolled back, then the message that caused the bean instance to be invoked is
left on the JMS destination.

You can configure the Maximum retries property of the listener port to define the
maximum number of times the listener attempts to read a message from a
destination. When the Max retries limit is reached, the listener for that destination
is stopped. When you have resolved the problem, you must then restart the
listener.

Designing an enterprise application to use message-driven beans
This topic describes things to consider when designing an enterprise application to
use message-driven beans.

The considerations in this topic are based on a generic enterprise application that
uses one message-driven bean to retrieve messages from a JMS queue destination
and passes the messages on to another enterprise bean that implements the
business logic.

To design an enterprise application to use message-driven beans, complete the
following steps:

Steps for this task
1. Identify the JMS resources that the application is to use.

This helps to identify the properties of resources that need to be used within
the application and configured as application deployment descriptors or within
WebSphere Application Server.

JMS resource type Properties

Queue connection factory Name: SamplePtoPQueueConnectionFactory
JNDI Name: Sample/JMS/QCF

Queue destination Name: Q1
JNDI Name: Sample/JMS/Q1

158 IBM WebSphere Application Server Network Deployment, Version 5: Applications

JMS resource type Properties

Listener port (for the
destination)

Name: SamplePtoPListenerPort
Connection Factory JNDI Name: Sample/JMS/QCF
Destination JNDI Name: Sample/JMS/Q1
Maximum Sessions: 5
Maximum Retries: 10
Maximum Messages: 1

Message-driven bean
(deployment properties)

Name: JMSppSampleMDBBean
Transaction type: Container
Destination type: Queue
Listener port name: SamplePtoPListenerPort

Business logic bean Name: MyLogicBean

Ensure that you use consistent values where needed; for example, the JNDI
names for the connection factory and destination must be the same for both
those resources and the equivalent properties of the listener port.

2. Separation of business logic.
You are recommended to develop a message-driven bean to delegate the
business processing of incoming messages to another enterprise bean. This
provides clear separation of message handling and business processing. This
also enables the business processing to be invoked by either the arrival of
incoming messages or, for example, from a WebSphere J2EE client.

3. Security considerations.
Messages arriving at a destination being processed by a listener have no client
credentials associated with them; the messages are anonymous. Security
depends on the role specified by the RunAs Identity for the message-driven
bean as an EJB component. For more information about EJB security, see ″EJB
component security″ (not in this document).

4. General JMS considerations
For Publish/Subscribe messaging, choose the JMS server port to be used
depending on your needs for transactions or performance:

Queued port
The TCP/IP port number of the listener port used for all point-to-point
and Publish/Subscribe support.

Direct port
The TCP/IP port number of the listener port used for direct TCP/IP
connection (non-transactional, non-persistent, and non-durable
subscriptions only) for Publish/Subscribe support.

Note: Message-driven beans cannot use the direct listener port for
Publish/Subscribe support. Therefore, any topic connection factory
configured with Portset to Direct cannot be used with message-driven
beans.

A non-durable subscriber can only be used in the same transactional context
(for example, a global transaction or an unspecified transaction context) that
existed when the subscriber was created. For more information about this
context restriction, see ″The effect of transaction context on non-durable
subscribers″ (not in this document).

Chapter 5. Using message-driven beans in applications 159

Developing an enterprise application to use message-driven beans
Use this task to develop an enterprise application to use a message-driven bean.
The message-driven bean is invoked by a JMS listener when a message arrives on
the input queue that the listener is monitoring.

You are recommended to develop the message-driven bean to delegate the
business processing of incoming messages to another enterprise bean, to provide
clear separation of message handling and business processing. This also enables
the business processing to be invoked by either the arrival of incoming messages
or, for example, from a WebSphere J2EE client. Responses can be handled by
another enterprise bean acting as a sender bean, or handled in the message-driven
bean.

You develop an enterprise application to use a message-driven bean like any other
enterprise bean, except that a message-driven bean does not have a home interface
or a remote interface.

This topic describes how to develop a completely new message-driven bean class.
If you have a WAS 4.0 enterprise application that uses the JMS listener, you can
migrate that application to use message-driven beans, as described in Migrating a
WAS 4.0 JMS listener application to use message-driven beans.

For more information about writing the message-driven bean class, see Creating a
message-driven bean in the WebSphere Studio help bookshelf.

To develop an enterprise application to use a message-driven bean, complete the
following steps:

Steps for this task
1. Creating the Enterprise Application project, as described in the WebSphere

Studio article .
2. Creating the message-driven bean class.

You can use the New Enterprise Bean wizard of WebSphere Studio Application
Developer to create an enterprise bean with a bean type of Message-driven
bean. The wizard creates appropriate methods for the type of bean.
By convention, the message bean class is named nameBean, where name is the
name you assign to the message bean; for example:
public class MyJMSppMDBBean implements MessageDrivenBean, MessageListener

The message-driven bean class must define and implement the following
methods:
v onMessage(message), which must meet the following requirements:

– The method must have a single argument of type javax.jms.Message.
– The throws clause must not define any application exceptions.
– If the message-driven bean is configured to use bean-managed

transactions, it must call the javax.transaction.UserTransaction interface to
scope the transactions. Because these calls occur inside the onMessage()
method, the transaction scope does not include the initial message receipt.
This means the application server is given one attempt to process the
message.

160 IBM WebSphere Application Server Network Deployment, Version 5: Applications

To handle the message within the onMessage() method (for example, to pass
the message on to another enterprise bean), you use standard JMS. (This is
known as bean-managed messaging.)

v ejbCreate()
You must define and implement an ejbCreate method for each way in which
you want a new instance of an enterprise bean to be created.

v ejbRemove().
This method is invoked by the container when a client invokes the remove
method inherited by the enterprise bean’s home interface from the
javax.ejb.EJBHome interface. This method must contain any code that you
want to execute before an enterprise bean instance is removed from the
container (and the associated data is removed from the data source).

For example, the following code extract shows how to access the text and the
JMS MessageID, from a JMS message of type TextMessage:

Code example: The onMessage() method of a message bean. This figure
shows a code extract for a basic onMessage() method of a sample
message-driven bean. The method unpacks the incoming text message to
extract the text and message identifier and calls a private putMessage method
(defined within the same message bean class) to put the message onto another
queue.
public void onMessage(javax.jms.Message msg)
{

String text = null;
String messageID = null;

try
{

text = ((TextMessage)msg).getText();

System.out.println("senderBean.onMessage(), msg text2: "+text);

//
// store the message id to use as the Correlator value
//
messageID = msg.getJMSMessageID();

// Call a private method to put the message onto another queue
putMessage(messageID, text);

}
catch (Exception err)
{

err.printStackTrace();
}
return;

}

The result of this step is a message-driven bean that can be assembled into an
.EAR file for deployment.

3. Assembling and packaging the application for deployment.
You can use WebSphere Studio to assemble and package the application for
deployment.

Results

The result of this task is an .EAR file, containing an application message-driven
bean, that can be deployed in WebSphere Application Server.

Chapter 5. Using message-driven beans in applications 161

What to do next

After you have developed an enterprise application to use message-driven beans,
configure and deploy the application; for example, define the listener ports for the
message-driven beans and, optionally, change the deployment descriptor attributes
for the application. For more information about configuring and deploying an
application that uses message-driven beans, see ″Deploying an enterprise
application to use message-driven beans″

Migrating a JMS listener application to use message-driven
beans

Use this task to migrate an enterprise application that uses message beans with the
JMS Listener from WebSphere Application Server 4.0 to use EJB 2.0 message-driven
beans.

This task uses a command line utility, mb2mdb, that takes as its input either a
deployed MessageBean.jar module or a deployed Enterprise Application (.ear) that
contains a message bean, along with the JMS listener configuration XML file that
defines the WebSphere Application Server 4.0 message beans. The result is a new
.jar/.ear module that can then be deployed directly into a WebSphere Application
Server 5.0 application server.

You can display the usage help for the migration utility, by typing the command
mb2mdb at a command line.

To migrate a WebSphere Application Server 4.0 enterprise application that uses
message beans to use EJB 2.0 message-driven beans, type the following command
at an operating system command line:
mb2mdb inputMB.jar-ear jmsListenerConfig.xml workingDirectory outputMDB.jar-ear

options

Where:

inputMB.jar-ear
The name of the deployed WebSphere Application Server 4.0 jar or ear file
containing a stateless session message bean.

jmsListenerConfig.xml
The name of the XML configuration file used to configure the WebSphere
Application Server 4.0 JMS listeners.

workingDirectory
The name of a new or existing directory that is used to generate the new
message-driven bean and package the outputMDB.jar or .ear file.

Note: By default, the tool clears the working directory after it has
completed. If you want to preserve the contents of the working directory,
you must specify the -keep option.

outputMDB.jar-ear
The name of the output .jar or .ear file for the migrated message-driven
bean application.

options
An optional set of parameters that you can use to control the mb2mdb
utility.

-keep This prevents the tool from clearing out the working directory after
completion.

162 IBM WebSphere Application Server Network Deployment, Version 5: Applications

-verbose
This causes the tool to display informational messages as to the
progress of the migration and its parameters.

-map listenerHome=bindingHome
This option provides a mechanism to map between the
JNDIHomeName specified for a listener in the JMS listener
configuration XML file and the default binding home name
specified in the inputMB.jar-ear file.

If the jmsListenerConfig.xml file contains a deployed EJB home JNDI
name that is different to the default binding within the
inputMB.jar-ear, use this option to map between the two names.

This enables you to install the output .jar or .ear file for the
message-driven bean into an application server and bind the bean
with a different JNDIHomeName than is specified in the bean’s
bindings.xmi.

Results

The result of this task is a new .jar or .ear file for a message-driven bean that can
then be deployed directly into a WebSphere Application Server 5.0 application
server.

To successfully install the .jar or .ear file, you need to bind the message-driven
bean against a listener port defined to the message listener service of the
application server. You need to have used the WebSphere Application Server
administrative console to define the listener port, which defines the JMS connection
factory and destination that a message-driven bean bound to it listens on. For more
information about installing and configuring a .jar or .ear file for a message-driven
bean, see Deploying an enterprise application to use message-driven beans.

Deploying an enterprise application to use message-driven beans
Use this task to deploy an enterprise application to use message-driven beans.

This task description assumes that you have an .EAR file, which contains an
application enterprise bean with code for message-driven beans, that can be
deployed in WebSphere Application Server.

To deploy an enterprise application to use message-driven beans, complete the
following steps:

Steps for this task
1. Use the WebSphere administrative console to define the listener ports for the

application, as described in Adding a new listener port.
2. For each message-driven bean in the application, use the application assembly

tool to configure the deployment attributes to match the listener port
definitions, as described in ″Configuring deployment attributes for a
message-driven bean″.

3. Use the WebSphere administrative console to install the application
This stage is a standard WebSphere Application Server task, as described in
“Installing a new application” on page 505.

Chapter 5. Using message-driven beans in applications 163

When you install the application, you are prompted to specify the name of the
listener port that the application is to use for late responses. Select the listener
port, then click OK.

Configuring deployment attributes for a message-driven bean
Use this task to configure the message-driven beans deployment attributes for an
enterprise bean, to override the deployment attributes defined within the
application EAR file.

This task description assumes that you have an EAR file, which contains an
application enterprise bean developed as a message-driven bean, that can be
deployed in WebSphere Application Server.

Note: After deployment code has been generated for an application, the deployable
archive is renamed with the prefix Deployed_ . Any subsequent changes to the
archive from within the Application Assembly Tool are applied to the version of
the archive that existed prior to code generation. To see changes reflected in your
application, you must regenerate deployment code and re-install the deployable
archive.

To configure the message-driven beans deployment attributes for an enterprise
bean, use the the application assembly tool to configure the deployment attributes
of the application to match the listener port definitions:

Steps for this task
1. Launch the Application Assembly Tool.
2. Create or edit the application EAR file.

For example, to change attributes of an existing application, click File-> Open
then select the the EAR file.

3. In the navigation pane, select the message-driven bean instance; for example,
expand ejb_module_instance-> Message-driven beans then select the bean
instance.
A property dialog notebook for the message-driven bean is displayed in the
property pane.

4. Specify general deployment properties.
a. In the property pane, select the General tab.
b. Specify the following properties:

Transaction type
Whether the message bean manages its own transactions or the
container manages transactions on behalf of the bean. All messages
retrieved from a specific destination have the same transactional
behavior. To enable the transactional behavior that you want, you
must configure the JMS destination with the same transactional
behavior as you configure for the message bean.

Bean The message bean manages its own transactions

Container
The container manages transactions on behalf of the bean

5. Specify advanced deployment properties.
a. In the property pane, select the Advanced tab.
b. Specify the following properties:

164 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Message selector
The JMS message selector to be used to determine which messages
the message bean receives; for example:
JMSType=’car’ AND color=’blue’ AND weight>2500

The selector string can refer to fields in the JMS message header
and fields in the message properties. Message selectors cannot
reference message body values.

Acknowledge mode
How the session acknowledges any messages it receives.

This property applies only to message-driven beans that uses
bean-managed transaction demarcation (Transaction type is set to
Bean).

Auto Acknowledge
The session automatically acknowledges a message when it
has either successfully returned from a call to receive, or the
message listener it has called to process the message
successfully returns.

Dups OK Acknowledge
The session lazily acknowledges the delivery of messages.
This is likely to result in the delivery of some duplicate
messages if JMS fails, so it should be used only by
consumers that are tolerant of duplicate messages.

As defined in the EJB specification, clients cannot use using
Message.acknowledge() to acknowledge messages. If a value of
CLIENT_ACKNOWLEDGE is passed on the createxxxSession call,
then messages are automatically acknowledged by the application
server and Message.acknowledge() is not used.

Destination type
Whether the message bean uses a queue or topic destination.

Queue
The message bean uses a queue destination.

Topic The message bean uses a topic destination.

Subscription durability
Whether a JMS topic subscription is durable or non-durable.

Durable
A subscriber registers a durable subscription with a unique
identity that is retained by JMS. Subsequent subscriber
objects with the same identity resume the subscription in
the state it was left in by the earlier subscriber. If there is no
active subscriber for a durable subscription, JMS retains the
subscription’s messages until they are received by the
subscription or until they expire.

Nondurable
Non-durable subscriptions last for the lifetime of their
subscriber object. This means that a client sees the messages

Chapter 5. Using message-driven beans in applications 165

published on a topic only while its subscriber is active. If
the subscriber is not active, the client is missing messages
published on its topic.

A non-durable subscriber can only be used in the same
transactional context (for example, a global transaction or an
unspecified transaction context) that existed when the
subscriber was created. For more information about this
context restriction, see ″The effect of transaction context on
non-durable subscribers″ (not in this document).

6. Specify bindings deployment properties.
a. In the property pane, select the Bindings tab.
b. Specify the following property:

Listener port name
The name of the listener port for this message-driven bean.

7. To apply the changes and close the Application Assembly Tool, click OK.
Otherwise, to apply the values but keep the property dialog open for additional
edits, click Apply.

8. (Optional) To see changes reflected in your application, regenerate deployment
code and reinstall the deployable archive.

Configuring message listener resources for message-driven beans
Use the following tasks to configure resources needed by the message listener
service to support message-driven beans.
v Configuring the message listener service
v Adding a new listener port
v Configuring a listener port
v Configuring security for message-driven beans

Configuring the message listener service
Use this task to configure the properties of the message listener service for an
application server.

To configure the properties of the message listener service for an application server,
use the administrative console to complete the following steps:

Steps for this task
1. In the navigation pane, select Servers-> Application Servers

This displays a table of the application servers in the administrative domain.
2. In the content pane, click the name of the application server.

This displays the properties of the application server in the content pane.
3. In the Additional Properties table, select Message Listener Service

This displays the Message Listener Service properties in the content pane.
4. Specify appropriate properties of the message listener service.
5. Click OK.
6. Save your configuration.
7. (Optional) To have the changed configuration take effect, stop then restart the

Application Server.

166 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Message listener service
The message listener service is an extension to the JMS functions of the JMS
provider. It provides a listener manager that controls and monitors one or more
JMS listeners, which each monitor a JMS destination on behalf of a deployed
message-driven bean.

Name: The name by which the message listener service is known for
administrative purposes.

Data type String
Units En_US ASCII characters
Default MsgLService
Range 1 through 30 ASCII characters

Description: A description of the message listener service, for administrative
purposes

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Thread pool: Select this link to display the service thread pool properties.

Data type Not applicable
Units Not applicable
Default Not applicable
Range Not applicable

Custom Properties: Custom properties of the message listener service.

MQJMS.POOLING.TIMEOUT: The number of milliseconds after which a
connection in the pool is destroyed if it has not been used.

An MQSimpleConnectionManager allocates connections on a most-recently-used
basis, and destroys connections on a least-recently-used basis. By default, a
connection is destroyed if it has not been used for five minutes.

Data type Integer
Units Milliseconds
Default 5 minutes
Range

MQJMS.POOLING.THRESHOLD: The maximum number of unused connections
in the pool.

An MQSimpleConnectionManager allocates connections on a most-recently-used
basis, and destroys connections on a least-recently-used basis. By default, a
connection is destroyed if there are more than ten unused connections in the pool.

Data type Integer
Units Number of connections
Default 10
Range

Chapter 5. Using message-driven beans in applications 167

MAX.RECOVERY.RETRIES: The maximum number of times that the listener
service tries to get a message from a listener port before the associated listener is
stopped, in the range 0 through 2147483647.

Data type Integer
Units Retry attempts
Default 0 (no retries)
Range 0 (no retries) through 2147483647

RECOVERY.RETRY.INTERVAL: The time in seconds between retry attempts by
the listener service to get a message from a listener port.

Data type Integer
Units Seconds
Default 10
Range 1 through 2147483647

Message listener port collection: The message listener ports configured in the
administrative domain

This panel displays a list of the message listener ports configured in the
administrative domain. Each listener port is used with a message-driven bean to
automatically receive messages from an associated JMS destination. You can use
this panel to add new listener ports or to change the properties of existing listener
ports. For more information about the property fields for listener ports, see
Listener port properties.

Listener port settings: A listener port is used to simplify administration of the
association between a connection factory, destination, and deployed
message-driven bean.

Use this panel to view or change the configuration properties of the selected
listener port.

Initial state: The state that you want the listener port to have when the
application server is next restarted

Data type Enum
Units Not applicable
Default Started
Range

Started When the application server is next started, the listener port
is started automatically.

Stopped
When the application server is next started, the listener port
is not started automatically. If message-driven beans are to
use this listener port on the application server, the system
administrator must start the port manually or select the
Started value of this property then restart the application
server.

Description: A description of the listener port, for administrative purposes

Data type String
Units En_US ASCII characters

168 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Default Null
Range 1 through 30 ASCII characters

Listener port: The name by which the listener port is known for administrative
purposes.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Connection factory JNDI name: The JNDI name for the JMS connection factory to
be used by the listener port; for example, jms/connFactory1.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Destination JNDI name: The JNDI name for the destination to be used by the
listener port; for example, jms/destn1.

If the extended messaging service is to use this listener port to handle late
responses, the value of this property must match the JMS response destination on
the output port used by the sender bean. Also cannot use a temporary destination
for late responses.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Maximum sessions: The maximum number of concurrent JMS server sessions
used by a listener to process messages, in the range 1 through 2147483647.

The maximum number of concurrent JMS server sessions used by a listener to
process messages for its associated message-driven bean.

Data type Integer
Units Sessions
Default 1
Range 1 through 2147483647

Maximum retries: The maximum number of times that the listener tries to deliver
a message before the listener is stopped, in the range 0 through 2147483647.

The maximum number of times that the listener tries to deliver a message to a
message-driven bean instance before the listener is stopped.

Data type Integer
Units Retry attempts
Default 0 (no retries)
Range 0 (no retries) through 2147483647

Chapter 5. Using message-driven beans in applications 169

Maximum messages: The maximum number of messages that the listener can
process in one JMS server session, in the range 0 through 2147483647.

The maximum number of messages that a listener can process in one JMS server
session.

Data type Integer
Units Number of messages
Default 1
Range 1 through 2147483647

Adding a new listener port
Use this task to add a new listener port to the message listener service, so that
message-driven beans can be associated with the port to retrieve messages.

To add a new listener port, use the administrative console to complete the
following steps:

Steps for this task
1. In the navigation pane, select Servers-> Application Servers

This displays a table of the application servers in the administrative domain.
2. In the content pane, click the name of the application server.

This displays the properties of the application server in the content pane.
3. In the Additional Properties table, select Message Listener Service

This displays the Message Listener Service properties in the content pane.
4. In the content pane, select Listener Ports.

This displays a list of the listener ports.
5. In the content pane, click New.
6. Specify appropriate properties for the listener port.
7. Click OK.
8. To save your configuration, click Save on the task bar of the Administrative

console window.
9. (Optional) To have the changed configuration take effect, stop then restart the

application server.

Results

If enabled, the listener port is started automatically when a message-driven bean
associated with that port is installed.

Configuring a listener port
Use this task to change the properties of an existing listener port, used by
message-driven beans associated with the port to retrieve messages.

To configure the properties of a listener port, use the administrative console to
complete the following steps:

Steps for this task
1. In the navigation pane, select Servers-> Application Servers

170 IBM WebSphere Application Server Network Deployment, Version 5: Applications

This displays a table of the application servers in the administrative domain.
2. In the content pane, click the name of the application server.

This displays the properties of the application server in the content pane.
3. In the Additional Properties table, select Message Listener Service

This displays the Message Listener Service properties in the content pane.
4. In the content pane, click Listener Ports.

This displays a list of the listener ports.
5. Click the listener port that you want to modify.

This displays the properties of the listener port in the content pane.
6. Specify appropriate properties for the listener port.
7. Click OK.
8. To save your configuration, click Save on the task bar of the Administrative

console window.
9. (Optional) To have the changed configuration take effect, stop then restart the

application server.

Deleting a listener port
Use this task to delete a listener port from the message listener service, to prevent
message-driven beans associated with the port from retrieving messages.

To delete a listener port, use the administrative console to complete the following
steps:

Steps for this task
1. In the navigation pane, select Servers-> Application Servers

This displays a table of the application servers in the administrative domain.
2. In the content pane, click the name of the application server.

This displays the properties of the application server in the content pane.
3. In the Additional Properties table, select Message Listener Service

This displays the Message Listener Service properties in the content pane.
4. In the content pane, select Listener Ports.

This displays a list of the listener ports.
5. In the content pane, select the checkbox for the listener port that you want to

delete.
6. Click Delete. This action stops the port (needed to allow the port to be deleted)

then deletes the port.
7. To save your configuration, click Save on the task bar of the Administrative

console window.
8. (Optional) To have the changed configuration take effect, stop then restart the

application server.

Configuring security for message-driven beans
Use this task to configure resource security and security permissions for
message-driven beans.

Messages arriving at a listener port have no client credentials associated with
them. The messages are anonymous.

Chapter 5. Using message-driven beans in applications 171

To call secure enterprise beans from a message-driven bean, the message-driven
bean needs to be configured with a RunAs Identity deployment descriptor.
Security depends on the role specified by the RunAs Identity for the
message-driven bean as an EJB component.

For more information about EJB security, see ″EJB component security″ (not in this
document). For more information about configuring security for your application,
see Assembling secured applications.

Administering listener ports
Use the following tasks to administer listener ports, which each define the
association between a connection factory, a destination, and a message-driven bean.

You can use the WebSphere administrative console to administer listener ports, as
described in the following tasks.
v Adding a new listener port

Use this task to create a new listener port, to specify a new association between
a connection factory, a destination, and a message-driven bean. This enables
deployed message-driven beans associated with the port to retrieve messages
from the destination.

v Configuring a listener port
Use this task to view or change the configuration properties of a listener port.

v Starting a listener port
Use this task to start a listener port manually.

v Stopping a listener port
Use this task to stop a listener port manually.

Note: If configured as enabled, a listener port is started automatically when a
message-driven bean associated with that port is installed. You do not normally
need to start or stop a listener port manually.

Starting a listener port
Use this task to start a listener port on an application server, to enable the listeners
for message-driven beans associated with the port to retrieve messages.

A listener is active, that is able to receive messages from a destination, if the
deployed message-driven bean, listener port, and message listener service are all
started. Although you can start these components in any order, they must all be in
a started state before the listener can retrieve messages.

If configured as enabled, a listener port is started automatically when a
message-driven bean associated with that port is installed. However, you can start
a listener port manually, as described in this topic.

When a listener port is started, the listener manager tries to start the listeners for
each message-driven bean associated with the port. If a message-driven bean is
stopped, the port is started but the listener is not started, and remains stopped. If
you start a message-driven bean, the related listener is started.

To start a listener port on an application server, use the administrative console to
complete the following steps:

Steps for this task

172 IBM WebSphere Application Server Network Deployment, Version 5: Applications

1. (Optional) If you want the listener for a deployed message-driven bean to be
able to receive messages at the port, check that the message-driven bean has
been started.

2. In the navigation pane, select Servers-> Application Servers

This displays a table of the application servers in the administrative domain.
3. In the content pane, click the name of the application server.

This displays the properties of the application server in the content pane.
4. In the Additional Properties table, select Message Listener Service

This displays the Message Listener Service properties in the content pane.
5. In the content pane, select Listener Ports.

This displays a list of the listener ports.
6. (Optional) Select the checkbox for the listener port that you want to start.
7. Click Start.
8. To save your configuration, click Save on the task bar of the Administrative

console window.

Stopping a listener port
Use this task to stop a listener port on an application server, to prevent the
listeners for message-driven beans associated with the port from retrieving
messages.

When you stop a listener port as described in this topic, the listener manager stops
the listeners for all message-driven beans associated with the port.

To stop a listener port on an application server, use the administrative console to
complete the following steps:

Steps for this task
1. In the navigation pane, select Servers-> Application Servers

This displays a table of the application servers in the administrative domain.
2. In the content pane, click the name of the application server.

This displays the properties of the application server in the content pane.
3. In the Additional Properties table, select Message Listener Service

This displays the Message Listener Service properties in the content pane.
4. In the content pane, select Listener Ports.

This displays a list of the listener ports.
5. (Optional) In the content pane, select the listener port that you want to stop.
6. Click Stop.
7. To save your configuration, click Save on the task bar of the Administrative

console window.
8. (Optional) To have the changed configuration take effect, stop then restart the

application server.

Important files for message-driven beans and extended messaging
The following files in the WAS_HOME/temp directory are important for the
operation of the WebSphere Application Server messaging service, so should not be
deleted. If you do need to delete the WAS_HOME/temp directory or other files in
it, ensure that you preserve the following files.

Chapter 5. Using message-driven beans in applications 173

server_name-durableSubscriptions.ser
You should not delete this file, because the messaging service uses it to
keep track of durable subscriptions for message-driven beans. If you
uninstall an application that contains a message-driven bean, this file is
used to unsubscribe the durable subscription.

server_name-AsyncMessageRequestLog.ser
You should not delete this file, because the messaging service uses it to
keep track of late responses that need to be delivered to the late response
message handler for the extended messaging provider.

Troubleshooting message-driven beans
Use this overview task to help resolve a problem that you think is related to
message-driven beans.

Message-driven beans support uses the standard WebSphere Application Server
troubleshooting facilities. If you encounter a problem that you think might be
related to the message-driven beans, complete the following stages:

Steps for this task
1. Check for messages about message-driven beans in the application server’s

SystemOut log at was_home\logs\server\SystemOut.
Look in the SystemOut log for messages that indicate a problem with JMS
resources for message-driven beans, such as listener ports.

2. Check for more messages in the application server’s SystemOut log.
If the JMS server is running, but you have problems accessing JMS resources,
check the SystemOut log file, which should contain more error messages and
extra details about the problem.

3. Check the Release Notes for specific problems and workarounds
The section Possible Problems and Suggested Fixes of the Release Notes, available
from the WebSphere Application Server library web site, is updated regularly to
contain information about known defects and their workarounds. Check the
latest version of the Release Notes for any information about your problem. If
the Release Notes does not contain any information about your problem, you
can also search the Technotes database on the WebSphere Application Server
web site.

4. Check that message listener service has started.
The message listener service is an extension to the JMS functions of the JMS
provider. It provides a listener manager that controls and monitors one or more
JMS listeners, which each monitor a JMS destination on behalf of a deployed
message-driven bean.

5. Check your JMS resource configurations
If the WebSphere Messaging functions seem to be running properly (the JMS
server is running without problems), check that the JMS resources have been
configured correctly. For example, check that the listener ports have been
configured correctly and have been started.

6. Check for problems with the WebSphere Messaging functions
For more information about troubleshooting WebSphere Messaging, see the
related topics.

7. (Optional) Get a detailed exception dump for messaging.

174 IBM WebSphere Application Server Network Deployment, Version 5: Applications

If the information obtained in the preceding steps is still inconclusive, you can
enable the application server debug trace for the ″Messaging″ group to provide
a detailed exception dump.

Message-driven beans samples
The following examples are provided to illustrate use of the message-driven beans
support:
v Point-to-point samples:

– ″Tutorial: Creating JMS message sample″

This tutorial is designed to help you develop and deploy a JMS message
sample application that tests the WebSphere Application Server
message-driven beans support in a point-to-point scenario. This sample
illustrates how to develop and deploy an application that comprises the
following components:
- A Java/JMS program that writes a message to a queue.
- A message-driven bean that is invoked by a JMS listener when a message

arrives on a defined queue.

For more information about this sample, see the samples article ″Tutorial:
Creating JMS message sample″ at
WAS_HOME/Enterprise/samples/messaging/doc/PtoP/wsbldPtoP.xml (if you
have installed the samples option).

– ″Sample: Message Listener (point-to-point)″
This sample is designed to demonstrate the use and behavior of
message-driven beans for a simple point-to-point scenario. This sample uses
the JMS message sample deployed in the sample above.
For more information about this sample, see the samples article ″Sample:
Message Listener (Point-to-Point)″ at
WAS_HOME/Enterprise/samples/messaging/doc/PtoP/wsrunPtoP.xml (if you
have installed the samples option).

v Publish/subscribe samples
– ″Tutorial: Creating JMS message publish/subscribe sample″

This tutorial is designed to help you develop and deploy a JMS message
sample application that tests the WebSphere Application Server
message-driven beans support in a publish/subscribe scenario. This sample
illustrates how to develop and deploy an application that comprises the
following components:
- A client program that starts the message sequence by publishing a message

to a selected topic.
- A message-driven bean that is invoked by a JMS listener when the broker

passes a message to the listener from a topic to which it has subscribed.

For more information about this sample, see the samples article ″Tutorial:
Creating JMS message publish/subscribe sample″ at
WAS_HOME/Enterprise/samples/messaging/doc/PubSub/wsbldPubSub.xml (if you
have installed the samples option).

– ″Sample: Message Listener (publish/subscribe)″
This sample is designed to demonstrate the use and behavior of
message-driven beans for a simple publish/subscribe scenario. This sample
uses the JMS message sample deployed in the publish/subscribe sample
above.

Chapter 5. Using message-driven beans in applications 175

For more information about this sample, see the samples article ″Sample:
Message Listener (publish/subscribe)″ at
WAS_HOME/Enterprise/samples/messaging/doc/PubSub/wsrunPubSub.xml (if you
have installed the samples option).

176 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Chapter 6. Using application clients

An application client module is a JAR (Java ARchive) file containing a client for
accessing a Java application.

Steps for this task
1. Decide on a type of application client.
2. Develop the application client code.

Develop ActiveX application client code.
Develop applet client code.
Develop J2EE application client code.
Develop pluggable application client code.
Develop thin application client code.

Usage scenario

View the Samples gallery for more information about application clients. Before
you run the basicCalculator Sample, ensure the JMS Server is started.

Application clients
In a traditional client server environment, the client requests a service and the
server fulfills the request. Multiple clients use a single server. Clients can also
access several different servers. This model persists for Java clients except now
these requests make use of a client run-time environment.

In this model, the client application requires a servlet to communicate with the
enterprise bean, and the servlet must reside on the same machine as the
WebSphere Application Server.

With WebSphere Application Server V5.0, application clients now consist of the
following models:
v ActiveX application client
v Applet client
v J2EE application client
v Pluggable application client
v Thin application client

The ActiveX application client model, uses the Java Native Interface (JNI)
architecture to programmatically access the Java virtual machine (JVM) API.
Therefore the JVM code exists in the same process space as the ActiveX application
(Visual Basic, VBScript, or Active Server Pages (ASP)) and remains attached to the
process until that process terminates.

In the Applet client model, a Java applet embeds in a HyperText Markup Language
(HTML) document residing on a remote client machine from the WebSphere
Application Server. With this type of client, the user accesses an enterprise bean in
the WebSphere Application Server through the Java applet in the HTML document.

© Copyright IBM Corp. 2002 177

The J2EE application client is a Java application program that accesses enterprise
beans, Java Database Connectivity (JDBC), and Java Message Service message
queues. The J2EE application client program runs on client machines. This program
follows the same Java programming model as other Java programs; however, the
J2EE application client depends on the application client run time to configure its
execution environment, and uses the Java Naming and Directory Interface (JNDI)
name space to access resources.

The Pluggable and thin application clients provide a lightweight Java client
programming model. These clients are best suited in situations where a Java client
application exists but the application needs enhancements to use enterprise beans,
or where the client application requires a thinner, more lightweight environment
than the one offered by the J2EE application client. The difference between the thin
application client and the pluggable application client is that the thin application
client includes a Java virtual machine (JVM) API, and the pluggable application
client requires the user to provide this code. The pluggable application client uses
the Sun Java Development Kit, and the thin application client uses the IBM
Developer Kit For the Java Platform.

The J2EE application client programming model provides the benefits of the J2EE
platform for the Java client application. The J2EE application client offers the
ability to seamlessly develop, assemble, deploy and launch a client application. The
tooling provided with the WebSphere platform supports the seamless integration of
these stages to help the developer create a client application from start to finish.

When you develop a client application using and adhering to the J2EE platform,
you can put the client application code from one J2EE platform implementation to
another. The client application package can require redeployment using each J2EE
platform deployment tool, but the code that comprises the client application does
not change.

The application client run time supplies a container that provides access to system
services for the client application code. The client application code must contain a
main method. The application client run time invokes this main method after the
environment initializes and runs until the Java virtual machine code terminates.

The J2EE platform allows the application client to use nicknames or short names,
defined within the client application deployment descriptor. These deployment
descriptors identify enterprise beans or local resources (JDBC, Java Message Service
(JMS), JavaMail and URL APIs) for simplified resolution through JNDI use. This
simplified resolution to the enterprise bean reference and local resource reference
also eliminates changes to the client application code, when the underlying object
or resource either changes or moves to a different server. When these changes
occur, the application client can require redeployment.

The application client also provides initialization of the run-time environment for
the client application. The deployment descriptor defines this unique initialization
for each client application. The application client run time also provides support
for security authentication to the enterprise beans and local resources.

The application client uses the RMI-IIOP protocol. Using this protocol enables the
client application to access enterprise bean references and to use CORBA services
provided by the J2EE platform implementation. Use of the RMI-IIOP protocol and
the accessibility of CORBA services assist users in developing a client application
that requires access to both enterprise bean references and CORBA object
references.

178 IBM WebSphere Application Server Network Deployment, Version 5: Applications

When you combine the J2EE and CORBA environments or programming models in
one client application, you must understand the differences between the two
programming models to use and manage each appropriately.

View the Samples gallery for more information about application clients. Before
you run the basicCalculator Sample, ensure the JMS Server is started.

Application client functions
Use the following table to identify the available functions in the different types of
clients:

Available
functions

ActiveX
client

Applet
client

J2EE client Pluggable
client

Thin client

Provides all the
benefits of a J2EE
platform

Yes No Yes No No

Portable across all
J2EE platforms

No No Yes No No

Provides the
necessary run-time
to support
communication
between client and
server

Yes Yes Yes Yes Yes

Allows the use of
nicknames in the
deployment
descriptors

Yes No Yes No No

Supports use of the
RMI-IIOP protocol

Yes Yes Yes Yes Yes

Browser based
application

No Yes No No No

Enables
development of
client applications
that can access
enterprise bean
references and
CORBA object
references

Yes Yes Yes Yes Yes

Enables the
initialization of the
client application
run-time
environment

Yes No Yes No No

Supports security
authentication to
enterprise beans

Yes Limited Yes Yes Yes

Supports security
authentication to
local resources

Yes No Yes No No

Chapter 6. Using application clients 179

Requires
distribution of
application to
client machines

Yes No Yes Yes Yes

Enables access to
enterprise beans
and other Java
classes through
Visual Basic,
VBScript, and
Active Server
Pages (ASP) code

Yes No No No No

Provides a
lightweight client
suitable for
download

No Yes No Yes Yes

Enables access to
Java Naming and
Directory Interface
(JNDI) for
enterprise bean
resolution

Yes Yes Yes Yes Yes

Runs on client
machines that use
the Sun Java
Runtime
Environment

No No No Yes No

Supports CORBA
services (using
CORBA services
can render the
application client
code nonportable)

No No Yes No No

ActiveX application clients
WebSphere Application Server provides an ActiveX to EJB bridge that enables
ActiveX programs to access WebSphere Enterprise JavaBeans through a set of
ActiveX automation objects.

The bridge accomplishes this by loading the Java virtual machine (JVM) into any
ActiveX automation container such as Visual Basic, VBScript, and Active Server
Pages (ASP).

There are two main environments in which the ActiveX to EJB bridge runs:
v Client applications, such as Visual Basic and VBScript, are programs that a user

starts from the command line, desktop icon, or Start menu shortcut.
v Client services, such as Active Server Pages, are programs started by some

automated means like the Services control panel applet.

The ActiveX to EJB bridge uses the Java Native Interface (JNI) architecture to
programmatically access the JVM code. Therefore the JVM code exists in the same
process space as the ActiveX application (Visual Basic, VBScript, or ASP) and
remains attached to the process until that process terminates. To create JVM code,
an ActiveX client program calls the XJBInit() method of the XJB.JClassFactory

180 IBM WebSphere Application Server Network Deployment, Version 5: Applications

object. For more information about creating JVM code for an ActiveX program, see
ActiveX to EJB bridge, initializing JVM code.

After an ActiveX client program has initialized the JVM code, the program calls
several methods to create a proxy object for the Java class. When accessing a Java
class or object, the real Java object exists in the JVM code; the automation container
contains the proxy for that Java object. The ActiveX program can use the proxy
object to access the Java class, object fields, and methods. For more information
about using Java proxy objects, see ActiveX to EJB bridge, using Java proxy objects.
For more information about calling methods and access fields, see ActiveX to EJB
bridge, calling Java methods and ActiveX to EJB bridge, accessing Java fields.

The client program performs primitive data type conversion through the COM
IDispatch interface (use of the IUnknown interface is not directly supported).
Primitive data types are automatically converted between native Automation types
and Java types. All other types are handled automatically by the Proxy Objects For
more information about data type conversion, see ActiveX to EJB bridge,
converting data types.

Any exceptions thrown in Java code are encapsulated and re-thrown as a COM
error, from which the ActiveX program can determine the actual Java exceptions.
For more information about handling exceptions, see ActiveX to EJB bridge,
handling errors.

The ActiveX to EJB bridge supports both free-threaded and apartment-threaded
access and implements the Free Threaded Marshaler to work in a hybrid
environment such as Active Server Pages. For more information about the support
for threading, see ActiveX to EJB bridge, using threading.

Applet clients
The applet client provides a browser-based Java run time capable of interacting
with enterprise beans directly, instead of indirectly through a servlet.

This client is designed to support users who want a browser-based Java client
application programming environment that provides a richer and more robust
environment than the one offered by the Applet > Servlet > enterprise bean
model.

The programming model for this client is a cross between the Java application thin
client and a servlet client. When accessing enterprise beans from this client, the
applet can consider the enterprise bean object references as CORBA object
references.

No tooling support exists for this client to develop, assemble or deploy the applet.
You are responsible for developing the applet, generating the necessary client
bindings for the enterprise beans and CORBA objects, and bundling these pieces
together to install or download to the client machine. The Java applet client
provides the necessary run time to support communication between the client and
the server.

Client side bindings generate using the (Application Assembly Tool). An applet can
utilize these bindings, or you can generate client side bindings using the rmic
command that is part of the IBM Developer Kit, Java edition, installed with the
WebSphere Application Server.

Chapter 6. Using application clients 181

The Applet client uses the RMI-IIOP protocol. Using this protocol enables the
applet to access enterprise bean references and CORBA object references, but the
applet is restricted in using some supported CORBA services.

If you combine the enterprise bean and CORBA environments in one applet, you
must understand the differences between the two programming models, and you
must use and manage each appropriately.

The applet client provides the run time to support the J2EE applet client. The
applet client does not have tooling support for developing, assembling or
deploying the applet. The applet client run time is provided through the Java
applet browser plug-in that you install on the client machine using the WebSphere
Application Server Client CD.

The applet environment restricts access to external resources from the browser
run-time environment. You can make some of these resources available to the
applet by setting the correct security policy settings in the WebSphere Application
Server client.policy file. If given the correct set of permissions, the applet client
must explicitly create the connection to the resource using the appropriate API.
This client does not perform initialization of any service that the client applet can
need. For example, the client application is responsible for the initialization of the
naming service, either through CosNaming or Java Naming and Directory Interface
(JNDI) APIs.

J2EE application clients
The J2EE application client programming model provides the benefits of Java TM 2
Platform Enterprise Edition (J2EE).

The J2EE platform offers the ability to seamlessly develop, assemble, deploy and
launch a client application. The tooling provided with the WebSphere platform
supports the seamless integration of these stages to help the developer create a
client application from start to finish.

When you develop a client application using and adhering to the J2EE platform,
you can put the client application code from one J2EE platform implementation to
another. The client application package can require redeployment using each J2EE
platform deployment tool, but the code that comprises the client application does
not change.

The J2EE application client run time supplies a container that provides access to
system services for the application client code. The J2EE application client code
must contain a main method. The J2EE application client run time invokes this
main method after the environment initializes and runs until the Java virtual
machine application terminates.

Application clients can use nicknames or short names, defined within the client
application deployment descriptor with the J2EE platform. These deployment
descriptors identify enterprise beans or local resources (Java Database Connectivity
(JDBC), Java Message Service (JMS), JavaMail and URL APIs) for simplified
resolution through JNDI use. This simplified resolution to the enterprise bean
reference and local resource reference also eliminates changes to the application
client code, when the underlying object or resource either changes or moves to a
different server. When these changes occur, the application client can require
redeployment.

182 IBM WebSphere Application Server Network Deployment, Version 5: Applications

The J2EE application client also provides initialization of the run-time environment
for the client application. The deployment descriptor defines this unique
initialization for each client application. The J2EE application client run time also
provides support for security authentication to the enterprise beans and local
resources.

The J2EE application client uses the RMI-IIOP protocol. Using this protocol enables
the client application to access enterprise bean references and to use CORBA
services provided by the J2EE platform implementation. Use of the RMI-IIOP
protocol and the accessibility of CORBA services assist users in developing a client
application that requires access to both enterprise bean references and CORBA
object references.

When you combine the J2EE and the CORBA enterprise edition environments or
programming models in one client application, you must understand the
differences between the two programming models to use and manage each
appropriately.

Pluggable application clients
The pluggable application client provides a lightweight, downloadable Java
application run-time capable of interacting with enterprise beans.

The pluggable application client requires that you have previously installed the
Sun Java Runtime Environment (JRE) files. In all other aspects, the pluggable
application client, and the thin application client are similar.

This client is designed to support those users who want a lightweight Java client
application programming environment, without the overhead of the J2EE platform
on the client machine. The programming model for this client is heavily influenced
by the CORBA programming model, but supports access to enterprise beans.

When accessing enterprise beans from this client, the client application can
consider the enterprise beans object references as CORBA object references.

Tooling does not exist on the client, it exists on the server. You are responsible for
developing the client application, generating the necessary client bindings for the
enterprise bean and CORBA objects, and bundling these pieces together, install on
the client machine.

The pluggable application client provides the necessary run-time to support the
communication needs between the client and the server.

The pluggable application client uses the RMI-IIOP protocol. Using this protocol
enables the client application to access not only enterprise bean references and
CORBA object references, but also allows the client application to use any
supported CORBA services. Using the RMI-IIOP protocol along with the
accessibility of CORBA services can assist a user in developing a client application
that needs to access both enterprise bean references and CORBA object references.

When you combine the J2EE and CORBA environments in one client application,
you must understand the differences between the two programming models, to use
and manage each appropriately.

The pluggable application client run time provides the necessary support for the
client application for object resolution, security, Reliability Availability and

Chapter 6. Using application clients 183

Servicability (RAS), and other services. However, this client does not support a
container that provides easy access to these services. For example, no support
exists for using nicknames for enterprise beans or local resource resolution. When
resolving to an enterprise bean (using either Java Naming and Directory Interface
(JNDI) or CosNaming) sources, the client application must know the location of the
name server and the fully qualified name used when the reference was bound into
the name space. When resolving to a local resource, the client application cannot
resolve to the resource through a JNDI lookup. Instead the client application must
explicitly create the connection to the resource using the appropriate API (JDBC,
Java Message Service (JMS), and so on). This client does not perform initialization
of any of the services that the client application might require. For example, the
client application is responsible for the initialization of the naming service, either
through CosNaming or JNDI APIs.

The pluggable application client offers access to most of the available client
services in the J2EE application client. However, you cannot access the services in
the pluggable client as easily as you can in the J2EE application client. The J2EE
client has the advantage of performing a simple Java Naming and Directory
Interface (JNDI) name space lookup to access the desired service or resource. The
pluggable client must code explicitly for each resource in the client application. For
example, looking up an enterprise bean Home requires the following code in a
J2EE application client:
java.lang.Object ejbHome=initialContext.lookup("java:/comp/env/ejb/MyEJBHome");
MyEJBHome=(MyEJBHome)javax.rmi.PortableRemoteObject.narrow
(ejbHome,MyEJBHome.class);

However, you need more explicit code in a Java pluggable application client:
java.lang.Object ejbHome=initialContext.lookup("the/fully/qualified/path/to/
actual/home/in/namespace/MyEJBHome");
MyEJBHome=(MyEJBHome)javax.rmi.PortableRemoteObject.narrow
(ejbHome,MyEJBHome.class);

In this example, the J2EE application client accesses a logical name from the
java:/comp name space. The J2EE client run time resolves that name to the
physical location and returns the reference to the client application. The pluggable
client, must know the fully qualified physical location of the enterprise bean Home
in the name space. If this location changes, the pluggable client application must
also change the value placed on the lookup() statement.

In the J2EE client, the client application is protected from these changes because it
uses the logical name. A change can require a redeployment of the EAR file, but
the actual client application code remains the same.

The pluggable application client is a traditional Java application that contains a
main function. The WebSphere pluggable application client provides run-time
support for accessing remote enterprise beans, and provides the implementation
for various services (security, Workload Management (WLM), and others). This
client can also access CORBA objects and CORBA based services. When using both
environments in one client application, you need to understand the differences
between the enterprise bean and CORBA programming models to manage both
environments.

For instance, the CORBA programming model requires the CORBA CosNaming
name service for object resolution in a name space. The enterprise beans
programming model requires the JNDI name service. The client application must
initialize and properly manage these two naming services.

184 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Another difference applies to the enterprise bean model. Use the Java Naming and
Directory Interface (JNDI) implementation in the enterprise bean model to initialize
the Object Request Broker (ORB). The client application is unaware that an ORB is
present. The CORBA model, however, requires the client application to explicitly
initialize the ORB through the ORB.init() static method.

The pluggable application client provides a batch command that you can use to set
the CLASSPATH and JAVA_HOME environment variables to enable the pluggable
application client run time.

Thin application clients
The thin application client provides a lightweight, downloadable Java application
run time capable of interacting with enterprise beans.

This client is designed to support those users who want a lightweight Java client
application programming environment, without the overhead of the J2EE platform
on the client machine. The programming model for this client is heavily influenced
by the CORBA programming model, but supports access to enterprise beans.

When accessing enterprise beans from this client, the client application can
consider the enterprise beans object references as CORBA object references.

Tooling does not exist on the client, it exists on the server. You are responsible for
developing the client application, generating the necessary client bindings for the
enterprise bean and CORBA objects, and bundling these pieces together to install
on the client machine.

The thin application client provides the necessary run-time to support the
communication needs between the client and the server.

The thin application client uses the RMI-IIOP protocol. Using this protocol enables
the client application to access not only enterprise bean references and CORBA
object references, but also allows the client application to use any supported
CORBA services. Using the RMI-IIOP protocol along with the accessibility of
CORBA services can assist a user in developing a client application that needs to
access both enterprise bean references and CORBA object references.

When you combine the J2EE and CORBA environments in one client application,
you must understand the differences between the two programming models, to use
and manage each appropriately.

The thin application client run time provides the necessary support for the client
application for object resolution, security, Reliability Availability and Servicability
(RAS), and other services. However, this client does not support a container that
provides easy access to these services. For example, no support exists for using
nicknames for enterprise beans or local resource resolution. When resolving to an
enterprise bean (using either Java Naming and Directory Interface (JNDI) or
CosNaming) sources, the client application must know the location of the name
server and the fully qualified name used when the reference was bound into the
name space. When resolving to a local resource, the client application cannot
resolve to the resource through a JNDI lookup. Instead the client application must
explicitly create the connection to the resource using the appropriate API (JDBC,
Java Message Service (JMS), and so on). This client does not perform initialization

Chapter 6. Using application clients 185

of any of the services that the client application might require. For example, the
client application is responsible for the initialization of the naming service, either
through CosNaming or JNDI APIs.

The thin application client offers access to most of the available client services in
the J2EE application client. However, you cannot access the services in the thin
client as easily as you can in the J2EE application client. The J2EE client has the
advantage of performing a simple Java Naming and Directory Interface (JNDI)
name space lookup to access the desired service or resource. The thin client must
code explicitly for each resource in the client application. For example, looking up
an enterprise bean Home requires the following code in a J2EE application client:
java.lang.Object ejbHome=initialContext.lookup("java:/comp/env/ejb/MyEJBHome");
MyEJBHome=(MyEJBHome)javax.rmi.PortableRemoteObject.narrow(ejbHome,MyEJBHome.class);

However, you need more explicit code in a Java thin application client:
java.lang.Object ejbHome=initialContext.lookup("the/fully/qualified/path/to/actual/
home/in/namespace/MyEJBHome");
MyEJBHome=(MyEJBHome)javax.rmi.PortableRemoteObject.narrow(ejbHome,MyEJBHome.class);

In this example, the J2EE application client accesses a logical name from the
java:/comp name space. The J2EE client run time resolves that name to the
physical location and returns the reference to the client application. The thin client
must know the fully qualified physical location of the enterprise bean Home in the
name space. If this location changes, the thin client application must also change
the value placed on the lookup() statement.

In the J2EE client, the client application is protected from these changes because it
uses the logical name. A change might require a redeployment of the EAR file, but
the actual client application code remains the same.

The thin application client is a traditional Java application that contains a main
function. The WebSphere thin application client provides run-time support for
accessing remote enterprise beans, and provides the implementation for various
services (security, Workload Management (WLM), and others). This client can also
access CORBA objects and CORBA based services. When using both environments
in one client application, you need to understand the differences between the
enterprise bean and CORBA programming models to manage both environments.

For instance, the CORBA programming model requires the CORBA CosNaming
name service for object resolution in a name space. The enterprise beans
programming model requires the JNDI name service. The client application must
initialize and properly manage these two naming services.

Another difference applies to the enterprise bean model. Use the Java Naming and
Directory Interface (JNDI) implementation in the enterprise bean model to initialize
the Object Request Broker (ORB). The client application is unaware that an ORB is
present. The CORBA model, however, requires the client application to explicitly
initialize the ORB through the ORB.init() static method.

The thin application client provides a batch command that you can use to set the
CLASSPATH and JAVA_HOME environment variables to enable the thin
application client run time.

Example: Migrating application clients
Use the ClientUpgrade command to migrate application clients.

186 IBM WebSphere Application Server Network Deployment, Version 5: Applications

The command file is located in the bin subdirectory of the <WAS_install_root<, or
the <ND_install_root< directory. By default, the WAS_install_root for WebSphere
Application Server and WebSphere Application Server Enterprise is:
v Windows NT or Windows 2000 operating platforms -

<drive>\WebSphere\AppServer directory
v AIX or UNIX-based operating platforms - /usr/WebSphere/AppServer directory

By default, the ND_install_root for WebSphere Application Server Network
Deployment is:
v Windows NT or Windows 2000 operating platforms -

<drive>\WebSphere\DeploymentManager directory
v AIX or UNIX-based operating platforms - /usr/WebSphere/DeploymentManager

directory

The command uses the
com.ibm.websphere.migration.clientupgrade.ClientUpgrade class.

Syntax
ClientUpgrade EAR_file [-clientJar client_jar]

[-traceString trace_spec [-traceFile file_name]]

Parameters

Supported arguments include the following:

EAR_file
Use this parameter to specify the fully qualified path to the EAR file that
contains client JAR files to process.

-clientJar
Use this optional parameter to specify a JAR file for processing. If not
specified, the program transforms all client JAR files in the EAR file.

-traceString -traceFile
Use these optional parameters to gather trace information for IBM Service
personnel. Specify a trace_spec of ″*=all=enabled″ (with quotation marks)
to gather all trace information.

Examples

The following example demonstrates correct syntax:
ClientUpgrade EAR_file -clientJar ejbJarFile

Migration tips for application clients
Tips for migrating thin application client code:
v The Java invocation used to run thin application clients has changed in Version

5.0. You must specify -Xbootclasspath/p:%WAS_BOOTCLASSPATH% on Windows
systems or -Xbootclasspath/p:$WAS_BOOTCLASSPATH on Unix systems when you
invoke the Java command. Set the WAS_BOOTCLASSPATH environment variable in
one of the following:
– setupClient.bat for Windows systems or setupClient.sh for Unix systems
– setupCmdLine.bat for Windows systems or setupCmdLine.sh for Unix systems

Tips for migrating J2EE application client code:

Chapter 6. Using application clients 187

v If your J2EE application client uses resource references and you have configured
those resources using the Application Client Resource Configuration Tool
(ACRCT), you must run the ClientUpgrade command to migrate the resource
configuration information in WebSphere Application Server V5.

Installing application clients
Before you begin

Application clients do not require the IBM WebSphere Application Server base.
They are supported at the level of the operating system.

Before you install the pluggable application client, you must have one of the
following Sun Java Runtime Environment (JRE) levels on your system: 1.3.1_03 and
all levels up to but not including 1.4. Similar Sun Java Development Kit (JDK)
levels are required to install the pluggable application client Samples.

Steps for this task
1. Issue the following command, according to platform, at a command line:

install.sh for AIX
Install.sh for Solaris
install.exe for Windows
The WebSphere Application Server client install wizard appears.

2. Click next, to continue.
3. Select a language from the drop-down menu and click OK.

If you have an earlier version of the WebSphere Application Server client
installed on your machine, an information window appears.

4. Click Yes to all to overwrite this older version.
5. Read the license agreement, and select the radio button next to I accept the

terms in the license agreement. Click next.
6. Choose a setup type and click next.
7. Choose the features you want to install and click Next.
8. Click Yes, if you want to install the Samples development environment.
9. Click Next, to install the WebSphere Application Server client to the default

directory. Click Browse, to install the WebSphere Application Server client to a
different directory.

10. Click Next.
11. Enter the host name of the server machine, and click Next.

Specify a port number if you are not using the default port.
12. Click Next, to install.

A progress window appears. If you chose to install the applet client, an
information window appears.

13. Choose yes to overwrite the existing JRE registry entry. Choose no to return to
the feature panel.

14. Click Finish to exit the wizard, after the WebSphere Application Server client
installs.

Results

Application clients are installed on your machine.

188 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Developing ActiveX application client code
Before you begin

This topic provides an outline for developing an ActiveX program, such as Visual
Basic, VBScript, and Active Server Pages, to use the WebSphere ActiveX to EJB
bridge to access enterprise beans.

This topic assumes that you are familiar with ActiveX programming. You should
also consider the information given in ActiveX to EJB bridge, good programming
guidelines.

To use the ActiveX to EJB bridge to access a Java class, develop your ActiveX
program to complete the following steps:

Steps for this task
1. Create an instance of the XJB.JClassFactory object.
2. Create JVM code within the ActiveX program process, by calling the XJBInit()

method of the XJB.JClassFactory object.
After the ActiveX program has created an XJB.JClassFactory object and called
the XJBInit() method, the JVM code is initialized and ready for use.

3. Create a proxy object for the Java class, by using the XJB.JClassFactory
FindClass() and NewInstance() methods.
The ActiveX program can use the proxy object to access the Java class, object
fields, and methods.

4. Call methods on the Java class, using the Java method invocation syntax, and
access Java fields as required.

5. Use the helper functions to do the conversion in cases where automatic
conversion is not possible. You can convert between the following data types:
v Java Byte and Visual Basic Byte
v Visual Basic Currency types and Java 64-bit

6. Implement methods to handle any errors returned from the Java class. In Visual
Basic or VBScript, use the Err.Number and Err.Description fields to determine
the actual Java error.

What to do next

After you develop the ActiveX client code, start the ActiveX application.

Starting an ActiveX application
Before you begin

To run an ActiveX client application that is to use the ActiveX to EJB bridge, you
must perform some initial configuration to set appropriate environment variables
and to enable the ActiveX to EJB bridge to find its XJB.JAR file and the Java
run-time. This initial configuration sets up the environment within which the
ActiveX client application can run.

To perform the required configuration, complete one or more of the following
subtasks:

Steps for this task
1. Starting an ActiveX application and configuring service programs

Chapter 6. Using application clients 189

2. Starting an ActiveX application and configuring non-service programs

Starting an ActiveX application and configuring service
programs
Before you begin

To run an ActiveX service program such as Active Server Page (ASP) that is to use
the ActiveX to EJB bridge, you must perform some initial configuration to set
appropriate environment variables and to enable the ActiveX to EJB bridge to find
its XJB.JAR file and the Java run-time. This configuration sets up the environment
within which the ActiveX service program can run.

The XJB.JClassFactory must find the Java run-time Dynamic Link Library (DLL)
when initializing. In a service program such as Internet Information Server you
cannot specify a path for its processes independently; you must set the process
paths in the system PATH variable. This limitation means that you can only have a
single JVM version available on a machine using ASP.

To add the JRE directories to your System path, complete one of the following
subtasks:

Steps for this task
1. On Windows 2000, complete the following substeps:

a. Open the Control Panel, then double-click the System icon.
b. Click the Advanced tab on the System Properties window.
c. Click Environment Variables.
d. Edit the Path variable in the System Variables window.
e. Add the following to the beginning of the path displayed in the Variable

Value input box:
C:\WebSphere\AppClient\Java\jre\bin;C:\WebSphere\AppClient\
Java\jre\bin\classic;

where C:\WebSphere\AppClient is the directory in which you installed the
WebSphere Java client

f. Click OK in the Edit System Variable window to apply the changes.
g. Click OK in the Environment Variables window.
h. Click OK in the System Properties window.
i. Restart Windows 2000.

2. On Windows NT, complete the following substeps:
a. Open the Control Panel, then double-click the System icon.
b. Click the Environment tab on the System Properties window.
c. In the System Variables window, edit the Path variable.
d. Add the following to the beginning of the path displayed in the Value input

box:
C:\WebSphere\AppClient\Java\jre\bin;C:\WebSphere\AppClient\
Java\jre\bin\classic;

Where C:\WebSphere\AppClient is the directory in which you installed the
WebSphere Java client

e. Click Set to apply the changes.
f. Click OK.
g. Restart Windows NT.

190 IBM WebSphere Application Server Network Deployment, Version 5: Applications

What to do next

After you change the System PATH variable you must reboot the Internet
Information Server machine so that Internet Information Server can see the change.

Starting an ActiveX application and configuring non-service
programs
Before you begin

To run an ActiveX program initiated from an icon or command-line (a non-service
program) that is to use the ActiveX to EJB bridge, you must perform some initial
configuration to set appropriate environment variables and to enable the ActiveX
to EJB bridge to find its XJB.JAR file and the Java runtime. This uses a batch file to
set up the environment within which the ActiveX program can run.

To perform the required configuration, complete the following steps:

Steps for this task
1. (Optional) Edit the setupCmdLineXJB.bat file to specify appropriate values for

the environment variables required by the ActiveX to EJB bridge. For more
information about these environment variables, see ActiveX to EJB bridge,
environment and configuration.
For more information about creating a JVM for an ActiveX program, see
ActiveX to EJB bridge, initializing the JVM.
After the ActiveX program has created an XJB.JClassFactory object and called
the XJBInit() method, the JVM is initialized and ready for use.

2. Start the ActiveX client application by using one of the following methods:
v Use the launchClientXJB.bat file to start the application; for example:

launchClientXJB MyApplication.exe parm1 parm2

or
launchClientXJB MyApplication.vbp

v Use the setupCmdLineXJB.bat file to create an environment in which the
application can be run, then start the application from within that
environment.

setupCmdLineXJB.bat, launchClientXJB.bat, and other ActiveX
batch files
This topic provides reference information about the aids that client applications
and client services can use to access the ActiveX to EJB bridge. These enable the
ActiveX to EJB bridge to find its XJB.JAR file and the Java run-time.

Location

The include file is located in the <was_client_home<\aspIncludes directory. You can
include the file into your ASP application with the following syntax in your ASP
page:
<-- #include virtual ="/WSASPIncludes/setupASPXJB.inc" -->

This assumes that you have created a virtual directory in Internet Information
Server called WSASPIncludes that points to the <was_client_home<\aspIncludes
directory.

Usage notes

Chapter 6. Using application clients 191

The following batch files are provided for client applications to use the ActiveX to
EJB bridge:
v setupCmdLineXJB.bat

Sets the client environment variables.
v launchClientXJB.bat

Calls the setupCmdLineXJB.bat file and launches the application you specify as
its arguments; for example:
launchClientXJB.bat myapp.exe parm1 parm2

or
launchClientXJB MyApplication.vbp

v Active Server Pages (ASP) include file

An include file is provided for ASP users to automatically set the following
page-level (local) environment variables:
– com_ibm_websphere_javahome Path to the Java run-time directory installed

with the WebSphere Advanced Server Client.
– com_ibm_websphere_washome Path to the WebSphere Advanced Server

Client directory.
– com_ibm_websphere_namingfactory Sets the Java java.naming.factory.initial

system property.
– com_ibm_websphere_computername (Optional) Name of the computer

where the WebSphere Advanced Server Client is installed. If you intend to
talk to a single specific computer, you are recommended to change this value
to become the server name that you intend to access.

v System Settings

To enable the ActiveX to EJB bridge to access the Java run-time Dynamic Link
Library (DLL), the following directories must exist in the system PATH
environment variable:
was_client_home\java\jre\bin;was_client_home\java\jre\bin\classic

Where was_client_home is the name of the directory where you installed the
WebSphere Application Server Client (for example, C:\WebSphere\AppClient).

Note: This technique enables only one Java run-time to activate on a machine,
therefore all client services on that machine must use the same Java run-time.
Client applications do not have this limitation because they each have their own
private, non-system scope.

JClassProxy and JObjectProxy classes
This topic provides reference information about the object classes of the ActiveX to
EJB bridge.

JClassFactory is the object used to access the majority of JVM features. It handles
JVM initialization, accessing classes and creating class instances (objects). The
majority of tasks for accessing your Java classes and objects are handled with the
JClassProxy and JObjectProxy objects.
v XJBInit(String astrJavaParameterArray())

Initializes the JVM environment using an array of strings that represent the
command line parameters you would normally send to the java.exe file.
If you have invalid parameters in the XJBInit() string array, the following error
results:

192 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Error: 0x6002 "XJBJNI::Init() Failed to create VM" when calling XJBInit()

If you have C++ logging enabled, the activity log displays the invalid parameter.
v JClassProxy FindClass(String strClassName)

Uses the current thread class loader to load the specified fully qualified class
name and returns a JClassProxy object representing the Java Class object.

v JObjectProxy NewInstance()
Creates a Class instance for the specified JClassProxy object using the
parameters supplied to call the Class Constructor. For more information about
using JMethodArgs, see ActiveX to EJB bridge, calling Java methods.
JObjectProxy NewInstance(JClassFactory obj, Variant vArg1, Variant vArg2,
Variant vArg3, ...)
JObjectProxy NewInstance(JClassFactory obj, JMethodArgs args)

v JMethodArgs GetArgsContainer()
Returns a JMethodArgs object (Class instance).
You can create a JClassProxy object from the JClassFactory.FindClass() method
and also from any Java method call that would normally return a Java Class
object. You can use this object as if you had direct access to the Java Class object.
All of the class static methods and fields are accessible as are the java.lang.Class
methods. In case of a clash between static method names of the reflected user
class and those of the java.lang.Class (for example, getName()), the reflected
static methods would execute first.
For example, the following is a static method called getName(). The
java.lang.Class object also has a method called getName():
– In Java:

class foo{
foo(){};
public static String getName(){return "abcdef";}
public static String getName2(){return "ghijkl";}
public String toString2(){return "xyz";}
}

– In Visual Basic:
...
Dim clsFoo as Object
set clsFoo = oXJB.FindClass("foo")
clsFoo.getName() ’ Returns "abcdef" from the static foo class
clsFoo.getName2() ’ Returns "ghijkl" from the static foo class
clsFoo.toString() ’ Returns "class foo" from the java.lang.Class object.
oFoo = oXJB.NewInstance(clsFoo)
oFoo.toString() ’ Returns some text from the java.lang.Object’s

’ toString() method which foo inherits from.
oFoo.toString2() ’ Returns "xyz" from the foo class instance

You can create a JObjectProxy object from the JClassFactory.NewInstance()
method, and can be created from any Java method call that would normally
return a Class instance object. You can use this object as if you had direct
access to the Java object and can access all the static methods and fields of the
object. All of object instance methods and fields are accessible (including
those accessible through inheritance).

The JMethodArgs object is created from the JClassFactory.GetArgsContainer()
method. Use this object as a container for method and constructor arguments.
You must use this object when overriding the object type when calling a
method (for example, when sending a java.lang.String JProxyObject to a
constructor that normally takes a java.lang.Object type).

Chapter 6. Using application clients 193

There are two groups of methods to add arguments to the collection: Add
and Set. You can use Add to add arguments in the order that they are
declared. Alternatively, you can use Set to set an argument based on its
position in the argument list (where the first argument is in position 1).

For example, if you had a Java Object Foo that took a constructor of Foo(int,
String, Object), you could use a JMethodArgs object as shown in the
following code extract:
...
Dim oArgs as Object
set oArgs = oXJB.GetArgsContainer()

oArgs.AddInt(CLng(12345))
oArgs.AddString("Apples")
oArgs.AddObject("java.lang.Object", oSomeJObjectProxy)

Dim clsFoo as Object
Dim oFoo as Object
set clsFoo = oXJB.FindClass("com.mypackage.foo")
set oFoo = oXJB.NewInstance(clsFoo, oArgs)

’ To reuse the oArgs object, just clear it and use the add method
’ again, or alternatively, use the Set method to reset the parameters
’ Here, we will use Set
oArgs.SetInt(1, CLng(22222))
oArgs.SetString(2, "Bananas")
oArgs.SetObject(3, "java.lang.Object", oSomeOtherJObjectProxy)

Dim oFoo2 as Object
set oFoo2 = oXJB.NewInstance(clsFoo, oArgs)

v AddObject (String strObjectTypeName, Object oArg)
Adds an arbitrary object to the argument container in the next available position,
casting the object to the class name specified in the first parameter. Arrays are
specified using the traditional [] syntax; for example:
AddObject("java.lang.Object[][]", oMy2DArrayOfFooObjects)

or
AddObject("int[]", oMyArrayOfInts)

v AddByte (Byte byteArg)
Adds a primitive byte value to the argument container in the next available
position.

v AddBoolean (Boolean bArg)
Adds a primitive boolean value to the argument container in the next available
position.

v AddShort (Integer iArg)
Adds a primitive short value to the argument container in the next available
position.

v AddInt (Long lArg)
Adds a primitive int value to the argument container in the next available
position.

v AddLong (Currency cyArg)
Adds a primitive long value to the argument container in the next available
position.

v AddFloat (Single fArg)

194 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Adds a primitive float value to the argument container in the next available
position.

v AddDouble (Double dArg)
Adds a primitive double value to the argument container in the next available
position.

v AddChar (String strArg)
Adds a primitive char value to the argument container in the next available
position.

v AddString (String strArg)
Adds the argument in string form to the argument container in the next
available position.

v SetObject (Integer iArgPosition, String strObjectTypeName, Object oArg)
Adds an arbitrary object to the argument container in the specified position
casting it to the class name or primitive type name specified in the second
parameter. Arrays are specified using the traditional [] syntax; for example:
SetObject(1, "java.lang.Object[][]", oMy2DArrayOfFooObjects)

or
SetObject(2, "int[]", MyArrayOfInts)

v SetByte (Integer iArgPosition, Byte byteArg)
Sets a primitive byte value to the argument container in the position specified.

v SetBoolean (Integer iArgPosition, Boolean bArg)
Sets a primitive boolean value to the argument container in the position
specified.

v SetShort (Integer iArgPosition, Integer iArg)
Sets a primitive short value to the argument container in the position specified.

v SetInt (Integer iArgPosition, Long lArg)
Sets a primitive int value to the argument container in the position specified.

v SetLong (Integer iArgPosition, Currency cyArg)
Sets a primitive long value to the argument container in the position specified.

v SetFloat (Integer iArgPosition, Single fArg)
Sets a primitive float value to the argument container in the position specified.

v SetDouble (Integer iArgPosition, Double dArg)
Sets a primitive double value to the argument container in the position specified.

v SetChar (Integer iArgPosition, String strArg)
Sets a primitive char value to the argument container in the position specified.

v SetString (Integer iArgPosition, String strArg)
Sets a java.lang.String value to the argument container in the position specified.

v Object Item(Integer iArgPosition)
Returns the value of an argument at a specific argument position.

v Clear()
Removes all arguments from the container and resets the next available position
to one.

v Long Count()
Returns the number of arguments in the container.

Chapter 6. Using application clients 195

Java virtual machine initialization tips
Initialize the Java virtual machine (JVM) code with the ActiveX to enterprise
JavaBeans bridge. For an ActiveX client program (Visual Basic, VBScript, or ASP) to
access Java classes or objects, the first step that the program must do is to create
JVM code within its process. To create JVM code, the ActiveX program calls the
XJBInit() method of the XJB.JClassFactory object. When an XJB.JClassFactory object
is created and the XJBInit() method called, the JVM is initialized and ready to use.
v To enable the XJB.JClassFactory to find the Java run-time Description Definition

Language (DLL) when initializing, the JRE bin and bin\classic directories must
exist in the system path environment variable.

v The XJBInit() method accepts only one parameter; an array of strings. Each
string in the array represents a command line argument that for a Java program
you would normally specify on the Java.exe command line. This string interface
is used to set the classpath, stack size, heap size, and debug settings. You can get
a listing of these parameters by typing java -? from the command line.

v If you set a parameter incorrectly, you receive a 0x6002 ″Failed to initialize VM″
error message.

v Due to the current limitations of Java Native Interface (JNI), you cannot unload
or reinitialize JVM code after it has loaded. Therefore, after XJBInit() has been
called once, subsequent calls have no effect other than to create a duplicate
JClassFactory object for you to access. It is best to store your XJB.JClassFactory
object globally and continue to reuse that object.

v The following Visual Basic extract shows an example of initializing JVM code:
Dim oXJB as Object
set oXJB = CreateObject("XJB.JClassFactory")
Dim astrJavaInitProps(0) as String
astrJavaInitProps(0) = _

"-Djava.class.path=.;c:\myjavaclasses;c:\myjars\myjar.jar"
oXJB.XJBInit(astrJavaInitProps)

Example: Developing ActiveX to enterprise bean bridge, using
Java proxy objects

To use Java proxy objects with the ActiveX to enterprise JavaBeans bridge:
v After an ActiveX client program (Visual Basic, VBScript, or ASP) has initialized

the XJB.JClassFactory (and thereby the JVM), it can access Java classes and
initialize Java objects. To do this, the client program uses the XJB.JClassFactory
FindClass() and NewInstance() methods.

v In Java programming there are two ways to access Java classes: direct invocation
through the Java compiler, and through the Java Reflection interface. Because the
ActiveX to Java bridge needs no compilation and is a complete runtime interface
to Java, it depends on the latter Reflection interface to access its classes, objects,
methods, and fields. The XJB.JClassFactory FindClass() and NewInstance()
methods behave very similarly to the Java Class.forName() and the
Method.invoke() and Field.invoke() methods.

v XJB.JClassFactory.FindClass() takes the fully-qualified class name as its only
parameter and returns a Proxy Object (JClassProxy). You can use the returned
Proxy object like a normal Java Class object and call static methods and access
static fields. You can also create a Class Instance (or object) from it, as described
below. For example, the following Visual Basic code extract returns a Proxy
object for the Java class java.lang.Integer:
...
Dim clsMyString as Object
Set clsMyString = oXJB.FindClass("java.lang.Integer")

196 IBM WebSphere Application Server Network Deployment, Version 5: Applications

v After the proxy is created, you can access its static information directly. For
example, you can use the following code extract to convert a decimal integer to
its hexadecimal representation.
...
Dim strHexValue as String
strHexValue = clsMyString.toHexString(CLng(255))

v The equivalent Java syntax is: static String toHexString(int i). Because ints
in Java programming are really 32-bits (which translates to Long in VB), the
CLng() function converts the value from the default int to a long. Also, even
though the toHexString() function returns a java.lang.String, the code extract
does not return an Object Proxy. Instead, the returned java.lang.String is
automatically converted to a native Visual Basic String.
To create an object from a class, you use the JClassFactory.NewInstance()
method. This method creates an Object Instance and takes whatever parameters
your Class Constructor needs. Once the object is created, you have access to all
of its public instance methods and fields. For example, you can use the
following Visual Basic code extract to create an instance of java.lang.Integer:
...
Dim oMyInteger as Object
set oMyInteger = oXJB.NewInstance(CLng(255))

Dim strMyInteger as String
strMyInteger = oMyInteger.toString

Example: Calling Java methods in the ActiveX to enterprise
bean bridge

In the ActiveX to EJB bridge, methods are called using the native language method
invocation syntax.
v The following are important differences between Java invocation and ActiveX

Automation invocation:
– Unlike Java methods, ActiveX does not support method (and constructor)

polymorphism; that is, you cannot have two methods in the same class with
the same name.

– Java methods are case-sensitive, but ActiveX Automation is not case-sensitive.
v You should take care when invoking Java methods through ActiveX Automation.

If you use the wrong case on a method call or use the wrong parameter type,
you get an Automation Error 438 ″Object doesn’t support this property or
method″ thrown.

v To compensate for Java polymorphic behavior, give the exact parameter types to
the method call. The parameter types determine the correct method to invoke.
For a listing of correct types to use, see ActiveX to EJB bridge, converting data
types.

v For example, the following Visual Basic code would fail if CLng() was not
present or toHexString was incorrectly typed as ToHexString:
...
Dim strHexValue as String
strHexValue = clsMyString.toHexString(CLng(255))

v Sometimes it is difficult to force some development environments to leave the
case of your method calls unchanged. For example, in Visual Basic if you want
to call a method close() (uncapitalized), Visual Basic would try to capitalize it
″Close()″. In Visual Basic, the only way to effectively get around this behavior is
to use the CallByName() method. For example:
o.Close(123) ’Incorrect...
CallByName(o, "close", vbMethod, 123) ’Correct...

Chapter 6. Using application clients 197

or in VBScript, use the Eval function:
o.Close(123) ’Incorrect...
Eval("o.Close(123)") ’Correct...

v The return value of a function is always converted dynamically to the correct
type. However, you must take care to use the set keyword in Visual Basic. If you
expect a non-primitive data type to return, you must use set. (If you expect a
primitive data type to return, you do not need to use set.) For example:
Set oMyObject = o.getObject
iMyInt = o.getInt

v In some cases, you might not know the type of object returning from a method
call, because wrapper classes are converted automatically to primitives (for
example, java.lang.Integer returns an ActiveX Automation Long). In such cases,
you might need to use your language built-in exception handling techniques to
try to coerce the returnd type (for example, On Error and Err.Number in Visual
Basic).

v Methods with Character Arguments
Because ActiveX automation does not natively support character types
supported by Java methods, the ActiveX to EJB bridge uses strings (byte or
VT_I1 do not work, because characters have multiple bytes in Java). If you try to
call a method that takes a char or java.lang.Character type you must use the
JMethodArgs argument container to pass character values to methods or
constructors. For more information about how this argument container is used,
see Methods with ″Object″ Type as Argument and Abstract Arguments.

v Methods with ″Object″ Type as Argument and Abstract Arguments
Because of the polymorphic nature of Java programming, the ActiveX to Java
bridge uses direct argument type mapping to find a method. This works well in
most cases, but sometimes methods are declared with a Parent or Abstract Class
as an argument type (for example, java.lang.Object). You need the ability to send
an object of arbitrary type to a method. To acquire this ability, you must use the
XJB.JMethodArgs object to coerce your parameters to match the parameters on
your method. You can get a JMethodArgs instance by using the
JClassFactory.GetArgsContainer() method.
The JMethodArgs object is a container for method parameters or arguments.
This container enables you to add parameters to it one-by-one and then you can
send the JMethodArgs object to your method call. The JClassProxy and
JObjectProxy objects recognize the JMethodArgs object and attempt to find the
correct method and let the Java language coerce your parameters appropriately.
For example, to add an element to a Hashtable object the method syntax is
Object put(Object key, Object value). In Visual Basic, the method usage looks
like this:
Dim oMyHashtable as Object
Set oMyHashtable = _

oXJB.NewInstance(oXJB.FindClass("java.utility.Hashtable"))

’ This line will not work. The ActiveX to EJB bridge cannot find a method
’ called "put" that has a short and String as a parameter:
oMyHashtable.put 100, "Dogs"
oMyHashtable.put 200, "Cats"

’ You must use a XJB.JMethodArgs object instead:
Dim oMyHashtableArgs as Object
Set oMyHashtableArgs = oXJB.GetArgsContainer
oMyHashtableArgs.AddObject("java.lang.Object", 100)
oMyHashtableArgs.AddObject("java.lang.Object", "Dogs")

oMyHashtable.put oMyHashTableArgs

198 IBM WebSphere Application Server Network Deployment, Version 5: Applications

’ Reuse the same JMethodArgs object by clearing it.
oMyHashtableArgs.Clear
oMyHashtableArgs.AddObject("java.lang.Object", 200)
oMyHashtableArgs.AddObject("java.lang.Object", "Cats")

oMyHashtable.put oMyHashTableArgs

Java field programming tips
Using the ActiveX to EJB bridge to access Java fields has the same case sensitivity
issue that it has when invoking methods. Field names must use the same case as
the Java field syntax.
v Visual Basic has the same problem with unsolicited case changing on fields as it

does with methods. (For more information about this problem, see ActiveX to
EJB bridge, calling Java methods). You might need to use the CallByName()
function to set a field in the same way that you would call a method in some
cases. For Fields, you use VBLet for primitive types and VBSet for Objects. For
example:
o.MyField = 123 ’Incorrect...
CallByName(o, "MyField", vbLet, 123) ’Correct...

or in VBScript:
o.MyField = 123 ’Incorrect...
Eval("o.myField = 123") ’Correct...

ActiveX to Java primitive data type conversion values
All primitive Java data types are automatically converted to native ActiveX
Automation types. However, not all Automation data types are converted to Java
types (for example, VT_DATE). Variant data types are used for data conversion.
Variant data types are a requirement of any Automation interface, and are used
automatically by Visual Basic and VBScript. The tables below provide details about
how primitive data types are converted between Automation types and Java types.

ActiveX to Java primitive data type conversion

Visual Basic Type Variant Type Java Type Notes

Byte VT_I1 byte Byte in Visual Basic
is unsigned, but is
signed in Java data
type.

Boolean VT_BOOL boolean

Integer VT_I2 short

Long VT_I4 int

Currency VT_CY long

Single VT_R4 float

Double VT_R8 double

String VT_BSTR java.lang.String

String VT_BSTR char

Date VT_DATE n/a

Example: Using helper methods for data type conversion
Generally, data type conversion between ActiveX (Visual Basic and VBScript) and
Java methods occurs automatically, as described in ActiveX to EJB bridge,

Chapter 6. Using application clients 199

converting data types. However, the following helper functions are provided for
cases where automatic conversion is not possible:
v Byte helper function
v Currency helper function
v Byte helper function

Because the Java Byte data type is signed (-127 through 128) and the Visual Basic
Byte data type is unsigned (0 through 255), convert unsigned Bytes to a Visual
Basic Integers, which look like the Java signed byte. To make this conversion,
you can use the following helper function:
Private Function GetIntFromJavaByte(Byte jByte) as Integer

GetIntFromJavaByte = (CInt(jByte) + 128) Mod 256 - 128
End Function

v Currency helper function
Visual Basic 6.0 cannot properly handle 64-bit integers like Java methods can (as
the Long data type). Therefore, Visual Basic uses the Currency type, which is
intrinsically a 64-bit data type. The only side effect of using the Currency type
(the Variant type VT_CY) is that a decimal point is inserted into the type. To
extract and manipulate the 64-bit Long value in Visual Basic, use code like the
following example. For more details on this technique for converting Currency
data types, see Q189862, ″HOWTO: Do 64-bit Arithmetic in VBA″, on the
Microsoft Knowledge Base.
’ Currency Helper Types
Private Type MungeCurr

Value As Currency
End Type
Private Type Munge2Long

LoValue As Long
HiValue As Long

End Type

’ Currency Helper Functions
Private Function CurrToText(ByVal Value As Currency) As String

Dim Temp As String, L As Long
Temp = Format$(Value, "#.0000")
L = Len(Temp)
Temp = Left$(Temp, L - 5) & Right$(Temp, 4)
Do While Len(Temp) > 1 And Left$(Temp, 1) = "0"

Temp = Mid$(Temp, 2)
Loop
Do While Len(Temp) > 2 And Left$(Temp, 2) = "-0"

Temp = "-" & Mid$(Temp, 3)
Loop
CurrToText = Temp

End Function

Private Function TextToCurr(ByVal Value As String) As Currency
Dim L As Long, Negative As Boolean
Value = Trim$(Value)
If Left$(Value, 1) = "-" Then

Negative = True
Value = Mid$(Value, 2)

End If
L = Len(Value)
If L < 4 Then

TextToCurr = CCur(IIf(Negative, "-0.", "0.") & _
Right$("0000" & Value, 4))

Else
TextToCurr = CCur(IIf(Negative, "-", "") & _

Left$(Value, L - 4) & "." & Right$(Value, 4))
End If

End Function

200 IBM WebSphere Application Server Network Deployment, Version 5: Applications

’ Java Long as Currency Usage Example
Dim LC As MungeCurr
Dim L2 As Munge2Long

’ Assign a Currency Value (really a Java Long)
’ to the MungeCurr type variable
LC.Value = cyTestIn

’ Coerce the value to the Munge2Long type variable
LSet L2 = LC

’ Perform some operation on the value, now that we
’ have it available in two 32-bit chunks
L2.LoValue = L2.LoValue + 1

’ Coerce the Munge value back into a currency value
LSet LC = L2
cyTestIn = LC.Value

Array tips for ActiveX application clients
Arrays are very similar between Java and Automation Containers like Visual Basic
and VBScript. Here are some important points to consider when passing arrays
back and forth between these containers:
v Java arrays cannot mix types. All Java arrays contain a single type, so when

passing arrays of Variants to a Java Array, you must make sure that all of the
elements in the Variant array are of the same base type. For example, in Visual
Basic:
...
Dim VariantArray(1) as Variant
VariantArray(0) = CLng(123)
VariantArray(1) = CDbl(123.4)
oMyJavaObject.foo(VariantArray) ’ Illegal!

VariantArray(0) = CLng(123)
VariantArray(1) = CLng(1234)
oMyJavaObject.foo(VariantArray) ’ This works

v Arrays of Primitive Types are converted using the rules defined in Primitive
Data Type Conversion.

v Arrays of Java Objects are handled through arrays of JObjectProxy objects.
v Arrays of JObjectProxy objects must be fully-initialized and of the correct

associated Java type. When initializing an array in Visual Basic (for example,
Dim oJavaObjects(1) as Object), you must set each object to a JObjectProxy
before you send the array to Java. The bridge is unable to determine the type of
null or empty Object values.

v When receiving an array from a Java method, the lower-bound is always zero.
Java methods only support zero-based arrays.

v Nested or multi-dimensional arrays are treated as zero-based multi-dimensional
arrays in Visual Basic and VBScript.

v Uninitialized arrays or Array Types are unsupported. When calling a Java
method that takes an array of objects as a parameter, you must fully initialize
the array of JObjectProxy objects.

Error handling codes for ActiveX application clients
All exceptions thrown in Java code are encapsulated and re-thrown as a COM
error through the ISupportErrorInfo interface and the EXCEPINFO structure of
IDispatch::Invoke(); the Err object in Visual Basic and VBScript. Because there are

Chapter 6. Using application clients 201

no error numbers associated with Java exceptions, whenever a Java exception is
thrown, the entire stack trace is stored in the error description text and the error
number assigned is 0x6003.

In Visual Basic or VBScript, you need to use the Err.Number and Err.Description
fields to determine the actual Java error. Non-Java errors are thrown as you would
expect via the IDispatch interface; for example, if a method cannot be found, then
error 438 ″Object doesn’t support this property or method″ is thrown.

Error number Description

0x6001 Java Native Interface (JNI) error

0x6002 Initialization error

0x6003 Java exception. Error description is the Java Stack Trace.

0x6FFF General Internal Failure

Threading tips
The ActiveX to EJB bridge supports both free-threaded and apartment-threaded
access and implements the Free Threaded Marshaler to work in a hybrid
environment such as Active Server Pages. Each thread created in the ActiveX
process is mirrored in the Java environment when the thread communicates
through the ActiveX to EJB bridge. In addition, once all references to Java objects
(there are no JObjectProxy or JClassProxy objects) are loaded in an ActiveX thread,
the ActiveX to EJB bridge detaches the thread from the JVM code. Therefore, you
must be careful that any Java code that you access from a multi-threaded Windows
application is thread-safe. Visual Basic and VBScript applications are both
essentially single-threaded. Therefore, Visual Basic and VBScript applications do
not have threading issues in the Java programs they access. Active Server Pages
and multi-threaded C and C++ programs can have issues.

Consider the following scenario:
1. A multi-threaded Windows Automation Container (our ActiveX Process) starts.

It exists on Thread A.
2. The ActiveX Process initializes the ActiveX to EJB bridge, which starts the JVM

code. The JVM attaches to the same thread and internally calls it Thread1.
3. The ActiveX Process starts two threads: B and C.
4. Thread B in the ActiveX Process uses the ActiveX to EJB bridge to access an

object that was created in Thread A. The JVM attaches to thread B and calls it
Thread 2.

5. Thread C in the ActiveX Process never talks to the JVM code, so the VM never
needs to attach to it. This is a case where the JVM code does not have a
one-to-one relationship between ActiveX threads and Java threads.

6. Thread B later releases all of the JObjectProxy and JClassProxy objects that it
used. The Java Thread 2 is detached.

7. Thread B again uses the ActiveX to EJB bridge to access an object that was
created in Thread A. The JVM code attaches again to the thread and calls it
Thread 3.

ActiveX Process JVM Access by ActiveX Process

Thread A - Created in
1

Thread 1 - Attached in 2

202 IBM WebSphere Application Server Network Deployment, Version 5: Applications

ActiveX Process JVM Access by ActiveX Process

Thread B - Created in
4

Thread 2 - Attached in 4, detached in 6 Thread 3 - Attached in 7

Thread C - Created in
4

Threads and Active Server Pages

Active Server Pages (ASP) in Microsoft’s Internet Information Server is a
multi-threaded environment. When you create the XJB.JClassFactory object, you
can store it in the Application collection as an Application-global object. All threads
within your ASP environment can now access the same ActiveX to EJB bridge
object. Active Server Pages by default creates 10 Apartment Threads per ASP
process per CPU. This means that when your ActiveX to EJB bridge object is
initialized any of the 10 threads can call this object, not just the thread that created
it.

If you need to simulate single-apartment behavior, you can create a
Single-Apartment Threaded ActiveX Dynamic Link Library (DLL) in Visual Basic
and encapsulate the ActiveX to EJB bridge object there. This encapsulation
guarantees that all access to the JVM object is on the same thread. You need to use
the <OBJECT> tag to assign the XJB.JClassFactory to an Application object and
must be aware of the consequences of introducing single-threaded behavior to a
Web application.

The Microsoft KnowlegeBase has several articles about ASP and threads, including:
v Q243543 INFO: Do Not Store STA Objects in Session or Application
v Q243544 INFO: Component Threading Model Summary Under Active Server

Pages
v Q243548 INFO: Design Guidelines for VB Components Under ASP

Example: Viewing System.out message
The ActiveX to EJB bridge does not have a console available to view Java
System.out messages. To view these messages when running a standalone client
program (such as Visual Basic), you need to redirect the output to a file. For
example:
launchClientXJB.bat MyProgram.exe > output.txt

v To view the System.out messages when running a Service program such as
Active Server Pages, you need to override the Java System.out OutputStream
object to FileOutputStream. For example, in VBScript:
’Redirect system.out to a file
’ Assume that oXJB is an initialized XJB.JClassFactory object
Dim clsSystem
Dim oOS
Dim oPS
Dim oArgs

’ Get the System class
Set clsSystem = oXJB.FindClass("java.lang.System")

’ Create a FileOutputStream object
’ Create a PrintStream object and assign to it our FileOutputStream

Set oArgs = oXJB.GetArgsContainer oArgs.AddObject "java.io.OutputStream", oOS

Chapter 6. Using application clients 203

Set oPS = oXJB.NewInstance(oXJB.FindClass("java.io.PrintStream"), oArgs)

’ Set our System OutputStream to our file
clsSystem.setOut oPS

Example: Enabling logging and tracing for application clients
The ActiveX to EJB bridge provides two logging and tracing formats: Windows
Application Event Log and Java Trace Log.
v Windows Application Event Log

The Windows Application Event Log shows JNI errors, Java console error
messages, and XJB initialization messages. This log is most useful for
determining XJBInit() errors and any unusual exceptions that do not come from
the Java environment. By default, critical error logging will be enabled and
debug and event logging will be disabled.
To enable or disable logging certain types of events to the Windows Application
Event Log, you need to specify one or more parameters to XJBInit(). If more
than one parameter is set, they will be processed in the order in which they
appear in the input string array to XJBInit(). Once XJBInit() is initialized,
these parameters can no longer be set/reset for the life of the process. Using
Java java.lang.System.setProperty() to set these values also will have no
effect.
– -Dcom.ibm.ws.client.xjb.native.logging.debug=enabled|disabled

Enables or disables debug level messages from appearing in the Windows NT
event log. This level of logging is most useful and shows most internal errors,
user programming issues or configuration problems.

– -Dcom.ibm.ws.client.xjb.native.logging.event=enabled|disabled

Enables or disables event level messages from appearing in the Windows NT
event log.

– -Dcom.ibm.ws.client.xjb.native.logging.*=enabled|disabled

Enables or disables both event and debug level messages from appearing in
the Windows NT event log. It is not possible to disable some critical error
messages from being displayed in the error log. Only debug and event level
messages can be disabled.

Viewing the Windows application event log with the event viewer:

To open the event viewer in the Windows operating system, click Start >
Settings > Control Panel. Double-click Administrative Tools, and then
double-click Event Viewer. All ActiveX to EJB bridge events will have the text
″WebSphere XJB″ in the source column and will appear in the Application log.
For information about using Event Viewer, click the Action menu in Event
Viewer, and then click Help.

To open the even viewer in the Windows NT operating system,, click Start >
Programs > Administrative Tools > Event Viewer. All ActiveX to EJB bridge
events will have the text ″WebSphere XJB″ in the source column and will appear
in the Application log. For information about using Event Viewer, click the Help
menu in Event Viewer.

v Java Trace Log
The Java trace log displays information that you can use to debug method calls,
class lookups, and argument coercion problems. Since the Java portion of the
bridge mirrors the functionality of the COM IDispatch interface, the information

204 IBM WebSphere Application Server Network Deployment, Version 5: Applications

in the trace log is similar to what you have come to expect from an IDispatch
interface. To understand the trace log, you need a fundamental understanding of
IDispatch.
To enable user-logging, add the following parameters to the XJBInit() input
string array:
"-DtraceString=com.ibm.ws.client.xjb.*=event=enabled"
"-DtraceFile=C:\MyTrace.txt"

ActiveX client programming best practices
In general, the best way to access Java components is to use the Java language. It is
recommended that you do as much programming as possible in the Java language
and use a small simple interface between your COM Automation container (for
example, Visual Basic) and the Java code. This interface avoids any overhead and
performance problems that can occur when moving across the interface.
v Visual Basic guidelines
v Active Server Pages guidelines
v J2EE guidelines

bestvb″>

The following guidelines are intended to help optimize your use of the ActiveX to
EJB bridge with Visual Basic:
v Launch the Visual Basic replication through the launchClientXJB.bat file. If you

want to run your Visual Basic application through the Visual Basic debugger,
run the Visual Basic Integrated Development Environment (IDE) within the
ActiveX to EJB bridge environment. After you create your Visual Basic project,
you can launch it from a command line; for example, launchClientXJB
MyApplication.vbp. You can also launch the Visual Basic application alone in the
ActiveX to EJB environment, by changing the Visual Basic shortcut on the
Windows Start menu so that the launchClientXJB.bat file precedes the call to
the VB6.EXE file.

v Exit the Visual Basic IDE before debugging programs.
Because the Java virtual machine (JVM) code attaches to the running process,
you must exit out of the Visual Basic editor before debugging your program. If
you run then exit your program within the Visual Basic IDE, the JVM code
continues to run and you reattach the same JVM code when XJBInit() is called
by the debugger. This causes problems if you try to update XJBInit() arguments
(for example, classpath) because the changes are not be applied until you restart
Visual Basic.

v Store the XJB.JClassFactory object globally.
Because you cannot unload or reinitialize the JVM code, cache the resulting
XJB.JClassFactory object as a global variable. The overhead of treating this object
as a global variable or passing a single reference around is much less than
recreating a new XJB.JClassFactory object and calling the XJBInit() argument
more than once.

estwc″>

The following guidelines intend to help optimize your use of the ActiveX to EJB
bridge with CScript and Windows Scripting Host (WSH):
v Launch in ActiveX to EJB environment.

Launch the VBScriptfiles in the ActiveX to EJB bridge environment, to run
VBScript files in .vbs files. Two common ways exist to launch your script:

Chapter 6. Using application clients 205

– launchClientXJB MyScript.vbs

– launchClientXJB cscript MyScript.vbs

bestas″>

The following guidelines intend to help optimize your use of the ActiveX to EJB
bridge with Active Server Pages software:
v Use the ActiveX to EJB Helper functions from the Active Server Pages

Application.
Because Active Server Pages (ASP) code typically use VBScript, you can use the
included helper functions in any VBScript environment with minor changes. For
more information about these helper functions, see Helper functions for data
type conversion. To run outside of the ASP environment, remove or change all
references to the Server, Request, Response, Application and Session objects; for
example, change Server.CreateObject to CreateObject.

v Set JRE path globally in system.
The XJB.JClassFactory object must be able to find the Java run time Dynamic
Link Library (DLL) when initializing. In Internet Information Server, you cannot
specify a path for its processes independently; you must set the process paths in
the system PATH variable. You can only have a single JVM version available on
a machine using the ASP application. Also, remember that after you change the
system PATH variable you must reboot the Internet Information Server machine
so that Internet Information Server can see the change.

v Set the system TEMP environment variable.
If the system TEMP environment variable is not set, Internet Information Server
stores all temporary files in the WINNT directory, which is usually not desired.

v Use high isolation or an isolated process.
When using the ActiveX to Java bridge with Active Server Pages software,
creating your Web application in its own process is recommended. You can only
load one JVM instruction in a single process and if you want to have more than
one application running with different JVM environment options (for example,
different classpaths), then you need to have separate processes.

v Use the Application Unload option.
When debugging your application, use Unload when viewing your ASP
application properties in the Internet Information Server administration console
to unload the process from memory and thereby unload the JVM code.

v Run one process per application.
Use only one ASP application per J2EE application or JVM environment, in your
ASP environment. If you need separate classpaths or JVM settings you need
separate ASP applications (virtual directories with high isolation or an isolated
process).

v Store the XJB.JClassFactory object in application scope.
Because of the one-to-one relationship required between a JVM instruction and a
process, and because the JVM code can never detach or shut down from a
process independently, cache the XJB.JClassFactory object at application scope
and call the XJBInit() method only once.
Because the ActiveX to EJB bridge employs a free-threaded marshaler, take
advantage of the multi-threaded nature of Internet Information Server and the
ASP environment. If you choose to reinitialize the XJB.JClassFactory object at
Page scope (local variables), then the XJBInit() method can only initialize your
local XJB.JClassFactory variable. It is more efficient to use the XJBInit() method
once.

206 IBM WebSphere Application Server Network Deployment, Version 5: Applications

v Use VBScript conversion functions.
Because VBScript code only supports variant data types, use the CStr(), CByte(),
CBool(), CCur(), CInt(), Clng(), CSng() and CDbl() functions to tell the activeX to
EJB bridge which data type you are using; for example
oMyObject.Foo(CDbl(1.234)).

The following guidelines are intended to help optimize your use of the ActiveX to
EJB bridge with the J2EE environment;
v Store client container objects globally.

Because you can only have one JVM instruction per process, and a single J2EE
client container (com.ibm.websphere.client.applicationclient.launchClient) per
JVM instruction, initialize your J2EE client container only once and reuse it. For
ASP applications, store the J2EE client container in an application level variable
and initialize it only once (either on the Application_OnStart() event in the
global.asa file or by checking to see if it IsEmpty()).
A side effect to storing the client container object globally is that you cannot
change the client container parameters without destroying the object and
creating a new one. These parameters include the EAR file, BootstrapHost,
classpath, and so on. If you run a Visual Basic application and want to change
the client container parameters, you must end the application and restart it. If
you run an Active Server Pages application, you must first unload the
application from Internet Information Server (see ″Use the Application Unload
Button″ under Active Server Pages guidelines). Then load the Active Server
Pages application with the different client container parameters. The parameters
set the first time the Active Server Pages application loads. Since the client
container is stored on the Internet Information Server, all the browser clients
share the parameters using the Active Server Pages application. This behavior is
normal for Active Server Pages code, but can be confusing when you try to run
to different WebSphere Application Servers using the same Active Server Pages
applicatio, which is unsupported.

v Reuse custom temp directory for EAR file extraction.
By default, the client container launches and extracts the application EAR file to
your temp directory and then sets up the thread ClassLoader to use the extracted
EAR file directory and JAR files included in the client JAR manifest. This
process is time consuming and because of some limitations with JVM shutdown
through Java Native Interface (JNI) and file locking, these files are never cleaned
up.
Specifically, each time the client container launch() method is called, it extracts
the EAR file to a random directory name in your temporary directory on your
hard drive. The current Java thread class loader is then changed to point to this
extracted directory which in turn locks the files within. In a normal J2EE Java
client, these files automatically clean up after the application exits. This cleanup
occurs when the client container shutdown hook is called (which never happens
in the ActiveX to EJB bridge), which leaves the temporary directory there.
To avoid these problems, you can specify a directory to extract the EAR file by
setting the com.ibm.websphere.client.applicationclient.archivedir Java system
property before calling the client container launch() method. If the directory does
not exist or is empty, you extract the EAR file normaly. If the EAR file was
previously extracted, the directory is reused. This feature is particularly
important for server processes (for example, ASP), which can stop and restart,
potentially calling launchClient() several times.
If you need to update your EAR file, delete the temporary directory first. The
next time you create the client container object, it extracts the new EAR file to
the temporary directory. If you do not delete the temporary directory or change

Chapter 6. Using application clients 207

the system property value to point to a different temporary directory, the client
container reuses the currently extracted EAR file, and does not use your changed
EAR file.
Note: When specifying the com.ibm.websphere.client.applicationclient.archivedir
property, make sure that the directory you specify is unique for each EAR file
you use. For example, do not point MyEar1.ear and MyEar2.ear files to the same
directory.
If you choose not to use this system property, go regularly to your Windows
temp directory and delete the WSTMP* subdirectories. Over a relatively short
period of time, these subdirectories can waste a very significant amount of space
on the hard drive.

Developing applet client code
Before you begin

Applet clients have the following setup requirements:
v These clients are currently available on the Windows NT or Windows 2000

platforms. Check the prerequisites page for information on new platform
support.

v They require one of these browsers:
– Internet Explorer version 5.0+
– Netscape Navigator 4.7+

v You must install the browser before installing the client code.

Unlike typical applets that reside on either Web servers or WebSphere Application
Servers and can only communicate using the HTTP protocol, applet clients are
capable of communciating over the HTTP protocol and the RMI-IIOP protocol. This
additional capability gives the applet direct access to enterprise beans.

Steps for this task
1. Run the application server client installation.
2. Select the applet client option.
3. Install an applet client.
4. Install the WebSphere Application Server Plug-in for the browser.

From the WebSphere Application Server Java Plug-in Control panel, enter the
following:
-Djava.security.policy=<product_installation_dir>\properties\client.policy
-Dwas.install.root=<product_installation_dir>
-Djava.ext.dirs=<product_installation_dir>\classes;
<product_installation_dir>\java\jre\lib\ext;
<product_installation_dir>\java\jre\lib;
<product_installation_dir>\lib;
<product_installation_dir>\properties
-Dcom.ibm.CORBA.securityEnabled=false
-Dcom.ibm.CORBA.ConfigURL=file:<product_installation_dir>\properties\
sas.client.props
-classpath <product_installation_dir>\properties

Note: The above entries are automatically placed into the WebSphere
Application Server Java Plug-in control panel for the user who installed the
WebSphere Application Sever client. If this sample is being run by a user other
than the person who installed the client, the user must enter the entries.

208 IBM WebSphere Application Server Network Deployment, Version 5: Applications

v The Java Run Time Parameters field is similar to the command prompt when
using command line options. Therefore, you can enter most options available
from the command prompt (for example, -cp, classpath, and others) in this
field as well.

v Access the control panel from the Start menu. Click start > Control panel >
WebSphere Java Plug-in.

v The applet container is the Web browser and the Java plug-in combination.
You must first install the WebSphere Application Server Applet client so that
the browser recognizes the IBM Java Plug-in.

View the Samples gallery for more information about application clients. Before
you run the basicCalculator Sample, ensure the JMS Server is started.

Accessing secure resources using the TCP/IP protocol for
applet clients

You cannot use the WebSphere Application Server JSSE from an applet, and applets
cannot authenticate to WebSphere Application Sever using Secure Sockets Layer
(SSL). To access resources that are not secure, such as enterprise beans, applets are
configured with security disabled. Applets can access secure resources using
standard TCP/IP protocol. This will cause the userid and password to flow from
the client machine to the application server in the clear. This may compromise
your password should someone be monitoring the network. It is important to
understand the security implications before you modify the client configuration to
use the standard TCP/IP protocol to access secure resources on your application
server.

Steps for this task
1. Make a copy of the following file so that you can use it for an applet:

<product_install_directory>/properties/sas.client.props

It is recommended to use a copy of the sas.client.props file for your applet
because this file is used for all WebSphere Application Server client
applications.

2. Edit the copy of sas.client.props file that you made with the following
changes:
v Change com.ibm.CSI.protocol to com.ibm.CSI.protocol=csiv2.
v Change com.ibm.CSI.performTransportAssocSSLTLSSupported to

com.ibm.CSI.performTransportAssocSSLTLSSupported=false.
v Add com.ibm.CSI.claimTransportAssocSSLTLSSupported=false.

3. Click Start > Control panel > WebSphere Java Plug-in to open the WebSphere
Application Server Java control panel.
v Change -Dcom.ibm.CORBA.securityEnabled=false to

-Dcom.ibm.CORBA.securityEnabled=true.
v To use the file you created in step number 1, modify the following value:

-Dcom.ibm.CORBA.ConfigURL=file:<product_install_directory>
\properties\sas.client.props

For more information on the sas.client.props file and WebSphere Application
Server security, view Security.

Applet client security requirements
When code is loaded, it is assigned permissions based on the security policy in
effect. This policy specifies the permissions that are available for code from various

Chapter 6. Using application clients 209

locations. You can initialize this policy from an external policy file. By default, the
client uses the <product_installation_dir>/properties/client.policy file. You
must update this file with the following permissions:
v The SocketPermission grants permission to open a port and make a connection

to a host machine, which is your WebSphere Application Server. In the following
example, yourserver.yourcompany.com is the complete hostname of your
WebSphere Application Server:
permission java.util.PropertyPermission "*", "read";
permission java.net.SocketPermission "yourserver.yourcompany.com ,"connect";

Applet client tag requirements
Standard applets require the HTML <APPLET> tag to identify the applet to the
browser. The <APPLET> tag invokes the Java Virtual Machine (JVM) of the browser.
v For applets to communicate with EJBs in the WebSphere Application Server

environment, the <APPLET> tag must be replaced with the following tags:
<OBJECT>
<EMBED>

v The classid and type attributes cannot be modified, and must be entered as
described in the applet client example. The codebase attribute on the <OBJECT>
tag must be excluded. Do not confuse the codebase attribute on the <OBJECT> tag
with the codebase attribute on the <PARM> tag. Although both are called
codebase, they are separate entities.

v The following code example illustrates the applet code. In this example,
MyApplet.class is the applet code, applet.jar is the file that contains the applet
code, and EJB.jar is the file that contains the enterprise bean code:
<OBJECT classid="clsid:8AE2D840-EC04-11D4-AC77-006094334AA9"
width="600" height="500">
<PARAM NAME=CODE VALUE=MyAppletClass.class>
<PARAM NAME="archive" VALUE=’Applet.jar, EJB.jar’>
<PARAM TYPE="application/x-java-applet;version=1.3">
<PARAM NAME="scriptable" VALUE="false">
<PARAM NAME="cache-option" VALUE="Plugin">
<PARAM NAME="cache-archive" VALUE="Applet.jar, EJB.jar">
<COMMENT>
<EMBED type="application/x-websphere-client" CODE=MyAppletClass.class
ARCHIVE="Applet.jar, EJB.jar" WIDTH="600" HEIGHT="500"
scriptable="false">
<NOEMBED>
</COMMENT>
</NOEMBED>WebSphere Java Application/Applet Thin Client for
Windows is required.
</EMBED>
</OBJECT>

v The value of the type attribute on the </EMBED> tag can also be, for example:
<EMBED type="application/x-websphere-client, version=4.0" ...

Applet client code requirements
The code used by an applet to talk to an enterprise bean is the same as that used
by a standalone Java program or a servlet, except for one additional property
called java.naming.applet. This property informs the InitialContext and the
Object Request Broker (ORB) that this client is an applet rather than a standalone
Java application or servlet.
v When you initialize an instance of the InitialContext class, the first two lines in

this code snippet illustrate what both a standalone Java program and a servlet
issue to specify the computer name, domain, and port. In this example,
<yourserver.yourdomain.com> is the computer name and domain where

210 IBM WebSphere Application Server Network Deployment, Version 5: Applications

WebSphere Application Server resides, and 900 is the configured port. After the
bootstrap values (<yourserver.yourdomain.com>:900) are defined, the client to
server communications occur within the underlying infrastructure. In addition to
the first two lines, for applets, you must add the highlighted third line to your
code. That line identifies this program as an applet, for example:
prop.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");
prop.put(Context.PROVIDER_URL, "iiop://<yourserver.yourdomain.com>:900)
prop.put(Context.APPLET, this);

Developing J2EE application client code
A J2EE application client program operates similarly to a standard J2EE program in
that it runs its own Java Virtual Machine code and is invoked at its main method.
The Java Virtual Machine application client program differs from a standard Java
program because it uses the Java Naming and Directory Interface (JNDI) name
space to access resources. In a standard Java program, the resource information is
coded in the program.

Steps for this task
1. Writing the client application program

Write the J2EE application client program on any development machine. At this
stage, you do not require access to the WebSphere Application Server.
A J2EE application client program operates similarly to a standard J2EE program
in that it runs its own Java Virtual Machine code and is invoked at its main
method. The Java Virtual Machine application client program differs from a
standard Java program because it uses the Java Naming and Directory Interface
(JNDI) name space to access resources. In a standard Java program, the
resource information is coded in the program.
Storing the resource information separately from the client application program
makes the client application program portable and more flexible.
Using the javax.naming.InitialContext class, the client application program
uses the lookup operation to access the Java Naming and Directory Interface
(JNDI) name space. The InitialContext class provides the lookup method to
locate resources.
The following example illustrates how a client application program uses the
InitialContext class:
import javax.naming.*

public class myAppClient
{
public static void main(String argv[])
{
InitialContext initCtx = new InitialContext();
Object homeObject=initCtx.lookup("java:comp/env/ejb/BasicCalculator");
BasicCalculatorHome bcHome = (BasicCalculatorHome)
javax.rmi.PortableRemoteObject.narrow(homeObject, BasicCalculatorHome.class);
BasicCalculatorHome bc = bcHome.create();

...
}

}

In this example, the program looks up an enterprise bean called
BasicCalculator. The BasicCalculator EJB reference is located in the client
JNDI name space at java:comp/env/ejb/BasicCalculator . Since the actual
enterprise bean runs on the server, the application client run time returns a
reference to the BasicCalculator home interface.

Chapter 6. Using application clients 211

If the client application program lookup was for a resource reference or an
environment entry, then lookup returns an instance of the configured type as
defined by the client application deployment descriptor. For example, if the
program lookup was a JDBC datasource, the lookup would return an instance
of javax.sql.DataSource.

2. Assemble the application client using the Application Assembly Tool
The JNDI name space knows what to return on a lookup because of the
information assembled by the Application Assembly Tool (AAT).
Assemble the J2EE application client on any development machine with the
AAT installed.
When you use the Application Assembly Tool to assemble your application
client, you provide the application client run time with the required information
to initialize the execution environment for your client application program.
Refer to the Application Assembly Tool description for implementation details.
Following is a list of things to keep in mind when you configure resources
used by your client application program:
v When configuring resource references, resource environment references, and

EJB references in the Application Assembly Tool, the General tab contains a
required Name field. This field specifies where the application client run time
binds the reference to the real object in the java:comp/env portion of the
JNDI name space. The application client run time always binds these
references relative to java:comp/env. For the programming example above,
specify ejb/BasicCalculator in the Name field on the General tab of the
Application Assembly Tool, which requires the program to perform a lookup
of java:comp/env/ejb/BasicCalculator. If the Name field is set to myString,
the resulting lookup is java:comp/env/myString.

v When configuring Resource references in the Application Assembly Tool, the
Name field on the General tab is used for:
– Binding a reference of that object type into the JNDI name space.
– Retrieving client specific resource configuration information that was

configured using the Application Client Resource Configuration Tool.
v When configuring a resource reference in the Application Assembly Tool, the

value in the Name field on the General tab must match the value in the JNDI
Name field on the General tab for the resource in the Application Client
Resource Configuration Tool.

v When configuring URL resources using the Client Resource Configuration
Tool, the URL provider panel enables you to specify a protocol and a class to
handle that protocol. If you want to use the default protocols, such as HTTP,
you can leave those fields blank.

v When configuring resource references using the Application Assembly Tool,
the General tab contains a field called Authorization. You can set this field to
either Container or Application. If you set the field to Container, then the
application client run time uses authorization information configured in the
Application Client Resource Configuration tool for the resource. If the field is
set to Application, then the application client run time expects the user
application to provide authorization information for the resource. The
application client run time ignores any authorization information configured
with the Application Client Resource Configuration tool for that resource.

v When configuring resource environment references using the Application
Assembly Tool, you must specify the location of the actual object in the
server JNDI namespace using the Binding tab. A resource environment
reference maps a logical name (the Name field on the general tab) used by the
client application to the phyiscal name of an object (the JNDI Name field on

212 IBM WebSphere Application Server Network Deployment, Version 5: Applications

the Bindings tab). Not all objects bound into the server JNDI namespace are
intended for use by an application client. For example, the WebSphere
Application Server client run-time does not support the use of Java 2
Connector (J2C) objects on the client. The object needs to be remotable, and
the client-side implementations must be made available on the application
client run-time classpath.

v Resource environment references are different than resource references.
Resource environment references allow your application client to use a
logical name to look-up a resource bound into the server JNDI namespace. A
resource reference allows your application to use a logical name to look-up a
local J2EE resource. The J2EE specification does not specify a particular
implementation of a resource. The following is a table of the supported
resource types and identifies the resources to which the WebSphere
Application Server provides a client implementation.

Resource Type Client Configuration
Notes

Client implementation
provided by WebSphere
Application Server

javax.sql.DataSource Supports specification of
any Datasource
implementation class

No

java.net.URL Supports specification of
custom protocol handlers

Provided by Java Runtime
Environment files

javax.mail.Session Supports custom protocol
configuration

Yes - POP3, SMTP, IMAP

javax.jms.QueueConnectionFactory,
javax.jms.TopicConnectionFactory,
javax.jms.Queue, javax.jms.Topic

Supports configuration of
WebSphere Embedded
Messaging, IBM MQ
Series and other JMS
providers

Yes - WebSphere
Embedded Messaging

3. Assembling the Enterprise Archive (EAR)
The application is contained in an enterprise archive or .ear file. The .ear file
is composed of:
v Enterprise bean, application client, and user-defined modules or .jar files
v Web applications or .war files
v Metadata describing the applications or application .xml files

You must assemble the .ear file on the server machine.
4. Distribute the EAR file

The client machines configured to run this client must have access to the .ear
file.
If all the machines in your environment share the same image and platform,
run the Application Client Resource Configuration Tool (ACRCT) on one
machine to configure the external resources, and then distribute the configured
.ear file to the other machines.
If your environment is set up with a variety of client installations and
platforms, run the ACRCT for each unique configuration.
You can either distribute the .ear files to the correct client machines, or make
them available on a network drive.
Distributing the .ear files is the responsibility of the system and network
administrator.

5. Deploy the application client.

Chapter 6. Using application clients 213

6. Configure the application client resources
If the client application defines the local resources, run the ACRCT
(clientConfig command) on the local machine to reconfigure the .ear file. Use
the ACRCT to change the configuration. For example, the .ear file can contain
a DB2 resource, configured as C:\DB2. If, however, you installed DB2 in the
D:\Program Files\DB2 directory, use the ACRCT to create a local version of the
.ear file.

What to do next

After developing the J2EE application client code, launch the application client.

J2EE application client class loading
When you run your J2EE application client using the WebSphere Application
Server launchClient command, a hierarchy of class loaders is created to load
classes used by your application.

The following list describes the hierarchy of class loaders:
v The topmost class loader, the bootstrap class loader, contains the JAR files

that make up the Java Virtual Machine code, such as rt.jar, plus those JAR files
defined by the -Xbootclasspath parameter on the Java command. The
WebSphere Application client run time sets this value to the WAS_BOOTCLASSPATH
environment variable.

v The extensions class loader class loader is a child to the bootstrap class loader. This
class loader contains JAR files in the java/jre/lib/ext directory or those JAR
files defined by the -Djava.ext.dirs parameter on the Java command. The
WebSphere Application Client run time does not set -Djava.ext.dirs
parameters, so it uses the JAR files in the java/jre/lib/ext directory.

v The system class loader class loader contains JAR files and classes that are defined
by the -classpath parameter on the java command. The Application Client run
time sets this parameter to the WAS_CLASSPATH environment variable.

v The WebSphere class loader class loader loads the WebSphere Application Client
run time and any classes placed in the WebSphere Application Client user
directories. The directories used by this class loader are defined by the
WAS_EXT_DIRS environment variable. The WAS_BOOTCLASSPATH, WAS_CLASSPATH, and
the WAS_EXT_DIRS environment variables are set in the
installation_root/bin/setupCmdLine command shell for WebSphere Application
Server server installations, or in the installation_root/bin/setupClient
command shell for client installations.

As the J2EE application client run time initializes, additional class loaders are
created as children of the WebSphere class loader. If your client application uses
resources such as Java Database Connectivity (JDBC) API, Java Message Service
(JMS) API, or Uniform Resource Locator (URL), a different class loader is created
to load each of those resources. Finally, the application client run time sets the
WebSphere class loader to load classes within the .ear file by processing the client
JAR manfest repeatedly. The system classpath, defined by the CLASSPATH
environment variable is never used and is not part of the hierarchy of class
loaders.

To package your client application correctly, you must understand which class
loader loads your classes. When Java loads a class, the class loader used to load
that class is assigned to it. Any classes subsequently loaded by that class will use
that class loader or any of its parents, but it will not use children class loaders.

214 IBM WebSphere Application Server Network Deployment, Version 5: Applications

In some cases the WebSphere Application Client run time can detect when your
client application class is loaded by a different class loader from the one created
for it by the WebSphere Application Client run time. When this detection occurs,
you see the following message:
WSCL0205W: The incorrect class loader was used to load [0]

This message occurs when your client application class is loaded by one of the
parent class loaders in the hierarchy. This situation is typically caused by having
the same classes in the .ear file and on the hard drive. If one of the parent class
loaders locates a class, that class loader loads it before the application client run
time class loader. In some cases, your client application will still function correctly.
In most cases, however, you receive ″class not found″ exceptions.

Configuring the classpath fields

When packaging your J2EE client application, you must configure various
classpath fields. Ideally, you should package everything required by your
application into your .ear file. This is the easiest way to distribute your J2EE client
application to your clients. However, you should not package such resources as
JDBC APIs, JMS APIs, or URLs. In the case of these resources, use classpath
references to access those classes on the hard drive. You might also have other
classes installed on your client machines that you do not need to redistribute. In
this case, you also want to use classpath references to access the classes on the
hard drive, as described below.

Referencing classes within the EAR file

WebSphere J2EE applications do not use the system class path. Use the MANIFEST
Classpath entry to refer to other JARs within the .ear file. Configure these values
using the module Classpath fields in the Application Assembly Tool. For example,
if your client application needs to access the path of the enterprise bean JAR, add
the deployed enterprise bean module name to your application client Classpath
field in the Application Assembly Tool. The format of the Classpath field for each
of the different modules (Application Client, enterprise bean, Web) is the same:
v The values must refer to .jar and .class files that are contained within the .ear

file.
v The values must be relative to the root of the .ear file.
v The values cannot refer to absolute paths in the file systems.
v Multiple values must be separated by spaces, not colons or semi-colons.

Note: This is the Java method for allowing applications to function
platform-independent.

Typically, you add modules (.jar files) to the root of the .ear file. In this case, you
only need to specify the name of the module (.jar file) in the Classpath field. If
you choose to add a module with a path, you need to specify the path relative to
the root of the .ear file.

For referencing .class files, you must specify the directory relative to the root of
the .ear file. With the Application Assembly Tool you can add individual class
files to the .ear file. It is recommended that these additional class files are
packaged in a .jar file. Add this .jar file to the module Classpath fields. If you
add .class files to the root of the .ear file, add ./ to the module Classpath fields.
Consider the following example directory structure in which the file myapp.ear
contains an application client JAR file named client.jar and a mybeans.jar EJB

Chapter 6. Using application clients 215

module. Additional classes reside in class1.jar and utility/class2.zip files. A class
named xyz.class is not packaged in a JAR file but is in the root of the EAR file.
Specify ./ mybeans.jar utility/class2.zip class1.jar as the value of the Classpath
property. The search order is: myapp.ear/client.jar myapp.ear/xyz.class
myapp.ear/mybeans.jar myapp.ear/utility/class2.zip myapp.ear/class1.jar

Referencing classes that are not in the EAR file

Use the launchClient -CCclasspath parameter. This parameter is specified at run
time and takes platform-specific classpath values, which means multiple values are
separated by semi-colons or colons. There are many similarities between the client
and the server in this respect.

Resource classpaths

When you configure resources used by your client application using the
Application Client Resource Configuration Tool, you can specify classpaths that are
required by the resource. For example, if your application is using a JDBC to a DB2
database, add db2java.zip to the classpath field of the database provider. These
classpath values are platform-specific and require semi-colons or colons to separate
multiple values.

Using the launchClient API

If you use the launchClient shell and bat command, the WebSphere class loader
hierarchy is created for you. However, if you use the launchClient API, you must
perform this setup yourself. You should mimic the launchClient shell command in
defining the Java system properties.

Developing pluggable application client code
Steps for this task
1. Install the pluggable application client from the WebSphere Application Client

CD by selecting option Pluggable Application Client from the Custom client
installation planel.

2. Set the Java application pluggable client environment by using the setupClient
shell, located in:
install_root\AppClient\bin\setupClient.bat (on Windows systems)
install_root/AppClient/bin/setupClient.sh (on UNIX platforms)

3. Add your specific Java client application JAR files to the CLASSPATH and start
your Java client application from this environment, after setting the
environment variables.

4. Run the following Java command to invoke your client application:
%JAVA_HOME%/bin/java -Xbootclasspath/p:%WAS_BOOTCLASSPATH% -classpath
<list of your application jars and classes>
-Djava.ext.dirs=%WAS_EXT_DIRS% -Djava.naming.provider.url=iiop://
<your Websphere server machine name>
-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory
%SERVER_ROOT% %CLIENTSAS% <fully qualified class name to run>

$JAVA_HOME/bin/java -Xbootclasspath/p:$WAS_BOOTCLASSPATH -classpath
<list of your application jars and classes>
-Djava.ext.dirs=$WAS_EXT_DIRS -Djava.naming.provider.url=iiop://
<your Websphere server machine name>
-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory
$SERVER_ROOT $CLIENTSAS <fully qualified class name to run>

216 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Usage scenario

View the Samples gallery for more information about application clients. Before
you run the basicCalculator Sample, ensure the JMS Server is started.

Developing thin application client code
Steps for this task
1. Install the Java application thin client from the WebSphere Application Client

CD by selecting option J2EE/Thin application client for the WebSphere
Application Client.

2. Set the Java application thin client environment by using the setupClient shell,
located in:

install_root\AppClient\bin\setupClient.bat (on Windows)
install_root/AppClient/bin/setupClient.sh (on UNIX platforms)

3. Add your specific Java client application JAR files to the CLASSPATH and start
your Java client application from this environment, after setting the
environment variables.

4. Run the following Java command to invoke your client application:
%JAVA_HOME%/bin/java -Xbootclasspath/p:%WAS_BOOTCLASSPATH% -classpath
<list of your application jars and classes>
-Djava.ext.dirs=%WAS_EXT_DIRS% -Djava.naming.provider.url=iiop://
<your Websphere server machine name>
-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory
%SERVER_ROOT% %CLIENTSAS% <fully qualified class name to run>

$JAVA_HOME/bin/java -Xbootclasspath/p:$WAS_BOOTCLASSPATH -classpath
<list of your application jars and classes>
-Djava.ext.dirs=$WAS_EXT_DIRS -Djava.naming.provider.url=iiop://
<your Websphere server machine name>
-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory
$SERVER_ROOT $CLIENTSAS <fully qualified class name to run>

Usage scenario

View the Samples gallery for more information about application clients. Before
you run the basicCalculator Sample, ensure the JMS Server is started.

Assembling Application Client Modules
Before you begin

If you want to use existing J2EE 1.2 Web modules in your J2EE 1.3 application,
migrate them to J2EE 1.3 first.

Note: This task only applies to J2EE application clients.

Assemble a client module to contain application client code. (Group enterprise
beans, Web components, and resource adapter code in separate modules).

Steps for this task
1. (″Starting the Application Assembly Tool (AAT)″).
2. Select File>New>Application Client.

The navigation tree now displays various sets of properties for configuring the
new application client.

Chapter 6. Using application clients 217

3. (Optional) Use the property dialog shown in the AAT workspace to change the
default file name and location.
a. It is recommended that you change the display name so that it differs from

the file name.
b. If you like, change the temporary location of the application client from the

default location, install_root/bin.
4. Enter the main class filename and location.

a. Click Browse to locate the class file.
b. Select the archive containing the class files and click Select.
c. Select the files you need from the archive and click OK.

5. Define the assembly properties for the application client.
a. Right-click the assembly property in the navigation pane.
b. Select New in the right-click menu.
c. Enter values in the property dialog box.
d. Click OK

6. Add files for the application client.
a. Right-click Files in the navigation pane.
b. Select Add Files from the right-click menu.
c. Locate the directory where the files are located and click Select.
d. Select the files to add and click Add.
e. In the Selected files window, click OK.

7. (″Saving applications after assembly″)

What to do next

Assemble zero or more other new modules of your choice:
v (″Assembling EJB modules″)
v ″Assembling Resource Adapter modules″ (not in this document)

You can also (migrate existing modules).

Another option is to proceed directly to (assembling a new application module).
While assembling an application module, you can create any new modules that
you need.

Application client assembly settings
Use this page to specify assembly properties for J2EE application clients.

File name (Required, String)
Specifies the file name of the application client module, relative to the top level of
the Enterprise Archive (EAR) file.

If this is a standalone module, the file name is the full path name of the archive.

Alternative DD
Specifies the file name for an alternative deployment descriptor file to use instead
of the original deployment descriptor file in the module Java Archive (JAR) file.

This file is the postassembly version of the deployment descriptor file. (You can
edit the original deployment descriptor file to resolve dependencies and security
information. Directing the use of the alternative deployment descriptor allows you

218 IBM WebSphere Application Server Network Deployment, Version 5: Applications

to keep the original deployment descriptor file intact). The value of the Alternative
DD property must be the full path name of the deployment descriptor file relative
to the module root directory. By convention, the file is in the ALT-INF directory. If
this property is not specified, the deployment descriptor file is read directly from
the module JAR file.

Classpath
Specifies the full classpath containing the dependent code that is not contained in
the application client JAR file.

Specify the values relative to the root of the EAR file and separate the values with
spaces. Absolute values that reference files or directories on the hard drive are
ignored. To specify classes that are not in JAR files but are in the root of the EAR
file, use a period and forward slash (./). Consider the following example directory
structure in which the file myapp.ear contains an application client JAR file named
client.jar. Additional classes reside in class1.jar and class2.zip files. A class
named xyz.class is not packaged in a JAR file but is in the root of the EAR file
myapp.ear/client.jar myapp.ear/class1.jar myapp.ear/class2.zip
myapp.ear/xyz.class. Specify class1.jar class2.zip ./ as the value of the Classpath
property. (Name only the directory for .class files.)

Display name (Required, String)
Specifies a short name that is intended for display by GUIs.

Small icon
Specifies a JPEG or GIF file containing a small image (16x16 pixels).

The image is used as an icon to represent the application client in a GUI.

Large icon
Specifies a JPEG or GIF file containing a large image (32x32 pixels).

The image is used as an icon to represent the application client in a GUI

Description
Contains text describing the application client.

Main class (Required, String)
Specifies the full path name of the main class for this application client.

Deploying application clients
Before you begin

After developing an application client, deploy this application on client machines.
Deployment consists of pulling together the various artifacts that the application
client requires.

The Application Client Resource Configuration Tool (ACRCT) defines resources for the
application client. These configurations are stored in the application client .ear file.
The application client run time uses these configurations for resolving and creating
an instance of the resources for the application client.

Note: This task only applies to J2EE application clients. Only perform this task if
you configured your J2EE application client to use resource references.

Steps for this task

Chapter 6. Using application clients 219

1. Start the ACRCT and open an EAR file.
2. Configure new data source providers.
3. Configure mail providers and sessions.
4. Configure URL providers and sessions.
5. Configure Java messaging client resources.
6. Configure new environment entries.
7. (Optional) Remove application client resources.
8. Save the EAR file.

JDBC providers for application clients
The J2EE application client does not support Java 2 Connection Factories. In
addition, WebSphere Application Server and WebSphere Application Server clients
do not provide client database drivers to be used directly from a J2EE application
client. If your application client uses a database directly, you must provide the
database drivers on the client machine. This can involve contacting your database
vendor to acquire client database driver code and licenses. Instead of accessing the
database directly, it is recommended that your client application use an enterprise
bean. Accessing a database through an enterprise bean eliminates the need to have
database drivers on the client machine, since the database access is handled by the
enterprise bean running on the WebSphere Application Server. For a current list of
providers that are supported on the WebSphere Application Server go the
following site:

Supported hardware, software, and APIs

Data sources for application clients
A data source is used by an application to access the data from the database.

A data source is created under a JDBC provider which provides the specific JDBC
driver implementation class. The data source represents the JCA connection factory
for the Relational Resource Adapter.

Multiple data sources can be created under the same JDBC provider. Each JDBC
provider supports the interfaces defined by Sun Microsystems listed below. These
interfaces enable the application to run in a single-phase or two-phase transaction
protocol.
v ConnectionPoolDataSource - this is a data source that enables applications to

participate in all transactions, including a two-phase commit transaction. When
this kind of data source is involved in a global transaction, there is no
transaction recovery provided by the transaction manager. It is the application’s
responsibility to provide the backup recovery process if multiple resource
managers are involved.

v XADataSource - this is a data source that allows applications to participate in a
single-phase or a global (two-phase) transaction environment. When this data
source is involved in a global transaction, transaction recovery will be provided
by the transaction manager.

Before WebSphere Application Server Version 5.0, the function of data access was
provided by a single connection manager (CM) architecture. In release 5.0, this
connection manager architecture is still available to support WebSphere
Application Server Version 4.0 applications, but a new connection manager
architecture is provided based on the JCA architecture supporting the new J2EE 1.3
application style.

220 IBM WebSphere Application Server Network Deployment, Version 5: Applications

These two separate CM architectures are represented by two different types of data
sources in the WebSphere Application Server. Administrators must understand the
nature of their applications, EJB modules, and EJB beans in order to choose the
right data source.
v Data source (Version 4.0) - this type of data source runs under the WebSphere

connection manager architecture. Applications using this data source will
maintain the same behavior as if they were running in WebSphere Application
Server release 4.0.

v New data source - this type of data source utilizes the JCA standard architecture
to provide J2EE 1.3 support. It runs under the JCA connection manager and the
relational resource adapter. Applications using this type of data source may
experience some behavioral differences because of the J2EE 1.3 architecture.

Choice of data source

v J2EE 1.2 application - all EJB beans, JDBC applications, or Servlets 2.2 must use
the 4.0 data source.

v J2EE 1.3 application -
– EJB 1.1 Module - all EJB 1.x beans must use the 4.0 data source.
– EJB 2.0 Module - all EJB beans including CMP version 2.0 and 1.x must use

the new data source.
– JDBC applications and Servlet 2.3 - must use the new data source.

Configuring new data source providers (JDBC providers) for
application clients

Before you begin

During this task, you create new data source providers, also known as JDBC
providers, for your application client. In a separate administrative task, install the
Java code for the required data source provider on the client machine on which the
application client resides.

Steps for this task
1. Start the tool and open the EAR file for which you want to configure the new

data source provider. The EAR file contents display in a tree view.
2. Select the JAR file in which you want to configure the new data source

provider from the tree.
3. Expand the JAR file to view its contents.
4. Click the Data Source Providers folder. Do one of the following:

v Right-click the folder and click New Provider.
v Click Edit > New on the menu bar.

5. Configure the data source provider properties in the resulting property dialog.
6. Click OK when you finish.
7. Click File > Save on the menu bar to save your changes.

Configuring new data source providers
During this task, you will create new data source providers, also known as JDBC
drivers, for your application client. In a separate administrative task, install the
Java code for the required data source provider on the client machine where the
application client resides.

Steps for this task

Chapter 6. Using application clients 221

1. Start the ACRCT, click File > Open, and select the EAR file for which you want
to configure the new data source provider. The EAR file contents display in a
tree view.

2. Select the JAR file in which you want to configure the new data source
provider from the tree.

3. Expand the JAR file to view its contents.
4. Right click the Data Source Providers folder and select New Provider.
5. Configure the data source provider properties in the resulting property dialog.
6. Click OK.
7. Click File > Save to save your changes.

Example: Configuring data source provider and data source settings: The
purpose of this article is to help you to configure data source provider and data
source settings.
v Required fields:

– Data Source Provider Properties page: name
– Data Source Properties page: name, jndiName

v Special cases:
– The user name and password fields have no equivalant xmi tags. You must

specify these fields in the custom properties.
– The password is encrypted when you use the Application Client Resource

Configuration Tool (ACRCT). If you do not use the ACRCT, the field cannot
be encrypted.

v Example:
<resources.jdbc:JDBCProvider xmi:id="JDBCProvider_1"
name="jdbcProvider:name" description="jdbcProvider:description"
implementationClassName="jdbcProvider:ImplementationClass">
<classpath>jdbcProvider:classPath</classpath>
<factories xmi:type="resources.jdbc:WAS40DataSource"
xmi:id="WAS40DataSource_1" name="jdbcFactory:name"
jndiName="jdbcFactory:jndiName" description="jdbcFactory:
description" databaseName="jdbcFactory:databasename">
<propertySet xmi:id="J2EEResourcePropertySet_13">
<resourceProperties xmi:id="J2EEResourceProperty_13"
name="jdbcFactory:customName" value="jdbcFactory:customValue"/>
<resourceProperties xmi:id="J2EEResourceProperty_14"
name="user" value="jdbcFactory:user"/>
<resourceProperties xmi:id="J2EEResourceProperty_15"
name="password" value="{xor}NTs9PBk+PCswLSZlMT4yOg=="/>
</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_14">
<resourceProperties xmi:id="J2EEResourceProperty_16"
name="jdbcProvider:customName"
value="jdbcProvider:customeValue"/>
</propertySet>
</resources.jdbc:JDBCProvider>

Data source provider settings for application clients: Use this page to create a
data source under a JDBC provider which provides the specific JDBC driver
implementation class.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file. Right-click Data Source Providers > and click New. The following fields
appear on the General tab:

222 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Name: Specifies the display name for the data source.

For example you can set this field to Test Data Source.

Data type String

Description: Specifies a text description for the resource.

Data type String

Class Path: A list of paths or jarfile names which together form the location for
the resource provider classes.

Implementation class: Use this setting to perform database specific functions.

Data type String
Default Dependent on JDBC driver implementation class

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The accectable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

Data source properties for application clients: Use this page to create or modify
the V5.0 data sources.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file > Data Source Providers > Data source provider instance. Right-click Data
Sources and click New. The following fields appear on the General tab:

Name: Specifies the display name of this data source.

Data type String

Description: Specifies a text description of the data source.

Data type String

JNDI Name: The application client run-time uses this field to retreive
configuration information. The name must match the value of the Name field on
the General tab in the Application Client Resource Reference section of the
Application Assembly Tool.

Database Name: The name of the database to which you want to connect.

User: Use the user ID with the Password property, for authentication if the calling
application does not provide a userid and password explicitly.

Chapter 6. Using application clients 223

If you specify a value for the User ID property, you must also specify a value for
the Password property. The connection factory User ID and Password properties
are used if the calling application does not provide a userid and password
explicitly.

Password: Use the password with the User ID property, for authentication if the
calling application does not provide a userid and password explicitly.

If you specify a value for the User ID property, you must also specify a value for
the Password property.

Re-Enter Password: Confirms the password.

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The accectable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

Configuring new data sources for application clients
Before you begin

During this task, you create new data sources for your application client.

Steps for this task
1. Click the data source provider for which you want to create a data source in

the tree. Do one of the following:
v Configure a new data source provider.
v Click an existing data source provider.

2. Expand the data source provider to view its Data Sources folder.
3. Click the folder. Do one of the following:

v Right-click the folder and click New Factory.
v Click Edit > New on the menu bar.

4. Configure the data source properties in the resulting property dialog.
5. Click OK when you finish.
6. Click File > Save on the menu bar to save your changes.

Mail providers and mail sessions for the Application Client
Assembly Tool

A JavaMail service provider is a driver that allows a JavaMail API to interact with
mail servers running on a particular mail protocol. WebSphere Application Server
includes service providers, also known as protocol providers, for mail protocols
including Simple Mail Transfer Protocol (SMTP), Internet Message Access Protocol
(IMAP), and Post Office Protocol 3 (POP3).

Mail provider encapsulates a collection of protocol providers. For example,
WebSphere Application Server has a built-in mail provider that encompasses the
three protocol providers: SMTP, IMAP and POP3. These protocol providers are
installed as the default and are sufficient for most applications.

224 IBM WebSphere Application Server Network Deployment, Version 5: Applications

If you have a particular application that requires custom protocol providers, you
must first follow the steps outlined in ″JavaMail API Design Specification, V1.2,
Chapter 5 - The Mail Session″ to install your own protocol providers. See JavaMail:
Resources for learning, for a link to this documentation.

Ensure every mail session is defined under a parent mail provider. Select a mail
provider first and then create your new mail session.

Configuring mail providers and sessions for application
clients

Before you begin

Use the Application Client Resource Configuration Tool (ACRCT) to edit the
configurations of JavaMail sessions and providers for your application clients to
use.

Steps for this task
1. Open the ACRCT.
2. Open an EAR file.
3. Locate the JavaMail objects in the tree that displays.

For example, if your file contains JavaMail sessions, expand Resources >
application.jar > JavaMail Providers > java_mail_provider_instance >
JavaMail Sessions.
In this example, java_mail_provider_instance is a particular JavaMail provider.

Results

The JavaMail session instances are located in the JavaMail Sessions folder.

Mail provider settings for application clients
Use this page to implement the JavaMail API and create mail sessions.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file. Right-click Mail Providers > and click New. The following fields appear
on the General tab:

Name: The name of the JavaMail resource provider.

Description: An optional description for the resource provider.

Class Path: Specifies a list of paths or JAR file names which together form the
location for the resource provider classes.

Protocol: Specifies the name of the protocol.

Classname: Specifies the name of the class implementing the protocol. Leave this
field blank if you want to use the default implementation.

Type: This menu contains the following two values: TRANSPORT or STORE.

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

Chapter 6. Using application clients 225

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The accectable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

Mail session settings for application clients
Use this page to configure mail session properties.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file > Mail Providers > mail provider instance. Right-click Mail Sessions and
click New. The following fields appear on the General tab:

Name: Represents the administrative name of the JavaMail session object.

Description: Provides an optional description for your administrative records.

JNDI Name: The application client run-time uses this field to retreive
configuration information. The name must match the value of the Name field on
the General tab in the Application Client Resource Reference section of the
Application Assembly Tool.

Mail Transport Host: Specifies the server to connect to when sending mail.

Mail Transport Protocol: Specifies the transport protocol to use when sending
mail.

Mail Transport User: Specifies the user ID to use when the mail transport host
requires authentication.

Mail Transport Password: Specifies the password to use when the mail transport
host requires authentication.

Re-Enter Password: Confirms the password.

Mail From: Specifies the mail originator.

Mail Store Host: Mail account host (or ″domain″) name.

Mail Store User: The user ID of the mail account.

Mail Store Password: The password of the mail account.

Re-Enter Password: Confirms the password.

Mail Store Protocol: Specifies the protocol to be used when receiving mail.

Mail Debug: When true, JavaMail interaction with mail servers, along with these
mail session properties will be printed to stdout.

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The accectable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

226 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Example: Configuring JavaMail provider and JavaMail session
settings for application clients
The purpose of this article is to help you configure JavaMail provider and JavaMail
session settings.
v Required fields:

– JavaMail Provider Properties page: name, and at least one protocol provider
– JavaMail Session Properties page: name, jndiName, mail transport protocol,

mail store protocol
v Special cases:

– The password is encrypted when using the ACRCT tool. Without the tool,
you cannot encrypt this field.

v Example:
<resources.mail:MailProvider xmi:id="MailProvider_1"
name="Default Mail Provider"
description="IBM JavaMail Implementation">
<classpath>mailProvider:classpath</classpath>
<factories xmi:type="resources.mail:MailSession"
xmi:id="MailSession_1"
name="mailSession:name" jndiName="mailSession:jndiName"
description="mailSession:description"
mailTransportHost="mailSession:mailTransportHost"
mailTransportUser="mailSession:mailTransportUser"
mailTransportPassword="{xor}Mj42Mww6LCw2MDFlMT4yOg=="
mailFrom="mailSession:
mailFrom" mailStoreHost="mailSession:mailStoreHost"
mailStoreUser="mailSession:mailStoreUser"
mailStorePassword="{xor}Mj42Mww6LCw2MDFlMT4yOg=="
debug="true"
mailTransportProtocol="ProtocolProvider_1"
mailStoreProvider="ProtocolProvider_1">
<propertySet xmi:id="J2EEResourcePropertySet_1">
<resourceProperties xmi:id="J2EEResourceProperty_1"
name="mailSession:customName"
value="mailSession:customValue"/>
</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_2">
<resourceProperties xmi:id="J2EEResourceProperty_2"
name="mailProvider:customName"
value="mailProvider:customValue"/>
</propertySet>
<protocolProviders xmi:id="ProtocolProvider_1"
protocol="smtp" classname="smtp:className"/>
<protocolProviders xmi:id="ProtocolProvider_2"
protocol="pop3" classname="pop3:className"/>
<protocolProviders xmi:id="ProtocolProvider_3"
protocol="imap" classname="imap:className"/>
</resources.mail:MailProvider>

Configuring new mail sessions for application clients
Before you begin

During this task, you configure new mail sessions for your application client. The
mail sessions are associated with the preconfigured default mail provider supplied
by the product.

Steps for this task
1. Start the tool and open the EAR file for the new JavaMail session.

The EAR file contents display in a tree view.

Chapter 6. Using application clients 227

2. Select the JAR file in which you want to configure the new JavaMail session.
3. Expand the JAR file to view its contents.
4. Click JavaMail Providers > MailProvider > JavaMail Sessions. Do one of the

following:
v Right-click the JavaMail Sessions folder and select New Factory.
v Click Edit > New on the menu bar.

5. Configure the JavaMail session properties in the resulting property dialog.
6. Click OK when you finish.
7. Click File > Save on the menu bar to save your changes.

URLs for application clients
A Uniform Resource Locator (URL) is an identifier that points to an electronically
accessible resource, such as a directory file on a machine in a network, or a
document stored in a database.

URLs appear in the format scheme:scheme_information.

You can represent a scheme as http, ftp, file, or another term that identifies the
type of resource and the mechanism by which you can access the resource.

In a World Wide Web browser location or address box, a URL for a file available
using HyperText Transfer Protocol (HTTP) starts with http:. An example is
http://www.ibm.com. Files available using File Transfer Protocol (FTP) start with
ftp:. Files available locally start with file:.

The scheme_information commonly identifies the Internet machine making a
resource available, the path to that resource, and the resource name. The
scheme_information for HTTP, FTP and File generally starts with two slashes (//),
then provides the Internet address separated from the resource path name with
one slash (/). For example,

http://www-4.ibm.com/software/webservers/appserv/library.html.

For HTTP and FTP, the path name ends in a slash when the URL points to a
directory. In such cases, the server generally returns the default index for the
directory.

URL providers for the Application Client Resource
Configuration Tool

A URL provider implements the functionality for a particular URL protocol, such
as Hyper Text Transfer Protocol (HTTP). This provider, comprised of a pair of
classes, extends the java.net.URLStreamHandler and java.net.URLConnection
classes.

Configuring new URL providers for application clients
Before you begin

During this task, you create URL providers and URLs for your client application.
In a separate administrative task, you must install the Java code for the required
URL provider on the client machine on which the client application resides.

Steps for this task

228 IBM WebSphere Application Server Network Deployment, Version 5: Applications

1. Start the tool and open the EAR file for which you want to configure the new
URL provider. The EAR file contents display in a tree view.

2. Select the JAR file in which you want to configure the new URL provider from
the tree.

3. Expand the JAR file to view its contents.
4. Click the folder called URL Providers. Do one of the following:

v Right-click the folder and click New Provider.
v Click Edit -> New on the menu bar.

5. Configure the URL provider properties in the resulting property dialog.
6. Click OK when you finish.
7. Click File -> Save on the menu bar to save your changes.

Configuring URL providers and sessions using the Application
Client Resource Configuration Tool
Before you begin

Use the Application Client Resource Configuration Tool (ACRCT) to edit the
configurations of URL providers and URLs to be used by your application clients.

Steps for this task
1. Open the ACRCT.
2. Open an EAR file.
3. Locate the URL objects in the tree that displays.

For example, if your file contains URL providers and URLs, expand Resources
-> application.jar -> URL Providers -> url_provider_instance

where url_provider_instance is a particular URL provider.
4. If you expand the tree further, you will also see the URLs folders containing

the URL instances for each URL provider instance.

URL settings for application clients: Use this page to implement the functionality
for a particular URL protocol, such as Hyper Text Transfer Protocol (HTTP).

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file > URL Providers > URL provider instance. Right-click URLs and click New.
The following fields appear on the General tab.

This provider, comprised of classes, extends the java.net.URLStreamHandler and
java.net.URLConnection classes.

Name: Administrative name for the URL

Description: Optional description of the URL, for your administrative records

JNDI Name: The application client run-time uses this field to retreive
configuration information. The name must match the value of the Name field on
the General tab in the Application Client Resource Reference section of the
Application Assembly Tool.

URL: A Uniform Resource Locator (URL) name that points to an internet or
intranet resource. For example: http://www.ibm.com

Chapter 6. Using application clients 229

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The accectable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

URL provider settings for application clients: Use this page create new URLs..

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file. Right-click URL Providers > and click New. The following fields appear
on the General tab.

A URL provider implements the functionality for a particular URL protocol, such
as Hyper Text Transfer Protocol (HTTP). This provider, comprised of classes,
extends the java.net.URLStreamHandler and java.net.URLConnection classes.

Name: Administrative name for the URL

Description: Optional description of the URL, for your administrative records

Class Path: A list of paths or jarfile names which together form the location for
the resource provider classes.

Protocol: Protocol supported by this stream handler. For example, ″nntp″, ″smtp″,
″ftp″, etc.

To use the default protocol, leave this field blank.

Stream handler class: Fully qualified name of a User-defined Java class that
extends java.net.URLStreamHandler for a particular URL protocol, such as ftp.

To use the default stream handler, leave this field blank.

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The accectable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

Example: Configuring URL and URL provider settings for
application clients
The purpose of this article is to help you to configure URL and URL provider
settings.
v Required fields:

– URL Properties page: name, jndiName, url
– URL Provider Properties page: name

v Example:
<resources.url:URLProvider xmi:id="URLProvider_1" name="urlProvider:name"
description="urlProvider:description" streamHandlerClassName="urlProvider:
streamHandlerClass" protocol="urlProvider:protocol">
<classpath>urlProvider:classpath</classpath>

230 IBM WebSphere Application Server Network Deployment, Version 5: Applications

<factories xmi:type="resources.url:URL" xmi:id="URL_1" name="urlFactory:name"
jndiName="urlFactory:jndiName" description="urlFactory:description"
spec="urlFactory:url">
<propertySet xmi:id="J2EEResourcePropertySet_18">
<resourceProperties xmi:id="J2EEResourceProperty_20"
name="urlFactory:customName" value="urlFactory:customValue"/>
</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_19">
<resourceProperties xmi:id="J2EEResourceProperty_21"
name="urlProvider:customName" value="urlProvider:customValue"/>
</propertySet>
</resources.url:URLProvider>

Configuring new URLs with the Application Client Resource
Configuration Tool

Before you begin

During this task, you create URLs for your client application.

Steps for this task
1. Click the URL provider for which you want to create a URL in the tree. Do one

of the following:
v Configure a new URL provider.
v Click an existing URL provider.

2. Expand the URL provider to view the URLs folder.
3. Click the folder. Do one of the following:

v Right-click the folder and click New Factory.
v Click Edit -> New on the menu bar.

4. Configure the URL properties in the resulting property dialog.
5. Click OK when you finish.
6. Click File -> Save in the menu bar to save your changes.

WebSphere asynchronous messaging using the Java Message
Service API for the Application Client Resource Configuration
Tool

WebSphere Application Server supports asynchronous messaging as a method of
communication based on the Java Message Service (JMS) programming interface.
The JMS interface provides a common way for Java programs (clients and J2EE
applications) to create, send, receive, and read asynchronous requests, as JMS
messages.

This topic provides an overview of asynchronous messaging using JMS support
provided by the WebSphere Application Server.

The base support for asynchronous messaging using the JMS API provides the
common set of JMS interfaces and associated semantics that define how a JMS
client can access the facilities of a JMS provider. This support enables WebSphere
J2EE applications, as JMS clients, to exchange messages asynchronously with other
JMS clients, by using JMS destinations (queues or topics). An J2EE application can
use JMS queue destinations for point-to-point messaging and JMS topic
destinations for Pub and Sub messaging. A J2EE application can explicitly poll for
messages on a destination then retrieve messages for processing by business logic
beans (enterprise beans).

Chapter 6. Using application clients 231

With the base JMS/XA support, the J2EE application uses standard JMS calls to
process messages, including any responses or outbound messaging. An enterprise
bean can handle responses acting as a sender bean, or within the enterprise bean
that receives the incoming messages. Optionally, this process can use two-phase
commit within the scope of a transaction. This level of functionality for
asynchronous messaging is called bean-managed messaging, and gives an enterprise
bean complete control over the messaging infrastructure; for example, connection
and session pool management. The common container has no role in bean-managed
messaging.

WebSphere Application Server also supports automatic asynchronous messaging
using message-driven beans (a type of enterprise bean defined in the EJB 2.0
specification) and JMS listeners (part of the JMS application server facilities).
Messages are automatically retrieved from JMS destinations, optionally within a
transaction, then sent to the message-driven bean in a J2EE application, without
the application having to explicitly poll JMS destinations.

Configuring Java messaging client resources
Before you begin

In a separate administrative task, install the Java Message Service (JMS) client on
the client machine where the application client resides. The messaging product
vendor must provide an implementation of the JMS client. For more information,
see your messaging product documentation.

During this task, you create new JMS provider configurations for your application
client. The application client can use a messaging service through the Java Message
Service APIs. A JMS provider provides two kinds of J2EE factories. One is a JMS
connection factory, and the other is a JMS destination factory.

Steps for this task
1. Start the ACRCT, click File > Open, and select the EAR file for which you want

to configure the new JMS provider. The EAR file contents display in a tree
view.

2. Select the JAR file in which you want to configure the new JMS provider from
the tree.

3. Expand the JAR file to view its contents.
4. Click the JMS Providers folder and click New Provider.
5. Configure the JMS provider properties in the resulting property dialog.
6. Click OK.
7. Click File > Save.

Configuring new JMS providers with the Application Client
Resource Configuration Tool
Before you begin

During this task, you will create new JMS provider configurations for your
application client. The application client can make use of a messaging service
through the Java Message Service APIs. A JMS provider provides two kinds of
J2EE factories. One is a JMS Connection factory, and the other is a JMS destination
factory.

232 IBM WebSphere Application Server Network Deployment, Version 5: Applications

In a separate administrative task, you must install the JMS client on the client
machine where the application client resides. The messaging product vendor must
provide an implementation of the JMS client. For more information, see your
messaging product documentation.

Steps for this task
1. Start the tool and open the EAR file for which you want to configure the new

JMS provider. The EAR file contents will be displayed in a tree view.
2. From the tree, select the JAR file in which you want to configure the new JMS

provider.
3. Expand the JAR file to view its contents.
4. Click the folder called JMS Providers. Do one of the following:

v Right-click the folder and select New Provider.
v On the menu bar, click Edit -> New.

5. In the resulting property dialog, configure the JMS provider properties.
6. When finished, click OK.
7. On the menu bar, click File -> Save to save your changes.

JMS provider settings for application clients
Use this page to configure properties of the JMS provider, if you want to use a JMS
provider other than the internal WebSphere JMS provider or the MQSeries JMS
provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file. Right-click JMS Providers > click New. The following fields appear on
the General tab.

Name: The name by which the JMS provider is known for administrative
purposes.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Description: A description of the JMS provider, for administrative purposes

Data type String
Units En_US ASCII characters
Default JMS provider
Range 1 through 30 ASCII characters

Class Path: A list of paths or jarfile names which together form the location for
the resource provider classes.

Context factory class: The Java classname of the initial context factory for the JMS
provider.

For example, for an LDAP service provider the value has the form:
com.sun.jndi.ldap.LdapCtxFactory.

Data type String

Chapter 6. Using application clients 233

Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Provider URL: The JMS provider URL for external JNDI lookups.

For example, an LDAP URL for a JMS provider has the form:
ldap://hostname.company.com/contextName.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The accectable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

WebSphere queue connection factory settings for application
clients
Use this panel to view or change the configuration properties of the selected queue
connection factory for use with the internal WebSphere JMS provider that is
installed with WebSphere Application Server. These configuration properties
control how connections are created to the associated JMS queue destination.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file > JMS Providers > JMS provider instance. Right-click WAS Queue
Connection Factories and click New. The following fields appear on the General
tab.

A queue connection factory is used to create JMS connections to queue
destinations. The queue connection factory is created by the internal WebSphere
JMS provider. A queue connection factory for the internal WebSphere JMS provider
has the following properties:

Name: The name by which this queue connection factory is known for
administrative purposes. The name must be unique within the JMS connection
factories across the WebSphere administrative domain.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Description: A description of this connection factory for administrative purposes.

Data type String
Units En_US ASCII characters
Default Null

234 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Range 1 through 30 ASCII characters

JNDI Name: The application client run-time uses this field to retreive
configuration information. The name must match the value of the Name field on
the General tab in the Application Client Resource Reference section of the
Application Assembly Tool.

User: The user ID used, with the Password property, for authentication if the
calling application does not provide a userid and password explicitly.

If you specify a value for the User ID property, you must also specify a value for
the Password property.

The connection factory User ID and Password properties are used if the calling
application does not provide a userid and password explicitly; for example, if the
calling application uses the method createQueueConnection(). The JMS client flows
the userid and password to the JMS server.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Password: The password used, with the User ID property, for authentication if
the calling application does not provide a userid and password explicitly.

If you specify a value for the User ID property, you must also specify a value for
the Password property.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Re-Enter Password: Confirms the password.

Node: The WebSphere node name of the administrative node where the JMS
server runs for this connection factory. Connections created by this factory connect
to that JMS server.

Data type String

Application Server: Enter the name of the application server. This name is not the
host name of the machine, but the name of the configured application server.

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The accectable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

Chapter 6. Using application clients 235

WebSphere topic connection factory settings for application
clients
Use this panel to view or change the configuration properties of the selected topic
connection factory for use with the internal WebSphere JMS provider. These
configuration properties control how connections are created to the associated JMS
topic destination.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file > JMS Providers > JMS provider instance. Right-click WAS Topic
Connection Factories and click New. The following fields appear on the General
tab.

A topic connection factory is used to create JMS connections to topic destinations.
The topic connection factory is created by the associated JMS provider. A topic
connection factory for the internal WebSphere JMS provider has the following
properties.

Name: The name by which this queue connection factory is known for
administrative purposes. The name must be unique within the JMS connection
factories across the WebSphere administrative domain.

Data type String
Units En_US ASCII characters.
Default Null
Range 1 through 30 ASCII characters

Description: A description of this topic connection factory for administrative
purposes.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

JNDI Name: The application client run-time uses this field to retreive
configuration information. The name must match the value of the Name field on
the General tab in the Application Client Resource Reference section of the
Application Assembly Tool.

User: The user ID used, with the Password property, for authentication if the
calling application does not provide a userid and password explicitly.

If you specify a value for the User ID property, you must also specify a value for
the Password property.

The connection factory User ID and Password properties are used if the calling
application does not provide a userid and password explicitly; for example, if the
calling application uses the method createTopicConnection(). The JMS client flows
the userid and password to the JMS server.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

236 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Password: The password used, with the User ID property, for authentication if
the calling application does not provide a userid and password explicitly.

If you specify a value for the User ID property, you must also specify a value for
the Password property.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Re-Enter Password: Confirms the password.

Node: The WebSphere node name of the administrative node where the JMS
server runs for this connection factory. Connections created by this factory connect
to that JMS server.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Application Server: Enter the name of the application server. This name is not the
host name of the machine, but the name of the configured application server.

Port: Which of the two ports that connections use to connect to the JMS Server.
The QUEUED port is for full-function JMS publish/subscribe support, the DIRECT
port is for non-persistent, non-transactional, non-durable subscriptions only.

Note: Message-driven beans cannot use the direct listener port for
publish/subscribe support. Therefore, any topic connection factory configured with
Port set to Direct cannot be used with message-driven beans.

Data type Enum
Units Not applicable
Default QUEUED
Range

QUEUED
The listener port used for full-function
JMS-compliant, publish/subscribe support.

DIRECT
The listener port used for direct TCP/IP
connection (non-transactional, non-persistent,
and non-durable subscriptions only) for
publish/subscribe support.

The TCP/IP port numbers for these ports are defined
on the WebSphere Internal JMS Server.

Client Id: The JMS client identifier used for connections to the MQSeries queue
manager.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Chapter 6. Using application clients 237

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The accectable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

WebSphere queue destination settings for application clients
Use this panel to view or change the configuration properties of the selected queue
destination for use with the WebSphere JMS provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file > JMS Providers > JMS provider instance. Right-click WAS Queue
Destinations and click New. The following fields appear on the General tab.

A queue destination is used to configure the properties of a JMS queue.
Connections to the queue are created by the associated queue connection factory
for the internal WebSphere JMS provider. A queue for use with the internal
WebSphere JMS provider has the following properties.

Name: The name by which the queue is known for administrative purposes.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 45 ASCII characters

Description: A description of the queue, for administrative purposes

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

JNDI Name: The application client run-time uses this field to retreive
configuration information. The name must match the value of the Name field on
the General tab in the Application Client Resource Reference section of the
Application Assembly Tool.

Persistence: Whether all messages sent to the destination are persistent,
non-persistent, or have their persistence defined by the application

Data type Enum
Units Not applicable
Default APPLICATION_DEFINED

238 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Range
Application defined

Messages on the destination have their persistence
defined by the application that put them onto the
queue.

Queue defined
[WebSphere MQ JMS queue destination only]
Messages on the destination have their persistence
defined by the WebSphere MQ queue definition
properties.

Persistent
Messages on the destination are persistent.

Non persistent
Messages on the destination are not persistent.

Priority: Whether the message priority for this destination is defined by the
application or the Specified priority property

Data type Enum
Units Not applicable
Default APPLICATION_DEFINED
Range

Application defined
The priority of messages on this destination is
defined by the application that put them onto the
destination.

Specified
The priority of messages on this destination is
defined by the Specified priority property.If you
select this option, you must define a priority on the
Specified priority property.

Specified Priority: If the Priority property is set to Specified, type here the
message priority for this queue, in the range 0 (lowest) through 9 (highest)

If the Priority property is set to Specified, messages sent to this queue have the
priority value specified by this property.

Data type Integer
Units Message priority level
Default Null
Range 0 (lowest priority) through 9 (highest priority)

Expiry: Whether the expiry timeout for this queue is defined by the application or
the Specified expiry property, or messages on the queue never expire (have an
unlimited expiry timeout)

Data type Enum
Units Not applicable
Default APPLICATION_DEFINED

Chapter 6. Using application clients 239

Range
Application defined

The expiry timeout for messages on this queue is
defined by the application that put them onto the
queue.

Specified
The expiry timeout for messages on this queue is
defined by the Specified expiry property.If you select
this option, you must define a timeout on the Specified
expiry property.

Unlimited
Messages on this queue have no expiry timeout, so
those messages never expire.

Specified Expiry: If the Expiry timeout property is set to Specified, type here the
number of milliseconds (greater than 0) after which messages on this queue expire

Data type Integer
Units Milliseconds
Default Null
Range Greater than or equal to 0

v 0 indicates that messages never timeout

v Other values are an integer number of milliseconds

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The accectable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

WebSphere topic destination settings for application clients
Use this panel to view or change the configuration properties of the selected topic
destination for use with the internal WebSphere JMS provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file > JMS Providers > JMS provider instance. Right-click WAS Topic
Destinations and click New. The following fields appear on the General tab.

A topic destination is used to configure the properties of a JMS topic for the
associated JMS provider. Connections to the topic are created by the associated
topic connection factory. A topic for use with the internal WebSphere JMS provider
has the following properties.

Name: The name by which the topic is known for administrative purposes.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Description: A description of the topic, for administrative purposes

240 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

JNDI Name: The application client run-time uses this field to retreive
configuration information. The name must match the value of the Name field on
the General tab in the Application Client Resource Reference section of the
Application Assembly Tool.

Topic Name: The name of the topic as defined to the JMS provider.

Data type String
Units ASCII characters
Default Null
Range 1 to 30 ASCII characters

Persistence: Whether all messages sent to the destination are persistent,
non-persistent, or have their persistence defined by the application

Data type Enum
Units Not applicable
Default APPLICATION_DEFINED
Range

Application defined
Messages on the destination have their persistence
defined by the application that put them onto the
queue.

Queue defined
[WebSphere MQ JMS queue destination only]
Messages on the destination have their persistence
defined by the WebSphere MQ queue definition
properties.

Persistent
Messages on the destination are persistent.

Non persistent
Messages on the destination are not persistent.

Priority: Whether the message priority for this destination is defined by the
application or the Specified priority property

Data type Enum
Units Not applicable
Default APPLICATION_DEFINED
Range

Application defined
The priority of messages on this destination is
defined by the application that put them onto the
destination.

Specified
The priority of messages on this destination is
defined by the Specified priority property.If you
select this option, you must define a priority on the
Specified priority property.

Chapter 6. Using application clients 241

Specified Priority: If the Priority property is set to Specified, type here the
message priority for this queue, in the range 0 (lowest) through 9 (highest)

If the Priority property is set to Specified, messages sent to this queue have the
priority value specified by this property.

Data type Integer
Units Message priority level
Default Null
Range 0 (lowest priority) through 9 (highest priority)

Expiry: Whether the expiry timeout for this queue is defined by the application or
the Specified expiry property, or messages on the queue never expire (have an
unlimited expiry timeout)

Data type Enum
Units Not applicable
Default APPLICATION_DEFINED
Range

Application defined
The expiry timeout for messages on this queue is
defined by the application that put them onto the
queue.

Specified
The expiry timeout for messages on this queue is
defined by the Specified expiry property.If you select
this option, you must define a timeout on the Specified
expiry property.

Unlimited
Messages on this queue have no expiry timeout, so
those messages never expire.

Specified Expiry: If the Expiry timeout property is set to Specified, type here the
number of milliseconds (greater than 0) after which messages on this queue expire

Data type Integer
Units Milliseconds
Default Null
Range Greater than or equal to 0

v 0 indicates that messages never timeout

v Other values are an integer number of milliseconds

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The accectable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

242 IBM WebSphere Application Server Network Deployment, Version 5: Applications

MQSeries queue connection factory settings for application
clients
Use this panel to view or change the configuration properties of the selected queue
connection factory for use with the MQSeries JMS provider. These configuration
properties control how connections are created to the associated JMS queue
destination.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file > JMS Providers > JMS provider instance. Right-click MQ Queue
Connection Factories and click New. The following fields appear on the General
tab.

A queue connection factory is used to create JMS connections to queue
destinations. The queue connection factory is created by the MQSeries JMS
provider. A queue connection factory for the MQSeries JMS provider has the
following properties.

Note:

v The property values that you specify must match the values that you specified
when configuring MQSeries for JMS resources. For more information about
configuring MQSeries JMS resources, see the MQSeries Using Java book.

v In MQSeries, names can have a maximum of 48 characters, with the exception of
channels which have a maximum of 20 characters.

Name: The name by which this queue connection factory is known for
administrative purposes. The name must be unique within the JMS connection
factories across the WebSphere administrative domain.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Description: A description of this connection factory for administrative purposes.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

JNDI Name: The application client run-time uses this field to retreive
configuration information. The name must match the value of the Name field on
the General tab in the Application Client Resource Reference section of the
Application Assembly Tool.

User: The user ID used, with the Password property, for authentication if the
calling application does not provide a userid and password explicitly.

If you specify a value for the User ID property, you must also specify a value for
the Password property.

The connection factory User ID and Password properties are used if the calling
application does not provide a userid and password explicitly; for example, if the

Chapter 6. Using application clients 243

calling application uses the method createQueueConnection(). The JMS client flows
the userid and password to the JMS server.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Password: The password used, with the User ID property, for authentication if
the calling application does not provide a userid and password explicitly.

If you specify a value for the User ID property, you must also specify a value for
the Password property.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Re-Enter Password: Confirms the password.

Queue Manager: The name of the MQSeries queue manager for this connection
factory.

Connections created by this factory connect to that queue manager.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Host: The name of the host on which the WebSphere MQ queue manager runs,
for client connection only.

Data type String
Units A valid TCP/IP hostname
Default Null
Range 1 through 30 ASCII characters

Port: The TCP/IP port number used for connection to the WebSphere MQ queue
manager, for client connection only.

This port must be configured on the WebSphere MQ queue manager.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Channel: The name of the channel used for connection to the WebSphere MQ
queue manager, for client connection only.

Data type String

244 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Transport type: Whether WebSphere MQ client connection or JNDI bindings is
used for connection to the WebSphere MQ queue manager.

Data type Enum
Units Not applicable
Default BINDINGS
Range

CLIENT
WebSphere MQ client connection is used to
connect to the queue manager.

BINDINGS
JNDI bindings are used to connect to the
queue manager.

DIRECT
For WebSphere MQ Event Broker using
DIRECT mode..

Client ID: The JMS client identifier used for connections to the MQSeries queue
manager.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

CCSID: The coded character set identifier for use with the WebSphere MQ queue
manager.

This coded character set identifier (CCSID) must be one of the CCSIDs supported
by WebSphere MQ.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

For more information about supported CCSIDs, and about converting between
message data from one coded character set to another, see the WebSphere MQ
System Administration book, SC33-1873, which is available from the following
WebSphere MQ messaging platform-specific books Web pages:
v http://www-3.ibm.com/software/ts/mqseries/library/manualsa/

manuals/platspecific.html
v http://www.elink.ibmlink.ibm.com/public/applications/

publications/cgibin/pbi.cgi

or from the WebSphere MQ collection kit, SK2T-0730.

Message Retention: Select this tick box to specify that unwanted messages are to
be left on the queue. Otherwise, unwanted messages are dealt with according to
their disposition options.

Chapter 6. Using application clients 245

Data type Enum
Units Not applicable
Default Cleared
Range

Selected
Unwanted messages are left on the queue.

Cleared
Unwanted messages are dealt with according
to their disposition options.

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The accectable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

MQSeries topic connection factory settings for application
clients
Use this panel to view or change the configuration properties of the selected topic
connection factory for use with the MQSeries JMS provider. These configuration
properties control how connections are created to the associated JMS topic
destination.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file > JMS Providers > JMS provider instance. Right-click MQ Topic
Connection Factories and click New. The following fields appear on the General
tab.

A topic connection factory is used to create JMS connections to topic destinations.
The topic connection factory is created by the MQSeries JMS provider. A topic
connection factory for the MQSeries JMS provider has the following properties.

Note:

v The property values that you specify must match the values that you specified
when configuring MQSeries JMS resources. For more information about
configuring MQSeries JMS resources, see the MQSeries Using Java book.

v In MQSeries, names can have a maximum of 48 characters, with the exception of
channels which have a maximum of 20 characters.

Name: The name by which this topic connection factory is known for
administrative purposes. The name must be unique within the JMS provider.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Description: A description of this topic connection factory for administrative
purposes.

Data type String
Units En_US ASCII characters

246 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Default Null
Range 1 through 30 ASCII characters

JNDI Name: The JNDI name that is used to bind the topic connection factory into
the application server’s name space.

As a convention, use the fully qualified JNDI name; for example, in the form
jms/Name, where Name is the logical name of the resource.

This name is used to link the platform binding information. The binding associates
the resources defined by the deployment descriptor of the module to the actual
(physical) resources bound into JNDI by the platform.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 45 ASCII characters

User: The user ID used, with the Password property, for authentication if the
calling application does not provide a userid and password explicitly.

If you specify a value for the User property, you must also specify a value for the
Password property.

The connection factory User and Password properties are used if the calling
application does not provide a userid and password explicitly; for example, if the
calling application uses the method createTopicConnection(). The JMS client flows
the userid and password to the JMS server.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Password: The password used, with the User ID property, for authentication if
the calling application does not provide a userid and password explicitly.

If you specify a value for the User ID property, you must also specify a value for
the Password property.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Re-Enter Password: Confirms the password.

Queue Manager: The name of the MQSeries queue manager for this connection
factory. Connections created by this factory connect to that queue manager.

Data type String
Units En_US ASCII characters
Default Null

Chapter 6. Using application clients 247

Range 1 through 30 ASCII characters

Host: The name of the host on which the WebSphere MQ queue manager runs,
for client connection only.

Data type String
Units A valid TCP/IP hostname
Default Null
Range 1 through 30 ASCII characters

Port: The TCP/IP port number used for connection to the WebSphere MQ queue
manager, for client connection only.

This port must be configured on the WebSphere MQ queue manager.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Channel: The name of the channel used for connection to the WebSphere MQ
queue manager, for client connection only.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Transport Type: Whether MQSeries client connection or JNDI bindings is used for
connection to the MQSeries queue manager.

Data type Enum
Units Not applicable
Default BINDINGS
Range

CLIENT
MQSeries client connection is used to connect
to the MQSeries queue manager.

BINDINGS
JNDI bindings are used to connect to the
MQSeries queue manager.

Client Id: The JMS client identifier used for connections to the MQSeries queue
manager.

Data type String
Units A valid JMS client ID, as En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

CCSID: The coded character set identifier for use with the WebSphere MQ queue
manager.

248 IBM WebSphere Application Server Network Deployment, Version 5: Applications

This coded character set identifier (CCSID) must be one of the CCSIDs supported
by WebSphere MQ.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

For more information about supported CCSIDs, and about converting between
message data from one coded character set to another, see the WebSphere MQ
System Administration book, SC33-1873, which is available from the following
WebSphere MQ messaging platform-specific books Web pages:
v http://www-3.ibm.com/software/ts/mqseries/library/

manualsa/manuals/platspecific.html
v http://www.elink.ibmlink.ibm.com/public/applications/

publications/cgibin/pbi.cgi

or from the WebSphere MQ collection kit, SK2T-0730.

Broker Control Queue: The name of the broker control queue, to which all
command messages (except publications and requests to delete publications) are
sent

The name of the broker control queue. Publisher and subscriber applications, and
other brokers, send all command messages (except publications and requests to
delete publications) to this queue.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 48 ASCII characters

Broker Queue Manager: The name of the MQSeries queue manager that provides
the Pub/Sub message broker.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 48 ASCII characters

Broker Pub Queue: The name of the broker’s input queue that receives all
publication messages for the default stream

The name of the broker’s input queue (stream queue) that receives all publication
messages for the default stream. Applications can also send requests to delete
publications on the default stream to this queue.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 48 ASCII characters

Broker Sub Queue: The name of the broker queue from which non-durable
subscription messages are retrieved

Chapter 6. Using application clients 249

The name of the broker’s queue from which non-durable subscription messages are
retrieved. The subscriber specifies the name of the queue when it registers a
subscription.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 48 ASCII characters

Broker CCSubQ: The name of the broker’s queue from which non-durable
subscription messages are retrieved for a ConnectionConsumer. This property
applies only for use of the Web container.

The name of the broker queue from which non-durable subscription messages are
retrieved for a ConnectionConsumer. This property applies only for use of the Web
container.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 48 ASCII characters

Broker Version: Whether the message broker is provided by the MQSeries MA0C
Supportpac or newer versions of WebSphere message broker products

Data type Enum
Units Not applicable
Default Advanced
Range

Advanced
The message broker is provided by newer
versions of WebSphere message broker
products (MQ Integrator and MQ Publish and
Subscribe)

Basic The message broker is provided by the
MQSeries MA0C SupportPac (MQSeries -
Publish/Subscribe)

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The accectable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

MQSeries queue destination settings for application clients
Use this panel to view or change the configuration properties of the selected queue
destination for use with the MQSeries JMS provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file > JMS Providers > JMS provider instance. Right-click MQ Queue
Destinations and click New. The following fields appear on the General tab.

250 IBM WebSphere Application Server Network Deployment, Version 5: Applications

A queue destination is used to configure the properties of a JMS queue.
Connections to the queue are created by the associated queue connection factory
for the MQSeries JMS provider. A queue for use with the MQSeries JMS provider
has the following properties.

Note:

v The property values that you specify must match the values that you specified
when configuring MQSeries JMS resources. For more information about
configuring MQSeries JMS resources, see the MQSeries Using Java book.

v In MQSeries, names can have a maximum of 48 characters, with the exception of
channels which have a maximum of 20 characters.

Name: The name by which the queue is known for administrative purposes.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 45 ASCII characters

Description: A description of the queue, for administrative purposes

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

JNDI Name: The application client run-time uses this field to retreive
configuration information. The name must match the value of the Name field on
the General tab in the Application Client Resource Reference section of the
Application Assembly Tool.

Persistence: Whether all messages sent to the destination are persistent,
non-persistent, or have their persistence defined by the application

Data type Enum
Units Not applicable
Default APPLICATION_DEFINED
Range

Application defined
Messages on the destination have their persistence
defined by the application that put them onto the
queue.

Queue defined
[WebSphere MQ JMS queue destination only]
Messages on the destination have their persistence
defined by the WebSphere MQ queue definition
properties.

Persistent
Messages on the destination are persistent.

Non persistent
Messages on the destination are not persistent.

Priority: Whether the message priority for this destination is defined by the
application or the Specified priority property

Chapter 6. Using application clients 251

Data type Enum
Units Not applicable
Default APPLICATION_DEFINED
Range

Application defined
The priority of messages on this destination is
defined by the application that put them onto the
destination.

Specified
The priority of messages on this destination is
defined by the Specified priority property.If you
select this option, you must define a priority on the
Specified priority property.

Specified Priority: If the Priority property is set to Specified, type here the
message priority for this queue, in the range 0 (lowest) through 9 (highest)

If the Priority property is set to Specified, messages sent to this queue have the
priority value specified by this property.

Data type Integer
Units Message priority level
Default Null
Range 0 (lowest priority) through 9 (highest priority)

Expiry: Whether the expiry timeout for this queue is defined by the application or
the Specified expiry property, or messages on the queue never expire (have an
unlimited expiry timeout)

Data type Enum
Units Not applicable
Default APPLICATION_DEFINED
Range

Application defined
The expiry timeout for messages on this queue is
defined by the application that put them onto the
queue.

Specified
The expiry timeout for messages on this queue is
defined by the Specified expiry property.If you select
this option, you must define a timeout on the Specified
expiry property.

Unlimited
Messages on this queue have no expiry timeout, so
those messages never expire.

Specified Expiry: If the Expiry timeout property is set to Specified, type here the
number of milliseconds (greater than 0) after which messages on this queue expire

Data type Integer
Units Milliseconds
Default Null
Range Greater than or equal to 0

v 0 indicates that messages never timeout

v Other values are an integer number of milliseconds

252 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Base Queue Name: The name of the queue to which messages are sent, on the
queue manager specified by the Base queue manager name property

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Base Queue Manager Name: The name of the MQSeries queue manager to which
messages are sent

This queue manager provides the queue specified by the Base queue name
property.

Data type String
Units En_US ASCII characters
Default Null
Range A valid MQSeries Queue Manager name, as 1 through 48 ASCII characters

CCSID: The coded character set identifier for use with the WebSphere MQ queue
manager.

This coded character set identifier (CCSID) must be one of the CCSIDs supported
by WebSphere MQ.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

For more information about supported CCSIDs, and about converting between
message data from one coded character set to another, see the WebSphere MQ
System Administration book, SC33-1873, which is available from the following
WebSphere MQ messaging platform-specific books Web pages:
v http://www-3.ibm.com/software/ts/mqseries/

library/manualsa/manuals/platspecific.html
v http://www.elink.ibmlink.ibm.com/public/applications/

publications/cgibin/pbi.cgi

or from the WebSphere MQ collection kit, SK2T-0730.

Integer encoding: If native encoding is not enabled, select whether integer
encoding is normal or reversed.

Data type Enum
Units Not applicable
Default NORMAL

Chapter 6. Using application clients 253

Range
NORMAL

Normal integer encoding is used.

REVERSED
Reversed integer encoding is used.

For more information about encoding properties, see
the WebSphere MQ Using Java document.

Decimal encoding: If native encoding is not enabled, select whether decimal
encoding is normal or reversed.

Data type Enum
Units Not applicable
Default NORMAL
Range

NORMAL
Normal decimal encoding is used.

REVERSED
Reversed decimal encoding is used.

For more information about encoding properties, see
the WebSphere MQ Using Java document.

Floating point encoding: If native encoding is not enabled, select the type of
floating point encoding.

Data type Enum
Units Not applicable
Default IEEENORMAL
Range

IEEENORMAL
IEEE normal floating point encoding is used.

IEEEREVERSED
IEEE reversed floating point encoding is used.

S390 S390 floating point encoding is used.

For more information about encoding properties, see
the WebSphere MQ Using Java document.

Native encoding: Select this checkbox to indicate that the queue destination
should use native encoding (appropriate encoding values for the Java platform)..

Data type Enum
Units Not applicable
Default Cleared

254 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Range
Cleared

Native encoding is not used, so specify the
properties below for integer, decimal, and
floating point encoding.

Selected
Native encoding is used (to provide
appropriate encoding values for the Java
platform).

For more information about encoding properties, see
the MQSeries Using Java document.

Target client: Whether the receiving application is JMS-compliant or is a
traditional WebSphere MQ application

Data type Enum
Units Not applicable
Default MQSeries
Range

MQSeries
The target is a non-JMS, traditional
WebSphere MQ application.

JMS The target is a JMS-compliant application.

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The accectable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

MQSeries topic destination settings for application clients
Use this panel to view or change the configuration properties of the selected topic
destination for use with the MQSeries JMS provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file > JMS Providers > JMS provider instance. Right-click MQ Topic
Destinations and click New. The following fields appear on the General tab.

A topic destination is used to configure the properties of a JMS topic for the
associated JMS provider. Connections to the topic are created by the associated
topic connection factory. A topic for use with the MQSeries JMS provider has the
following properties.

Note:

v The property values that you specify must match the values that you specified
when configuring MQSeries JMS resources. For more information about
configuring MQSeries JMS resources, see the MQSeries Using Java book.

v In MQSeries, names can have a maximum of 48 characters, with the exception of
channels which have a maximum of 20 characters.

Name: The name by which the topic is known for administrative purposes.

Chapter 6. Using application clients 255

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Description: A description of the topic, for administrative purposes

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

JNDI Name: The application client run-time uses this field to retreive
configuration information. The name must match the value of the Name field on
the General tab in the Application Client Resource Reference section of the
Application Assembly Tool.

Persistence: Whether all messages sent to the destination are persistent,
non-persistent, or have their persistence defined by the application

Data type Enum
Units Not applicable
Default APPLICATION_DEFINED
Range

Application defined
Messages on the destination have their persistence
defined by the application that put them onto the
queue.

Queue defined
[WebSphere MQ JMS queue destination only]
Messages on the destination have their persistence
defined by the WebSphere MQ queue definition
properties.

Persistent
Messages on the destination are persistent.

Non persistent
Messages on the destination are not persistent.

Priority: Whether the message priority for this destination is defined by the
application or the Specified priority property

Data type Enum
Units Not applicable
Default APPLICATION_DEFINED
Range

Application defined
The priority of messages on this destination is
defined by the application that put them onto the
destination.

Specified
The priority of messages on this destination is
defined by the Specified priority property.If you
select this option, you must define a priority on the
Specified priority property.

256 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Specified Priority: If the Priority property is set to Specified, type here the
message priority for this queue, in the range 0 (lowest) through 9 (highest)

If the Priority property is set to Specified, messages sent to this queue have the
priority value specified by this property.

Data type Integer
Units Message priority level
Default Null
Range 0 (lowest priority) through 9 (highest priority)

Expiry: Whether the expiry timeout for this queue is defined by the application or
the Specified expiry property, or messages on the queue never expire (have an
unlimited expiry timeout)

Data type Enum
Units Not applicable
Default APPLICATION_DEFINED
Range

Application defined
The expiry timeout for messages on this queue is
defined by the application that put them onto the
queue.

Specified
The expiry timeout for messages on this queue is
defined by the Specified expiry property.If you select
this option, you must define a timeout on the Specified
expiry property.

Unlimited
Messages on this queue have no expiry timeout, so
those messages never expire.

Specified Expiry: If the Expiry timeout property is set to Specified, type here the
number of milliseconds (greater than 0) after which messages on this queue expire

Data type Integer
Units Milliseconds
Default Null
Range Greater than or equal to 0

v 0 indicates that messages never timeout

v Other values are an integer number of milliseconds

Base Topic Name: The name of the topic to which messages are sent

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

CCSID: The coded character set identifier for use with the WebSphere MQ queue
manager.

This coded character set identifier (CCSID) must be one of the CCSIDs supported
by WebSphere MQ.

Chapter 6. Using application clients 257

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

For more information about supported CCSIDs, and about converting between
message data from one coded character set to another, see the WebSphere MQ
System Administration book, SC33-1873, which is available from the following
WebSphere MQ messaging platform-specific books Web pages:
v http://www-3.ibm.com/software/ts/mqseries/library/manualsa/

manuals/platspecific.html
v http://www.elink.ibmlink.ibm.com/public/applications/

publications/cgibin/pbi.cgi

or from the WebSphere MQ collection kit, SK2T-0730.

Integer encoding: If native encoding is not enabled, select whether integer
encoding is normal or reversed.

Data type Enum
Units Not applicable
Default NORMAL
Range

NORMAL
Normal integer encoding is used.

REVERSED
Reversed integer encoding is used.

For more information about encoding properties, see
the WebSphere MQ Using Java document.

Decimal encoding: If native encoding is not enabled, select whether decimal
encoding is normal or reversed.

Data type Enum
Units Not applicable
Default NORMAL
Range

NORMAL
Normal decimal encoding is used.

REVERSED
Reversed decimal encoding is used.

For more information about encoding properties, see
the WebSphere MQ Using Java document.

Floating point encoding: If native encoding is not enabled, select the type of
floating point encoding.

Data type Enum
Units Not applicable
Default IEEENORMAL

258 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Range
IEEENORMAL

IEEE normal floating point encoding is used.

IEEEREVERSED
IEEE reversed floating point encoding is used.

S390 S390 floating point encoding is used.

For more information about encoding properties, see
the WebSphere MQ Using Java document.

Native encoding: Select this checkbox to indicate that the queue destination
should use native encoding (appropriate encoding values for the Java platform)..

Data type Enum
Units Not applicable
Default Cleared
Range

Cleared
Native encoding is not used, so specify the
properties above for integer, decimal, and
floating point encoding.

Selected
Native encoding is used (to provide
appropriate encoding values for the Java
platform).

For more information about encoding properties, see
the MQSeries Using Java document.

BrokerDurSubQueue: The name of the broker queue from which durable
subscription messages are retrieved

The name of the broker queue from which durable subscription messages are
retrieved. The subscriber specifies the name of the queue when it registers a
subscription.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 48 ASCII characters

BrokerCCDurSubQueue: The name of the broker queue from which durable
subscription messages are retrieved for a ConnectionConsumer. This property
applies only for use of the Web container.

The name of the broker queue from which durable subscription messages are
retrieved for a ConnectionConsumer. This property applies only for use of the Web
container.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 48 ASCII characters

Chapter 6. Using application clients 259

Target Client: Whether the receiving application is JMS-compliant or is a
traditional MQSeries application

Data type Enum
Units Not applicable
Default MQSeries
Range

MQSeries
The target is a non-JMS, traditional MQSeries
application.

JMS The target is a JMS-compliant application.

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The accectable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

Generic JMS connection factory settings for application clients
Use this panel to view or change the configuration properties of the selected JMS
connection factory for use with the associated JMS provider. These configuration
properties control how connections are created to the associated JMS destination.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file > JMS Providers > new JMS Provider instance. Right click JMS Connection
Factories > click New. The following fields appear on the General tab.

A JMS connection factory is used to create connections to JMS destinations. The
JMS connection factory is created by the associated JMS provider. A JMS
connection factory for a generic JMS provider (other than the internal WebSphere
JMS provider or the MQSeries JMS provider) has the following properties:

Name: The name by which this JMS connection factory is known for
administrative purposes. The name must be unique within the associated JMS
provider.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Description: A description of this connection factory for administrative purposes.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

JNDI Name: The application client run-time uses this field to retreive
configuration information. The name must match the value of the Name field on
the General tab in the Application Client Resource Reference section of the
Application Assembly Tool.

260 IBM WebSphere Application Server Network Deployment, Version 5: Applications

User: The user ID used, with the Password property, for authentication if the
calling application does not provide a userid and password explicitly.

If you specify a value for the User ID property, you must also specify a value for
the Password property.

The connection factory User ID and Password properties are used if the calling
application does not provide a userid and password explicitly; for example, if the
calling application uses the method createQueueConnection(). The JMS client flows
the userid and password to the JMS server.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Password: The password used, with the User ID property, for authentication if
the calling application does not provide a userid and password explicitly.

If you specify a value for the User ID property, you must also specify a value for
the Password property.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 30 ASCII characters

Re-Enter Password: Confirms the password entered in the Password field.

External JNDI Name: The JNDI name that is used to bind the queue into the
application server’s name space.

As a convention, use the fully qualified JNDI name; for example, in the form
jms/Name, where Name is the logical name of the resource.

This name is used to link the platform binding information. The binding associates
the resources defined by the deployment descriptor of the module to the actual
(physical) resources bound into JNDI by the platform.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 45 ASCII characters

Connection Type: Whether this JMS destination is a queue (for point-to-point) or
topic (for pub/sub).

Select one of the following options:

Queue
A JMS queue destination for point-to-point messaging.

Topic A JMS topic destination for pub/sub messaging.

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

Chapter 6. Using application clients 261

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The accectable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

Generic JMS destination settings for application clients
Use this panel to view or change the configuration properties of the selected JMS
destination for use with the associated JMS provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file > JMS Providers > new JMS Provider instance. Right click JMS
Destinations > click New. The following fields appear on the General tab.

A JMS destination is used to configure the properties of a JMS destination for the
associated generic JMS provider. Connections to the JMS destination are created by
the associated JMS connection factory. A JMS destination for use with a generic
JMS provider (not the internal WebSphere JMS provider or MQSeries JMS
provider) has the following properties.

Name: The name by which the queue is known for administrative purposes.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 45 ASCII characters

Description: A description of the queue, for administrative purposes

JNDI Name: The JNDI name of the actual (physical) name of the JMS destination
bound into JNDI.

External JNDI Name: The JNDI name that is used to bind the queue into the
application server’s name space.

As a convention, use the fully qualified JNDI name; for example, in the form
jms/Name, where Name is the logical name of the resource.

This name is used to link the platform binding information. The binding associates
the resources defined by the deployment descriptor of the module to the actual
(physical) resources bound into JNDI by the platform.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 45 ASCII characters

Destination Type: Whether this JMS destination is a queue (for point-to-point) or
topic (for pub/sub).

Select one of the following options:

Queue
A JMS queue destination for point-to-point messaging.

Topic A JMS topic destination for pub/sub messaging.

262 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The accectable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

Example: Configuring JMS Provider, JMS Connection Factory
and JMS Destination settings for application clients
The purpose of this article is to help you to configure JMS Provider, JMS
Connection Factory and JMS Destination settings.
v Required fields:

– JMS Provider Properties page: name, and at least one protocol provider
– JMS Connection Factory Properties page: name, jndiName, destination type
– JMS Destination Properties page: name, jndiName, destination type

v Special cases:
– The destination type must be QUEUE, or TOPIC.

v Example:
<resources.jms:JMSProvider xmi:id="JMSProvider_3" name="genericJMSProvider:name"
description="genericJMSProvider:description"
externalInitialContextFactory="genericJMSProvider:contextFactoryClass"
externalProviderURL="genericJMSProvider:providerUrl">
<classpath>genericJMSProvider:classpath</classpath>
<factories xmi:type="resources.jms:GenericJMSDestination"
xmi:id="GenericJMSDestination_1" name="jmsDestination:name"
jndiName="jmsDestination:jndiName" description="jmsDestination:description"
externalJNDIName="jmsDestination:externalJndiName" type="QUEUE">
<propertySet xmi:id="J2EEResourcePropertySet_15">
<resourceProperties xmi:id="J2EEResourceProperty_17"
name="jmsDestination:custonName" value="jmsDestination:customValue"/>
</propertySet>
</factories>
<factories xmi:type="resources.jms:GenericJMSConnectionFactory"
xmi:id="GenericJMSConnectionFactory_1" name="jmsCF:name"
jndiName="jmsCF:jndiName" description="jmsCF:description"
userID="jmsCF:user" password="{xor}NTIsHBllMT4yOg=="
externalJNDIName="jmsCF:externalJndiName" type="QUEUE">
<propertySet xmi:id="J2EEResourcePropertySet_16">
<resourceProperties xmi:id="J2EEResourceProperty_18" name="jmsCF:customName"
value="jmsCF:customValue"/>
</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_17">
<resourceProperties xmi:id="J2EEResourceProperty_19"
name="genericJMSProvider:customName" value="genericJMSProvider:customValue"/>
</propertySet>
</resources.jms:JMSProvider>

Configuring new connection factories for application clients
Before you begin

During this task, you create a new JMS connection factory configuration for your
application client.

Steps for this task
1. Click the JMS provider for which you want to create a connection factory in the

tree. Do one of the following:

Chapter 6. Using application clients 263

v Configure a new JMS provider.
v Click an existing JMS provider.

2. Expand the JMS provider to view its JMS Connection Factories folder.
3. Click the folder. Do one of the following:

v Right-click the folder and click New Factory.
v Click Edit > New on the menu bar.

4. Configure the JMS connection factory properties in the resulting property
dialog.

5. Click OK when you finish.
6. Click File > Save on the menu bar to save your changes.

Configuring new Java Message Service destinations for
application clients

Before you begin

During this task, you create new Java Message Service (JMS) destination
configuration for your application client.

Steps for this task
1. Click the JMS provider in the tree for which you want to create a destination.

Do one of the following:
v Configure a new JMS provider.
v Click an existing JMS provider.

2. Expand the JMS provider to view its JMS Destinations folder.
3. Click the folder. Do one of the following:

v Right-click the folder and click New Factory.
v Click Edit > New on the menu bar.

4. Configure the JMS destination properties in the resulting property dialog.
5. Click OK when you finish.
6. Click File > Save on the menu bar to save your changes.

Example: Configuring MQ Queue and Topic connection
factories and destination factories for application clients

The purpose of this article is to help you configure MQ Queue connection factory,
MQ Topic connection factory, MQ Queue destination factory, and MQ Topic
destination factory settings.
v Required fields:

– MQ Queue Connection Factory Properties page: name, jndiName, transport
type

– MQ Topic Connection Factory Properties page: name, jndiName, broker
version

– MQ Queue Factory Properties page: name, jndiName, persistence, priority,
expiry, baseQueueName, targetClient

– MQ Topic Factory Properties page: name, jndiName, persistence, priority,
expiry, baseQueueName, targetClient

v Special cases:
– The transport type must be CLIENT, or BINDINGS.
– The Broker Version must be MA0C, or MQSI.

264 IBM WebSphere Application Server Network Deployment, Version 5: Applications

– The port must be a numerical value between -2417483648 and 2417483647.
– The CCSID must be a numerical value between -2417483648 and 2417483647.
– The persistence value must be APPLICATION_DEFINED, QUEUE_DEFINED,

PERSISTENT or, NONPERSISTENT.
– The priority must be APPLICATION_DEFINED, QUEUE_DEFINED, or SPECIFIED.
– The expiry must be APPLICATION_DEFINED, UNLIMITED, or SPECIFIED.
– The integer encoding must be Normal, or Reversed.
– The decimal encoding must be Normal, or Reversed.
– The floating encoding must be IEEENormal, IEEEReversed, S390.
– The target client must be JMS or MQ.
– On the MQ Queue Connection Factory Properites page, only set the

queueManager, host, and portWhen (required) fields if the transport type is
CLIENT.

– On the MQ Topic Connection Factory Properites page, only set the
queueManager, host, and port (required) fields if the transport type is CLIENT.

– On the the MQ Topic Factory Properties, and the MQ Queue Factory
Properties pages, only set the Integer encoding, decimal encoding, and
floating point encoding (required) fields if you do not set nativeEncoding.

– On the MQ Topic Factory Properties, and the MQ Queue Factory Properties
pages, the specified priority entry field must be an integer between 0 and 9 if
priority is set to SPECIFIED .

– On the the MQ Topic Factory Properties, and the MQ Queue Factory
Properties pages, the specified expiry entry field must be a value greater than
0 if expiry is set to SPECIFIED.

v Example:
<resources.jms:JMSProvider xmi:id="JMSProvider_1" name="MQ JMS Provider"
description="mqJMSProvider:description"
externalInitialContextFactory="mqJMSProvider:contextFactoryClass"
externalProviderURL="mqJMSProvider:providerUrl">
<classpath>mqJMSProvider:classpath</classpath>
<factories xmi:type="resources.jms.mqseries:MQQueueConnectionFactory"
xmi:id="MQQueueConnectionFactory_1" name="mqQCF:name"
jndiName="mqQCF:jndiName" description="mqQCF:description"
userID="mqQCF:user" password="{xor}Mi4OHBllMT4yOg=="
queueManager="mqQCF:queueManager" host="mqQCF:host" port="1"
channel="mqQCF:channel" transportType="CLIENT"
clientID="mqQCF:clientId" CCSID="2">
<propertySet xmi:id="J2EEResourcePropertySet_3">
<resourceProperties xmi:id="J2EEResourceProperty_3" name="mqQCF:customName"
value="mqQCF:customValue"/>
</propertySet>
</factories>
<factories xmi:type="resources.jms.mqseries:MQTopicConnectionFactory"
xmi:id="MQTopicConnectionFactory_1" name="mqTCF:name"
jndiName="mqTCF:jndiName" description="mqTCF:description"
userID="mqTCF:user" password="{xor}Mi4LHBllNTE7NhE+Mjo=" host="mqTCF:host"
port="1" transportType="CLIENT" channel="mqTCF:channel"
queueManager="mqTCF:queueManager" brokerControlQueue="mqTCF:brokerControlQueue"
brokerQueueManager="mqTCF:brokerQueueManager"
brokerPubQueue="mqTCF:brokerPubQueue"
brokerSubQueue="mqTCF:brokerSubQueue" brokerCCSubQ="mqTCF:brokerCCSubQ"
brokerVersion="MA0C" clientID="mqTCF:clientId" CCSID="2">
<propertySet xmi:id="J2EEResourcePropertySet_4">
<resourceProperties xmi:id="J2EEResourceProperty_4" name="mqTCF:customName"
value="mqTCF:customValue"/>
</propertySet>
</factories>
<factories xmi:type="resources.jms.mqseries:MQQueue" xmi:id="MQQueue_1"

Chapter 6. Using application clients 265

name="mqQ:name" jndiName="mqQ:jndiName" description="mqQ:description"
persistence="APPLICATION_DEFINED" priority="SPECIFIED" specifiedPriority="1"
expiry="SPECIFIED" specifiedExpiry="1" baseQueueName="mqQ:baseQueueName"
baseQueueManagerName="mqQ:baseQueueManagerName" CCSID="1"
integerEncoding="Normal" decimalEncoding="Normal"
floatingPointEncoding="IEEENormal" targetClient="JMS">
<propertySet xmi:id="J2EEResourcePropertySet_5">
<resourceProperties xmi:id="J2EEResourceProperty_5"
name="mqQ:customName" value="mqQ:customValue"/>
</propertySet>
</factories>
<factories xmi:type="resources.jms.mqseries:MQTopic"
xmi:id="MQTopic_1" name="mqT:name" jndiName="mqT:jndiName"
description="mqT:description" persistence="APPLICATION_DEFINED"
priority="SPECIFIED" specifiedPriority="1" expiry="SPECIFIED"
specifiedExpiry="2" baseTopicName="mqT:baseTopicName" CCSID="3"
integerEncoding="Normal" decimalEncoding="Normal"
floatingPointEncoding="IEEENormal" targetClient="JMS"
brokerDurSubQueue="mqT:brokerDurSubQueue"
brokerCCDurSubQueue="mqT:brokerCCDurSubQueue">
<propertySet xmi:id="J2EEResourcePropertySet_6">
<resourceProperties xmi:id="J2EEResourceProperty_6" name="mqT:customName"
value="mqT:customValue"/>
</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_7">
<resourceProperties xmi:id="J2EEResourceProperty_7"
name="mqJMSProvider:customName" value="mqJMSProvider:customValue"/>
</propertySet>
</resources.jms:JMSProvider>

Example: Configuring WAS Queue and Topic connection
factories and destination factories for application clients

The purpose of this article is to help you to configure WAS Queue connection
factory, WAS Topic connection factory, WAS Queue destination factory, and WAS
Topic destination factory settings.
v Required fields:

– JMS Provider Properties page: name
– WAS Queue Connection Factory Properties page: name, jndiName, node
– WAS Topic Connection Factory Properties page: name, jndiName, node, port
– WAS Queue Factory Properties page: name, jndiName, node, persistence,

priority, expiry
– WAS Topic Factory Properties page: name, jndiName, topic name, persistence,

priority, expiry
v Special cases:

– The port must be QUEUED or DIRECT.
– The CCSID must be a numerical value between -2417483648 and 2417483647.
– The persistence value must be APPLICATION_DEFINED, PERSISTENT, or

NONPERSISTENT.
– The priority must be APPLICATION_DEFINED, or SPECIFIED.
– The expiry must be APPLICATION_DEFINED, UNLIMITED, or SPECIFIED.
– On the WAS Topic Factory Properties, and the WAS Queue Factory Properties

pages, the specified priority entry field must be an integer between 0 and 9 if
priority is set to SPECIFIED .

– On the WAS Topic Factory Properties, and the WAS Queue Factory Properties
pages, the specified expiry entry field must be an value greater than 0 if
expiry is set to SPECIFIED.

266 IBM WebSphere Application Server Network Deployment, Version 5: Applications

v Example:
<resources.jms:JMSProvider xmi:id="JMSProvider_2" name="WebSphere JMS Provider"
description="wasJMSProvider:description"
externalInitialContextFactory="wasJMSProvider:contextfactoryclass"
externalProviderURL="wasJMSProvider:providerUrl">
<classpath>wasJMSProvider:classpath</classpath>
<factories xmi:type="resources.jms.internalmessaging:WASQueueConnectionFactory"
xmi:id="WASQueueConnectionFactory_1" name="wasQCF:name"
jndiName="wasQCF:jndiName" description="wasQCF:description"
userID="wasQCF:user" password="{xor}KD4sDhwZZSosOi0=" node="wasQCF:Node">
<propertySet xmi:id="J2EEResourcePropertySet_8">
<resourceProperties xmi:id="J2EEResourceProperty_8" name="wasQCF:customName"
value="wasQCF:customValue"/>
</propertySet>
</factories>
<factories xmi:type="resources.jms.internalmessaging:WASTopicConnectionFactory"
xmi:id="WASTopicConnectionFactory_1" name="wasTCF:name"
jndiName="wasTCF:jndiName" description="wasTCF:description"
userID="wasTCF:user" password="{xor}KD4sCxwZZTE+Mjo="
node="wasTCF:node" port="QUEUED" clientID="wasTCF:clientId">
<propertySet xmi:id="J2EEResourcePropertySet_9">
<resourceProperties xmi:id="J2EEResourceProperty_9" name="wasTCF:customName"
value="wasTCF:customValue"/>
</propertySet>
</factories>
<factories xmi:type="resources.jms.internalmessaging:WASQueue"
xmi:id="WASQueue_1" name="wasQ:name" jndiName="wasQ:jndiName"
description="wasQ:description" node="wasQ:node"
persistence="APPLICATION_DEFINED" priority="SPECIFIED"
specifiedPriority="1" expiry="SPECIFIED" specifiedExpiry="1">
<propertySet xmi:id="J2EEResourcePropertySet_10">
<resourceProperties xmi:id="J2EEResourceProperty_10" name="wasQ:customName"
value="wasQ:customValue"/>
</propertySet>
</factories>
<factories xmi:type="resources.jms.internalmessaging:WASTopic"
xmi:id="WASTopic_1" name="wasT:name" jndiName="wasT:jndiName"
description="wasT:description" topic="wasT:topicName"
persistence="APPLICATION_DEFINED" priority="SPECIFIED"
specifiedPriority="1" expiry="SPECIFIED" specifiedExpiry="1">
<propertySet xmi:id="J2EEResourcePropertySet_11">
<resourceProperties xmi:id="J2EEResourceProperty_11" name="wasT:customName"
value="wasT:customValue"/>
</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_12">
<resourceProperties xmi:id="J2EEResourceProperty_12"
name="wasJMSProvider:customName" value="wasJMSProvider:customValue"/>
</propertySet>
</resources.jms:JMSProvider>

Configuring new resource environment providers for
application clients

Before you begin

During this task, you create new resource environment provider configurations for
your application client.

To configure a new resource environment provider, perform the following steps:

Steps for this task
1. Start the tool and open the EAR file for which you want to configure the new

JMS provider. The EAR file contents display in a tree view.

Chapter 6. Using application clients 267

2. Select from the tree the JAR file in which you want to configure the new JMS
provider.

3. Expand the JAR file to view its contents.
4. Click the folder called Resource Environment Providers. Do one of the

following:
v Right-click the folder and click New Provider.
v Click Edit > New on the menu bar.

5. Configure the JMS provider properties in the resulting property dialog.
6. Click OK when finished.
7. Click File > Save on the menu bar to save your changes.

Resource environment provider settings for application clients
Use this page to specify resource environment entry properties.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file. Right-click Resource Environment Providers > and click New. The
following fields appear on the General tab:

Name: Specifies the administrative name for the resource environment provider.

Description: Specifies a description of the resource environment provider for your
administrative records.

Class Path: Specifies the path to the JAR file that contains the implementation
classes for the resource environment provider.

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The accectable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

Configuring new resource environment entries for application
clients

Before you begin

During this task, you create new resource environment entries for your client
application.

Steps for this task
1. Click the resource environment provider in the tree, for which you want to

create a resource environment entry. Do one of the following:
v Configure a new resource environment provider.
v Click an existing resource environment provider.

2. Expand the resource environment provider to view the resource environment
entries folder.

3. Click the folder. Do one of the following:
v Right-click the folder and select New Factory.
v Click Edit > New on the menu bar.

268 IBM WebSphere Application Server Network Deployment, Version 5: Applications

4. Configure the data source properties in the resulting property dialog.
5. Click OK when you finish.
6. Click File > Save on the menu bar to save your changes.

Resource environment entry settings for application clients
Use this page to specify resource environment entry properties.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file > Resource Environment Providers > resource environment instance.
Right-click Resource environment entry > and click New. The following fields
appear on the General tab:

Name: Specifies the administrative name for the resource environment entry.

Description: Specifies a description of the URL for your administrative records.

JNDI Name: Specifies the Java Naming and Directory Interface (JNDI) name for
the resource, including any naming subcontexts.

Use this name to link to the binding information of the platform. The binding
associates the resources defined in the deployment descriptor of the module to the
actual (physical) resources bound into JNDI by the platform.

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The accectable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

Managing application clients
Before you begin

Perform the following tasks after deploying application clients.

Note: This task only applies to J2EE application clients.

Steps for this task
1. Update data source and data source provider configurations.
2. Update URLs and URL provider configurations.
3. Update mail session configurations.
4. Update JMS provider, connection factories, and destination configurations.
5. Update MQ JMS provider, MQ connection factories, and MQ destination

configurations.
6. Update Resource Environment Entry and Resource Environment Provider

configurations.
7. (Optional) Remove application client resources.

Chapter 6. Using application clients 269

Updating data source and data source provider configurations
with the Application Client Resource Configuration Tool

Before you begin

During this task, you update the configuration of an existing data source or data
source provider.

Steps for this task
1. Start the tool and open the EAR file containing the data source or data source

provider. The EAR file contents display in a tree view.
2. Select from the tree the JAR file containing the data source or data source

provider to update.
3. Expand the JAR file to view its contents until you locate the particular data

source or data source provider to update. Do one of the following:
v Right-click the object and click Properties.
v Click Edit > Properties on the menu bar.

4. Update the properties in the resulting property dialog. For detailed field help,
go to:
v Data source provider properties
v Data source properties

5. Click OK when finished.
6. Click File > Save on the menu bar to save your changes.

Updating URLs and URL provider configurations for
application clients

Steps for this task
1. Start the tool and open the EAR file containing the URL or URL provider. The

EAR file contents display in a tree view.
2. Select from the tree the JAR file containing the URL or URL provider to update.
3. Expand the JAR file to view its contents.
4. Keep expanding the JAR file contents until you locate the particular URL or

URL provider to update. Do one of the following:
a. Right-click the object and click Properties

b. Click Edit > Properties on the menu bar.
5. Update the properties in the resulting property dialog.
6. Click OK when finished.
7. Click File > Save to save your changes on the menu bar.

Updating mail session configurations for application clients
Before you begin

During this task, you update the configuration of an existing JavaMail session.

Note:

You cannot update the name of the default JavaMail provider. Also, you cannot
delete the default JavaMail provider from the tree.

Steps for this task

270 IBM WebSphere Application Server Network Deployment, Version 5: Applications

1. Start the tool and open the EAR file containing the JavaMail session.
The EAR file contents display in a tree view.

2. Select from the tree the JAR file containing the JavaMail session to update.
3. Expand the JAR file to view its contents.
4. Keep expanding the JAR file contents until you locate the particular JavaMail

session to update. Do one of the following:
a. Right-click the object and click Properties

b. Click Edit > Properties from the menu bar.
5. Update the properties in the resulting property dialog.
6. Click OK when finished.
7. Select File > Save from the menu bar to save your changes.

Updating Java Message Service provider, connection
factories, and destination configurations for application
clients

Before you begin

During this task, you update the configuration of an existing Java Message Service
(JMS) provider, connection factory, or destination.

Steps for this task
1. Start the tool and open the EAR file containing the JMS provider, connection

factory, or destination. The EAR file contents display in a tree view.
2. Select from the tree the JAR file containing the JMS provider, connection

factory, or destination to update.
3. Expand the JAR file to view its contents until you locate the particular JMS

provider, connection factory, or destination to update. When you find it, do one
of the following:
v Right-click the object and click Properties.
v Click Edit > Properties on the menu bar.

4. Update the properties in the resulting property dialog. For detailed field help,
see:
v JMS provider properties
v WAS Queue connection factory properties
v WAS Topic connection factory properties
v WAS Queue destination properties
v WAS Topic destination properties

5. Click OK.
6. Click File > Save to save your changes.

Updating MQ Java Message Service provider, MQ connection
factories, and MQ destination configurations for application
clients

Before you begin

During this task, you will update the configuration of an existing MQ JMS
provider, MQ connection factory, or MQ destination.

Chapter 6. Using application clients 271

Steps for this task
1. Start the tool and open the EAR file containing the MQ JMS provider, MQ

connection factory, or MQ destination. The EAR file contents will be displayed
in a tree view.

2. Select from the tree the JAR file containing the MQ JMS provider, MQ
connection factory, or MQ destination to update.

3. Expand the JAR file to view its contents until you locate the particular MQ JMS
provider, MQ connection factory, or MQ destination that you want to update.
Do one of the following:
v Right-click the object and click Properties.
v Click Edit > Properties on the menu bar.

4. Update the properties in the resulting property dialog. For detailed field help,
see:
v JMS provider properties
v MQ Queue connection factory properties
v MQ Topic connection factory properties
v MQ Queue destination properties
v MQ Topic destination properties

5. Click OK.
6. Click File > Save to save your changes.

Updating Resource Environment Entry and Resource
Environment Provider configurations for application clients

Before you begin

During this task, you update the configuration of an existing Resource
Environment Entry or Resource Environment Provider.

Steps for this task
1. Start the tool and open the EAR file containing the Resource Environment

Entry or Resource Environment Provider. The EAR file contents display in a
tree view.

2. Select from the tree the JAR file containing the Resource Environment Entry or
Resource Environment provider to update.

3. Expand the JAR file to view its contents until you locate the Resource
Environment Entry or Resource Environment Provider to update. Do one of the
following:
v Right-click the object and click Properties.
v Click Edit > Properties on the menu bar.

4. Update the properties in the resulting property dialog. For detailed field help,
see:
v Resource environment provider properties
v Resource environment entry properties

5. Click OK when you finish.
6. Click File > Save on the menu bar to save your changes.

Example: Configuring Resource Environment settings
The purpose of this article is to help you configure Resource Environment settings.
v Required fields:

272 IBM WebSphere Application Server Network Deployment, Version 5: Applications

– Resource Environment Provider page: name
– Resource Environment Entry page: name, jndiName

v Example:
<resources.env:ResourceEnvironmentProvider xmi:id="ResourceEnvironmentProvider_1"
name="resourceEnvProvider:name" description="resourceEnvProvider:description">
<classpath>resourceEnvProvider:classpath</classpath>
<factories xmi:type="resources.env:ResourceEnvEntry"
xmi:id="ResourceEnvEntry_1" name="resourceEnvEntry:name"
jndiName="resourceEnvEntry:jndiName" description="resourceEnvEntry:description">
<propertySet xmi:id="J2EEResourcePropertySet_20">
<resourceProperties xmi:id="J2EEResourceProperty_22"
name="resourceEnvEntry:customName" value="resourceEnvEntry:customValue"/>
</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_21">
<resourceProperties xmi:id="J2EEResourceProperty_23"
name="resourceEnvProvider:customName" value="resourceEnvProvider:customValue"/>
</propertySet>
</resources.env:ResourceEnvironmentProvider>

Example: Configuring Resource Environment custom settings for
application clients
The purpose of this article is to help you configure Resource Environment custom
settings.
v The custom page applies to every resource type. You can specify as many

custom names and values as you need.
v Example:

<propertySet xmi:id="J2EEResourcePropertySet_20">
<resourceProperties xmi:id="J2EEResourceProperty_22"
name="resourceEnvEntry:customName" value="resourceEnvEntry:customValue"/>
</propertySet>

Removing application client resources
Before you begin

Note: This task only applies to J2EE application clients.

Steps for this task
1. Start the Application Client Resource Configuration Tool (ACRCT) and open

the EAR file from which you want to remove an object. The EAR file contents
display in a tree view.
If you already have an EAR file open, and have made some changes, click File
> Save to save your work before preceding to delete an object.

2. Locate the object that you want to remove in the tree.
3. Right-click the object, then click Delete.
4. Click File > Save.

What to do next

The option to delete an item does not offer a confirmation dialog. As a safeguard,
consider saving your work right before you begin this task. If you change your
mind after removing an item, you can close the EAR file without saving your
changes, canceling your deletion. Remember to close the EAR file immediately
after the deletion, or you also lose any unsaved work that you performed since the
deletion.

Chapter 6. Using application clients 273

Running application clients
Before you begin

The J2EE specification requires support for a client container that runs standalone
Java applications (known as J2EE application clients) and provides J2EE services to
the applications. J2EE services include naming, security, and resource connections.

You are ready to run your application client using this tool after you have:
1. Written the application client program.
2. Assembled and installed an application module (.ear file) in the application

server run time.

Note: This task only applies to J2EE application clients.

Steps for this task
1. Open a command window and invoke the following script to launch J2EE

application clients using the launchClient shell:
install_root/bin/launchClient.bat

The launchClient batch command starts the application client run time, which:
v Initializes the client run time.
v Loads the class that you designated as the main class with the Application

Assembly Tool (AAT).
v Runs the main method of the application client program.

When your program terminates, the application client run time cleans up the
environment and the Java Virtual Machine code ends.

2. Pass parameters to the launchClient command. You can pass parameters to
your application client program as well. The launchClient command allows you
to do both.
The launchClient command requires that the first parameter is either:
v An EAR file specifying the application client to launch.
v A request for launchClient usage information.

All other parameters intended for the launchClient command must begin with
the -CC prefix.

Parameters that are not EAR files, or usage requests, or that do not begin with
the -CC prefix, are ignored by the application client run time, and are passed
directly to the application client program.

The launchClient command retrieves parameters from three places:
a. The command line
b. A properties file
c. System properties

The parameters are resolved in the order listed above, with command line
values having the highest priority and system properties the lowest. This
prioritization allows you to set and override default values.

3. Specify the server name.
By default, the launchClient command uses the environment variable
COMPUTERNAME for the BootstrapHost property value. This setting is effective for

274 IBM WebSphere Application Server Network Deployment, Version 5: Applications

testing your application client when it is installed on the same computer as the
server. However, in other cases override this value with the name of your
server.
You can override the BootstrapHost value by invoking launchClient with the
following parameters:
launchClient myapp.ear-CCBootstrapHost=abc.midwest.mycompany.com

You can also override the default by specifying the value in a properties file
and passing the file name to the launchClient shell.

Note: Security is controlled by the server. You do not need to configure security
on the client because the client assumes that security is enabled. If security is
not enabled, the server ignores the security request, and the application client
works as expected.

Usage scenario

You can store launchClient values in a properties file, a good method for
distributing default values. You can then override one or more values on the
command line. The format of the file is one launchClient -CC parameter per line
without the -CC prefix. For example:
verbose=true
classpath=c:\mydir\util.jar;c:\mydir\harness.jar;c:\production\G19\global.jar
BootstrapHost=abc.westcoast.mycompany.com tracefile=c:\WebSphere\mylog.txt

launchClient tool
Syntax

This section describes the command line syntax for the Java TM2 Platform,
Enterprise Edition (J2EE) launchClient tool.

The command line invocation syntax for the launchClient tool follows:
launchClient [<userapp.ear> |-help|-?] [-CCname=value] [app args]

where userapp.ear is the path and the name of the EAR file that contains the
application client, name is the name of the parameter, value is the value to which
the parameter id set, and app args are arguments that pass to the application client.

To print the usage information, the first parameter must be a path and a name to
an EAR file, -help, or -?. All the other parameters are optional and can appear in
any order. The application client run time ignores any optional parameters that do
not begin with a -CC prefix, and passes them to the application client.

Parameters

Supported arguments include:

-CCsoapConnectorPort
The soap connector port. If you do not specify this argument, the
WebSphere Application Server default value is used.

-CCverbose
This option displays additional information messages. The default is false.

-CCclasspath
A class path value. When you launch an application, the system class path

Chapter 6. Using application clients 275

is not used. If you want to access classes that are not in the EAR file or
part of the resource class paths, specify the appropriate class path here.
Multiple paths can be concatenated.

-CCjar
The name of the client JAR file that resides within the EAR file for the
application you wish to launch. Use this argument when you have
multiple client JAR files in the EAR file.

-CCaltDD
The name of an alternate deployment descriptor. This parameter is used
with the -CCjar parameter to specify the deployment descriptor to use. Use
this argument when a client jar file is configured with more than one
deployment descriptor. Set the value to null to use the client JAR file
standard deployment descriptor

-CCBootstrapHost
The name of the host server you want to connect to initially. The format is:
<your.server.ofchoice.com<

-CCBootstrapPort
The server port number. If you do not specify this argument, the
WebSphere Application Server default value is used.

-CCproviderURL
Provides bootstrap server information that the initial context factory can
use to obtain an initial context. WebSphere Application Server initial
context factory can use either a CORBA object URL or an IIOP URL.
CORBA object URLs are more flexible than IIOP URLs and are the
recommended URL format to use. This value can contain more than one
bootstrap server address. This feature can be used when attempting to
obtain an initial context from a server cluster. You can specify bootstrap
server addresses, for all servers in the cluster, in the URL. The operation
will succeed if at least one of the servers is running, eliminating a single
point of failure. The address list does not process in a particular order. For
naming operations, this value overrides the -CCBootstrapHost and
-CCBootstrapPort parameters. An example of a CORBA object URL
specifying multiple systems follows:
-CCproviderURL=corbaloc:iiop:myserver.mycompany.com:9810,:mybackupserver.
mycompany.com:2809

This value is mapped to the java.naming.provider.url system property.

-CCinitonly
Use this option to initialize application client run time for ActiveX
application clients without launching the client application. The default is
false.

-CCtrace
Use this option to obtain debug trace information. You might need this
information when reporting a problem to IBM Service. The default is
false.

-CCtracefile
The name of the file to write trace information. The default is to output to
the console.

-CCpropfile
Name of a properties file that contains launchClient properties. Specify the
properties without the -CC prefix in the file. For example: verbose=true.

276 IBM WebSphere Application Server Network Deployment, Version 5: Applications

-CCsecurityManager
Enables and runs the WebSphere Application Server with a security
manager. The default is disable.

-CCsecurityMgrClass
The fully qualified name of a class that implements a security manager.
Only use this argument if the -CCsecurityManager parameter is set to
enable. The default is java.lang.SecurityManager.

-CCsecurityMgrPolicy
The name of a security manager policy file. Only use this argument if the
-CCsecurityManager parameter is set to enable. When you enable this
parameter, the java.security.policy system property is set. The default is
install_root>/ properties/client.policy.

-CCD Use this option to have the WebSphere Application Server set the specified
system property during initialization. Do not use the = character after the
-CCD. For example: -CCDcom.ibm.test.property=testvalue. You can specify
multiple -CCD parameters. The general format of this parameter is
-CCD<property key>=<property value>.

-CCexitVM
Use this option to have the WebSphere Application Server call
System.exit() after the client application completes. The default is false.

-CCdumpJavaNameSpace
Prints out the Java portion of the WebSphere Application Server Java
Naming and Directory Interface (JNDI) name space. The true value uses
the short format which prints out the binding name and the type of the
object bound at that location. The long value uses the long format which
prints out the binding name, bound object type, local object, type, and
string representation of the local object, for example: IORs, and string
values. The default value is false.

Examples

The following examples demonstrate correct syntax.

On the Windows operating system:
launchClient c:\earfiles\myapp.ear -CCBootstrapHost=myWASServer
-CCverbose=true app_parm1 app_parm2

On the UNIX operating system:
./launchClient.sh /usr/earfiles/myapp.ear
-CCBootstrapHost=myWASServer-CCverbose=true app_parm1 app_parm2

Application client troubleshooting tips
This section provides some debugging tips for resolving common J2EE application
client problems. To use this troubleshooting guide, review the trace entries for one
of the J2EE application client exceptions, and then locate the exception in the
guide. Some of the errors in the guide are samples; the actual error you receive can
be slightly different than what is shown here. Also, it can be useful to rerun the
launchClient command specifying the -CCverbose=true option. This option
provides additional information when the J2EE application client run time is
initializing

Error: java.lang.NoClassDefFoundError

Chapter 6. Using application clients 277

Explanation This exception is thrown when Java code cannot load the specified class.
Possible causes v Invalid or non-existent class

v Classpath problem

v Manifest problem
Recommended
response

Check to determine if the specified class exists in a JAR file within your
EAR file. If it does, make sure the path for the class is correct. For
example, if you get the exception:

java.lang.NoClassDefFoundError:
WebSphereSamples.Hello
EJB.HelloHome

ensure the class HelloHome exists in one of the JAR files in your EAR
file. If it exists, ensure the path for the class is
WebSphereSamples.HelloEJB.

If both the class and path are correct, then it is a classpath issue. Most
likely, you do not have the failing class JAR file specified in the client
JAR file manifest. To verify this situation, perform the following steps:

1. Open your EAR file with the Application Assembly Tool and click on
the Application Client.

2. Add the names of the other JAR files in the EAR file to the Classpath
field.

This exception is generally caused by a missing EJB module name from
the Classpath field.

If you have multiple JAR files to enter in the Classpath field, be sure to
separate the JAR names with spaces.

If you still have the problem, you have a situation where a class is
loaded from the file system instead of the EAR file. This is a very
difficult situation to debug because the offending class is not the one
specified in the exception. Instead, another class is loaded from the file
system before the one specified in the exception. To correct this problem,
review the classpaths specified with the -CCclasspath option and the
classpaths configured with the Application Client Resource
Configuration Tool. Look for classes that also exist in the EAR file. You
must resolve the situation where one of the classes is found on the file
system instead of in the .ear file. Remove entries from the classpaths, or
include the .jar files and classes in the .ear file instead of referencing
them from the file system.

If you use the -CCclasspath parameter or resource classpaths in the
Application Client Resource Configuration Tool, and you have
configured multiple JAR files or classes, verify they are separated with
the correct character for your operating system. Unlike the classpath
field in the Application Assembly Tool, these classpath fields use
platform-specific separator characters, usually a colon (on UNIX
platforms) or a semi-colon (on Windows systems).

Note: The system classpath is not used by the Application Client run
time if you use the launchClient batch or shell files. In this case, the
system classpath would not cause this problem. However, if you load
the launchClient class directly, you do have to search through the system
classpath as well.

278 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Error: com.ibm.websphere.naming.CannotInstantiateObjectException: Exception
occurred while attempting to get an instance of the object for the specified
reference object. [Root exception is javax.naming.NameNotFoundException:
xxxxxxxxxx]

Explanation This exception occurs when you perform a
lookup on an object that is not installed on
the host server. Your program can look up
the name in the local client Java Naming and
Directory Interface (JNDI) name space, but
received a NameNotFoundException
exception because it is not located on the
host server. One typical example is looking
up an enterprise bean that is not installed on
the host server that you access. This
exception might also occur if the JNDI name
you configured in your Application Client
module does not match the actual JNDI
name of the resource on the host server.

Possible causes v Incorrect host server invoked

v Resource is not defined

v Resource is not installed

v Application server is not started

v Invalid JNDI configuration
Recommended response If you are accessing the wrong host server,

run the launchClient command again with
the -CCBootstrapHost parameter specifying
the correct host server name. If you are
accessing the correct host server, use the
WebSphere dumpnamespace command line
tool to see a listing of the host server JNDI
name space. If you do not see the failing
object name, the resource is either not
installed on the host server or the
appropriate application server is not started.
If you determine the resource is already
installed and started, your JNDI name in
your client application does not match the
global JNDI name on the host server. Use the
Application Assembly Tool to compare the
JNDI bindings value of the failing object
name in the client application to the JNDI
bindings value of the object in the host
server application. They must match.

Error: javax.naming.ServiceUnavailableException: A communication failure
occurred while attempting to obtain an initial context using the provider url:
″iiop://[invalidhostname]″. Make sure that the host and port information is
correct and that the server identified by the provider URL is a running name
server. If no port number is specified, the default port number 2809 is used.
Other possible causes include the network environment or workstation network
configuration. Root exception is org.omg.CORBA.INTERNAL: JORB0050E: In
Profile.getIPAddress(), InetAddress.getByName[invalidhostname] threw an
UnknownHostException. minor code: 4942F5B6 completed: Maybe

Explanation This exception occurs when you specify an
invalid host server name.

Chapter 6. Using application clients 279

Possible causes v Incorrect host server invoked

v Invalid host server name
Recommended response Run the launchClient command again and

specify the correct name of your host server
with the -CCBootstrapHost parameter.

Error: javax.naming.CommunicationException: Could not obtain an initial
context due to a communication failure. Since no provider URL was specified,
either the bootrap host and port of an existing ORB was used, or a new ORB
instance was created and initialized with the default bootstrap host of
″localhost″ and the default bootstrap port of 2809. Make sure the ORB bootstrap
host and port resolve to a running name server. Root exception is
org.omg.CORBA.COMM_FAILURE: WRITE_ERROR_SEND_1 minor code:
49421050 completed: No

Explanation This exception occurs when you run the
launchClient command to a host server that
does not have the Application Server started.
You also receive this exception when you
specify an invalid host server name. This
situation might occur if you do not specify a
host server name when you run
launchClient. The default behavior is for
launchClient to run to localhost, because
WebSphere Application Server does not
know the name of your host server. This
default behavior only works when you are
running the client on the same computer
with WebSphere Application Server is
installed.

Possible causes v Incorrect host server invoked

v Invalid host server name

v Invalid reference to localhost

v Application server is not started

v Invalid bootstrap port
Recommended response If you are not running to the correct host

server, run the launchClient command again
and specify the name of your host server
with the -CCBootstrapHost parameter.
Otherwise, start the Application Server on
the host server and run the launchClient
command again.

Error: javax.naming.NameNotFoundException: Name comp/env/ejb not found in
context ″java:″

Explanation This exception is thrown when the Java code
cannot locate the specified name in the local
JNDI name space.

280 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Possible causes v No binding information for the specified
name

v Binding information for the specified name
is incorrect

v Wrong class loader was used to load one
of the program classes

v A resource reference does not include any
client configuration information

Recommended response Open the EAR file with the Application
Assembly Tool and check the bindings for
the failing name. Ensure this information is
correct. If you are using Resource References,
open the EAR file with the Application
Client Resource Configuration Tool, and
make sure the Resource Reference has client
configuration information and the name of
the Resource Reference exactly matches the
JNDI name of the client configuration. If it is
correct, you might have a class loader issue.

Error: java.lang.ClassCastException: Unable to load class:
org.omg.stub.WebSphereSamples.HelloEJB._HelloHome_Stub at
com.ibm.rmi.javax.rmi.PortableRemoteObject.narrow
(portableRemoteObject.java:269)

Explanation This exception occurs when the application
program attempts to narrow to the EJB home
class and the class loaders cannot find the
EJB client side bindings.

Possible causes v The files, *_Stub.class and _Tie.class, are
not in the EJB .jar file

v Class loader could not find the classes
Recommended response Look at the EJB .jar file located in the .ear

file and verify the class contains the EJB
client side bindings. These are class files
whose names end in _Stub and _Tie. If these
files are not present, then use the Application
Assembly Tool to generate the binding
classes. For more information, see article
Generating deployment code for modules. If
the binding classes are in the EJB .jar file,
then you might have a class loader issue.

Error: WSCL0210E: The Enterprise archive file [EAR file name] could not be
found. com.ibm.websphere.client.applicationclient.ClientContainerException:
com.ibm.etools.archive.exception.OpenFailureException

Explanation This error occurs when the application client
run time cannot read the Enterprise Archive
(EAR) file.

Possible causes The most likely cause of this error is that the
system cannot find the EAR file cannot be
found in the path specified on the
launchClient command.

Chapter 6. Using application clients 281

Recommended response Verify that the path and file name specified
on the launchclient command are correct. If
you are running on the Windows NT
operating system and the path and file name
are correct, use a short version of the path
and file name (8 character file name and 3
character extension).

The launchClient command appears to hang and does not return to the
command line when the client application has finished.

Explanation When running your application client using
the launchClient command the WebSphere
Application Server run time might need to
display the security login dialog. To display
this dialog the WebSphere Application Server
run time creates an Abstract Window Toolkit
(AWT) thread. When your application
returns from its main method to the
application client run time, the application
client run time attempts to return to the
operating system and end the Java Virtual
Machine code. However, since there is an
AWT thread, the Java Virtual Machine code
will not end until System.exit is called.

Possible causes The Java Virtual Machine code does not end
because there is an AWT thread. Java code
requires that System.exit() be called to end
AWT threads.

Recommended response v Modify your application to call
System.exit(0) as the last statement.

v Use the -CCexitVM=true parameter when
you call the launchClient command.

282 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Chapter 7. Developing and managing Web services

Developing and managing Apache SOAP 2.3-based Web services explains how to
work with Web services that are written directly to Apache SOAP, Version 2.3 API.
This activity is described in the following tasks:
1. Developing a Simple Object Access Protocol client.
2. Assembling Web services.
3. Deploying Web services applications.
4. Administering deployed Web services (SOAP-XML administrative tool).
5. Securing SOAP services.

An additional Web services component, IBM WebSphere Web Services for J2EE
Technology Preview, is available for use with Version 5.0. It is a separate download
available at http://www7b.boulder.ibm.com/wsdd/downloads/techpreviews.html,
and includes additional documentation.

The Web services technology preview supports emerging Java Web services
standards like JAX-RPC and Web services for J2EE. It is recommended that new
development efforts use the Web Services Technology Preview and follow these
standards.

You can find more information about working with Web services by visiting the
Internet sites listed in the InfoCenter article Web services: Resources for Learning.

Web services
Web services are self-contained, modular applications that you can be describe,
publish, locate, and invoke over a network.

Web services could be weather reports or stock quotes. Transaction Web services,
supporting business-to-business (B2B) or business-to-client (B2C) operations, could
be airline reservations or purchase orders.

Web services reflect a new, service-oriented approach to programming, based on
the idea of building applications by discovering and implementing
network-available services, or by invoking available applications to accomplish
some task. This service-oriented approach is independent of specific programming
languages or operating systems. Instead, Web services rely on pre-existing
transport technologies, such as HTTP, and standard data encoding techniques, such
as XML, for invoking the implementation.

The key components of a Web service are:
v Simple Object Access Protocol (SOAP)
v Web Services Description Language (WSDL)
v Universal Discovery, Description and Integration Protocol (UDDI)

For more information about Web services, see Web services: Resources for learning.

Developing a Simple Object Access Protocol client
Before you begin

© Copyright IBM Corp. 2002 283

Develop a client that has a Web Services Description Language file or service
implementation.

Creating clients to access the Simple Object Access Protocol (SOAP) services
published in WebSphere Application Server is a straightforward process. The
Apache SOAP implementation, integrated with WebSphere Application Server,
contains a client API to assist in SOAP client application development.

The SOAP API documentation is available in WebSphere Application Server Java
documentation.

To create a client that interacts with a SOAP Remote Procedure Call (RPC) service:

Steps for this task
1. Obtain the interface description of the SOAP service.

This description provides the signatures of the methods that you want to
invoke. You can either look at a Web Services Description Language (WSDL)
file for the service, or view the service itself to see its implementation.

2. Create the call object.
The SOAP call object is the main interface to the underlying SOAP RPC code.

3. Set the target Uniform Resource Identifier (URI) in the call object using the
setTargetObjectURI() method.
Pass the Uniform Resource Name (URN), a type of URI, that the service uses
for its identifier, in the deployment descriptor.

4. Set the method name that you want to invoke in the call object using the
setMethodName() method.
This method must be one of the methods exposed by the service located at the
URN from the previous step.

5. Create the necessary parameter objects for the RPC call and then set them in
the call object using the setParams() method.
Ensure you have the same number and same type of parameters as those
required by the service.

6. Execute the call object invoke() method and retrieve the response object.
Remember the RPC call is synchronous, so it can take some time to complete.

7. Check the response for a fault using the getFault() method, and then extract
any results or returned parameters.
While most of the providers only return a result, the DB2 stored procedure
provider can also return output parameters.

What to do next

Interacting with a document-oriented SOAP service requires you to use lower-level
Apache SOAP API calls. You must first construct an envelope object containing the
contents of the message, including the body and any headers, that you wish to
send. Then create a message object where you invoke the send() method to
perform the actual transmission.

To create a secure SOAP service, do the following:
1. Create a simple object.
2. Define an envelope editor.
3. Specify a pluggable envelope editor.

284 IBM WebSphere Application Server Network Deployment, Version 5: Applications

4. Define the transports.

Your code can look like the following example:
EnvelopeEditor editor=
new PluggableEnvelopeEditor(new InputSource(conf), home);
SOAPTransport transport =
new FilterTransport(editor, new SOAPHTTPConnection());
call.setSOAPTransport(transport);

The characteristics of the secure session are specified by the conf configuration file.

Deploying Web services applications
To deploy a programming artifact as a Simple Object Access Protocol
(SOAP)-accessible Web service in WebSphere Application Server:

Steps for this task
1. Install the service-enabled EAR file.

Use the SOAP-enabled EAR file that you created and install it in WebSphere
Application Server. See the Infocenter article Simple Object Access
Protocol-enabling the services in an Enterprise Application Archive file for
more information about the SOAP-enabled EAR file.

2. Update the Web server plug-in configuration.
Run the GenPluginCfg.bat file on Windows NT or the GenPluginCfg.sh script
on UNIX platforms to regenerate the plug-in configuration.

3. Restart the application server.

Administering deployed Web services (XML-SOAP administrative tool)
Administer the deployed Web service with the XML-Simple Object Access Protocol
(SOAP) administrative tool.

Use the SOAPEarEnabler tool to add administrative interfaces to your EAR files.
Then, use the XML-SOAP administrative tool with these EAR files to do the
following tasks for each context root:
v List configured services, showing active and stopped services
v Stop a service
v Start a service
v View the Apache SOAP deployment descriptor for a service

Access the XML-SOAP administrative tool through a Web browser by specifying:
http://localhost/<contextroot>/admin/index.html

where context root is the context specified when installing the SOAP-enabled .ear
file.

What to do next

You cannot use the XML-SOAP administrative tool to add or remove a service. Use
the SoapEarEnabler tool to add or remove services. A stopped service is persisted
across starts and stops of the application server. Therefore, if you stop a service, it
remains stopped until the next time you use the XML-SOAP administrative tool to
start it again.

Chapter 7. Developing and managing Web services 285

You can add the XML-SOAP administrative tool interface to an enterprise
application when you SOAP-enable the EAR file. In interactive mode, you are
asked whether you want to add the XML-SOAP administrative tool interface.
Replying yes will add the necessary Java Server Pages (JSP) files and bindings
allowing access to the XML-SOAP administrative tool interface for the application.
The interface is an optional addition because you might not want to expose it in a
production environment. Optionally, secure the XML-SOAP administrative tool
using the Application Assembly Tool (AAT) to assign roles.

Securing Simple Object Access Protocol services
The SOAP security extension, included with WebSphere Application Server is a
security architecture based on the SOAP security specification, and widely-accepted
security technologies such as Secure Sockets Layer (SSL).

There are three options for security when using HTTP as the transport protocol:
v HTTP basic authentication
v SSL (HTTPS)
v SOAP signature

You can combine these security options according to your specific security
requirements.

Because the Simple Object Access Protocol (SOAP) specification does not address
all security issues, several proposals evolved to bridge the security gaps. See Web
services: Resources for Learning for more information about additional
documentation.

Migrating SOAP security
You can use the following steps when migrating a WebSphere Application Server,
Version 4.0 application that uses SOAP 2.2 security, to a WebSphere Application
Server, Version 5.0 application that uses SOAP 2.3 security.

Steps for this task
1. If you have any scripts or .bat files that set up the CLASSPATH before running

your application, make sure that the j2ee.jarfile, located in the Version 5.0
<WebSphere/AppServer>/install root directory is in the CLASSPATH.

2. (Optional)Replace security key files, if needed.
You might need new security key files if you get the following error:
"conf/cl-sig-config.xml"
javax.security.cert.CertPathBuilderException:
No end-entity certificate matching the selection criteria
could be found

The three security key files are named SOAPclient, SOAPserver, and
sslserver.p12. To locate the key files:
a. If the application is already installed these files are found in the directory:

<WebSphere/AppServer>/installedApps/<
yourAppName>.ear/soapsec.war/key/

b. If the application is not yet installed, these files are found by expanding:
<yourAppName.ear>. Then, expand the soapsec.war. The files are in the
key/directory.

3. Stop and restart the server if you made any updates or replaced the key files.

286 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Securing Simple Object Access Protocol services with HTTP
basic authentication

Many applications require users to provide identifying information. You cannot
provide access control for individual services. You can only provide access control
for the router servlets, for example, the rpcrouter servlet URI. If you can get to a
servlet, you can access any of the Web services served through the servlet.
Therefore, if you have a set of secure services, you have to partition them
differently so that they are accessed through a URI that is secured, for example,
/secureRPCRouter. An example of a service that is not secure or accessible to
everyone is /uprotectedRCPRouter.

Using the (Application Assembly Tool (AAT)), you can set authorization levels by
assigning roles to HTTP methods and by assigning users to roles. You can then
authenticate users, verifying they are authorized to view specific information. There
are many ways to prompt users for authentication data.

Securing Simple Object Access Protocol services on Secured
Socket Layer

with HTTP basic authentication

To make a request over HTTPS using the Secured Socket Layer support of Apache
Simple Object Access Protocol (SOAP), you need a separate Java Secure Socket
Extension (JSSE) provider.

WebSphere Application Server includes the ibmjsse.jar in the IBM Developer Kit
for Windows, Java Technology Edition.

The SOAP on SSL scenario is useful for many business-to-business (B2B)
applications because:
v The data in transit is protected from eavesdropping or forgery by SSL.
v The client identity is authenticated through user ID and password, which are

encrypted by the SSL transport.

For example, if an inventory application is configured as a Web service, the service
provider has the following two SOAP service entries:
v https://foo.com/inventory/inquiry

v https://foo.com/inventory/update

Each SOAP service entry should be deployed as a separate enterprise application
(EAR) because each service has a different access control policy, which is: anyone
can inquire about the inventory but only the inventory clerks can update the
contents.

The SOAP enablement model limits you to one context root for the unsecured
services and another for the secured services. In this example, you want to make
the inquiry service unsecured and the update service secured. If you want different
levels of security for a secured service, then you must deploy the entries in the
secured service as separate EAR files.

To enable the SOAP on SSL scenario:

Steps for this task

Chapter 7. Developing and managing Web services 287

1. Configure the Web server (httpd.conf) so that it only allows SSL access to these
servlets.

2. Configure the security role for the RPCRouterServlet in the inquiry services
EAR file.
By doing this step, the RPCRouterServlet for the inquiry service is accessible by
everyone, while the RPCRouterServlet for the update service requires
authentication based on the HTTP basic authentication (userID and password).
In this case, the update application does not know the identity of the requester;
it only knows that access is granted. In other words, the update application is
not concerned with the identity of the user because it knows WebSphere
Application Server is ensuring that only authenticated users have access.

Securing SOAP services on SSL with SOAP Signature
Applications might need non-repudiable proof of exchanged messages. One
example is a Web service that accepts part orders. The business partners establish a
form of trust relationship based on public keys. This can be done using the public
key infrastructure (PKI) through a third party certificate authority (CA), or by
exchanging public keys with a secure channel. The following service is deployed
with a signature verification function:

https://foo.com/partorder

Configure signature verification with the following information:
v Scope of signature (indicates the portion of the SOAP envelope that must be

authenticated. The default is the content of SOAP-ENV:Body).
v Trusted keys or trusted root keys.
v Default key to verify signature if no KeyInfo is specified.
v Other policies regarding signature validation.
v Behavior when signature verification fails.
v Additional requirements on signature (as for example, specific requirements on

hash/C14N algorithms to be used, timestamp validity, and so forth).

If the signature is missing or if signature verification fails, the signature verification
function can be configured so that the servlet returns a SOAP fault.

To send part orders to the https://foo.com/partorder service, the service
requester should sign his SOAP messages with a signature component. The
signature component is initialized using two templates:
1. <ds:SignedInfo> template
2. <ds:KeyInfo> template

The <ds:SignedInfo> template controls the following:
v What parts of the SOAP envelope must be signed
v What algorithms (canonicalization, transformation, digest, sign) should be used

The <ds:KeyInfo> template controls the following:
v Whether or not to include the entire certificate chain in <ds:KeyInfo>
v Decision to include only certificate and serial number
v Public key value
v Decision to provide no key information (so that the default key must be used for

verification).

288 IBM WebSphere Application Server Network Deployment, Version 5: Applications

You can combine the service request with HTTP basic authentication, if necessary.

Simple Object Access Protocol signature architecture
An overview of the Simple Object Access Protocol (SOAP) signature architecture is
illustrated in the figure below.

Transport Hook and Security Components

SOAPTransport RPCRRouterServlet

EnvelopeEditor EnvelopeEditor

Sign

SignVerify+Log

Verify+Log

C
lie

nt
 A

pp
lic

at
io

n

S
er

ve
r

A
pp

lic
at

io
n

Using the SOAP transport hook, you can plug-in the following security
components:
v Signer
v Verifier, with logging capability

The transport hook is called the EnvelopeEditor. A PluggableEnvelopeEditor is also
provided, which allows you to plug in your security components. As illustrated,
the EnvelopeEditor is encapsulated in the SOAPTransport on the client side. On the
server side, EnvelopeEditor is encapsulated in RPC/MessageRouterServlet. The same
components can be used on either side.

When a client application sends a request, the request is signed and transmitted to
the server. At the server side, the request is verified and delivered to a server
application or, in the case of a Remote Procedure Call (RPC), to a Java object. The
response is processed in the same manner. The verifier component also has a
logging function to log the verified messages in a file. Signatures and verifier
components are configurable. You can specify encryption, digest message
algorithm, certificate path policy, and other security technologies.

Chapter 7. Developing and managing Web services 289

For more information about EnvelopeEditor, Signature header handler and
Verification header handler, see Web services: Resources for Learning.

UDDI4J specifications
The following considerations are specific to the support for UDDI4J provided by
WebSphere Application Server, Version 5:
v UDDI4J class libraries provided.

WebSphere Application Server provides two UDDI4J class libraries:

uddi4jv2.jar
This class library contains classes which support Version 2 of the UDDI
specification.

uddi4j.jar
This class library is provided for compatibility with WebSphere
Application Server, Version 5, and supports Version 1 of the UDDI
specification. The classes in this library are deprecated.

v UDDI4J error handling

When invoking UDDIProxy inquiry methods, UDDIException is thrown if errors
are received from the UDDI proxy. UDDIException can contain a
DispositionReport with information about the error. APIs that do not return a
data object, provide the disposition report. SOAPException is thrown if a
communication error occurs or if the resulting data cannot be parsed as a valid
SOAP message.

See the article Web services: Resources for Learning, to learn more about the use of
Simple Object Access Protocol (SOAP), Universal Description, Discovery and
Integration (UDDI) Registry, UDDI4J, programming specifications and examples.

Web services: Resources for learning
Use the following links to find relevant supplemental information about getting
started with Web services. The information resides on IBM and non-IBM Internet
sites, whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas. The following sections are
covered in this reference:

View links to additional information about:
v Web services overview: Purpose, planning and designing to use Web services
v Developing and using Web services applications and clients
v Programming instructions and examples
v Administration
v Samples
v Other references

v IBM Web Services architecture debuts

http://www.ibm.com/developerworks/webservices/ library/w-
int.html?dwzone=webservices

290 IBM WebSphere Application Server Network Deployment, Version 5: Applications

http://www.ibm.com/developerworks/webservices/library/w-int.html?dwzone=webservices
http://www.ibm.com/developerworks/webservices/library/w-int.html?dwzone=webservices

Introducing IBM Web services, a distributed software architecture of service
components. This brief overview and in-depth interview on IBM
DeveloperWorks cover the fundamental concepts of Web services architecture
and what they mean for developers. The interview with IBM professional Rod
Smith explores which types of developers Web services targets, how Web
services reduces development time, what developers could be doing with Web
services now, and takes a glance at the economics of dynamically discoverable
services.

v Web services (r)evolution, Part 1

http://www-106.ibm.com/developerworks/library/ws-peer1.html
This article focuses on the benefits and challenges of building Web services
applications. Web services might be an evolutionary step in designing
distributed applications, however, they are not without their problems. Outlined
are the difficulties developers face in creating a truly workable distributed
system of Web services. This article also outlines author Grahm Glass’ plan for
building peer-to-peer Web applications.

v SOAP

http://www.w3.org/TR/SOAP
This article is a detailed overview of SOAP, which includes programming
specifications.

v Building a SOAP client

http://www-106.ibm.com/developerworks/library/x-soapcl/index
This article describes a simple, general purpose SOAP client in Java that uses no
specialized SOAP libraries. Instead of creating the SOAP request XML document
for you under the hood, this client lets you create your own request with any
XML or text editor. Instead of merely giving you the remote method return
values, the client shows you the actual SOAP response XML document. The
short Java program shows exactly what SOAP is all about: opening up an HTTP
connection, sending the appropriate XML to invoke a remote method, and then
reading the XML response returned by the server.

v Web Services Description Language

http://www.w3.org/TR/wsdl
This article is a detailed overview of Web Services Description Language
(WSDL), which includes programming specifications.

v Universal Description, Discovery and Integration

http://www.uddi.org/about.html
This article is a detailed overview of Universal Description, Discovery and
Integration (UDDI).

v UDDI4J: Matchmaking for Web services

http://www-106.ibm.com/developerworks/library/ws-uddi4j
Reviewed in this article are the basics of UDDI, the Java API to UDDI, and how
you can use this technology to start building, testing, and deploying your own
Web services.

v Web Services Description Language

http://www.w3.org/TR/wsdl
This article is a detailed overview of Web Services Description Language
(WSDL), which includes programming specifications.

v Universal Description, Discovery and Integration

http://www.uddi.org/about.html

Chapter 7. Developing and managing Web services 291

http://www-106.ibm.com/developerworks/library/ws-peer1.html
http://www.w3.org/TR/SOAP
http://www-106.ibm.com/developerworks/library/x-soapcl/index
http://www.w3.org/TR/wsdl
http://www.uddi.org/about.html
http://www-106.ibm.com/developerworks/library/ws-uddi4j
http://www.w3.org/TR/wsdl
http://www.uddi.org/about.html

This article is a detailed overview of Universal Description, Discovery and
Integration (UDDI).

v UDDI4J: Matchmaking for Web services

http://www-106.ibm.com/developerworks/library/ws-uddi4j
Reviewed in this article are the basics of UDDI, the Java API to UDDI, and how
you can use this technology to start building, testing, and deploying your own
Web services.

v SOAP Security Extensions: Digital Signature

http://www.w3.org/TR/SOAP-dsig
This document specifies the syntax and processing rules of a SOAP header entry
to carry digital signature information within a SOAP 1.1 Envelope.

v Simple Object Access Protocol (SOAP) 1.1

http://www.w3.org/TR/SOAP-dsig
This site offers detailed information about SOAP Signature, including Envelope
Editor, Signature Header Handler and Verification Header Handler.

v Apache Software Foundation

http://www.apache.org
v Two SOAP samples are available. The samples include information about

implemeting SOAP services and SOAP security. Refer to the Samples
Gallery

http://www7b.software.ibm.com/wsdd/library/samples/ AppServer.html for
these samples.

v Web services insider, Part 1: Reflections on SOAP

http://www-106.ibm.com/developerworks/webservices/library/ ws-ref1
What is the current state of the Web services revolution? Find out at this Web site
that features the column Web services insider, Part 1. The author answers this
question by reviewing the tools and technologies that have emerged over the
past year, highlighting their differences and similarities.

v The Web services insider, Part 2: A summary of the W3C Web Services
Workshop

http://www-106.ibm.com/developerworks/webservices/library/ ws-ref2
This is a brief summary of a W3C Web services Workshop.

292 IBM WebSphere Application Server Network Deployment, Version 5: Applications

http://www-106.ibm.com/developerworks/library/ws-uddi4j
http://www.w3.org/TR/SOAP-dsig
http://www.w3.org/TR/SOAP-dsig
http://www.apache.org
http://www7b.software.ibm.com/wsdd/library/samples/AppServer.html
http://www-106.ibm.com/developerworks/webservices/library/ws-ref1
http://www-106.ibm.com/developerworks/webservices/library/ws-ref2

Chapter 8. Enabling Web services to use the Web Services
Invocation Framework

Use this topic to learn how to invoke Web services to use the Web Services
Invocation Framework

The Web Services Invocation Framework (WSIF) is a WSDL-oriented Java API that
allows you to invoke Web services dynamically, regardless of what format (for
example EJB) the service is implemented in, or what mechanism (for example JMS)
is used to access it.

WSIF enables you, as a Web services developer, to move away from the usual Web
services programming model of working directly with the SOAP APIs, towards a
model where you interact with representations of the services. So you can work
with the same programming model regardless of how the service is implemented
and accessed.

If you want to know more about the issues that WSIF addresses, see Goals of
WSIF.

If you want to know how WSIF addresses these issues, see An overview of WSIF.

To use WSIF, see the following topics:
v Using WSIF to invoke Web services.
v WSIF system management and administration.
v WSIF API.

For more information about working with WSIF, visit the Internet sites listed in
WSIF: Resources for Learning.

Goals of WSIF
SOAP bindings for Web services are part of the WSDL specification. So when most
developers think of using a Web service, they immediately think of assembling a
SOAP message and sending it across the network to the service endpoint, using
some SOAP client API. For example: with Apache SOAP the client creates and
populates a Call object which encapsulates the service endpoint, the identification
of the SOAP operation to be invoked, the parameters that have to be sent, and so
on.

While this works for SOAP, it is limited in its use as a general model for invoking
Web services for the following reasons:
v Web services are not just SOAP services.
v Tying client code to a particular protocol implementation is restricting.
v Incorporating new bindings into client code is hard.
v Multiple bindings can be used in flexible ways.
v A freer Web services environment enables intermediaries.

The goals of WSIF are therefore:
v To give a binding-independent mechanism for Web service invocation.

© Copyright IBM Corp. 2002 293

v To free client code from the complexities of any particular protocol used to
access a Web service.

v To enable dynamic selection between multiple bindings to a Web service.
v To help the development of Web service intermediaries.

WSIF - Web services are not just SOAP services
You can deploy as a Web service any program with a WSDL description of its
functional aspects and access protocols; and in the J2EE environment, the same
component is available over multiple transports and protocols.

For example, you can have a database stored procedure, which is then exposed as
a stateless session bean, and then deployed into a SOAP router to become a SOAP
service. At each stage, the fundamental service is the same. All that changes is the
access mechanism: from JDBC to RMI-IIOP and then to SOAP.

The WSDL specification defines a SOAP binding for Web services, but you can add
binding extensions to the WSDL so that, for example, you can offer an enterprise
bean as a Web service using RMI/IIOP as the access protocol. You can even treat a
single Java class as a Web service, with in-thread Java method invocations as the
access protocol. With this broader definition of a Web service, you need a
binding-independent mechanism for service invocation.

WSIF - tying client code to a particular protocol
implementation is restricting

If your client code is tightly bound to a client library for a particular protocol
implementation, it can become hard to maintain. For example if you move from
Apache SOAP to a different SOAP implementation, the process can take a lot of
time and effort. To avoid these problems, you need a protocol
implementation-independent mechanism for service invocation.

WSIF - incorporating new bindings into client code is hard
As is explained in Web services are not just SOAP services, if you want to make an
application that uses a custom protocol work as a Web service, you can add
extensibility elements to WSDL to define the new bindings. But in practice,
achieving this is hard. For example you have to design the client APIs for using
this protocol; and if your application uses just the abstract interface of the Web
service, you have to write tools to generate the stubs that enable an abstraction
layer. These are tasks that can take a lot of time and effort. What you need is a
service invocation mechanism that allows bindings to be updated or new bindings
to be plugged in easily.

WSIF - multiple bindings can be used in flexible ways
Imagine that you have successfully deployed an application that uses a Web
service offering multiple bindings. For example, imagine that you have a SOAP
binding for the service and a local Java binding that lets you to treat the local
service implementation (a Java class) as a Web service.

The local Java binding for the service can only be used if the client is deployed in
the same environment as the service itself, and if this is the case it is far more
efficient to communicate with the service by making direct Java calls than using
the SOAP binding.

294 IBM WebSphere Application Server Network Deployment, Version 5: Applications

If your clients could switch the actual binding used based on run-time information,
they could choose the most efficient available binding for each situation. In order
to take advantage of Web services that offer multiple bindings, you need a service
invocation mechanism that allows you to switch between the available service
bindings at runtime, without having to generate or recompile a stub.

WSIF - a freer Web services environment enables
intermediaries

Web services offer application integrators a loosely-coupled paradigm. In such
environments, intermediaries can be very powerful. Intermediaries can add value
to the service invocation without specific programming. Facilities such as logging,
high-availability and transformation can be provided by a intermediary. WSIF is
designed to make building intermediaries both possible and simple.

An overview of WSIF
WSIF provides a Java API for invoking Web services, independent of the format of
the service or the transport protocol through which it is invoked. It addresses all of
the issues identified in the goals of WSIF.

WSIF provides the following features:
v It has an API that provides binding-independent access to any Web service.
v It is closely based on WSDL, so it can invoke any service that can be described

in WSDL.
v It allows stubless (completely dynamic) invocation of a Web service.
v You can plug a new or updated implementation of a binding into WSIF at

runtime.
v You can defer the choice of a binding until runtime.

WSIF is designed to work both in an unmanaged environment (standalone) and
inside a managed container. You can use JNDI to find the WSIF service, or else
read in the WSDL definition.

For more conceptual information about WSIF and WSDL, see the following topics:
v WSIF and WSDL
v WSIF architecture
v Using WSIF with Web services that offer multiple bindings
v WSIF usage scenarios
v Dynamic invocation

WSIF architecture
The WSIF architecture is shown in the following figure. The components of this
architecture are described after the figure.

WSIF architecture. The WSIF architecture, showing a Web service being invoked
by loading a WSDL document, creating a WSIF service, using the service to get a
WSIF operation, then invoking the target Web service by providing the WSIF
operation with the target service operation’s name and the message that it needs.

Chapter 8. Enabling Web services to use the Web Services Invocation Framework 295

WSIF provider
A WSIF provider is an implementation of a WSDL binding that can run a
WSDL operation through a binding-specific protocol. WebSphere
Application Server includes WSIF providers for SOAP over HTTP, SOAP
over JMS, Java, enterprise beans, and Native JMS. For more information,
see Using the WSIF providers.

WSIFOperation
The runtime representation of an operation, called WSIFOperation is
responsible for invoking a service based on a particular binding. For more
information, see WSIF API reference: Using ports.

WSIFService
The WSIFService is responsible for generating an instance of
WSIFOperation to be used for a particular invocation of a service
operation.For more information, see Finding a port factory or service

WSDL documents
The Web service WSDL document contains the location of the Web service.
The binding document defines the protocol and format for operations and
messages defined by a particular portType.

Using WSIF with Web services that offer multiple bindings
You can use WSIF to enable client applications to switch between service bindings
at runtime, to enable them to use the optimum binding to invoke operations on a
Web service provider.

For example, a Web service provider could offer a SOAP binding for the service
and a local Java binding that allows you to treat the local service implementation
(a Java class) as a Web service. If the client is deployed in the same environment as
the service, the local Java binding for the service can be used and provides more
efficient communication with the service by making direct Java calls rather than
using the SOAP binding.

WSIF and WSDL
WSDL is the acronym for http://www.w3.org/TR/wsdl.

In WSDL a service is defined in three distinct parts:
v The PortType. The PortType defines the abstract interface offered by the service.

A PortType defines a set of Operations. Each operation can be In-Out
(request-response), In-Only, Out-Only and Out-In (Solicit-Response). Each
operation defines the input and/or output Messages. A message is defined as a
set of Parts and each part has a schema-defined type.

296 IBM WebSphere Application Server Network Deployment, Version 5: Applications

http://www.w3.org/TR/wsdl

v The Binding. A binding defines how to map between the abstract PortType and
a real service format and protocol. For example the SOAP binding defines the
encoding style, the SOAPAction header, the namespace of the body (the
targetURI), and so on.

v The Port. This defines the actual location (endpoint) of the available service - for
example, the HTTP URL on which a SOAP service is available.

Currently in WSDL, each Port has one and only one binding, and each binding has
a single PortType. But (more importantly) each Service (PortType) can have
multiple Ports, each of which represents an alternative location and binding for
accessing that service.

WSIF follows the semantics of WSDL as much as possible:
v The WSIF dynamic invocation API directly exposes runtime equivalents of the

model from WSDL. For example, invocation of an operation involves executing
an ″Operation″ with an Input Message.

v WSDL has extension points that allow new ports and bindings to be added so
that WSDL can describe new systems. The equivalent concept in WSIF is a
provider, that allows WSIF to understand a class of extensions and therefore
support new service implementation types.

As a metadata-based invocation framework, WSIF follows the design of the
metadata. As WSDL is extended, WSIF is updated to follow.

Note: The implicit and primary type system of WSIF is XML Schema, not Java.
WSIF supports invocation using dynamic proxies, which support Java type
systems, but when you use the WSIFMessage interface it is your responsibility to
populate WSIFMessage objects with data based on the XML Schema types as
defined in the WSDL document. So you should define types of objects by a
canonical and fixed mapping from Schema types into the runtime.

For more information on WSDL, see (WSIF: Resources for learning).

WSIF usage scenarios
This topic describes two brief scenarios that illustrate the role WSIF plays in the
emerging Web services environment.

Scenario: Redevelopment and redeployment

If you are implementing Web services today you are probably working with simple
prototypes. As your Web services move into production, you will need to
reimplement and redeploy them. WSIF uses the same API calls with different
underlying technologies. So if you use WSIF you can reimplement and redeploy
your services without changing the client code, and you can use existing highly
reliable and high-performance infrastructures like RMI-IIOP and JMS without
sacrificing the location-independence that the Web service model offers.

Scenario: Service Flow composition

A service flow typically invokes a Web service, then passes the response from one
Web service into the next Web service, perhaps performing some transformation in
the middle.

There are two key aspects to this that WSIF provides:

Chapter 8. Enabling Web services to use the Web Services Invocation Framework 297

v A representation of the service invocation based on the metadata in WSDL.
v The ability to build invocations based on the portType only, which can be used

on any implementation.

For example, imagine that you build a ″meta-service″ that uses a number of
services to build a process. Initially several of those services are simple JavaBean
prototypes that are written and exposed through SOAP, but you plan to
reimplement some of them as EJB components, and to out-source others.

If you use SOAP, it ties up multiple threads for every onward invocation, as they
pass through the webserver and servlet engine into the SOAP router. If you use
WSIF to call the beans directly, you get much better performance compared to
SOAP and you don’t lose access or location transparency. Using WSIF, you can
move the JavaBean implementations to EJB implementations without changing the
client code, and to move some of the Web services from local implementations to
external SOAP services you just update the WSDL.

Dynamic invocation
In WSIF, dynamic invocation means providing the following levels of support
when invoking Web services:
1. Support for WSDL extensions and bindings that were not known at build time.
2. Support for Web services that were not known at build time.

WSIF supports (1) above through the use of providers.

The providers support (2) above by using the WSDL description to access the
target service.

Using WSIF to invoke Web services
You invoke a Web service dynamically by using the WSIF API directly. You only
specify the location of the WSDL file for the service, the name of the operation to
be invoked, and any operation arguments needed. All the information needed to
access the Web service is available through WSDL; the abstract interface, the
binding, and the service endpoint.

This kind of invocation does not generate stub classes and does not need a
separate compilation cycle.

More information on using WSIF to invoke Web services is given in the following
topics:
v Using the WSIF providers.
v Developing a WSIF service.
v Using complex types.
v Using JNDI.
v Interacting with the WebSphere J2EE container.
v Running WSIF as a client.

Using the WSIF providers
A WSIF provider is an implementation of a WSDL binding that can run a WSDL
operation through a binding-specific protocol.

298 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Providers implement the interface between the WSIF API and the actual
implementation of a service. Providers are pluggable within the WSIF framework,
and are registered based upon the namespace of the WSDL extension that they
implement.

WebSphere Application Server includes the following WSIF providers:
v SOAP (over HTTP) provider.
v JMS providers (SOAP over JMS, and Native JMS).
v Java provider.
v EJB provider.

Note:

v Some providers use the J2EE programming model to utilize J2EE services.
v If a provider is available, but its required class libraries are not, the provider is

disabled.

Using the SOAP provider
The SOAP provider allows WSIF stubs and dynamic clients to invoke SOAP
services. The provider supports SOAP 1.1 over HTTP. The WSIF SOAP Provider
utilizes ApacheSOAP 2.3 for parsing and creating SOAP messages, but is not
limited to invoking services served by ApacheSOAP.

The WSIF SOAP provider supports:
v SOAP-ENC encoding
v RPC style

The SOAP provider is not transactional.

Note: Before you deploy to WebSphere Application Server a Web service that you
expect to be used by multiple clients connecting over SOAP, you must set up your
application’s deployment descriptor file (dds.xml) to handle multiple connections
correctly. For more information see WSIF troubleshooting tips.

What to do next

For an example of the sort of code changes that need to be made in the WSDL file
for a SOAP provider, see The SOAP over JMS provider - writing the WSDL
extension.

Using the JMS providers
JMS is an API for transport technology. The mapping to a JMS destination is
defined during deployment and maintained by the container.

The JMS Destination Web service endpoint may be realized in any of the following
ways:
v The JMS destination for the queue can be the Web service implementation.
v The JMS destination can be (but is not required to be) associated with a Message

Driven Bean by the EJB container, thereby allowing the Message Driven Bean to
be the Web service implementation.

v (For SOAP over JMS) The JMS Destination can unwrap the JMS message and
route the SOAP message to a stateless session bean Web service implementation.

The JMS Destination must respect the interaction model expected by the client and
defined by the WSDL. It must return a response if one is required.

Chapter 8. Enabling Web services to use the Web Services Invocation Framework 299

When the JMS Destination creates the JMS response message the following rules
must be adhered to:
v The response message must be sent to the JMSReplyTo from the incoming

request.
v The JMSCorrelationID of the response message must be set to the value of the

JMSMessageID from the request message.
v The response must be sent with a deliveryMode equal to the JMSDeliveryMode

of the request message.
v The response must be sent with a priority equal to the JMSPriority of the

request message.
v The timetolive/JMSExpiration must be set a value equal to the JMSExpiration

of the request message.

The client does not see any of these headers. The container receives the JMS
message and (for SOAP over JMS) removes the SOAP message to send to the
client.

What to do next

See also the following topics:
v Using the SOAP over JMS provider
v Using the native JMS provider
v The JMS providers - configuring the client and server

Using the SOAP over JMS provider: Before you begin

For information on working with the JMS API, see Using the JMS providers.

The SOAP message, including the SOAP envelope, is wrapped with a JMS message
and put on the appropriate Queue. The container receives the JMS message and
removes the SOAP message to send to the client.

What to do next

For detailed implementation information, see the following topics:
v The SOAP over JMS provider - writing the WSDL extension
v The JMS providers - configuring the client and server

The SOAP over JMS provider - writing the WSDL extension: SOAP protocol
messages are carried on the JMS transport with the JMS body type TextMessage if
the message is strictly XML.

Usage scenario

WSDL Extensions

WSDL Binding

The WSDL Binding for SOAP over JMS varies only slightly from the SOAP
over HTTP binding. The transport element under the soap:binding
indicates that JMS is being used.

300 IBM WebSphere Application Server Network Deployment, Version 5: Applications

RPC style: If the style is set to ″rpc″, then it is assumed that an operation
is being invoked on the Web service endpoint. The Java parameters and
response holders are encoded in the same way as for the standard WSIF
SOAP binding:
<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/jms" />

When a SOAP/JMS binding is being used, the <wsdl:port> must contain a
<jms:address> element to identify the JMS Queue to be used.

Address:
The address within the port within the service within the WSDL provides
the information required for a client to correctly connect to the Web service
using the JMS programming model. Typically, it will be the stubs
generated to support the SOAP/JMS binding that will act as the JMS
client. This does not preclude the Web service client from using the JMS
programming model directly. The address element under the service and
port must take this form:
<jms:address

destinationStyle= "queue"
jmsVendorURI = "http://ibm.com/ns/mqseries"?
initialContextFactory= "com.ibm.NamingFactory"?
jndiProviderURL= "iiop://something:900/wherever"?
jndiConnectionFactoryName= "orange"
jndiDestinationName= "fred"

/>

where ″?″ means ″optional″.

The vendor URI is a string which uniquely identifies the JMS
implementation. WSIF ignores this URI, which is used by the client
developer and perhaps the client implementation to determine if it has
access to the correct JMS provider in the client runtime.

The connectionFactory attribute gives the name of a JMS
ConnectionFactory object, which can be looked up within the JNDI context
given by the jndiContext attribute. This ConnectionFactory can be used to
create a JMS connection to the JMS provider instance that owns the Queue.
In a simple configuration this ConnectionFactory is the actual
ConnectionFactory used by the server message listener, and by the clients.
However both server and clients can use different ConnectionFactories,
provided that they all create Connections to the same JMS provider
instance.

The JNDI usage pattern is this:
<jms:address destinationStyle= "queue"

jndiConnectionFactoryName= "orange"
jndiDestinationName= "fred"

>

This usage pattern requires the runtime to have a default JNDI provider
configured. The provider URL and context factory can also be added to
this:

Chapter 8. Enabling Web services to use the Web Services Invocation Framework 301

<jms:address destinationStyle="queue"
initialContextFactory = "com.ibm.Naming"
jndiProviderURL= "iiop://server:900/"
jndiConnectionFactoryName= "orange"
jndiDestinationName= "fred"

>

Headers and Properties

JMS headers and properties can be set using the <jms:property> extension
within the binding. This maps a part of a message into a JMS property. For
example:
<jms:property name="Priority"

{part="requestPriority" | value="fixedValue"} />

The header can also be set in the jms:address component with a literal
value:
<jms:property name="Priority" value="fixedValue" />

This binding extension is shared with the Native JMS binding.

WSDL Binding example

Here is an example of a WSDL that defines a SOAP over JMS binding:
<!-- Example: SOAP over JMS Text Message -->

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions

name="StockQuoteInterfaceDefinitions"
targetNamespace="urn:StockQuoteInterface"
xmlns:tns="urn:StockQuoteInterface"
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<wsdl:message name="GetQuoteInput">
<part name="symbol" type="xsd:string" />

</wsdl:message>
<wsdl:message name="GetQuoteOutput">

<part name="value" type="xsd:float" />
</wsdl:message>

<wsdl:portType name="StockQuoteInterface">
<wsdl:operation name="GetQuote">

<wsdl:input message="tns:GetQuoteInput" />
<wsdl:output message="tns:GetQuoteOutput" />

</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="StockQuoteSoapJMSBinding" type="tns:StockQuoteInterface">
<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/jms" />
<wsdl:operation name="GetQuote">

<soap:operation soapAction="urn:StockQuoteInterface#GetQuote" />
<wsdl:input>

<soap:body use="encoded" namespace="urn:StockQuoteService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />

</wsdl:input>
<wsdl:output>

<soap:body use="encoded" namespace="urn:StockQuoteService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />

</wsdl:output>
</wsdl:operation>

</wsdl:binding>
<wsdl:service name="StockQuoteService">

302 IBM WebSphere Application Server Network Deployment, Version 5: Applications

<wsdl:port name="StockQuoteServicePort"
binding="sqi:StockQuoteSoapJMSBinding">

<jms:address destinationStyle="queue"
jndiConnectionFactoryName="myQCF"
jndiDestinationName="myQ"
initialContextFactory= "com.ibm.NamingFactory"
jndiProviderURL= "iiop://something:900/" />

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

Using the native JMS provider: Before you begin

For information on working with the JMS API, see Using the JMS providers.

The native JMS provider allows WSIF clients to treat a JMS destination as a Web
service.

What to do next

For detailed implementation information, see the following topics:
v The native JMS provider - writing the WSDL extension
v The JMS providers - configuring the client and server

The native JMS provider - writing the WSDL extension: The WSDL extensions
for JMS are identified with the namespace prefix ″jms″. For example
<jms:binding>.

Operations

The supported operations are either One-way operations (send for JMS
point-to-point messaging or publish for JMS publish/subscribe messaging) or
Request-Reponse operations (send/receive for JMS point-to-point messaging).

The WSDL operations therefore specify an input message only, or a WSDL input
and output message.

Message Header Data

JMS does not make assumptions about message headers. If the JMS provider is
MQSeries, then each JMS message carries an RFH2 header, however, data in this
message header is only accessed indirectly by getting and setting JMS message
properties.

Quality of Service Attributes

The Native JMS binding of WSDL operations provides the capability to set
message properties. See ″JMS Message Header Fields and Properties″ below.

JMS Message Types

JMS message body types are specified in the WSDL binding using the jms:binding
WSDL extension:
<wsdl:binding ... >

<jms:binding type="messageBodyType" />
...

</wsdl:binding>

Chapter 8. Enabling Web services to use the Web Services Invocation Framework 303

where messageBodyType is either ObjectMessage or TextMessage.

Input and Output Messages

Input and output messages are used in the WSDL input and output sections of the
WSDL binding, respectively:
<wsdl:input ... >

<jms:input parts="part1 part2 ..." />
</wsdl:input>

<wsdl:output ... >
<jms:output parts="part1 part2 ..." />

</wsdl:output>

For JMS Text messages and JMS Object messages created from one or more WSDL
message parts, the jms:input and jms:output WSDL extension specifies the message
parts to be used for the JMS message. If no parts are defined, then all message
parts will be used. This is used in the WSDL input and output sections of the
WSDL binding.

The WSDL message has one part that contains the complete message body. This
message body might be the result of a mapping from some other representation
(see ″Data Mapping″ below).
<wsdl:input ... >

<jms:input parts="part1" />
</wsdl:input>

Fault Messages

Operations that describe message interfaces with a native JMS binding do not have
fault messages. No assumptions are made about the message schema or the
semantics of message properties, so no distinction can be made between output
and fault messages.

Data Mapping

Mapping of data types is specified using the WSDL format binding extension:
<wsdl:binding ... >

<jms:binding type="..." />

<format:typeMapping encoding="Java" style="Java">
<format:typeMap typeName="..." formatType="targetType"/>

</format:typemapping>
...

</wsdl:binding>

The value of targetType is dependent on the JMS message type (discussed above) as
follows:
v For JMS Object messages, the target data type implements java.io.Serializable.
v For JMS Text messages, the target data type is always java.lang.String.

Note that the format binding is also used in other bindings that deal with Java
interfaces.

JMS Message Header Fields and Properties

304 IBM WebSphere Application Server Network Deployment, Version 5: Applications

You can set JMS Properties in the WSDL. When you want your application to pass
a property into WSIF as a part on the WSIF message, use a <jms:property>. When
you want to hard code an actual property value into the WSDL, use a
<jms:propertyValue>. You can put <jms:property> and <jms:propertyValue> in
the <input> and <output> in the binding operation, and in the <jms:address>.
<jms:property> takes precedence over <jms:propertyValue> and properties in the
binding operation take precedence over properties in the <jms:address>.

For the association with WSDL parts, the <jms:property> and
<jms:propertyValue> WSDL extensions are used as shown below:
<wsdl:input ... >

<jms:property name="propertyName" part="partName" />

<jms:propertyValue name="propertyName"
type="xsdType" value="actualValue" />

</wsdl:input>

<wsdl:output ... >

<jms:property name="propertyName" part="partName" />

</wsdl:output>

where propertyName identifies the JMS property that is associated with the header
field, and partName identifies the message part that is associated with the property.

The propertyName is the name of one of the predefined JMS message header fields
or a user-defined property. Possible values and Java types for the predefined
message header fields are shown in the following table:

Value Java type
JMSMessageId java.lang.String
JMSTimeStamp long
JMSCorrelationId byte [] or java.lang.String
JMSReplyTo javax.jms.Destination
JMSDestination javax.jms.Destination
JMSDeliveryMode int
JMSRedelivered boolean
JMSType java.lang.String
JMSExpiration long

See the JMS specification for restrictions that apply for setting JMS header field
values. Attempts to set such restricted values are ignored.

For application-defined JMS message properties, the Java types used in the Native
JMS binding implementation (used for calls to the corresponding JMS methods) is
derived from the XML schema type in the abstract interface (wsdl:part) and the
type mapping information in the format binding (format:typemap).

The jms:propertyValue contains a specification of a literal value and its associated
XML schema type.

For wsdl:output, only jms:property can be specified.

Transactions

Chapter 8. Enabling Web services to use the Web Services Invocation Framework 305

Independent of other quality of service attributes, the asynchronous processing of
request-response operations has implications for callers running in a transaction
scope. The send request part and the receive response part must be separated into
two transactions as the send needs to be committed in order for the request
message to become visible.

So implementations that process WSDL for asynchronous request-response
operations (such as WSIF) must take the following additional actions:
v They must return a correlation id to the user, and provide a callback that allows

users to pass in the response message in order to process the ″second half″ of
the operation.

v (Optionally) They might implement their own response message ″listener″ in
order to recognize the arrival of response messages, and to manage the
correlation to the request message.

Usage scenario

WSDL Examples

Example 1: JMS Text Message (Request-Response)

The JMS text message contains a java.lang.String. In this example, the WSDL
message contains only one part that represents the whole message body.

<!-- Example 1: JMS Text Message -->

<wsdl:definitions ... >

<!-- simple or complex types for input and output message -->
<wsdl:types> ... </wsdl:types>

<wsdl:message name="JmsOperationRequest"> ... </wsdl:message>
<wsdl:message name="JmsOperationResponse"> ... </wsdl:message>

<wsdl:portType name="JmsPortType">
<wsdl:operation name="JmsOperation">

<wsdl:input name="Request"
message="tns:JmsOperationRequest"/>

<wsdl:output name="Response"
message="tns:JmsOperationResponse"/>

</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="JmsBinding" type="JmsPortType">
<jms:binding type="TextMessage" />

<format:typemapping style="Java" encoding="Java">
<format:typemap name="xsd:String" formatType="String" />

</format:typemapping>

<wsdl:operation name="JmsOperation">
<wsdl:input message="JmsOperationRequest">

<jms:input parts="requestMessageBody" />
</wsdl:input>
<wsdl:output message="JmsOperationResponse">

<jms:output parts="responseMessageBody" />
</wsdl:output>

</wsdl:operation>
</wsdl:binding>

<wsdl:service name="JmsService">
<wsdl:port name="JmsPort" binding="JmsBinding">

<jms:address destinationStyle="queue"

306 IBM WebSphere Application Server Network Deployment, Version 5: Applications

jndiConnectionFactoryName="myQCF"
jndiDestinationName="myDestination"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

Example 2: JMS Message with Accessing Application-Defined JMS Properties
(Request-Resonse)

As an extension of the previous JMS message example, the following WSDL
describes a request-response operation where specific JMS property values of the
request and response message are set for the request message and retrieved from
the response message.

The JMS properties in the request message are set according to the values in the
input message. Likewise, selected JMS properties of the response message are
copied to the corresponding values of the output message. The direction of the
mapping is determined by the appearance of the jms:property tag in the input or
output section, respectively.

<!-- Example 2: JMS Message with JMS Properties -->

<wsdl:definitions ... >

<!-- simple or complex types for input and output message -->
<wsdl:types> ... </wsdl:types>

<wsdl:message name="JmsOperationRequest">
<wsdl:part name="myInt" type="xsd:int"/>
...

</wsdl:message>

<wsdl:message name="JmsOperationResponse">
<wsdl:part name="myString" type="xsd:String"/>
...

</wsdl:message>

<wsdl:portType name="JmsPortType">
<wsdl:operation name="JmsOperation">

<wsdl:input name="Request"
message="tns:JmsOperationRequest"/>

<wsdl:output name="Response"
message="tns:JmsOperationResponse"/>

</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="JmsBinding" type="JmsPortType">
<!-- the JMS message type may be any of the above -->
<jms:binding type="..." />

<format:typemapping style="Java" encoding="Java">
<format:typemap name="xsd:int" formatType="int" />
...

</format:typemapping>

<wsdl:operation name="JmsOperation">
<wsdl:input message="JmsOperationRequest">

<jms:property message="tns:JmsOperationRequest" parts="myInt" />
<jms:propertyValue name="myLiteralString"

type="xsd:string" value="Hello World" />
...

</wsdl:input>
<wsdl:output message="JmsOperationResponse">

<jms:property message="tns:JmsOperationResponse" parts="myString" />

Chapter 8. Enabling Web services to use the Web Services Invocation Framework 307

...
</wsdl:output>

</wsdl:operation>
</wsdl:binding>

<wsdl:service name="JmsService">
<wsdl:port name="JmsPort" binding="JmsBinding">

<jms:address destinationStyle="queue"
jndiConnectionFactoryName="myQCF"
jndiDestinationName="myDestination"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

The JMS providers - configuring the client and server: To enable a service to be
invoked through JMS by a WSIF client application, complete the following steps:
1. Create a JMS queue for WSIF to send to the request message to.

Note: This can be done using MQSeries Explorer, or an equivalent tool from
your JMS implementation package.

2. Create a JNDI definition for that JMS queue, and a JNDI queue connection
factory.
Note: If you are using MQSeries, this can be done using the jmsadmin tool.

3. Put the JNDI names of the queue and queue connection factory, as well as your
JNDI configuration, in the WSDL file.

You should also be aware of the following specific ways in which WSIF interacts
with JMS:
v Only input JMS properties are supported.
v WSIF needs two queues when invoking an operation: one for the request

message and one for the reply. The replyTo queue is by default a temporary
queue which WSIF creates on behalf of the application. You can specify a
permanent queue by setting the JMSReplyTo property to the JNDI name of a
queue.

v WSIF uses the default values for properties set by the JMS implementation.
However in MQSeries and some other JMS implementations, messages are by
default persistent, and the default temporary queue is temporary dynamic and
so cannot have persistent messages written to it. So your JMS listener may fail to
write a persistent response message to the temporary replyTo queue.
Note: If you are using MQSeries, you need to create a temporary model queue
which is permanent dynamic, then pass this model as the tempmodel of your
queue connection factory. This will ensure that persistent messages can be
written to the permanent dynamic temporary replyTo queue.

Using the Java provider
The WSIF Java Provider allows WSIF to invoke Java classes and JavaBeans. This
means that, in a ″thin-client″ environment such as a JVM or Tomcat test runtime,
you can define ″shortcuts″ to local Java code.

The WSIF Java Provider is not intended to be used in a J2EE environment. There is
a difference between a client using the WSIF Java Provider to invoke a Java
component, and implementing a Web service as a Java component on the server
side.

308 IBM WebSphere Application Server Network Deployment, Version 5: Applications

The Java binding exploits the format binding for type mapping. The format
binding allows WSDL to define the mapping between XML Schema types and Java
types.

The Java provider requires the targeted Java classes to be in the class path of the
client. The Java method is invoked synchronously, in-process, in-thread, with the
current thread and ORB contexts.

The Java provider is not transactional.

What to do next

For examples of the code changes that need to be made in the WSDL file, see The
Java provider - writing the WSDL extension.

The Java provider - writing the WSDL extension: The Java provider allows the
invocation of a method on a local Java object. In order to use the Java provider you
require the following binding specified in the WSDL:

Usage scenario
<!-- Java binding -->
<binding >

<java:binding />
<format:typeMapping style="Java" encoding="Java"/>?

<format:typeMap name="qname" formatType="nmtoken"/>*
</format:typeMapping>
<operation>*

<java:operation
methodName="nmtoken"
parameterOrder="nmtoken"
returnPart="nmtoken"?
methodType="instance|constructor" />

<input name="nmtoken"? />?
<output name="nmtoken"? />?
<fault name="nmtoken"? />?

</operation>
</binding>

where ″?″ means ″optional″ and ″*″ means ″0 or more″.

Note:

v The format:typeMap name attribute is a qualified name of a simple or complex
type used by one of the Java operations.

v The format:typeMap formatType attribute is the fully qualified Class name for
the Java Class that the element specified by name maps to.

v The java:operation methodName attribute is the name of the method on the Java
object that is called by the operation.

v The java:operation parameterOrder attribute contains a whitespace-separated list
of part names that define the order in which they are passed to the Java Object’s
method.

v The java:operation methodType attribute must be set to either ″instance″ or
″constructor″. The value specifies whether the method being invoked on the
object is an instance method or a constructor for the object.

Chapter 8. Enabling Web services to use the Web Services Invocation Framework 309

<service ... >
<port>*

<java:address
className="nmtoken"/>

</port>
</service>

Note: The java:address className attribute specifies the fully qualified class name
of the object containing the method to invoke.

Using the EJB provider
The EJB Provider allows WSIF clients to invoke enterprise beans. The EJB client
JAR must be available in the client runtime with the current provider. The
enterprise bean is invoked using normal EJB invocation methods, using RMI-IIOP,
with the current security and transaction contexts. If the EJB provider is invoked
within a transaction then the transaction is passed to the onward service and the
standard EJB transaction attribute applies.

If there are multiple implementations of the service, it is up to the provider of the
service to make sure that they offer the same semantics. For example, in the case of
transactionality the bean deployer should specify TX_REQUIRES_NEW to force a
new transaction.

What to do next

For examples of the sort of code changes that need to be made in the WSDL file,
see The EJB provider - writing the WSDL.

The EJB provider - writing the WSDL extension: The EJB provider allows the
invocation of an enterprise bean through RMI/IIOP. In order to use the EJB
provider you require the following binding specified in the WSDL:

Usage scenario
<!-- EJB binding -->
<binding >

<ejb:binding />
<format:typeMapping style="Java" encoding="Java"/>?

<format:typeMap name="qname" formatType="nmtoken"/>*
</format:typeMapping>
<operation>*

<ejb:operation
methodName="nmtoken"
parameterOrder="nmtoken"
returnPart="nmtoken"?
interface="remote|home" />

<input name="nmtoken"? />?
<output name="nmtoken"? />?
<fault name="nmtoken"? />?

</operation>
</binding>

where ″?″ means ″optional″ and ″*″ means ″0 or more″.

Note:

v The format:typeMap name attribute is a qualified name of a simpleType or
complexType used by one of the EJB operations.

v The format:typeMap formatType attribute is the fully qualified Class name for
the Java Class that the element specified by name maps to.

310 IBM WebSphere Application Server Network Deployment, Version 5: Applications

v The ejb:operation methodName attribute is the name of the method on the
enterprise bean that will be called by the operation.

v The ejb:operation parameterOrder attribute contains a whitespace-separated list
of part names which define the order in which they are passed to the EJB
method.

v The ejb:operation interface attribute must be set to either ″remote″ or ″home″.
The value specifies the interface of the enterprise bean on which the method
named by the method attribute is accessible.
<service ... >

<port>*
<ejb:address

class="nmtoken"
jndiName="nmtoken"
initialContextFactory="nmtoken" ?
jndiProviderURL="nmtoken" ? />

</port>
</service>

Note:

v The ejb:address class attribute specifies the fully qualified class name home
interface class of the enterprise bean.

v The ejb:address jndiName attribute specifies the full JNDI name which is used
to look up the enterprise bean.

v The ejb:address initialContextFactory attribute is optional and specifies the
initial context factory class.

v The ejb:address jndiProviderURL attribute is optional and specifies the jndi
provider URL

Developing a WSIF service
A WSIF service is a Web service that uses WSIF. To develop a WSIF service, you
first develop the Web service (or use an existing Web service), then develop the
WSIF client based on the WSDL document for that Web service.

There are also two pre-built WSIF samples available for download from the
http://www.ibm.com/websphere/developer/library/samples/AppServer.html
page of the IBM WebSphere Developer Domain Web site. These are as follows:
v The Address Book sample.
v The Stock Quote sample.

For more information on using the pre-built samples, see the documentation that is
included in the download package.

To develop a WSIF service, complete the following steps:

Steps for this task
1. Develop the Web service.

Use Web services tools to discover, create, and publish the Web service. You can
develop Java bean, enterprise bean, and URL Web services. You can use Web
service tools to create a skeleton Java bean and a sample application from a
WSDL document. For example, an enterprise bean can be offered as a Web
service, using RMI/IIOP as the access protocol. Or you can use a Java class as a
Web service, with native Java invocations as the access protocol.

Chapter 8. Enabling Web services to use the Web Services Invocation Framework 311

http://www7b.software.ibm.com/wsdd/library/samples/AppServer.html

You can use the WebSphere Studio Application Developer to create a Web
service from a Java bean, as described in its StockQuote service tutorial. The
bean that you use in this scenario returns the last trading price from the
Internet Web site www.xmltoday.com given a stock symbol. Using the Web
Service wizard, you generate a binding WSDL document named
StockQuoteService-binding.wsdl and a service WSDL document named
StockQuoteService-service.wsdl from the bean StockQuoteService.java. You then
deploy the Web service to a Web server, generate a client proxy to the Web
service, and generate a sample application that accesses the StockQuoteService
through the client proxy. You test the StockQuote Web service, publish it using
the IBM UDDI Explorer, and then discover the StockQuote Web service in the
IBM UDDI Test Registry.

2. Develop the WSIF client.
The information you need to develop a WSIF client is given in the following
topics:
v Developing the WSIF client - the Address Book sample gives example code

to show how you define a Web service in WSDL.
v Using the WSIF providers describes the available providers, and gives

example code of how their WSDL extensions are coded.
v WSIF API defines the main interfaces that your client uses to support the

invocation of Web services defined in WSDL.

Note: The Address Book sample is written for synchronous interaction. If you
are using a JMS provider, your WSIF client might need to act asynchronously.
WSIF provides two main features that meet this requirement:
v A correlation service that assigns identifiers to messages so that the request

can be matched up with the (eventual) response.
v A response handler that picks up the response from the Web service at a

later time.

For more information see the WSIF API topic WSIFOperation - Asynchronous
interactions reference.

Developing the WSIF client - the Address Book sample
The following code fragments show you how to use the WSIF API to invoke the
AddressBook sample Web service dynamically.

Usage scenario

This is example code for dynamic invocation of the AddressBook sample Web
service using WSIF:

try {
String wsdlLocation="clients/addressbook/AddressBookSample.wsdl";

// The starting point for any dynamic invocation using wsif is a
// WSIFServiceFactory. We create ourselves one via the newInstance
// method.
WSIFServiceFactory factory = WSIFServiceFactory.newInstance();

// Once we have a factory, we can use it to create a WSIFService object
// corresponding to the AddressBookService service in the wsdl file.

// Note: since we only have one service defined in the wsdl file, we
// do not need to use the namespace and name of the service and can pass
// null instead. This also applies to the port type, although values have
// been used below for illustrative purposes.
WSIFService service = factory.getService(

wsdlLocation, // location of the wsdl file

312 IBM WebSphere Application Server Network Deployment, Version 5: Applications

null, // service namespace
null, // service name
"http://www.ibm.com/namespace/wsif/samples/ab", // port type namespace
"AddressBookPT" // port type name

);

// The AddressBook.wsdl file contains the definitions for two complexType
// elements within the schema element. We will now map these complexTypes
// to Java classes. These mappings are used by the Apache SOAP provider
service.mapType(

new javax.xml.namespace.QName(
"http://www.ibm.com/namespace/wsif/samples/ab/types",
"address"),

Class.forName("com.ibm.www.namespace.wsif.samples.ab.types.WSIFAddress"));

service.mapType(
new javax.xml.namespace.QName(

"http://www.ibm.com/namespace/wsif/samples/ab/types",
"phone"),

Class.forName("com.ibm.www.namespace.wsif.samples.ab.types.WSIFPhone"));

// We now have a WSIFService object. The next step is to create a WSIFPort
// object for the port we wish to use. The getPort(String portName) method
// allows us to generate a WSIFPort from the port name.

WSIFPort port = null;

if (portName != null) {
port = service.getPort(portName);

}
if (port == null) {

// If no port name was specified, attempt to create a WSIFPort from
// the available ports for the port type specified on the service

port = getPortFromAvailablePortNames(service);
}

// Once we have a WSIFPort,we can create an operation. We are going to execute
// the addEntry operation and therefore we attempt to create a WSIFOperation
// corresponding to it. The addEntry operation is overloaded in the wsdl ie. there
// are two versions of it, each taking different parameters (parts). This overloading
// requires that we specify the input and output message names for the operation
// in the createOperation method so that the correct operation can be resolved.
// Since the addEntry operation has no output message, we use null for its name.
WSIFOperation operation =

port.createOperation("addEntry", "AddEntryWholeNameRequest", null);

// Create messages to use in the execution of the operation. This should
// be done by invoking the createXXXXXMessage methods on the WSIFOperation.
WSIFMessage inputMessage = operation.createInputMessage();
WSIFMessage outputMessage = operation.createOutputMessage();
WSIFMessage faultMessage = operation.createFaultMessage();

// Create a name and address to add to the addressbook
String nameToAdd = "Chris P. Bacon";
WSIFAddress addressToAdd =

new WSIFAddress (1,
"The Waterfront",
"Some City",
"NY",
47907,
new WSIFPhone (765, "494", "4900"));

// Add the name and address to the input message
inputMessage.setObjectPart("name", nameToAdd);
inputMessage.setObjectPart("address", addressToAdd);

// Execute the operation, obtaining a flag to indicate its success
boolean operationSucceeded =

Chapter 8. Enabling Web services to use the Web Services Invocation Framework 313

operation.executeRequestResponseOperation(
inputMessage,
outputMessage,
faultMessage);

if (operationSucceeded) {
System.out.println("Successfully added name and address to addressbook\n");

} else {
System.out.println("Failed to add name and address to addressbook");

}

// Start from fresh
operation = null;
inputMessage = null;
outputMessage = null;
faultMessage = null;

// This time we will lookup an address from the addressbook.
// The getAddressFromName operation is not overloaded in the
// wsdl and therefore we can simply specify the operation name
// without any input or output message names.
operation = port.createOperation("getAddressFromName");

// Create the messages
inputMessage = operation.createInputMessage();
outputMessage = operation.createOutputMessage();
faultMessage = operation.createFaultMessage();

// Set the name to find in the addressbook
String nameToLookup = "Chris P. Bacon";
inputMessage.setObjectPart("name", nameToLookup);

// Execute the operation
operationSucceeded =

operation.executeRequestResponseOperation(
inputMessage,
outputMessage,
faultMessage);

if (operationSucceeded) {
System.out.println("Successful lookup of name ’" + nameToLookup + "’ in addressbook");

// We can obtain the address that was found by querying the output message
WSIFAddress addressFound = (WSIFAddress) outputMessage.getObjectPart("address");
System.out.println("The address found was:");
System.out.println(addressFound);

} else {
System.out.println("Failed to lookup name in addressbook");

}

} catch (Exception e) {
System.out.println("An exception occurred when running the sample:");
e.printStackTrace();

}
}

The code above refers to the following sample method:
WSIFPort getPortFromAvailablePortNames(WSIFService service)

throws WSIFException {
String portChosen = null;

// Obtain a list of the available port names for the service
Iterator it = service.getAvailablePortNames();
{

System.out.println("Available ports for the service are: ");
while (it.hasNext()) {

314 IBM WebSphere Application Server Network Deployment, Version 5: Applications

String nextPort = (String) it.next();
if (portChosen == null)

portChosen = nextPort;
System.out.println(" - " + nextPort);

}
}
if (portChosen == null) {

throw new WSIFException("No ports found for the service!");
}
System.out.println("Using port " + portChosen + "\n");

// An alternative way of specifying the port to use on the service
// is to use the setPreferredPort method. Once a preferred port has
// been set on the service, a WSIFPort can be obtained via getPort
// (no arguments). If a preferred port has not been set and more than
// one port is available for the port type specified in the WSIFService,
// an exception is thrown.
service.setPreferredPort(portChosen);
WSIFPort port = service.getPort();
return port;

}

The web service itself uses the following classes:

WSIFAddress:
public class WSIFAddress implements Serializable {

//instance variables
private int streetNum;
private java.lang.String streetName;
private java.lang.String city;
private java.lang.String state;
private int zip;
private WSIFPhone phoneNumber;

//constructors
public WSIFAddress () { }

public WSIFAddress (int streetNum,
java.lang.String streetName,
java.lang.String city,
java.lang.String state,
int zip,
WSIFPhone phoneNumber) {

this.streetNum = streetNum;
this.streetName = streetName;
this.city = city;
this.state = state;
this.zip = zip;
this.phoneNumber = phoneNumber;

}

public int getStreetNum() {
return streetNum;

}

public void setStreetNum(int streetNum) {
this.streetNum = streetNum;

}

public java.lang.String getStreetName() {
return streetName;

}

public void setStreetName(java.lang.String streetName) {
this.streetName = streetName;

Chapter 8. Enabling Web services to use the Web Services Invocation Framework 315

}

public java.lang.String getCity() {
return city;

}

public void setCity(java.lang.String city) {
this.city = city;

}

public java.lang.String getState() {
return state;

}

public void setState(java.lang.String state) {
this.state = state;

}

public int getZip() {
return zip;

}

public void setZip(int zip) {
this.zip = zip;

}

public WSIFPhone getPhoneNumber() {
return phoneNumber;

}

public void setPhoneNumber(WSIFPhone phoneNumber) {
this.phoneNumber = phoneNumber;

}
}

WSIFPhone:
public class WSIFPhone implements Serializable {

//instance variables
private int areaCode;
private java.lang.String exchange;
private java.lang.String number;

//constructors
public WSIFPhone () { }

public WSIFPhone (int areaCode,
java.lang.String exchange,
java.lang.String number) {

this.areaCode = areaCode;
this.exchange = exchange;
this.number = number;

}

public int getAreaCode() {
return areaCode;

}

public void setAreaCode(int areaCode) {
this.areaCode = areaCode;

}

public java.lang.String getExchange() {
return exchange;

}

316 IBM WebSphere Application Server Network Deployment, Version 5: Applications

public void setExchange(java.lang.String exchange) {
this.exchange = exchange;

}

public java.lang.String getNumber() {
return number;

}

public void setNumber(java.lang.String number) {
this.number = number;

}
}

WSIFAddressBook:
public class WSIFAddressBook {

private Hashtable name2AddressTable = new Hashtable();

public WSIFAddressBook() {
}

public void addEntry(String name, WSIFAddress address)
{

name2AddressTable.put(name, address);
}

public void addEntry(String firstName, String lastName, WSIFAddress address)
{

name2AddressTable.put(firstName+" "+lastName, address);
}

public WSIFAddress getAddressFromName(String name)
throws IllegalArgumentException

{

if (name == null)
{

throw new IllegalArgumentException("The name argument must not be " +
"null.");

}
return (WSIFAddress)name2AddressTable.get(name);

}

}

And here’s the corresponding WSDL file for the Web service:
<?xml version="1.0" ?>

<definitions targetNamespace="http://www.ibm.com/namespace/wsif/samples/ab"
xmlns:tns="http://www.ibm.com/namespace/wsif/samples/ab"
xmlns:typens="http://www.ibm.com/namespace/wsif/samples/ab/types"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:format="http://schemas.xmlsoap.org/wsdl/formatbinding/"
xmlns:java="http://schemas.xmlsoap.org/wsdl/java/"
xmlns:ejb="http://schemas.xmlsoap.org/wsdl/ejb/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>
<xsd:schema

targetNamespace="http://www.ibm.com/namespace/wsif/samples/ab/types"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:complexType name="phone">
<xsd:element name="areaCode" type="xsd:int"/>
<xsd:element name="exchange" type="xsd:string"/>
<xsd:element name="number" type="xsd:string"/>

Chapter 8. Enabling Web services to use the Web Services Invocation Framework 317

</xsd:complexType>

<xsd:complexType name="address">
<xsd:element name="streetNum" type="xsd:int"/>
<xsd:element name="streetName" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zip" type="xsd:int"/>
<xsd:element name="phoneNumber" type="typens:phone"/>

</xsd:complexType>

</xsd:schema>
</types>

<message name="AddEntryWholeNameRequestMessage">
<part name="name" type="xsd:string"/>
<part name="address" type="typens:address"/>

</message>

<message name="AddEntryFirstAndLastNamesRequestMessage">
<part name="firstName" type="xsd:string"/>
<part name="lastName" type="xsd:string"/>
<part name="address" type="typens:address"/>

</message>

<message name="GetAddressFromNameRequestMessage">
<part name="name" type="xsd:string"/>

</message>

<message name="GetAddressFromNameResponseMessage">
<part name="address" type="typens:address"/>

</message>

<portType name="AddressBookPT">
<operation name="addEntry">

<input name="AddEntryWholeNameRequest"
message="tns:AddEntryWholeNameRequestMessage"/>

</operation>
<operation name="addEntry">

<input name="AddEntryFirstAndLastNamesRequest"
message="tns:AddEntryFirstAndLastNamesRequestMessage"/>

</operation>
<operation name="getAddressFromName">

<input name="GetAddressFromNameRequest" message="tns:GetAddressFromNameRequestMessage"/>
<output name="GetAddressFromNameResponse" message="tns:GetAddressFromNameResponseMessage"/>

</operation>
</portType>

<binding name="SOAPHttpBinding" type="tns:AddressBookPT">
<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="addEntry">

<soap:operation soapAction=""/>
<input name="AddEntryWholeNameRequest">

<soap:body use="encoded"
namespace="http://www.ibm.com/namespace/wsif/samples/ab"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
</operation>
<operation name="addEntry">

<soap:operation soapAction=""/>
<input name="AddEntryFirstAndLastNamesRequest">

<soap:body use="encoded"
namespace="http://www.ibm.com/namespace/wsif/samples/ab"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
</operation>

318 IBM WebSphere Application Server Network Deployment, Version 5: Applications

<operation name="getAddressFromName">
<soap:operation soapAction=""/>
<input name="GetAddressFromNameRequest">

<soap:body use="encoded"
namespace="http://www.ibm.com/namespace/wsif/samples/ab"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output name="GetAddressFromNameResponse">

<soap:body use="encoded"
namespace="http://www.ibm.com/namespace/wsif/samples/ab"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>

<binding name="JavaBinding" type="tns:AddressBookPT">
<java:binding/>
<format:typeMapping encoding="Java" style="Java">

<format:typeMap typeName="typens:address"
formatType="com.ibm.www.namespace.wsif.samples.ab.types.WSIFAddress" />

<format:typeMap typeName="xsd:string" formatType="java.lang.String" />
</format:typeMapping>
<operation name="addEntry">

<java:operation
methodName="addEntry"
parameterOrder="name address"
methodType="instance" />

<input name="AddEntryWholeNameRequest"/>
</operation>
<operation name="addEntry">

<java:operation
methodName="addEntry"
parameterOrder="firstName lastName address"
methodType="instance" />

<input name="AddEntryFirstAndLastNamesRequest"/>
</operation>
<operation name="getAddressFromName">

<java:operation
methodName="getAddressFromName"
parameterOrder="name"
methodType="instance"
returnPart="address" />

<input name="GetAddressFromNameRequest"/>
<output name="GetAddressFromNameResponse"/>

</operation>
</binding>

<binding name="EJBBinding" type="tns:AddressBookPT">
<ejb:binding/>
<format:typeMapping encoding="Java" style="Java">

<format:typeMap typeName="typens:address"
formatType="com.ibm.www.namespace.wsif.samples.ab.types.WSIFAddress" />

<format:typeMap typeName="xsd:string" formatType="java.lang.String" />
</format:typeMapping>
<operation name="addEntry">

<ejb:operation
methodName="addEntry"
parameterOrder="name address"
interface="remote" />

<input name="AddEntryWholeNameRequest"/>
</operation>
<operation name="addEntry">

<ejb:operation
methodName="addEntry"
parameterOrder="firstName lastName address"
interface="remote" />

<input name="AddEntryFirstAndLastNamesRequest"/>

Chapter 8. Enabling Web services to use the Web Services Invocation Framework 319

</operation>
<operation name="getAddressFromName">

<ejb:operation
methodName="getAddressFromName"
parameterOrder="name"
interface="remote"
returnPart="address" />

<input name="GetAddressFromNameRequest"/>
<output name="GetAddressFromNameResponse"/>

</operation>
</binding>
<service name="AddressBookService">

<port name="SOAPPort" binding="tns:SOAPHttpBinding">
<soap:address

location="http://localhost/wsif/samples/addressbook/soap/servlet/rpcrouter"/>
</port>
<port name="JavaPort" binding="tns:JavaBinding">

<java:address className="services.addressbook.WSIFAddressBook"/>
</port>
<port name="EJBPort" binding="tns:EJBBinding">

<ejb:address class="services.addressbook.ejb.AddressBook"
jndiName="ejb/samples/wsif/AddressBook"

classLoader="services.addressbook.ejb.AddressBook.ClassLoader"/>
</port>

</service>

</definitions>

Using complex types
WSIF supports the use of user defined complex types through the mapping of
complex types to Java classes. This mapping must be specified by the user. The
method to use to create these mappings depends on the provider being used. For
the Java and EJB providers, the mappings are specified in the wsdl file in the
binding element. The syntax for specifying the mapping is as follows:

<binding >
<ejb:binding|java:binding/>

<format:typeMapping style="Java" encoding="Java"/>?
<format:typeMap name="qname" formatType="nmtoken"/>*

</format:typeMapping>
...
</binding>

where ″?″ means ″optional″ and ″*″ means ″0 or more″.

The format:typeMap name attribute is a qualified name of a complex type or
simple type used by one of the operations.

The format:typeMap formatType attribute is the fully qualified Class name for the
Java Class that the element specified by name maps to.

If using the Apache SOAP provider then the mapping of a complex type to a Java
Class is specified in the client code through two methods on the
org.apache.wsif.WSIFService interface:
public void mapType(QName elementType, Class javaType)

and
public void mapPackage(String namespaceURI, String packageName)

320 IBM WebSphere Application Server Network Deployment, Version 5: Applications

The mapType allows the user to specify a mapping between a WSDL element and
method takes a QName representing the complex type or simple type and the
corresponding Java Class it maps to.

The mapPackage method allows the user to specify a more general mapping
between a namespace and a Java package. Any custom complex or simple types
whose namespace matches that of the mapping will be mapped to a Java Class in
the corresponding package. The name of the actual class is derived from the name
of the complex type using standard xml to Java naming conventions.

Using JNDI
This example task shows you how to use WSIF to bind a reference to a Web
service, then look up the reference using JNDI.

You access a Web service through information given in the WSDL document for
the service. If you don’t know where to find the WSDL document for the service,
but you know that it has been registered in a UDDI registry, you look it up in the
registry. Java programs access java objects and resources in a similar manner, but
using a JNDI interface.

The following example shows how, using WSIF, you can bind a reference to a Web
service then look up the reference using JNDI.

Usage scenario

Specifying the argument values for the Web Service

The Web service is represented in WSIF by an instance of the
org.apache.wsif.naming.WSIFServiceRef class. This simple Referencable object has
the following constructor:
public WSIFServiceRef(

String WSDL,
String sNS,
String sName,
String ptNS,
String ptName)

{
[...]

}

where
v WSDL is the location of the WSDL file containing the definition of the service.
v sNS is the full namespace for the service definition (null can be specified if only

one service is defined in the WSDL file).
v sName is the local name for the service definition (null can be specified if only

one service is defined in the WSDL file).
v ptNS is the full namespace for the port type within the service that you want to

use (null can be specified if only one port type is available for the service).
v ptName is the local name for the port type (null can be specified if only one port

type is available for the service).

For example, if the WSDL file for the Web service is available from the URL
http://localhost/WSDL/Example.WSDL and contains the following service and port
type definitions -

Chapter 8. Enabling Web services to use the Web Services Invocation Framework 321

<definitions targetNamespace="http://hostname/namespace/example"
xmlns:abc="http://hostname/namespace/abc"

[...]
<portType name="ExamplePT">

<operation name="exampleOp">
<input name="exampleInput" message="tns:ExampleInputMsg"/>

</operation>
</portType>

[...]
<service name="abc:ExampleService">

[...]
</service>

[...]
</definitions>

- then you specify the following argument values for WSIFServiceRef:
v WSDL is http://localhost/WSDL/Example.WSDL

v sNS is http://hostname/namespace/abc

v sName is ExampleService

v ptNS is http://hostname/namespace/example

v ptName is ExamplePT

Binding the service using JNDI

To bind the service reference in the naming directory using JNDI, you can use the
WebSphere Application Server JndiHelper com.ibm.websphere.naming.JndiHelper
class as follows:

[...]
import com.ibm.websphere.naming.JndiHelper;
import org.apache.wsif.naming.*;

[...]
try {

Context startingContext = new InitialContext();
WSIFServiceRef ref = new WSIFServiceRef("http://localhost/WSDL/Example.WSDL,

"http://localhost/WSDL/Example.WSDL",
"http://hostname/namespace/abc"
"ExampleService",
"http://hostname/namespace/example",
"ExamplePT");

JndiHelper.recursiveRebind(startingContext, "myContext/mySubContext/myServiceRef", ref);

}
catch (NamingException e) {

// Handle error.
}

[...]

Looking up the service using JNDI

The following code fragment shows the lookup of a service using JNDI:
[...]

try {
[...]

InitialContext ic = new InitialContext();
WSIFService myService = (WSIFService) ic.lookup("myContext/mySubContext/myServiceRef");

[...]
}
catch (NamingException e) {

// Handle error.
}

[...]

322 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Interacting with the WebSphere J2EE container
Interaction with a container is limited to the following aspects:

Steps for this task
1. The WebSphere Application Server administrative console and WCCM allow

users to define Web services to WebSphere. This is described in Using JNDI
and WSIF system management and administration. As part of the definition of
a service, the administrator may define a ″Preferred Port″.

2. WSIF makes log and trace calls to the WebSphere Server JRAS services, as
described in Trace and logging for WSIF.

3. Some providers use the J2EE programming model to utilize J2EE services. The
EJB provider uses JNDI and calls to remote EJBs.

4. WSIF wraps the use of container services so that when WSIF is run in an
unmanaged (thin) environment, the operation can succeed.

Running WSIF as a client
WSIF runs in the WebSphere Appplication Server application client container, and
in similar clients from other suppliers.

To simplify the process of launching client applications in the WebSphere
Application Server application client, use the launchClient tool as described in
(Running application clients).

WSIF system management and administration
WSIF is provided as a standalone JAR file called wsif.jar. The JAR file contains
the core WSIF classes, and the Java, EJB, SOAP over HTTP and SOAP over JMS
providers. Additional providers are packaged as separate JAR files.

When you install WebSphere Application Server, wsif.jar is put on the WebSphere
or JVM class path.

WSIF requires no further configuration. WSIF is a thin abstraction layer between
application code and the relevant invocation infrastructure.

For specific information on other aspects of managing your WSIF system, see the
following topics:
v Maintaining the WSIF properties file.
v Enabling security for WSIF.
v Trace and logging for WSIF.
v WSIF troubleshooting tips.
v WSIF (Web Services Invocation Framework) messages.

Maintaining the WSIF properties file
WSIF properties are stored in a properties file (in wsif.jar) called wsif.properties.
This file is kept on the class path, so that WSIF can find it and the client
administrator can use it to configure WSIF.

The initial contents of wsif.properties are printed out below. All the possible
properties are listed and described.

Usage scenario

Chapter 8. Enabling Web services to use the Web Services Invocation Framework 323

Two properties are used to override which WSIFProvider is selected when there
exists multiple providers supporting the same namespace URI. These properties are:
#
wsif.provider.default.CLASSNAME=N
wsif.provider.uri.M.CLASSNAME=URI
#
CLASSNAME is the WSIFProvider class name
N is the number of following default wsif.provider.uri.M.CLASSNAME properties
M is a number from 1 to N to uniquely identify each wsif.provider.uri.M.CLASSNAME
property key.
For example the following two properties would override the default SOAP provider
to be the Apache SOAP provider:
#
wsif.provider.default.org.apache.wsif.providers.soap.apacheaxis.WSIFDynamicProvider_ApacheAxis=1
wsif.provider.uri.1.org.apache.wsif.providers.soap.apacheaxis.WSIFDynamicProvider_ApacheAxis=\
http://schemas.xmlsoap.org/wsdl/soap/
#

maximum number of milliseconds to wait for a response to a synchronous request.
Default value if not defined is to wait forever.
wsif.syncrequest.timeout=10000

maximum number of seconds to wait for a response to an async request.
if not defined on invalid defaults to no timeout
wsif.asyncrequest.timeout=60

Enabling security for WSIF
WSIF interacts with a security manager as follows:
v WSIF runs in the current J2EE security context without modifying it.
v When WSIF is run under a J2EE container, Port implementations can utilize

security context to pass on security tokens or credentials as necessary.
v WSIF implementations can automatically convert J2EE security context into

appropriate context for onward services.

For WSIF to interact effectively with the WebSphere Application Server’s security
manager, the following permissions must be set in the server.policy file:
v FilePermission to load the WSDL (this is only required when a WSDL file is

referred to using the file:/// protocol)
v RuntimePermission ″getClassLoader″ for the current thread’s context class loader

(this is not required by the EJB portion).
v RuntimePermission ″accessDeclaredMembers″ (this is required by both portions

for handling enterprise beans)
v PropertyPermission for system properties (this is required by SOAP and many

others; read and write access is required for the SOAP and Java portion, only
write access is required for the EJB portion)

v NetPermission ″specifyStreamHandler″ (this must be in either the SOAP and
Java portion, or the EJB portion, but it need not be in both).

v SocketPermission ″host_name″, ″resolve″ (this is not required by the SOAP and
Java portion)

v SocketPermission ″host_name:port_no″, ″connect″ (this is required by both
portions)

where host_name is your host name (for example localhost), and port_no is your
port number (for example 9080).

324 IBM WebSphere Application Server Network Deployment, Version 5: Applications

WSIF troubleshooting tips
For information on resolving WebSphere-level problems, see Diagnosing and fixing
problems.

To identify and resolve WSIF-related problems, you can use the standard
WebSphere Application Server trace and logging facilities. If you encounter a
problem that you think might be related to WSIF, you can check for error messages
in the WebSphere Application Server administrative console, and in the application
server’s stdout.log file. You can also enable the application server debug trace to
provide a detailed exception dump.

A list of the WSIF runtime system messages, with details of what each message
means, is given in Message reference for WSIF.

Here is a checklist of major WSIF activities, with advice on common problems
associated with each activity:

Create service
Handcrafted WSDL can cause numerous problems. To help ensure that
your WSDL is valid, use a tool such as WebSphere Studio Application
Developer (WSAD) to create your service.

Define transport mechanism
For JMS, check that you have set up JNDI correctly, and created all the
necessary queues.

For SOAP, make sure that the deployment descriptor (dds.xml) is correct -
preferably by creating it using WSAD or similar tooling.

Create client - Java code
Follow the correct format for creating a WSIF service, port, operation and
message. For examples of correct code, see the Address Book sample.

Compile code (client and service)
Check that the build path against code is correct, and that it contains the
correct levels of JAR files.

Create a valid EAR file for your service in preparation for deployment to a
web server.

Deploy service
When you install and deply the service EAR file, check carefully any
messages given when the service is deployed.

Server setup and start
Make sure that the WebSphere Application Server file server.policy (in
the /properties directory) has the correct security settings within it. For
more information see Enabling security for WSIF.

WSIF setup
Check that file wsif.properties is correctly set up. For more information
see Maintaining the WSIF properties file.

Run client
Either check that you have defined the class path correctly to include
references to your client classes, WSIF JAR files and any other necessary
JARs, or (preferably) run your client using the WebSphere Application
Server (launchClient) tool.

Here is a list of common errors, and information on their probable causes:

Chapter 8. Enabling Web services to use the Web Services Invocation Framework 325

″No class definition″ errors received when running client code
This is likely to be a problem with the class path setup. Check that the
relevant JAR files are included.

″Can’t find WSDL″ error

Some likely causes are:
v The application server is not running.
v The server location and port number in the WSDL are not correct.
v The WSDL is badly formed (check the error messages in the application

server’s stdout.log file).
v The application server has not been restarted since the service was

installed.

You might also try the following checks:
v Can you load the WSDL into your Web browser from the location

specified in the error message?
v Can you load the corresponding WSDL binding files into your Web

browser?

Your Web service’s EAR file does not install correctly onto the application
server. It is likely that the EAR file is badly formed. Verify the installation by

completing the following steps:
v For an EJB binding, run the WebSphere Application Server tool

\bin\dumpnamespace. This tool lists the current contents of the JNDI
directory.

v For a SOAP over HTTP binding, open
http://pathToServer/WebServiceName/admin/list.jsp (if you have the
SOAP administration pages installed). This page lists all currently
installed Web services.

v For a SOAP over JMS binding, complete the following checks:
– Check that the Queue Manager is running.
– Check that the necessary queues are defined.
– Check the JNDI setup.
– Use the jmsadmin tool’s ″display context″ option to list the current

JNDI definitions.
– Check that the RPCrouter is running.

There is a permissions problem or security error.
Check that the WebSphere Application Server file server.policy (in the
/properties directory) has the correct security settings within it. For more
information see Enabling security for WSIF.

Using WSIF with multiple clients causes a SOAP parsing error.
Before you deploy a Web service to WebSphere Application Server, you
must decide on the Web service’s scope. The application’s deployment
descriptor file (dds.xml) includes the following line:

<isd:provider type="java" scope="Application"

You can set Scope to ″Application″ or ″Session″. The default setting is
″Application″, and this is correct if each request to the Web service does
not require objects to be maintained for longer than a single instance. If
Scope is set to ″Application″ the objects are not available to another request
during the execution of the single instance, and they are released on
completion. If your Web service needs objects to be maintained for

326 IBM WebSphere Application Server Network Deployment, Version 5: Applications

multiple requests, and to be unique within each request, you must set the
scope to ″Session″. If Scope is set to ″Session″, the objects are not available
to another request during the life of the session, and they are released on
completion of the session. If scope is set to ″Application″ but it should be
set to ″Session″, you might get the following SOAP error:

SOAPException: SOAP-ENV:ClientParsing error, response was:
FWK005 parse may not be called while parsing.;
nested exception is:

[SOAPException: faultCode=SOAP-ENV:Client; msg=Parsing error, response was:

FWK005 parse may not be called while parsing.; targetException=org.xml.sax.SAXException:
FWK005 parse may not be called while parsing.]

Trace and logging for WSIF
If you want to enable trace for the WSIF API within WebSphere Application Server,
and have trace, stdout and stderr for the application server written to a
well-known location, see Enabling trace.

WSIF offers tracepoints at opening and closing of Ports, invocation of services, and
responses from services.

To trace the WSIF API, you need to specify the following trace string:
wsif=all=enabled

WSIF also includes a SimpleLog utility through which you can run trace when
using WSIF outside of WebSphere Application Server. To enable this, complete the
following steps:

Steps for this task
1. create file commons-logging.properties with the following contents:

org.apache.commons.logging.LogFactory=org.apache.commons.logging.impl.LogFactoryImpl
org.apache.commons.logging.Log=org.apache.commons.logging.impl.SimpleLog

2. create file simplelog.properties with the following contents:
org.apache.commons.logging.simplelog.defaultlog=trace
org.apache.commons.logging.simplelog.showShortLogname=true
org.apache.commons.logging.simplelog.showdatetime=true

3. Put both these files, and commons-logging.jar, on the class path.

Results

The SimpleLog mechanism writes trace to file System.err.

WSIF (Web Services Invocation Framework) messages
WebSphere system messages are logged from a variety of sources, including
application server components and applications. Messages logged by application
server components and associated IBM products start with a unique message
identifier that indicates the component or application that issued the message. For
more information about the message identifier format, see the topic Message
Format.

The rest of this topic contains a list of the WSIF runtime system messages, with
details of what each message means.

WSIF0001E: An extension registry was not found for the element type ″{0}″
Explanation: Parameters: {0} element type. No extension registry was
found for the element type specified.

Chapter 8. Enabling Web services to use the Web Services Invocation Framework 327

User Response: Add the appropriate extension registry to the port factory
in your code.

WSIF0002E: A failure occured in loading WSDL from ″{0}″
Explanation: Parameters: {0} location of the WSDL file. The WSDL file
could not be found at the location specified or did not parse correctly

User Response: Check that the location of the WSDL file is correct. Check
that any network connections required are available. Check that the WSDL
file contains valid WSDL.

WSIF0003W: An error occured finding pluggable providers: {0}
Explanation: Parameters: {0} specific details about the error. There was a
problem locating a WSIF pluggable provider using the J2SE 1.3 JAR file
extensions to support service providers architecture. The WSIF trace file
will contain the full exception details.

User Response: Verify that a META-
INF/services/org.apache.wsif.spi.WSIFProvider file exists in a provider jar,
that each class referenced in the META-INF file exists in the class path, and
that each class implements org.apache.wsif.spi.WSIFProvider. The class in
error will be ignored and WSIF will continue locating other pluggable
providers.

WSIF0004E: WSDL contains an operation type ″{0}″ which is not supported for
″{1}″ Explanation: Parameters: {0} name of the operation type specified. {1}

name of the portType for the operation. An operation type which is not
supported has been specified in the WSDL.

User Response: Remove any operations of the unsupported type from the
WSDL. If the operation is required then make sure all messages have been
correctly specified for the operation.

WSIF0005E: An error occured when invoking the method ″{1}″ . (″{0}″)
Explanation: Parameters: {0} name of communication type. For example
EJB or ApacheSOAP. {1} name of the method that failed. An error was
encountered when invoking a method on the web service using the
communication shown in brackets.

User Response: Check that the method exists on the web service and that
the correct parts have been added to the operation as described in the
WSDL. Network problems might be a cause if the method is remote and so
check any required connections.

WSIF0006W: Multiple WSIFProvider found supporting the same namespace URI
″{0}″ . Found (″{1}″)

Explanation: Parameters: {0} the namespace URI. {1} a list of the
WSIFProvider found.. There are multiple org.apache.wsif.spi.WSIFProvider
classes in the service provider path that support the same namespace URI.

User Response: A following WSIF0007I message will be issued notifying
which WSIPFProvider will be used. Which WSIFProvider is chosen is
based on settings in the wsif.properties file, or if not defined in the
properties, the last WSIFProvider found will be used. See the
wsif.properties file for more details on how to define which provider
should be used to support a namespace URI.

WSIF0007I: Using WSIFProvider ″{0}″ for namespaceURI ″{1}″
Explanation: Parameters: {0} the classname of the WSIFProvider being
used. {1} the namespaceURI the provider will be used to support.. Either a

328 IBM WebSphere Application Server Network Deployment, Version 5: Applications

previous WSIF0006W message has been issued or the
SetDynamicWSIFProvider method has been used to override the provider
used to support a namespaceURI.

User Response: None. See also WSIF0006W.

WSIF0008W: WSIFDefaultCorrelationService removing correlator due to timeout.
ID:″{0}″

Explanation: Parameters: {0} the id of the correlator being removed from
the correlation service. A stored correlator is being removed from the
correlation service due to its timeout expiring.

User Response: Determine why no response has been received for the
asynchronous request within the timeout period. The
wsif.asyncrequest.timeout property of the wsif.properties file defines the
length of the timeout period.

WSIF0009I: Using correlation service - ″{0}″
Explanation: Parameters: {0} the name of the correlation service being
used. This identifies the name of the correlation service that will be used to
prccess asynchronous requests.

User Response: None. If a correlation service other than the default WSIF
supplied one is required, ensure that it is correctly registered in the JNDI
java:comp/wsif/WSIFCorrelationService namespace.

WSIF0010E: Exception thrown while processing asynchronous response - ″{0}″
Explanation: Parameters: {0} the error message string of the exception.
While processing the response from an executeRequestResponseAsync call
an exception was thrown.

User Response: Use the exception error message string to determine the
cause of the error. The WSIF trace will have more details on the error
including the exception stack trace.

WSIF0011I: Preferred port ″{0}″ was not available
Explanation: Parameters: {0} the user’s preferred port. The preferred port
set by the user on org.apache.wsif.WSIFService is not available

User Response: None unless this message appears for long periods of time
in which case the user might want to pick a different port as their
preferred port.

WSIF API
The WSIF API supports the invocation of Services defined in WSDL. WSIF is
intended to be used in both WSIF clients and also in Web service intermediaries.

The WSIF API is driven by the abstract service description in WSDL; it is
completely independent of the actual binding used. This makes the API more
natural to work with, because it uses WSDL terms to refer to message parts,
operations, and so on.

The WSIF API was designed for the WSDL usage model; to pick a port that
supports the port type needed, then invoke the operation by providing the
necessary abstract input message consisting of the required parts, without
worrying about how the message is mapped to a specific binding protocol.

Chapter 8. Enabling Web services to use the Web Services Invocation Framework 329

Other Web service APIs, for example SOAP APIs, are not designed on WSDL, but
for a specific binding protocol with its associated syntax; for example, target URIs
and encoding styles.

The WSIF API’s main interfaces are described in the following topics:
v Creating a message for sending to a port (the WSIFMessage interface).
v WSIF API reference: Finding a port factory or service (the WSIFService interface

and the WSIFServiceFactory class).
v WSIF API reference: Using ports (the WSIFPort interface and the

WSIFOperation interface).

Note: You must ensure that your application uses only one thread to call WSIF.

For additional technical details of the WSIF API, see the WSIF javadoc
(../javadoc/wsi/index.html).

WSIF API reference: Creating a message for sending to a port
For message management (that is, message construction and parsing) the
underlying API is modeled on WSDL semantics. There is a simple and direct
mapping from the WSDL model to WSIF classes.

In WSDL, a Message describes the abstract type of the input or output to an
operation. The corresponding WSIF class is WSIFMessage, which represents in
memory the actual input or output of an operation. A WSIFMessage is a container
for a set of named parts. The WSIFMessage interface separates the actual
representation of the data from the abstract type defined by WSDL. WSDL defines
Messages as XML Schema types. There are three natural ways to represent a WSDL
message in a runtime environment:
v The generated Java class based on a WSDL to Java mapping such as that

provided by JAX-RPC.
v The XML representation of the data, for example using SOAP Encoding.

Each option offers benefits in different scenarios. The Java class is the natural
approach when WSIF is being used in a standard Java client. However, in other
scenarios where WSIF is being used in an intermediary, it may be more efficient to
keep a WSDL Message in the SOAP encoded format.

The style used to define messages must be consistent within the message, so all the
parts in one message must be consistent. A string - getRepresentationStyle() -
always returns null. This indicates that parts on this WSIFMessage are represented
as Java objects.

Parts are added to a WSIFMessage with setObjectPart or setTypePart. Each part is
named. Part names within a message are unique. If a part is set multiple times, the
last time is the one that stands.

Parts are retrieved from a WSIFMessage by name with getObjectPart or
getTypePart. If the named part does not exist, the getXXXXPart method returns a
WSIFException.

Parts can be retrieved from the Message by use of Iterators through the getParts()
and getPartNames() methods.

330 IBM WebSphere Application Server Network Deployment, Version 5: Applications

The order in which parts are set is not currently important, but the Message
implementation may be more efficient if the parts are set in the parameter order
specified by WSDL.

WSIFMessages are cloneable and serializable. If the parts set are not cloneable, the
implementation should try to clone them using serialization. If the parts are not
serializable either, then a CloneNotSupportedException will be thrown if cloning is
attempted.

WSIFMessages can be sent between JVMs.

In addition to the containing parts, a WSIFMessage also has a message name. This
is required for operation overloading - which is supported by WSDL and WSIF.

Here is the Javadoc for the WSIFMessage interface.

WSIF API reference: Finding a port factory or service
To find a port you use WSIFService, which is a factory for ports. The port factory
models and supports the WSDL approach in which a service is available on one or
more ports. The factory hides the implementation of the port from the user. WSIF
supports ″dynamic″ ports that are based on a particular protocol/transport and
configured using the WSDL at runtime. For example, the dynamic SOAP port can
invoke any SOAP service based on the WSDL description of that service. The
Service allows you to hide and modify this at runtime.

Here is the WSIFService interface.

To find a service from a WSDL document at a URL, or from a code-generated
codebase, you can use the WSIFServiceFactory class.

WSIFService interface
The WSIFService is responsible for generating an instance of WSIFOperation to be
used for a particular invocation of a service operation.

The WSIF service stores a list of providers that can each generate a WSIF operation
for a particular WSDL binding. This service looks up providers by the provider
type, so, for example, it knows about one provider that handles SOAP ports, and
other providers that handle Java ports that you define. In a managed environment,
the container can configure WSIFService.

Here is the Javadoc for the WSIFService interface.

A WSIFService implementation can choose a preferred port based on a number of
criteria. The WSIFService implementation can set the preferred port, or it can be set
by calling setPreferredPort.

The getPort method returns an instance of WSIFPort that is used to invoke a
service on the port. Variants of the getPort method are used to define the
characteristics of the port to be created. getPort with no arguments returns the
″preferred″ port. getPort with a string argument returns the port named by the
string containing the WSDL identifier for the selected port. The return value is
null if the port name is not valid.

If a port is chosen (either by WSIFService default behavior, or by setPreferredPort),
then the WSIFService implementation validates that the relevant provider exists
and is configured. If the provider fails this validation check, WSIFService chooses

Chapter 8. Enabling Web services to use the Web Services Invocation Framework 331

any other port whose provider is defined. For example, if the preferred port is
SOAP over JMS, but the JMS libraries are not available, WSIF chooses another port.
If no preferred port is set, or the preferred port is not available, the WSIF
implementation chooses the first available port listed in the WSDL.

The method getAvailablePortNames() returns an Iterator of Strings which is the
list names of WSDL ports, filtered by the set of available providers.

The getDefinition() method returns the WSDL definition that was used to provide
the Service. If the WSDL definition is not available, this returns a null.

WSIFServiceFactory class
To find a service from a WSDL document at a URL, or from a code-generated
codebase, you can use the WSIFServiceFactory class.

Note: When creating a WSIFService from a WSIFServiceFactory you can specify a
ClassLoader object to use in locating the WSDL file. You need to do this when the
WSDL file is in a JAR file. In such a case, the location of the WSDL file is specified
relative to the root of the JAR file, using forward slashes with the preceeding slash
removed.

For example:
com/myCompany/wsdl/MyWSDLFile.wsdl

rather than
/com/myCompany/wsdl/MyWSDLFile.wsdl

Here is the Javadoc for the WSIFServiceFactory class.

The WSIFServiceFactory returns a null if no service is found with that identifier.

WSIF API reference: Using ports
A WSIFPort handles the details of invoking an operation. The port provides access
to the actual implementation of the service. A WSDL can provide many different
WSDL Bindings, and these bindings can drive multiple Ports. The client can choose
a Port, the service stub can choose a Port, or WSIF can choose a default Port.

The Port offers an interface to retrieve an Operation object. A WSIFOperation offers
the ability to execute the given operation.

Note:

If the Port is serialized and deserialized at a later time, then WSIF ensures that the
client provides the correct information to the server to identify the instance. If the
server instance is no longer available, then it is up to the server to decide whether
to throw a fault or provide a new instance. That behavior can depend on the type
of service.

For example, for an enterprise bean the WSIFPort stores the EJB Home, and uses it
to ″select″ the bean before each invocation. It is the responsibility of the client to
serialize or maintain the Port instance if it wants instance support. The client must
create a new operation and messages for each invocation.

Here is the WSIFPort interface.

332 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Here is the WSIFOperation interface.

WSIFPort interface
The port implements a factory method for WSIFOperations.

Here is the Javadoc for the WSIFPort interface.

The createOperation(String) method returns a new instance of a WSIFOperation
object. If the operationName is not valid, it will throw an exception. If the
operation is overloaded, it will throw an exception. The createOperation(String,
String, String) allows WSIF to support overloaded WSDL operations.

Note: You can overload based on the input parameters, but not on the output
parameters.

It is the duty of the client to call the close method when a Port is no longer in use.
In many cases, where the transport is sessionless, like HTTP, this will have no
effect. However, if the Port is using a session-based protocol such as MQSeries,
JMS, or ECI, this allows the Port to cache an open connection to the server and
then close it as required. Responsible stubs will call this if appropriate.

WSIFOperation interface
WSIFOperation is the runtime representation of an operation. It is responsible for
invoking a service based on a particular binding. It provides methods to create
input, output and fault messages, and to invoke the operation.

Here is the Javadoc for the WSIFOperation interface.

The createInputMessage, createOutputMessage, and createFaultMessage methods
are factory methods to create the messages required by the invocation methods. All
invocation methods require an input message.

The executeRequestResponseOperation invokes ″In Out″ operations.

The executeInputOnlyOperation invokes ″In only″ operations.

If the invocation method is executeRequestResponseOperation then an output and
a fault message are instantiated and passed on the call to the
executeRequestResponseOperation method. The output message contains the
response message when the executeRequestResponseOperation returns true. If
executeRequestResponseOperation returns false, then a fault occurred and is
returned in the fault message.

All of these executeNnnn methods fail with an exception if there is an error in
processing the request in the WSIF provider.

The executeRequestResponseAsync is a feature that allows ″In Out″ operations to
be invoked with the reply handled using an alternate thread.

Use of the setContext and getContext methods is discussed in WSIFOperation -
Context.

Use of the executeRequestResponseAsync feature is discussed further in
WSIFOperation - Asynchronous interactions.

WSIFOperation - Context: Although WSDL does not define context, a number of
uses of WSIF require the ability to pass context to the Port that is invoking the

Chapter 8. Enabling Web services to use the Web Services Invocation Framework 333

service. For example, a SOAP/HTTP port may require an HTTP username and
password. This information is specific to the invocation, but not a parameter of the
service. In general, context is defined as a set of name-value pairs. However,
because Web services tend to define the types of data using XML Schema types,
WSIF represents the name-value pairs of the context using the same representation
that WSIFMessages use; that is a set of named Parts, each of which equates to an
instance of an XML Schema type.

The WSIFOperation methods setContext and getContext allow you to pass context
information to the binding. The Port implementation can use this context - for
example to update a SOAP header. There is no definition of how a Port can utilize
the context.

The parameter of the setContext and getContext methods is a WSIFMessage, and
this has named parts defining the context information. The WSIFConstants class
defines constants for the part names that can be set in a context WSIFMessage.

The following code shows how to set the user name and password to be used for
HTTP basic authentication:

// set a basic authentication header
WSIFMessage headers = new WSIFDefaultMessage();
headers.setObjectPart(WSIFConstants.CONTEXT_HTTP_USER, "username");
headers.setObjectPart(WSIFConstants.CONTEXT_HTTP_PSWD, "password");
operation.setContext(headers);

The WSIFOperation will ignore context parts that it does not support, for example,
the above code would be ignored by the WSIF Java provider.

The WSIFConstants class includes the following constants which can be used for
context part names:
v CONTEXT_HTTP_USER
v CONTEXT_HTTP_PSWD
v CONTEXT_SOAP_HEADERS

The HTTP header values are expected to have a type String, and the SOAP header
value is expected to have a type of java.util.List which should contain entries of
type org.w3c.dom.Element.

WSIFOperation - Asynchronous interactions reference: WSIF allows
asynchronous operation. In this mode of operation, the client puts the request
message as part of one transaction, and carries on with the thread of execution.
The response message is then handled by a different thread, with a separate
transaction. The SOAP/JMS and Native JMS providers are the only WSIF
providers that currently support asynchronous operation.

The WSIFPort has method supportsAsync to test if asynchronous operation is
supported.

An asynchronous operation is initiated with the WSIFOperation method
executeRequestResponseAsync. This method is designed to let an RPC method be
invoked asynchronously. The method returns before the operation has completed,
and the thread of execution continues.

The response to the asynchronous request is processed by one of the
WSIFOperation methods fireAsyncResponse or processAsyncResponse.

334 IBM WebSphere Application Server Network Deployment, Version 5: Applications

To initiate the request, there are two forms of the executeRequestResponseAsync
method:

public WSIFCorrelationId executeRequestResponseAsync (WSIFMessage input, WSIFResponseHandler handler)

and
public WSIFCorrelationId executeRequestResponseAsync (WSIFMessage input)

The first of these takes an input message and a WSIFResponseHandler. The
WSIFResponseHandler is invoked on another thread when the operation
completes. When using this method the client listener would call the
fireAsyncResponse method which will call the WSIFResponseHandler
executeAsyncResponse method.

Here is the Javadoc for the WSIFResponseHandler interface.

The other form of executeRequestResponseAsync that only takes a WSIFMessage
input message does not use a response handler, and the client listener should
process the response by calling the WSIFOperation method
processAsyncResponse. This will update the WSIFMessage output and fault
messages with the result of the request.

WSIF supports correlation between the request and response in the asynchronous
request-response case. When the request is sent, the WSIFOperation is serialized
into the WSIFCorrelationService. The executeRequestResponseAsync methods
returns a WSIFCorrelationId object which identifies the serialized WSIFOperation.
The client listener can use this to match a response to a particular request.

The correlation service is located with the getCorrelationService() method of the
WSIFCorrelationServiceLocator class in the org.apache.wsif.utils package.

In a managed container a default correlation service is defined in the default JNDI
namespace using the name: java:comp/wsif/WSIFCorrelationService . If this is not
available, then WSIF will use the WSIFDefaultCorrelationService.

Here is the Javadoc for the WSIFCorrelationService interface.

and this is the correlator id:
public interface WSIFCorrelator extends Serializable {

public String getCorrelationId();
}

The client must implement their own response message ″listener″ or MDB in order
to recognize the arrival of response messages themselves. This would manage the
correlation of the response mesage to the request and call of one of the
asynchronous response processing methods. As an example of the type of thing
required of a client listener, the following code fragment shows what could be in
the onMessage method of a JMS listener:

public void onMessage(Message msg) {
WSIFCorrelationService cs = WSIFCorrelationServiceLocator.getCorrelationService();

WSIFCorrelationId cid = new JmsCorrelationId(msg.getJMSCorrelationID());
WSIFOperation op = cs.get(cid);
op.fireAsyncResponse(msg);

}

Chapter 8. Enabling Web services to use the Web Services Invocation Framework 335

WSIF: Resources for learning
Use the following links to find supplementary information about getting started
with WSIF. The information resides on IBM and non-IBM Internet sites, whose
sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

v SOAP http://www.w3.org/TR/SOAP
This article is a detailed overview of SOAP, which includes programming
specifications.

v Web Services Description Languagehttp://www.w3.org/TR/wsdl
This article is a detailed overview of Web Services Description Language
(WSDL), which includes programming specifications

v The Apache Software Foundationhttp://www.apache.org
The Apache Software Foundation provides support for the Apache community
of open-source software projects. Of particular interest are the Apache SOAP
project and its follow-on project Apache AXIS . The WSIF source code has been
donated by IBM to the Apache Software Foundation, and is maintained as a
sub-project of Apache AXIS.

v JSR109 http://jcp.org/jsr/detail/109.jsp .
This is the Java Community Process specification for implementing Web services
in Java.

See also the set of Web services links given in (Web services: Resources for
learning)

336 IBM WebSphere Application Server Network Deployment, Version 5: Applications

http://www.w3.org/TR/SOAP
http://www.w3.org/TR/wsdl
http://www.apache.org
http://jcp.org/jsr/detail/109.jsp

Chapter 9. Classloading

Classloaders affect the (packaging of applications) and the run-time behavior of
packaged applications deployed on application servers.

Steps for this task
1. Read about classloaders. The article ″Classloading: Resources for learning″

points to additional sources.
2. If necessary, migrate classloader Module Visibility Mode settings for Version

4.0.x applications to Version 5.0 application or WAR classloader policies.
3. When assembling an enterprise application resource (EAR) file that has EJB

modules, (set the classpath for the classloader to use during packaging).
4. (Optional) If an application module uses a resource, create a resource provider

that specifies the directory name of the resource drivers. Do not specify the
resource JAR file names. All JAR files in the specified directory will be added
into the classpath of the WebSphere Application Server extensions classloader.

5. Configure classloaders of an application server for the run-time environment.
a. Click Servers > Application Servers > server_name and, on the settings page

for an application server, set the application classloader policy and
application classloader mode.
The application classloader policy controls the isolation of applications
running in the system. When set to SINGLE, applications are not isolated; a
single application classloader is used to contain all EJB modules,
dependency JAR files, and shared libraries in the system. When set to
MULTIPLE, applications are isolated from each other; each application
receives its own classloader to load that application’s EJB modules,
dependency JAR files, and shared libraries.
The application classloader mode specifies the classloader mode when the
application classloader policy is SINGLE. PARENT_FIRST causes the
classloader to first delegate the loading of classes to its parent classloader
before attempting to load the class from its local classpath. PARENT_LAST
causes the classloader to first attempt to load classes from its local classpath
before delegating the classloading to its parent. This allows an application
classloader to override and provide its own version of a class that exists in
the parent classloader.

b. On the settings page for an application server, click Classloader. On the
Classloader page, click New.

c. On the settings page for a classloader, specify the classloader mode.
PARENT_FIRST causes the classloader to delegate the loading of classes to
its parent classloader before attempting to load the class from its local
classpath. PARENT_LAST causes the classloader to attempt to load classes
from its local classpath before delegating the classloading to its parent.
Then, click OK.

d. (Optional) On the settings page for a classloader, click Libraries. From the
Library Ref page, click Add. On the settings page for a library reference,
specify variables for the library reference as needed and click OK. Repeat
the previous step until you define a library reference instance for each
library file that your application needs. To define a library reference, you
must first define one or more shared libraries.

© Copyright IBM Corp. 2002 337

6. When configuring an installed enterprise application for deployment in the
run-time environment, (set the classloader mode and the WAR classloader
policy).

7. When configuring an installed Web module for deployment in the run-time
environment, (set the classloader mode).

Classloaders
Classloaders are part of the Java virtual machine (JVM) code and are responsible
for finding and loading class files. Classloaders affect the packaging of applications
and the run-time behavior of packaged applications deployed on application
servers.

The run-time environment of WebSphere Application Server uses the following
classloaders to find and load new classes for an application in the following order:
1. The bootstrap, extensions, and CLASSPATH classloaders created by the JVM.

The bootstrap classloader uses the boot classpath (typically classes in jre/lib) to
find and load classes. The extensions classloader uses the system property
java.ext.dirs (typically jre/lib/ext) to find and load classes. The CLASSPATH
classloader uses the CLASSPATH environment variable to find and load classes.
The CLASSPATH classloader contains the J2EE APIs of the WebSphere
Application Server product (inside j2ee.jar). Because the J2EE APIs are in this
classloader, you can add libraries that depend on J2EE APIs to the classpath
system property to extend a server’s classpath. However, a preferred method of
extending a server’s classpath is to add a shared library.

2. A WebSphere-specific extensions classloader.
The WebSphere extensions classloader loads the WebSphere run time and J2EE
classes that are required at run time. The extensions classloader uses a
ws.ext.dirs system property to determine the path used to load classes. Each
directory in the ws.ext.dirs classpath and every JAR file or ZIP file in these
directories is added to the classpath used by this classloader.
The WebSphere extensions classloader also loads resource provider classes into
a server if an application module installed on the server refers to a resource
that is associated with the provider and if the provider specifies the directory
name of the resource drivers.

3. One or more application module classloaders that load elements of enterprise
applications running in the server.
The application elements can be Web modules, EJB modules, resource adapters,
and dependency JAR files. Application classloaders follow J2EE class loading
rules to load classes and JAR files from an enterprise application. The
WebSphere run-time enables you to associate a shared library classpath with an
application.

Each classloader is a child of the classloader above it. That is, the application
module classloaders are children of the WebSphere-specific extensions classloader,
which is a child of the CLASSPATH Java classloader. Whenever a class needs to be
loaded, the classloader usually delegates the request to its parent classloader. If
none of the parent classloaders can find the class, the original classloader attempts
to load the class. Requests can only go to a parent classloader; they cannot go to a
child classloader. If the WebSphere classloader is requested to find a class in a J2EE
module, it cannot go to the application module classloader to find that class and a
ClassNotFoundException occurs. Once a class is loaded by a classloader, any new
classes that it tries to load reuse the same classloader or go up the precedence list
until the class is found.

338 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Classloader isolation policies

The number and function of the application module classloaders depends on the
classloader policies specified in the server configuration. Classloaders provide
multiple options for isolating applications and modules to enable different
application packaging schemes to run on an application server.

Two classloader policies control the isolation of applications and modules:

Application classloader policy
Application classloaders consist of EJB modules, dependency JAR files,
resource adapters, and shared libraries. Depending on the application
classloader policy, an application classloader can be shared by multiple
applications (SINGLE) or unique for each application (MULTIPLE). The
application classloader policy controls the isolation of applications running
in the system. When set to SINGLE, applications are not isolated. When set
to MULTIPLE, applications are isolated from each other.

WAR classloader policy
By default, Web module classloaders load the contents of the
WEB-INF/classes and WEB-INF/lib directories. The application classloader
is the parent of the Web module classloader. You can change the default
behavior by changing the application’s WAR classloader policy.

The WAR classloader policy controls the isolation of Web modules. If this
policy is set to APPLICATION, then the Web module contents also are
loaded by the application classloader (in addition to the EJB files, RAR
files, dependency JAR files, and shared libraries). If the policy is set to
MODULE, then each web module receives its own classloader whose
parent is the application classloader.

Note: WebSphere server classloaders never load application client modules.

For each application server in the system, you can set the application classloader
policy to SINGLE or MULTIPLE. When the application classloader policy is set to
SINGLE, then a single application classloader loads all EJB modules, dependency
JAR files, and shared libraries in the system. When the application classloader
policy is set to MULTIPLE, then each application receives its own classloader used
for loading that application’s EJB modules, dependency JAR files, and shared
libraries.

This application classloader can load each application’s Web modules if that WAR
module’s classloader policy is also set to APPLICATION. If the WAR module’s
classloader policy is set to APPLICATION, then the application’s loader loads the
WAR module’s classes. If the WAR classloader policy is set to MODULE, then each
WAR module receives its own classloader.

The following example shows that when the application classloader policy is set to
SINGLE, a single application classloader loads all EJB modules, dependency JAR
files, and shared libraries of all applications on the server. The single application
classloader can also load Web modules if an application has its WAR classloader
policy set to APPLICATION. Applications having a WAR classloader policy set to
MODULE use a separate classloader for Web modules.
Application classloader policy: SINGLE

Application 1
Module: EJB1.jar
Module: WAR1.war

Chapter 9. Classloading 339

MANIFEST Class-Path: Dependency1.jar
WAR Classloader Policy = MODULE

Application 2
Module: EJB2.jar
MANIFEST Class-Path: Dependency2.jar
Module: WAR2.war
WAR Classloader Policy = APPLICATION

WebSphere extensions classloader

Application classloader

WAR classloader

Classpath:
WebSphere/AppServer/classes
WebSphere/AppServer/lib
WebSphere/AppServer/lib/ext

WAR1.war

Classpath:
Ejb1.jar
Dependency1.jar
Ejb1.jar
Dependency2.jar
WAR2.war (WEB-INF/classes, ...)

The following example shows that when the application classloader policy of an
application server is set to MULTIPLE, each application on the server has its own
classloader. An application classloader also loads its Web modules if the
application’s WAR classloader policy is set to APPLICATION. If the policy is set to
MODULE, then a Web module uses its own classloader.
Application classloader policy: MULTIPLE

Application 1
Module: EJB1.jar
Module: WAR1.war
MANIFEST Class-Path: Dependency1.jar
WAR Classloader Policy = MODULE

Application 2
Module: EJB2.jar
MANIFEST Class-Path: Dependency2.jar
Module: WAR2.war
WAR Classloader Policy = APPLICATION

340 IBM WebSphere Application Server Network Deployment, Version 5: Applications

WebSphere extensions classloader

Application classloader Application classloader

WAR classloader

Classpath:
WebSphere/AppServer/classes
WebSphere/AppServer/lib
WebSphere/AppServer/lib/ext

WAR1.war

Classpath:
Ejb1.jar
Dependency1.jar

Classpath:
Ejb2.jar
Dependency2.jar
WAR2.war (WEB-INF/classes, ...)

Classloader modes

There are two possible values for a classloader mode:

PARENT_FIRST
The PARENT_FIRST classloader mode causes the classloader to first
delegate the loading of classes to its parent classloader before attempting to
load the class from its local classpath. This is the default for classloader
policy and for standard JVM classloaders.

PARENT_LAST
The PARENT_LAST classloader mode causes the classloader to first
attempt to load classes from its local classpath before delegating the
classloading to its parent. This policy allows an application classloader to
override and provide its own version of a class that exists in the parent
classloader.

The following settings determine a classloader’s mode:
v If the application classloader policy of an application server is SINGLE, the

application classloader policy of an application server defines the mode for an
application classloader.

v If the application classloader policy of an application server is MULTIPLE, the
classloader mode of an application defines the mode for an application
classloader.

v If the WAR classloader policy of an application is MODULE, the WAR
classloader policy of a Web module defines the mode for a WAR classloader.

Classloader collection
Use this page to manage classloader instances on an application server. A
classloader determines whether an application classloader or a parent classloader
finds and loads Java class files for an application.

Chapter 9. Classloading 341

To view this administrative console page, click Servers > Application Servers >
server_name > Classloader.

Classloader ID
States a string unique to the server identifying the classloader instance. The
product assigns the identifier.

Classloader Mode
Specifies the classloader mode when the application classloader policy is SINGLE.
PARENT_FIRST causes the classloader to delegate the loading of classes to its
parent classloader before attempting to load the class from its local classpath.
PARENT_LAST causes the classloader to attempt to load classes from its local
classpath before delegating the classloading to its parent; this allows an application
classloader to override and provide its own version of a class that exists in the
parent classloader.

Classloader settings
Use this page to configure a classloader for applications that reside on an
application server.

To view this administrative console page, click Servers > Application Servers >
server_name > Classloader > classloader_ID.

Classloader ID
States a string unique to the server identifying the classloader instance. The
product assigns the identifier.

Data type String

Classloader Mode
Specifies the classloader mode when the application classloader policy is SINGLE.
PARENT_FIRST causes the classloader to delegate the loading of classes to its
parent classloader before attempting to load the class from its local classpath.
PARENT_LAST causes the classloader to attempt to load classes from its local
classpath before delegating the classloading to its parent; this allows an application
classloader to override and provide its own version of a class that exists in the
parent classloader.

Data type String
Default PARENT_FIRST

Migrating the classloader Module Visibility Mode setting
WebSphere Application Server Version 4.0.x had a server-wide configuration
setting called Module Visibility Mode. For Version 5.0, you use application or
WAR classloader policies instead of module visibility modes. The Version 5.0
policies provide additional flexibility because you can configure applications
running in a server for an application classloader policy of SINGLE or MULTIPLE
and for a WAR classloader policy of APPLICATION or MODULE.

To migrate module visibility modes in your Version 4.0.x applications to their
equivalents in Version 5.0, change the settings for your Version 4.0.x applications
and modules to the Version 5.0 values shown in the table below.

342 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Version 4.0.x module
visibility mode

Version 5.0 application
classloader policy

Version 5.0 WAR classloader
policy

Server SINGLE APPLICATION
Compatibility SINGLE MODULE
Application MULTIPLE APPLICATION
Module* MULTIPLE MODULE
J2EE MULTIPLE MODULE

*There is no exact equivalent for the Version 4.0.x Module mode because it isolated
EJB modules within an application.

Classloading: Resources for learning
Use the following links to find relevant supplemental information about
classloaders. The information resides on IBM and non-IBM Internet sites, whose
sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

View links to additional information about:
v Planning, business scenarios, and IT architecture
v Programming model and decisions
v Programming instructions and examples
v Programming specifications

Planning, business scenarios, and IT architecture

v WebSphere Application Server V5.0: Architecture and Overview

http://developerworks.cybercentral.com/ibm0502/amt/
ibmpresentations/683_1.pdf

Programming model and decisions

v J2EE Class Loading Demystified

http://www7b.boulder.ibm.com/wsdd/library/techarticles/0112_deboer/
deboer.html

v Understanding J2EE Application Server Class Loading Architectures

http://www.theserverside.com/resources/article.jsp?l=ClassLoading

v Exploiting the Java Virtual Machine

http://www.develop.com/downloads/DevWPJav.pdf

Programming instructions and examples

v Developing and Deploying Modular J2EE Applications with WebSphere
Studio Application Developer and WebSphere Application Server

http://www7b.boulder.ibm.com/wsdd/library/techarticles/
0206_robinson/robinson.html

v Understanding the Java ClassLoader

Chapter 9. Classloading 343

http://developerworks.cybercentral.com/ibm0502/amt/ibmpresentations/683_1.pdf
http://developerworks.cybercentral.com/ibm0502/amt/ibmpresentations/683_1.pdf
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0112_deboer/deboer.html
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0112_deboer/deboer.html
http://www.theserverside.com/resources/article.jsp?l=ClassLoading
http://www.develop.com/downloads/DevWPJav.pdf
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0206_robinson/robinson.html
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0206_robinson/robinson.html

http://www-105.ibm.com/developerworks/education.nsf/ java-onlinecourse-
bytitle/ 06B49359139A1AD186256A310049AC9B?OpenDocument

v IBM WebSphere Application Server Programming

http://www.mcgraw-hill.co.uk/html/0072224592.html

Programming specifications

v Sun’s J2EETM Platform Specification

http://java.sun.com/j2ee/download.html#platformspec

v Sun’s J2EETM Extension Mechanism Architecture

http://java.sun.com/j2se/1.4/docs/guide/extensions/spec.html

344 IBM WebSphere Application Server Network Deployment, Version 5: Applications

http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/06B49359139A1AD186256A310049AC9B?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/06B49359139A1AD186256A310049AC9B?OpenDocument
http://www.mcgraw-hill.co.uk/html/0072224592.html
http://java.sun.com/j2ee/download.html#platformspec
http://java.sun.com/j2se/1.4/docs/guide/extensions/spec.html

Chapter 10. Using EJB query

The EJB query language is used to specify a query over container-managed entity
beans. The language is similar to SQL. An EJB query is independent of the bean’s
mapping to a persistent store.

An EJB query can be used in three situations:
v To define a finder method of an EJB entity bean.
v To define a select method of an EJB entity bean.
v To dynamically specify a query using the executeQuery() dynamic API.

Finder and select queries are specified in the bean’s deployment descriptor using
the <ejb-ql> tag. Queries specified in the deployment descriptor are compiled into
SQL during deployment. Dynamic queries require the interface provided by
WebSphere Application Server Enterprise.

WebSphere’s EJB query language is compliant with the EJB QL defined in Sun’s
EJB 2.0 specification and has additional capabilities as listed in the topic
Comparison of EJB 2.0 specification and WebSphere Query Language.

In your WebSphere application, you can define an EJB query in the following
ways:
v Application Assembly Tool. When assembling an EJB 2.0 entity bean, specify

the <ejb-ql> tag for the finder() or select() method.
v WebSphere Studio Application Developer. When defining an entity bean,

specify the <ejb-ql> tag for the finder or select method.
v Dynamic query service. Add the executeQuery() method to your application.

The dynamic query API is provided as an Enterprise Extension to WebSphere
Application Server.

Before using EJB query, familiarize yourself with query language concepts, starting
with the topic, EJB Query Language.

Usage scenario

See the topic ″Example: EJB queries″.

EJB query language
An EJB query is a string that contains the following elements:
v a SELECT clause that specifies the EJBs or values to return;
v a FROM clause that names the bean collections;
v an optional WHERE clause that contains search predicates over the collections;
v an optional GROUP BY and HAVING clause (see Aggregation functions);
v an optional ORDER BY clause that specifies the ordering of the result collection.

The SELECT clause is optional in order to maintain compatibility with WebSphere
Application Server Version 4.

© Copyright IBM Corp. 2002 345

Collections of entity beans are identified in EJB queries through the use of their
abstract schema name in the query FROM clause.

The elements of EJB query language are discussed in more detail in the following
related topics.

Example: EJB queries
Here is an example EJB schema, followed by a set of example queries:

DeptBean schema

Entity bean name (EJB name) DeptEJB (not used in query)

Abstract schema name DeptBean

Implementation class com.acme.hr.deptBean (not used in query)

Persistent attributes (cmp fields) v deptno - Integer (key)

v name - String

v budget - BigDecimal

Relationships v emps - 1:Many with EmpEJB

v mgr - Many:1 with EmpEJB

EmpBean schema

Entity bean name (EJB name) EmpEJB (not used in query)

Abstract schema name EmpBean

Implementation class com.acme.hr.empBean (not used in query)

Persistent attributes (cmp fields) v empid - Integer (key)

v name - String

v salary - BigDecimal

v bonus - BigDecimal

v hireDate - java.sql.Date

v birthDate - java.util.Calendar

v address - com.acme.hr.Address

Relationships v dept - Many:1 with DeptEJB

v manages - 1:Many with DeptEJB

Address is a serializable object used as cmp field in EmpBean. The definition of
address is as follows:

public class com.acme.hr.Address extends Object implements Serializable {
public String street;
public String state;
public String city;
public integer zip;

public double distance (String start_location) { ... } ;
public String format () { ... } ;

}

The following query returns all departments:
SELECT OBJECT(d) FROM DeptBean d

346 IBM WebSphere Application Server Network Deployment, Version 5: Applications

The following query returns departments whose name begins with the letters
″Web″. Sort the result by name:
SELECT OBJECT(d) FROM DeptBean d WHERE d.name LIKE ’Web%’ ORDER BY d.name

The keywords SELECT and FROM are shown in uppercase in the examples but are
case insensitive. If a name used in a query is a reserved word, the name must be
enclosed in double quotes to be used in the query. There is a list of reserved words
later in this document. Identifiers enclosed in double quotes are case sensitive. This
example shows how to use a cmp field that is a reserved word:
SELECT OBJECT(d) FROM DeptBean d WHERE d."select" > 5

The following query returns all employees who are managed by Bob. This example
shows how to navigate relationships using a path expression:
SELECT OBJECT (e) FROM EmpBean e WHERE e.dept.mgr.name=’Bob’

A query can contain a parameter which referes to the corresponding value of the
finder or select method. Query parameters are numbered starting with 1:
SELECT OBJECT (e) FROM EmpBean e WHERE e.dept.mgr.name= ?1

This query shows navigation of a multivalued relationship and returns all
departments that have an employee that earns at least 50000 but not more than
90000:
SELECT OBJECT(d) FROM DeptBean d, IN (d.emps) AS e
WHERE e.salary BETWEEN 50000 and 90000

There is a join operation implied in this query between each department object and
its related collection of employees. If a department has no employees, the
department does not appear in the result. If a department has more than one
employee that earns more than 50000, that department appears multiple times in
the result.

The following query eliminates the duplicate departments:
SELECT DISTINCT OBJECT(d) from DeptBean d, IN (d.emps) AS e WHERE e.salary > 50000

Find employees whose bonus is more than 40% of their salary:
SELECT OBJECT(e) FROM EmpBean e where e.bonus > 0.40 * e.salary

Find departments where the sum of salary and bonus of employees in the
department exceeds the department budget:
SELECT OBJECT(d) FROM DeptBean d where d.budget <
(SELECT SUM(e.salary+e.bonus) FROM IN(d.emps) AS e)

A query can contain DB2 style date-time arithmetic expressions if you use java.sql.*
datatypes as CMP fields and your datastore is DB2. Find all employees who have
worked at least 20 years as of January 1st, 2000:
SELECT OBJECT(e) FROM EmpBean e where year(’2000-01-01’ - e.hireDate) >= 20

If the datastore is not DB2 or if you prefer to use java.util.Calendar as the CMP
field, then you can use the java millsecond value in queries. The following query
finds all employees born before Jan 1, 1990:
SELECT OBJECT(e) FROM EmpBean e WHERE e.birthDate < 631180800232

Find departments with no employees:
SELECT OBJECT(d) from DeptBean d where d.emps IS EMPTY

Chapter 10. Using EJB query 347

Find all employees whose earn more than Bob:
SELECT OBJECT(e) FROM EmpBean e, EmpBean b
WHERE b.name = ’Bob’ AND e.salary + e.bonus > b.salary + b.bonus

Find the employee with the largest bonus:
SELECT OBJECT(e) from EmpBean e WHERE e.bonus =
(SELECT MAX(e1.bonus) from EmpBean e1)

The above queries all return EJB objects. A finder method query must always
return an EJB Object for the home. A select method query can in addition return
CMP fields or other EJB Objects not belonging to the home.

The following would be valid select method queries for EmpBean. Return the
manager for each department:
SELECT d.mgr FROM DeptBean d

Return department 42 manager’s name:
SELECT d.mgr.name FROM DeptBean d WHERE d.deptno = 42

Return the names of employees in department 42:
SELECT e.name FROM EmpBean e WHERE e.dept.deptno=42

Another way to write the same query is:
SELECT e.name from DeptBean d, IN (d.emps) AS e WHERE d.deptno=42

Finder and select queries allow only a single CMP field or EJBObject in the
SELECT clause.

FROM clause
The FROM clause specifies the collections of objects to which the query is to be
applied. Each collection is identified either by an abstract schema name and an
identification variable, called a range variable, or by a collection member
declaration that identifies a multivalued relationship and an identification variable.

Conceptually, the semantics of the query is to first form a temporary collection of
tuples R. Tuples are composed of elements from the collections identified in the
FROM clause. Each tuple contains one element from each of the collections in the
FROM clause. All possible combinations are formed subject to the constraints
imposed by the collection member declarations. If any schema name identifies a
collection for which there are no records in the persistent store, then the temporary
collection R will be empty.

Example: FROM clause

DeptBean contains records 10, 20 and 30 in the persistent store. EmpBean contains
records 1, 2 and 3 that are related to department 10 and records 4, 5 that are
related to department 20. Department 30 has no related employees.
FROM DeptBean d, EmpBean e

This forms a temporary collection R that contains 15 tuples.
FROM DeptBean d, DeptBean d1

This forms a temporary collection R that contains 9 tuples.
FROM DeptBean d, IN (d.emps) AS e

348 IBM WebSphere Application Server Network Deployment, Version 5: Applications

This forms a temporary collection R that contains 5 tuples. Department 30 because
it contains no employees will not be in R. Department 10 will be contained in R
three times and department 20 will be contained in R twice.

After forming the temporary collection the search conditions of the WHERE clause
will be applied to R and this will yield a new temporary collection R1. The
ORDER BY and SELECT clauses are applied to R1 to yield the final result set.

An identification variable is a variable declared in the FROM clause using the
operator IN or the optional AS.
FROM DeptBean AS d, IN (d.emps) AS e

is equivalent to:
FROM DeptBean d, IN (d.emps) e

An identification variable that is declared to be an abstract schema name is called a
range variable. In the query above ″d″ is a range variable. An identification
variable that is declared to be a multivalued path expression is called a collection
member declaration. ″d″ and ″e″ in the example above are collection member
declarations.

Note that the following path expression is illegal as a collection member
declaration because it is not multivalued:
e.dept.mgr

Inheritance in EJB query
If an EJB inheritance hierarchy has been defined for an abstract schema, using the
abstract schema name in a query statement implies the collection of objects for that
abstract schema as well as all subtypes.

Example: Inheritance

Suppose that bean ManagerBean is defined as a subtype of EmpBean and
ExecutiveBean is a subtype of ManagerBean in an EJB inheritance hierarchy. The
following query returns employees as well as managers and executives:
SELECT OBJECT(e) FROM EmpBean e

Path expressions
An identification variable followed by the navigation operator (.) and a cmp or
relationship name is a path expression.

A path expression that leads to a cmr field can be further navigated if the cmr field
is single-valued. If the path expression leads to a multi-valued relationship, then
the path expression is terminal and cannot be further navigated. If the path
expression leads to a cmp field whose type is a value object, it is possible to
navigate to attributes of the value object.

If the path expression leads to a cmp field whose type is a value object it is
possible to further navigate to attributes and methods of the value object.

Example: Value object

Assume that address is a cmp field for EmpBean, which is a value object.

Chapter 10. Using EJB query 349

SELECT object(e) FROM EmpBean e
WHERE e.address.distance(’San Jose’) < 10 and e.address.zip = 95037

It is best to use the composer pattern to map value object attributes to relational
columns if you intend to search on value attributes. If you store value objects in
serialized format, then each value object must be retrieved from the database and
deserialized. Value object methods can only be done in dynamic queries.

A path expression can also navigate to a bean method. The method must be
defined on either the remote or local bean interface. Methods can only be used in
dynamic queries. You cannot mix both remote and local methods in a single query
statement.

If the query contains remote methods, the dynamic query must be executed using
the query remote interface. Using the query remote interface causes the query
service to activate beans and create instances of the remote bean interface

Likewise, a query statement with local bean methods must be executed with the
query local interface. This causes the query service to activate beans and local
interface instances.

Do not use get methods to access cmp and cmr fields of a bean.

If a method has overloaded definitions, the overloaded methods must have
different number of parameters.

Methods must have non-void return types and method arguments and return
types must be either primitive types byte, short, int, long, float, double, boolean,
char or wrapper types from the following list:

Byte, Short, Integer, Long, Float, Double, BigDecimal, String, Boolean, Character,
java.util.Calendar, java.sql.Date, java.sql.Time, java.sql.Timestamp, java.util.Date

If any input argument to a method is NULL, it is assumed the method returns a
NULL value and the method is not invoked.

A collection valued path expression can be used in the FROM clause as a collection
member declaration, and with the IS EMPTY, MEMBER OF, and EXISTS predicates
in the WHERE clause.

FROM EmpBean e WHERE e.dept.mgr.name=’Bob’OK

FROM EmpBean e WHERE e.dept.emps
.name=’BOB’

INVALID — cannot navigate through emps
because it is multivalued

FROM EmpBean e, IN (e.dept.emps) e1
WHERE e1.name=’BOB’

OK

FROM EmpBean e WHERE e.dept.emps IS EMPTY OK

WHERE clause
The WHERE clause contains search conditions composed of the following:
v literal values
v input parameters
v expressions

350 IBM WebSphere Application Server Network Deployment, Version 5: Applications

v basic predicates
v quantified predicates
v BETWEEN predicate
v IN predicate
v LIKE predicate
v NULL predicate
v EMPTY collection predicate
v MEMBER OF predicate
v EXISTS predicate
v IS OF TYPE predicate

If the search condition evaluates to TRUE, the tuple is added to the result set.

Literals
A string literal is enclosed in single quotes. A single quote that occurs within a
string literal is represented by two single quotes; For example: ’Tom’’s’. A string
literal cannot exceed the maximum length that is supported by the underlying
persistent datastore.

A numeric literal can be any of the following:
v an exact value such as 57, -957, +66
v any value supported by Java long
v a decimal literal such as 57.5, -47.02
v an approximate numeric value such as 7E3, -57.4E-2

A decimal or approximate numeric value must be in the range supported by Java
double.

A boolean literal can be the keyword TRUE or FALSE and is case insensitive.

Input parameters
Input parameters are designated by the question mark followed by a number; For
example: ?2

Input parameters are numbered starting at 1 and correspond to the arguments of
the finder or select method; therefore, a query must not contain an input parameter
that exceeds the number of input arguments.

An input parameter can be a primitive type of byte, short, int, long, float, double,
boolean, char or wrapper types of Byte, Short, Integer, Long, Float, Double,
BigDecimal, String, Boolean, Char, java.util.Calendar, java.util.Date, java.sql.Date,
java.sql.Time, java.sql.Timestamp or an EJBObject.

An input parameter must not have a NULL value. To search for the occurrence of
a NULL value the NULL predicate should be used.

Expressions
Conditional expressions can consist of comparison operators and logical operators
(AND, OR, NOT).

Arithmetic expressions can be used in comparison expressions and can be
composed of arithmetic operations and functions, path expressions that evaluate to
a numeric value and numeric literals and numeric input parameters.

Chapter 10. Using EJB query 351

String expressions can be used in comparison expressions and can be composed of
string functions, path expressions that evaluate to a string value and string literals
and string input parameters. A cmp field of type char is handled as if it were a
string of length 1.

Boolean expressions can be used with = and <> comparison and can be composed
of path expressions that evaluate to a boolean value and TRUE and FALSE
keywords and boolean input parameters.

Reference expressions can be used with = and <> comparison and can be
composed of path expressions that evaluate to a cmr field, an identification
variable and an input parameter whose type is an EJB reference

Four different expression types are supported for working with date-time types.
For portability the java.util.Calendar type should be used. DB2 style date, time and
timestamp expressions are supported if the datastore is DB2 and the CMP field is
of type java.util.Date, java.sql.Date, java.sql.Time or java.sql.Timestamp.

A Calendar type can be compared to another Calendar type, an exact numeric
literal or input parameter of type long whose value is the standard Java long
millisecond value.

The following query finds all employees born before Jan 1, 1990:
SELECT OBJECT(e) FROM EmpBean e WHERE e.birthDate < 631180800232

Date expressions can be used in comparison expressions and can be composed of
operators + - , date duration expressions and date functions, path expressions that
evaluate to a date value, string representation of a date and date input parameters.

Time expressions can be used in comparison expressions and can be composed of
operators + - , time duration expressions and time functions, path expressions that
evaluate to a time value, string representation of time and time input parameters.

Timestamp expressions can be used in comparison expressions and can be
composed of operators + - , timestamp duration expressions and timestamp
functions, path expressions that evaluate to a timestamp value, string
representation of a timestamp and timestamp input parameters.

Standard bracketing () for ordering expression evaluation is supported.

The operators and their precedence order from highest to lowest are:
v Navigation operator (.)
v Arithmetic operators in precedence order:

– + - unary
– * / multiply, divide
– + - add, subtract

v Comparison operators: =, >, <, >=, <=, <>(not equal)
v Logical operator NOT
v Logical operator AND
v Logical operator OR

Null value semantics: The following describe the semantics of NULL values:

352 IBM WebSphere Application Server Network Deployment, Version 5: Applications

v Comparison or arithmetic operations with an unknown (NULL) value yield an
unknown value

v Path expressions that contain NULL evaluate to NULL
v The IS NULL and IS NOT NULL operators can be applied to path expressions

and return TRUE or FALSE. Boolean operators AND, OR and NOT use three
valued logic.

AND True False Unknown

True True False Unknown

False False False False

Unknown Unknown False Unknown

OR True False Unknown

True True True True

False True False Unknown

Unknown True Unknown Unknown

NOT

True False

False True

Unknown Unknown

Example: Null value semantics
select object(e) from EmpBean where e.salary > 10 and e.dept.budget > 100

If salary is NULL the evaluation of e.salary > 10 returns unknown and the
employee object is not returned. If the cmr field dept or budget is NULL evalution
of e.dept.budget > 100 returns unknown and the employee object is not returned.
select object(e) from EmpBean where e.dept.budget is null

If dept or budget is NULL evaluation of e.dept.budget is null returns TRUE and
the employee object is returned.
select object(e) from EmpBean e , in (e.dept.emps) e1 where e1.salary > 10

If dept is NULL, then the multivalued path expression e.dept.emps results in an
empty collection (not a collection that contains a NULL value). An employee with
a null dept value will not be returned.
select object(e) from EmpBean e where e.dept.emps is empty

If dept is NULL the evaluation of the predicate in unknown and the employee
object is not returned.
select object(e) from EmpBean e , EmpBean e1 where e member of e1.dept.emps

If dept is NULL evaluation of the member of predicate returns unknown and the
employee is not returned.

Date time arithmetic and comparisons: DATE, TIME and TIMESTAMP values
may be compared with another value of the same type. Comparisons are
chronological. Date time values can also be incremented, decremented, and
subtracted.

Chapter 10. Using EJB query 353

If the datastore is DB2, then DB2 string representation of DATE, TIME and
TIMESTAMP types can also be used. A string representation of a date or time can
use ISO, USA, EUR or JIS format. A string representation of a timestamp uses ISO
format.

Format Date format Date examples Time format Time examples

ISO yyyy-mm-dd 1987-02-24 1987-2-24 hh.mm.ss 13.50.00 13.50

USA mm/dd/yyyy 2/24/1987 hh:mm AM or
PM

1:50 pm 02:10 AM

EUR dd.mm.yyyy 24.02.1987 24.2.1987 hh.mm.ss 13.50.00 13.55

JIS yyyy-mm-dd 1987-02-24 hh:mm:ss 13:50 13:50:05

Example 1: Date time arithmetic comparisons
e.hiredate > ’1990-02-24’

The timestamp of February 24th, 1990 1:50 pm can be represented as follows:
’1990-02-24-13.50.00.000000’ or
’1990-02-24-13.50.00’

If the datastore is DB2, DB2 decimal durations can be used in expressions and
comparisons. A date duration is a decimal(8,0) number that represents the
difference between two dates in the format YYYYMMDD. A time duration is a
decimal(6,0) number that represents the difference between two time values as
HHMMSS. A timestamp duration is a decimal(20,6) number representing the
differences between two timestamp values as YYYYMMDDHHMMSS.ZZZZZZ
(ZZZZZZ is the number of microseconds and is to the right of the decimal point) .

Two date values (or time values or timestamp values) can be subtracted to yield a
duration. If the second operand is greater than the first the duration is a negative
decimal number. A duration can be added or subtracted from a datetime value to
yield a new datetime value.

Example 2: Date time arithmetic comparisons

DATE(’3/15/2000’) - ’12/31/1999’ results in a decimal number 215 which is a
duration of 0 years, 2 months and 15 days.

Durations are really decimal numbers and can be used in arithmetic expressions
and comparisons.

(DATE(’3/15/2000’) - ’12/31/1999’) + 14 > 215 evaluates to TRUE.

DATE(’12/31/1999’) + DECIMAL(215,8,0) results in a date value 3/15/2000.

TIME(’11:02:26’) - ’00:32:56’ results in a decimal number 102930 which is a time
duration of 10 hours, 29 minutes and 30 seconds.

TIME(’00:32:56’) + DECIMAL(102930,6,0) results in a time value of 11:02:26.

TIME(’00:00:59’) + DECIMAL(240000,6,0) results in a time value of 00:00:59.

e.hiredate + DECIMAL(500,8,0) > ’2000-10-01’ means compare the hiredate plus
5 months to the date 10/01/2000.

354 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Basic predicates
Basic predicates can be of two forms
expression-1 comparison-operator expression-2

expression-3 comparison-operator (subselect)

The subselect must not return more than one value and the subselect can not
return a type of an EJB reference. Boolean types and reference types only support =
and <> comparisons.

Example: Basic predicates
d.name=’Java Development’
e.salary > 20000
e.salary > (select avg(e.salary) from EmpBean e)

Quantified predicates
A quantified predicate compares a value with a set of values produced by a
subselect.
expression comparison-operator SOME | ANY | ALL (subselect)

The expression must not evaluate to a reference type.

When SOME or ANY is specified the result of the predicate is as follows:
v TRUE if the comparison is true for at least one value returned by the subselect.
v FALSE if the subselect is empty or if the comparison is false for every value

returned by the subselect.
v UNKNOWN if the comparison is not true for all of the values returned by the

subselect and at least one of the comparisons is unknown because of a null
value.

When ALL is specified the result of the predicate is as follows:
v TRUE if the subselect returns empty or if the comparison is true to every value

returned by the subselect.
v FALSE if the comparison is false for at least one value returned by the subselect.
v UNKNOWN if the comparison is not false for all values returned by the

subselect and at least one comparison is unknown because of a null value.

BETWEEN predicate
The BETWEEN predicate determines whether a given value lies between two other
given values.
expression [NOT] BETWEEN expression-2 AND expression-3

Example: BETWEEN predicate
e.salary BETWEEN 50000 AND 60000

is equivalent to:
e.salary >= 50000 AND e.salary <= 60000

e.name NOT BETWEEN ’A’ AND ’B’

is equivalent to:
e.name < ’A’ OR e.name > ’B’

IN predicate
The IN predicate compares a value to a set of values and can have one of two
forms:

Chapter 10. Using EJB query 355

expression [NOT] IN (subselect)

expression [NOT] IN (value1, value2,)

ValueN can either be a literal value or an input parameter. The expression can not
evaluate to a reference type.

Example: IN predicate
e.salary IN (10000, 15000)

is equivalent to
(e.salary = 10000 OR e.salary = 15000)

e.salary IN (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

is equivalent to
e.salary = ANY (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

e.salary NOT IN (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

is equivalent to
e.salary <> ALL (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

LIKE predicate
The LIKE predicate searches a string value for a certain pattern.
string-expression [NOT] LIKE pattern [ESCAPE escape-character]

The pattern value is a string literal or parameter marker of type string in which the
underscore (_) stands for any single character and percent (%) stands for any
sequence of characters (including empty sequence). Any other character stands
for itself. The escape character can be used to search for character _ and %. The
escape character can be specified as a string literal or an input parameter.

If the string-expression is null, then the result is unknown.

If both string-expression and pattern are empty, then the result is true.

Example: LIKE predicate

v ’’ LIKE ’’ is true
v ’’ LIKE ’%’ is true
v e.name LIKE ’12%3’ is true for ’123’ ’12993’ and false for ’1234’
v e.name LIKE ’s_me’ is true for ’some’ and ’same’, false for ’soome’
v e.name LIKE ’/_foo’ escape ’/’ is true for ’_foo’, false for ’afoo’
v e.name LIKE ’//_foo’ escape ’/’ is true for ’/afoo’ and for ’/bfoo’
v e.anme LIKE ’///_foo’ escape ’/’ is true for ’/_foo’ but false for ’/afoo’

NULL predicate
The NULL predicate tests for null values.
single-valued-path-expression IS [NOT] NULL

Example: NULL predicate
e.name IS NULL

e.dept.name IS NOT NULL

e.dept IS NOT NULL

356 IBM WebSphere Application Server Network Deployment, Version 5: Applications

EMPTY collection predicate
To test if a multivalued relationship is empty, use the following syntax:
collection-valued-path-expression IS [NOT] EMPTY

Example: Empty collection predicate

To find all departments with no employees:
SELECT OBJECT(d) FROM DeptBean d WHERE d.emps IS EMPTY

MEMBER OF predicate
This expression tests whether the object reference specified by the single valued
path expression or input parameter is a member of the designated collection. If the
collection valued path expression designates an empty collection the value of the
MEMBER OF expression is FALSE.
{ single-valued-path-expression | input_parameter } [NOT] MEMBER [OF]

collection-valued-path-expression

Example: MEMBER OF predicate

Find employes that are not members of a given department number:
SELECT OBJECT(e) FROM EmpBean e , DeptBean d
WHERE e NOT MEMBER OF d.emps AND d.deptno = ?1

Find employees whose manager is a member of a given department number:
SELECT OBJECT(e) FROM EmpBean e, DeptBean d
WHERE e.dept.mgr MEMBER OF d.emps and d.deptno=?1

EXISTS predicate
The exists predicate tests for the presence or absence of a condition specified by a
subselect.
EXISTS (subselect)

EXISTS collection-valued-path-expression

The result of EXISTS is true if the subselect returns at least one value or the path
expression evaluates to a nonempty collection, otherwise the result is false.

To negate an EXISTS predicate, precede it with the logical operator NOT.

Example: EXISTS predicate

Return departments that have at least one employee earning more than 1000000:
SELECT OBJECT(d) FROM DeptBean d
WHERE EXISTS (SELECT 1 FROM IN (d.emps) e WHERE e.salary > 1000000)

Return departments that have no employees:
SELECT OBJECT(d) FROM DeptBean d
WHERE NOT EXISTS (SELECT 1 FROM IN (d.emps) e)

The above query can also be written as follows:
SELECT OBJECT(d) FROM DeptBean d WHERE NOT EXISTS d.emps

IS OF TYPE predicate
The IS OF TYPE predicate is used to test the type of an EJB reference. It is similar
in function to the Java instance of operator. IS OF TYPE is used when several
abstract beans have been grouped into an EJB inheritance hierarchy. The type

Chapter 10. Using EJB query 357

names specified in the predicate are the bean abstract names. The ONLY option
can be used to specify that the reference must be exactly this type and not a
subtype.
identification-variable IS OF TYPE ([ONLY] type-1, [ONLY] type-2,)

Example: IS OF TYPE predicate

Suppose that bean ManagerBean is defined as a subtype of EmpBean and
ExecutiveBean is a subtype of ManagerBean in an EJB inheritance hierarchy.

The following query returns employees as well as managers and executives:
SELECT OBJECT(e) FROM EmpBean e

If you are interested in objects which are employees and not managers and not
executives:
SELECT OBJECT(e) FROM EmpBean e WHERE e IS OF TYPE(ONLY EmpBean)

If you are interested in object which are managers or executives:
SELECT OBJECT(e) FROM EmpBean e WHERE e IS OF TYPE(ManagerBean)

The above query is equivalent to the following query:
SELECT OBJECT(e) FROM ManagerBean e

If you are interested in managers only and not executives:
SELECT OBJECT(e) FROM EmpBean e WHERE e IS OF TYPE(ONLY ManagerBean)

or:
SELECT OBJECT(e) FROM ManagerBean e
WHERE e IS OF TYPE (ONLY ManagerBean)

Scalar functions
EJB query contains scalar built-in functions for doing type conversions, string
manipulation, and for manipulating date-time values. The list of scalar functions is
documented in the topic EJB query: Scalar functions.

Example: Scalar functions

Find employees hired in 1999:
SELECT OBJECT(e) FROM EmpBean e where YEAR(e.hireDate) = 1999

The only scalar functions that are guaranteed to be portable across backend
datastore vendors are the following:
v ABS
v SQRT
v CONCAT
v LENGTH
v LOCATE
v SUBSTRING

The other scalar functions should be used only when DB2 is the backend datastore.

358 IBM WebSphere Application Server Network Deployment, Version 5: Applications

EJB query: Scalar functions
EJB query contains scalar built-in functions, as listed below, for doing type
conversions, string manipulation, and for manipulating date-time values.

Numeric functions
ABS (< any numeric datatype >) -> < any numeric datatype >

SQRT (< any numeric datatype >) -> Double

Type conversion functions
CHAR (< any numeric datatype >) -> string
CHAR (< string >) -> string
CHAR (< any datetime datatype > [, Keyword k]) -> string

Datetime datatype is converted to its string representation in a format specified by
the keyword k. The valid keywords values are ISO, USA, EUR or JIS. If k is not
specified the default is ISO.
BIGINT (< any numeric datatype >) -> Long
BIGINT (< string >) -> Long

The following function converts the argument to an integer n by truncation and
returns the date that is n-1 days after January 1, 0001:
DATE (< date string >) -> Date
DATE (< any numeric datatype>) -> Date

The following function returns date portion of a timestamp:
DATE(timestamp) -> Date
DATE (< timestamp-string >) -> Date

The following function converts number to decimal with optional precision p and
scale s.
DECIMAL (< any numeric datatype > [, p [,s]]) -> Decimal

The following function converts string to decimal with optional precision p and
scale s.
DECIMAL (< string > [, p [, s]]) -> Decimal

DOUBLE (< any numeric datatype >) -> Double
DOUBLE (< string >) -> Double

FLOAT (< any numeric datatype >) -> Double
FLOAT (< string >) -> Double

Float is a synonym for DOUBLE.
INTEGER (< any numeric datatype >) -> Integer
INTEGER (< string >) -> Integer

REAL (< any numeric datatype >) -> Float

SMALLINT (< any numeric datatype) -> Short
SMALLINT (< string >) -> Short

TIME (< time >) -> Time
TIME (< time-string >) -> Time
TIME (< timestamp >) -> Time
TIME (< timestamp-string >) -> Time

TIMESTAMP (< timestamp >) -> Timestamp
TIMESTAMP (< timestamp-string >) -> Timestamp

String functions
CONCAT (<string>, <string>) -> String

Chapter 10. Using EJB query 359

The following function returns a character string representing absolute value of the
argument not including its sign or decimal point. For example, digits(-42.35) is
″4235″.
DIGITS (Decimal d) -> String

The following function returns the length of the argument in bytes. If the argument
is a numeric or datetime type, it returns the length of internal representation.
LENGTH (< string >) -> Integer

The following function returns a copy of the argument string where all upper case
characters have been converted to lower case.
LCASE (< string >) -> String

The following function returns the starting position of the first occurrence of
argument 1 inside argument 2 with optional start position. If not found, it returns
0.
LOCATE (String s1 , String s2 [, Integer start]) -> Integer

The following function returns a substring of s beginning at character m and
containing n characters. If n is omitted, the substring contains the remainder of
string s. The result string is padded with blanks if needed to make a string of
length n.
SUBSTRING (String s , Integer m [, Integer n]) -> String

The following function returns a copy of the argument string where all lower case
characters have been converted to upper case.
UCASE (< string >) -> String

Date - time functions

The following function returns the day portion of its argument. For a duration, the
return value can be -99 to 99.
DAY (Date) -> Integer
DAY (< date-string >) -> Integer
DAY (< date-duration >) -> Integer
DAY (Timestamp) -> Integer
DAY (< timestamp-string >) -> Integer
DAY (< timestamp-duration >) -> Integer

The following function returns one more than number of days from January 1,
0001 to its argument.
DAYS (Date) -> Integer
DAYS (< Date-string >) -> Integer
DAYS (Timestamp) -> Integer
DAYS (< timestamp-string >) -> Integer

The following function returns the hour part of its argument. For a duration, the
return value can be -99 to 99.
HOUR (Time) -> Integer
HOUR (< time-string >) -> Integer
HOUR (< time-duration >) -> Integer
HOUR (Timestamp) -> Integer
HOUR (< timestamp-string >) -> Integer
HOUR (< timestamp-duration >) -> Integer

The following function returns the microsecond part of its argument.

360 IBM WebSphere Application Server Network Deployment, Version 5: Applications

MICROSECOND (Timestamp) -> Integer
MICROSECOND (< timestamp-string >) -> Integer
MICROSECOND (< timestamp-duration >) -> Integer

The following function returns the minute part of its argument. For a duration, the
return value can be -99 to 99.
MINUTE (Time) -> Integer
MINUTE (< time-string >) -> Integer
MINUTE (< time-duration >) -> Integer
MINUTE (Timestamp) -> Integer
MINUTE (< timestamp-string >) -> Integer
MINUTE (< timestamp-duration >) -> Integer

The following function returns the month portion of its argument. For a duration,
the return value can be -99 to 99.
MONTH (Date) -> Integer
MONTH (< date-string >) -> Integer
MONTH (< date-duration >) -> Integer
MONTH (Timestamp) -> Integer
MONTH (< timestamp-string >) -> Integer
MONTH (< timestamp-duration >) -> Integer

The following function returns the second part of its argument. For a duration, the
return value can be -99 to 99.
SECOND (Time) -> Integer
SECOND (< time-string >) -> Integer
SECOND (< time-duration >) -> Integer
SECOND (Timestamp) -> Integer
SECOND (< timestamp-string >) -> Integer
SECOND (< timestamp-duration >) -> Integer

The following function returns the year portion of its argument. For a duration, the
return value can be -9999 to 9999.
YEAR (Date) -> Integer
YEAR (< date-string >) -> Integer
YEAR (< date-duration >) -> Integer
YEAR (Timestamp) -> Integer
YEAR (< timestamp-string >) -> Integer
YEAR (< timestamp-duration >) -> Integer

Aggregation functions
Queries that return aggregate values can only be used with the dynamic query
interface available in WebSphere Application Server Enterprise. However,
aggregation functions can be used in non-dynamic queries if the aggregation
function is used in a subselect or HAVING clause.

Aggregation functions operate on a set of values to return a single scalar value.
The following is an example of an aggregation:
SELECT SUM (e.salary + e.bonus) FROM EmpBean e WHERE e.dept.deptno =20

This computes the total salary and bonus for department 20.

The aggregation functions are avg, count, max, min and sum. The syntax of an
aggregation function is as follows:
aggregation-function ([ALL | DISTINCT] expression)

or:
COUNT(*)

Chapter 10. Using EJB query 361

The DISTINCT option eliminates duplicate values before applying the function.
ALL is the default and does not eliminate duplicates. Null values are ignored in
computing the aggregate function except for COUNT(*) which returns a count of
all elements in the set.

MAX and MIN can apply to any numeric, string or datetime datatype and returns
the same datatype. SUM and AVG take a numeric type as input. SUM and AVG
return numeric type. The actual numeric type returned by SUM and AVG depends
on the underlying datastore. COUNT can take any datatype and returns an integer.

The set of values that is used for the aggregate function is determined by the
collection that results from the FROM and WHERE clause of the subquery. This set
can be divided into groups and the aggregation function applied to each group.
This is done by using a GROUP BY clause in the subquery. The GROUP BY clause
defines grouping members which is a list of path expressions. Each path
expression specifies a field that is a primitive type of byte, short, int, long, float,
double, boolean, char, or a wrapper type of Byte, Short, Integer, Long, Float,
Double, BigDecimal, String, Boolean, Character, java.util.Calendar, java.util.Date,
java.sql.Date, java.sql.Time or java.sql.Timestamp.

Finder or select queries can not return aggregation function values. In other words,
aggregation functions can not appear in the top level SELECT of a finder or select
query but can be used in subqueries.

Example: Aggregation functions
SELECT e.dept.deptno, AVG (e.salary) FROM EmpBean e GROUP BY e.dept.deptno

The above query computes the average salary for each department.

In dividing a set into groups, a NULL value is considered equal to another NULL
value.

Just as the WHERE clause filters tuples from the FROM clause, the groups can be
filtered using a HAVING clause that tests group properties involving aggregate
functions or grouping members:
SELECT e.dept.deptno, AVG (e.salary) FROM EmpBean e
GROUP BY e.dept.deptno
HAVING COUNT(*) > 3 AND e.dept.deptno > 5

This query returns average salary for departments that have more than 3
employees and the department number is greater than 5.

It is possible to have a HAVING clause without a GROUP BY clause in which case
the entire set is treated as a single group to which the HAVING clause is applied.

SELECT clause
For finder and select queries, the syntax of the SELECT clause is as follows:
SELECT [ALL | DISTINCT]
{ single-valued-path-expression | OBJECT (identification-variable) }

The SELECT clause consists of either a single identification variable that is defined
in the FROM clause or a single valued path expression that evaluates to a object
reference or CMP value. The keyword DISTINCT can be used to eliminate
duplicate references.

362 IBM WebSphere Application Server Network Deployment, Version 5: Applications

For a query that defines a finder method the query must return an object type
consistent with the home for which the finder method associated with the query. In
other words, a finder method for a department home can not return employee
objects.

A scalar-subselect is a subselect that returns a single value.

Example: SELECT clause

Find all employees that earn more than John:
SELECT OBJECT(e) FROM EmpBean ej, EmpBean e
WHERE ej.name = ’John’ and e.salary > ej.salary

Find all departments that have one or more employees who earn less than 20000:
SELECT DISTINCT e.dept FROM EmpBean e where e.salary < 20000

A select method query can have a path expression that evaluates to an arbitrary
value:
SELECT e.dept.name FROM EmpBean e where e.salary < 2000

The above query returns a collection of name values for those departments having
employees earning less than 20000.

ORDER BY clause
The ORDER BY clause specifies an ordering of the objects in the result collection:
ORDER BY [order_element ,]* order_element
order_element ::= { path-expression | integer } [ASC | DESC]

The path expression must specify a single valued field that is a primitive type of
byte, short, int, long, float, double, char or a wrapper type of Byte, Short, Integer,
Long, Float, Double, BigDecimal, String, Character, java.util.Calendar,
java.util.Date, java.sql.Date, java.sql.Time, java.sql.Timestamp.

ASC specifies ascending order and is the default. DESC specifies descending order.

Integer refers to a selection expression in the SELECT clause.

Example: ORDER BY clause

Return department objects in decreasing deptno order:
SELECT OBJECT(d) FROM DeptBean d ORDER BY d.deptno DESC

Return employee objects sorted by department number and name:
SELECT OBJECT(e) FROM EmpBean e ORDER BY e.dept.deptno ASC, e.name DESC

Subqueries
A subquery can be used in quantified predicates, EXISTS predicate or IN predicate.
A subquery should only specify a single element in the SELECT clause. When a
path expression appears in a subquery, the identification variable of the path
expression must be defined either in the subquery, in one of the containing
subqueries, or in the outer query. A scalar subquery is a subquery that returns one
value. A scalar subquery can be used in a basic predicate and in the SELECT
clause of a dynamic query.

Chapter 10. Using EJB query 363

Example: Subqueries
SELECT OBJECT(e) FROM EmpBean e
WHERE e.salary > (SELECT AVG(e1.salary) FROM EmpBean e1)

The above query returns employees who earn more than average salary of all
employees.
SELECT OBJECT(e) FROM EmpBean e WHERE e.salary >
(SELECT AVG(e1.salary) FROM IN (e.dept.emps) e1)

The above query returns employees who earn more than average salary of their
department.
SELECT OBJECT(e) FROM EmpBean e WHERE e.salary =
(SELECT MAX(e1.salary) FROM IN (e.dept.emps) e1)

The above query returns employees who earn the most in their department.
SELECT OBJECT(e) FROM EmpBean e
WHERE e.salary > (SELECT AVG(e.salary) FROM EmpBean e1
WHERE YEAR(e1.hireDate) = YEAR(e.hireDate))

The above query returns employees who earn more than the average of employees
hired in same year.

EJB query restrictions
An EJB query is compiled into an SQL query and executed against the underlying
datastore based on schema mapping of the abstract bean to the datastore schema.
The semantics of comparison and arithmetic operations are that of the underlying
datastore. In the case of SQL, note that two strings are equal if the shorter string
padded with blanks equals the longer string. For example, ’A’ is equal to ’A ’. This
differs from the equality of strings in the Java language. Arithmetic overflow
operations are an error in SQL.

A cmp field can not be used in comparison operations or predicates (except for
LIKE) if that cmp field is mapped to a long varchar or LOB column or any other
column type for which the database server does not support predicates or
comparison operations.

A cmp field of any type can be used in a SELECT clause. Fields that can be used in
predicates, grouping, or ordering operations must be of the types listed below:
v Primitive types : byte, short, int, long, float, double, boolean, char
v Object types: Byte, Short, Integer, Long, Float, Double, BigDecimal, String,

Boolean, Char, java.util.Calendar , java.util.Date
v JDBC types: java.sql.Date, java.sql.Time, java.sql.Timestamp

The field must be mapped to a table column that is compatible in type either by
using a ″top-down″ default mapping generated by the WebSphere deploy tool, or
using a ″meet-in-the-middle″ mapping between compatible types.

In order to search on attributes of a cmp field that is a user-defined value object,
you should use a ″meet-in-the-middle″ mapping and use a composer to map each
attribute to a compatible column. The default ″top-down″ mapping stores the
object as a serialized object in a column of type blob, which does not allow
searching.

364 IBM WebSphere Application Server Network Deployment, Version 5: Applications

If a cmp field is mapped to a column using a ″meet-in-the-middle″ mapping with a
converter, that field can only be used with the NULL predicate or with basic
predicates of the following form:
path-expression <comparison> literal_value
path-expression <comparison> input_parameter

In this situation, the converter method toData() is called to convert the righthand
side of the predicate to an SQL value.

Example of allowable predicate on a cmp field with user defined conveter:
e.name = ’Chris’
e.name > ?1
e.name IS NULL

Examples of unallowable predicates:
substring(e.name, 1, 3) = ’ABC’
e.salary > d.budget

A converter should preserve equality, collating sequence and null values when
doing a conversion. Otherwise cmp fields created by the converter should not be
used in WHERE, GROUP, HAVING or ORDER clauses of a query.

EJB Query: Reserved words
The following words are reserved in WebSphere EJB query:

all, as, distinct, empty, false, from, group, having, in, is, like, select, true, union,
where

Avoid using identifiers that start with underscore (for example, _integer) as these
are also reserved.

EJB query: BNF syntax
EJB QL ::= [select_clause] from_clause [where_clause]

[group_by_clause] [having_clause] [order_by_clause]

from_clause::=FROM identification_variable_declaration
[,identification_variable_declaration]*

identification_variable_declaration::=collection_member_declaration |
range_variable_declaration

collection_member_declaration::=
IN (collection_valued_path_expression) [AS] identifier

range_variable_declaration::=abstract_schema_name [AS] identifier

single_valued_path_expression ::=
{single_valued_navigation | identification_variable}.(cmp_field |

method | cmp_field.value_object_attribute |
cmp_field.value_object_method)
| single_valued_navigation

single_valued_navigation::=
identification_variable.[single_valued_cmr_field.]*

single_valued_cmr_field

collection_valued_path_expression ::=
identification_variable.[single_valued_cmr_field.]*

collection_valued_cmr_field

select_clause::=
SELECT { ALL | DISTINCT } {single_valued_path_expression |

identification_variable |
OBJECT (identification_variable) }

Chapter 10. Using EJB query 365

select_clause_eex ::=
SELECT { ALL | DISTINCT } [selection ,]* selection

selection ::=
{ expression [[AS] id] | subselect }

order_by_clause::=
ORDER BY [{single_valued_path_expression | integer}

[ASC|DESC],]*
{single_valued_path_expression | integer}
[ASC|DESC]

where_clause::= WHERE conditional_expression

conditional_expression ::= conditional_term |
conditional_expression OR conditional_term

conditional_term ::= conditional_factor |
conditional_term AND conditional_factor

conditional_factor ::= [NOT] conditional_primary

conditional_primary::=simple_cond_expression |
(conditional_expression)

simple_cond_expression ::= comparison_expression |
between_expression | like_expression |
in_expression | null_comparison_expression |
empty_collection_comparison_expression |
quantified_expression | exists_expression |
is_of_type_expression | collection_member_expression

between_expression ::= expression [NOT] BETWEEN
expression AND expression

in_expression ::= single_valued_path_expression [NOT] IN
{ (subselect) | (atom ,]* atom) }

atom = { string-literal | numeric-constant | input-parameter }

like_expression ::= expression [NOT] LIKE
{string_literal | input_parameter}
[ESCAPE {string_literal | input_parameter}]

null_comparison_expression ::=
single_valued_path_expression IS [NOT] NULL

empty_collection_comparison_expression ::=
collection_valued_path_expression IS [NOT] EMPTY

collection_member_expression ::=
{ single_valued_path_expression | input_paramter }
[NOT] MEMBER [OF]
collection_valued_path_expression

quantified_expression ::=
expression comparison_operator {SOME | ANY | ALL}
(subselect)

exists_expression ::=
EXISTS {collection_valued_path_expression | (subselect)}

subselect ::=
SELECT [{ ALL | DISTINCT }] expression
from_clause [where_clause]
[group_by_clause] [having_clause]

group_by_clause::=
GROUP BY [single_valued_path_expression,]*
single_valued_path_expression

having_clause ::= HAVING conditional_expression

is_of_type_expression ::= identifier IS OF TYPE
([[ONLY] abstract_schema_name,]* [ONLY]
abstract_schema_name)

comparison_expression ::= expression
comparison_operator { expression | (subquery) }

366 IBM WebSphere Application Server Network Deployment, Version 5: Applications

comparison_operator ::= = | > | >= |
< | <= | <>

method ::= method_name([[expression ,]* expression])

expression ::= term | expression {+|-} term

term ::= factor | term {*|/} factor

factor ::= {+|-} primary

primary ::= single_valued_path_expression | literal |
(expression) | input_parameter | functions

functions ::=
ABS(expression) |
AVG([ALL|DISTINCT] expression) |
BIGINT(expression) |
CHAR({expression [,{ISO|USA|EUR|JIS}]) |
CONCAT (expression , expression) |
COUNT({[ALL|DISTINCT] expression | *}) |
DATE(expression) |
DAY({expression) |
DAYS(expression) |
DECIMAL(expression [,integer[,integer]]) |
DIGITS(expression) |
DOUBLE(expression) |
FLOAT(expression) |
HOUR (expression) |
INTEGER(expression) |
LCASE (expression) |
LENGTH(expression) |
LOCATE(expression, expression [, expression]) |
MAX([ALL|DISTINCT] expression) |
MICROSECOND(expression) |
MIN([ALL|DISTINCT] expression) |
MINUTE (expression) |
MONTH(expression) |
REAL(expression) |
SECOND(expression) |
SMALLINT(expression) |
SQRT (expression) |
SUBSTRING(expression, expression[, expression]) |
SUM([ALL|DISTINCT] expression) |
TIME(expression) |
TIMESTAMP(expression) |
UCASE (expression) |
YEAR(expression)

Comparison of EJB 2.0 specification and WebSphere query
language

Item EJB 2.0 specification WebSphere Query WebSphere
Enterprise (Dynamic)
Query

Bean methods no no yes
Calendar
comparisons

yes yes yes

Delimited identifiers no yes yes
Dependent Value
attributes

no yes yes

Dependent Value
methods

no no yes

Dynamic Query APIs no no yes
EXISTS predicate no yes yes
Inheritance no yes yes

Chapter 10. Using EJB query 367

Item EJB 2.0 specification WebSphere Query WebSphere
Enterprise (Dynamic)
Query

Multiple element
select clauses

no no yes

Order by no yes yes
Scalar functions yes * yes yes
Select clause required optional optional
SQL Date/time
expressions

no yes yes

String comparisons = and <> only = <> > < = <> > <
Subqueries,
aggregations, group
by, and having
clauses

no yes yes

* EJB 2.0 defines the following scalar functions: abs, sqrt, concat, length, locate and
substring. WebSphere query and dynamic query support additional scalar
functions as listed in the topic, EJB query: Scalar functions.

368 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Chapter 11. Internationalizing applications

For your application to be used in multiple regions around the world, its user
interfaces will need to support multiple locales and time zones. IBM WebSphere
Application Server supports the maintenance and deployment of centralized
message catalogs for the output of properly formatted, language-specific (localized)
interface strings.
v If you are new to internationalization, read “Internationalization” before you

continue.
v For general information about internationalization, see “Internationalization:

Resources for learning” on page 381.

Steps for this task
1. Identify localizable text in your application.
2. Create the message catalogs necessary for the locales to be supported by your

application.
3. In your application code, compose the language-specific strings for output.
4. Assemble your application into one or more application components.
5. Prepare the localizable-text package for deployment with your localized

application.
In this step, you create a deployment JAR.

6. Assemble application modules and the deployment JAR into a J2EE application.
7. Deploy and manage the application.

Internationalization
An application that can present information to users according to regional cultural
conventions is said to be internationalized: The application can be configured to
interact with users from different localities in culturally appropriate ways. In an
internationalized application, a user in one region sees error messages, output, and
interface elements in the requested language. Date and time formats, as well as
currencies, are presented appropriately for users in the specified region. A user in
another region sees output in the conventional language or format for that region.

Historically, the creation of internationalized applications has been restricted to
large corporations writing complex systems. Internationalization techniques have
traditionally been expensive and difficult to implement, so they have been applied
only to major development efforts. However, given the rise in distributed
computing and in the use of the World Wide Web, application developers have
been pressured to internationalize a much wider variety of applications. This
requires making internationalization techniques much more accessible to
application developers.

In an application that is not internationalized, the interface that the user sees is
unalterably written into the application code. On the other hand, localizing the
displayed strings adds a layer of abstraction into the design of the application.
Instead of simply printing an error message, an internationalized application
represents the error message with some language-neutral information; in the
simplest case, each error condition corresponds to a key. To print a usable error
message, then, the application looks up the key in the configured message catalog.

© Copyright IBM Corp. 2002 369

Each message catalog is a list of keys with associated strings. Different message
catalogs provide strings for the different languages supported. The application
looks up the key in the appropriate catalog, retrieves the corresponding error
message in the requested language, and prints this string for the user.

Localization of text can be used for far more than translating error messages. For
example, by using keys to represent each element in a graphical user interface
(GUI) and by providing the appropriate message catalogs, the GUI itself (buttons,
menus, and so on) can support multiple languages. Extending support to
additional languages requires that you provide message catalogs for those
languages; in many cases, the application itself needs no further modification.

Internationalization of an application is driven by two variables, the time zone and
the locale. The time zone indicates how to compute the local time as an offset from
a standard time like Greenwich Mean Time. The locale is a collection of
information about language, currency, and the conventions for presenting
information like dates. In a localized application, the locale also indicates the
message catalog from which an application is to retrieve message strings. A time
zone can cover many locales, and a single locale can span time zones. With both
time zone and locale, the date, time, currency, and language for users in a specific
region can be determined.

The localizable-text package is a set of Java classes and interfaces that can be used
to localize the strings in distributed applications easily. Language-specific string
catalogs can be stored centrally so that they can be maintained efficiently.

Identifying localizable text
Steps for this task
1. Determine which elements of the application need to be translated.

Good candidates for localization include the following:
v Graphical user interfaces: window titles, menus and menu items, buttons,

on-screen instructions
v Prompts in command-line interfaces
v Application output: messages and logs

2. Assign a unique key to each element for use in message catalogs for the
application.
The key provides a language-neutral link between the application and
language-specific strings in the message catalogs. Establishing a naming
convention for keys before creating the catalogs can make writing code with
these keys much more intuitive for interface programmers.

Usage scenario

Suppose you are localizing the GUI for a banking system, and the first window
contains a pull-down list to be used for selecting a type of account. The labels for
the list and the account types in the list are good choices for localization. Three
elements require keys: the list itself and two items in the list.

What to do next

Create message catalogs for the language-specific strings.

370 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Creating message catalogs
Before you begin

Identify strings that need to be localized.

You can create a catalog as either a subclass of java.util.ResourceBundle or a Java
properties file. The properties-file approach is more common, because properties
files can be prepared by people without programming experience and swapped in
without modifying the application code.

Steps for this task
1. For each string identified for localization, add a line to the message catalog that

lists the string’s key and value in the current language.
In a properties file, each line has the following structure:
key = string associated with the key

2. Save the catalog, giving it a locale-specific name.
To enable resolution to a specific properties file, the Java API specifies naming
conventions for the properties files in a resource bundle as
bundleName_localeID.properties. Give the set of message catalogs a collective
name, for example, BankingResources. For information about locale IDs that are
recognized by the Java APIs, see “Internationalization: Resources for learning”
on page 381.

Usage scenario

The following English catalog (BankingResources_en.properties) supports the labels
for the list and its two list items:
accountString = Accounts
savingsString = Savings
checkingString = Checking

The corresponding German catalog (BankingResources_de.properties) supports the
labels as follows:
accountString = Konten
savingsString = Sparkonto
checkingString = Girokonto

What to do next

Write code to compose the language-specific strings.

Composing language-specific strings
Before you begin

Create message catalogs for the language-specific strings.

Steps for this task
1. In application code, create a LocalizableTextFormatter instance, passing in

required localization values.
2. (Optional) Set other localization values as needed for more complex situations.
3. Generate a properly formatted, language-specific string.

Chapter 11. Internationalizing applications 371

What to do next

When the application is finished, deploy the formatter bean with your application.

Localization API support
The package com.ibm.websphere.i18n.localizabletext contains classes and interfaces for
localizing text. This package makes extensive use of the internationalization
features of the standard Java APIs from Sun Microsystems, including the following:
v java.util.Locale
v java.util.TimeZone
v java.util.ResourceBundle
v java.text.MessageFormat

For more information about the standard Java APIs, see “Internationalization:
Resources for learning” on page 381.

The WebSphere localizable-text package wraps the Java support and extends it for
efficient and simple use in a distributed environment. The primary class used by
application programmers is LocalizableTextFormatter. Instances of this class are
usually created in server programs, but client programs can also create them.
Formatter instances are created for specific resource-bundle names and keys. Client
programs that receive a LocalizableTextFormatter instance call its format method.
This method uses the locale of the client application to retrieve the appropriate
resource bundle and compose a locale-specific message based on the key.

For example, suppose that a distributed application supports both French and
English locales; the server is using an English locale and the client, a French locale.
The server creates two resource bundles, one each for English and French. When
the client makes a request that triggers a message, the server creates a
LocalizableTextFormatter instance that contains the name of the resource bundle
and the key for the message and passes the instance back to the client.

When the client receives the LocalizableTextFormatter instance, it calls the object’s
format method. By using the locale and name of the resource bundle, the format
method determines the name of the resource bundle that supports the French
locale and retrieves the message that corresponds to the key from the French
resource bundle. Formatting of the message is transparent to the client.

In this simple example, the resource bundles reside centrally with the server. They
do not have to exist with the client. Part of what the localizable-text package
provides is the infrastructure to support centralized catalogs. This implementation
uses an enterprise bean (a stateless session bean provided with the localizable-text
package) to access the message catalogs. When the client calls the format method
on the LocalizableTextFormatter instance, the following events occur:
1. The client application sets the time-zone and locale values in the

LocalizableTextFormatter instance, either by passing them explicitly or through
default values.

2. A call, LocalizableTextFormatterEJBFinder, is made to retrieve a reference to the
formatter bean.

3. Information from the LocalizableTextFormatter instance, including the client’s
time zone and locale, is sent to the formatting bean.

4. The formatting bean uses the name of the resource bundle, the message key,
the time zone, and the locale to compose a language-specific message.

372 IBM WebSphere Application Server Network Deployment, Version 5: Applications

5. The formatter bean returns the formatted message to the client.
6. The formatted message is inserted into the LocalizableTextFormatter instance

and returned by the format method.

A call to the format method requires at most one remote call, to contact the
formatter bean. As an alternative, the LocalizableTextFormatter instance can cache
formatted messages, eliminating the remote call for subsequent uses. In addition,
you can set a fallback string so that the application can return a readable string
even if it cannot access the appropriate message catalog.

The resource bundles can be stored locally. The localizable-text package provides a
static variable that indicates whether the bundles are stored locally
(LocalizableConfiguration.LOCAL) or remotely
(LocalizableConfiguration.REMOTE). However, the setting of this variable applies
to all applications running within the same Java virtual machine.

LocalizableTextFormatter class
The LocalizableTextFormatter class, found in the package
com.ibm.websphere.i18n.localizabletext, is the primary programming interface for
using the localizable-text package. Instances of this class contain the information
needed to create language-specific strings from keys and resource bundles.

LocalizableTextFormatter extends java.lang.Object and implements the following
interfaces:
v java.io.Serializable
v com.ibm.websphere.i18n.localizabletext.LocalizableText
v com.ibm.websphere.i18n.localizabletext.LocalizableTextL
v com.ibm.websphere.i18n.localizabletext.LocalizableTextTZ
v com.ibm.websphere.i18n.localizabletext.LocalizableTextLTZ

Creation and initialization of class instances

LocalizableTextFormatter supports the following constructors:
v LocalizableTextFormatter()
v LocalizableTextFormatter(String resourceBundleName, String patternKey, String

appName)
v LocalizableTextFormatter(String resourceBundleName, String patternKey, String

appName, Object[] args)

The LocalizableTextFormatter instance must have certain values, such as
resource-bundle name, key, and the name of the formatting application. If you do
not pass these values in by using the second constructor listed previously, you can
set them separately by making the following calls:
v setResourceBundleName(String resourceBundleName)
v setPatternKey(String patternKey)
v setApplicationName(String appName)

You can use a fourth method, setArguments(Object[] args), to set optional
localization values after construction. See Processing of application-specific values
at the end of this article. For a usage example, see “Composing complex strings”
on page 377.

Chapter 11. Internationalizing applications 373

API for formatting text

The formatting methods in LocalizableTextFormatter generate a string from a set of
message keys and resource bundles, based on some combination of locale and
time-zone values. Each method corresponds to one of the four localizable-text
interfaces implemented. The following list indicates the interface in which each
formatting method is defined:
v LocalizableText.format()
v LocalizableTextL.format(java.util.Locale locale)
v LocalizableTextTZ.format(java.util.TimeZone timeZone)
v LocalizableTextLTZ.format(java.util.Locale locale, java.util.TimeZone timeZone)

The format method with no arguments uses the locale and time-zone values set as
defaults for the Java virtual macine. All four methods throw LocalizableException
objects.

Location of message catalogs and the appName value

Applications written with the localizable-text package can access message catalogs
locally or remotely. In a distributed environment, use of remote, centrally located
message catalogs is appropriate. All clients can use the same catalogs, and
maintenance of the catalogs is simplified. Local formatting is useful in test
situations and apppropriate under some circumstances. In order to support either
local or remote formatting, a LocalizableTextFormatter instance must indicate the
name of the formatting application. For example, when an application formats a
message by using remote catalogs, the message is actually formatted by an
enterprise bean on the server. Although the localizable-text package contains the
code to automate the lookup of the formatter bean and the issue of a call to it, the
application needs to know the name of the formatter bean. Several methods in the
LocalizableTextFormatter class use a value described as appName; this refers to the
name of the formatting application, which is not necessarily the name of the
application in which the value is set.

Caching of messages

LocalizableTextFormatter can optionally cache formatted messages so that they do
not have to be reformatted when needed again. By default, caching is not enabled,
but use LocalizableTextFormatter.setCacheSetting(true) to enable caching.
When caching is enabled and the format method is called, the method determines
whether the message has already been formatted. If so, the cached message is
returned. If the message is not found in the cache, the message is formatted and
returned to the caller, and a copy of the message is cached for future use.

If caching is disabled after messages have been cached, those messages remain in
the cache until the cache is cleared by a call to
LocalizableTextformatter.clearCache(). You can clear the cache at any time; the
cache is automatically cleared when any of the following methods is called:
v setResourceBundleName(String resourceBundleName)
v setPatternKey(String patternKey)
v setApplicationName(String appName)
v setArguments(Object[] args)

API for providing fallback information

374 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Under some circumstances, it can be impossible to format a message. The
localizable-text package implements a fallback strategy, making it possible to get
some information even if a message cannot be formatted correctly into the
requested language. The LocalizableTextFormatter instance can optionally store
fallback values for a message string, the time zone, and the locale. These can be
ignored unless the LocalizableTextFormatter instance throws an exception. To set
fallback values, call the following methods as appropriate:
v setFallBackString(String message)
v setFallBackLocale(Locale locale)
v setFallBackTimeZone(TimeZone timeZone)

For a usage example, see “Generating localized text” on page 379.

Processing of application-specific values

The localizable-text package provides native support for localization based on time
zone and locale, but one can construct messages on the basis of other values as
well. If you need to consider variables other than locale and time zone in
formatting localized text, write your own formatter class.

Your formatter class can extend LocalizableTextFormatter or independently
implement some or all of the same localizable-text interfaces. As a minimum, your
class must implement java.io.Serializable and at least one of the localizable-text
interfaces and its corresponding format method. If your class implements more
than one localizable-text interface and format method, the order of evaluation of
the interfaces is as follows:
1. LocalizableTextLTZ
2. LocalizableTextL
3. LocalizableTextTZ
4. LocalizableText

As an example, the localizable-text package provides a class that reports the time
and date (LocalizableTextDateTimeArgument). In that class, date and time
formatting is localized in accordance with three values: locale, time zone, and style.

Creating a formatter instance
Server programs typically create LocalizableTextFormatter instances that are sent to
clients as the result of some operation; clients format the objects at the appropriate
time. Less typically, client programs create LocalizableTextFormatter objects locally.

Steps for this task
1. (Optional) If needed for your application, write your own formatter class.

For more information about implementation, see “LocalizableTextFormatter
class” on page 373.

2. In application code, call the appropriate constructor for the formatter class and
set required localization values.
Some localization values, such as resource bundle name, key and formatting
application, must be set, either through a constructor or soon after construction.
Other localization values can be set only as needed.

Usage scenario

Chapter 11. Internationalizing applications 375

The following code creates a LocalizableTextFormatter instance by using the
default constructor and then sets the required localization values:
import com.ibm.websphere.i18n.localizabletext.LocalizableException;
import com.ibm.websphere.i18n.localizabletext.LocalizableTextFormatter;
import java.util.Locale;

public void drawAccountNumberGUI(String accountType) {
...
LocalizableTextFormatter ltf = new LocalizableTextFormatter();
ltf.setPatternKey("accountNumber");
ltf.setResourceBundleName("BankingSample.BankingResources");
ltf.setApplicationName("BankingSample");
...

}

The application that is requesting a localized message can specify the locale and
time zone for which the message is to be formatted, or the application can use the
default values set for the Java virtual machine.

For example, a GUI can enable users to select the language in which to display the
interface. A default value must be set initially so that the GUI can be created
properly when the application first starts, but users can then change the locale for
the GUI to suit their needs. The following code shows how to change the locale
used by an application based on the selection of a menu item:
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
...
import java.util.Locale;

public void actionPerformed(ActionEvent event) {
String action = event.getActionCommand();
...
if (action.equals("en_us")) {

applicationLocale = new Locale("en", "US");
...

}
if (action.equals("de_de")) {

applicationLocale = new Locale("de", "DE");
...

}
if (action.equals("fr_fr")) {

applicationLocale = new Locale("fr", "FR");
...

}
...

}

For more information, see “Generating localized text” on page 379.

What to do next

Set optional localization values.

Setting optional localization values
In addition to setting localization values that are required by
LocalizableTextFormatter, you can set a number of optional values in application
code, either through the constructor or by calling any of several methods for that
purpose. With optional values, you can do the following:
v Compose complex strings from variable substrings

376 IBM WebSphere Application Server Network Deployment, Version 5: Applications

v Customize the formatting of strings, taking into account variables other than
time zone and locale

Steps for this task
1. In application code, add the optional values into an array of type Object.

Object[] arg = {new String(getAccountNumber())};

2. Pass the array into a LocalizableTextFormatter instance.
You can pass the array through the appropriate constructor or by calling the
setArguments(Object[]) method. For a usage example, see “Composing complex
strings”.
Note: Because the array is passed by value rather than by reference, any
updates to the array variable after this point are not reflected in the
LocalizableTextFormatter instance unless it is reset by calling the
setArguments(Object[]) method.

What to do next

Write code to generate the localized text.

Composing complex strings
Before you begin

Identify strings that need to be localized.

The localized-text package supports the substitution of variable substrings into a
localized string that is retrieved from the message catalog by key.

Steps for this task
1. In the message catalog, specify the location of the substitution in the string to

be retrieved by key.
Variable components are designated by curly braces (for example, {0}).

2. In application code, create a LocalizableTextFormatter instance, passing in an
array that contains the variable value.
If the variable substring must itself be localized, you can create a nested
LocalizableTextFormatter instance for it and pass the instance in instead of a
value.

3. Generate a localized string.
When a format method is called on a formatter instance, the formatter takes
each element of the array passed in the previous step and substitutes it for the
placeholder with the matching index in the string retrieved from the message
catalog. For example, the value at index 0 in the array replaces the {0} variable
in the retrieved string.

Usage scenario

The following line from an English message catalog shows a string with a single
substitution:
successfulTransaction = The operation on account {0} was successful.

The same key in message catalogs for other languages has a translation of this
string with the variable at the appropriate location for each language.

Chapter 11. Internationalizing applications 377

The following code shows the creation of a single-element argument array and the
creation and use of a LocalizableTextFormatter instance:
public void updateAccount(String transactionType) {

...
Object[] arg = {new String(this.accountNumber)};
...
LocalizableTextFormatter successLTF =

new LocalizableTextFormatter ("BankingResources",
"successfulTransaction",
"BankingSample",
arg);

...
successLTF.format(this.applicationLocale);
...

}

Nesting formatter instances for localized substrings
Before you begin

Identify strings that need to be localized.

The ability to substitute variable substrings into the strings retrieved from message
catalogs adds a level of flexibility to the localizable-text package, but this capability
is of limited use unless the variable value itself can be localized. You can do this
by nesting LocalizableTextFormatter instances.

Steps for this task
1. In the message catalog, add entries that correspond to potential values for the

variable substring.
2. In application code, create a LocalizableTextFormatter instance for the variable

substring, setting required localization values.
3. Create a LocalizableTextFormatter instance for the primary string, passing in an

array that contains the formatter instance for the variable substring.

Usage scenario

The following line from an English message catalog shows a string entry with two
substitutions and entries to support the localizable variable at index 0 (the second
variable in the string, the account number, does not need to be localized):
successfulTransaction = The {0} operation on account {1} was successful.
depositOpString = deposit
withdrawOpString = withdrawal

The following code shows the creation of the nested formatter instance and its
insertion (with the account number variable) into the primary formatter instance:
public void updateAccount(String transactionType) {

...
// Successful deposit
LocalizableTextFormatter opLTF =

new LocalizableTextFormatter("BankingResources",
"depositOpString",

"BankingSample");
Object[] args = {opLTF, new String(this.accountNumber)};
...
LocalizableTextFormatter successLTF =

new LocalizableTextFormatter ("BankingResources",
"successfulTransaction",
"BankingSample",
args);

378 IBM WebSphere Application Server Network Deployment, Version 5: Applications

...
successLTF.format(this.applicationLocale);
...

}

Generating localized text
Before you begin

Create a formatter instance and set localization values as needed.

Steps for this task
1. (Optional) If needed, customize the formatting behavior.
2. In application code, call the appropriate format method.

Usage scenario

You can provide fallback behavior for use if the appropriate message catalog is not
available at formatting time.

The following code generates a localized string. If the formatting fails, the
application retrieves and uses a fallback string instead of the localized string:
import com.ibm.websphere.i18n.localizabletext.LocalizableException;
import com.ibm.websphere.i18n.localizabletext.LocalizableTextFormatter;
import java.util.Locale;

public void drawAccountNumberGUI(String accountType){
...
LocalizableTextFormatter ltf = new LocalizableTextFormatter();
...
ltf.setFallBackString("Enter account number: ");
try {

msg = new Label(ltf.format(this.applicationLocale), Label.CENTER);
}
catch (LocalizableException le) {

msg = new Label(ltf.getFallBackString(), Label.CENTER);
}
...

}

What to do next

When the application is finished, deploy the formatter bean with your application.

Customizing the behavior of a formatting method
You can customize formatting behavior by passing your own formatter classes into
a LocalizableTextFormatter instance through an array of optional values. This
enables you to take variables other than locale and time zone into account when
formatting localized text.

Steps for this task
1. Write your own formatter class.

For more information about implementation, see “LocalizableTextFormatter
class” on page 373.

2. In application code, create an instance of your formatter class as appropriate
and pass it with any other optional localization values into an instance of
LocalizableTextFormatter.

Chapter 11. Internationalizing applications 379

When the LocalizableTextFormatter instance reads the instance that has been
passed in, it attempts to call format() on the passed-in instance. The string
returned is then processed with any other elements in the array.

Usage scenario

The localizable-text package provides an example of a user-defined class, called
LocalizableTextDateTimeArgument. This class enables date and time information to
be selectively formatted according to the style values defined in
java.text.DateFormat as well as constants defined within
LocalizableTextDateTimeArgument itself.

Preparing the localizable-text package for deployment
Before you begin

Write code to compose the language-specific strings.

The LocalizableTextEJBDeploy tool is used to create a deployment JAR for the
Localizable Text service. You must deploy the enterprise bean in each enterprise
application that requires support for localized text.

Steps for this task
1. Make sure the LocalizableTextEJBDeploy tool (ltext.jar) exists in the lib

directory under the product’s installation root directory.
2. Set up a working directory for the LocalizableTextEJBDeploy tool to use.

You will need to pass this location to the tool through a command-line
interface.

3. Run the LocalizableTextEJBDeploy tool.
You might be asked if you want to regenerate deployment code for the
LocalizableText bean. Do not redeploy the bean; if you do, the generated JNDI
name will be incorrect.
To deploy the bean on multiple hosts and servers, run the tool for each
host/server combination. This generates a unique JNDI name for each
deployment.
After the tool is run, a deployment JAR is located in the working directory you
specified.

What to do next

Assemble the deployment JAR in an enterprise application with other application
components. As part of preparing for deployment, verify the following:
v Add the resource bundles for your application to the EAR as files.
v Add the location of the EAR to the server’s class path. This is so the resource

bundles can be located on the virtual host and server.

The same deployment JAR can be included in several enterprise applications.

LocalizableTextEJBDeploy command
Syntax

380 IBM WebSphere Application Server Network Deployment, Version 5: Applications

This topic describes the command-line syntax for the LocalizableTextEJBDeploy
tool. The file that contains this tool (ltext.jar) must be located in the lib directory of
the product installation root.
LocalizableTextEJBDeploy

-a applicationName
-h virtualHostName
-i installationDirectory
-s serverName
-w workingDirectory

Parameters

The required parameters, which can be specified in any order, follow:

applicationName
The name of the formatting session bean. This name is used in
LocalizableTextFormatter instances to specify where the actual formatting
takes place. If the name cannot be resolved at run time, the format method
throws an exception.

virtualHostName
The name of the virtual host on which the formatting session bean is
deployed. This value is case-sensitive on all operating platforms.

installationDirectory
The location at which the application server product is installed.

serverName
The name of the application server. If this argument is not specified, the
default server name for the product is used.

workingDirectory
A location for the tool to use temporarily.

Internationalization: Resources for learning
Use the following links to find relevant supplemental information about
internationalization. The information resides on IBM and non-IBM Internet sites,
whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
this product but is useful all or in part for understanding the product. When
possible, links are provided to technical papers and Redbooks that supplement the
broad coverage of the release documentation with in-depth examinations of
particular product areas.

View links to additional information about:
v Programming instructions and examples
v Programming specifications

Programming instructions and examples

v Java internationalization tutorial
(http://java.sun.com/docs/books/tutorial/i18n/index.html)
An online tutorial that explains how to use the Java 2 SDK Internationalization
API.

Programming specifications

Chapter 11. Internationalizing applications 381

http://java.sun.com/docs/books/tutorial/i18n/index.html

v Java 2 SDK, Standard Edition Documentation: Internationalization
(http://java.sun.com/j2se/1.3/docs/guide/intl/)
The Java internationalization documentation from Sun Microsystems, including a
list of supported locales and encodings.

v Making the WWW truly World Wide (http://www.w3.org/International/)
The W3C’s effort to make World Wide Web technology work with the many
writing systems, languages, and cultural conventions of the global community:

v developerWorks - Unicode (http://www-
.ibm.com/developerworks/unicode/)
Articles on various subjects relating to Unicode, from IBM’s developerWorks.

382 IBM WebSphere Application Server Network Deployment, Version 5: Applications

http://java.sun.com/j2se/1.3/docs/guide/intl/
http://www.w3.org/International/
http://www.ibm.com/developerworks/unicode/

Chapter 12. Using the transaction service

These topics provide information about using transactions with WebSphere
applications

WebSphere applications can use transactions to coordinate multiple updates to
resources as atomic units (as indivisible units of work) such that all or none of the
updates are made permanent.

In WebSphere Application Server, transactions are handled by three main
components:
v A transaction manager that supports the enlistment of recoverable XAResources

and ensures that each such resource is driven to a consistent outcome either at
the end of a transaction or after a failure and restart of the application server.

v A container in which the J2EE application runs. The container manages the
enlistment of XAResources on behalf of the application when the application
performs updates to transactional resource managers (for example, databases).
Optionally, the container can control the demarcation of transactions for
enterprise beans configured for container-managed transactions.

v An application programming interface (UserTransaction) that is available to
bean-managed enterprise beans and servlets. This allows such application
components to control the demarcation of their own transactions.

For more information about using transactions with WebSphere applications, see
the following topics:
v ″Transaction support in WebSphere Application Server″

v ″Developing components to use transactions″

v ″Configuring transaction properties for an application server″

v ″Using local transactions″

v ″Setting transactional attributes in the deployment descriptor″

v ″Using bean-managed transactions″

v ″Managing active transactions″

v ″Managing transaction logging for optimum server availability″

v ″Troubleshooting transactions″

v ″Transaction service exceptions″

v ″UserTransaction interface - methods available″

Transaction support in WebSphere Application Server
A transaction is unit of activity within which multiple updates to resources can be
made atomic (as an indivisible unit of work) such that all or none of the updates
are made permanent. For example, multiple SQL statements to a relational
database are committed atomically by the database during the processing of an
SQL COMMIT statement. In this case, the transaction is contained entirely within
the database manager and can be thought of as a resource manager local transaction
(RMLT). In some contexts, a transaction is referred to as a logical unit of work
(LUW).

© Copyright IBM Corp. 2002 383

The way that applications use transactions depends on the type of application
component, as follows:
v A session bean can either use container-managed transactions (where the bean

delegates management of transactions to the container) or bean-managed
transactions (where the bean manages transactions itself).

v Entity beans use container-managed transactions.
v Web components (servlets) use bean-managed transactions.

WebSphere Application Server is a transaction manager that supports the
coordination of resource managers through their XAResource interface and
participates in distributed global transactions with other OTS 1.2 compliant
transaction managers (for example J2EE 1.3 application servers). WebSphere
applications can also be configured to interact with databases, JMS queues, and
JCA connectors through their local transaction support when distributed transaction
coordination is not required.

Resource managers that offer transaction support can be categorized into those that
support two-phase coordination (by offering an XAResource interface) and those
that support only one-phase coordination (for example through a LocalTransaction
interface). The WebSphere Application Server transaction support provides
coordination, within a transaction, for any number of two-phase capable resource
managers. It also enables a single one-phase capable resource manager to be used
within a transaction in the absence of any other resource managers, although a
WebSphere transaction is not necessary in this case.

With the Last Participant Support of WebSphere Application Server Enterprise, you
can coordinate the use of a single one-phase commit (1PC) capable resource with
any number of two-phase commit (2PC) capable resources in the same global
transaction. At transaction commit, the two-phase commit resources are prepared
first using the two-phase commit protocol, and if this is successful the one-phase
commit-resource is then called to commit(one_phase). The two-phase commit
resources are then committed or rolled back depending on the response of the
one-phase commit resource.

The ActivitySession service of WebSphere Application Server Enterprise provides
an alternative unit-of-work (UOW) scope to that provided by global transaction
contexts. It is a distributed context that can be used to coordinate multiple
one-phase resource managers. The WebSphere EJB container and deployment
tooling support ActivitySessions as an extension to the J2EE programming model.
EJBs can be deployed with lifecycles that are influenced by ActivitySession context,
as an alternative to transaction context. An application can then interact with a
resource manager through its LocalTransaction interface for the period of a
client-scoped ActivitySession rather than just the duration of an EJB method.

Resource manager local transaction (RMLT)
A resource manager local transaction (RMLT) is a resource manager’s view of a
local transaction; that is, it represents a unit of recovery on a single connection that
is managed by the resource manager.

Resource managers include:
v Enterprise Information Systems that are accessed through a resource adapter, as

described in the J2EE Connector Architecture 1.0 at
http://java.sun.com/j2ee/connector/index.html.

384 IBM WebSphere Application Server Network Deployment, Version 5: Applications

http://java.sun.com/j2ee/connector/index.html

v Relational databases that are accessed through a JDBC datasource.
v JMS queue and topic destinations.

Resource managers offer specific interfaces to enable control of their RMLTs. J2EE
connector resource adapters that include support for local transactions provide a
LocalTransaction interface to enable applications to request that the resource
adapter commit or rollback RMLTs. JDBC datasources provide a Connection
interface for the same purpose.

The boundary at which all RMLTs must be complete is defined in WebSphere
Application Server by a ″Local transaction containment (LTC)″.

Global transactions
If an application uses two or more resources, then an external transaction manager
is needed to coordinate the updates to both resource managers in a global
tansaction.

Global transaction support is available to web and enterprise bean J2EE
components. Enterprise bean components can be subdivided into beans that exploit
container-managed transactions (CMT) or bean-managed transactions (BMT).

BMT enterprise beans and web components can use the Java Transaction API (JTA)
UserTransaction interface to define the demarcation of a global transaction. The
UserTransaction interface is obtained by a JNDI lookup of
java:comp/UserTransaction. The UserTransaction is not available to the following
components:
v CMT enterprise beans. Any attempt by such beans to obtain the interface results

in an exception in accordance with the EJB specification.
v Client applications running outside the Web and EJB containers.

Ensure that programs that perform a JNDI lookup of the UserTransaction interface,
use an InitialContext that resolves to a local implementation of the interface. Also
ensure that such programs use a JNDI location appropriate for the EJB version.

Before the EJB 1.1 specification, the JNDI location of the UserTransaction interface
was not specified. Each EJB container implementor defined it in an
implementation-specific manner. Earlier versions of WebSphere Application Server,
up to and including Version 3.5.x (without EJB 1.1), bind the UserTransaction
interface to a JNDI location of jta/usertransaction. WebSphere Application Server
Version 4, and later releases, bind the UserTransaction interface at the location
defined by EJB 1.1, which is java:comp/UserTransaction. WebSphere Application
Server, Version 5 no longer provides the jta/usertransaction binding within Web
and EJB containers to applications at a J2EE level of 1.3 or later. For example, EJB
2.0 applications can use only the java:comp/UserTransaction location.

Local transaction containment (LTC)
A local transaction containment (LTC) is used to define the application server
behavior in an unspecified transaction context.

(Unspecified transaction context is defined in the Enterprise JavaBeans 2.0

Specification at http://java.sun.com/products/ejb/2.0.html.)

Chapter 12. Using the transaction service 385

http://java.sun.com/products/ejb/2.0.html

A LTC is a bounded unit-of-work scope within which zero, one, or more resource
manager local transactions (RMLTs) can be accessed. The LTC defines the
boundary at which all RMLTs must be complete; any incomplete RMLTs are
resolved, according to policy, by the container. An LTC is local to a bean instance;
it is not shared across beans even if those beans are managed by the same
container. LTCs are started by the container before dispatching a method on a J2EE
component (such as an enterprise bean or servlet) whenever the dispatch occurs in
the absence of a global transaction context. LTCs are completed by the container
depending on the application-configured LTC boundary; for example at the end of
the method dispatch. There is no programmatic interface to the LTC support;
rather LTCs are managed exclusively by the container and configured by the
application deployer through transaction attributes in the application deployment
descriptor.

A local transaction containment cannot exist concurrently with a global transaction.
If application component dispatch occurs in the absence of a global transaction, the
container always establishes an LTC. The only exceptions to this are as follows:
v Where application component dispatch occurs without container interposition;

for example, for a stateless session bean create.
v J2EE 1.2 web components.
v J2EE 1.2 BMT enterprise beans.

Using local transactions
Local transaction containment (LTC) support, and its configuration through local
transaction extended deployment descriptors, gives IBM WebSphere Application
Server application programmers a number of advantages. This topic describes
those advantages and how they relate to the settings of the local transaction
extended deployment descriptors. This topic also describes points to consider to
help you best configure transaction support for some example scenarios that use
local transactions.

Develop an enterprise bean or servlet that accesses one or more databases that
are independent and require no coordination.

If an enterprise bean does not need to use global transactions, it is often
more efficient to deploy the bean with the Container Transaction
deployment descriptor Transaction attribute set to Not supported instead
of Required.

With the extended local transaction support of IBM WebSphere Application
Server, applications can perform the same business logic in an unspecific
transaction context as they can under a global transaction. An enterprise
bean, for example, runs under an unspecified transaction context if it is
deployed with a Transaction attribute of Not supported or Never.

The extended local transaction support provides a container-managed,
implicit local transaction boundary within which application updates can
be committed and their connections cleaned up by the container.
Applications can then be designed with a greater degree of independence
from deployment concerns. This makes using a Transaction attribute of
Supports much simpler, for example, when the business logic may be
called either with or without a global transaction context.

An application can follow a get-use-close pattern of connection usage
regardless of whether or not the application runs under a transaction. The
application can depend on the close behaving in the same way and not
causing a rollback to occur on the connection if there is no global
transaction.

386 IBM WebSphere Application Server Network Deployment, Version 5: Applications

There are many scenarios where ACID coordination of multiple resource
managers is not needed. In such scenarios running business logic under a
Transaction policy of Not supported performs better than if it had been
run under a Required policy. This benefit is exploited through the Local
Transactions - Resolution-control extended deployment setting of
ContainerAtBoundary. With this setting, application interactions with
resource providers (such as databases) are managed within implicit RMLTs
that are both started and ended by the container. The RMLTs are
committed by the container at the configured Local Transactions -
Boundary; for example at the end of a method. If the application returns
control to the container by an exception, the container rolls back any
RMLTs that it has started.

This usage applies to both servlets and enterprise beans.

Use local transactions in a managed environment that guarantees clean-up.
Applications that want to control RMLTs, by starting and ending them
explicitly, can use the default Local Transactions - Resolution-control
extended deployment setting of Application. In this case, the container
ensures connection cleanup at the boundary of the local transaction
context.

J2EE specifications that describe application use of local transactions do so
in the manner provided by the default setting of Local Transactions -
Resolution-control=Application and Local Transactions -
Unresolved-action=Rollback. By configuring the Local Transactions -
Unresolved-action extended deployment setting to Commit, then any
RMLTs started by the application but not completed when the local
transaction containment ends (for example, when the method ends) are
committed by the container. This usage applies to both servlets and
enterprise beans.

Extend the duration of a local transaction beyond the duration of an EJB
component method.

The J2EE specifications restrict the use of RMLTs to single EJB methods.
This restriction is because the specifications have no scoping device,
beyond a container-imposed method boundary, to which an RMLT can be
extended. In WebSphere Application Server Enterprise, you can exploit the
Local Transactions - Boundary extended deployment setting to give the
following advantages:
v Significantly extend the use-cases of RMLTs
v Make conversational interactions with one-phase resource managers

possible through ActivitySession support.

An ActivitySession is a WebSphere Application Server Enterprise
programming model extension that provides a distributed context with a
boundary that is longer than a single method. You can extend the use of
RMLTs over the longer ActivitySession boundary, which can be controlled
by a client. The ActivitySession boundary reduces the need to use
distributed transactions where ACID operations on multiple resources are
not needed. This benefit is exploited through the Local Transactions -
Boundary extended deployment setting of ActivitySession. Such extended
RMLTs can remain under the control of the application or be managed by
the container depending on the use of the Local Transactions -
Resolution-control deployment descriptor setting.

Coordinate multiple one-phase resource managers.
For resource managers that do not support XA transaction coordination, a

Chapter 12. Using the transaction service 387

client can exploit ActivitySession-bounded local transaction contexts. Such
contexts give a client the same ability to control the completion direction of
the resource updates by the resource managers as the client has for
transactional resource managers. A client can start an ActivitySession and
call its entity beans under that context. Those beans can perform their
RMLTs within the scope of that ActivitySession and return without
completing the RMLTs. The client can later complete the ActivitySession in
a commit or rollback direction and cause the container to drive the
ActivitySession-bounded RMLTs in that coordinated direction.

To determine how best to configure the transaction support for an application,
depending on what you want to do with transactions, consider the following
points.

General points

v You want to start and end global transactions explicitly in the
application (BMT session beans and servlets only).
For a session bean, set the Transaction type to Bean (to use
bean-managed transactions) in the component’s deployment descriptor.
(You do not need to do this for servlets.)

v You want to access only one XA or non-XA resource in a method.
In the component’s deployment descriptor, set Local Transactions -
Resolution-control to ContainerAtBoundary. In the Container transaction
deployment descriptor, set Transaction to Supports.

v You want to access several XA resources atomically across one or more
bean methods.
In the Container transaction deployment descriptor, set Transaction to
Required, Requires new, or Mandatory.

v You want to access several non-XA resource in a method without having
to worry about managing your own local transactions.
In the component’s deployment descriptor, set Local Transactions -
Resolution-control to ContainerAtBoundary. In the Container transaction
deployment descriptor, set Transaction to Not supported.

v You want to access several non-XA resource in a method and want to
manage them independently.
In the component’s deployment descriptor, set Local Transactions -
Resolution-control to Application and set Local Transactions -
Unresolved-action to Rollback. In the Container transaction deployment
descriptor, set Transaction to Not supported.

Points specific to WebSphere Application Server Enterprise

v You want to access one of more non-XA resources across multiple EJB
method calls without having to worry about managing your own local
transactions.
In the component’s deployment descriptor, set Local Transactions -
Resolution-control to ContainerAtBoundary, Local Transactions -
Boundary to ActivitySession, and Bean Cache - Activate at to
ActivitySession. In the Container transaction deployment descriptor, set
Transaction to Not supported and set ActivitySession attribute to
Required, Requires new, or Mandatory.

v You want to access several non-XA resources across multiple EJB method
calls and want to manage them independently.

388 IBM WebSphere Application Server Network Deployment, Version 5: Applications

In the component’s deployment descriptor, set Local Transactions -
Resolution-control to Application, Local Transactions - Boundary to
ActivitySession, and Bean Cache - Activate at to ActivitySession. In
the Container Transaction deployment descriptor, set Transaction to Not
supported and set ActivitySession attribute to Required, Requires new,
or Mandatory.

v You want to use a single non-XA resource and one or more
XAResources.
Use the Last Participant Support of WebSphere Application Server
Enterprise.

Local and global transaction considerations
Applications use resources, such as JDBC data sources or connection factories, that
are configured through the Resources view of the WebSphere Application Server
Administrative Console. How these resources participate in a global transaction
depends on the underlying transaction support of the resource provider. For
example, a JDBC provider can provide either XA or non-XA versions of a data
source. A non-XA data source can support only resource manager local transactions
(RMLTs), but an XA data source can support two-phase commit coordination.

If an application uses two or more resource providers that support only RMLTs,
then atomicity cannot be assured because of the one-phase nature of these
resources. To ensure atomic behavior, the application should use resources that
support XA coordination and should access them within a global transaction.

If an application uses only one RMLT, the atomic behavior can be guaranteed by
the resource manager, which can be accessed under a local transaction containment
context.

An application can also access a single resource manager under a global
transaction context, even if that resource manager does not support the XA
coordination. An application can do this, because WebSphere Application Server
performs an ″only resource optimization″ and interacts with the resource manager
under a RMLT. Within a global transaction context, any attempt to use more than
one resource provider that supports only RMLTs causes the global transaction to be
rolled back.

At any moment, an instance of an enterprise bean can have work outstanding in
either a global transaction context or a local transaction containment context, but
never both. An instance of an enterprise bean can change from running under one
type of context to the other (in either direction), if all outstanding work in the
original context is complete. Any violation of this principle causes an exception to
be thrown when the enterprise bean tries to start the new context.

Developing components to use transactions
These topics provide information about developing WebSphere application
components to use transactions

The way that applications use transactions depends on the type of application
component, as follows:
v A session bean can either use container-managed transactions (where the bean

delegates management of transactions to the container) or bean-managed
transactions (where the bean manages transactions itself).

Chapter 12. Using the transaction service 389

v Entity beans use container-managed transactions.
v Web components (servlets) use bean-managed transactions.

You configure whether a component uses container- or bean-managed transactions
by setting an appropriate value on the Transaction type deployment attribute, as
described in ″Setting transactional attributes in the deployment descriptor″. You
can also configure other transactional deployment descriptor attributes.

If you want a session bean to manage its own transactions, you must write the
code that explicitly demarcates the boundaries of a transaction as described in
″Using bean-managed transactions″.

Similarly, if you want a Web component to use transactions, you must write the
code that explicitly demarcates the boundaries of a transaction as described in
″Using bean-managed transactions″.

Setting transactional attributes in the deployment descriptor
Use this task to configure the transactional deployment descriptor attributes
associated with an EJB or Web module, to enable a J2EE application to use
transactions.

To set transactional attributes in the deployment descriptor for an application
component (enterprise bean or servlet), complete the following steps:

Steps for this task
1. (Start the Application Assembly Tool).
2. Create or edit the application EAR file.

For example, to change attributes of an existing application, click File-> Open
then select the EAR file.

3. In the navigation pane, select the component instance; for example:
v For a session bean, expand ejb_module_instance-> Session beans then select

the bean instance.
v For a servlet, expand web_application-> Web Components then select the

servlet instance.

A property dialog notebook for the component is displayed in the property
pane.

4. In the property pane, select the Advanced tab.
5. Set the Transaction type attribute, which defines the transactional manner in

which the container invokes a method.
You can set this attribute to Container or Bean, as follows:
v For a session bean to use container-managed transactions, set Container
v For a session bean to use bean-managed transactions, set Bean
v For an entity bean, set Container
v For a Web component (servlet), set Bean

6. In the property pane, select the IBM Extensions tab.
7. Configure J2EE component extensions attributes for extended local transaction

containment.
To enable management of local transaction containments, configure the
following EJB extensions attributes. These attributes configure, for the

390 IBM WebSphere Application Server Network Deployment, Version 5: Applications

component, the behaviour of the container’s local transaction containment
(LTC) environment that the container establishes whenever a global transaction
is not present.

Boundary
Specifies the duration of a local transaction context. You can set this
attribute to either Bean method or ActivitySession, as described in
(″Entity bean assembly settings″).

Note: The ActivitySession option is not supported in the web container.

This property can be changed on WAS Enterprise only.

Resolution control
Specifies how the local transaction is to be resolved before the local
transaction context ends: by the application through user code or by the
EJB container. You can set this attribute to either Application or
ContainerAtBoundary, as described in (″Entity bean assembly
settings″).

Unresolved action
Specifies the action that the container must take when the local
transaction context scope ends, if resources are uncommitted by an
application in a local transaction and the Resolution control is set to
Application. You can set this attribute to either Commit or Rollback, as
described in (″Entity bean assembly settings″).

8. [For EJB components only] For container-managed transactions, configure how
the container must manage the transaction boundaries when delegating a
method invocation to an enterprise bean’s business method:
a. In the navigation pane, select Container Transactions.

This displays a table of the methods for enterprise beans.
b. For each method of the enterprise bean set the Transaction attribute

attribute to an appropriate value, as defined in (″Container transaction
assembly settings″).

Using bean-managed transactions
This topic describes how to enable a session bean or servlet to use bean-managed
transactions, to manage its own transactions directly instead of letting the
container manage the transactions.

Note: Entity beans cannot manage transactions (so cannot use bean-managed
transactions).

To enable a session bean or servlet to use bean-managed transactions, complete the
following steps:

Steps for this task
1. Set the Transaction type attribute in the component’s deployment descriptor to

Bean, as described in ″Setting transactional attributes in the deployment
descriptor″ (not in this document).

2. Write the component code to actively manage transactions
When writing the code required by a component to manage its own
transactions, remember the following basic rules:
v An instance of a stateless session bean cannot reuse the same transaction

context across multiple methods called by an EJB client.

Chapter 12. Using the transaction service 391

v An instance of a stateful session bean can reuse the same transaction context
across multiple methods called by an EJB client.

The following code extract shows the standard code required to obtain an
object encapsulating the transaction context. There are three basics steps
involved:
v The component class must set the value of the javax.ejb.SessionContext object

reference in the setSessionContext method.
v A javax.transaction.UserTransaction object is created by calling a lookup on

″java:comp/UserTransaction″.
v The UserTransaction object is used to participate in the transaction by calling

transaction methods such as begin and commit as needed. If an enterprise
bean begins a transaction, it must also complete that transaction either by
invoking the commit method or the rollback method.

...
import javax.transaction.*;
...
public class MyStatelessSessionBean implements SessionBean {
private SessionContext mySessionCtx =null;
...
public void setSessionContext (SessionContext ctx)throws EJBException {
mySessionCtx =ctx;
}
...

public float doSomething(long arg1)throws FinderException,EJBException {
UserTransaction userTran = (UserTransaction)initCtx.lookup(

"java:comp/UserTransaction");
...
//User userTran object to call transaction methods
userTran.begin ();
//Do transactional work
...
userTran.commit ();
...

}
...

}

Configuring transaction properties for an application server
Use this task to configure the transaction properties for an application server; for
example, to define the location of the directory that contains the transaction log or
to change default timeouts associated with transactions.

To configure the transaction properties for an application server, complete the
following steps:

Steps for this task
1. Start the Administrative console
2. In the navigation pane, select Servers-> Manage Local Server

This displays the properties of the application server in the content pane.
3. Select the Transaction Service tab, to display the properties page for the

transaction service, as two notebook pages:

Configuration
The values of properties defined in the configuration file. If you
change these properties, the new values are applied when the
application server next starts.

392 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Runtime
The runtime values of properties. If you change these properties, the
new values are applied immediately, but are overwritten with the
Configuration values when the application server next starts.

4. Select the Configuration tab, to display the transaction-related configuration
properties.

5. (Optional) If you want to change the directory in which transaction logs are
written, type the full pathname of the directory in the Transaction log
directory field.
You can check the current runtime value of Transaction log directory, by
clicking the Runtime tab.
You can also specify a size for the transaction logs, as described in the
following step.
Note: If you change the transaction log directory, you should apply the
change and restart the application server as soon as possible, to minimize the
risk of problems caused that might occur before the application server is
restarted. For example, if a problem causes the server to fail (with in-flight
transactions), the server next starts with the new log directory and is unable
to automatically resolve in-flight transactions that were recorded in the old log
directory.

6. (Optional) If you want to change the default file size of transaction log files,
modify the Transaction log directory field to include a file size setting, in the
following format:
directory_name;file_size

Where
v directory_name is the name of the transaction log directory
v file_size is the new default size specified in bytes. The nK or nM suffix can

be used to indicate kilobytes or megabytes. If you do not specify a file size
value, the default value of 1M is used.

For example, c:\tranlogs;2M indicates the files are to be created with 2M
bytes size and stored in the directory c:\tranlogs.

In a non-production environment, you can use the transaction log directory
value of ;0 to disable transaction logging. (There must be no directory name
element before the size element of 0.) You should not disable transaction
logging in a production environment, because this prevents recovery after a
system failure and, therefore, data integrity cannot be guaranteed.

7. In the Total transaction lifetime timeout field, type the number of
milliseconds a transaction can remain inactive before it is ended by the
transaction service. A value of 0 (zero) indicates that there is no timeout limit.

8. In the Client inactivity timeout field, type the number of seconds after which
a client is considered inactive and the transaction service ends any
transactions associated with that client. A value of 0 (zero) indicates that there
is no timeout limit.

9. Click OK.
10. Stop then restart the application server.

If you change the transaction log directory configuration property to an
incorrect directory name, the application server will restart but be unable to
open the transaction logs. You should change the configuration property to a
valid directory name, then restart the application server.

Chapter 12. Using the transaction service 393

Transaction service settings
Use this page to modify transaction service settings.

To view this administrative console page, click Servers > Application Servers >
server > Transaction Service.

Transaction log directory
Specifies the name of a directory for this server where the transaction service stores
log files for recovery.

A blank value in the server configuration is expanded by the transaction log at
startup as the directory (install_root)/tranlog/(server_name).

Data type String

Total transaction lifetime timeout
Specifies the maximum duration, in seconds, for transactions on this application
server.

Any transaction that is not requested to complete before this timeout is rolled back.
If set to 0, there is no timeout limit.

Data type Integer
Units Seconds
Default 120
Range 0 to 2 147 483 647

Client inactivity timeout
Specifies the maximum duration, in seconds, between transactional requests from a
remote client.

Any period of client inactivity that exceeds this timeout results in the transaction
rolling back in this application server. If set to 0, there is no timeout limit.

Data type Integer
Units Seconds
Default 60
Range 0 to 2 147 483 647

Managing active transactions
Use this task to manage transactions that are active on an application server.

You can use this task to display a snapshot of all the transactions currently running
on an application server. For each transaction, the following properties are shown:
its local ID, global ID, and current status. You can also choose to finish transactions
manually.

Under normal circumstances, transactions should run and complete (commit or
rollback) automatically, without the need for intervention. However, in some
circumstances, you may need to finish a transaction manually. For example, you
may want to finish a transaction that has become stuck polling a resource manager
that you know will not become available again within the desired timeframe.

394 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Note: If you choose to finish a transaction on an application server, it is recorded
as having completed in the transaction service logs for that server, so will not be
eligible for recovery during server start up. If you finish a transaction, you are
responsible for cleaning up any in-doubt transactions on the resource managers
affected.

To manage the active transactions for an application server, use the administrative
console to complete the following steps:

Steps for this task
1. In the navigation pane, select Servers-> Manage Application Servers

This displays a list of application servers in the content pane.
2. In the content pane, click your_app_server

This displays the properties of the application server, your_app_server.
3. In the content pane, click the Runtime tab.

This displays the runtime properties of the application server.
4. In the Additional Properties table, select Transaction Service

This displays the runtime properties of the Transaction Service.
5. Click Manage Transactions.

This displays a snapshot of all the transactions currently running on the server.
For each transaction, the following properties are shown: its local ID, global ID,
and current status.

6. (Optional) If you want to finish one or more transactions, select the checkbox
provided on the entry for the transaction, then click Finish. Alternatively, to
finish all transactions, select the checkbox in the header of the transactions
table, then click Finish.

Managing transaction logging for optimum server availability
This topic describes some considerations and actions that you can use to manage
transaction logging to help ensure that the availability of your application servers
is optimized.

The transaction service writes information to the transaction log for every global
transaction which involves two or more resources or is distributed across multiple
servers. The transaction log is stored on disk and is used by the transaction service
for recovery after a system or server crash. The transaction log for each application
server consists of multiple files held in a single directory. You can change the
directory that an application server uses to store the transaction log, as described
in ″Configuring transaction properties for an application server″.

When a global transaction is completed, the information in the transaction log is
not needed anymore so is marked for deletion. Periodically, this redundant
information is garbage collected and the space reused by new transactions. The log
files are created of fixed size at server startup, thus no further disk space allocation
is required during the lifetime of the server. The default allocation is suitable for
around 500 concurrent transactions.

If all the log space is in use when a transaction needs to save information, the
transaction is rolled back and the message ″WTRN0075W: The transaction log file
is full. Transaction rolled back.″ is reported to the system error log. No more
transactions can commit until more log space is made available when existing
active transactions complete.

Chapter 12. Using the transaction service 395

You can monitor the number of concurrent global transactions by using the
performance monitoring counters for transactions. The ″Global transaction commit
time″ counter is a measure of how long a transaction takes to complete and,
therefore, how long the log is in use by a transaction. If this value is high, then
transactions are taking a long time to complete, which can be due to resource
manager or network failures. If you ensure this value is low, the log is more
efficiently used and unlikely to become full.

You can change the default size of log files by updating the transaction log settings
as described in ″Configuring transaction properties for an application server″. Take
care if you increase the size above the default 1Mbyte setting, because this extends
the time of the log file garbage collection process, and can lead to undesireable
periodic ″transaction stall″ effects.

Configuring transaction aspects of servers for optimum
availability

This topic describes some considerations and actions that you can take to configure
transaction-related aspects of application servers for optimum availability.

To configure transaction-related aspects of application servers for optimum
availability, complete the following steps:

Steps for this task
1. Store the transaction log files on a fast disk in a highly-available file system,

such as a RAID device.
The transaction log may need to be accessed by every global transaction and be
used for transaction recovery after a crash. Therefore, the disk the log files are
being written to should be on a highly-available file system, such as a RAID
device.
The performance of the disk also directly affects the transaction performance. In
general, a global transaction makes two disk writes, one after the prepare phase
when the outcome of the transaction is known (this information is forced to
disk) and a further disk write at transaction completion. Therefore, the
transaction logs should be placed on the fastest disks available and not make
use of network mounted devices.

2. Mirror the transaction log files by using hardware disk mirroring or
dual-ported disks.
If log files have been mirrored or can be recovered, they can be used when
restarting a failed server or moved to an another machine and another server
started there to perform recovery.
Hardware disk mirroring or dual-ported disks can be used by specifiying the
appropriate file system directory for the transaction logs using the WebSphere
Administrative Console.

3. Specify the optimum location of the transaction log directory for application
servers.
The default transaction log directory for an application server configuration is
unset. By default the application server places transaction log files in a
subdirectory of the installed WebSphere tranlog directory (as defined by the
WebSphere variable TRANLOG_ROOT), and the subdirectory name is the same
as the server name. For example, the default directory for a server named
server1 on Windows 2000 is: c:\WebSphere\AppServer\tranlog\server1.
You can specify an optimum location of the transaction log directory for all
application servers, either on a node or cell scope, by setting the WebSphere

396 IBM WebSphere Application Server Network Deployment, Version 5: Applications

variable TRANLOG_ROOT. You can specify a different location separately for
each application server by setting the Transaction Log Directory property for
the server.

4. Never allow more than one application server to concurrently use the same set
of log files.
Because the transaction logs record the state of global transactions within a
server, if the logs become lost or corrupt, then transactions that are in the
prepared state before failure can leave resources in an in-doubt state and
prevent further updates or access to the resources by other users or servers.
These transactions may need to be manually resolved by either committing or
rolling back the transactions at the affected resource managers. The failed
server can then be cold-started, which creates new empty transaction logs.
If log files have been mirrored or can be recovered, they can be used when
restarting the failed server or moved to an alternate server or machine and
another server restarted to perform recovery, as described in the related tasks.
Never allow more than one application server to concurrently use the same set
of log files, because each server will destroy the information recorded by the
other, resulting in corrupt log files that are unusable for future recovery
purposes.

5. Configure application servers to always use the same listening port address at
each startup.
If you are running distributed transactions between multiple application
servers, the remote object references saved in the transaction log need to be
redirected to the originating server on recovery.
On Application Server Network Deployment, the node agents automatically
redirect such remote object references to the appropriate application servers on
recovery. However, if the distributed transaction is between application servers
that are not on Application Server Network Deployment, then you must handle
the redirection of remote object references for transaction recovery to complete.
For example, you must do this is if an application server is deployed on
WebSphere Application Server (not the Network Deployment edition) and runs
distributed transactions with non-WebSphere EJB or Corba servers.
In particular, the default restart action of an application server not on
Application Server Network Deployment is to use a different listening port
address to the port when the server shut down. This prevents transaction
recovery completing. To overcome this, you should always configure
application servers to always use the same listening port address at each
startup (see the ORB property com.ibm.CORBA.ListenerPort in ″Warning: no
string named [rejb_setg] found.″ (not in this document)). You may need to
make similar configuration changes to other application servers involved in
transactions, to be able to access those servers during recovery.

Moving a transaction log from one server to another
This topic describes some considerations and actions that you can take to move the
transaction logs for an application server to another server.

To move transaction logs from one application server to another, consider the
following steps:

Steps for this task
1. Move all the transaction log files for the application server.

The transaction log directory for each server contains four log files; named
tranlog1, tranlog2, XAresource1, and XAresource2. When moving transaction

Chapter 12. Using the transaction service 397

logs from one server to another you must move all four files; otherwise
recovery may not complete resulting in data inconsistency.

2. For a single server configuration, move the transaction logs to any server that
has access to the same resource managers.
For a single server configuration (where there are no distributed transactions),
the transaction logs can be moved to any server (on any node) that has access
to the same resource managers as the original server. For example, the server
needs communication and valid security access to databases or message
queues.
All the transaction log files for the original server need to be moved to a
directory accessible by the new server. This can be accomplished by either
renaming the transaction log directory or copying all the log files to the new
server’s transaction log directory before starting the new server.
Note: To complete transaction recovery, the application server uses the resource
manager configuration information in the transaction logs. However, for the
application server to continue to do new work with the same resource
managers, the server must have an appropriate resource manager configuration
(as for the original server).

3. For a network-deployed server configuration, move the transaction logs to a
server that has the same name and host IP address, and access to the same
resource managers.
For a network-deployed server configuration, where there can be distributed
transactions present in the logs, there are more restrictions. Distributed
transactions that access multiple servers log information about each server
involved in the transaction. This information includes the server name and the
IP address of the machine on which the server is running. When recovery is
taking place on server restart, the server uses this information to contact the
distributed servers and similarly, the distributed servers try to contact the
server with the same original name. So, if a server fails and the logs need to
the recovered on an alternative server, that alternative server needs to have the
same name and host IP address as the original server. The alternative server
also needs to have access to the same resource managers as the original server.
For example, the server needs communication and valid security access to
databases or message queues.
Note: All servers within a cell must have unique names.
Note: To complete transaction recovery, the application server uses the resource
manager configuration information in the transaction logs. However, for the
application server to continue to do new work with the same resource
managers, the server must have an appropriate resource manager configuration
(as for the original server).

Restarting an application server on a different host
This topic describes some considerations and actions that you can take with
transaction logs to restart an application server on a different host.

Moving transactions logs to a different host is similar to moving logs from one
server to another, as described in ″Moving a transaction log from one server to
another″.

This involves moving an original application server on one host to an alternative
server, which has access to the same resource managers, on another host. For a
network-deployed server configuration, the alternative server must have the same
name and host IP address as the original server.

398 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Note: To complete transaction recovery, the application server uses the resource
manager configuration information in the transaction logs. However, for the
application server to continue to do new work with the same resource managers,
the server must have an appropriate resource manager configuration (as for the
original server).

To restart an application server on a different host, complete the following steps:

Steps for this task
1. Ensure that the alternative application server is stopped.
2. Move all the transaction logs for the original server to the alternative

application server, according to the considerations described in ″Moving a
transaction log from one server to another″.

3. Restart the alternative application server.

Transactional interoperation with non-WebSphere application servers
To interoperate transactionally with a non-WebSphere application server,
WebSphere Application Server switches dynamically between native transaction
contexts and interoperable OTS contexts depending on the capability of the partner
with which it is interoperating. The following system properties (that were needed
to be set in WebSphere Application Server before version 5.0 to enable transactional
interoperation), and the use of native contexts, are deprecated:
com.ibm.ejs.jts.jts.ControlSet.nativeOnly=false
com.ibm.ejs.jts.jts.ControlSet.interoperabilityOnly=true

In a future release of WebSphere Application Server only interoperable OTS
contexts will be supported.

Troubleshooting transactions
Use this overview task to help resolve a problem that you think is related to the
Transaction service.

To identify and resolve transaction-related problems, you can use the standard
WebSphere Application Server RAS facilities. If you encounter a problem that you
think might be related to transactions, complete the following stages:

Steps for this task
1. Check for transaction messages in the admin console.

The Transaction service produces diagnostic messages prefixed by ″WTRN″.
The error message indicates the nature of the problem and provides some
detail. The associated message information provides an explanation and any
user actions to resolve the problem.

2. Check for Transaction messages in the activity log.
Activity log messages produced by the Transaction service are accompanied by
log analyzer descriptions.

3. Check for more messages in the application server’s stdout.log.
For more information about a problem, check the stdout.log file for the
application server, which should contain more error messages and extra details
about the problem.

4. Check for messages in the application server’s transaction log directory for
information about the transactions in-flight when the problem occurred.

Chapter 12. Using the transaction service 399

Note: If you changed the transaction log directory and a problem caused the
application server to fail (with in-flight transactions) before the server was
restarted properly, the server will next start with the new log directory and be
unable to automatically resolve in-flight transactions that were recorded in the
old log directory. To resolve this, you can copy the transaction logs to the new
directory then stop and restart the application server.

Transaction service exceptions
This topic lists the exceptions that can be thrown by the WebSphere Application
Server transaction service. The exceptions are listed in the following groups:
v Standard exceptions
v Heuristic exceptions

If the EJB container catches a system exception from the business method of an
enterprise bean, and the method is running within a container-managed
transaction, the container rolls back the transaction before passing the exception on
to the client. For more information about how the container handles the exceptions
thrown by the business methods for beans with container-managed transaction
demarcation, see the section Exception handling in the Enterprise JavaBeans 2.0

specification at http://java.sun.com/products/ejb/docs.html. That section
specifies the container’s action as a function of the condition under which the
business method executes and the exception thrown by the business method. It
also illustrates the exception that the client receives and how the client can recover
from the exception.

Standard exceptions
The standard exceptions such as TransactionRequiredException,
TransactionRolledbackException, and InvalidTransactionException are defined in

the Java Transaction API (JTA) 1.0.1 Specification at
http://java.sun.com/products/jta/.

InvalidTransactionException
This exception indicates that the request carried an invalid transaction
context.

TransactionRequiredException exception
This exception indicates that a request carried a null transaction context,
but the target object requires an active transaction.

TransactionRolledbackException exception
This exception indicates that the transaction associated with processing of
the request has been rolled back, or marked for roll back. Thus the
requested operation either could not be performed or was not performed
because further computation on behalf of the transaction would be
fruitless.

Heuristic exceptions
A heuristic decision is a unilateral decision made by one or more participants in a
transaction to commit or rollback updates without first obtaining the consensus
outcome determined by the Transaction Service. Heuristic decisions are an issue
only after the participant has been prepared and the second phase of commit
processing is underway. Heuristic decisions are normally made only in unusual
circumstances, such as repeated failures by the transaction manager to

400 IBM WebSphere Application Server Network Deployment, Version 5: Applications

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/jta/

communicate with a resource manage during two-phase commit. If a heuristic
decision is taken, there is a risk that the decision differs from the consensus
outcome, resulting in a loss of data integrity.

The following list provides a summary of the heuristic exceptions. For more detail,

see the Java Transaction API (JTA) 1.0.1 Specification at
http://java.sun.com/products/jta/.

HeuristicRollback exception
This exception is raised on the commit operation to report that a heuristic
decision was made and that all relevant updates have been rolled back.

HeuristicMixed exception
This exception is raised on the commit operation to report that a heuristic
decision was made and that some relevant updates have been committed
and others have been rolled back.

UserTransaction interface - methods available
For details about the methods available with the UserTransaction interface, see the
WebSphere Application Server application programming interface reference

information (Javadoc) or the Java Transaction API (JTA) 1.0.1 Specification at
http://java.sun.com/products/jta/.

Chapter 12. Using the transaction service 401

http://java.sun.com/products/jta/
http://java.sun.com/products/jta/

402 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Chapter 13. Using naming

Naming is used by clients of WebSphere Application Server applications most
commonly to obtain references to objects related to those applications, such as
Enterprise JavaBeans (EJB) homes. The following steps outline the context of
Naming in the overall application development and deployment process. Steps for
this task follow:

Steps for this task
1. Develop your application using either JNDI or CosNaming (CORBA) interfaces.

Use these interfaces to look up server application objects that are bound into
the name space and obtain references to them. Most Java developers use the
JNDI interface. However, the CORBA CosNaming interface is also available for
performing Naming operations on WebSphere Application Server name servers
or other CosNaming name servers.

2. (Assemble your application)
Application assembly is a packaging and configuration step that is a
prerequisite to application deployment. If the application you are assembling is
a client to an application running in another process, you should qualify the
jndiName values in the deployment descriptors for the objects related to the
other application. Otherwise, you may need to override the names with
qualified names during application deployment. If the objects have fixed
qualified names configured for them, you should use them so that the
jndiName values do not depend on the other application’s location within the
topology of the cell.

3. (Deploy your application)
Put your assembled application onto the application server. If the application
you are assembling is a client to an application running in another server
process, be sure to qualify the jndiName values for the other application’s
server objects if they are not already qualified.
For more information on qualified names, see Lookup names support in
deployment descriptors and thin clients.

4. Configure name space bindings.
This step is necessary in these cases:
v Your deployed application is to be accessed by legacy client applications

running on previous versions of WebSphere Application Server. In this case,
you must configure additional name bindings for application objects relative
to the default initial context for legacy clients. (Version 5 clients have a
different initial context from legacy clients.)

v The application requires qualified name bindings for such reasons as:
– It will be accessed by J2EE client applications or server applications

running in another server process
– It will be accessed by thin client applications

In this case, you can configure name bindings as additional bindings for
application objects. The qualified names for the configured bindings are fixed,
meaning they do not contain elements of the cell topology that can change if
the application is moved to another server. Objects as bound into the name

© Copyright IBM Corp. 2002 403

space by the system can always be qualified with a topology-based name.
You must explicitly configure a name binding to use as a fixed qualified
name.

For more information on qualified names, see Lookup names support in
deployment descriptors and thin clients. For more information on configured
name bindings, see Configured name bindings.

5. Troubleshoot any problems that develop.
If a Naming operation is failing and you need to verify whether certain name
bindings exist, use the dumpNameSpace tool to generate a dump of the name
space.

Naming
Naming is used by clients of WebSphere Application Server applications to obtain
references to objects related to those applications, such as Enterprise JavaBeans
(EJB) homes.

These objects are bound into a mostly hierarchical structure, referred to as a name
space. In this structure, all non-leaf objects are called contexts. Leaf objects can be
contexts and other types of objects. Naming operations, such as lookups and binds,
are performed on contexts. All naming operations begin with obtaining an initial
context. You can view the initial context as a starting point in the name space.

The name space structure consists of a set of name bindings, each consisting of a
name relative to a specific context and the object bound with that name. For
example, the name myApp/myEJB consists of one non-leaf binding with the name
myApp, which is a context. The name also includes one leaf binding with the name
myEJB, relative to myApp. The object bound with the name myEJB in this example
happens to be an EJB home reference. The whole name myApp/myEJB is relative to
the initial context, which you can view as a starting place when performing
naming operations.

You can access and manipulate the name space through a name server. Users of a
name server are referred to as naming clients. Naming clients typically use the Java
Naming and Directory Interface (JNDI) to perform naming operations. Naming
clients can also use the Common Object Request Broker Architecture (CORBA)
CosNaming interface.

Typically, objects bound to the name space are resources and objects associated
with installed applications. These objects are bound by the system, and client
applications perform lookup operations to obtain references to them. Occasionally,
server and client applications bind objects to the name space. An application can
bind objects to transient or persistent partitions, depending on requirements.

In J2EE environments, some JNDI operations are performed with java: URL names.
Names bound under these names are bound to a completely different name space
which is local to the calling process. However, some lookups on the java: name
space may trigger indirect lookups to the name server.

New features for name space support
The following are new features of the WebSphere Application Server v5 naming
implementation:
v Name space is distributed.

404 IBM WebSphere Application Server Network Deployment, Version 5: Applications

For additional scalability, the name space for a cell is distributed among various
servers. Every server has a name server. In previous releases, there was only one
name server for an entire administrative domain.
In WebSphere Application Server versions prior to v5, all servers shared the
same default initial context, and everything was bound relative to that same
initial context. In WebSphere Application Server v5, the default initial context for
a server is its server root. System artifacts, such as EJB homes and resources, are
bound to the server root of the server with which they are associated.

v Transient and persistent partitions.

The name space is partitioned into transient areas and persistent areas. Server
roots are transient. System-bound artifacts such as EJB homes and resources are
bound under server roots. There is a cell persistent root, which you can use for
cell-scoped persistent bindings, and a node persistent root, which you can use to
bind objects with a node scope.

v System name space structure.

The name space for the entire cell is federated among all servers in the cell.
Every server process contains a name server. All name servers provide the same
logical view of the cell name space. The various server roots and persistent
partitions of the name space are interconnected by means of a system name
space. You can use the system name space structure to traverse to any context in
the cell name space.

v Configured bindings.

You can use the configuration graphical interface and script interfaces to
configure bindings in various root contexts within the name space. These
bindings are read-only and are bound by the system at server startup.

v Support for CORBA Interoperable Naming Service (INS) object URLs.

WebSphere Application Server v5 contains support for Common Object Request
Broker Architecture (CORBA) object URLs (corbaloc and corbname) as Java
Naming and Directory Interface (JNDI) provider URLs and lookup names.

Name space logical view
The name space for the entire cell is federated among all servers in the cell. Every
server process contains a name server. All name servers provide the same logical
view of the cell name space. The various server roots and persistent partitions of
the name space are interconnected by a system name space. You can use the
system name space structure to traverse to any context in a the cell’s name space.
A logical view of the name space is shown in the following diagram.

Name Space Logical View

Chapter 13. Using naming 405

System Name Space
(Read Only)

Cell Persistent
(Read/Write)

Server Roots
(Read/Write Transient)

Node Persistent
(Read/Write)

X
Y

Z

X
Y

Z

X
Y

Z

X
Y

Z

L
M

N

A
B

C

A
B

C

node
rootBS

nodes

cell root
of foreign cell

cell persistent
root

foreign cells

cell clusters

BS

user persistent
sub-ctxs & objs

user persistent
sub-ctxs & objsnode physical

servers

node persistent
root

user transient
sub-ctxs & objs

A
B

C

system artifact
sub-ctxs & objs

BS
server
root

<user-created-bindings>

<physical-server-name><cluster-name>

<user-created-bindings>

<user-created-bindings> <system-artifacts>

<foreign-cell-names>

<node-name>

persistent

servers

cell
domain

nodeAgent

clusters

deploymentManager

legacyRoot

cells

cell
domain

cell

cell
root

nodes

persistent

Logical View of a Cell's Name Space

The bindings in the preceding diagram appear with solid arrows, labeled in bold,
and dashed arrows, labeled in gray. Solid arrows represent primary bindings. A
primary binding is formed when the associated subcontext is created. Dashed
arrows show linked bindings. A linked binding is formed when an existing context
is bound under an additional name. Linked bindings are added for convenience or
interoperability with previous WebSphere Application Server versions.

A cell name space is composed of contexts which reside in servers throughout the
cell. All name servers in the cell provide the same logical view of the cell name
space. A name server constructs this view at startup by reading configuration
information. Each name server has its own local in-memory copy of the name
space and does not require another running server to function. There are, however,
a few exceptions. Server roots for other servers are not replicated among all the
servers. The respective server for a server root must be running to access that
server root context.

In WebSphere Application Server Network Deployment cells, the cell and node
persistent areas can be read even if the deployment manager and respective node
agent are not running. However, the deployment manager must be running to
update the cell persistent segment, and a node agent must be running to update its
respective node persistent segment.

Name space partitions
There are four major partitions in a cell name space:
v System name space partition
v Server roots partition
v Cell persistent partition
v Node persistent partition

406 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Each partition is discussed in more detail below.

System name space partition

The system name space contains a structure of contexts based on the cell topology.
The system structure supports traversal to all parts of a cell name space and to the
cell root of other cells, which are configured as foreign cells. The root of this
structure is the cell root. In addition to the cell root, the system structure contains a
node root for each node in the cell. You can access other contexts of interest
specific to a node from the node root, such as the node persistent root and server
roots for servers configured in that node.

All contexts in the system name space are read-only. You cannot add, update, or
remove any bindings.

Server roots partition

Each server in a cell has a server root context. A server root is specific to a
particular server. You can view the server roots for all servers in a cell as being in
a transient read/write partition of the cell name space. System artifacts, such as
EJB homes for server applications and resources, are bound under the server root
context of the associated server. A server application can also add bindings under
its server root. These bindings are transient. Therefore, the server application
creates all required bindings at application startup, so they exist anytime the
application is running.

A server cluster is composed of many servers that are logically equivalent. Each
member of the cluster has its own server root. These server roots are not replicated
across the cluster. In other words, adding a binding to the server root of one
member does not propagate it to the server roots of the other cluster members. To
maintain the same view across the cluster, you should create all user bindings
under the server root by the server application at application startup so that the
bindings are present under the server root of each cluster member. Because of
Workload Management (WLM) behavior, a JNDI client outside a cluster has no
control over which cluster member’s server root context becomes the target of the
JNDI operation. Therefore, you should execute bind operations to the server root of
a cluster member should from within that cluster member process only.

Distributing application objects among many server roots is a departure from
previous WebSphere Application Server releases, where all system artifacts were
bound under a single root. This change can affect the names that clients use to
look up these objects.

Server-scoped bindings are relative to a server’s server root.

Cell persistent partition

The root context of the cell persistent partition is the cell persistent root. A binding
created under the cell persistent root is saved as part of the cell configuration and
continues to exist until it is explicitly removed. Applications that need to create
additional persistent bindings of objects generally associated with the cell can bind
these objects under the cell persistent root.

It is important to note that the cell persistent area is not designed for transient,
rapidly changing bindings. The bindings are more static in nature, such as part of
an application setup or configuration, and are not created at run time.

Chapter 13. Using naming 407

Note: In WebSphere Application Server Network Deployment cells, to bind objects
to the cell persistent root, ensure that the deployment manager and all node agents
in the cell are running.

An important role of the cell persistent root is as the initial context for clients
running in previous WebSphere Application Server versions. If you want to access
an enterprise bean by WebSphere Application Server v4.0.x and 3.5.x clients, you
must ensure that a binding for it has been added to the cell persistent root. You
can configure these additional bindings as cell-scoped bindings.

Node persistent partition

The node persistent partition is similar to the cell partition except that each node
has its own node persistent root. A binding created under a node persistent root is
saved as part of that node configuration and continues to exist until it is explicitly
removed.

Applications that need to create additional persistent bindings of objects associated
with a specific node can bind those objects under that particular node’s node
persistent root. As with the cell persistent area, it is important to note that the
node persistent area is not designed for transient, rapidly changing bindings. These
bindings are more static in nature, such as part of an application setup or
configuration, and are not created at run time.

Note: In WebSphere Application Server Network Deployment cells, to bind objects
to a node persistent root, ensure the node agent for the node is running.

Unlike the cell persistent root, the node persistent root plays no special role in
interoperability with WebSphere Application Server clients of previous releases.
Node-scoped bindings are relative to a node’s node persistent root.

Note: In the system name space, there is no persistent node root for the
deployment manager node because no node agent or application servers run in
that node.

Initial context support
All naming operations begin with obtaining an initial context. You can view the
initial context as a starting point in the name space. Use the initial context to
perform naming operations, such as looking up and binding objects in the name
space.

Initial contexts registered with the ORB as initial references
The server root, cell persistent root, cell root, and node root are registered with the
name server’s ORB and can be used as an initial context. An initial context is used
by CORBA and enterprise bean applications as a starting point for name space
lookups. The keys for these roots as recognized by the ORB are shown in the
following table:

Root Context Initial Reference Key

Server Root NameServiceServerRoot

Cell Persistent Root NameServiceCellPersistentRoot

Cell Root NameServiceCellRoot
NameService

408 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Node Root NameServiceNodeRoot

A server root initial context is the server root context for the specific server you are
accessing. Similarly, a node root initial context is the node root for the server being
accessed.

You can use the previously mentioned keys in CORBA INS object URLs (corbaloc
and corbaname) and as an argument to an ORB resolve_initial_references call. For
examples, see CORBA and JNDI programming examples, which show how to get
an initial context.

Default initial contexts
The default initial context depends on the type of client. Different categories of
clients and the corresponding default initial context follow.

WebSphere Application Server v5 JNDI interface implementation

The JNDI interface is used by EJB applications to perform name space lookups.
WebSphere Application Server clients by default use the WebSphere Application
Server CosNaming JNDI plug-in implementation. The default initial context for
clients of this type is the server root of the server specified by the provider URL.
For more details, refer to the JNDI programming examples on getting initial
contexts.

WebSphere Application Server JNDI interface implementation prior to v5

WebSphere Application Server clients running in releases prior to WebSphere
Application Server v5 by default use WebSphere Application Server’s v4.0
CosNaming JNDI plug-in implementation. The default initial context for clients of
this type is the cell persistent root, also known as the legacy root.

Other JNDI implementation

Some applications can perform name space lookups with a non-WebSphere
Application Server CosNaming JNDI plug-in implementation. Assuming the key
NamingContext is used to obtain the initial context, the default
initial context for clients of this type is the cell root.

CORBA

The standard CORBA client obtains an initial org.omg.CosNaming.NamingContext
reference with the key NamingContext. The initial context in this
case is the cell root.

Lookup names support in deployment descriptors and thin clients
Server objects, such as EJB homes, are bound relative to the server root context for
the server in which the application is installed. Other objects, such as resources,
can also be bound to a specific server root. The names used to look up these
objects must be qualified so as to select the correct server root. This is a departure
from previous versions of WebSphere Application Server, where these objects were
all bound under a single root context. This section discusses what relative and
qualified names are, when they can be used, and how you can construct them.

Chapter 13. Using naming 409

Relative names
All names are relative to a context. Therefore, a name that can be resolved from
one context in the name space cannot necessarily be resolved from another context
in the name space. This point is significant because the system binds objects with
names relative to the server root context of the server in which the application is
installed. Each server has its own server root context. The initial JNDI context is by
default the server root context for the server identified by the provider URL used
to obtain the initial context. (Typically, the URL consists of a host and port.) For
applications running in a server process, the default initial JNDI context is the
server root for that server. A relative name will resolve successfully when the
initial context is obtained from the server which contains the target object, but it
will not resolve successfully from an initial context obtained from another server.

If all clients of a server application run in the same server process as the
application, all objects associated with that application are bound to the same
initial context as the clients’ initial context. In this case, only names relative to the
server’s server root context are required to access these server objects. Frequently,
however, a server application has clients that run outside the application’s server
process. The initial context for these clients can be different from the server
application’s initial context, and lookups on the relative names for server objects
may fail. These clients need to use the qualified name for the server objects. This
point must be considered when setting up the jndiName values in a J2EE client
application deployment descriptors and when constructing lookup names in thin
clients. Qualified names resolve successfully from any initial context in the cell.

Qualified names
All names are relative to a context. Here, the term qualified name refers to names
that can be resolved from any initial context in a cell. This action is accomplished
by using names that navigate to the same context, the cell root. The rest of the
qualified name is then relative to the cell root and uniquely identifies an object
throughout the cell. All initial contexts in a server (that is, all naming contexts in a
server registered with the ORB as an initial reference) contain a binding with the
name cell, which links back to the cell root context. All qualified names begin with
the string cell/ to navigate from the current initial context back to the cell root
context.

A qualified name for an object is the same throughout the cell. The name can be
topology-based, or some fixed name bound under the cell persistent root.
Topology-based names, described in more detail below, navigate through the
system name space to reach the target object. A fixed name bound under the cell
persistent root has the same qualified name throughout the cell and is independent
of the topology. Creating a fixed name under the cell persistent root for a server
application object requires an extra step when the server application is installed,
but this step eliminates impacts to clients when the application is moved to a
different location in the cell topology. The process for creating a fixed name is
described later in this section.

Generally speaking, you must use qualified names for EJB jndiName values in a
J2EE client application deployment descriptors and for EJB lookup names in thin
clients. The only exception is when the initial context is obtained from the server in
which the target object resides. For example, a session bean which is a client to an
entity bean can use a relative name if the two beans run in the same server. If the
session bean and entity beans run in different servers, the jndiName for the entity

410 IBM WebSphere Application Server Network Deployment, Version 5: Applications

bean must be qualified in the session bean’s deployment descriptors. The same
requirement may be true for resources as well, depending on the scope of the
resource.

Topology-based names

The system name space partition in a cell’s name space reflects the cell’s topology.
This structure can be navigated to reach any object bound into the cell’s name
space. Topology-based qualified names include elements from the topology which
reflect the object’s location within the cell. For a system-bound object, such as an
EJB home, the form for a topology-based qualified name depends on whether the
object is bound to a single server or cluster. Both forms are described below.

Single Server
An object bound in a single server has a topology-based qualified name of
the following form:
cell/nodes/nodeName/servers/serverName/relativeJndiName

where nodeName and serverName are the node name and server name for
the server where the object is bound, and relativeJndiName is the
unqualified name of the object; that is, the object’s name relative to its
server’s server root context.

Server Cluster
An object bound in a server cluster has a topology-based qualified name of
the following form:
cell/clusters/clusterName/relativeJndiName

where clusterName is the name of the server cluster where the object is
bound, and relativeJndiName is the unqualified name of the object; that is,
the object’s name relative to a cluster member’s server root context.

Fixed names

It is possible to create a fixed name for a server object so that the qualified name is
independent of the cell topology. This quality is desirable when clients of the
application run in other server processes or as pure clients. Fixed names have the
advantage of not changing if the object is moved to another server. The jndiName
values in deployment descriptors for a J2EE client application can reference the
qualified fixed name for a server object regardless of the cell topology on which
the client or server application is being installed.

Defining a cell-wide fixed name for a server application object requires an extra
step after the server application is installed. That is, a binding for the object must
be created under the cell persistent root. A fixed name bound under the cell
persistent root can be any name, but all names under the cell persistent root must
be unique within the cell because the cell persistent root is global to the entire cell.

A qualified fixed name has the form:
cell/persistent/fixedName

where fixedName is an arbitrary fixed name.

The binding can be created programmatically (for example, using JNDI). However,
it is probably more convenient to configure a cell-scoped binding for the server
object.

Chapter 13. Using naming 411

You must keep the programmatic or configured binding up-to-date. Configured
EJB bindings are based on the location of the enterprise bean within the cell
topology, and moving the EJB application to another single server or to a server
cluster, for example, requires the configured binding to be updated. Similar
changes affect an EJB home reference programmatically bound so that the fixed
name would need to be rebound with a current reference. However, for J2EE
clients, the jndiName value for the object, and for thin clients, the lookup name for
the object, remains the same. In other words, clients that access objects by fixed
names are not affected by changes to the configuration of server applications they
access.

JNDI support in WebSphere Application Server
IBM WebSphere Application Server includes a name server to provide shared
access to Java components, and an implementation of the javax.naming JNDI
package which supports user access to the WebSphere Application Server name
server through the JNDI naming interface.

WebSphere Application Server does not provide implementations for:
v javax.naming.directory or
v javax.naming.ldap packages

Also, WebSphere Application Server does not support interfaces defined in the
javax.naming.event package.

However, to provide access to LDAP servers, the development kit shipped with
WebSphere Application Server supports Sun’s implementation of:
v javax.naming.ldap and
v com.sun.jndi.ldap.LdapCtxFactory

WebSphere Application Server’s JNDI implementation is based on version 1.2 of
the JNDI interface, and was tested with Version 1.2.1 of Sun’s JNDI Service
Provider Interface (SPI).

The default behavior of this JNDI implementation is adequate for most users.
However, users with specific requirements can control certain aspects of JNDI
behavior.

Developing applications that use JNDI
References to EJB homes and other artifacts such as data sources are bound to the
WebSphere name space. These objects can be obtained through the JNDI interface.
Before you can perform any JNDI operations, you need to get an initial context.
You can use the initial context to look up objects bound to the WebSphere name
space.

These examples describe how to get an initial context and how to perform lookup
operations.
v Getting the default initial context
v Getting an initial context by setting the provider URL property
v Setting the provider URL property to select a different root context as the initial

context
v Looking up an EJB home with JNDI
v Looking up a JavaMail session with JNDI

412 IBM WebSphere Application Server Network Deployment, Version 5: Applications

In these examples, the default behavior of features specific to WebSphere’s JNDI
Context implementation is used.

WebSphere Application Server’s JNDI context implementation includes special
features. JNDI caching enhances performance of repeated lookup operations on the
same objects. Name syntax options offer a choice of a name syntaxes, one
optimized for typical JNDI clients, and one optimized for interoperability with
CosNaming applications. Most of the time, the default behavior of these features is
the preferred behavior. However, sometimes you should modify the behavior for
specific situations.

JNDI caching and name syntax options are associated with a
javax.naming.InitialContext instance. To select options for these features, set
properties that are recognized by the WebSphere Application Server’s initial
context factory . To set JNDI caching or name syntax properties which will be
visible to WebSphere Application Server’s initial context factory, follow the
following steps.

Steps for this task
1. (Optional) Configure JNDI caches

JNDI caching can greatly increase performance of JNDI lookup operations. By
default, JNDI caching is enabled. In most situations, this default is the desired
behavior. However, in specific situations, use the other JNDI cache options.
Objects are cached locally as they are looked up. Subsequent lookups on cached
objects are resolved locally. However, cache contents can become stale. This
situation is not usually a problem, since most objects you look up do not
change frequently. If you need to look up objects which change relatively
frequently, change your JNDI cache options.
JNDI clients can use several properties to control cache behavior.
You can set properties:
v From the command line by entering the actual string value. For example:

java -Dcom.ibm.websphere.naming.jndicache.maxentrylife=1440

v In a jndi.properties file by creating a file named jndi.properties as a text
file with the desired properties settings. For example:

...
com.ibm.websphere.naming.jndicache.cacheobject=none
...

Include the file as the beginning of the classpath, so that the classloader
loads your copy of jndi.properties before any other copies.

v Within a Java program by using the PROPS.JNDI_CACHE* Java constants,
defined in the com.ibm.websphere.naming.PROPS file. The constant
definitions follow:
public static final String JNDI_CACHE_OBJECT =

"com.ibm.websphere.naming.jndicache.cacheobject";
public static final String JNDI_CACHE_OBJECT_NONE = "none";
public static final String JNDI_CACHE_OBJECT_POPULATED = "populated";
public static final String JNDI_CACHE_OBJECT_CLEARED = "cleared";
public static final String JNDI_CACHE_OBJECT_DEFAULT =

JNDI_CACHE_OBJECT_POPULATED;

public static final String JNDI_CACHE_NAME =
"com.ibm.websphere.naming.jndicache.cachename";

public static final String JNDI_CACHE_NAME_DEFAULT = "providerURL";

Chapter 13. Using naming 413

public static final String JNDI_CACHE_MAX_LIFE =
"com.ibm.websphere.naming.jndicache.maxcachelife";

public static final int JNDI_CACHE_MAX_LIFE_DEFAULT = 0;

public static final String JNDI_CACHE_MAX_ENTRY_LIFE =
"com.ibm.websphere.naming.jndicache.maxentrylife";

public static final int JNDI_CACHE_MAX_ENTRY_LIFE_DEFAULT = 0;

To use the previous properties in a Java program, add the property setting to
a hashtable and pass it to the InitialContext constructor as follows:

java.util.Hashtable env = new java.util.Hashtable();
...
env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_NONE);
// Disable caching
...
javax.naming.Context initialContext =

new javax.naming.InitialContext(env);

2. (Optional) Specify the name syntax
Most WebSphere applications use JNDI to look up EJB objects and do not need
to look up objects bound by CORBA applications. Therefore, the default name
syntax used for JNDI names is the most convenient. If your application needs
to look up objects bound by CORBA applications, you may need to change
your name syntax so that all CORBA CosNaming names can be represented.
JNDI clients can set the name syntax by setting a property. The property setting
is applied by the initial context factory when you instantiate a new
java.naming.InitialContext object. Names specified in JNDI operations on the
initial context are parsed according to the specified name syntax.
You can set the property:
v From the command line by entering the actual string value. For example:

java -Dcom.ibm.websphere.naming.name.syntax=ins

v In a jndi.properties file by creating a file named jndi.properties as a text file
with the desired properties settings. For example:

...
com.ibm.websphere.naming.name.syntax=ins
...

Include the file as the beginning of the classpath, so that the classloader
loads your copy of jndi.properties before any other copies.

v Within a Java program by using the PROPS.NAME_SYNTAX* Java constants,
defined in the com.ibm.websphere.naming.PROPS file. The constant
definitions follow:

public static final String NAME_SYNTAX =
"com.ibm.websphere.naming.name.syntax";

public static final String NAME_SYNTAX_JNDI = "jndi";
public static final String NAME_SYNTAX_INS = "ins";

To use the previous properties in a Java program, add the property setting to
a hashtable and pass it to the InitialContext constructor as follows:

java.util.Hashtable env = new java.util.Hashtable();
...
env.put(PROPS.NAME_SYNTAX, PROPS.NAME_SYNTAX_INS);
// Set name syntax to INS

...
javax.naming.Context initialContext =

new javax.naming.InitialContext(env);

414 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Example: Getting the default initial context
This example below gets the default initial context. That is, no provider URL is
passed to the javax.naming.InitialContext constructor. The following section
explains the process of determining the address of the bootstrap server to use to
obtain the initial context.

Usage scenario
...
import javax.naming.Context;
import javax.naming.InitialContext;
...
Context initialContext = new InitialContext();
...

The default initial context returned depends the runtime environment of the JNDI
client. The initial context returned in the various environments are listed below:
v Thin client: The server root context of the server running on the local host at

port 2809.
v Pure client:

– The context specified by the java.naming.provider.url property passed to
launchClient command with the -CCD command line parameter. The context
usually will be the server root context of the server at the address specified in
the URL, although it is possible to construct a corbaname or corbaloc URL
which resolves to some other context.

– If no provider URL was specified, the server root context of the server
running on the host and port specified by the -CCBootstrapHost
-CCBootstrapPort command line parameters. The default host is the local
host, and the default port is 2809.

v Server process: The server root context for that process.

Even though no provider URL is explicitly specified in the above example, the
InitialContext may find a provider URL defined in other places that it searches for
property settings.

Users of properties which affect ORB initialization should read the rest of this
section for a deeper understanding of exactly how initial contexts are obtained,
which has changed from previous releases.

Determining which server is used to obtain the initial context
WebSphere Application Server name servers are CORBA CosNaming name servers,
and WebSphere Application Server provides a CosNaming JNDI plug-in
implementation for JNDI clients to perform naming operations on WebSphere
Application Server name spaces. The WebSphere Application Server CosNaming
plug-in implementation is selected through a JNDI property that is passed to the
InitialContext constructor. This property is java.naming.factory.initial, and it
specifies the initial context factory implementation to use to obtain an initial
context. The factory returns a javax.naming.Context instance, which is part of its
implementation.

The WebSphere Application Server initial context factory,
com.ibm.websphere.naming.WsnInitialContextFactory, is typically used by
WebSphere Application Server applications to perform JNDI operations. The
WebSphere Application Server run-time environment is set up to use this
WebSphere Application Server initial context factory if one is not specified
explicitly by the JNDI client. When the initial context factory is invoked, an initial

Chapter 13. Using naming 415

context is obtained. The following paragraphs explain how the WebSphere
Application Server initial context factory obtains the initial context in client and
server environments.

Understanding the registration of initial references in server processes

Every WebSphere Application Server has an ORB used to receive and dispatch
invocations on objects running in that server. Services running in the server process
can register initial references with the ORB. Each initial reference is registered
under a key, which is a string value. An initial reference can be any CORBA object.
WebSphere Application Server name servers register several initial contexts as
initial references under predefined keys. Each name server initial reference is an
instance of the interface org.omg.CosNaming.NamingContext.

Obtaining initial references in pure client processes

Pure JNDI clients, that is, JNDI clients which are not running in a WebSphere
Application Server process, also have an ORB instance. This client ORB instance
can be passed to the InitialContext constructor, but typically the initial context
factory creates and initializes the client ORB instance transparently. A client ORB
can be initialized with initial references, but the initial references most likely
resolve to objects running in some server. The initial context factory does not
define any default initial references when it initializes an ORB. If the
resolve_initial_references method is invoked on the client ORB when no initial
references have been configured, the method invocation fails. This condition is
typical for pure client processes. To obtain an initial NamingContext reference, the
initial context factory must invoke string_to_object with an IIOP type CORBA
object URL, such as corbaloc:iiop:myhost:2809. The URL specifies the address of
the server from which to obtain the initial context. The host and port information
is extracted from the provider URL passed to the InitialContext constructor. If no
provider URL is defined, the WebSphere Application Server initial context factory
uses the default provider URL of corbaloc:iiop:localhost:2809. The
string_to_object ORB method resolves the URL and communicates with the target
server ORB to obtain the initial reference.

Obtaining initial references in server processes

If the JNDI client is running in a WebSphere Application Server process, the initial
context factory obtains a reference to the server ORB instance if the JNDI client
does not provide an ORB instance. Typically, JNDI clients running in server
processes use the server ORB instance; that is, they do not pass an ORB instance to
the InitialContext constructor. The name server which is running in the server
process sets a provider URL as a java.lang.System property to serve as the default
provider URL for all JNDI clients in the process. This default provider URL is
corbaloc:rir:/NameServiceServerRoot. This URL resolves to the server root
context for that server. (The URL is equivalent to invoking
resolve_initial_references on the ORB with a key of NameServiceServerRoot. The
name server registers the server root context as an initial reference under that key.)

Understanding the legacy ORB protocol

Previous versions of WebSphere Application Server used a different ORB
implementation, which used a legacy protocol in contrast with the Interoperable
Name Service (INS) protocol now used. This change has affected the
implementation of the WebSphere Application Server initial context factory. Certain
types of pure clients can experience different behavior when getting initial JNDI

416 IBM WebSphere Application Server Network Deployment, Version 5: Applications

contexts as compared to previous releases of WebSphere Application Server. This
behavior is discussed in more detail below.

The following ORB properties are used with the legacy ORB protocol for ORB
initialization and are now deprecated:
v com.ibm.CORBA.BootstrapHost
v com.ibm.CORBA.BootstrapPort

The new INS ORB is different in a major respect, in that it exhibits no default
behavior if no initial references are defined. In the legacy ORB, the bootstrap host
and port values defaulted to localhost and 900. All initial references were obtained
from the server running on the bootstrap host and port. So, if the ORB user
provided no bootstrap host and port, all initial references are resolved from the
server running on the local host at port 900. The INS ORB has no concept of
bootstrap host or bootstrap port. All initial references are defined independently.
That is, different initial references could resolve to different servers. If
ORB.resolve_initial_references is invoked with a key such that the ORB is not
initialized with an initial reference having that key, the call fails.

In previous releases of WebSphere Application Server, the initial context factory
invoked resolve_initial_references on the ORB in the absence of any provider URL.
This action succeeded if a name server at the default bootstrap host and port was
running. Today, with the INS ORB, this would fail. (Actually, the ORB would fall
back to the legacy protocol during the deprecation period, but when the legacy
protocol is no longer supported, the operation would fail.) The initial context
factory now uses a default provider URL of corbaloc:iiop:localhost:2809, and
invokes string_to_object with the provider URL. This operation preserves the
behavior that pure clients in previous releases experienced when they set no ORB
bootstrap properties or provider URL. However, this different initial context
factory implementation changes the behavior experienced by certain legacy pure
clients, which do not specify a provider URL:
v Clients which set the ORB bootstrap properties listed above when getting an

initial context.
v Clients which supply their own ORB instance to the InitialContext constructor.

There are two ways to circumvent this change of behavior:
v Always specify an IIOP type provider URL. This approach does not depend on

the bootstrap host and port properties and continues to work when support for
the bootstrap host and port properties is removed. For example, you can express
bootstrap host and port property values of myHost and 2809, respectively, as
corbaloc:iiop:myHost:2809.

v Use an rir type provider URL:
– Specify corbaloc:rir:/NameServiceServerRoot if the ORB is initialized to use

a WebSphere Application Server 5 server as the bootstrap server.
– Specify corbaname:rir:/NameService#domain/legacyRoot if the ORB is

initialized to use a WebSphere Application Server 4.0.x server as the bootstrap
server.

– Specify corbaloc:rir:/NameService if the ORB is initialized to use a server
other than a WebSphere Application Server 5 or 4.0.x server as the bootstrap
server.

Chapter 13. Using naming 417

URLs of this type are equivalent to invoking resolve_initial_references on the
ORB with the specified key. If the bootstrap host and port properties are being
used to initialize the ORB, this approach will not work when the bootstrap and
host properties are no longer supported.

The InitialContext constructor search order for JNDI properties

If the code snippet shown at the beginning of this section is executed by an
application, the bootstrap server depends on the value of the property,
java.naming.provider.url. If the property is not set (in server processes the default
value is set as a system property), the default host of localhost and default port of
2809 are used as the address of the server from which to obtain the initial context.
The JNDI specification describes where the InitialContext constructor looks for
java.naming.provider.url property settings, but briefly, the property is picked up
from the following places in the order shown:
1. The InitialContext constructor. This does not apply to the above example since

the example uses the empty InitalContext constructor.
2. System environment. You can add JNDI properties to the system environment

as an option on the java command invocation and by program code. The
recommended way to set the provider URL in the system environment is as an
option supplied to the Java command invocation. Setting the provider URL in
this manner is not temporal, so that getting a default initial context will always
yield the same result. It is generally recommended that program code not set
the provider URL property in the system environment because as a side-effect,
this could adversely affect other, possibly unrelated, code running elsewhere in
the same process.

3. jndi.properties file. There may be many jndi.properties files that are within
the scope of the class loader in effect. All jndi.properties files are used for
setting JNDI properties, but the provider URL setting is determined by the first
jndi.properties file returned by the class loader.

Example: Getting an initial context by setting the provider
URL property

In general, JNDI clients should assume the correct environment is already
configured so there is no need to explicitly set property values and pass them to
the InitialContext constructor. However, a JNDI client may need to access a name
space other than the one identified in its environment. In this case, it is necessary
to explicitly set the java.naming.provider.url (provider URL) property used by the
InitialContext constructor. A provider URL contains bootstrap server information
that the initial context factory can use to obtain an initial context. Any property
values passed in directly to the InitialContext constructor take precedence over
settings of those same properties found elsewhere in the environment.

You can use two different provider URL forms with WebSphere Application
Server’s initial context factory:
v A CORBA object URL (new for J2EE 1.3)
v An IIOP URL

CORBA object URLs are more flexible than IIOP URLs and are the recommended
URL format to use. CORBA object URLs are part of the OMG CosNaming
Interoperable Naming Specification. A corbaname URL, for example, can include
initial context and lookup name information and can be used as a lookup name

418 IBM WebSphere Application Server Network Deployment, Version 5: Applications

without the need to explicitly obtain another initial context.The IIOP URLs are the
legacy JNDI format, but are still supported by the WebSphere Application Server
initial context factory.

The following examples illustrate the use of these URLs.

Using a CORBA object URL
This example shows a CORBA object URL.

Usage scenario
...
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
...
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL,

"corbaloc:iiop:myhost.mycompany.com:2809");
Context initialContext = new InitialContext(env);
...

Using a CORBA object URL with multiple name server addresses
CORBA object URLs can contain more than one bootstrap address. You can use
this feature when attempting to obtain an initial context from a server cluster. You
can specify the bootstrap addresses for all servers in the cluster in the URL. The
operation succeeds if at least one of the servers is running, eliminating a single
point of failure. There is no guarantee of any particular order in which the address
list will be processed. For example, the second bootstrap address may be used to
obtain the initial context even though the server at the first bootstrap address in
the list is available.

Multiple-address provider URLs should only contain the bootstrap addresses of
members of the same cluster. Otherwise, incorrect behavior may occur.

An example of a corbaloc URL with multiple addresses follows.

Usage scenario
...
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
...
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");
// All of the servers in the provider URL below are
// members of the same cluster.
env.put(Context.PROVIDER_URL,

"corbaloc::myhost1:9810,:myhost1:9811,:myhost2:9810");
Context initialContext = new InitialContext(env);
...

Using a CORBA object URL from an non-WebSphere Application
Server JNDI
implementation

Initial context factories for CosNaming JNDI plug-in implementations other than
the WebSphere Application Server initial context factory most likely obtain an

Chapter 13. Using naming 419

initial context using the object key, NameService. When you use such a context
factory to obtain an initial context from a WebSphere Application Server name
server, the initial context is the cell root context. Since system artifacts such as EJB
homes associated with a server are bound under the server’s server root context,
names used in JNDI operations must be qualified. If you want to use relative
names, ensure your initial context is the server root context under which the target
object is bound. In order to make the server root context the initial context, specify
a corbaloc provider URL with an object key of NameServiceServerRoot.

This example shows a CORBA object type URL from a non-WebSphere Application
Server JNDI implementation. This example assumes full CORBA object URL
support by the non-WebSphere Application Server JNDI implementation. The
object key of NameServiceServerRoot is specified so that the initial context will be
the specified server’s server root context.

Usage scenario
...
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
...
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.somecompany.naming.TheirInitialContextFactory");
env.put(Context.PROVIDER_URL,
"corbaname:iiop:myhost.mycompany.com:9810/
NameServiceServerRoot");
Context initialContext = new InitialContext(env);
...

If qualified names are used, you can use the default key of NameService.

Using an IIOP URL
The IIOP type of URL is a legacy format which is not as flexible as CORBA object
URLs. However, URLs of this type are still supported. The following example
shows an IIOP type URL as the provider URL.

Usage scenario
...
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
...
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL,

"iiop://myhost.mycompany.com:2809");
Context initialContext = new InitialContext(env);
...

Example: Setting the provider URL property to select a
different root context as the initial context

Each server contains its own server root context, and, when bootstrapping to a
server, the server root is the default initial JNDI context. Most of the time, this
default is the desired initial context, since system artifacts such as EJB homes are
bound there. However, other root contexts exist, which can contain bindings of
interest. It is possible to specify a provider URL to select other root contexts.

420 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Selecting the initial root context with a CORBA object URL
There are several object keys registered with the bootstrap server that you can use
to select the root context for the initial context. To select a particular root context
with a CORBA object URL object key, set the object key to the corresponding value.
The default object key is NameService. Using JNDI yields the server root context.
A table that lists the different root contexts and their corresponding object key
follows:

Root Context CORBA Object URL Object Key
Server Root NameServiceServerRoot
Cell Persistent Root NameServiceCellPersistentRoot
Cell Root NameServiceCellRoot
Node Root NameServiceNodeRoot

The following example shows the use of a corbaloc URL with the object key set to
select the cell persistent root context as the initial context.

Usage scenario
...
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
...
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL,

"corbaloc:iiop:myhost.mycompany.com:2809/NameServiceCellPersistentRoot");
Context initialContext = new InitialContext(env);
...

Selecting the initial root context with the name space root
property
You can also select the initial root context by passing a name space root property
setting to the InitialContext constructor. Generally, the object key setting described
above is sufficient. Sometimes a property setting is preferable. For example, you
can set the root context property on the Java invocation to make which server root
is being used as the initial context transparent to the application . The default
server root property setting is defaultroot, which yields the server root context.

Root Context Name Space Root Property Value
Server Root bootstrapserverroot
Cell Persistent Root cellpersistentroot
Cell Root cellroot
Node Root bootstrapnoderoot

The initial context factory ignores the name space root property if the provider
URL contains an object key other than NameService.

The following example shows use of the name space root property to select the cell
persistent root context as the initial context. Note that available constants are used
instead of hardcoding the property name and value.

Usage scenario
...
import java.util.Hashtable;
import javax.naming.Context;

Chapter 13. Using naming 421

import javax.naming.InitialContext;
import com.ibm.websphere.naming.PROPS;
...
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL, "corbaloc:iiop:myhost.mycompany.com:2809");
env.put(PROPS.NAME_SPACE_ROOT, PROPS.NAME_SPACE_ROOT_CELL_PERSISTENT);
Context initialContext = new InitialContext(env);
...

Example: Looking up an EJB home with JNDI
Most applications which use JNDI run in a container. Some do not. The name used
to look up an object depends on whether or not the application is running in a
container. The examples below show lookups from each type of application.
Sometimes it is more convenient for an application to use a corbaname URL as the
lookup name. Container-based JNDI clients and thin Java clients can use a
corbaname URL. An example of a lookup with a corbaname URL is also included
in this section.

JNDI lookup from an application running in a container
Applications that run in a container can use java: lookup names. Lookup names
of this form provide a level of indirection such that the lookup name used to look
up an object is not dependent on the object’s name as it is bound in the name
server’s name space. The deployment descriptors for the application provide the
mapping from the java: name and the name server lookup name. The container
sets up the java: name space based on the deployment descriptor information so
that the java: name is correctly mapped to the corresponding object.

The following example shows a lookup of an EJB home. The actual home lookup
name is determined by the application’s deployment descriptors.

// Get the initial context as shown in a previous example
...
// Look up the home interface using the JNDI name
try {

java.lang.Object ejbHome = initialContext.lookup
("java:comp/env/com/mycompany/accounting/AccountEJB");

accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(
(org.omg.CORBA.Object) ejbHome, AccountHome.class);

}
catch (NamingException e) { // Error getting the home interface

...
}

JNDI lookup from an application that does not run in a container
Applications that do not run in a container cannot use java: lookup names
because it is the container which sets the java: name space up for the application.
Instead, an application of this type must look the object up directly from the name
server. Each application server contains a name server. System artifacts such as EJB
homes are bound relative to the server root context in that name server. The
various name servers are federated by means of a system name space structure.
The recommended way to look up objects on different servers is to qualify the
name so that the name resolves from any initial context in the cell. If a relative
name is used, the initial context must be the same server root context as the one
under which the object is bound. The form of the qualified name depends on
whether the qualified name is a topology-based name or a fixed name. A topology
based name depends on whether the object resides in a single server or a server
cluster. Examples of each form of qualified name follow.

422 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Topology-based qualified names

Topology-based qualified names traverse through the system name space to the
server root context context under which the target object is bound. A
topology-based qualified name resolves from any initial context in the cell. The
topology-based qualified name depends on whether the object resides on a single
server or server cluster. Examples of each lookup follow.

Single server
The following example shows a lookup of an EJB home that is running in
the single server, MyServer, configured in the node, Node1.

// Get the initial context as shown in a previous example
// Using the form of lookup name below, it doesn’t matter which
// server in the cell is used to obtain the initial context.
...
// Look up the home interface using the JNDI name
try {

java.lang.Object ejbHome = initialContext.lookup(
"cell/nodes/Node1/servers/MyServer

/com/mycompany/accounting/AccountEJB");
accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(

(org.omg.CORBA.Object) ejbHome, AccountHome.class);
}
catch (NamingException e) { // Error getting the home interface

...
}

Server cluster
The example below shows a lookup of an EJB home which is running in
the cluster, MyCluster. The name can be resolved if any of the cluster
members is running.

// Get the initial context as shown in a previous example
// Using the form of lookup name below, it doesn’t matter which
// server in the cell is used to obtain the initial context.
...
// Look up the home interface using the JNDI name
try {

java.lang.Object ejbHome = initialContext.lookup(
"cell/clusters/MyCluster/com/mycompany/

accounting/AccountEJB");
accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(

(org.omg.CORBA.Object) ejbHome, AccountHome.class);
}
catch (NamingException e) { // Error getting the home interface

...
}

Fixed qualified names

If the target object has a cell-scoped fixed name defined for it, you can use its
qualified form instead of the topology-based qualified name. Even though the
topology-based name works, the fixed name does not change with the specific cell
topology or with the movement of the target object to a different server. An
example lookup with a qualified fixed name is shown below.

// Get the initial context as shown in a previous example
// Using the form of lookup name below, it doesn’t matter which
// server in the cell is used to obtain the initial context.
...
// Look up the home interface using the JNDI name
try {

java.lang.Object ejbHome = initialContext.lookup(
"cell/persistent/com/mycompany/accounting/AccountEJB");

Chapter 13. Using naming 423

accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(
(org.omg.CORBA.Object) ejbHome, AccountHome.class);

}
catch (NamingException e) { // Error getting the home interface

...
}

JNDI lookup with a corbaname URL
A corbaname can be useful at times as a lookup name. If, for example, the target
object is not a member of the federated name space and cannot be located with a
qualifiied name, a corbaname can be a convenient way to look up the object. A
lookup with a corbaname URL follows.

// Get the initial context as shown in a previous example
...
// Look up the home interface using a corbaname URL
try {
java.lang.Object ejbHome = initialContext.lookup
("corbaname:iiop:someHost:2809#com/mycompany/accounting/

AccountEJB");
accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(

(org.omg.CORBA.Object) ejbHome, AccountHome.class);
}
catch (NamingException e) {
// Error getting the home interface
...
}

Example: Looking up a JavaMail session with JNDI
The example below shows a lookup of a JavaMail resource. The actual lookup
name is determined by the application’s deployment descriptors.

Usage scenario
// Get the initial context as shown above
...
Session session = (Session)

initialContext.lookup("java:comp/env/mail/MailSession");

JNDI interoperability considerations
This section explains considerations to take into account when interoperating with
previous releases of WebSphere Application Server and with non-WebSphere
Application Server JNDI clients. Also, the way resources from MQSeries must be
bound to the name space has changed and is described below.

Interoperability with previous WebSphere Application Server
Releases
EJB clients running on WebSphere Application Server v3.5 or v4.0 accessing EJB
applications running on WebSphere Application Server v5

Applications migrated from previous versions of WebSphere Application Server
may still have clients still running in a previous release. The default initial JNDI
context for EJB clients running on previous versions of WebSphere Application
Server is the cell persistent root (legacy root). The home for an enterprise bean
deployed in version 5 is bound to its server’s server root context. In order for the
EJB lookup name for down-level clients to remain unchanged, configure a binding
for the EJB home under the cell persistent root.

Note: EJB clients running in version 3.5 must be running in version 3.5.5 or above,
or in version 3.5.3 or 3.5.4 with e-fix PQ51387 installed.

424 IBM WebSphere Application Server Network Deployment, Version 5: Applications

EJB clients running on WebSphere Application Server v5 accessing EJB
applications running on WebSphere Application Server v3.5 or v4.0 servers

The default initial context for a WebSphere Application Server v3.5 or v4.0 server is
the correct initial context. Simply look up the JNDI name under which the EJB
home is bound.

Note: To enable WebSphere Application Server v5 clients to access version 3.5.x
and 4.0.x servers, the down-level installations must have e-fix PQ60074 installed.

EJB clients running in an environment other than WebSphere
Application Server accessing EJB applications running on
WebSphere Application Server v5 servers
When an EJB application running in WebSphere Application Server v5 is accessed
by a non-WebSphere Application Server EJB client, the JNDI initial context factory
is presumed to be a non-WebSphere Application Server implementation. In this
case, the default initial context will be the cell root. If the JNDI service provider
being used supports CORBA object URLs, the corbaname format can be used to
look up the EJB home. The construction of the stringified name depends on
whether the object is installed on a single server or cluster, as shown below.

Single server
initialContext.lookup("corbaname:iiop:myHost:2809#cell/
nodes/node1/servers/server1/myEJB");

According to the URL above, the bootstrap host and port are myHost and 2809,
and the enterprise bean is installed in a server server1 in node node1 and bound
in that server under the name myEJB.

Server cluster
initialContext.lookup("corbaname:iiop:myHost:2809#cell/
clusters/myCluster/myEJB");

According to the URL above, the bootstrap host and port are myHost and 2809,
and the enterprise bean is installed in a server cluster named myCluster and
bound in that cluster under the name myEJB.

The above lookup will work with any name server bootstrap host and port
configured in the same cell.

The above lookup will also work if the bootstrap host and port belongs to a
member of the cluster itself. To avoid a single point of failure, the bootstrap server
host and port for each cluster member could be listed in the URL as follows:

initialContext.lookup("corbaname:iiop:host1:9810,
host2:9810#cell/clusters/myCluster/myEJB");

The name prefix cell/clusters/myCluster/ is not necessary if bootstrapping to the
cluster itself, but it will work. The prefix is needed, however, when looking up
enterprise beans in other clusters. Name bindings under the clusters context are
implemented on the name server to resolve to the server root of a running cluster
member during a lookup; thus avoiding a single point of failure.

Without CORBA object URL support

Chapter 13. Using naming 425

If the JNDI initial context factory being used does not support CORBA object
URLs, the initial context can be obtained from the server, and the lookup can be
performed on the initial context as follows:

Hashtable env = new Hashtable();
env.put(CONTEXT.PROVIDER_URL, "iiop://myHost:2809");
Context ic = new InitialContext(env);
Object o = ic.lookup("cell/clusters/myCluster/myEJB");

Binding resources from MQSeries 5.2
In previous releases of WebSphere Application Server, the MQSeries jmsadmin tool
could be used bind resources to the name space. When used with a WebSphere
Application Server v5 name space, the resource will be bound within a transient
partition in the name space and will not persist past the life of the server process.
Instead of binding the MQSeries resources with the jmsadmin tool, bind them from
the WebSphere Application Server administrative console, under Resources in the
left panel on the console

JNDI caching
To increase the performance of JNDI operations, the WebSphere Application Server
JNDI implementation employs caching to reduce the number of remote calls to the
name server for lookup operations. For most cases, use the default cache setting.

When an InitialContext object is instantiated, an association is established between
the InitialContext instance and a cache. The initial context and any contexts
returned directly or indirectly from a lookup on the initial context are all
associated with that same cache instance. By default, the association is based on
the provider URL, in particular, the host name and port. The caller can specify the
cache name to override this default behavior. A cache instance of a given name is
shared by all instances of InitialContext configured to use a cache of that name
which were created with the same context class loader in effect. Two EJB
applications running in the same server will use their own cache instances, if they
are using different context class loaders, even if the cache names are the same.

After an association between an InitialContext instance and cache is established,
the association does not change. A javax.naming.Context object returned from a
lookup operation inherits the cache association of the Context object on which the
lookup was performed. Changing cache property values with the
Context.addToEnvironment() or Context.removeFromEnvironment() method does
not affect cache behavior. You can change properties affecting a given cache
instance with each InitialContext instantiation.

A cache is restricted to a process and does not persist past the life of that process.
A cached object is returned from lookup operations until either the max cache life
for the cache is reached, or the max entry life for the object’s cache entry is
reached.

After this time, a lookup on the object causes the cache entry for the object to be
refreshed. If a bind or rebind operation is executed on an object, the change is not
reflected in any caches other than the one associated with the context from which
the bind or rebind was issued. This scenario is most likely to happen when
multiple processes are involved, since different processes do not share the same
cache, and context objects in all threads in a process typically share the same cache
instance for a given name service provider.

426 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Usually, cached objects are relatively static entities, and objects becoming stale are
not a problem. However, you can set timeout values on cache entries or on a cache
so that cache contents are periodically refreshed.

JNDI cache settings
Various cache property settings follow. Ensure that all property values are string
values.

com.ibm.websphere.naming.jndicache.cachename
The name of the cache to associate with an initial context instance can be specified
with this property.

It is possible to create multiple InitialContext instances, each operating on the
name space of a different name server. By default, objects from each bootstrap
address are cached separately, since they each involve independent name spaces
and name collisions could occur if they used the same cache. The provider URL
specified when the initial context is created by default serves as the basis for the
cache name. With this property, a JNDI client can specify a cache name. Valid
options for cache names follow:

Valid options Resulting cache behavior

providerURL (default) Use the value for java.naming.provider.url property
as the basis for the cache name. Cache names are
based on the bootstrap host and port specified in
the URL. The boostrap host is normalized to a fully
qualfied name, if possible. For example,
corbaname:iiop:server1:2809#some/starting/context
and corbaloc:iiop://server1 are normalized to the
same cache name. If no provider URL is specified, a
default cache name is used.

Any string Use the specified string as the cache name. You can
use any arbitrary string with a value other than
″providerURL″ as a cache name.

com.ibm.websphere.naming.jndicache.cacheobject
Turn caching on or off and clear an existing cache with this property.

By default, when an InitialContext is instantiated, it is associated with an existing
cache or, if one does not exist, a new one is created. An existing cache is used with
its existing contents. In some circumstances, this behavior is not desirable. For
example, when objects that are looked up change frequently, they can become stale
in the cache. Other options are available. Thefollowing table lists these other
options along with the corresponding property value.

Valid values Resulting cache behavior

populated (default) Use a cache with the specified name. If the
cache already exists, leave existing cache
entries in the cache; otherwise, create a new
cache.

cleared Use a cache with the specified name. If the
cache already exists, clear all cache entries
from the cache; otherwise, create a new
cache.

Chapter 13. Using naming 427

none Do not cache. If this option is specified, the
cache name is irrelevant. Therefore, this
option will not disable a cache that is
already associated with other InitialContext
instances. The InitialContext that is
instantiated is not associated with any cache.

com.ibm.websphere.naming.jndicache.maxcachelife
Impose a limit to the age of a cache with this property.

By default, cached objects remain in the cache for the life of the process or until
cleared with the com.ibm.websphere.naming.jndicache.cacheobject property set to
″cleared″. This property enables a JNDI client to set the maximum life of a cache.
This property differs from the maxentrylife property (below) in that the entire
cache is cleared when the cache lifetime is reached. The table below lists the
various maxcachelife values and their affect on cache behavior:

Valid options Resulting cache behavior

0 (default) Make the cache lifetime unlimited.

Positive integer Set the maximum lifetime of the entire
cache, in minutes, to the specified value.
When the maximum lifetime for the cache is
reached, the next attempt to read any entry
from the cache causes the cache to be
cleared

com.ibm.websphere.naming.jndicache.maxentrylife
Impose a limit to the age of individual cache entries with this property.

By default, cached objects remain in the cache for the life of the process or until
cleared with the com.ibm.websphere.naming.jndicache.cacheobject property set to
cleared. This property enables a JNDI client to set the maximum lifetime of
individual cache entries. This property differs from the maxcachelife property in
that individual entries are refreshed individually as their maximum lifetime
reached. This might avoid any noticeable change in performance that might occur
if the whole cache is cleared at once. The table below lists the various maxentrylife
values and their effect on cache behavior:

Valid options Resulting cache behavior

0 (default) Lifetime of cache entries is unlimited.

Positive integer Set the maximum lifetime of individual
cache entries, in minutes, to the specified
value. When the maximum lifetime for an
entry is reached, the next attempt to read the
entry from the cache causes the individual
cache entry to refresh.

Example: Controlling JNDI cache behavior from a program
Following are examples that illustrate how you can use JNDI cache properties to
achieve the desired cache behavior. Cache properties take effect when an
InitialContext object is constructed.

Usage scenario

428 IBM WebSphere Application Server Network Deployment, Version 5: Applications

import java.util.Hashtable;
import javax.naming.InitialContext;
import javax.naming.Context;
import com.ibm.websphere.naming.PROPS;

/*****
Caching discussed in this section pertains to the
WebSphere Application Server initial context factory.
Assume the property, java.naming.factory.initial, is set
to "com.ibm.websphere.naming.WsnInitialContextFactory"
as a java.lang.System property.
*****/

Hashtable env;
Context ctx;

// To clear a cache:

env = new Hashtable();
env.put(PROPS.JNDI_CACHE_OBJECT,

PROPS.JNDI_CACHE_OBJECT_CLEARED);
ctx = new InitialContext(env);

// To set a cache’s maximum cache lifetime to 60 minutes:

env = new Hashtable();
env.put(PROPS.JNDI_CACHE_MAX_LIFE, "60");
ctx = new InitialContext(env);

// To turn caching off:

env = new Hashtable();
env.put(PROPS.JNDI_CACHE_OBJECT,

PROPS.JNDI_CACHE_OBJECT_NONE);
ctx = new InitialContext(env);

// To use caching and no caching:

env = new Hashtable();
env.put(PROPS.JNDI_CACHE_OBJECT,

PROPS.JNDI_CACHE_OBJECT_POPULATED);
ctx = new InitialContext(env);
env.put(PROPS.JNDI_CACHE_OBJECT,

PROPS.JNDI_CACHE_OBJECT_NONE);
Context noCacheCtx = new InitialContext(env);

Object o;

// Use caching to look up home, since the home should
// rarely change.
o = ctx.lookup("com/mycom/MyEJBHome");
// Narrow, etc. ...

// Do not use cache if data is volatile.
o = noCacheCtx.lookup("com/mycom/VolatileObject");
//
...

JNDI name syntax
JNDI name syntax is the default syntax and is suitable for typical JNDI clients.

This syntax includes the following special characters: forward slash (/) and
backslash (\). Components in a name are delimited by a forward slash. The

Chapter 13. Using naming 429

backslash is used as the escape character. A forward slash is interpreted literally if
it is escaped, that is, preceded by a backslash. Similarly, a backslash is interpreted
literally if it is escaped.

INS name syntax
INS syntax is designed for JNDI clients that need to interoperate with CORBA
applications.

The INS syntax allows a JNDI client to make the proper mapping to and from a
CORBA name. INS syntax is very similar to the JNDI syntax with the additional
special character, dot (.). Dots are used to delimit the id and kind fields in a name
component. A dot is interpreted literally when it is escaped. Only one unescaped
dot is allowed in a name component. A name component with a non-empty id
field and empty kind field is represented with only the id field value and must not
end with an unescaped dot. An empty name component (empty id and empty
kind field) is represented with a single unescaped dot. An empty string is not a
valid name component representation.

JNDI to CORBA name mapping considerations
WebSphere Application Server name servers are an implementation of the CORBA
CosNaming interface. WebSphere Application Server provides a JNDI
implementation which you can use to access CosNaming name servers through the
JNDI interface. Issues can exist when mapping JNDI name strings to and from
CORBA names.

Each component in a CORBA name consists of an id and kind field, but a JNDI
name component consists of no such fields. Each component in a JNDI name is
atomic. Typical JNDI clients do not need to make a distinction between the id and
kind fields of a name component, or know how JNDI name strings map to CORBA
names. JNDI clients of this sort can use the JNDI syntax described below. When a
name is parsed according to JNDI syntax, each name component is mapped to the
id field of the corresponding CORBA name component. The kind field always has
an empty value. This basic syntax is the least obtrusive to the JNDI client in that it
has the fewest special characters. However, you cannot represent with this syntax a
CORBA name with a non-empty kind field. This restriction can prevent EJB
applications from interoperating with CORBA applications.

Some clients, however must interoperate with CORBA applications which use
CORBA names with non-empty kind fields. These JNDI clients must make a
distinction between id and kind so that JNDI names are correctly mapped to
CORBA names, particularly when the CORBA names contain components with
non-null kind fields. Such JNDI clients can use the INS name syntax. With its
additional special character, you can use INS to represent any CORBA name. Use
of this syntax is not recommended unless it is necessary, because this syntax is
more restrictive from the JNDI client’s perspective in that the JNDI client must be
aware that name components with multiple unescaped dots are syntactically
invalid. INS name syntax is part of the OMG CosNaming Interoperable Naming
Specification.

Example: Setting the syntax used to parse name strings
JNDI clients which must interoperate with CORBA applications may need to use
INS name syntax to represent names in string format. The name syntax property
may be passed to the InitialContext constructor through its parameter, in the

430 IBM WebSphere Application Server Network Deployment, Version 5: Applications

System properties, or in a jndi.properties file. The initial context and any contexts
looked up from that initial context will parse name strings based on the specified
syntax.

The following example shows how to set the name syntax to make the initial
context parse name strings according to INS syntax.

Usage scenario
...
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
import com.ibm.websphere.naming.PROPS;
// WebSphere naming constants
...
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL, ...);
env.put(PROPS.NAME_SYNTAX, PROPS.NAME_SYNTAX_INS);
Context initialContext = new InitialContext(env);
// The following name maps to a CORBA name component
// as follows:
// id = "a.name", kind = "in.INS.format"
// The unescaped dot is used as the delimiter.
// Escaped dots are interpreted literally.
java.lang.Object o =

initialContext.lookup("a\.name.in\.INS\.format");
...

Developing applications that use CosNaming (CORBA Naming
interface)

CORBA clients can perform naming operations on WebSphere name servers
through the CosNaming interface. The following examples show how to obtain an
ORB instance and an initial context as well as how to look up an EJB home.

Note: To enable WebSphere v5 clients to access Versions 3.5.x and 4.0.x servers, the
earlier installations must have e-fix PQ60074 installed.

Steps for this task
1. Get an initial context
2. Perform desired CosNaming operations

Example: Getting an initial context with CosNaming
In the WebSphere Application Server, an initial context is obtained from a
bootstrap server. The address for the bootstrap server consists of a host and port.
To get an initial context, you must know the host and port for the server that is
used as the bootstrap server.

Obtaining an initial context consists of two basic steps:
1. Obtain an ORB reference
2. Invoke a method on the ORB to obtain the initial reference

These steps are now explained in more detail.

Chapter 13. Using naming 431

Obtaining an ORB reference
Pure CosNaming clients, that is clients that are not running in a server process,
must create and initialize an ORB instance with which to obtain the initial context.
CosNaming clients which run in server processes can obtain a reference to the
server ORB with a JNDI lookup. The following examples illustrate how to create
and initialize a client ORB and how to obtain a server ORB reference.

Creating a client ORB instance

To create an ORB instance, invoke the static method, org.omg.CORBA.ORB.init.
The init method requires a property set to the name of the ORB class you want to
instantiate. An ORB implementation with the class name
com.ibm.CORBA.iiop.ORB is included with the WebSphere Application Server. The
WebSphere Application Server ORB recognizes additional properties with which
you can specify initial references.

The basic steps for creating an ORB are as follows:
1. Create a Properties object.
2. Set the ORB class property to WebSphere Application Server’s ORB class.
3. If the bootstrap server is INS-compliant, set the initial reference properties. If

the bootstrap server is not INS-compliant (meaning, WebSphere Application
Server v4.0.x or earlier), set bootstrap host and port for bootstrap server.

4. Invoke ORB.init, passing in the Properties object.

Usage scenario
...
import java.util.Properties;
import org.omg.CORBA.ORB;
...
Properties props = new Properties();
props.put("org.omg.CORBA.ORBClass",
"com.ibm.CORBA.iiop.ORB");
props.put("com.ibm.CORBA.ORBInitRef.NameService",
"corbaloc:iiop:myhost.mycompany.com:2809/NameService");
props.put("com.ibm.CORBA.ORBInitRef.NameServiceServerRoot",
"corbaloc:iiop:myhost.mycompany.com:2809/NameServiceServerRoot");
// props.put("com.ibm.CORBA.BootstrapHost",
//"myhost.mycompany.com");
// Use this if bootstrap server is WebSphere 4.0.x or before
// props.put("com.ibm.CORBA.BootstrapPort", "2809");
// Use this if bootstrap server is WebSphere 4.0.x or before
ORB _orb = ORB.init((String[])null, props);
...

Notice the initial reference definitions for NameService and
NameServiceServerRoot. The initial context returned for NameService depends on
the type of bootstrap server. The key NameServiceServerRoot is a key introduced
in WebSphere Application Server v5. For more information on initial contexts, see
the section Initial Contexts.

Note: The properties com.ibm.CORBA.BootstrapHost and
com.ibm.CORBA.BootstrapPort are deprecated. They are needed, however, to
connect to WebSphere Application Servers of Version 4.0.x or earlier. The default
bootstrap host is the local host and the default port is 2809.

Obtaining a reference to the server ORB

432 IBM WebSphere Application Server Network Deployment, Version 5: Applications

CosNaming clients which run in a server process can obtain a reference to the
server ORB with a JNDI lookup on a java: name, shown as follows:

Usage scenario
...
import javax.naming.Context;
import javax.naming.InitialContext;
import org.omg.CORBA.ORB;
...
Context initialContext = new InitialContext();
ORB orb = (ORB) initialContext.lookup("java:comp/ORB");
...

Using an ORB reference to get an initial naming reference
There are two basic ways to get an initial CosNaming context. Both ways involve
an ORB method invocation. The first way is to invoke the resolve_initial_references
method on the ORB with an initial reference key. For this call to work, the ORB
must be initialized with an initial reference for that key. The other way is to invoke
the string_to_object method on the ORB, passing in a CORBA object URL with the
host and port of the bootstrap server. The following examples illustrate both
approaches.

Invoking resolve_initial_references

Once an ORB reference is obtained, invoke the resolve_initial_references method on
the ORB to obtain a reference to the initial context. The following code example
invokes resolve_initial_reference on an ORB reference.

Usage scenario
...
import org.omg.CORBA.ORB;
import org.omg.CosNaming.NamingContextExt;
import org.omg.CosNaming.NamingContextExtHelper;
...
// Obtain ORB reference as shown in examples earlier
// in this section
...
org.omg.CORBA.Object obj =

_orb.resolve_initial_references("NameService");
NamingContextExt initCtx =
NamingContextExtHelper.narrow(obj);
...

Note that the key NameService is passed to the resolve_initial_references method.
Other initial context keys are registered in WebSphere Application Servers. For
example, NameServiceServerRoot can be used to obtain a reference to the server
root context in the bootstrap name server. For more information on the initial
contexts registered in server ORBs, please see the section Initial Contexts.

Invoking string_to_object with a CORBA object URL

You can use an INS-compliant ORB to obtain an initial context even if the ORB is
not initialized with any initial references or bootstrap properties, or if those
property settings are for a different server than the name server from which you
want to obtain the initial context. To obtain an initial context by explicitly
specifying the bootstrap name server, invoke the string_to_object method on the
ORB, passing in a CORBA object URL which contains the bootstrap server host
and port.

Chapter 13. Using naming 433

The code in the example below invokes the string_to_object method on an existing
ORB reference, passing in a CORBA object URL which identifies the desired initial
context.

Usage scenario
...
import org.omg.CORBA.ORB;
import org.omg.CosNaming.NamingContextExt;
import org.omg.CosNaming.NamingContextExtHelper;
...
// Obtain ORB reference as shown in examples earlier
// in this section
...
org.omg.CORBA.Object obj = orb.string_to_object

("corbaloc:iiop:myhost.mycompany.com:2809/NameService");
NamingContextExt initCtx = NamingContextExtHelper.narrow(obj);
...

Note that the key NameService is used in the corbaloc URL. Other initial context
keys are registered in WebSphere Application Servers. For example, you can use
NameServiceServerRoot to obtain a reference to the server root context in the
bootstrap name server.

Using an existing ORB and invoking string_to_object with a
CORBA object URL with multiple name server addresses to get
an initial context
CORBA object URLs can contain more than one bootstrap server address. Use this
feature when attempting to obtain an initial context from a server cluster. You can
specify the bootstrap server addresses for all servers in the cluster in the URL. The
operation will succeed if at least one of the servers is running, eliminating a single
point of failure. There is no guarantee of any particular order in which the address
list will be processed. For example, the second bootstrap server address may be
used to obtain the initial context even though the first bootstrap server in the list is
available. An example of a corbaloc URL with multiple addresses follows.

Usage scenario
...
import org.omg.CORBA.ORB;
import org.omg.CosNaming.NamingContextExt;
import org.omg.CosNaming.NamingContextExtHelper;
...
// Assume orb is an existing ORB instance
org.omg.CORBA.Object obj = orb.string_to_object(
"corbaloc::myhost1:9810,:myhost1:9811,

:myhost2:9810/NameService");
NamingContextExt initCtx=NamingContextExtHelper.narrow(obj);
...

Example: Looking up an EJB home with CosNaming
You can look up an EJB home or other CORBA object from a WebSphere
Application Server name server through the CORBA CosNaming interface. You can
invoke resolve or resolve_str on the initial context, or you can invoke
string_to_object on the ORB. You can use a qualified name so that the name
resolves regardless of which name server the lookup is executed on, or use an
unqualified name that only resolves from the server root context on the name
server that actually contains the object binding. (The qualified name traverses the
federated system name space to the specified server root context.)

Qualified and unqualified names

434 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Each application server contains a name server. System artifacts such as EJB homes
are bound in that name server. The various name servers are federated by means
of a system name space structure. The recommended way to look up objects on
different servers is to use a qualified name. A qualified name can be a
topology-based name, based on the name of the cluster or single server and node
that contains the object. You can define fixed qualified names for objects. With
qualified names, you can look up objects residing on different servers from the
same initial context by traversing the system name space structure. Alternatively,
you can use an unqualified name, but an unqualified name will only resolve using
the name server associated with the object’s application server.

CosNaming.resolve (and resolve_str) vs. ORB.string_to_object

If you have an initial context from any name server in a WebSphere Application
Server cell, you can look up any CORBA object with a qualified name. You do not
need additional host and port information for the target object’s name server.

Alternatively, you can look up an object by invoking string_to_object on the ORB,
passing in a corbaname URL. Typically, an IIOP type URL is specified, so the
bootstrap address information required for an initial context must be contained in
the URL. You can use a qualified or unqualified stringified name, but an
unqualifed name resolves only if the initial context is from the name server in
which the object is bound.

The following examples show CosNaming resolve operations using qualified
topology-based lookup names and an unqualified lookup name.

CosNaming resolve operation using a qualified name
The topology-based qualified name for an object depends on whether the object is
bound in a single server or a server cluster. Examples of each follow.

Single Server

The following example shows the lookup of an EJB home that is running in a
single server. The enterprise bean that is being looked up is running in the server,
MyServer, on the node, Node1.

// Get the initial context as shown in the previous example
// Using the form of lookup name below, it doesn’t matter which
// server in the cell is used to obtain the initial context.
...
// Look up the home interface using the name under which
// the EJB home is bound
org.omg.CORBA.Object ejbHome =

initialContext.resolve_str(
"cell/nodes/Node1/servers/MyServer

/mycompany/accounting/AccountEJB");
accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow

(ejbHome, AccountHome.class);

Server Cluster

The following example shows a lookup of an EJB home that is running in a cluster.
The enterprise bean being that is looked up is running in the cluster, Cluster1. The
name can be resolved if any of the cluster members is running.

Usage scenario

Chapter 13. Using naming 435

// Get the initial context as shown in the previous example
// Using the form of lookup name below, it doesn’t
// matter which
// server in the cell is used to obtain the initial context.
...
// Look up the home interface using the name under which the EJB home is bound
org.omg.CORBA.Object ejbHome = initialContext.resolve_str(
"cell/clusters/Cluster1/
mycompany/accounting/AccountEJB");
accountHome=(AccountHome)javax.rmi.PortableRemoteObject.narrow

(ejbHome, AccountHome.class);

ORB string_to_object operation using an unqualified stringified
name
If the resolve operation is being performed on the name server that contains the
object, the system name space does not need to be traversed, and you can use an
unqualified lookup name. Note that this name does not resolve on other name
servers. If an unqualified name is provided, the object key must be
NameServiceServerRoot so that the correct initial context is selected. If a qualified
name is provided, you can use the default key of NameService.

The following example shows a lookup of an EJB home. The enterprise bean that is
being looked up is bound on the name server running on the host myHost on port
2809. Note the object key of NameServiceServerRoot.

Usage scenario
// Assume orb is an existing ORB instance
...
// Look up the home interface using the name under which the EJB home is bound
org.omg.CORBA.Object ejbHome=orb.string_to_object(
"corbaname:iiop:myHost:2809/NameServiceServerRoot

#mycompany/accounting");
accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow

(ejbHome, AccountHome.class);

Configured name bindings
Administrators can configure bindings into the name space. A configured binding
is different from a programmatic binding in that the system creates the binding
every time a server is started, even if the target context is in a transient partition.

Administrators can add name bindings to the name space through the
configuration. Name servers add these configured bindings to the name space
view, by reading the configuration data for the bindings. Configuring bindings is
an alternative to creating the bindings from a program. Configured bindings have
the advantage of being created each time a server starts, even when the binding is
created in a transient partition of the name space. Cell-scoped configured bindings
provide interoperability with JNDI clients running on previous versions of
WebSphere Application Server. Additionally, you can configure cell-scoped
bindings to create a fixed qualified name for server objects.

Scope

You can configure a binding at one of the following three scopes: cell, node, or
server. Cell-scoped bindings are created under the cell persistent root context.
Node-scoped bindings are created under the node persistent root context for the
specified node. Server-scoped bindings are created under the server root context

436 IBM WebSphere Application Server Network Deployment, Version 5: Applications

for the selected server. If the target server of a server-scoped binding is a cluster,
the binding is created under the server root context of each cluster member.

Note: The term server includes clusters and can be used interchangeably with the
term cluster with respect to configured bindings. When applied to a cluster, a
server-scoped binding is created in the server root for all member servers.

The scope you select for new bindings depends on how the binding is to be used.
For example, if the binding is not specific to any particular node or server, or if
you do not want the binding to be associated with any specific node or server, a
cell-scoped binding is a suitable scope. Defining fixed names for enterprise beans
to create fixed qualified names is just such an application. If a binding is to be
used only by clients of an application running on a particular server, or if you
want to configure a binding with the same name on different servers which resolve
to different objects, a server-scoped binding would be appropriate. Note that two
servers can have configured bindings with the same name but resolve to different
objects. At the cell scope, only one binding with a given name can exist.

Intermediate Contexts

Intermediate contexts created with configured bindings are read-only. For example,
if an EJB home binding is configured with the name some/compound/name/ejbHome,
the intermediate contexts some, some/compound, and some/compound/name will be
created as read-only contexts. You cannot add, update, or remove any read-only
bindings.

The configured binding name cannot conflict with existing bindings. However,
configured bindings can use the same intermediate context names. Therefore, a
configured binding with the name some/compound/name2/ejbHome2 does not conflict
with the previous example name.

Configured binding types
Types of objects that you can bind follow:

The following data is required to configure an EJB home binding:
v JNDI name of the EJB server or server cluster where the enterprise bean is

deployed
v Target root for the configured binding (scope)
v The name of the configured binding, relative to the target root.

This type of binding is of special significance because you can use it to provide
interoperability with WebSphere Application Server v3.5.x and v4.0.x JNDI clients.
The default initial context for these earlier clients is the cell persistent root, which
is different from the initial context of the server root for WebSphere Application
Server v5 JNDI clients. If you migrate an application to the current release, you can
configure an EJB binding at the cell scope so that the lookup names for the
enterprise bean do not change for clients still running in a earlier WebSphere
Application Server version.

A cell-scoped EJB binding is also useful for creating a fixed lookup name for an
enterprise bean so that the qualified name is not dependent on the topology.

CORBA: CORBA object available from some CosNaming name server

Chapter 13. Using naming 437

You can identify any CORBA object bound into some INS compliant CosNaming
server with a corbaname URL. The referenced object does not have to be available
until the binding is actually referenced by some application.

The following data is required in order to configure a CORBA object binding:
v The corbaname URL of the CORBA object
v An indicator if the bound object is a context or leaf node object (to set the

correct CORBA binding type of context or object).
v Target root for the configured binding
v The name of the configured binding, relative to the target root.

Indirect: Any object bound in WebSphere Application Server name space
accessible with JNDI

Besides CORBA objects, this includes javax.naming.Referenceable,
javax.naming.Reference, and java.io.Serializable objects. The target object itself is
not bound to the name space. Only the information required to look up the object
is bound. Therefore, the referenced name server does not have to be running until
the binding is actually referenced by some application. The following data is
required in order to configure an indirect JNDI lookup binding:
v JNDI provider URL of name server where object resides
v JNDI lookup name of object
v Target root for the configured binding (scope)
v The name of the configured binding, relative to the target root.

A cell-scoped indirect binding is useful when creating a fixed lookup name for a
resource so that the qualified name is not dependent on the topology. You can also
achieve this topology by widening the scope of the resource definition.

Note: WebSphere Application Server v3.5.x clients cannot access this type of
binding .

String: String constant

You can configure a binding of a string constant. The following data is required to
configure a string constant binding:
v String constant value
v Target root for the configured binding (scope)
v The name of the configured binding, relative to the target root.

Name space federation
Federating name spaces involves binding contexts from one name space into
another name space.

For example, assume that a name space, Name Space 1, contains a context under
the name a/b. Also assume that a second name space, Name Space 2, contains a
context under the name x/y. (See the following illustration.) If context x/y in Name
Space 2 is bound into context a/b in Name Space 1 under the name f2, the two
name spaces are federated. Binding f2 is a federated binding because the context
associated with that binding comes from another name space. From Name Space 1,
a lookup of the name a/b/f2 returns the context bound under the name x/y in
Name Space 2. Furthermore, if context x/y contains an Enterprise JavaBeans (EJB)

438 IBM WebSphere Application Server Network Deployment, Version 5: Applications

home bound under the name ejb1, the EJB home could be looked up from Name
Space 1 with the lookup name a/b/f2/ejb1. Notice that the name crosses name
spaces. This fact is transparent to the naming client.

Initial Context

a

Local Context

Local Context

Federated
Context

(remote reference)

b

f2

Name Space 1

Initial Context

x

Local Context

Local Context

y

ejb1

Name Space 2

EJB

Federated Name Spaces

In a WebSphere Application Server name space, you can create federated bindings
with the following restrictions:
v Federation is limited to CosNaming name servers. A WebSphere Application

Server name server is a Common Object Request Broker Architecture (CORBA)
CosNaming implementation. You can create federated bindings to other
CosNaming contexts. You cannot, for example, bind contexts from an LDAP
name server implementation.

v If you use JNDI to federate the name space, you must use WebSphere
Application Server’s initial context factory to obtain the reference to the
federated context. If you use some other initial context factory implementation,
you either may not be able to create the binding, or the level of transparency
may be reduced.

v A federated binding to a non-WebSphere Application Server naming context has
the following functional limitations:
– JNDI operations are restricted to the use of CORBA objects. For example, you

can look up EJB homes, but you cannot look up non-CORBA objects such as
data sources.

– JNDI caching is not supported for non-WebSphere Application Server name
spaces. This restriction affects the performance of lookup operations only.

v Do not federate two WebSphere Application Server standalone server name
spaces. Incorrect behavior may result. If you want to federate WebSphere
Application Server name spaces, you should use servers running under the
Network Deployment or Enterprise packages of WebSphere Application Server.

Chapter 13. Using naming 439

Name space bindings
Administrators can add name bindings to the name space through the
configuration. Name servers add these configured bindings to the name space view
by reading the configuration data for the bindings. Configuring bindings is an
alternative to creating the bindings from a program.

Configured bindings are created each time a server starts, even when the binding
is created in a transient partition of the name space. One major use of configured
bindings to provide interoperability with JNDI clients running on previous
versions of the WebSphere Application Server.

There are four different kinds of bindings that you can configure:
v Enterprise JavaBeans (EJB)
v CORBA object
v Indirect Lookup
v String

Configuring and viewing name space bindings
To view or configure an EJB, CORBA, Indirect lookup or string name space
binding, complete the following:

Steps for this task
1. Open the Administrative console.
2. Click Environment.
3. Click Manage Name Space Bindings.
4. Select the desired scope by entering in a node name for node-scoped bindings,

or a node name and server name for server-scoped bindings, and click Apply.
5. To create a new binding, click New and follow the instructions. To edit a

previously created binding, click the binding you want to edit and proceed to
the next step.

6. Edit the Binding identifier, the Name in name space, and the String value fields
as desired.
Note: All of these fields are required.

7. Click Finish to register the changes.

String binding settings
Use this page to configure a new string binding or to view or edit an existing
string binding.

To view this administrative console page, click Environment > Naming > Name
Space Bindings > string_namespace_binding.

Scope
Shows the scope of the configured binding. This value indicates the configuration
location for the namebindings.xml file. This field is for information purposes only
and cannot be updated.

If the configured binding is cell-scoped, the starting context is the cell persistent
root context. If the configured binding is node-scoped, the starting context is the
node persistent root context. If the configured binding is server-scoped, the starting
context is the server’s server root context.

440 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Binding Type
Shows the type of binding configured. Possible choices are String, EJB, CORBA,
and Indirect. This field is for information purposes only and cannot be updated.

Binding Identifier
Specifies the name that uniquely identifies this configured binding.

Name in Name Space
Specifies the name used for this binding in the name space. This name can be a
simple or compound name depending on the portion of the name space where this
binding is configured.

String Value
Specifies the string to be bound into the name space.

CORBA object binding settings
Use this page to configure a new name binding of a CORBA object binding, or to
view or edit an existing CORBA object binding.

To view this administrative console page, click Environment > Naming > Name
Space Bindings > CORBA_namespace_binding.

Scope
Shows the scope of the configured binding. This value indicates the configuration
location for the namebindings.xml file. This field is for information purposes only
and cannot be updated.

If the configured binding is cell-scoped, the starting context is the cell persistent
root context. If the configured binding is node-scoped, the starting context is the
node persistent root context. If the configured binding is server-scoped, the starting
context is the server’s server root context.

Binding Type
Shows the type of binding configured. Possible choices are String, EJB, CORBA,
and Indirect. This field is for information purposes only and cannot be updated.

Binding Identifier
Specifies the name that uniquely identifies this configured binding.

Name in Name Space
Specifies the name used for this binding in the name space. This name can be a
simple or compound name depending on the portion of the name space where this
binding is configured.

Corbaname URL
Specifies the CORBA name URL string identifying where the object is bound in a
CosNaming server.

Federated Context
Specifies whether the target is a CosNaming context (true) or a leaf node object
(false).

Value Result
true The target object is bound with a context

CORBA binding type. If the corbaname URL
does not resolve to a NamingContext, an
error occurs when the binding is first used
(which is when the URL is first resolved).

Chapter 13. Using naming 441

false The target object is bound with an object
CORBA binding type.

Indirect lookup binding settings
Use this page to configure a new indirect lookup name binding, or to view or edit
an existing indirect lookup binding.

To view this administrative console page, click Environment > Naming > Name
Space Bindings > indirect_lookup_namespace_binding.

Scope
Shows the scope of the configured binding. This value indicates the configuration
location for the namebindings.xml file. This field is for information purposes only
and cannot be updated.

If the configured binding is cell-scoped, the starting context is the cell persistent
root context. If the configured binding is node-scoped, the starting context is the
node persistent root context. If the configured binding is server-scoped, the starting
context is the server’s server root context.

Binding Type
Shows the type of binding configured. Possible choices are String, EJB, CORBA,
and Indirect. This field is for information purposes only and cannot be updated.

Binding Identifier
Specifies the name that uniquely identifies this configured binding.

Name in Name Space
Specifies the name used for this binding in the name space. This name can be a
simple or compound name depending on the portion of the name space where this
binding is configured.

Provider URL
Specifies the provider URL string needed to obtain a JNDI initial context.

JNDI Name
Specifies the name used to look up the target object from the initial context.

EJB binding settings
Use this page to configure a new EJB binding, or to view or edit an existing EJB
binding.

To view this administrative console page, click Environment > Naming > Name
Space Bindings > EJB_namespace_binding.

Scope
Shows the scope of the configured binding. This value indicates the configuration
location for the namebindings.xml file. This field is for information purposes only
and cannot be updated.

If the configured binding is cell-scoped, the starting context is the cell persistent
root context. If the configured binding is node-scoped, the starting context is the
node persistent root context. If the configured binding is server-scoped, the starting
context is the server’s server root context.

442 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Binding Type
Shows the type of binding configured. Possible choices are String, EJB, CORBA,
and Indirect. This field is for information purposes only and cannot be updated.

Binding Identifier
Specifies the name that uniquely identifies this configured binding.

Name in Name Space
Specifies the name used for this binding in the name space. This name can be a
simple or compound name depending on the portion of the name space where this
binding is configured.

Enterprise Bean Location
Specifies whether the enterprise bean is running in a server cluster or a single
server. If Single Server is specified, type the node name.

Server
Specifies the name of the cluster or non-clustered server in which the enterprise
bean is configured.

JNDI Name
Specifies the JNDI name of the deployed enterprise bean (the bean’s JNDI name
that is in the enterprise bean bindings—not the java:comp name)

Name space binding collection
Use this page to configure a name binding of an EJB, a CORBA CosNaming
NamingContext, a CORBA leaf node object, an object that you can look up using
JNDI, or a constant string value.

Binding information for configured bindings is stored in the configuration and
applied upon startup of the name server for each server within the scope of the
binding.

To view the Manage Name Space Bindings Settings page, Click Environment >
Manage Namespace Bindings.

Click the check boxes to select one or more of the users in your collection. Use the
buttons to control the selected users.

Name space bindings
Shows the names given to uniquely identify these configured bindings.

Configuring name servers
To configure a name server, complete the following:

Steps for this task
1. Open the administrative console.
2. Click Servers.
3. Click Application Servers.
4. Click the application server you want to configure.
5. Click Server Components.
6. Click Name Server.
7. Edit the fields as desired.

Note: All of these fields are mandatory.

Chapter 13. Using naming 443

8. (Optional) To make other changes, click Custom Properties.
9. Click OK to register your changes.

Name server settings
Use this page to configure Naming Service Provider settings for the application
server.

To view this administrative console page, click Servers > Application Servers >
server_name > Server Components > Name Server.

The Configuration tab on the page provides editable fields and the Runtime tab
provides read-only information.

Name
Specifies the display name for the server.

Initial State
Specifies the execution state.

Troubleshooting name space problems
Many naming problems can be avoided by fully understanding the key underlying
concepts of WebSphere Application Server naming.

Steps for this task
1. Review the key concepts of WebSphere Application Server naming, especially

Name space logical view and Lookup names support in deployment
descriptors and thin clients.

2. Review the programming examples that are included in the sections explaining
the JNDI and CosNaming interfaces.

3. Read ″Naming services component troubleshooting tips″ (not in this document)
for additional general information.

4. If you ″Cannot look up an object hosted by WebSphere Application Server
from a servlet, JSP file, or other client″ (not in this document), read this article.

dumpNameSpace tool
You can use the name space dump utility to dump the contents of the name space
accessed through a name server. This dump does not include local name spaces
such java URL name spaces. The naming service for the WebSphere Application
Server host must be active when this tool is invoked.

Note that the server root context for the server at the specified host and port is
dumped (unless a non-default starting context which precludes it is specified). The
server root contexts for other servers are not dumped.

Command line invocation descriptions of the name space dump utility follow. This
section includes sample output.

You can also access this utility a through its program interface. Refer to the class
com.ibm.websphere.naming.DumpNameSpace in the WebSphere Application
Server API documentation.

Syntax

444 IBM WebSphere Application Server Network Deployment, Version 5: Applications

To invoke the tool through the command line, enter the following command from
the WebSphere/AppServer/bin directory:

Platform Command

UNIX dumpNameSpace.sh [[-keyword value]...]

Windows NT dumpNameSpace [[-keyword value]...]

Parameters

The keywords and associated values for the dumpNameSpace utility follow:

-host myhost.austin.ibm.com
Indicates the bootstrap host or the WebSphere Application Server host
whose name space you want to dump. The value defaults to localhost.

-port nnn
Indicates the bootstrap port which, if not specified, defaults to 2809.

-root {cell | server | node | host | legacy | tree | default}
Indicates the root context to use as the initial context for the dump. The
applicable root options and default root context depend on the type of
name server from which the dump is being obtained. This information is
provided in the following tables.

For WebSphere Application Servers v5 or later:

cell DumpNameSpace default. Dump the tree
starting at the cell root context.

server Dump the tree starting at the server root
context.

node Dump the tree starting at the node root
context. (Synonymous with host.)

For WebSphere Application Servers v4.0 or later:

legacy DumpNameSpace default. Dump the tree
starting at the legacy root context.

host Dump the tree starting at the bootstrap host
root context. (Synonymous with node.)

tree Dump the tree starting at the tree root
context.

For all WebSphere Application Servers and other name servers:

default Dump the tree starting at the initial context
which JNDI returns by default for that
server type. This is the only -root choice that
is compatible with WebSphere Application
Servers prior to v4.0 and with
non-WebSphere Application Server name
servers.

-url some provider URL
Indicates the value for the java.naming.provider.url property used to get

Chapter 13. Using naming 445

the initial JNDI context. This option can be used in place of the -host, -port,
and -root options. If the -url option is specified, the -host, -port, and -root
options are ignored.

-factory com.ibm.websphere.naming.WsnInitialContextFactory
Indicates the initial context factory to be used to get the JNDI initial
context. The value defaults to:
com.ibm.websphere.naming.WsnInitialContextFactory The default value
generally does not need to be changed.

-startAt some/subcontext/in/the/tree
Indicates the path from the bootstrap host’s root context to the top level
context where the dump should begin. The utility recursively dumps
subcontexts below this point. It defaults to an empty string, that is, the
bootstrap host root context.

-format{jndi | ins}

Option Description

jndi The default. Displays name components as atomic strings.

ins Shows name components parsed per INS rules (id.kind).

-report {short | long}

Option Description

short The default. Dumps the binding name and bound object type. This output is
also provided by JNDI Context.list().

long Dumps the binding name, bound object type, local object type, and string
representation of the local object (that is, the IORs, string values, and other
values that are printed).

For objects of user-defined classes to display correctly with the long report
option, it may be necessary to add their containing directories to the list of
directories searched. Set the environment variable WAS_USER_DIRS. The
value can include one or more directories, as for example:

Platform
Command

UNIX WAS_USER_DIRS=/usr/classdir1:/usr/classdir2 export
WAS_USER_DIRS

Windows NT
set WAS_USER_DIRS=c:\classdir1;d:\classdir2

All zip, jar, and class files in the specified directories can then be resolved by
the class loader when running dumpNameSpace.

-traceString ″some.package.name.to.trace.*=all=enabled″
Represents the trace string with the same format as that generated by the
servers. The output is sent to the file, DumpNameSpaceTrace.out.

Example: Invoking the name space dump utility
It is often helpful to view a dump of the name space to understand why a naming
operation is failing. You can invoke the name space dump utility from the
command line or from a program. Examples of each option follow.

446 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Invoking name space dump utility from a command line
Invoke the name space dump utility from the command line by entering the
following command:
dumpNameSpace -host myhost.mycompany.com -port 901

OR
dumpNameSpace -url corbaloc:iiop:myhost.mycompany.com:901

There are several command line options to choose from. For detailed help, enter
the following command:
dumpNameSpace -help

Invoking name space dump utility from a Java program
You can dump name spaces from a program with the
com.ibm.websphere.naming.DumpNameSpace API. Refer to the WebSphere
Application Server API documentation for details on the DumpNameSpace
program interface.

The following example illustrates how to invoke the name space dump utility from
a Java program:
{

...
import javax.naming.Context;
import javax.naming.InitialContext;
import com.ibm.websphere.naming.DumpNameSpace;
...
java.io.PrintStream filePrintStream = ...
Context ctx = new InitialContext();
ctx = (Context) ctx.lookup("cell/nodes/node1/servers/server1");

// Starting context for dump
DumpNameSpace dumpUtil = new DumpNameSpace(filePrintStream, DumpNameSpace.SHORT);
dumpUtil.generateDump(ctx);
...

}

Name space dump utility forjava: and local:name space
Sometimes it is helpful to dump the java: name space for a J2EE application. You
cannot use the dumpNameSpace command line utility for this purpose because the
application’s java: name space is accessible only by that J2EE application. From the
WebSphere Application Server scripting tool, you can invoke a NameServer MBean
to dump the java: name space for any J2EE application running in that same server
process.

There is another name space local to server processes which you cannot dump
with the dumpNameSpace command line utility. This name space has the URL
scheme of local: and is used by the container to bind objects locally instead of
through the name server. There is only one local: name space in a server process.
You can dump a local: name space by invoking the NameServer MBean associated
with that server process.

Name space dump options
Name space dump options are specified in the MBean invocation as a parameter in
chararacter string format. The option descriptions follow.

-startAt some/subcontext/in/the/tree
Indicates the path from the name space root context to the top level context
where the dump should begin. The utility recursively dumps subcontexts
below this point. It defaults to an empty string, that is, the root context.

Chapter 13. Using naming 447

-report {short | long}

Option Description

short The default. Dumps the binding name and
bound object type. This output is also
provided by JNDI Context.list().

long Dumps the binding name, bound object
type, local object type, and string
representation of the local object (that is, the
IORs, string values, and other values that
are printed).

NameServer MBean invocation

Enter the WebSphere Application Server scripting command prompt: Invoke a
method on a NameServer MBean by using the WebSphere Application Server
scripting tool. Enter the scripting command prompt by typing the following
command:

Platform Command

UNIX wsadmin.sh

Windows NT wsadmin

Use the -help option for help on using the wsadmin command.

Select the NameServer MBean instance to invoke: Execute the following script
commands to select the NameServer instance you want to invoke. For example,
set mbean [$AdminControl completeObjectName WebSphere:*,

type=NameServer,cell=cellName,node=nodeName,
process=serverName]

where cellName, nodeName, and serverName are the names of the cell, node, and
server for the MBean you want to invoke. The specified server must be running
before you can invoke a method on the MBean.

You can see a list of all NameServer MBeans current running by issuing the
following query:
$AdminControl queryNames {*:*,type=NameServer}

Invoke the NameServer MBean: java: name space

Dump a java: name space by invoking the dumpJavaNameSpace method on the
NameServer MBean. Since each server application has its own java: name space,
the application must be specified on the method invocation. An application is
identified by the application name, module name, and component name. The
method syntax follows:
$AdminControl invoke $mbean dumpJavaNameSpace

{{appname}{modName}
{compName}{opts}}

where appName is the application name, modName is the module name, and
compName is the component name of the java: name space you want to dump. The
value for opts is the list of name space dump options described earlier in this
section. The list can be empty.

448 IBM WebSphere Application Server Network Deployment, Version 5: Applications

local: name space

Dump a java: name space by invoking the dumpLocalNameSpace method on the
NameServer MBean. Since there is only one local: name space in a server process,
you have to specify the name space dump options only.
$AdminControl invoke $mbean dumpLocalNameSpace {{opts}}

where opts is the list of name space dump options described earlier in this section.
The list can be empty.

Name space dump output
Name space dump output is sent to the console. It is also written to the file
DumpNameSpace.log, in the server’s log directory.

Example: Invoking the name space dump utility for java:
andlocal: name spaces

It is often helpful to view the dump of a java: or local: name space to
understand why a naming operation is failing. The NameServer MBean running in
the application’s server process can be invoked from the WebSphere Application
Server scripting tool to generate a dump of these name spaces. Examples of
NameServer MBean calls to generate dumps of java: and local: name spaces follow.

Dumping a java: name space
Assume you want to dump the java: name space of an application component
running in server server1 on node node1 of the cell MyCell. The application name
is AcctApp in module AcctApp.war, and the component name is Acct Servlet. The
following script commands generate a long format dump of the application’s java:
name space of that application:

set mbean [$AdminControl completeObjectName WebSphere:*,
type=NameServer,cell=MyCell,node=node1,process=server1]

$AdminControl invoke $mbean dumpJavaNameSpace {{AcctApp}{AcctApp.war}
{Acct Servlet}{-report long}}

Dumping a local: name space
Assume you want to dump the local: name space for the server server1 on node
node1 of cell MyCell. The following script commands will generate a short format
dump of that server’s local name space:

set mbean [$AdminControl completeObjectName WebSphere:type=NameServer,
cell=MyCell,node=node1,process=server1]

$AdminControl invoke $mbean dumpLocalNameSpace {{-report short}}

Name space dump sample output
Name space dump output looks like the following example, which is the SHORT
dump format:
Getting the initial context
Getting the starting context

==
Name Space Dump

Provider URL: corbaloc:iiop:localhost:9810
Context factory: com.ibm.websphere.naming.WsnInitialContextFactory
Requested root context: cell
Starting context: (top)=outpostNetwork
Formatting rules: jndi
Time of dump: Mon Sep 16 18:35:03 CDT 2002

==

Chapter 13. Using naming 449

==
Beginning of Name Space Dump
==

1 (top)
2 (top)/domain javax.naming.Context
2 Linked to context: outpostNetwork
3 (top)/cells javax.naming.Context
4 (top)/clusters javax.naming.Context
5 (top)/clusters/Cluster1 javax.naming.Context
6 (top)/cellname java.lang.String
7 (top)/cell javax.naming.Context
7 Linked to context: outpostNetwork
8 (top)/deploymentManager javax.naming.Context
8 Linked to URL: corbaloc::outpost:9809/NameServiceServerRoot
9 (top)/nodes javax.naming.Context
10 (top)/nodes/will2 javax.naming.Context
11 (top)/nodes/will2/persistent javax.naming.Context
12 (top)/nodes/will2/persistent/SomeObject SomeClass
13 (top)/nodes/will2/nodename java.lang.String
14 (top)/nodes/will2/domain javax.naming.Context
14 Linked to context: outpostNetwork
15 (top)/nodes/will2/cell javax.naming.Context
15 Linked to context: outpostNetwork
16 (top)/nodes/will2/servers javax.naming.Context
17 (top)/nodes/will2/servers/server1 javax.naming.Context
18 (top)/nodes/will2/servers/will2 javax.naming.Context
19 (top)/nodes/will2/servers/member2 javax.naming.Context
20 (top)/nodes/will2/node javax.naming.Context
20 Linked to context: outpostNetwork/nodes/will2
21 (top)/nodes/will2/nodeAgent javax.naming.Context
22 (top)/nodes/outpost javax.naming.Context
23 (top)/nodes/outpost/node javax.naming.Context
23 Linked to context: outpostNetwork/nodes/outpost
24 (top)/nodes/outpost/nodeAgent javax.naming.Context
24 Linked to URL: corbaloc::outpost:2809/NameServiceServerRoot
25 (top)/nodes/outpost/persistent javax.naming.Context
26 (top)/nodes/outpost/nodename java.lang.String
27 (top)/nodes/outpost/domain javax.naming.Context
27 Linked to context: outpostNetwork
28 (top)/nodes/outpost/servers javax.naming.Context
29 (top)/nodes/outpost/servers/server1 javax.naming.Context
30 (top)/nodes/outpost/servers/server1/url javax.naming.Context
31 (top)/nodes/outpost/servers/server1/url/CatalogDAOSQLURL
31 java.net.URL
32 (top)/nodes/outpost/servers/server1/mail javax.naming.Context
33 (top)/nodes/outpost/servers/server1/mail/PlantsByWebSphere
33 javax.mail.Session
34 (top)/nodes/outpost/servers/server1/TransactionFactory
34 com.ibm.ejs.jts.jts.

ControlSet$LocalFactory
35 (top)/nodes/outpost/servers/server1/servername java.lang.String
36 (top)/nodes/outpost/servers/server1/WSsamples javax.naming.Context
37 (top)/nodes/outpost/servers/server1/WSsamples/TechSampDatasource
37 TechSamp
38 (top)/nodes/outpost/servers/server1/thisNode javax.naming.Context
38 Linked to context: outpostNetwork/nodes/outpost
39 (top)/nodes/outpost/servers/server1/cell javax.naming.Context
39 Linked to context: outpostNetwork
40 (top)/nodes/outpost/servers/server1/eis javax.naming.Context
41 (top)/nodes/outpost/servers/server1/eis/DefaultDatasource_CMP
41 Default_CF
42 (top)/nodes/outpost/servers/server1/eis/WSsamples javax.naming.Context
43 (top)/nodes/outpost/servers/server1/eis/WSsamples/TechSampDatasource_CMP
43 TechSamp_CF
44 (top)/nodes/outpost/servers/server1/eis/jdbc javax.naming.Context
45 (top)/nodes/outpost/servers/server1/eis/jdbc/PlantsByWebSphereDataSource_CMP

450 IBM WebSphere Application Server Network Deployment, Version 5: Applications

45 PLANTSDB_CF
46 (top)/nodes/outpost/servers/server1/eis/jdbc/petstore
46 javax.naming.Context
47 (top)/nodes/outpost/servers/server1/eis/jdbc/petstore/PetStoreDB_CMP
47 PetStore_CF
48 (top)/nodes/outpost/servers/server1/eis/jdbc/CatalogDB_CMP
48 Catalog_CF
49 (top)/nodes/outpost/servers/server1/jta javax.naming.Context
50 (top)/nodes/outpost/servers/server1/jta/usertransaction
50 java.lang.Object
51 (top)/nodes/outpost/servers/server1/DefaultDatasource
51 Default Datasource
52 (top)/nodes/outpost/servers/server1/jdbc javax.naming.Context
53 (top)/nodes/outpost/servers/server1/jdbc/CatalogDB CatalogDB
54 (top)/nodes/outpost/servers/server1/jdbc/petstore javax.naming.Context
55 (top)/nodes/outpost/servers/server1/jdbc/petstore/PetStoreDB
55 PetStoreDB
56 (top)/nodes/outpost/servers/server1/jdbc/PlantsByWebSphereDataSource
56 PLANTSDB
57 (top)/nodes/outpost/servers/outpost javax.naming.Context
57 Linked to URL: corbaloc::outpost:2809/NameServiceServerRoot
58 (top)/nodes/outpost/servers/member1 javax.naming.Context
59 (top)/nodes/outpost/cell javax.naming.Context
59 Linked to context: outpostNetwork
60 (top)/nodes/outpostManager javax.naming.Context
61 (top)/nodes/outpostManager/domain javax.naming.Context
61 Linked to context: outpostNetwork
62 (top)/nodes/outpostManager/cell javax.naming.Context
62 Linked to context: outpostNetwork
63 (top)/nodes/outpostManager/servers javax.naming.Context
64 (top)/nodes/outpostManager/servers/dmgr javax.naming.Context
64 Linked to URL: corbaloc::outpost:9809/NameServiceServerRoot
65 (top)/nodes/outpostManager/node javax.naming.Context
65 Linked to context: outpostNetwork/nodes/outpostManager
66 (top)/nodes/outpostManager/nodename java.lang.String
67 (top)/persistent javax.naming.Context
68 (top)/persistent/cell javax.naming.Context
68 Linked to context: outpostNetwork
69 (top)/legacyRoot javax.naming.Context
69 Linked to context: outpostNetwork/persistent
70 (top)/persistent/AnotherObject AnotherClass

==
End of Name Space Dump
==

Naming and directories: Resources for learning
Use the following links to find relevant supplemental information about naming
and directories. The information resides on IBM and non-IBM Internet sites, whose
sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

View links to additional information about:
v Planning, business scenarios, and IT architecture
v Programming specifications

Chapter 13. Using naming 451

v IBM’s Web Services architecture debuts
(http://www.ibm.com/developerworks/webservices/ library/w-
int.html?dwzone=webservices)
Introducing IBM’s Web Services, a distributed software architecture of service
components. This brief overview and in-depth interview on IBM
DeveloperWorks cover the fundamental concepts of Web Services architecture
and what they mean for developers. The interview with IBM’s Rod Smith, Vice
President of Emerging Technologies, explores which types of developers Web
Services targets, how Web services reduce development time, what developers
could be doing with Web Services now, and takes a glance at the economics of
dynamically discoverable services.

v OMG CosNaming Interoperable Naming
Specification(http://www.omg.org/cgi-bin/doc?ptc/99–12–03)

452 IBM WebSphere Application Server Network Deployment, Version 5: Applications

http://www.ibm.com/developerworks/webservices/library/w-int.html?dwzone=webservices
http://www.ibm.com/developerworks/webservices/library/w-int.html?dwzone=webservices
http://www.omg.org/cgi-bin/doc?ptc/99�12�03

Chapter 14. Improving performance through the dynamic
cache service

The dynamic cache works within an application server Java Virtual Machine
(JVM), intercepting calls to cacheable objects, for example, through a servlet’s
service() method or a command’s execute() method), and either stores the object’s
output to, or or serves the object’s content from, the dynamic cache.

WebSphere Application Server, Version 4.0, supported the configuration of dynamic
servlet caching through the use of a servletcache.xml file. For migration purposes,
this file is still supported by this release. In order to utilize the new and improved
functionality of the dynamic cache service in this release, you must configure your
cache policy using the new cachespec.xml format.

The dynamic caching documentation provides you with the following tasks to
enable and configure the dynamic cache service, as well as advanced features, such
as controlling external caches and building user-defined drop-in components to
customize the cache operation.

Steps for this task
1. Enable the dynamic cache service globally .
2. Configure servlet caching.
3. Configure Edge Side Include (ESI) caching.
4. Configure command caching.
5. Configure Web services caching.

Dynamic cache
Caching the output of servlets, commands and Java Server Pages (JSP)files,
improves application performance. WebSphere Application Server consolidates
several caching activities, including servlets, Web services, and WebSphere
commands into one service called the dynamic cache. These caching activities work
together to improve application performance, and share many configuration
parameters, which are set in an application server’s dynamic cache service.

The dynamic cache works within an application server Java Virtual Machine
(JVM), intercepting calls to cacheable objects, for example, through a servlet’s
service() method or a command’s execute() method, and either stores the object’s
output to, or serves the object’s content from, the dynamic cache. Because J2EE
applications have high read-write ratios and can tolerate small degrees of latency
in the currency of their data, the dynamic cache creates an opportunity for
significant gains in server response time, throughput, and scalability.

You can use the dynamic cache to improve the performance of servlet and JSP files
by serving requests from an in-memory cache. Cache entries contain servlet output,
results of servlet execution, and metadata.

Configuring globally the dynamic cache service
Steps for this task
1. Open the administrative console.

© Copyright IBM Corp. 2002 453

2. Click Servers > Application Servers in the administrative console navigation
tree.

3. Click a server.
4. Click Dynamic Cache Service.
5. Select Enable service at server startup in the Startup state field.
6. Click Apply or OK.

DynamicCache service settings
Use this page to configure and manage the dynamic cache service settings.

To view this administrative console page, click Servers > Application Servers >
server > Dynamic Cache Service.

Startup state
Specifies whether the dynamic cache is enabled.

Cache Size
Specifies a positive integer as the value for the maximum number of entries the
cache holds.

Enter the cache size value in this field. Values are usually in the thousands, with
no set maximum or minimum.

Default Priority
Specifies the default priority for cache entries, determining how long an entry stays
in a full cache.

Default 1

Disk offload
Specifies whether disk offload is enabled.

By default, the dynamic cache only maintains, at most, the number of entries
configured in memory. If new entries are created while the cache is full, the
priorities configured for each cache entry, along with a least recently used
algorithm, are used to remove entries from the cache. As an alternative, you can
configure disk offload, and rather than removing the entries from memory, have
them copied onto the file system (the location is configurable) for later.

Cache replication
Specifies whether cache replication is enabled.

You can also configure advanced cache replication settings.

Configuring servlet caching
Before you begin

In order to enable servlet caching, the dynamic cache service must also be enabled.

Steps for this task
1. Open the administrative console.
2. Click Servers > Application Servers in the console navigation tree.
3. Click a server.
4. Click Web Container.

454 IBM WebSphere Application Server Network Deployment, Version 5: Applications

5. Select the Enable servlet caching check box under the Configuration tab.
6. Click Apply or OK.

Servlet caching
After a servlet is invoked once, generating the output to be cached, a cache entry is
created containing not only the output, but also side effects of the invocation. For
example, these side effects can include calls to other servlets or Java Server Pages
(JSP) files, as well as metadata about the entry, including timeout and entry
priority information.

Unique entries are distinguished by an ID string generated from the
HttpServletRequest object for each invocation of the servlet. You can then base
servlet caching on:
v Request parameters and attributes URI used to invoke the servlet
v Session information
v Other options, including cookies

Since JSP files are compiled by WebSphere Application Server into servlets, the
dynamic cache function treats them the same, except in specifically documented
situations.

Configuring cache replication
Cache replication leverages the WebSphere internal replication service that is also
leveraged for HttpSession memory-to-memory replication for failover purposes.
Hence, a replication domain with at least one replicator entry needs to exist in
order to replicate the data. The dynamic cache, in essence, connects to the
replicator. See more information in the InfoCenter about managing internal
replication.

To configure cache replication and its features:

Steps for this task
1. Click Servers>Manage Application Servers in the administrative console

navigation tree.
2. Click server.
3. Click Dynamic Cache Service.
4. Click Enable cache replication check box in the Cache replication field.

To manage batch update or PUSH-PULL - PUSH/PULL, repeat steps 1-4, then,
click the Advanced button in the Cache replication field. Batch update interval
is set under push frequency. PUSH-PULL-PUSH/PULL is set through the
runtime mode.
You can also select which replication domain and initial replicator entry the
dynamic cache will utilize (either those managed within the cell or across the
cell).

Cache replication
Data is generated one time and copied or replicated to other servers in the cluster,
thus saving execution time and resources. Caching in a cluster has additional
concerns. In particular, the same data could be required, and hence, generated in
multiple places. Also, the access the resources need to generate the cached data can
be restricted, preventing access to the data.

Chapter 14. Improving performance through the dynamic cache service 455

Thus, cache replication addresses the concerns by generating the data one time and
copying or replicating it to the other servers in the cluster.

The configuration specific to replication of data can exist as part of the Web
container’s dynamic cache configuration accessible through the administrative
console, or on a per cache entry basis through the cachespec.xml file. This includes
the option to configure cache replication at the Web container level, but disabling it
for a specific cache entry.

Cache replication can take on three forms:
v PUSH - Send out new entries, both ID and data, and updates to those entries
v PULL - Requests data from other servers in the cluster when that data is not

locally present
v PUSH/PULL - Sends out IDs for new entries, then, only request from other

servers in the cluster entries for IDs previously broadcast. The dynamic cache
always sends out cache entry invalidations.

The dynamic cache provides a batch update option. Specifically, for PUSH or
PUSH/PULL, the dynamic cache broadcasts the update asynchronously, based on a
timed interval rather than sending them immediately upon inception. Invalidators
are sent immediately. Distribution of invalidations addresses the issue of stale data
residing in a cluster.

Internal messaging configuration settings
Use this page to set advanced configurations for Memory to Memory session
replication.

To view this administrative console page, click Servers > Application Servers >
server > Dynamic Cache Service> Cache replication > Enable cache replication .

The advanced replication settings include fields for choosing the initial replicator
entry that connects to the replicator domains. As an alternative, you can specify the
IP addresses and ports (of the form address:port) for connection to replicators
outside of the cell that the server is administered under. By default, if a replicator
is defined on the server you are configuring, that server is the one chosen for cache
replication. Select the advanced properties only if you want to deviate from the
default setting.

Internal messaging server: Specifies a domain from which your data will be
replicated. Depending on the domain you choose to replicate the data, you can
choose any of the replicators defined under that domain. You can use the default
domain or choose one from the drop down window.

Runtime mode: Specifies the mode at which you want the data controlled. You
can PUSH the data out, PULL it in from another source, or do a combination
PUSH/PULL where cache entry ID’s are PUSHed out, but the data is PULLed
based on the presence of the ID in the cluster.

Push frequency: Specifies the amount of time in between data being pushed out.
The default is 0, which is translated into ″immediate.″ If you want the time to be
something other than immediately, you can set that time here. The time is in
seconds.

Default 0 (equivalent to immediate)

456 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Configuring the dynamic cache disk offload
By default, when the number of cache entries reaches the configured limit for a
given WebSphere server, eviction of cache entries occurs, allowing new entries to
enter the cache service. The dynamic cache includes an alternative feature named
disk offload, that copies the evicted cache entries to disk for potential future access.

To configure disk offload:

Steps for this task
1. Open the administrative server.
2. Click Server > Application Server in the administrative console navigation

tree.
3. Click server.
4. Click Dynamic Cache Service.
5. Click the Enable disk offload check box in the Disk offload field.

You can also set the disk offload location in this field.
6. Click Apply or OK.

Configuring Edge Side Include caching
The Web server plug-in contains a built-in Edge Side Include (ESI) processor. The
ESI processor has the ability to cache whole pages, as well as fragments, providing
a higher cache hit ratio. The cache implemented by the ESI processor is an
in-memory cache, not a disk cache, therefore, the cache entries are not saved when
the Web server is restarted.

The basic operation of the ESI processor is as follows: When a request is received
by the Web server plug-in, it is sent to the ESI processor, unless the ESI processor
is disabled. It is enabled by default. If a cache miss occurs, a Surrogate-Capabilities
header is added to the request and the request is forwarded to the WebSphere
Application Server. If the dynamic servlet cache is enabled in the application
server, and the response is edge cacheable, the application server returns a
Surrogate-Control header in response to the WebSphere Application Server plug-in.

The value of the Surrogate-Control response header contains the list of rules which
are used by the ESI processor in order to generate the cache ID. The response is
then stored in the ESI cache, using the cache ID as the key. For each ESI include
tag in the body of the response, a new request is processed such that each nested
include results in either a cache hit or another request forwarded to the application
server. When all nested includes have been processed, the page is assembled and
returned to the client.

The ESI processor is configurable through the WebSphere Web server plug-in
configuration file plugin-cfg.xml. The following is an example of the beginning of
this file, which illustrates the ESI configuration options.
<?xml version-"1.0"?>
<Config>

<Property Name="esiEnable" Value="true"/>
<Property Name="esiMaxCacheSize" Value="1024"/>
<Property Name="esiInvalidationMonitor" Value="false"/>

The first option, esiEnable, can be used to disable the ESI processor by setting the
value to false. ESI is enabled by default. If ESI is disabled, then the other ESI
options are ignored.

Chapter 14. Improving performance through the dynamic cache service 457

The second option, esiMaxCacheSize, is the maximum size of the cache in 1K byte
units. The default maximum size of the cache is 1 megabyte. If the cache is full, the
first entry to be evicted from the cache is the entry that is closest to expiration.

The third option, esiInvalidationMonitor, specifies whether or not the ESI processor
should receive invalidations from the application server. There are three methods
by which entries are removed from the ESI cache: first, an entry’s expiration
timeout could fire; second, an entry may be purged to make room for newer
entries; or third, the application server could send an explicit invalidation for a
group of entries. In order for the third mechanism to be enabled, the
esiInvalidationMonitor property must be set to true and the DynaCacheEsi
application must be installed on the application server. The DynaCacheEsi
application is located in the installableApps directory and is named
DynaCacheEsi.ear. If the ESIInvalidationMonitor property is set to true but the
DynaCacheEsi application is not installed, then errors will occur in the webserver
plugin and the request will fail.

The ESI processor’s cache can be monitored through the CacheMonitor application.
In order for ESI processor’s cache to be visible in the CacheMonitor, the
DynaCacheEsi application must be installed as described above and the
ESIInvalidationMonitor property must be set to true in the plugin-cfg.xml file.

When WebSphere Application Server is used to serve static data, such as images
and HTML on the application server, the URLs are also cached in the ESI
processor. This data has a default timeout of 300 seconds. You can change the
timeout value by adding the property com.ibm.servlet.file.esi.timeOut to your
JVM’s command line parameters. The following example shows how to set a one
minute timeout on static data cached in the plug-in:
-Dcom.ibm.servlet.file.esi.timeOut=60

Configuring external cache groups
The dynamic cache has the ability to control caches outside of the application
server, such as IBM Edge Server, IBM HTTP Server’s FRCA cache, and the the
WebSphere HTTP Server plug-in’s ESI Fragment Processor. When external cache
groups are defined, the dynamic cache matches externally cacheable cache entries
with those groups, and pushes cache entries and invalidations out to those groups.
This allows WebSphere to manage dynamic content beyond the application server.
The content can then be served from the external cache, instead of the application
server, improving savings in performance.

Steps for this task
1. Open the administrative console.
2. Enable the dynamic cache.

a. Click Servers > Application Servers in the administrative console
navigation tree.

b. Click a server.
c. Click Dynamic Cache Service.
d. Select the check box in the Startup state field to enable the dynamic cache.

3. Define the external cache group in which WebSphere Application Server should
control.
a. Click External Caching Groups from the Dynamic Cache administrative

console page.
b. Click New or choose an external cache group from the list.

458 IBM WebSphere Application Server Network Deployment, Version 5: Applications

4. Configure cache group members.
a. Click External cache groups from the Dynamic Cache administrative

console page. Then click New or choose an external cache group from the
list.

b. Click External cache group members > New or choose an external cache
group member from the list.

c. Type the configuration string in the Address field.
d. Type the adapter bean name in the Adapter Bean Name field.
e. Save the configuration.
f. Click Apply or OK.

External cache group collection
Use this page to define sets of external caches controlled by WebSphere
Application Server on Web servers, such as IBM Edge Server and IBM HTTP
Server.

To view this administrative console page, click Servers > Application Servers >
server > Dynamic Cache Service > External Cache Groups.

External Cache Group: Specifies the external cache group name.

The external cache group name needs to match the externalcache property as
defined in the servlet or JSP cachespec.xml file.

When external caching is enabled, the cache matches pages with its URIs and
pushes matching pages to the external cache. The entries can then serve from the
external cache, instead of the application server.

Type: Specifies the external cache group type.

External cache group settings
Use this page to configure sets of external caches controlled by WebSphere
Application Server on Web servers, such as IBM Edge Server and IBM HTTP
Server.

To view this administrative console page, click Servers > Application Server >
server > Dynamic Cache Service > External Cache groups > external_cache_group.

External Cache Group: Specifies the external cache group name.

The external cache group name needs to match the externalcache property as
defined in the servlet or JSPs cachespec.xml file.

When external caching is enabled, the cache matches pages with its URIs and
pushes matching pages to the external cache. The entries can then serve from the
external cache, instead of the application server. This ability creates a significant
savings in performance.

Type: Specifies the external cache group type.

External cache group member collection
Use this page to define specific caches that are members of a cache group.

To view this administrative console page, click Servers > Application Servers >
server > Dynamic Cache Service > External Cache groups > external_cache_group >
External cache group members.

Chapter 14. Improving performance through the dynamic cache service 459

Address: Specifies a configuration string used by external cache adapter bean to
connect to the external cache.

AdapterBeanName: Specifies the adapter bean name.

Example adapter bean names supported in WebSphere Application Server are:
v AFPA: com.ibm.ws.cache.servlet.Afpa
v ESI: com.ibm.websphere.servlet.cache.ESIInvalidatorServlet

External cache group member settings
Use this page to configure specific caches that are members of a cache group.

To view this administrative console page, click Servers > Application Servers >
server > Dynamic Cache Service > External Cache groups > External_cache_group >
External cache group members > External_cache_group_members.

Address: Specifies a configuration string used by external cache adapter bean to
connect to the external cache.

AdapterBeanName: Specifies the adapter bean name.

Example adapter bean names supported in WebSphere are:
v AFPA: com.ibm.ws.cache.servlet.Afpa
v ESI: com.ibm.websphere.servlet.cache.ESIInvalidatorServlet

Configuring high-speed external caching through the Web server
IBM HTTP Server for Windows NT and Windows 2000 operating systems contains
a high speed cache referred to as the Fast Response Cache Accelerator, or Cache
Accelerator.

The Fast Response Cache Accelerator is available on both Windows NT and
Windows 2000 operating systems and AIX platforms. However, the dynamic cache
is only available on Windows NT and Windows 2000 operating systems.

WebSphere Application Server fragment cache can use IBM HTTP Server as an
external cache with the appropriate configuration.

To configure Fast Cache Response Accelerator:

Steps for this task
1. Install the WebSphere Application Server and IBM HTTP Server for Windows

NT and Windows 2000 environments.
2. Configure the Fast Cache Accelerator on the Web server.

a. In the IBM HTTP Server conf directory, locate the httpd.conf configuration
file, and add the following two lines at the end of the file:

LoadModule afpaplugin_module c:/WebSphere/AppServer/bin/afpaplugin.dll
AfpaPluginHost 127.0.0.1:9081

The first line loads the IBM HTTP Server plug-in that connects the Fast
Cache Accelerator to the WebSphere fragment cache. Ensure the
LoadModule path points to your Websphere Application Server installation.

3. Configure an external cache group on the application server.
a. Define an external cache group named afpa for each application server that

uses the Cache Accelerator.

460 IBM WebSphere Application Server Network Deployment, Version 5: Applications

To define an external cache group, click New on the External cache group
administrative console page. Type afpa in the External cache group field.
Click Apply.

b. Add a member to that group with an adapter bean name of
com.ibm.servlet.dynacache.Afpa

To add a member, click afpa > External cache group members. Click New
on the External cache group members administrative console page. Then
type com.ibm.servlet.dynacache.Afpa in the AdapterBean name field.

4. Enter the assigned port number from the Web server httpd.conf file for the
address.

5. Configure a cache policy using external cache.
Now you can use the external cache attribute when building your cache
policies.

Configuring Fast Response Cache Accelerator cache size through the: Web
server

In the default IBM HTTP Server configuration, the maximum Fast Cache
Accelerator dynamic cache size is calculated as 1/8 of physical pin-able memory.
On a machine with 384MG of RAM, it allows a maximum of approximately 50MG
for the Fast Cache Accelerator dynamic cache. When this limit is reached, the
Cache Accelerator then deletes older entries to cache new ones.

Follow these steps to configure the Cache Accelerator:

Update the following directives in the httpd.conf file of IBM HTTP Server:
AfpaEnable
AfpaCache on
AfpaLogFile "c:/Program Files/IBM HTTP Server/logs/afpalog" V-ECLF
AfpaDynaCacheMax 10

Steps for this task
1. Using the IBM HTTP Server directive AfpaDynaCacheMax, tune the maximum

allowed cache size:
a. Place the directive in the global server configuration scope, along with the

other default Fast Cache Accelerator directives.
b. Enable Fast Cache Accelerator.

To enable the Fast Cache Accelerator, update the following directives in the
http.conf file of IBM HTTP Server:
AfpaEnable
AfpaCache on
AfpaLogFile "c:/Program Files/IBM HTTP Server/logs/afpalog" V-ECLF
AfpaDynaCacheMax 10

These above settings limit the dynamic cache size to 10MG. If you use these
directives to increase cache size, do not make the cache so large that all the
physical memory is consumed. Determine how much memory is available
when all applications are running, by using the Windows Task Manager.

Assign no more than 50% of available physical memory to the dynamic
cache. Specifying too large a cache not only decreases the performance of
other applications, but also puts you at a risk for completely running out of
memory.

Chapter 14. Improving performance through the dynamic cache service 461

The default configuration does not include the AfpaDynaCacheMax
directive where the cache size is automatically calculated as 1/8 of physical
memory.

Displaying cache information
The Dynamic Cache Monitor is an installable Web application that displays simple
cache statistics, cache entries and cache policy information.

Steps for this task
1. Install the application from the <<cache-

entry>>install_root<>/installableApplications directory.
The application is named CacheMonitor.ear.

2. Access the Web application using a Web browser and the URL
http://<<cache-entry>>your hostname<>:<<cache-entry>>your
port_number<>/cachemonitor.

Configuring cacheable objects with the cachespec.xml file
Before you begin

Define cacheable objects inside the cachespec.xml, found inside the Web
application archive (WAR) WEB-INF or enterprise bean META-INF directory.

You can place a global cachespec.xml in the application server properties directory,
but the recommended method is to place the cache configuration file with the
deployment module. The root element of the cachespec.xml file is <cache>, which
contains <cache-entry> elements.

Within a <cache-entry>...</cache-entry> element are parameters that allow you to
complete the following tasks to enable the dynamic cache with the cachespec.xml
file:

Steps for this task
1. Develop a cachespec.xml file.

a. Create a caching configuration file.
In the <<<cache-entry>>install_root<>>/properties directory, locate the
cachespec.sample.xml file.

b. Copy the cachespec.sample.xml file to cachespec.xml in WAR WEB-INF or
enterprise bean META-INF directory.

2. Define the cache-entry elements necessary to identify the servlet. See the article
Cachespec.xml file for a list of elements.

3. Develop cache-ID rules.
To cache an object, WebSphere Application Server must know how to generate
unique IDs for different invocations of that object. The <cache-id> element
performs that task. Each cache entry can have multiple cache-ID rules that
execute in order until either a rule returns non-empty cache-ID or no more
rules remain to execute. If none of the cache-ID generation rules produce a
valid cache ID, then the object is not cached. Develop these IDs in one of two
ways:
v Use the <component> element defined in the cache policy of a cache entry

(recommended)
v Write custom Java code to build the ID from input variables and system state

462 IBM WebSphere Application Server Network Deployment, Version 5: Applications

To configure the cache entry to use the IdGenerator specify your IdGenerator in
the XML file, by using the <idgenerator> tag, for example:

<cache-entry>
<class>servlet</class>
<name>/servlet/CommandProcessor</name>
<cache-id>
<id-generator>com.mycompany.SampleIdGeneratorImpl
</id-generator>
<timeout>60</timout>
</cache-id>
</cache-entry>

You can also use the Application Assembly Tool (AAT) to define the
IdGenerator class in the cache policy’s Advanced tab.

4. Specifying dependency ID rules.
Use dependency ID elements to specify additional cache group identifiers that
associate multiple cache entries to the same group identifier.
The dependency ID is generated by concatenating the dependency ID base
string with the values returned by its component elements. If a required
component returns a null value, then the entire dependency ID does not
generate and is not used. You can validate the dependency IDs explicitly
through the WebSphere Dynamic Cache API, or use another cache-entry
<invalidation> element. Multiple dependency ID rules can exist per cache-entry.
All dependency ID rules separately execute. See the article Cachespec.xml file
for a list of <component> elements.

5. Invalidate other cache entries as a side effect of this object execution, if
relevant.
You can define invalidation rules in exactly the same manner as dependency
IDs. However, the IDs that generate by invalidation rules are used to invalidate
cache entries that have those same dependency IDs.
The invalidation ID is generated by concatenating the invalidation ID base
string with the values returned by its component element. If a required
component returns a null value, then the entire invalidation ID is not generated
and no invalidation occurs. Multiple invalidation rules can exist per
cache-entry. All invalidation rules separately execute.

6. Verify the cacheable page.

What to do next

Typically you declare several <cache-entry>...</cache-entry> elements inside a
cachespec.xml file.

The dynamic cache responds to changes in this file. When new versions of the
cachespec.xml are detected, the old policies are replaced. Objects cached through
the old policy file are not automatically invalidated from the cache; they are either
reused with the new policy or eliminated from the cache through its replacement
algorithm.

For each of the three IDs (cache, dependency, invalidation) generated by cache
entries, a <cache-entry> can contain multiple elements. The dynamic cache will
execute the <cache-id> rules in order, and the first one that successfully generates
an ID will be used to cache that output. If the object is to be cached, each one of
the <dependency-id> elements will be executed to build a set of dependency IDs

Chapter 14. Improving performance through the dynamic cache service 463

for that cache entry. Finally, each of the <invalidation> elements will be executed,
building a list of IDs that the dynamic cache will invalidate, whether or not this
object is cached.

Verifying the cacheable page
Verify the cacheable page by following these steps:

Steps for this task
1. View the snoop servlet in the default application by accessing the URI:

/servlet/snoop

2. Invoke and reload the URI several times.
This action returns the same output for the snoop servlet. The snoop servlet is
now operating incorrectly, since it displays the request information from its first
invocation rather than from the current request.

3. Inspect the entry in the cache with the Dynamic Cache Monitor.

Cachespec.xml file
The cache parses the cachespec.xml file on startup, and extracts from each
<cache-entry> element a set of configuration parameters. Then, every time a new
servlet or other cacheable object initializes, the cache attempts to match each of the
different cache-entry elements, to find the configuration information for that
servlet. Different cacheable objects have different <class> elements. You can define
the specific object a cache policy refers to using the <name> element.

Location

The cachespec.xml file is found inside the META-INF directory of Web application
archive (WAR) file or enterprise bean JAR file.

You can place a global cachespec.xml file in the application server properties
directory, but the recommended method is to place the cache configuration file
with the deployment module. The root element of the cachespec.xml file is
<<cache-entry>>cache<>, which contains cache-entry elements.

The cachespec.dtd is available in the application server properties directory.

Usage notes

This section explains the function of each element of the cachespec.xml file
including:
v Class
v Name
v Sharing-policy
v Property

Class

<class>command | servlet | webservice</class>

This element is required and governs how WebSphere will interpret the remaining
cache policy definition. The value servlet refers to servlets and Java Server Pages
(JSPs) deployed in the WebSphere Application Server servlet engine. The
webservice class extends the servlet with special component types for Web services

464 IBM WebSphere Application Server Network Deployment, Version 5: Applications

requests. Finally, the value command refers to classes using the WebSphere command
programming model. The following is an example: <class>command</class>
<class>servlet</class>

Name

<name><<cache-entry>>name<></name> (name=The fully specified class name of the
command/servlet/webservice)

There are two ways to use <name> to specify a cacheable object:
v Servlets and JSPs only: Use the relative Web path or servlet mapping of the

servlet of JSP
v Use the object’s full package and class name

For commands and Web services, this required element must include the full
package and class name, including a trailing .class of the configured object. For
servlets and JSP files, it can include the full URI, relative to the Web application
root, of the JSP file or servlet to cache. Also, you can specify multiple <name>
elements within a <cache-entry> if you have different mappings that refer to the
same servlet.

The following are examples:
<name>com.mycompany.MyCommand.class</name>
<name>/servlet/snoop/*</name>
<name>com.mycompany.ControllerServlet.class</name> <name>myJsp.jsp</name>

Sharing-policy

<sharing-policy> not-shared | shared-push | shared-pull |
shared-push-pull</sharing-policy>

When working within a cluster with a distributed cache, these values determine
the sharing characteristics of entries created from this object. If this element is not
present, a not-shared value is assumed. Also, in non-distributed environments,
not-shared is the only valid value. This property does not affect distribution to
Edge servers through the Edge fragment caching property.

Value Description

not-share Cache entries for this object will not be
shared among different application servers.
These entries can contain non-serializable
data, for example, a cached servlet can place
non-serializable objects into the request
attributes, if the <class> type allows it.

shared-push Cache entries for this object will
automatically be distributed to the dynamic
caches in other application servers or
cooperating Java Virtual Machines (JVMs).
Each cache then has a copy of the entry the
time it is created. These entries can not store
non-serializable data.

Chapter 14. Improving performance through the dynamic cache service 465

shared-pull Cache entries for this object will be shared
between application servers on demand. If
an application server gets a cache miss for
this object, it will first query the cooperating
application servers to see if they have the
object. If no application server has a cached
copy of the object, the original application
server will execute the request and generate
the object. These entries can not store
non-serializable data.

shared push-pull Cache entries for this object will be shared
between application servers on demand.
When an application server generates a
cache entry, it broadcasts the cache ID of the
created entry to all cooperating application
servers. Each server then knows whether an
entry exists for any given cache ID. Thus, on
a given request for that entry, the application
server knows whether to generate the entry
itself or pull it from somewhere else. These
entries can not store non-serializable data.

An example of sharing policy is as follows:
<sharing-policy>not-shared</sharing-policy>

Property

<property name=″<<cache-entry>>key<>″><<cache-entry>>value<></property>
(key= The name of the property being defined; value= The corresponding value)

You can set optional properties on a cacheable object, such as a description of the
configured servlet. The class determines valid properties of the cache entry. At this
time, the following properties are defined:

Property Valid classes Value

ApplicationName All Overrides the J2EEName
application ID so that
multiple applications can
share a common cache ID
namespace. For more
information, see Cache ID
Tuples.

EdgeCacheable Servlet True or False. Default is
false. If the property is true,
then the given servlet or JSP
file is externally requested
from an Edge Server.
Whether or not the servlet or
JSP file is cacheable, depends
on the rest of the cache
specification.

ExternalCache Servlet Specifies the external cache
name. The external cache
name needs to match the
external cache group name.

466 IBM WebSphere Application Server Network Deployment, Version 5: Applications

consume-subfragments Servlet or Web service True or false. Default is false.
When a servlet is cached,
only the content of that
servlet is stored, and
includes placeholders for any
other fragments to which it
includes or forwards.
Consume-subfragments
(CSF) tells the cache not to
stop saving content when it
includes a child servlet. The
parent entry (the one marked
CSF) will include all the
content from all fragments in
its cache entry, resulting in
one big cache entry that has
no includes or forwards, but
the content from the whole
tree of entries. This can save
a significant amount of
application server processing,
but is typically only useful
when the external HTTP
request contains all the
information needed to
determine the entire tree of
included fragments.

Each cache-ID element defines a rule for caching an object and is composed of the
sub-elements component, timeout, priority and property. Examples of is as follows:
<cache-id>component*| timeout? | priority? | property* </cache-id>

Component elements

Component is a generic term for some input variable with data that you want to
use in caching a fragment. Because different classes of objects use different types of
inputs, such as, servlets use request parameters and commands use method values,
the valid component types change for the different <class> values. Components
are used in <cache-id>, <dependency-id> and <invalidation> elements.
<component id="id"
type="type"
ignore-value="true false">...</component>
(id=string,
type=string)

Use the component element to generate a portion of the cache ID. Each component
element consists of the following attributes:
v ID: Use the ID attribute to identify the component.
v Type: Use the type attribute to identify the type of component, for example,

method, field, request parameter, session value. And example is as follows:
<component id="getPrice"
type="method">

Type value Valid classes Meaning
method command Calls the indicated method

on the command or object

Chapter 14. Improving performance through the dynamic cache service 467

field command Retrieves the named field in
the command or object

parameter servlet Retrieves the named
parameter from the request
object

session servlet Retrieves the named value
from the HTTPSession

cookie servlet Retrieves the named cookie
value

attribute servlet Retrieves the named request
attribute

header servlet and webservice Retrieves the named request
header

pathInfo servlet Retrieves the pathInfo from
the request

servletpath servlet Retrieves the servlet path
locale servlet Retrieves the request locale
SOAPEnvelope Web service Retrieves the SOAPEnvelope

from a Web services request.
An ID attribute of Hash uses
a Hash of the SOAPEnvelope,
while Literal uses the
SOAPEnvelope as received.

SOAPAction Web service Retrieves the SOAPAction
header, (if available, for a
Web services request

serviceOperation Web service Retrieves the service
operation for a Web service
request

serviceOperationParameter Web service Retrieves the specified
parameter from a Web
services request

v Ignore-value (optional, defaults to false): If true, this attribute specifies that you
should not use the value returned by this component in cache ID formation.
Only the ID of the component is used when creating a cache-ID, or no output is
used when creating a dependency or invalidation ID. An example is as follows:
<component id="isValid" type="method"
ignore-value="true"

and sub elements:
v Method: Use method elements to call a void method on a returned object.

Method and field objects can be infinitely nested in any combination. The
method must be public. Not valid for edge cacheable components. An example
is as follows:
<component id="getColor" type="method">
<method>getUserInfo<method>getName
</method></method></component>

This is equivalent to getUser().getUserInfo().getName()
v Field: Use field elements to access a field in a returned object. Method and field

objects can be infinitely nested in any combination. The field must be public.
Not valid for edge cacheable components. An example is as follows:
<component id="getColor" type="method">
<method>getUserInfo<field>name
</field></method></component>

468 IBM WebSphere Application Server Network Deployment, Version 5: Applications

This element is equivalent to getUser().getUserInfo().name
v Required: If true, then this component must return a non-null value for this

cache-ID to represent a valid cache-ID. If false, the default, then a non-null value
is used in the formation of the cache-ID and a null value means that this
component is not used at all in the ID formation. An example is as follows:
<required>true</required>

v Value: Use value elements to specify values that must match to use this
component in cache-ID formation. And example is as follows:
<component id="getColor" type="method">
<value>blue</value>
<value>red</value> </component>

v Not-value: Use not-value elements to specify values that must not match to use
this component in cache-ID formation. This element is similar to the <value>,
but instead proscribes the defined values from caching. You can use multiple
<not-value> elements when there is more than one invalid value. An example is
as follows:
<component id="getColor" type="method">
<required>true</required>
<not-value>blue</not-value>
<not-value>red</not-value>
</component>

IdGenerator and MetadataGenerator elements

The IdGenerator element is used to specify the classname loaded for cache ID’s ID
generation. The IdGenerator must implement the
com.ibm.websphere.servlet.cache.IdGenerator interface. The IdGenerator must
build and set cache IDs, group IDs and invalidation IDs. An example is as follows:
<idgenerator>
classname classname </idgenerator>

(classname= Fully qualified name of the class to be used)

The MetadataGenerator element is used to specify the classname loaded for the
cache ID’s metadata generation. The MetadataGenerator class must implement the
com.ibm.websphere.servlet.cache.MetaDataGenerator interface. The
MetadataGenerator defines properties like timeout, external caching or generic
properties.

Configuring command caching
Cacheable commands are stored in the cache for re-use with a similar mechanism
for servlets and Java Server Pages (JSP) files. However, in this case, the unique
cache IDs are generated based on methods and fields present in the command as
input parameters. For example, a GetStockQuote command can have a symbol as
its input parameter.

A unique cache ID can generate from the name of the command, plus the value of
the symbol.

To use command caching you must:

Steps for this task
1. Create a command.

a. Define an interface.

Chapter 14. Improving performance through the dynamic cache service 469

The Command interface specifies the most basic aspects of a command.
You must define the interface that extends one or more of the interfaces in
the command package. The command package consists of three interfaces:
v TargetableCommand
v CompensableCommand
v CacheableCommand

In practice, most commands implement the TargetableCommand interface,
which allows the command to execute remotely. The code structure of a
command interface for a targetable command follows:
...
import com.ibm.websphere.command.*;
public interface MyCommand extends CacheableCommand {

// Declare application methods here
}

a. Provide an implementation class for the interface.
Write an interface that extends the CacheableCommandImpl class and
implements your command interface. This class contains the code for the
methods in your interface, the methods inherited from extended interfaces
like the CacheableCommand interface, and the required or abstract methods
in the CacheableCommandImpl class.
You can also override the default implementations of other methods
provided in the CacheableCommandImpl class.

Command class
To write a command interface, extend one or more of the three interfaces included
in the command package. The base interface for all commands is the Command
interface. This interface provides only the client-side interface for generic
commands and declares three basic methods:
v isReadyToCallExecute. This method is called on the client side before the

command passes to the server for execution.
v execute. This method passes the command to the target and returns any data.
v reset. This method reverts any output properties to the values they had before

the execute method was called so that you can reuse the object.

The implementation class for your interface must contain implementations for the
isReadyToCallExecute and reset methods.

CacheableCommandImpl class
Commands are implemented by extending the class CacheableCommandImpl,
which implements the CacheableCommand interface.

The CacheableCommandImpl class is an abstract class that provides
implementations for some of the methods in the CacheableCommand interface, for
example, setting return values. This class declares additional methods that the
application must implement, for example, how to execute the command.

The code structure of an implementation class for the CacheableCommand
interface follows:
...
import com.ibm.websphere.command.*;
public class MyCommandImpl extends CacheableCommandImpl
implements MyCommand {
// Set instance variables here ...

470 IBM WebSphere Application Server Network Deployment, Version 5: Applications

// Implement methods in the MyCommand
// interface

...
// Implement abstract methods in the CacheableCommandImpl class

...
}

Example: Caching a command object
This example of command caching is a simple stock quote command.

Examples

The following is a stock quote command bean. It accepts a ticker as an input
parameter and produces a price as its output parameter.
public class QuoteCommand extends CacheableCommandImpl
{

private String ticker;
private double price;
// called to validate that command input
// parameters have been set
public boolean isReadyToCallExecute() {

return (ticker!=null);
}
// called by a cache-hit to copy output properties
// to this object
public void setOutputProperties(TargetableCommand fromCommand) {

QuoteCommand f = (QuoteCommand)fromCommand;
this.price = f.price;

}

// business logic method called when the stock price
// must be retrieved
public void performExecute()throws Exception {...}

//input parameters for the command
public void setTicker(String ticker) { this.ticker=ticker;}
public String getTicker() { return ticker;}

//output parameters for the command
public double getPrice() { return price;};

}

Examples

To cache the above command object using the stock ticker as the cache key and
using a 60 second time-to-live, use the following cache policy:
<cache>
<cache-entry>
<class>command</class>
<sharing-policy>not-shared</sharing-policy>
<name>QuoteCommand</name>
<cache-id>
<component type="method" id="getTicker">
<required>true</required>
</component>
<priority>3</priority>
<timeout>60</timeout>
</cache-id>
</cache-entry>
</cache>

Chapter 14. Improving performance through the dynamic cache service 471

Example: Caching Web services
The following is a example of building a set of cache policies for a simple Web
services application. The application in this example stores stock quotes, and has
operations to read, update the price of, and buy a given stock symbol. .

Following are two SOAP message examples that the application can receive, with
accompanying HTTP Request headers.

The first message sample contains a SOAP message for a GetQuote operation,
requesting a quote for IBM. This is a read-only operation that gets its data from the
back-end, and is very cacheable. In this example the SOAP messasge is cached and
a timeout is placed on its entries to guarantee the quotes it returns are not too out
of date.

Message example 1
POST /soap/servlet/soaprouter
HTTP/1.1
Host: www.myhost.com
Content-Type: text/xml; charset="utf-8"
SOAPAction: urn:stockquote-lookup
<SOAP-ENV:Envelope xmlns:SOAP-ENV=
"http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<m:getQuote xmlns:m="urn:stockquote:>
<symbol>IBM</symbol>
</m:getQuote>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The SOAPAction HTTP header in the request is defined in the SOAP specification
and is used by HTTP proxy servers to dispatch requests to particular HTTP
servers. WebSphere Application Server dynamic cache can use this header in its
cache policies to build IDs without having to parse the SOAP message.

Message example 2 illustrates a SOAP message for a BuyQuote operation. While
message 1 is cacheable, this message is not, because it updates the back-end
database.

Message example 2
POST /soap/servlet/soaprouter
HTTP/1.1
Host: www.myhost.com
Content-Type: text/xml; charset="utf-8"
SOAPAction: urn:stockquote-update
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<m:buyStock xmlns:m="urn:stockquote:>
<symbol>IBM</symbol>
</m:getQuote>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The graphic illustrates how to invoke methods with the SOAP messages. In Web
services terms, especially Web Service Definition Language (WSDL), a service is a
collection of operations such as getQuote and buyStock. A body element
namespace (urn:stockquote in our example) defines a service, and the name of the

472 IBM WebSphere Application Server Network Deployment, Version 5: Applications

first body element indicates the operation.

buyStock

getQuote

SOAP Router
Servlet

Another
Service

StockQuote
Service

SOAP/HTTP

The following is an example of WSDL for the getQuote operation:
<?xml version="1.0"?>
<definitions name="StockQuoteService-interface"
targetNamespace="http://www.getquote.com/StockQuoteService-interface"
xmlns:tns="http://www.getquote.com/StockQuoteService-interface"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns=soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
<message name="SymbolRequest">
<part name="return" type="xsd:string"/>
</message>
<portType name="StockQuoteService">
<operation name="getQuote">
<input message="tns:SymbolRequest"/>
<output message="tns:QuoteResponse"/>
</operation>
</portType>
<binding name="StockQuoteServiceBinding"
type="tns:StockQuoteService">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="getQuote">
<soap:operation soapAction="urn:stockquote-lookup"/>
<input>
<soap:body use="encoded" namespace="urn:stockquote"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded" namespace="urn:stockquotes"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>>
</binding>
</definition>

To build a set of cache policies for a Web services application configure WebSphere
Application Server dynamic cache to recognize cacheable service operation of the
operation.

WebSphere Application Server inspects the HTTP request to determine whether or
not an incoming message can cache based on the cache policies defined for an
application. In the case of this example, buyStock and stock-update are not be
cached, but stockquote-lookup isl. In the cachespec.xml file for this Web
application, the cache policies need defining for these services so that the dynamic
cache can handle both SOAPAction and service operation.

Chapter 14. Improving performance through the dynamic cache service 473

WebSphere Application Server uses the operation and the message body in Web
services cache IDs, each of which has a component associated with them.
Therefore, each Web services <cache-id> rule contains only two components. The
first is for the operation. Because you can perform the stockquote-lookup operation
by either using a SOAPAction header or a service operation in the body, you must
define two different <cache-id> elements, one for each method. The second
component is of type ″body″, and defines how WebSphere Application Server
should incorporate the message body into the cache ID. You can use a hash of the
body, although it is legal to use the literal incoming message in the ID.

The incoming HTTP request is analyzed by WebSphere Application Server to
determine which of the <cache-id> rules match. Then, the rules are applied to
form cache or invalidation IDs.

The following is sample code of a cachespec.xml file defining SOAPAction and
servicesOperation rules:
<cache>
<cache-entry>
<class>webservice</class>
<name>/soap/servlet/soaprouter</name>
<sharing-policy>not-shared</sharing-policy>
<cache-id>
<component id="" type=SOAPAction>
<value>urn:stockquote-lookup</value>
</component>
<component id="Hash" type="SOAPEnvelope"/>
<timeout>3600</timeout>
<priority>1<priority>
</cache-id>
<cache-id>
<component id="" type="serviceOperation">
<value>urn:stockquote:getQuote</value>
</component>
<component id="Hash" type="SOAPEnvelope"/>
<timeout>3600</timeout>
<priority>1</priority>
</cache-id>
</cache-entry>
</cache>

Example: Configuring the dynamic cache
This example puts all the steps together for configuring the dynamic cache with
the cachespec.xml file, showing the use of the cache ID generation rules,
dependency IDs, and invalidation rules.

Suppose we have a servlet which is used to manage a simple news site. This
servlet uses the query parameter ″action″ to determine whether the the request is
being used to ″view″ news or ″update″ news (used by the administrator). Further,
another query parameter ″category″ is used to select the news category. Further,
suppose that this site supports an optional customized layout, which is stored in
the user’s session using the attribute name ″layout″. Here are example URL
requests to this servlet:

http://yourhost/yourwebapp/newscontroller?action=view&category;=sports (Returns
a news page for the sports category)

http://yourhost/yourwebapp/newscontroller?action=view&=money (Returns a news
page for the money category)

474 IBM WebSphere Application Server Network Deployment, Version 5: Applications

http://yourhost/yourwebapp/newscontroller?action=update&=fashion (Allows the
administrator to update news in the fashion category)

Here are the steps for configuring dynamic cache with cachespec.xml, using the
information provided to you:
1. Define the cache-entry elements necessary to identify the servlet. In this case,

the servlet’s URI is is ″newscontroller″ so this will be our cache-entry’s name
element. Also, since we are caching a servlet/JavaServer Page (JSP), the
cache-entry class is ″servlet″.
<cache-entry>
<name> /newscontroller </name>
<class>servlet </class>
</cache-entry>

2. Define cache ID generation rules. For this servlet, we only want to cache when
action=view, so one component of the cache ID will be the parameter ″action″
when the value equals ″view″. The news category is also an essential part of
the cache ID. Finally, the optional session attribute for the user’s layout is
included in the cache ID. The cache-entry now looks like this:
<cache-entry>

<name> /newscontroller </name>
<class>servlet </class>

<cache-id>
<component id="action" type="parameter">
<value>view</value>
<required>true</required>
</component>
<component id="category" type="parameter">
<required>true</required>
</component>
<component id="layout" type="session">
<required>false</required>
</component>

</cache-id>
</cache-entry>

3. Define dependency ID rules. For this servlet, a dependency ID will be add for
the category. Later, when the category is invalidated due to an update event, all
views of that news category will be invalidated. After adding our
dependency-id, the cache-entry now looks like this:
<cache-entry>

<name>newscontroller </name>
<class>servlet </class>

<cache-id>
<component id="action" type="parameter">
<value>view</value>
<required>true</required>
</component>
<component id="category" type="parameter">
<required>true</required>
</component>
<component id="layout" type="session">
<required>false</required>
</component>
</cache-id>
<dependency-id>category
<component id="category" type="parameter">
<required>true</required>
</component
</dependency-id

<cache-entry>
<name>newscontroller </name>
<class>servlet </class>

<cache-id>

Chapter 14. Improving performance through the dynamic cache service 475

<component id="action" type="parameter">
<value>view</value>
<required>true</required>
</component>
<component id="category" type="parameter">
<required>true</required>
</component>
<component id="layout" type="session">
<required>false</required>
</component>
</cache-id>
<dependency-id>category
<component id="category" type="parameter">
<required>true</required>
</component
</dependency-id
</cache-entry>

4. Define invalidation rules. Since we defined a category dependency ID, we will
now define an invalidation rule to invalidate the category when action=update.
To incorporate the conditional logic, we will add ″ignore-value″ components
into the invalidation rule. These components will not add to the output of the
invalidation ID, but will only determine whether or not the invalidation ID is
created and executed. The final cache-entry now looks like this:
<cache-entry>

<name>newscontroller </name>
<class>servlet </class>

<cache-id>
<component id="action" type="parameter">
<value>view</value>
<required>true</required>
</component>
<component id="category" type="parameter">
<required>true</required>
</component>
<component id="layout" type="session">
<required>false</required>
</component>
</cache-id>
<dependency-id>category
<component id="category" type="parameter">
<required>true</required>
</component
</dependency-id
<invalidation>category<
<component id="action" type="parameter" ignore-value="true">
<value>update</value>
<required>true</required>
</component>
<component id="category" type="parameter">
<required>true</required>

</invalidation>
</cache-entry>

476 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Chapter 15. Managing user profiles

Note: User Profile Manager API is deprecated in the current release, and there is
no replacement available.

IBM WebSphere Application Server provides a service for processing user profiles,
called the User Profile Manager. The service is provided in the form of an EJB entity
bean that servlets can call whenever they are required to access a user profile.

The key activities for implementing user profiles are summarized.

Steps for this task
1. Customize the user profile support as necessary.

Options include:
v Using the data representation class with the name-value pairs it currently

supports (no action required)
v Extending the data representation class to support additional, arbitrary

name-value pairs
v Adding columns to the base user profile representation
v Extending the User Profile enterprise bean to import existing databases

Evaluate whether the user profile representation provided by IBM represents
the kind of data you want to keep about your users. You might find it desirable
to customize the IBM user profile support.

2. Create or modify servlets to use the User Profile Manager and related user
profile support classes to maintain user profiles on behalf of Web applications.

3. (Assemble your application.)
4. (Deploy your application.)
5. Ensure the administrator appropriately configures User Profile Managers using

userprofile.xml file.
If the programmer and administrator are not the same person, the programmer
might need to provide settings information to the administrator, based on how
the programmer implemented user profiles.

User profile
Some applications collect data about the users with which they interact. The data is
stored in a database. The next time the user interacts with the application, the
application recalls the data.

Because the application already knows something about the user, it can provide
the user with a more personalized experience.

User profiles provides a means by which a company can maintain and manage
database tables containing fields for demographic data, and use those tables to
interact with a database of individual customers or other users on the company
system.

© Copyright IBM Corp. 2002 477

For example, when a repeat user logs onto a Web site that supports user profiles,
the Web site can display headlines and advertising tailored to the shopping
preferences of that user. The site can address the user by logon name.

An application implementing user profiles requires database access for storing the
user profile data it gathers.

UserProfileManager class
Servlets and other application building blocks requiring user profile support
should make calls to the class:
com.ibm.websphere.userprofile.UserProfileManager

The class supports the following functions:
v Creating and deleting user profiles
v Getting and updating (cached and immediate) to and from the database
v Getting user profiles for read-only tasks
v Performing queries on database columns

User profile development options
The application developer has a few options for customizing the user profile
support provided by IBM WebSphere Application Server. The Related information
provides instructions and additional details about each option.

Extending the data represented in user profiles
Web applications can maintain several pieces of data about users. You can extend
the data representation to allow the collection of arbitrary name-value pairs.

Use the following interface with the
com.ibm.websphere.userprofile.UserProfileExtender class to extend a user profile
hash table:
com.ibm.websphere.userprofile.UserProfileProperties

This action enables you to place arbitrary name-value pairs in the user profile.
Extending the hash table is similar to using the java.util.Dictionary class in the
base JDK 1.x, or any of the classes that extend it.

Adding columns to the base user profile implementation
Application developers can customize user profiles by adding columns to the base
user profile implementation. Adding new columns is accomplished by
implementing the interface:
com.ibm.websphere.userprofile.UserProfileExtender

and extending the base class:
com.ibm.servlet.personalization.userprofile.UserProfile

The application developer can add columns to but not delete columns from the
base implementation.

Adding columns is a two-step process, as follows:
1. Extend the UserProfile class.
2. Modify your existing servlets to use the new columns.

478 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Several examples are available to demonstrate how to extend the base user profile
implementation and utilize the extension with a servlet.

Example Description

UPServletExample.java Demonstrates how a servlet opens a user
profile and prints the fields contained
within.

UserProfileExtendedSample.java Shows how to extend the UserProfile class
to add a column to the user profile for a
cellular phone number.

The WebSphere Application Server
administrator configures the User Profile
Manager to point to the extended class.

UPServletExampleExtended.java Shows how to modify the UPServletExample
servlet to include the cellular phone number
in the output.

UserProfileExtended.java Shows how to extend a hash table to place
arbitrary name-value pairs into the user
profile.

UPServletExtended.java Shows how to extend the servlet. When any
of the newly added columns are removed or
replaced, look for the table named
″USERPROFILE″ in the database to which
the user profile is configured and drop that
table.

The examples are encoded in HTML for viewing in a browser. The documentation
directory also contains nonHTML versions (.java files) that are ready for use.

Extending the User Profile enterprise bean and importing
legacy databases

Application developers can extend the User Profile enterprise bean itself and
import legacy databases into the user profile. The main advantage in extending the
User Profile enterprise bean is to gain the ability to import existing databases into
the user profile. You can also extend this enterprise bean to add columns to the
base user profile implementation.

UPServletExample.java
import java.io.*;
import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

import com.ibm.websphere.userprofile.UserProfile;
import com.ibm.websphere.userprofile.UserProfileManager;
import com.ibm.websphere.userprofile.UserProfileCreateException;
import com.ibm.websphere.userprofile.UserProfileFinderException;
import com.ibm.websphere.userprofile.UserProfileRemoveException;

//Creates a Userprofile using the new API

public class UPServlet_ReadWrite extends HttpServlet {

public void doGet (HttpServletRequest req,
HttpServletResponse res)

Chapter 15. Managing user profiles 479

throws ServletException, IOException {

PrintWriter out;
res.setContentType("text/html");
out = res.getWriter();

UserProfileManager manager =
UserProfileManager.getUserProfileManager();

UserProfile userprofile;

try {

//Try creating the UserProfile
userprofile = manager.addUserProfile("bpink");

} catch(UserProfileCreateException e1) {

try {

//Try finding the existing in readWrite mode.
//Second argument indicates whether we want
//to get userprofile
//in read only mode or read write mode.

userprofile = manager.getUserProfile("bpink",true);

} catch(UserProfileFinderException e) {
e.printStackTrace();
return;

}

}

//Set the properties

userprofile.setAddress1("myaddress1");
userprofile.setAddress2("myaddress2");
userprofile.setFirstName("Pinkowski");
userprofile.setSurName("Ben");
userprofile.setDayPhone("555-6677");
userprofile.setNightPhone("556-6765");
userprofile.setCity("MYCITY");
userprofile.setNation("myCountry");
userprofile.setEmployer("MyEmployer");
userprofile.setFax("7823470");

userprofile.setLanguage("mylanguage");
userprofile.setEmail("MyEmail@email");
userprofile.setStateOrProvince("myState");
userprofile.setPostalCode("xxxxx");

//Freeing resources held by userprofile
manager.releaseResources(userprofile);
userprofile=null;

//Checking whether it updated the info

try {

//Getting the existing userprofile in ReadOnly mode.

userprofile = manager.getUserProfile("bpink",false);

} catch(UserProfileFinderException e1) {

480 IBM WebSphere Application Server Network Deployment, Version 5: Applications

out.println("Error finding ");
e1.printStackTrace();
return;

}

//Displaying the properties of userprofile

out.println(userprofile.getAddress1()+"
");
out.println(userprofile.getAddress2()+"
");;
out.println(userprofile.getFirstName()+"
");;
out.println(userprofile.getSurName()+"
");
out.println(userprofile.getDayPhone()+"
");;
out.println(userprofile.getNightPhone()+"
");;
out.println(userprofile.getCity()+"
");
out.println(userprofile.getNation()+"
");;
out.println(userprofile.getEmployer()+"
");;
out.println(userprofile.getFax()+"
");;
out.println(userprofile.getLanguage()+"
");;
out.println(userprofile.getEmail()+"
");;
out.println(userprofile.getStateOrProvince()+"
");;
out.println(userprofile.getPostalCode()+"
");

//Freeing resources held by userprofile
manager.releaseResources(userprofile);

}
}

UserProfileExtendedSample.java
/* ---
** Copyright 1997-99 IBM Corporation. All rights reserved.
**
** ---
*/
package com.ibm.servlet.personalization.userprofile;

import com.ibm.servlet.personalization.userprofile.UserProfile;
import com.ibm.websphere.userprofile.UserProfileExtender;

//Extensions of UserProfile to add new Columns should
//implement UserProfileExtender
public class UserProfileExtendedSample

extends com.ibm.servlet.personalization.userprofile.UserProfile
implements UserProfileExtender {

//New column that is being added by this
//derived class.
public String cellPhone;

//Manager Class will call this method to append new
//Column types.
//If UserProfile class is extended to append new columns
//TOTAL COLUMNS: Base Class columns + columns returned
//by this class

public String[] getNewColumns() {
//If variable name is "cellPhone," you need to
//return "cellPhone" in array format. JDBC equivalent will
//be generated automatically. You can add muliple columns.
//For multiple columns: String newCol=
//{"fieldName1","fieldName2",...};

String[] newCol={"cellPhone"};
return newCol;

}

Chapter 15. Managing user profiles 481

public String getCellPhone() {
// Need to call this method to
// get the things from persistence store.
return(String)getByType("cellPhone");

}

public void setCellPhone(String value) {
cellPhone = value;
//Call this method to store the
//things in persistence store
setByType("cellPhone", value);

}
}

UPServletExampleExtended.java
import java.io.*;
import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

import com.ibm.websphere.userprofile.UserProfile;
import com.ibm.websphere.userprofile.UserProfileManager;
import com.ibm.websphere.userprofile.UserProfileCreateException;
import com.ibm.websphere.userprofile.UserProfileFinderException;
import com.ibm.websphere.userprofile.UserProfileRemoveException;
import com.ibm.servlet.personalization.userprofile.UserProfileExtendedSample;

public class UPServletExtendedSample extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException
{
UserProfileManager manager =

UserProfileManager.getUserProfileManager();
UserProfile userprofile;

PrintWriter out;

res.setContentType("text/html");
out = res.getWriter();

try {

//try Creating the UserProfile
userprofile = manager.addUserProfile("bpink");
} catch(UserProfileCreateException e1) {

try { //try finding the existing in readWrite mode

userprofile = manager.getUserProfile("bpink",true);
} catch(UserProfileFinderException e) {

e.printStackTrace();
return;

}

}

userprofile.setAddress1("myaddress1");
userprofile.setAddress2("myaddress2");

482 IBM WebSphere Application Server Network Deployment, Version 5: Applications

userprofile.setFirstName("Pinkowski");
userprofile.setSurName("Ben");
userprofile.setDayPhone("555-6677");
userprofile.setNightPhone("556-6765");
userprofile.setCity("MYCITY");
userprofile.setNation("myCountry");
userprofile.setEmployer("MyEmployer");
userprofile.setFax("7823470");
userprofile.setLanguage("mylanguage");
userprofile.setEmail("MyEmail@email");
userprofile.setStateOrProvince("myState");
userprofile.setPostalCode("xxxxx");

//calling setCellPhone
((com.ibm.servlet.personalization.userprofile.

UserProfileExtendedSample)
userprofile).setCellPhone("346-4588");

//Freeing resources held by userprofile
manager.releaseResources(userprofile);
userprofile=null;

//Checking whether it updated the info

try {

//Getting the existing userprofile
userprofile = manager.getUserProfile("bpink",false);

} catch(UserProfileFinderException e1) {

out.println("Error finding ");
e1.printStackTrace();
return;

}

out.println(userprofile.getAddress1()+"
");
out.println(userprofile.getAddress2()+"
");;
out.println(userprofile.getFirstName()+"
");;
out.println(userprofile.getSurName()+"
");
out.println(userprofile.getDayPhone()+"
");;
out.println(userprofile.getNightPhone()+"
");;
out.println(userprofile.getCity()+"
");
out.println(userprofile.getNation()+"
");;
out.println(userprofile.getEmployer()+"
");;
out.println(userprofile.getFax()+"
");;
out.println(userprofile.getLanguage()+"
");;
out.println(userprofile.getEmail()+"
");;
out.println(userprofile.getStateOrProvince()+"
");;
out.println(userprofile.getPostalCode()+"
");

//Calling getCellPhone
out.println(((UserProfileExtendedSample)userprofile).

getCellPhone()+"
");

//Freeing resources held by userprofile
manager.releaseResources(userprofile);
userprofile=null;

//For getting values by cellPhone
out.println("

Retreiving by Cell Phone
");

Chapter 15. Managing user profiles 483

Enumeration enum = manager.findUserProfiles
("cellPhone","346-4588");

while(enum.hasMoreElements()) {

com.ibm.websphere.userprofile.UserProfile up =
(com.ibm.websphere.userprofile.UserProfile)

enum.nextElement();
out.println("first name :"+up.getFirstName()+

"
");

//Freeing resources held by userprofile
manager.releaseResources(up);

}
}

}

UserProfileExtended.java
package com.ibm.servlet.personalization.userprofile;
/* ---
** Copyright 1997-99 IBM Corporation. All rights reserved.
**
** ---
*/
import java.util.*;

import com.ibm.servlet.personalization.userprofile.UserProfile;

import com.ibm.websphere.userprofile.UserProfileExtender;
import com.ibm.websphere.userprofile.UserProfileProperties;

public class UserProfileExtended extends UserProfile
implements UserProfileExtender,
UserProfileProperties {
//New column that is being added by this
//derived class.
public Hashtable properties;

static String propCol ="properties";

//Manager Class will call this method to append
//new Column types
//to SQL Strings. If UserProfile class is extended
//to append new columns
//it should implement UserProfileExtender.
//COLUMNS: Base Class columns + columns returned by this class

public String[] getNewColumns() {
//if variable name is properties, you need to
//return "properties" . JDBC equivalent will be
//generated automatically.
String[] newCol={propCol};
return newCol;

}

public Object getValue(String key) {
// Need to call this method to
// get the things from persistent store
properties = (Hashtable) getByType(propCol);

if(properties != null)
return properties.get(key);

else return null;

}

484 IBM WebSphere Application Server Network Deployment, Version 5: Applications

public void putValue(String key, Object value) {

properties =(Hashtable) getByType(propCol);

if(properties == null)
properties = new Hashtable();

properties.put(key,value);

//store in persistent store
setByType(propCol, properties);

}

public void removeValue(String key) {
properties = (Hashtable) getByType(propCol);

if(properties == null)
return;

properties.remove(key);

//store in persistent store
setByType(propCol, properties);

}
}

UPServletExtended.java
import java.io.*;
import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

import com.ibm.websphere.userprofile.UserProfile;
import com.ibm.websphere.userprofile.UserProfileManager;
import com.ibm.websphere.userprofile.UserProfileCreateException;
import com.ibm.websphere.userprofile.UserProfileFinderException;
import com.ibm.websphere.userprofile.UserProfileRemoveException;
import com.ibm.websphere.userprofile.UserProfileProperties;

public class UPServletExtended extends HttpServlet {

public void doGet (HttpServletRequest req,
HttpServletResponse res)

throws ServletException, IOException
{

UserProfileManager manager =
UserProfileManager.getUserProfileManager();

UserProfile userprofile;

PrintWriter out;

res.setContentType("text/html");
out = res.getWriter();

try {

//try Creating the UserProfile

userprofile = manager.addUserProfile("bpink");

} catch(UserProfileCreateException e1) {

try { //try finding the existing in readWrite mode

Chapter 15. Managing user profiles 485

userprofile = manager.getUserProfile("bpink",true);
} catch(UserProfileFinderException e) {

e.printStackTrace();
return;

}

}

userprofile.setAddress1("myaddress1");
userprofile.setAddress2("myaddress2");
userprofile.setFirstName("Pinkowski");
userprofile.setSurName("Ben");
userprofile.setDayPhone("555-6677");
userprofile.setNightPhone("556-6765");
userprofile.setCity("MYCITY");
userprofile.setNation("myCountry");
userprofile.setEmployer("MyEmployer");
userprofile.setFax("7823470");
userprofile.setLanguage("mylanguage");
userprofile.setEmail("MyEmail@email");
userprofile.setStateOrProvince("myState");
userprofile.setPostalCode("xxxxx");

//calling putValue

((UserProfileProperties)userprofile).putValue
("name","HHHHHHH");

((UserProfileProperties)userprofile).putValue
("Date",new java.util.Date());

//Freeing resources held by userprofile
manager.releaseResources(userprofile);
userprofile=null;

//Checking whether it updated the info

try {

//Getting the existing userprofile

userprofile = manager.getUserProfile("bpink",false);

out.println(userprofile.getAddress1()+"
");
out.println(userprofile.getAddress2()+"
");;
out.println(userprofile.getFirstName()+"
");;
out.println(userprofile.getSurName()+"
");
out.println(userprofile.getDayPhone()+"
");;
out.println(userprofile.getNightPhone()+"
");;
out.println(userprofile.getCity()+"
");
out.println(userprofile.getNation()+"
");;
out.println(userprofile.getEmployer()+"
");;
out.println(userprofile.getFax()+"
");;
out.println(userprofile.getLanguage()+"
");;
out.println(userprofile.getEmail()+"
");;
out.println(userprofile.getStateOrProvince()+"
");;
out.println(userprofile.getPostalCode()+"
");

//Getting the values

out.println(((UserProfileProperties)
userprofile).getValue("name")+"
");

out.println(((UserProfileProperties)
userprofile).getValue("Date")+"
");

out.println("Removing Values ");
((UserProfileProperties)

486 IBM WebSphere Application Server Network Deployment, Version 5: Applications

userprofile).removeValue("name");
((UserProfileProperties)

userprofile).removeValue("Date");
out.println(((UserProfileProperties)

userprofile).getValue("name")+
"
");

out.println(((UserProfileProperties)
userprofile).getValue("Date")+"
");

//Freeing resources held by userprofile
manager.releaseResources(userprofile);

} catch(UserProfileFinderException e1) {

out.println("Error finding ");
e1.printStackTrace();
return;

}
}

}

userprofile.xml
To installation_root/properties, add a file named userprofile.xml in the following
format. Specify enterprise bean class names; data wrapper class name; and JNDI
names for the read-only bean, read/write bean, and data source (from step 2). You
must also add user ID and password information for the JNDI data source

The following example file contains class names as provided in WebSphere
Application Server. If data wrapper and enterprise bean class names are extended
programmatically, change them accordingly.
<?xml version="1.0"?>

<userprofile>
<userprofile-enabled>true</userprofile-enabled>

<userprofile-wrapper-class>
<classname>

com.ibm.servlet.personalization.userprofile.UserProfile
</classname>
</userprofile-wrapper-class>
<userprofile-manager-name>

User Profile Manager
</userprofile-manager-name>
<userprofile-bean>
<readonly-interface>

com.ibm.servlet.personalization.userprofile.UP_ReadOnly
</readonly-interface>
<readwrite-interface>

com.ibm.servlet.personalization.userprofile.UP_ReadWrite
</readwrite-interface>
<readonlyhome-interface>

com.ibm.servlet.personalization.userprofile.UP_ReadOnlyHome
</readonlyhome-interface>
<readwritehome-interface>

com.ibm.servlet.personalization.userprofile.UP_ReadWriteHome
</readwritehome-interface>
<readonly-JNDI-lookupName>UP_ReadOnlyHome</

readonly-JNDI-lookupName>
<readwrite-JNDI-lookupName>UP_ReadWriteHome</

readwrite-JNDI-lookupName>
</userprofile-bean>

<userprofile-store>

Chapter 15. Managing user profiles 487

<database-userid></database-userid>
<database-password></database-password>
<database-datasource></database-datasource>
</userprofile-store>

</userprofile>

488 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Chapter 16. Assembling applications

Before you begin

Assemble application modules (known as EAR files) from new or existing J2EE 1.3
modules, including these archives: Web application archives (WAR), resource
adapter archives (RAR), enterprise beans (EJB JAR), and application client archives
(JAR). This packaging and configuration of code artifacts into application modules
or standalone Web modules is necessary for deploying the applications onto the
application server.

Gather the code artifacts that you want to package into one or more assembled
modules. Code artifacts include these items that you have created and unit tested
in your favorite integrated development environment:
v Enterprise beans
v Servlets, JavaServer Pages (JSP) files and other Web components
v Resource adapter (connector) implementations
v Application clients
v Other supporting classes and files

Steps for this task
1. Start the Application Assembly Tool (AAT).
2. (Optional) Migrate existing J2EE 1.2 modules to J2EE 1.3.

The Application Assembly Tool (AAT) has an option for migrating J2EE 1.2
application modules to J2EE 1.3. The J2EE 1.2 module is kept intact, with a
new 1.3 module created. See also the earconvert tool documentation.
You must migrate J2EE 1.2 application modules to which you want to add
J2EE 1.3 level WAR, RAR, EJB and client modules. This tool migrates only the
application modules. J2EE 1.2-level modules inside a J2EE 1.2 application
module must be migrated by other means.

3. (Assemble new EJB modules (enterprise bean JAR files)) as needed.
Assemble an EJB module to contain enterprise beans and related code
artifacts. (Group Web components, client code, and resource adapter code in
separate modules.)
You can install an EJB module as a standalone application or you can combine
it with other modules into an enterprise application.

4. (Assemble new Web modules (WAR files)) as needed.
Assemble a Web module to contain servlets, JSP files, and related code
artifacts. (Group enterprise beans, client code, and resource adapter code in
separate modules.)
You can install a Web module as a standalone application or combine it with
other modules into an enterprise application.

5. (Assemble new application client modules (client JAR files)) as needed.
6. Assemble new resource adapter archives (RAR files) as needed.

Assemble a resource adapter archive module to contain the library
implementation code that your application uses to connect to enterprise
information systems (EIS). (Group enterprise beans, Web components, and
client code in separate modules.)

© Copyright IBM Corp. 2002 489

7. Assemble an application module from other module types.
You are ready to combine your new or migrated modules into an application
module (EAR file).
For applications containing only Web modules, this step is optional. It is
feasible to deploy Web modules without assembling them into application
modules.

8. Verify your archive files.
Verify your archive files and correct any problems so that generation of
deployment code is successful. During verification, the Application Assembly
Tool (AAT) checks that an archive file is complete, and that deployment
descriptor properties and references contain appropriate values.

9. Remember to save your application one last time.
10. Generate code for deployment for applications containing EJB modules.

If the application modules contain EJB modules, you must generate
deployment code for the enterprise beans in the application before you deploy
applications on the server. The Application Assembly Tool (AAT) provides this
ability, or you can use the ejbdeploy command line tool.

11. Open existing modules (File > Open) in the AAT to modify them as needed.
For example, you can add or remove modules and edit deployment descriptor
properties.

What to do next

After assembling your applications, use a systems management tool to deploy the
EAR or WAR files onto the application server.

The systems management tool follows the security and deployment instructions
defined in the deployment descriptor, and enables you to modify bindings
specified within the AAT. The tool locates the required external resources that the
application uses, such as enterprise beans and databases.

Select a tool to use:
v (Deploying and managing applications with the GUI)
v Deploying and managing applications using programming
v Deploying and managing applications using scripting

If you are uncertain of which systems management tool to use, try using the
administrative console.

Application assembly and J2EE applications
Application assembly is the process of creating an Enterprise Archive (EAR) file
containing all files related to an application, as well as an XML deployment
descriptor for the application. This configuration and packaging prepares the
application for deployment onto an application server.

EAR files are comprised of the following archives:
v Enterprise bean (JAR) files (known as EJB modules)
v Web application (WAR) files (known as Web modules)
v Application client (JAR) files (known as client modules)
v Resource adapter (RAR) files (known as resource adapter modules)

490 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Ensure that modules are contained in an EAR file so that they may be deployed
onto the server. The exceptions are WAR modules, which you can deploy
individually. Although WAR modules can contain regular JAR files, they cannot
contain the other module types described previously.

The assembly process includes the following:
v Selecting all of the files to include in the module
v Creating a deployment descriptor containing instructions for module

deployment on the application server.
As you configure properties using the Application Assembly Tool (AAT), the tool
generates the deployment descriptor for you. While the AAT graphical interface
is recommended, you can also edit descriptors directly in your favorite XML
editor.

v Packaging modules into a single Enterprise archive (EAR) file, which contains
one or more files in a compressed format

For more information on specific J2EE specifications, see AAT: Resources for
Learning.

Archive support in Version 5.0
These archives and Web components are supported:
v J2EE 1.3 Enterprise application (EAR) files
v EJB 2.0 (JAR) files
v Servlet 2.3 Web application WAR files
v Application Client 1.3 JAR files
v Connector 1.0 RAR files

These archive files and Web components are back-level and may be read but not
created or changed:
v J2EE 1.2 EAR files
v EJB 1.1 JAR files
v Servlet 2.2 WAR files
v Application Client 1.2 JAR files

Starting the Application Assembly Tool (AAT)
Before you begin

A graphical interface is available for packaging code artifacts into various archives
(modules) and configuring their J2EE 1.3 compliant deployment descriptors.

The Application Assembly Tool (AAT) is available from the Windows Start menu,
or you can invoke the tool from a command line as described.

Steps for this task
1. Change the directory at a system command prompt to the location of the

assembly.bat|sh file, typically install_root/bin.
2. Run the assembly script to launch the graphical interface.
3. Select whether to work with an existing module or create a new one.

Results

Chapter 16. Assembling applications 491

The navigation tree displays a hierarchical structure used to build the contents of a
new module, or to work with the contents of an existing module. Icons in the tree
represent the components, assembly properties, and files for the module. The
assembly properties appear in the AAT workspace.

What to do next

Consider whether you have any existing J2EE 1.2 application modules that you
would like to migrate to J2EE 1.3.

You can create new modules of the following types, to assemble into an application
module later:
v (Assembling EJB modules)
v (Assembling Web modules)
v (Assembling application client modules)
v Assembling resource adapter modules

Rather than create new modules to assemble an application, you can proceed
directly to assembling a new application module. While assembling an application
module, you can create any new modules that you need.

Migrating application modules from J2EE 1.2 to J2EE 1.3
The Application Assembly Tool (AAT) has an option for migrating J2EE 1.2
application modules to J2EE 1.3. The J2EE 1.2 module is kept intact, with a new 1.3
module created. See also the earconvert tool documentation.

Migrate J2EE 1.2 application modules to which you want to add J2EE 1.3 level Web
application (WAR) modules, Resource adapter (RAR) modules, Entity bean (EJB)
modules, and application client modules. This tool migrates only the application
modules. Migrate J2EE 1.2-level modules inside a J2EE 1.2 application module by
other means.

Note: When Entity beans are moved from a J2EE 1.2 module to a J2EE 1.3 module,
the EJB container will then apply rules defined in the EJB 2.0 specification to these
beans. The EJB 2.0 specification mandates that when a findBy method is called on
a bean home (except for findByPrimaryKey), the EJB container must cause other
Entity beans enlisted in the same transaction to write out their current state to the
persistent store. This is to ensure that the findBy operation is performed on the
most current data. Application developers should plan for and be aware of any
changes to the application behavior as a result of this rule.

Steps for this task
1. Start the AAT.
2. Use it to open the J2EE 1.2 application module you want to migrate.
3. Click Convert EAR from the file menu.
4. Save the new J2EE 1.3 application.

What to do next

Assemble zero or more new modules of your choice:
v (Assembling EJB modules)
v (Assembling Web modules)

492 IBM WebSphere Application Server Network Deployment, Version 5: Applications

v (Assembling application client modules)
v Assembling resource adapter modules

Another option is to proceed directly to assembling a new application module. You
can create any new modules that you need, while assembling an application
module.

earconvert tool
A command line tool is provided for migrating J2EE 1.2 application modules to
J2EE 1.3. This migration enables you to add J2EE 1.3 modules to the migrated
application module. See also the Application Assembly Tool (AAT) for information
on performing this task.

Migrate J2EE 1.2 application modules to which you want to add J2EE 1.3 level Web
application (WAR), Resource adapter (RAR), Enterprise beans (EJB), and client
modules. This tool migrates only the application modules. Ensure that you migrate
J2EE 1.2-level modules inside a J2EE 1.2 application to prevent working with
back-level files.

Syntax

You must locate the file that contains this tool (earconvert.bat|sh), which must be
located in the bin directory of the product installation root.

earconvert
j2ee_1.2_file_name

j2ee_1.3_file_name

Parameters

Supported arguments include:

″j2ee_1.2_file_name″
Specifies the actual name of the existing J2EE 1.2 application file. (In this
and other arguments, use quotation marks to allow for path names that
contain spaces.)

″j2ee_1.3_file_name″
Specifies what you would like to name the new J2EE 1.3 application file.

Examples

The following command creates a new J2EE 1.3 archive, new_application.ear,
based on the J2EE 1.2 archive, existing_application.ear.

earconvert existing_application.ear new_application.ear

Assembling new or modifying existing modules
Before you begin

Ensure code artifacts, such as servlets, JSP files, enterprise beans, and application
clients are assembled into their respective modules.

Chapter 16. Assembling applications 493

If you want to use existing J2EE 1.2 modules in your J2EE 1.3 application, migrate
these modules to J2EE 1.3 first. Also migrate any J2EE 1.2 application modules to
which you want to add J2EE 1.3 modules.

You are now ready to combine your new or migrated modules into an application
module Enterprise application (EAR file).

The Application Assembly Tool (AAT) provides flexibility in assembling
applications from various Web application (WAR), Resource adapter (RAR),
Enterprise beans (EJB JAR), and application client (JAR) files. Options described
below include:
v Importing an existing module (JAR, RAR or WAR file)
v Creating a new module while you create the new application
v Copying code artifacts, such as servlets, from one module to another of the same

type, to reside in the new application

Steps for this task
1. Start the AAT.
2. Click File > New > Application if you did not already specify to create a new

application module.
Each of the next three steps is optional, but you must perform at least one of
them.

3. (Optional) Import existing modules into the application module.
a. Right-click the folder for the type of module you want to import, such as an

EJB module, in the navigation tree.
b. Click Import from its right-click menu.
c. Use the file browser to locate and select the archive file for the module.
d. Click Open. The archive file appears under the appropriate folder in the

navigation tree.
e. Click the plus sign (+) next to the icon for the archive, to view the module

contents and edit its properties if needed.
f. Save the application module.

4. (Optional) Create a new archive file to include in the application.
a. Right-click the folder for the type of module to create (such as enterprise

beans (EJB) modules, Web application modules (WAR), resource adapter
(RAR) files, or application client modules) in the navigation tree.

b. Click New from its right-click menu.
c. Configure properties of the new module when it displays.
d. Click OK. The archive file displays under the appropriate folder.
e. Click the plus sign (+) to verify file contents and enter assembly properties.
f. Add enterprise beans, if this is an EJB module.
a. Right-click the folder corresponding to the type of bean to create (session

bean or entity bean), and click New or Import.
b. Configure properties of the enterprise bean when it displays.
c. Click OK. The enterprise bean appears in the navigation pane.
d. Click the plus sign (+) to verify file contents and enter assembly properties.
a. Save the application module.

5. (Optional) Copy code artifacts, such as servlets, from one module to another of
the same type, to reside in the new application.

494 IBM WebSphere Application Server Network Deployment, Version 5: Applications

a. Identify the code artifact to copy, and the type of module in which it
resides. Make sure you already have the same kind of module (such as a
Web module) created in the new application module.

b. Open a separate, existing module in the AAT by selecting File > Open from
the menu bar.

c. Arrange the AAT workspace so that you can see both the new application
module and the source archive containing the code artifact.

d. Copy and paste the code artifact from the source module to the same
module type in the new application.
For example, copy a container-managed persistence (CMP) bean from the
source EJB module into the new EJB application module.

e. Save the application module.
6. Continue to add desired modules to the application module.
7. Define security properties for the application.

a. Right-click the Security Roles icon in the navigation tree.
b. Click New.
c. Configure the security properties.
d. Click OK.

8. Add supplementary files needed by the application.
a. Right-click the Files icon in the navigation tree, and select Add Files.
b. Add files, using the Add Files dialog.

9. Save the application module.

Results

You are performing application assembly results in a J2EE 1.3 compliant EAR file
containing one or more WAR, RAR, or JAR files.

Note: If you use the Application Assembly Tool to create application client
modules, you must also use the Application Client Resource Configuration Tool.
Using this tool, you can define references to resources (other than enterprise beans)
on the machine where the application client resides.

What to do next

″Verifying archive files″. ″Generating code for deployment″.

After an application is assembled and you generate your application code for
deployment, use the administrative console to install the application in an
application server.

Use the administrative console at installation time to carry out the security
instructions defined in the deployment descriptor and to locate required external
resources, such as enterprise beans and databases. You can add configuration
properties and redefine binding properties defined in the Application Assembly
Tool.

After the application deploys, you can use the Application Assembly Tool to
modify the application by adding or removing modules, editing deployment
descriptor properties and regenerating code for deployment.

Chapter 16. Assembling applications 495

Note: If your application has a large number of modules, it might not install
successfully onto a server. Package your application so the .ear file has as few
modules as are necessary. Modules can include metadata for the modules such as
information on deployment descriptors, bindings and IBM extensions.

Adding files to assembled modules
Before you begin

Review the usage scenario (as follows) to become familiar with the Add Files
dialog.

Use the Add Files dialog box of the Application Assembly Tool (AAT) to import
files into assembled modules including Enterprise application (EAR), Web
application (WAR), Resource adapter (RAR) and Application client (JAR) files.

This task assumes that you are performing another task, such as assembling a Web
or EJB module, when the Add Files dialog is presented to you.

Steps for this task
1. Click Browse. Locate the files to add.

v To add specific individual files, select the directory or archive (WAR, JAR,
RAR, ZIP, for example) containing the files.

v To add an entire directory of files, select its parent directory.
2. Click OK.

The selected directory or achive appears in the top left part of the dialog box,
in an expandable tree.
The top right part of the dialog box shows the contents of the directory,
subdirectory, or archive that is selected on the left-hand side.

3. Select one or more items to add from the top right part of the dialog, then click
Add.
As you add files, they will be displayed in the lower half of the dialog box.

4. Change your left-hand selection to gain access to other files that you want to
add, as needed.

5. Click OK when all of the files that you want to add appear in the lower half of
the dialog box.

Usage scenario

The following example refers to the main areas of the Add Files dialog box. Details
such as clicking OK are omitted. Refer to the detailed task steps above for this

496 IBM WebSphere Application Server Network Deployment, Version 5: Applications

information.

1

2 3

4

Suppose you are constructing a new application module and want to add
myFile.txt file to the archive as a supplementary file. The myFile.txt currently is
contained within the myFiles subdirectory of a JAR file that resides somewhere on
your directory system.
1. Browse for the JAR file.
2. Select the JAR file.
3. Exit the browse dialog. At this point:

v Area 1 of the Add Files dialog contains the path to the JAR file.
v Area 2 displays the JAR file name as the root directory of an expandable tree

showing the directories in the JAR file — including myFiles.
v Area 3 shows the root contents of the JAR file, as well as any subdirectories

visible from the root.
4. Select the myFiles directory from area 2, causing myFile.txt to become visible

in area 3.
5. Click myFiles.txt from area 3 and specify to Add the file. Now this file is listed

in area 4, the lower half of the dialog, which indicates it is the file that you
want to add to the new application module.

6. Exit the Add Files dialog.

Resource environment reference assembly settings
Resource environment reference elements contain declarations of an enterprise
bean’s reference to an administered object associated with a resource in the
enterprise bean’s environment.

Name
Specifies the name of the resource environment reference.

Its value is the environment entry name used in the enterprise bean code.

Data type String

Description
Contains the information that the EJB jar file producer wants to provide to the EJB
jar file consumer.

Data type String

Chapter 16. Assembling applications 497

Type
Specifies the type of a resource environment reference.

Data type String

Resource Adapter Archive file assembly settings
Use this page to set the resource adapter archive file properties.

File name
Specifies the file name of the Resource Adapter Archive.

Data type String

Display name
Specifies a short name that is intended to be displayed by the GUI.

Data type String

Description
Specifies a description that should include any information that the component file
producer wants to provide to the consumer of the component file (that is, to the
deployer).

Data type String

EIS type
This helps in identifying EIS instances that can be used with this resource adapter.

Data type String

Vendor name
Specifies a string-based version of the resource adapter from the resource adapter
provider.

Data type String

Version
Specifies a string-based version of the resource adapter from the resource adapter
provider.

Data type String

Specification
Specifies the version of the connector architecture specification that is supported by
this resource adapter.

Data type String

License required
Specifies if a license is or is not required.

498 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Description
If a license is required, this field specifies the licensing requirements for the
resource adapter module. For example, duration of license, number of
connection restrictions, and so forth.

Data type String

Implementation
The element (managedconnectionfactory class) that specifies the fully qualified
name of the Java class that implements the javax.resource.spi.Managed-
ConnectionFactory interface.

Data type Class

Interface
The element (credential-interface) that specifies the interface that the resource
adapter implementation supports for the representation of the credentials.

The possible values are:
<credential-interface> javax.resource.spi.security.PasswordCredential
</credential-interface>
<credential-interface> javax.resource.spi.security.GenericCredential
</credential-interface>

Data type Class

Implementation
The element (connectionfactory class) that specifies the fully-qualified name of the
ConnectionFactory class that implements the resource adapter specific
ConnectionFactory interface.

Data type Class

Interface
The element (connection-interface) that specifies the fully-qualified name of the
Connection interface supported by the resource adapter.

Data type Class

Implementation
The element (connection class) that specifies the fully-qualified name of the
Connection class that implements the resource adapter specific Connection
interface.

Data type Class

Support Reauthentication
Specifies whether the resource adpater implementation supports re-authentication
of existing ManagedConnection instances.

The values are either True or False.

Data type String

Chapter 16. Assembling applications 499

Transaction
Specifies the level of transaction support provided by the resource adapter.

The three possible values are:
v NoTransaction
v LocalTransaction
v XATransaction

Data type String

Small Icon
The image is used as an icon to represent the module in a GUI.

Specifies a JPEG or GIF file containing a small image (16x16 pixels).

Data type Image

Large Icon
The image is used as an icon to represent the module in a GUI.

Specifies a JPEG or GIF file containing a small image (32x32 pixels).

Data type Image

Basic Password
The basic user password authentication mechanism that is specific to an EIS.

Credential Interface
Specifies the interface that the resource adapter implementation supports
for the representation of the credentials. For Basic Password the credential
value is javax.resource.spi.security.PasswordCredential.

Description
Any information that describes Basic Password selection.

Data type String

Kerboros V5
Specifies a Kerboros version 5 authentication mechanism.

Credential Interface
Specifies the interface that the resource adapter implementation supports
for the representation of the credentials. For Kerboros version 5, the
credential value is javax.resource.spi.security.GenericCredential.

Description
Any information that describes the Kerboros V5 selection.

Data type String

Property Name
Specifies the name of a configuration property.

The possible values are:

500 IBM WebSphere Application Server Network Deployment, Version 5: Applications

<config-property-name>ServerName</config-property-name>
<config-property-name>PortNumber</config-property-name>
<config-property-name>UserName</config-property-name>
<config-property-name>Password</config-property-name>
<config-property-name>ConnectionURL</config-property-name>

Data type String

Property Type
Contains the fully-qualified Java type of a configuration property as required by
the ManagedConnectionFactory instance.

Data type String

Property Value
Contains the value of a configuration entry.

Data type String

Description
Describes the parent element.

Data type String

Permission Specification
Specifies a security permission that is required by the resource adapter code.

Data type String

Saving applications after assembly
Periodically save modules that you assemble with the Application Assembly Tool
(AAT). Save any changes right before you close the module with which you are
working.

Before you begin

This task assumes you have started the AAT and are working with a particular
module.

Steps for this task
1. Save the archive file by clicking File > Save As.

v If you are saving an existing archive file or application, click File > Save.
2. Name the new archive file or application whatever you like.

This step is optional if you are working with an existing archive file or
application.

What to do next

Now that you have saved your assembled application, you can verify your
archives and generate code for deployment.

Chapter 16. Assembling applications 501

Verifying archive files
Verify your archive files and correct any problems so that generation of
deployment code is successful. During verification, the Application Assembly Tool
(AAT) checks that an archive file is complete, and that deployment descriptor
properties and references contain appropriate values.

This task assumes you have previously assembled and saved one or more
modules.

Steps for this task
1. Start the Application Assembly Tool (AAT).
2. Click File > Open and select the module to verify.
3. Right-click the name of the module at the top of the navigation pane and click

Verify.
4. Click Verify in the Verify window. The tool displays a scrolling window for

viewing status messages as the verification proceeds.
5. Save the application.

Results

Archive files have been verified. The following list includes, but is not limited to,
areas that the verification process has checked:
v Required deployment properties contain values.
v Values specified for environment entries match their associated Java types.
v In both Enterprise application (EAR) and Web application (WAR) files:

– The target enterprise bean of the link exists for EJB references.
– The target role exists for security role references.
– Security roles are unique.

v Each module listed in the deployment descriptor exists in the archive for EAR
files.

v Files for icons, servlets, error and welcome pages listed in the deployment
descriptor have corresponding files in the archive for WAR files.

v For EJB modules:
– All class files referenced in the deployment descriptor exist in the JAR file.
– Method signatures for enterprise bean home, remote and implementation

classes are compliant with the EJB 2.0 specification.

What to do next

If your application module contains EJB modules, generate code for deployment.

Otherwise, you are ready to deploy this application module (or standalone Web
module) onto the application server.

Generating code for deployment
Before deploying applications on the server, if the application modules contain EJB
modules, you must generate deployment code for the enterprise beans in the
application. The Application Assembly Tool (AAT) provides this ability, or you can
use the ejbdeploy command line tool.

502 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Before you begin

This task assumes you have already assembled an EJB module, added it to an
application module, saved the application module, and verified the application
module.

Before installing your application in WebSphere Application Server, you must
generate deployment code for the application. This step is required for EJB
modules and for any Enterprise application (EAR) files that contain EJB modules.
During code generation, the Application Assembly Tool invokes the EJBDeploy tool
to prepare entity bean (JAR) files for deployment in run time environment. To
deploy a J2EE application, you can install the application in the administrative
console.

The following steps assume that you are using the Application Assembly Tool to
generate code for deployment.

Steps for this task
1. Start the Application Assembly Tool (AAT).
2. Open the EAR or JAR file for which you want to generate code for

deployment.
3. Click File > Generate code for deployment from the menu bar.
4. Specify the options for the server to use for generating code for the application

deployment.
For more information on ejbdeploy options you can select through the AAT, see
the Usage Scenario section.
Note: For Container managed persistence (CMP) entity beans, if the JAR file
that you opened (inputJar file) contains a map and schema document, that
schema is used. If the JAR file does not contain a map and schema document,
the Application Assembly Tool uses a top-down mapping to generate files that
contain mapping and database schema information.

5. Click Generate Now.
Review the messaging box for details of any error that might occur.
Note: Do not change the default output file name to be the same as the input
filename, as the AAT cannot read and write to the same file name, and
therefore, an error will occur.

Results

After deployment code is generated for an application, the deployable archive is
renamed with the prefix Deployed_.

What to do next

Install the application on your server machine.

Note: Before deploying the application in your run time environment, you might
need to set classpaths.

ejbdeploy tool
Abstract:

Chapter 16. Assembling applications 503

You can generate code for deployment by either using the Application
Assembly Tool (AAT) or by using the Deployment Tool for Enterprise Java
Beans (ejbdeploy) from a command prompt. For example, the options that
you are able to set in AAT correspond with commands that the EJBDeploy
tool uses to generate code for deploying an application.

View the Deployment Tool for Enterprise Java Beans documentation.

Syntax

For a detailed list of available options in the EJBDeploy tool, enter ejbdeploy from
a command prompt.

ejbdeploy syntax -- relationship to Application Assembly Tool
options

Abstract:

Many options for generating code for deployment in the Application
Assembly Tool (AAT) directly correlate with the options in the command line
EJBDeploy tool.

Application Assembly Tool options EJBDeploy tool options

Deployed module location outputJar

Working Directory workingDirectory

Dependent classpath cp

Code generation only codegen

Verify archive (unchecked) novalidate

RMIC options rmic options

Database type dbvendor

Database name dbname

Schema name dbschema

504 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Chapter 17. Deploying and managing applications

After you develop an enterprise application and configure an application server,
you can use the administrative console to install application files on the server and
manage the activity of deployed applications.

Steps for this task
1. Install your application on your application server.
2. Start and stop applications.
3. Edit the administrative configuration for an application. Go to the settings page

for an application, change the values for settings as needed, and click OK.
4. (Optional) Export applications.
5. (Optional) Export DDL files.
6. Update application binary files.
7. Uninstall applications.

After making changes to administrative configurations of your applications, ensure
that you click Save on the administrative console taskbar to save the changes.

Enterprise applications
Enterprise applications (or J2EE applications) are applications that conform to the
Java 2 Platform, Enterprise Edition, specification.

Enterprise applications can consist of the following:
v Zero or more EJB modules
v Zero or more Web modules
v Zero or more connector modules (packaged in RAR files)
v Zero or more application client modules
v Optionally, additional JAR files containing dependent classes or other

components required by the application
v Any combination of the above

A J2EE application is represented by, and packaged in, an enterprise archive (EAR)
file.

Installing a new application
To install an enterprise application to a WebSphere Application Server
configuration, you can use the administrative console or the wsadmin tool. The
steps below describe how to use the administrative console to install an
application, EJB component, or Web module.

Note: Once you start performing the steps below, click Cancel to exit if you decide
not to install the application. Do not simply move to another administrative
console page without first clicking Cancel on an application installation page.

Steps for this task

© Copyright IBM Corp. 2002 505

1. Click Applications > Install New Application in the console navigation tree.
The first of two Preparing for application install pages is shown.

2. On the first Preparing for application install page:
a. Specify the full path name of the source application file (.ear file otherwise

known as an EAR file). The EAR file that you are installing can be either
on the client machine (the machine that runs the Web browser) or on the
server machine (the machine to which the client is connected). If you
specify an EAR file on the client machine, then the administrative console
uploads the EAR file to the machine on which the console is running and
proceeds with application installation. You can also specify a standalone
WAR or JAR file for installation.

b. If you are installing a standalone WAR file, specify the context root.
c. Click Next.

3. On the second Preparing for application install page:
a. Select whether to generate default bindings. Using the default bindings

causes any incomplete bindings in the application to be filled in with
default values. Existing bindings are not altered. You can customize default
values used in generating default bindings. For example, you can specify
JNDI prefix for all the EJB files in EJB modules, default data source and
connection factory settings for EJB modules, virtual host for web modules,
and so on. ″Preparing for application install settings″ describes available
customizations and provides sample bindings.

b. Click Next. The Install New Application pages are now shown. If you
chose to generate default bindings, you can proceed to the Summary step
(step 23 below). ″″Example: Installing an EAR file using the default
bindings″″ provides sample steps.

4. On the Step: Provide options to perform the installation panel, provide
values for the following settings specific to WebSphere Application Server.
Default values are used if you do not specify a value.
a. For Pre-compile JSP, specify whether to precompile JSP files as a part of

installation. The default is not to precompile JSP files.
b. For Directory to Install Application, specify the directory to which the

application EAR file will be installed. The default value is the value of
APP_INSTALL_ROOT/cell_name, where the APP_INSTALL_ROOT variable
is install_root/installedApps; for example,
C:\WebSphere\AppServer\installedApps\cell_name.
You can specify an absolute path or use a pathmap variable such as
${MY_APPS}. You can use a pathmap variable in any installation though
members on heterogeneous nodes because, in such cases, there might not
be a single way to specify an absolute path. A WebSphere Application
Server variable ${CELL} that denotes the current cell name can also be in
the pathmap variable; for example, ${MY_APP}/${CELL}.
Note: If an installation directory is not specified when an application is
installed on a single-server (base) configuration, the application is installed
in APP_INSTALL_ROOT/base_cell_name. When the base server is made a
part of a Network Deployment configuration (using the addNode utility),
the cell name of the new configuration becomes the cell name of the
deployment manager node. If the -includeapps option is used for the
addNode utility, then the applications that are installed prior to the
addNode operation still use the installation directory
APP_INSTALL_ROOT/base_cell_name. However, an application that is
installed after the base server is added to the network configuration uses
the default installation directory APP_INSTALL_ROOT/network_cell_name.

506 IBM WebSphere Application Server Network Deployment, Version 5: Applications

To move the application to the APP_INSTALL_ROOT/network_cell_name
location upon running the addNode operation, you should explicitly
specify the installation directory as ${APP_INSTALL_ROOT}/${CELL} during
installation. In such a case, the application files can always be found under
APP_INSTALL_ROOT/current_cell_name.

c. For Distribute Application, specify whether WebSphere Application Server
expands or deletes application binaries in the installation destination. The
default is to enable application distribution. As a result, when you save
changes in the console, application binaries for newly installed applications
are expanded to the directory specified. The binaries are also deleted when
you uninstall and save changes to the configuration. If you disable this
option, then you must ensure that the application binaries are expanded
appropriately in the destination directories of all nodes where the
application is expected to run.

d. For Use Binary Configuration, specify whether the application server uses
the binding, extensions, and deployment descriptors located with the
application deployment document, the deployment.xml file (default), or
those located in the EAR file. The default is not to use the binary
configuration.

e. For Deploy EJBs, specify whether the EJBDeploy tool runs during
application installation. The tool generates code needed to run EJB files.
The default is not to run the EJBDeploy tool. You must enable this setting
if the EAR file was assembled using the (Application Assembly (AAT)
tool) and the EJBDeploy tool was not run during assembly, if the EAR file
was not assembled using the AAT tool, or if the EAR file was assembled
using versions of the AAT tool previous to Version 5. Note that enabling
this setting might cause the installation program to run for several
minutes.

f. For Application Name, name the application. Application names must be
unique within a cell and cannot contain characters that are not allowed in
object names.

g. For Create MBeans for Resources, specify whether to create MBeans for
various resources (such as servlets or JSP files) within an application when
the application is started. The default is to create MBean instances.

h. For Enable class reloading, specify whether to enable class reloading
when application files are updated. The default is not to enable class
reloading.

i. For Reload Interval, specify the number of seconds to scan the
application’s file system for updated files. The default is the value of the
reload interval attribute in the IBM extension (META-INF/ibm-application-
ext.xmi) file of the EAR file. This setting takes effect only if class reloading
is enabled.
The reload interval specified here overrides the value specified in the IBM
extensions for each Web module in the EAR file (which in turn overrides
the reload interval specified in the IBM extensions for the application in the
EAR file).

5. If your application uses EJB modules, on the Step: Provide JNDI Names for
Beans panel, specify a JNDI name for each enterprise bean in every EJB
module. You must specify a JNDI name for every enterprise bean defined in
the application. For example, for the EJB module MyBean.jar, specify MyBean.

6. If your application uses EJB modules that contain Container Managed
Persistence (CMP) beans that are based on the EJB 1.x specification, for Step:
Provide default datasource mapping for modules containing 1.x entity

Chapter 17. Deploying and managing applications 507

beans, specify a JNDI name for the default data source for the EJB modules.
The default data source for the EJB modules is optional if data sources are
specified for individual CMP beans.

7. If your application has CMP beans that are based on the EJB 1.x specification,
for Step: Map datasources for all 1.x CMP, specify a JNDI name for data
sources to be used for each of the 1.x CMP beans. The data source attribute is
optional for individual CMP beans if a default data source is specified for the
EJB module that contains CMP beans. If neither a default data source for the
EJB module nor a data source for individual CMP beans are specified, then a
validation error displays after you click Finish (step 23) and the installation is
cancelled.

8. If your application defines EJB references, for Step: Map EJB references to
beans, specify JNDI names for enterprise beans that represent the logical
names specified in EJB references. Each EJB reference defined in the
application must be bound to an EJB file before clicking Finish on the
Summary panel.

9. If your application defines resource references, for Step: Map resource
references to resources, specify JNDI names for the resources that represent
the logical names defined in resource references. Each resource reference
defined in the application must be bound to a resource defined in your
WebSphere Application Server configuration before clicking on Finish on the
Summary panel.

10. If your application uses Web modules, for Step: Map virtual hosts for web
modules, select a virtual host from the list that should map to a Web module
defined in the application. The port number specified in the virtual host
definition is used in the URL that is used to access artifacts such as servlets
and JSP files in the Web module. Each Web module must have a virtual host
to which it maps. Not specifying all needed virtual hosts will result in a
validation error displaying after you click Finish on the Summary panel.

11. On the Step: Map modules to application servers panel, for every module
select a target server or a cluster from the Clusters and Servers list. Place a
checkmark in the check box beside Module to select all of the application
modules or select individual modules.

12. If the application has security roles defined in its deployment descriptor then,
for Step: Map security roles to users/groups, specify users and groups that
are mapped to each of the security roles. Place a checkmark in the check box
beside Role to select all of the roles or select individual roles. For each role,
you can specify if predefined users such as Everyone or All Authenticated
users are mapped to it. To select specific users or groups from the user
registry:
a. Select a role and click Lookup users or Lookup groups.
b. On the Lookup users/groups panel shown, enter search criteria to extract

a list of users or groups from the user registry.
c. Select individual users or groups from the results displayed.
d. Click OK to map the selected users or groups to the role selected on the

Step: Map security roles to users/groups panel.
13. If the application has RunAs roles defined in its deployment descriptor, for

Step: Map RunAs roles to user, specify the RunAs user name and password
for every RunAs role. RunAs roles are used by enterprise beans that must run
as a particular role while interacting with another enterprise bean. Place a
checkmark in the check box beside Role to select all of the roles or select
individual roles. After selecting a role, enter values for the user name,
password, and verify password and click Apply.

508 IBM WebSphere Application Server Network Deployment, Version 5: Applications

14. If your application contains EJB 1.x CMP beans that do not have method
permissions defined for some of the EJB methods, for Step: Ensure all
unprotected 1.x methods have the correct level of protection, specify if you
want to leave such methods unprotected or assign protection with deny all
access.

15. If your application contains message driven enterprise beans, for Step:
Provide Listener Ports for messaging beans, provide a listener port name for
every message driven bean. If a name is not specified for each bean, then a
validation error displays after you click on Finish on the Summary panel.

16. If your application uses EJB modules that contain CMP beans that are based
on the EJB 2.0 specification, for Step: Provide default datasource mapping for
modules containing 2.0 entity beans, specify a JNDI name for the default
data source and the type of resource authorization to be used for the default
data source for the EJB modules. The default data source for EJB modules is
optional if data sources are specified for individual CMP beans.

17. If your application has CMP beans that are based on the EJB 2.0 specification,
on the Step: Map datasources for all 2.0 CMP panel, for each of the 2.0 CMP
beans specify a JNDI name and the type of resource authorization for data
sources to be used. The data source attribute is optional for individual CMP
beans if a default data source is specified for the EJB module that contains
CMP beans. If neither a default data source for the EJB module nor a data
source for individual CMP beans are specified, then a validation error is
shown after you click Finish and installation is cancelled.

18. If your application contains EJB 2.0 CMP beans that do not have method
permissions defined in the deployment descriptors for some of the EJB
methods, on the Step: Ensure all unprotected 2.0 methods have the correct
level of protection panel, specify whether you want to assign a specific role to
the unprotected methods, add the methods to the exclude list, or mark them
as unchecked. Methods added to the exclude list are marked as uncallable.
For methods marked unchecked no authorization check is performed prior to
their invocation.

19. If the Deploy EJBs setting is enabled on the Provide options to perform the
installation panel, then you can specify options for the EJBDeploy tool on the
Step: Provide options to perform the EJB Deploy panel. On this panel, you
can specify extra classpath, rmic options, database types, and database schema
names to be used while running the EJBDeploy tool. The tool is run on the
EAR file during installation after you click Finish.

20. If your application contains resource environment references, for Step:
Mapping Resource Environment References to Resources, specify JNDI
names of resources that map to the logical names defined in resource
environment references. If each resource environment reference does not have
a resource associated with it, a validation error is shown after you click
Finish.

21. If your application defines Run-As Identity as System Identity, for Step:
Replacing RunAs System to RunAs Roles, you can optionally change it to
Run-As role and specify a user name and password for the RunAs role
specified. Selecting System Identity implies that the invocation is done using
the WebSphere Application Server security server ID and should be used with
caution as this ID has more privileges.

22. If your application has resource references that map to resources that have an
Oracle database doing back-end processing, for Step: Specify the isolation
level for Oracle type provider, specify or correct the isolation level to be used
for such resources when used by the application. Oracle databases support
ReadCommitted and Serializable isolation levels only.

Chapter 17. Deploying and managing applications 509

23. On the Summary panel, verify the cell, node, and server onto which the
application modules will install. Beside the Cell/Node/Server option, click
Click here and verify the settings. Then click Finish.
Note: After clicking Finish, if you receive an OutOfMemory exception and the
source application file does not install, your system might not have enough
memory or your application might have too many modules in it to install
successfully onto the server. If lack of system memory is not the cause of the
exception, package your application again so the .ear file has fewer modules.
If lack of system memory and the number of modules are not the cause of the
exception, check the options you specified on the Java Virtual Machine page
of the application server running the administrative console. Then, try
installing the application file again.

24. Associate any shared libraries that the application needs to the application.
25. Click Save on the administrative console taskbar to save the changes to your

configuration. The application is registered with the administrative
configuration and application files are copied to the target directory, which is
install_root/installedApps/cell_name by default or the directory that you
designate. For the single-server (base) installation, application files are copied
to the destination directory when you click Save; for the Network
Deployment installation, files are copied to remote nodes when the
configuration on the deployment manager synchronizes with the configuration
on individual nodes.

26. Test the application. For example, point a Web browser at the URL for the
deployed application and examine the performance of the application. If
necessary, update the application.

Preparing for application install settings
Use this page to install an application (EAR file) or module (JAR or WAR file).

To view this administrative console page, click Applications > Install New
Application.

Follow the steps on this page to install an application or module. You must
complete, at minimum, the first step; you must complete some or all of the later
steps, depending on whether you are installing an application, EJB module, or Web
module.

Path
Specifies the fully qualified path to the .ear, .jar, or .war file for the enterprise
application.

Use Local path if the browser and application files are on the same machine
(whether or not the server is on that machine, too).

Use Server path if the application file resides on any node in the current cell
context. You can browse the entire file system of a node if the node agent or
deployment manager is running on that selected node. Only .ear, .jar, or .war files
are shown during the browsing.

During application installation, application files are typically uploaded from a
client machine running the browser to the server machine running the
administrative console, where they are deployed. In such cases, the Web browser
running the administrative console is used to select EAR, WAR, or JAR modules to
upload to the server machine.

510 IBM WebSphere Application Server Network Deployment, Version 5: Applications

In some cases, however, the application files reside on the file system of any of the
nodes in a cell. To have the application server install these files, use the Server
path option.

You can also use this option to specify an application file already residing on the
machine running the application server. For example, the field value on Windows
NT might be C:\WebSphere\AppServer\installableApps\test.ear. If you are
installing a standalone WAR module, then you also must specify the context root.

Context Root
Specifies the context root of the Web application (WAR).

This field is used only to install a standalone WAR file. The context root is
combined with the defined servlet mapping (from the WAR file) to compose the
full URL that users type to access the servlet. For example, if the context root is
/gettingstarted and the servlet mapping is MySession, then the URL is
http://host:port/gettingstarted/MySession.

Generate Default Bindings
Specifies whether to generate default bindings. If you place a checkmark in the
check box, then any incomplete bindings in the application are filled in with
default values. Existing bindings are not altered.

By choosing this option, you can directly jump to the Summary step and install the
application if none of the steps have a red asterisk (*) next to them. A red asterisk
denotes that the step has incomplete data and requires a valid value. On the
Summary panel, verify the cell, node and server on which the application is
installed.

Bindings are generated as follows:
v EJB JNDI names are generated of the form prefix/ejb-name. The default prefix is

ejb, but can be overridden. The ejb-name is as specified in the deployment
descriptors <ejb-name> tag.

v EJB references are bound as follows: If an <ejb-link> is found, it is honored.
Otherwise, if a unique enterprise bean is found with a matching home (or local
home) interface as the referenced bean, the reference is resolved automatically.

v Resource reference bindings are derived from the <res-ref-name> tag. Note that
this action assumes that the java:comp/env name is the same as the resource
global JNDI name.

v Connection factory bindings (for EJB 2.0 JAR files) are generated based on the
JNDI name and authorization information provided. This action results in
default connection factory settings for each EJB 2.0 JAR file in the application
being installed. No bean-level connection factory bindings are generated.

v Data source bindings (for EJB 1.1 JAR files) are generated based on the JNDI
name, data source user name password options. This results in default data
source settings for each EJB JAR file. No bean-level data source bindings are
generated.

v Message Driven Bean (MDB) listener ports are derived from the MDB
<ejb-name> tag with the string Port appended.

v For .war files, the virtual host is set as default_host unless otherwise specified.

The default strategy suffices for most applications or at least for most bindings in
most applications. However, it does not work if:
v You want to explicitly control the global JNDI names of one or more EJB files.

Chapter 17. Deploying and managing applications 511

v You need tighter control of data source bindings for CMPs. That is, you have
multiple data sources and need more than one global data source.

v You must map resource references to global resource JNDI names that are
different from the java:comp/env name.

In such cases, you can alter the behavior with an XML document (a custom
strategy). Use the Specific bindings file field to specify a custom strategy and see
the field’s help for examples.

Prefixes
Specifies prefixes to use for generated JNDI names.

Override
Specifies whether to override existing bindings.

If this check box is checked, the existing bindings are overridden by the generated
ones.

EJB 1.1 CMP bindings
Specifies the default data source JNDI name.

If the Default Bindings for EJB 1.1 CMPs radio button is selected, specify the
JNDI name for the default data source to be used with the CMP 1.1 beans. Also
specify the user ID and password for this default data source.

Connection Factory Bindings
Specifies the default data source JNDI name.

If the Default connection factory bindings radio button is selected, specify the
JNDI name for the default data source to be used with the bindings. Also specify
the resource authorization.

Virtual Host
Specifies the virtual host for WAR modules.

Specific bindings file
Specifies a bindings file that overrides the default binding.

Alter the behavior of the default binding with an XML document (aka custom
strategy). Custom strategies extend the default strategy so you only need to
customize those areas where the default strategy is insufficient. That is, you only
need to describe how you want to change the bindings generated by the default
strategy; you do not have to define bindings for the entire application.

Brief examples of how to override various aspects of the default bindings
generator follow:

Controlling an EJB JNDI name
<?xml version="1.0"?>
<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<dfltbndngs>
<module-bindings>
<ejb-jar-binding>
<jar-name>helloEjb.jar</jar-name>
<!--this name must match the module name in the .ear file-->

<ejb-bindings>
<ejb-binding>
<ejb-name>HelloEjb</ejb-name>

<!--this must match the <ejb-name> entry in the EJB jar DD-->

512 IBM WebSphere Application Server Network Deployment, Version 5: Applications

<jndi-name>com/acme/ejb/HelloHome</jndi-name>
</ejb-binding>
</ejb-bindings>
</ejb-jar-binding>

</module-bindings>
</dfltbndngs>

Setting the connection factory binding for an EJB JAR file
<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<dfltbndngs>
<module-bindings>
<ejb-jar-binding>

<jar-name>yourEjb20.jar</jar-name>
<connection-factory>
<jndi-name>eis/jdbc/YourData_CMP</jndi-name>
<res-auth>Container</res-auth>
</connection-factory>

</ejb-jar-binding>
</module-bindings>
</dfltbndngs>

Setting the connection factory binding for an EJB file
<?xml version="1.0">
<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<dfltbndngs>

<module-bindings>
<ejb-jar-binding>
<jar-name>yourEjb20.jar</jar-name>
<ejb-bindings>

<ejb-binding>
<ejb-name>YourCmp20</ejb-name>

<!-- this matches the ejb-name tag in the DD -->
<connection-factory>
<jndi-name>eis/jdbc/YourData_CMP</jndi-name>
<res-auth>PerConnFact</res-auth>
</connection-factory>

</ejb-binding>
</ejb-bindings>
</ejb-jar-binding>

</module-bindings>
</dfltbndngs>

Overriding a Resource Ref Binding from a WAR, EJB JAR file, or J2EE client
JAR file

Example code for overriding a Resource Ref Binding from a WAR file follows. Use
similar code to override a Resource Ref Binding from an EJB JAR file or a J2EE
client JAR file.
<?xml version="1.0"?>
<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<dfltbndngs>

<module-bindings>
<war-binding>
<jar-name>hello.war</jar-name>
<resource-ref-bindings>
<resource-ref-binding>

<!-- the following must match the resource-ref in the DD -->
<resource-ref-name>jdbc/MyDataSrc</resource-ref-name>

<jndi-name>war/override/dataSource</jndi-name>
</resource-ref-binding>
</resource-ref-bindings>
</war-binding>

</module-bindings>
</dfltbndngs>

Chapter 17. Deploying and managing applications 513

Overriding MDB JMS listener ports
<?xml version="1.0"?>
<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<dfltbndngs>

<module-bindings>
<ejb-jar-binding>

<jar-name>YourEjbJar.jar</jar-name>
<ejb-bindings>
<ejb-binding>
<ejb-name>YourMDB</ejb-name>
<listener-port>yourMdbListPort</listener-port>
</ejb-binding>
</ejb-bindings>

</ejb-jar-binding>
</module-bindings>

</dfltbndngs>

Example: Installing an EAR file using the default bindings
An example of a simple .ear file installation using the default bindings follows:
1. Go to the Preparing for application install pages. Click Applications > Install

an Application in the console navigation tree.
2. For Path, specify the full path name of the .ear file. For this example, the base

file name is my_appl.ear and the file resides on a server at C:\sample_apps.
a. Select the Server path radio button and click Browse.
b. On the Browse Remote Filesystems page, click on the name of the node that

holds the my_appl.ear file, C:\, sample_apps, my_appl.ear, and then OK.
3. Now that a value is given for Path, on the first Preparing for application install

page, click Next.
4. On the second Preparing for application install page, place a checkmark beside

the Generate Default Bindings check box and click Next. Using the default
bindings causes any incomplete bindings in the application to be filled in with
default values. Existing bindings are not changed. By choosing this option, you
can directly jump to the Summary step.

5. On the Install New Application page, click on Summary, the last step.
6. On the Summary panel, verify the cell, node, and server onto which the

application files will install.
a. Beside the Cell/Node/Server option, click Click here.
b. On the Map modules to application servers panel, select the server onto

which the application files will install from the Clusters and Servers list,
place a checkmark in the check box beside Module to select all of the
application modules, and click Next.

Because my_appl.ear does not require any additional settings to complete an
installation, the Summary panel displays again.

7. On the Summary panel, click Finish.

Enterprise application collection
Use this page to view and manage enterprise applications.

To view this administrative console page, click Applications > Enterprise
Applications.

514 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Name
Specifies the name of the installed (or deployed) application. Application names
must be unique within a cell and cannot contain characters that are not allowed in
object names.

Status
Indicates whether the application deployed on the application server is started,
stopped, or unavailable.

Enterprise application settings
Use this page to configure an enterprise application.

To view this administrative console page, click Applications > Enterprise
Applications > application_name.

Name
Specifies a logical name for the application. Application names must be unique
within a cell and cannot contain characters that are not allowed in object names.

Data type String

Starting Weight
Specifies the order in which applications are started when the server starts. The
application with the lowest starting weight is started first.

Data type Integer
Default 1
Range 0 to 100

Application Binaries
Specifies the directory to which the application EAR file will be installed. The
default value is the value of APP_INSTALL_ROOT/cell_name, where the
APP_INSTALL_ROOT variable is install_root/installedApps; for example,
C:\WebSphere\AppServer\installedApps\cell_name.

You can specify an absolute path or use a pathmap variable such as ${MY_APPS}.
You can use a pathmap variable in any installation though it is particularly needed
when installing an application on a cluster with members on heterogeneous nodes
because, in such cases, there might not be a single way to specify an absolute path.
A WebSphere Application Server variable ${CELL} that denotes the current cell
name can also be in the pathmap variable; for example, ${MY_APP}/${CELL}.

Data type String
Units Full path name

Use Metadata From Binaries
Specifies whether the application server uses the binding, extensions, and
deployment descriptors located with the application deployment document, the
deployment.xml file (default), or those located in the enterprise application
resource (EAR) file.

Data type Boolean
Default true

Chapter 17. Deploying and managing applications 515

Enable Distribution
Specifies whether WebSphere Application Server expands or deletes application
binaries in the installation destination. The default is to enable application
distribution. Application binaries for installed applications are expanded to the
directory specified. The binaries are also deleted when you uninstall and save
changes to the configuration. If you disable this option, then you must ensure that
the application binaries are expanded appropriately in the destination directories of
all nodes where the application runs.

Data type Boolean
Default true

Classloader Mode
Specifies whether the classloader searches in the parent classloader or in the
application classloader first to load a class. The standard for JDK classloaders and
WebSphere Application Server classloaders is PARENT_FIRST. By specifying
PARENT_LAST, your application can override classes contained in the parent
classloader, but this action can potentially result in ClassCastException or
LinkageErrors if you have mixed use of overridden classes and non-overridden
classes.

The options are PARENT_FIRST and PARENT_LAST. The default is to search in
the parent classloader before searching in the application classloader to load a
class.

Data type String
Default PARENT_FIRST

WAR Classloader Policy
Specifies whether to use a single classloader to load all WAR files of this
application or to use a different classloader for each WAR file.

The options are APPLICATION and MODULE. The default is to use a separate
classloader to load each WAR file.

Data type String
Default MODULE

Create MBeans for Resources
Specifies whether to create MBean files for various resources (such as servlets or
JSP files) within an application.

Data type Boolean
Default true

Reload Enabled
Specifies whether to enable class reloading when application files are updated.

Data type Boolean
Default true

516 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Reload Interval
Specifies the number of seconds to scan the application’s file system for updated
files. The default is the value of the reload interval attribute in the IBM extension
(META-INF/ibm-application-ext.xmi) file of the EAR file. This setting takes effect
only if class reloading is enabled.

The reload interval specified here overrides the value specified in the IBM
extensions for each Web module in the EAR file (which in turn overrides the
reload interval specified in the IBM extensions for the application in the EAR file).

Data type Integer
Units Seconds

Target mapping collection
Use this page to manage mappings of deployed applications or modules to servers
or clusters.

To view this administrative console page, click Applications > Enterprise
Applications > application_name > Target Mappings.

Target: States the name of the target server or cluster to which the application or
module maps. You specify the target on the Map modules to application servers
page accessed from the settings for an application.

Node: Specifies the node name if the target is a server.

Status: Indicates whether the status of the application running on the target
server or cluster is started, stopped or unavailable.

Target mapping settings: Use this page to map a deployed application or module
to a server or cluster.

To view this administrative console page, click Applications > Enterprise
Applications > application_name > Target Mappings > target_name.

Target: States the name of the target server or cluster to which the application or
module maps. You specify the target on the Map modules to application servers
page accessed from the settings for an application.

Data type String

Enabled: Indicates whether the application modules installed on the target server
are started (or enabled) when the server starts. A true value indicates that the
corresponding modules are enabled and thus are accessible when the server starts.
A false value indicates that the corresponding modules are not enabled and thus
are not accessible when the server starts.

Data type Boolean
Default true

Chapter 17. Deploying and managing applications 517

Starting and stopping applications
You can start an application that is not running (has a status of Stopped) or stop an
application that is running (has a status of Started).

Steps for this task
1. Go to the Enterprise Applications page. Click Applications > Enterprise

Applications in the console navigation tree.
2. Check the check box for the application you want started or stopped.
3. Click a button:

Start Runs the application and changes the state of the application from
Stopped to Started.

Stop Stops the processing of the application and changes the state of the
application from Started to Stopped.

To restart a running application, place a checkmark in the check box for the
application you want to restart, click Stop and then click Start.

Results

The status of the application changes and a message stating that the application
started or stopped displays at the top the page.

Exporting applications
You can export an enterprise application to a location of your choice. Exporting
applications enables you to back up your applications and preserve binding
information for the applications. You might export your applications before
updating installed applications or migrating to a later version of the WebSphere
Application Server product.

Steps for this task
1. Click Applications > Enterprise Applications in the administrative console

navigation tree to access the Enterprise Applications page.
2. Place a checkmark in the check box beside the application and click Export.
3. On the Export Application EAR Files page, click on the link to download the

exported EAR file.
4. Use the browser dialogue to specify a location at which to save the exported

EAR file and click OK.

The file containing binding information is exported to the specified node and
directory, and has the name enterprise_application_name.ear.

Exporting DDL files
You can export the DDL files (Table.ddl) in the EJB modules of the application to a
location of your choice.

Steps for this task
1. Click Applications > Enterprise Applications in the administrative console

navigation tree to access the Enterprise Applications page.

518 IBM WebSphere Application Server Network Deployment, Version 5: Applications

2. Place a checkmark in the check box beside the application and click Export
DDL. If the application has no DDL files in any of its EJB modules, then the
message No DDL files were found displays at the top of the page. If the
application has DDL files in its EJB modules, then a page displays listing DDL
files in the format appname.ear/_module.jar_Table.ddl.

3. Click on a file in the list to download the file to your machine.

Updating applications
You can update an application deployed on a server. The steps below describe how
to update a deployed application using the administrative console.

Steps for this task
1. Update the contents of the application and reassemble it, using the Application

Assembly Tool. Typical tasks include adding or editing assembly properties,
adding or importing modules into an application, and adding enterprise beans,
Web components, and files.

2. Go to the Applications page of the administrative console. Click Applications >
Enterprise Applications in the console navigation tree.

3. (Optional) Back up the application. Place a checkmark in the check box beside
the application you want uninstalled and click Export to export the application
to an EAR file and preserve the binding information.

4. With a checkmark beside the application, click Update.
The binding information of the updated (new) version of the application
merges with the binding information from the installed (old) version. Then, the
older version uninstalls from the configuration and the new version installs.

5. Complete the steps in the Preparing for application install page and the pages
that follow it. See information on installing applications and on the settings
page for application installation for guidance.
Note that the installation steps have the merged binding information from the
new version and the old version. If the new version has bindings for
application artifacts such as EJB JNDI names, EJB references or resource
references, then those bindings will be part of the merged binding information.
If new bindings are not present, then bindings are taken from the installed (old)
version. If bindings are not present in the old version and if the default binding
generation option is enabled, then the default bindings will be part of the
merged binding information.
You can select whether to ignore bindings in the old version or ones in the new
version.

6. (Optional) Map the installed application or module to servers or clusters. Use
the Map modules to application servers page of the Install New Application
pages displayed during updating the application. Or, after updating the
application, use the Map modules to application servers page accessed from the
Enterprise Applications page.
a. Go to the Map modules to application servers page. Click Applications >

Enterprise Applications in the console navigation tree, click the application
name, and then click Map modules to application servers.

b. Specify the application server where you want to install modules contained
in your application and click OK.

7. Click Save on the admistrative console taskbar to save the changes to your
configuration. In the single server (base) product, after you click Save the old
version of the application is uninstalled and the new version is installed into
the configuration. The application binaries for the old version are deleted from

Chapter 17. Deploying and managing applications 519

the destination directory and the new binaries are copied to the directory. In
the Network Deployment product, the old application files are deleted and new
files are copied when the configuration on the deployment manager
synchronizes with the configuration on the node where the application is
installed.
If the application is running when you update it, the application stops running
before its files are copied to the destination directory of the node and restarts
after the copy operation completes. Thus, the application is unavailable on the
node during the time the node is synchronizing its configuration with the
deployment manager.

8. Restart the application so the changes take effect.
a. Click Applications > Enterprise Applications in the console navigation tree

to go to the Enterprise Applications page.
b. Check the check box for the updated application.
c. Click Start.

Note that you can also update applications using the wsadmin tool, which
provides updating capabilities identical to that provided by clicking Update on the
Enterprise Applications page. Further, you can update applications without
stopping and restarting the server.

Hot deployment and dynamic reloading
You can make various changes to applications and their contents without having to
stop the server and start it again. Making these types of changes is known as hot
deployment and dynamic reloading.

Hot deployment is the process of adding new components (such as WAR files, EJB
Jar files, enterprise Java beans, servlets, and JSP files) to a running server without
having to stop the application server process and start it again.

Dynamic reloading is the ability to change an existing component without needing
to restart the server in order for the change to take effect. Dynamic reloading
involves:
v Changes to the implementation of a component of an application, such as

changing the implementation of a servlet
v Changes to the settings of the application, such as changing the deployment

descriptor for a Web module

Steps for this task
1. Locate your expanded application files. The application files are in the directory

you specified when installing the application or, if you did not specify a
custom target directory, are in the default target directory,
install_root/installedApps/cell_name. Your EAR file,
${APP_INSTALL_ROOT}/cell_name/application_name.ear, points to the target
directory. The variables.xml file for the node defines ${APP_INSTALL_ROOT}.
It is important to locate the expanded application files because, as part of
installing applications, a WebSphere application server unjars portions of the
EAR file onto the file system of the computer that will run the application.
These expanded files are what the server looks at when running your
application.
If you cannot locate the expanded application files, look at the binariesURL
attribute in the deployment.xml file for your application. The attribute
designates the location the run time uses to find the application files.

520 IBM WebSphere Application Server Network Deployment, Version 5: Applications

For the remainder of this information on hot deployment and dynamic
reloading, application_root represents the root directory of the expanded
application files.

2. Locate application metadata files. The metadata files include the deployment
descriptors (web.xml, application.xml, ejb-jar.xml, and the like), the bindings
files (ibm-web-bnd.xmi, ibm-app-bnd.xmi, and the like), and the extensions files
(ibm-web-ext.xmi, ibm-app-ext.xmi, and the like).
Metadata XML files for an application can be loaded from one of two locations.
The metadata files can be loaded from the same location as the application
binary files (such as application_root/META-INF) or they can be loaded from the
WebSphere configuration tree, ${CONFIG_ROOT}/cells/cell_name/applications/
application_EAR_name/deployments/ application_name/. The value of the
useMetadataFromBinary flag specified during application installation controls
which location is used. If specified, the metadata files are loaded from the same
location as the application binary files. If not specified, the metadata files are
loaded from the application deployment folder in the configuration tree.
For the remainder of this information, metadata_root represents the location of
the metadata files for the specified application or module.

3. CAUTION: If you are running WebSphere Application Server on a group of
machines using Network Deployment and you are changing an application on
a particular node, disable automatic synchronization.
a. Click System Administration > Node Agents in the administrative console

navigation tree, click on a node agent name, and then click File
Synchronization Service.

b. On the File Synchronization Service page, remove the checkmark from the
check box for Automatic Synchronization and click OK.

When you run WebSphere Application Server on a group of machines using
Network Deployment and you change a file on the disk in the expanded
application directory for a particular node, you can lose those changes the next
time node synchronization occurs. In the Network Deployment environment,
the configuration stored by the deployment manager is the master copy and
any changes detected between that master copy and the copy on a particular
machine trigger the master copy to be downloaded to the node.

4. Change or add the following components or modules as needed:
v Application files
v WAR files
v EJB Jar files
v HTTP plug-in configuration files

5. For changes to take effect, you might need to start, stop, or restart an
application. ″Starting and stopping applications″ provides information on using
the administrative console to start, stop, or restart an application. ″Example:
Starting an application using wsadmin″ (not in this document) and ″Example:
Stopping running applications on a server using wsadmin″ (not in this
document) provide information on using the wsadmin scripting tool.

6. If you disabled automatic synchronization in step 3, return to the File
Synchronization Service page, enable Automatic Synchronization, and click
OK.

Changing or adding application files
You can change or add application files on application servers without having to
stop the server and start it again. This file describes—
v Updating an existing application on a running server (providing a new EAR file)

Chapter 17. Deploying and managing applications 521

v Adding a new application to a running server
v Removing an existing application from a running server
v Adding a new EJB or Web module to an existing, running application
v Changing the application.xml file for an application
v Changing the ibm-app-ext.xmi file for an application
v Changing the ibm-app-bnd.xmi file for an application
v Changing a non-module Jar file contained in the EAR file

Updating an existing application on a running server (providing a new EAR file)

Reinstall an updated application using the administrative console or the wsadmin
$AdminApp install command with the -update option.

Both reinstallation methods enable you to update an existing application using any
of the other steps listed in this file, including changing classes, adding modules,
removing modules, changing modules, or changing metadata files. The application
reinstallation methods detect the changes in your application and prompt you for
additional binding data that might be needed to install the application. The
reinstallation process automatically stops and restarts your application on the
appropriate servers.

Hot deployment: Yes
Dynamic reloading: Yes

Adding a new application to a running server

Install an application using the administrative console or the wsadmin install
command.

Hot deployment: Yes
Dynamic reloading: No

Removing an existing application from a running server

Stop the application and then uninstall it from the server. Use the administrative
console to stop the application and then uninstall it. Or run the wasadmin
stopApplication command and then the uninstall command.

Hot deployment: Yes
Dynamic reloading: No

Adding a new EJB or Web module to an existing, running application

1. Update the application files in the application_root location.
2. Restart the application. Use the administrative console to restart the application.

Or run the wasadmin stopApplication and startApplication commands.

Hot deployment: Yes
Dynamic reloading: No

Changing the application.xml file for an application

522 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Restart the application. Automatic reloading will not detect the change. Use the
administrative console to restart the application. Or run the wasadmin
stopApplication and startApplication commands.

Hot deployment: Not applicable
Dynamic reloading: Yes

Changing the ibm-app-ext.xmi file for an application

Restart the application. Automatic reloading will not detect the change. Use the
administrative console to restart the application. Or run the wasadmin
stopApplication and startApplication commands.

Hot deployment: Not applicable
Dynamic reloading: Yes

Changing the ibm-app-bnd.xmi file for an application

Restart the application. Automatic reloading will not detect the change. Use the
administrative console to restart the application. Or run the wasadmin
stopApplication and startApplication commands.

Hot deployment: Not applicable
Dynamic reloading: Yes

Changing a non-module Jar file contained in the EAR file

1. Update the non-module Jar file in the application_root location.
2. If automatic reloading is not enabled, restart the application. Use the

administrative console to restart the application. Or run the wasadmin
stopApplication and startApplication commands.
If automatic reloading is enabled, you do not need to take further action.
Automatic reloading will detect the change.

Hot deployment: Yes
Dynamic reloading: Yes

Changing or adding WAR files
You can change WAR files on application servers without having to stop the server
and start it again. This file describes—
v Changing an existing JSP file
v Adding a new JSP file to an existing application
v Changing an existing servlet class (editing and recompiling)
v Changing a dependent class of an existing servlet class
v Adding a new servlet using the Invoker (Serve Servlets by class name) facility or

adding a dependent class to an existing application
v Adding a new servlet, including a new definition of the servlet in the web.xml

deployment descriptor for the application
v Changing the web.xml file of a WAR file
v Changing the ibm-web-ext.xmi file of a WAR file
v Changing the ibm-web-bnd.xmi file of a WAR file

Chapter 17. Deploying and managing applications 523

Changing an existing JSP file

Place the changed JSP file directly in the application_root/module_name directory or
the appropriate subdirectory. The change will be automatically detected and the
JSP will be recompiled and reloaded.

Hot deployment: Not applicable
Dynamic reloading: Yes

Adding a new JSP file to an existing application

Place the new JSP file directly in the application_root/module_name directory or the
appropriate subdirectory. The new file will be automatically detected and compiled
on the first request to the page.

Hot deployment: Yes
Dynamic reloading: Yes

Changing an existing servlet class (editing and recompiling)

1. Place the new version of the servlet .class file directly in the
application_root/module_name/WEB-INF/classes directory. If the .class file is part
of a Jar file, you can place the new version of the Jar file directly in
application_root/module_name/WEB-INF/lib. In either case, the change will be
detected, the Web application will be shut down and reinitialized, picking up
the new class.

2. If automatic reloading is not enabled, restart the application. Use the
administrative console to restart the application. Or run the wasadmin
stopApplication and startApplication commands.
If automatic reloading is enabled, you do not need to take further action.
Automatic reloading will detect the change.

Hot deployment: Not applicable
Dynamic reloading: Yes

Changing a dependent class of an existing servlet class

1. Place the new version of the dependent .class file directly in the
application_root/module_name/WEB-INF/classes directory. If the .class file is part
of a Jar file, you can place the new version of the Jar file directly in
application_root/module_name/WEB-INF/lib. In either case, the change will be
detected, the Web application will be shut down and reinitialized, picking up
the new class.

2. If automatic reloading is not enabled, restart the application. Use the
administrative console to restart the application. Or run the wasadmin
stopApplication and startApplication commands.
If automatic reloading is enabled, you do not need to take further action.
Automatic reloading will detect the change.

Hot deployment: Not applicable
Dynamic reloading: Yes

Adding a new servlet using the Invoker (Serve Servlets by class name) facility
or adding a dependent class to an existing application

524 IBM WebSphere Application Server Network Deployment, Version 5: Applications

1. Place the new .class file directly in the application_root/module_name/WEB-
INF/classes directory. If the .class file is part of a Jar file, you can place the new
version of the Jar file directly in application_root/module_name/WEB-INF/lib. In
either case, the change will be detected, the Web application will be shut down
and reinitialized, picking up the new class.
This case is treated the same as changing an existing class. The difference is
that adding the servlet or class does not immediately cause the Web application
to reload because the class has never been loaded before. The class simply
becomes available for execution.

2. If automatic reloading is not enabled, restart the application. Use the
administrative console to restart the application. Or run the wasadmin
stopApplication and startApplication commands.
If automatic reloading is enabled, you do not need to take further action.
Automatic reloading will detect the change.

Hot deployment: Yes
Dynamic reloading: Not applicable

Adding a new servlet, including a new definition of the servlet in the web.xml
deployment descriptor for the application

1. Place the new .class file directly in the application_root/module_name/WEB-
INF/classes directory. If the .class file is part of a Jar file, you can place the new
version of the Jar file directly in application_root/module_name/WEB-INF/lib.
You can edit the web.xml file in place or copy it into the
application_root/module_name/WEB-INF/classes directory. The new .class file
will not trigger a reloading of the application.

2. Restart the application. Use the administrative console to restart the application.
Or run the wasadmin stopApplication and startApplication commands. After
the application restarts, the new servlet is available for service.

Hot deployment: Yes
Dynamic reloading: Not applicable

Changing the web.xml file of a WAR file

1. Edit the web.xml file in place or copy it into the
metadata_root/module_name/WEB-INF directory.

2. Restart the application. Use the administrative console to restart the application.
Or run the wasadmin stopApplication and startApplication commands.

Hot deployment: Yes
Dynamic reloading: Yes

Changing the ibm-web-ext.xmi file of a WAR file

Edit the extension settings as needed. You can change all of the extension settings.
The only warning is if you set the reloadInterval property to zero (0) or the
reloadEnabled property to false, the application will no longer automatically detect
changes to class files. Both of these changes disable the automatic reloading
function. The only way to re-enable automatic reloading is to change the
appropriate property and restart the application. See other task descriptions in this
file for information on restarting an application.

Chapter 17. Deploying and managing applications 525

Hot deployment: Not applicable
Dynamic reloading: Yes

Changing the ibm-web-bnd.xmi file of a WAR file

1. Edit the bindings as needed. You can change all of the values but ensure that
the entities you are binding to are present in the configuration of the server.

2. Restart the application. Use the administrative console to restart the application.
Or run the wasadmin stopApplication and startApplication commands.

Hot deployment: Not applicable
Dynamic reloading: Yes

Changing or adding EJB Jar files
You can change EJB Jar files on application servers without having to stop the
server and start it again. This file describes—
v Changing the ejb-jar.xml file of an EJB Jar file
v Changing the ibm-ejb-jar-ext.xmi or ibm-ejb-jar-bnd.xmi file of an EJB Jar file
v Changing the Table.ddl file for an EJB Jar file
v Changing the Map.mapxmi or Schema.dbxmi file for an EJB Jar file
v Updating the implementation class for an EJB file or a dependent class of the

implementation class for an EJB file
v Updating the Home/Remote interface class for an EJB file
v Adding a new EJB file to an existing EJB Jar file

Changing the ejb-jar.xml file of an EJB Jar file

Restart the application. Automatic reloading will not detect the change. Use the
administrative console to restart the application. Or run the wasadmin
stopApplication and startApplication commands.

Hot deployment: Not applicable
Dynamic reloading: Yes

Changing the ibm-ejb-jar-ext.xmi or ibm-ejb-jar-bnd.xmi file of an EJB Jar file

Restart the application. Automatic reloading will not detect the change. Use the
administrative console to restart the application. Or run the wasadmin
stopApplication and startApplication commands.

Hot deployment: Not applicable
Dynamic reloading: Yes

Changing the Table.ddl file for an EJB Jar file

Rerun the DDL file on the user database server. Changing the Table.ddl file has no
effect on the application server and is a change to the database table schema for
the EJB files.

Hot deployment: Not applicable
Dynamic reloading: Not applicable

526 IBM WebSphere Application Server Network Deployment, Version 5: Applications

Changing the Map.mapxmi or Schema.dbxmi file for an EJB Jar file

1. Change the Map.mapxmi or Schema.dbxmi file for an EJB Jar file.
2. Regenerate the deployed code artifacts for the EJB file.
3. Apply the new EJB Jar file to the server.
4. Restart the application. Use the administrative console to restart the application.

Or run the wasadmin stopApplication and startApplication commands.

Hot deployment: Not applicable
Dynamic reloading: Yes

Updating the implementation class for an EJB file or a dependent class of the
implementation class for an EJB file

1. Update the class file in the application_root/module_name.jar file.
2. If automatic reloading is enabled, you do not need to take further action.

Automatic reloading will detect the change.
If automatic reloading is not enabled, restart the application of which the EJB
file is a member. If the updated module is used by other modules in other
applications, restart those applications as well. Use the administrative console
to restart the application. Or run the wasadmin stopApplication and
startApplication commands.

Hot deployment: Not applicable
Dynamic reloading: Yes

Updating the Home/Remote interface class for an EJB file

1. Update the interface class of the EJB file.
2. Regenerate the deployed code artifacts for the EJB file.
3. Apply the new EJB Jar file to the server.
4. If automatic reloading is enabled, you do not need to take further action.

Automatic reloading will detect the change.
If automatic reloading is not enabled, restart the application of which the EJB
file is a member. Use the administrative console to restart the application. Or
run the wasadmin stopApplication and startApplication commands.

Hot deployment: Not applicable
Dynamic reloading: Yes

Adding a new EJB file to an existing EJB Jar file

1. Apply the new or updated Jar file to the application_root location.
2. If automatic reloading is enabled, you do not need to take further action.

Automatic reloading will detect the change.
If automatic reloading is not enabled, restart the application. Use the
administrative console to restart the application. Or run the wasadmin
stopApplication and startApplication commands.

Hot deployment: Yes
Dynamic reloading: Yes

Chapter 17. Deploying and managing applications 527

Changing the HTTP plug-in configuration
You can change the HTTP plug-in configuration without having to stop the server
and start it again. This file describes—
v Changing the application.xml file to change the context root of a WAR file
v Changing the web.xml file to add, remove, or modify a servlet mapping
v Changing the server.xml file to add, remove, or modify an HTTP transport or

changing the virtualhost.xml file to add or remove a virtual host or to add,
remove, or modify a virtual host alias

Changing the application.xml file to change the context root of a WAR file

1. Change the application.xml file.
2. Regenerate the plug-in configuration file using the administrative console or by

running the GenPluginCfg.bat/sh script.

Hot deployment: Yes
Dynamic reloading: Yes

Changing the web.xml file to add, remove, or modify a servlet mapping

1. Change the web.xml file.
2. Regenerate the plug-in configuration file using the administrative console or by

running the GenPluginCfg.bat/sh script.
If the Web application has file serving enabled or has a servlet mapping of /,
you do not have to regenerate the plug-in configuration. In all other cases the
regeneration is required.

Hot deployment: Yes
Dynamic reloading: Yes

Changing the server.xml file to add, remove, or modify an HTTP transport or
changing the virtualhost.xml file to add or remove a virtual host or to add,
remove, or modify a virtual host alias

1. Change the server.xml file to add, remove, or modify an HTTP transport or
change the virtualhost.xml file to add or remove a virtual host or to add,
remove, or modify a virtual host alias.

2. Regenerate the plug-in configuration file using the administrative console, by
running the GenPluginCfg.bat/sh script, or by running a wsadmin command.

Hot deployment: Yes
Dynamic reloading: Yes

Uninstalling applications
After an application no longer is needed, you can uninstall it. Uninstalling an
application deletes the application from the WebSphere Application Server
configuration repository and it deletes the application binaries from the file system
of all nodes where the application modules are installed.

Steps for this task
1. Click Applications > Enterprise Applications in the administrative console

navigation tree to access the Enterprise Applications page.

528 IBM WebSphere Application Server Network Deployment, Version 5: Applications

2. (Optional) Stop the application. Place a checkmark in the check box beside the
application you want uninstalled and click Stop. Note that it is recommended
you stop the application before uninstalling. However, even if the application is
running when uninstallation commences, the uninstallation program stops the
application before deleting application binaries from the file system.

3. (Optional) Back up the application. Place a checkmark in the check box beside
the application you want uninstalled and click Export to export the application
to an EAR file and preserve the binding information.

4. With a checkmark in the check box beside the application you want
uninstalled, click Uninstall.

5. Confirm the uninstallation operation.
6. Click Save on the console taskbar to save changes made to the administrative

configuration.

In the single-server (base) product, application binaries are deleted after you click
Save. In the Network Deployment product, application binaries are deleted when
configuration changes on the deployment manager synchronize with configurations
for individual nodes.

Deploying and managing applications: Resources for learning
Use the following links to find relevant supplemental information about deploying
and managing applications using the administrative console. The information
resides on IBM and non-IBM Internet sites, whose sponsors control the technical
accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

View links to additional information about:
v Programming model and decisions
v Programming instructions and examples
v Administration

v The J2EETM Tutorial: The Duke’s Bank Application

http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Ebank.html

v Best Practices in WebSphere Application: Separating the developers from
the administrators

http://www.sys-con.com/websphere/articleprint.cfm?id=26

v Designing Enterprise Applications with the JavaTM 2 Platform, Enterprise
Edition, Second Edition

http://java.sun.com/blueprints/guidelines/
designing_enterprise_applications_2e/

v Designing Enterprise Applications, Second Edition

http://developer.java.sun.com/developer/Books/j2ee/ designingenterprise/

v Building JavaTM Enterprise Applications Volume I: Architecture

http://developer.java.sun.com/developer/Books/j2ee/bjeapps/

Chapter 17. Deploying and managing applications 529

http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Ebank.html
http://www.sys-con.com/websphere/articleprint.cfm?id=26
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/
http://developer.java.sun.com/developer/Books/j2ee/designingenterprise/
http://developer.java.sun.com/developer/Books/j2ee/bjeapps/

v WebSphere Application Server education

http://www.ibm.com/software/webservers/learn/

v Developing and Testing a Complete ’Hello World’ J2EE Application with
IBM WebSphere Studio Application Developer for Linux

http://www7b.software.ibm.com/wsdd/library/tutorials/
0206_wosnick/wosnick_reg.html?open&l=937,t=gr

v IBM WebSphere Application Server: The Complete Reference

http://www.mcgraw-hill.co.uk/html/0072223944.html

v Writing Enterprise Applications with JavaTM 2 Platform, Enterprise
Edition

http://developer.java.sun.com/developer/onlineTraining/J2EE/Intro/

v WebSphere Application Server Bible

http://www.wiley.com/cda/product/0,,0764548964%7Ctoc%7C2948,00.html

v Listing of all IBM WebSphere Application Server Redbooks

http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere

v IBM WebSphere V4.0 Advanced Edition Handbook

http://www.redbooks.ibm.com/abstracts/sg246176.html

v Redbook on WebSphere 4.0 Installation and Configuration on the IBM
iSeries Server

http://publib-b.boulder.ibm.com/ Redbooks.nsf/
9445fa5b416f6e32852569ae006bb65f/
7b1a07251256f08b85256b750067aee1?OpenDocument

v Redbook on WebSphere Application Server V4 for Linux, Implementation
and Deployment Guide

http://publib-
b.boulder.ibm.com/Redbooks.nsf/RedpaperAbstracts/REDP0405.html

530 IBM WebSphere Application Server Network Deployment, Version 5: Applications

http://www.ibm.com/software/webservers/learn/
http://www7b.software.ibm.com/wsdd/library/tutorials/0206_wosnick/wosnick_reg.html?open&l=937,t=gr
http://www7b.software.ibm.com/wsdd/library/tutorials/0206_wosnick/wosnick_reg.html?open&l=937,t=gr
http://www.mcgraw-hill.co.uk/html/0072223944.html
http://developer.java.sun.com/developer/onlineTraining/J2EE/Intro/
http://www.wiley.com/cda/product/0,,0764548964%7Ctoc%7C2948,00.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere
http://www.redbooks.ibm.com/abstracts/sg246176.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/9445fa5b416f6e32852569ae006bb65f/7b1a07251256f08b85256b750067aee1?OpenDocument
http://publib-b.boulder.ibm.com/Redbooks.nsf/9445fa5b416f6e32852569ae006bb65f/7b1a07251256f08b85256b750067aee1?OpenDocument
http://publib-b.boulder.ibm.com/Redbooks.nsf/9445fa5b416f6e32852569ae006bb65f/7b1a07251256f08b85256b750067aee1?OpenDocument
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedpaperAbstracts/REDP0405.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedpaperAbstracts/REDP0405.html

	Contents
	Trademarks and service marks
	Chapter 1. Welcome to Applications
	Chapter 2. Using Web applications
	Web applications
	web.xml file
	Migrating Web application components
	Default Application
	Snoop
	HelloHTML
	HitCount

	Servlets
	Developing servlets with WebSphere Application Server extensions
	Application lifecycle listeners and events
	Listener classes for servlet context and session changes
	Example: com.ibm.websphere.DBConnectionListener.java
	Servlet filtering
	Filter, FilterChain, FilterConfig classes for servlet filtering
	Example: com.ibm.websphere.LoggingFilter.java
	Configuring page list servlet client configurations
	Page lists
	Client type detection support
	client_types.xml
	Example: Extending PageListServlet

	autoRequestEncoding and autoResponseEncoding
	autoRequestEncoding and autoResponseEncoding encoding examples

	JavaServer Pages files
	Developing JavaServer Pages files with WebSphere extensions
	Tag libraries
	tsx:dbconnect tag JavaServer Pages syntax
	dbquery tag JavaServer Pages syntax
	dbmodify tag JavaServer Pages syntax
	tsx:getProperty tag JavaServer Pages syntax and examples
	tsx:userid and tsx:passwd tag JavaServer Pages syntax
	tsx:repeat tag JavaServer Pages syntax
	Example: Combining tsx:repeat and tsx:getProperty JavaServer Pages tags
	Example: tsx:dbmodify tag syntax
	Example: Using tsx:repeat JavaServer Pages tag to iterate over a results set
	Implicit and explicit indexing
	Nesting <tsx:repeat> blocks

	JspBatchCompiler tool

	Bean Scripting Framework
	Example: Converting JavaScript source to the Bean Scripting Framework
	Scenario: Creating a Bean Scripting Framework application
	Scenario description
	Developing the BSF application
	Deploying the BSF application

	Example: Bean Scripting Framework code example
	Developing Web applications
	Web modules
	Assembling Web Modules
	Context parameters
	Servlet mappings
	Servlet caching
	Web components
	Web property extensions
	Web resource collections
	Welcome files
	Context parameter assembly settings
	Parameter name (Required, String)
	Parameter value (Required, String)
	Description

	Initialization parameter assembly settings
	Parameter name (Required, String)
	Parameter value (Required, String)
	Description

	JavaServer Pages attribute assembly settings
	JSP Attribute (Name)
	JSP Attribute (Value)
	classdebuginfo
	classpath
	deprecation
	ieClassID
	javaEncoding
	jspCompilerPath
	keepgenerated
	largefile
	mappedfile
	scratchdir
	usePageTagPool
	useThreadTagPool
	verbose

	Multipurpose Internet Mail Extensions (MIME) filter assembly settings
	Component name (Required, String)
	Display name
	Description
	Component type
	Class name (Required, String)
	JSP file (Required, String)
	Load on startup
	Small icon
	Large icon

	Page list assembly settings
	Name
	MIME Type
	Error Page
	Default Page
	Pages - Name
	Pages - URI

	Security constraints
	Security constraint assembly settings
	Security constraint name
	Authorization Constraints - Roles
	Authorization Constraints - Description
	User Data Constraints - Transport guarantee
	User Data Constraints - Description

	Servlet mapping assembly settings
	URL pattern (Required, String)
	Servlet (Required, String)

	Tag library assembly settings
	Tag library file name (Required, String)
	Tag library location (Required, String)

	Welcome file assembly settings
	Welcome file (Required, String)

	Servlet caching configuration assembly settings
	Caching group name
	Priority
	Timeout
	Invalidate only
	Caching group members
	Use URIs for cache ID building
	Use specified string
	Variables - ID
	Variables - Type
	Variables - Method
	Variables - Data ID
	Variables - Invalidate ID
	Required
	External cache groups - Group name
	ID generator
	Meta data generator

	Web components assembly settings
	Component name
	Display name
	Description
	Component type
	Class name
	JSP file
	Load on startup
	Small icon
	Large icon
	Run as role name
	Description
	Run as role mode
	Unresolved action

	Web modules assembly settings
	File name
	Alternative DD
	Context root
	Classpath
	Display name
	Description
	Distributable
	Small icon
	Large icon
	Session configuration
	Session timeout
	Login configuration -- Authentication method
	Login configuration -- Realm name
	Login configuration -- Login page
	Form Login Config -- Error page
	Reload interval
	Reloading enabled
	Default error page
	Additional classpath
	File serving enabled
	Directory browsing enabled
	Serve servlets by classname
	Virtual hostname
	Filter mappings

	Assembly property extensions
	File serving attribute assembly settings
	File Serving Attribute (Name)
	File Serving Attribute (Value)

	Invoker attribute assembly settings
	Invoker Attribute (Name)
	Invoker Attribute (Value)

	Error page assembly settings
	Error code
	Error Code (Required, String)
	Exception
	Exception type name (Required, String)
	Location (Required, String)

	Web resource collections security constraint properties
	Web resource name
	Web resource description
	HTTP methods
	URL pattern

	Troubleshooting tips for Web application deployment
	Modifying the default Web container configuration
	Web container
	Web container settings
	Default virtual host
	Servlet caching

	Web Container Services settings
	Can Be Grown
	Default Priority
	Dynamic Properties
	Enable servlet caching
	HTTP Transport
	Inactivity Timeout
	Installed Web Modules
	Maximum Size
	Minimum Size
	Session Manager
	Thread Pool

	Web module settings
	URI
	Name
	Alternate DD
	Starting weight
	Prefer WEB-INF Classes
	Initial State

	Web Module Deployment settings
	URI
	Alternate DD
	Starting weight
	Classloader Mode

	Web applications: Resources for learning

	Chapter 3. Managing HTTP sessions
	Sessions
	Migrating HTTP sessions
	Developing session management in servlets
	SessionSample.java

	Assembling so that session data can be shared
	Servlet API Behavior

	Session security support
	Security integration rules for HTTP sessions
	Programmatic details and scenarios

	Session management support
	Configuring session management by level
	Session tracking options
	Session tracking with cookies
	Session tracking with URL rewriting
	Session tracking with SSL information

	Configuring session tracking
	Serializing access to session data
	Session Management settings
	Overwrite Session Management
	Session tracking mechanism
	Maximum in-memory session count
	Overflow
	Session timeout
	Security integration
	Serialize session access

	Cookie settings
	Cookie name
	Secure cookies
	Cookie domain
	Cookie path
	Cookie maximum age

	Distributed sessions
	Session recovery support
	Distributed Environment settings
	Distributed Environment

	Configuring for database session persistence
	Switching to a multirow schema
	Configuring tablespace and page sizes for DB2 session databases
	Database settings
	Datasource JNDI Name
	User ID
	Password
	Confirm Password
	DB2 Row Size
	Table Space Name
	Use Multirow Sessions

	Multirow schema considerations
	Coding considerations and test environment

	Memory-to-memory replication
	Configuring for memory to memory replication
	Memory-to-memory sessions settings
	Replication
	Listen to partition groups
	Runtime mode

	Clustered session support
	Tuning session management
	Configuring scheduled invalidation
	Usage considerations

	Configuring write contents
	Configuring write frequency
	Base in-memory session pool size
	Overflow in nondistributed sessions

	Controlling write operations
	Tuning parameter settings
	Tuning Level
	Write frequency
	Write contents
	Schedule sessions cleanup

	Best practices for using HTTP Sessions
	Managing HTTP sessions: Resources for learning:

	Chapter 4. Using enterprise beans in applications
	Enterprise beans
	Developing enterprise beans
	Migrating enterprise bean code to the supported specification
	Migrating enterprise bean code from Version 1.0 to Version 1.1
	Migrating enterprise bean code from Version 1.1 to Version 2.0

	WebSphere extensions to the Enterprise JavaBeans specification
	Best practices for developing enterprise beans

	Using access intent policies
	Access intent policies
	Concurrency control
	Read-ahead hints

	Applying access intent policies to methods
	Access intent exceptions
	Access intent assembly settings
	Name
	Description
	Methods - Name
	Methods - Enterprise bean
	Methods - Type
	Methods - Parameters
	Applied access intent

	Access intent best practices
	Frequently asked questions: Access intent

	EJB modules
	Assembling EJB modules
	CMP field assembly settings
	Name

	Container transactions
	Container transaction assembly settings
	Name
	Description
	Transaction attribute
	Methods - Name
	Methods - Enterprise bean
	Methods - Type
	Methods - Parameters

	EJB module assembly settings
	File name
	Alternate DD
	Classpath
	Display name
	Description
	EJB client JAR
	Small icon
	Large icon
	Generalizations - Subtype
	Generalizations - Supertype
	EJB relationships - Name
	Default data source - JNDI name
	Default CMP connection factory
	Default authorization - User ID
	Default authorization - Password

	Entity bean assembly settings
	EJB name
	Display name
	Description
	EJB class
	Remote - Home
	Remote - Interface
	Local interface - Home
	Local interface - Interface
	Persistence type
	Reentrant
	Primary key class
	Primary key field
	Version
	Abstract schema name
	Small icon
	Large icon
	Security identity
	Run-As mode
	Role name
	Description
	Concurrency control
	Inheritance root
	Bean Cache - Activate at
	Bean Cache - Load at
	Commit option
	Local Transactions - Unresolved action
	Local Transactions - Resolution control
	Local Transactions - Boundary
	Local Relationship Roles - Name
	Local Relationship Roles - Source EJB Name
	Local Relationship Roles - is Forward
	Local Relationship Roles - is Navigable
	Lifetime in cache
	Lifetime in cache usage
	JNDI name
	Data source - JNDI name
	Default Authorization - User ID
	Default Authorization - Password
	CMP Resource - JNDI name
	CMP Resource - Resource authentication

	EJB local-reference assembly settings
	Name
	Description
	Link
	Local interface
	Local home
	Type

	Message-driven bean assembly settings
	EJB name
	Display name
	Description
	EJB class
	Transaction type
	Message selector
	Acknowledge mode
	Destination type
	Listener port name

	Method extensions
	Method extension assembly settings
	Method type
	Name
	Parameters
	Isolation level attributes
	Isolation level
	Access intent - Intent type
	Finder descriptor - User
	Finder descriptor - EJB QL
	Finder descriptor - Full SELECT
	Finder descriptor - WHERE clause
	Security identity
	Description
	Run-As mode
	Role name
	Description

	Method permissions
	Method permission assembly settings
	Method permission name
	Description
	Methods - Name
	Methods - Enterprise bean
	Methods - Type
	Methods - Parameters
	Unchecked
	Roles - Role name

	Query assembly settings
	Name
	Parameters
	Result type

	References
	EJB reference assembly settings
	Name
	Description
	Link
	Home
	Remote
	Type
	JNDI name

	EJB relation assembly settings
	Description
	Source EJB
	Multiplicity
	Cascade delete
	CMR field

	Exclude list assembly settings
	Description
	Methods - Name
	Methods - Enterprise bean
	Methods - Type
	Methods - Parameters

	Security role assembly settings
	Role name
	Description
	Binding - Groups - Name
	Binding - Users - Name
	Binding - Special Subjects - Name

	Session bean assembly properties
	EJB name
	Display name
	Description
	EJB class
	Remote - Home
	Remote - Interface
	Local interface - Home
	Local interface - Interface
	Session type
	Transaction type
	Small icon
	Large icon
	Security identity
	Description
	Run-As mode
	Role name
	Description
	Timeout
	Inheritance root
	Bean Cache - Activate at
	Local Transactions - Unresolved action
	Local Transactions - Boundary
	JNDI name

	EJB containers
	Managing EJB containers
	EJB container settings
	Passivation directory
	Inactive pool cleanup interval
	Default datasource JNDI name
	Initial state

	EJB container system properties
	EJB cache settings
	Cleanup interval
	Cache size

	Container interoperability

	Deploying EJB modules
	EJB module collection
	URI

	EJB module settings
	URI
	Alternate DD
	Starting weight

	Enterprise beans: Resources for learning

	Chapter 5. Using message-driven beans in applications
	Message-driven beans - an overview
	Message-driven beans - components
	Message-driven beans - transaction support

	Designing an enterprise application to use message-driven beans
	Developing an enterprise application to use message-driven beans
	Migrating a JMS listener application to use message-driven beans

	Deploying an enterprise application to use message-driven beans
	Configuring deployment attributes for a message-driven bean

	Configuring message listener resources for message-driven beans
	Configuring the message listener service
	Message listener service

	Adding a new listener port
	Configuring a listener port
	Deleting a listener port
	Configuring security for message-driven beans
	Administering listener ports
	Starting a listener port
	Stopping a listener port

	Important files for message-driven beans and extended messaging
	Troubleshooting message-driven beans
	Message-driven beans samples

	Chapter 6. Using application clients
	Application clients
	Application client functions
	ActiveX application clients
	Applet clients
	J2EE application clients
	Pluggable application clients
	Thin application clients

	Example: Migrating application clients
	Migration tips for application clients

	Installing application clients
	Developing ActiveX application client code
	Starting an ActiveX application
	Starting an ActiveX application and configuring service programs
	Starting an ActiveX application and configuring non-service programs
	setupCmdLineXJB.bat, launchClientXJB.bat, and other ActiveX batch files

	JClassProxy and JObjectProxy classes
	Java virtual machine initialization tips
	Example: Developing ActiveX to enterprise bean bridge, using Java proxy objects
	Example: Calling Java methods in the ActiveX to enterprise bean bridge
	Java field programming tips
	ActiveX to Java primitive data type conversion values
	Example: Using helper methods for data type conversion

	Array tips for ActiveX application clients
	Error handling codes for ActiveX application clients
	Threading tips
	Example: Viewing System.out message
	Example: Enabling logging and tracing for application clients
	ActiveX client programming best practices

	Developing applet client code
	Accessing secure resources using the TCP/IP protocol for applet clients
	Applet client security requirements

	Applet client tag requirements
	Applet client code requirements

	Developing J2EE application client code
	J2EE application client class loading

	Developing pluggable application client code
	Developing thin application client code
	Assembling Application Client Modules
	Application client assembly settings
	File name (Required, String)
	Alternative DD
	Classpath
	Display name (Required, String)
	Small icon
	Large icon
	Description
	Main class (Required, String)

	Deploying application clients
	JDBC providers for application clients
	Data sources for application clients
	Configuring new data source providers (JDBC providers) for application clients
	Configuring new data source providers

	Configuring new data sources for application clients
	Mail providers and mail sessions for the Application Client Assembly Tool
	Configuring mail providers and sessions for application clients
	Mail provider settings for application clients
	Mail session settings for application clients
	Example: Configuring JavaMail provider and JavaMail session settings for application clients

	Configuring new mail sessions for application clients
	URLs for application clients
	URL providers for the Application Client Resource Configuration Tool
	Configuring new URL providers for application clients
	Configuring URL providers and sessions using the Application Client Resource Configuration Tool
	Example: Configuring URL and URL provider settings for application clients

	Configuring new URLs with the Application Client Resource Configuration Tool
	WebSphere asynchronous messaging using the Java Message Service API for the Application Client Resource Configuration Tool
	Configuring Java messaging client resources
	Configuring new JMS providers with the Application Client Resource Configuration Tool
	JMS provider settings for application clients
	WebSphere queue connection factory settings for application clients
	WebSphere topic connection factory settings for application clients
	WebSphere queue destination settings for application clients
	WebSphere topic destination settings for application clients
	MQSeries queue connection factory settings for application clients
	MQSeries topic connection factory settings for application clients
	MQSeries queue destination settings for application clients
	MQSeries topic destination settings for application clients
	Generic JMS connection factory settings for application clients
	Generic JMS destination settings for application clients
	Example: Configuring JMS Provider, JMS Connection Factory and JMS Destination settings for application clients

	Configuring new connection factories for application clients
	Configuring new Java Message Service destinations for application clients
	Example: Configuring MQ Queue and Topic connection factories and destination factories for application clients
	Example: Configuring WAS Queue and Topic connection factories and destination factories for application clients
	Configuring new resource environment providers for application clients
	Resource environment provider settings for application clients

	Configuring new resource environment entries for application clients
	Resource environment entry settings for application clients

	Managing application clients
	Updating data source and data source provider configurations with the Application Client Resource Configuration Tool
	Updating URLs and URL provider configurations for application clients
	Updating mail session configurations for application clients
	Updating Java Message Service provider, connection factories, and destination configurations for application clients
	Updating MQ Java Message Service provider, MQ connection factories, and MQ destination configurations for application clients
	Updating Resource Environment Entry and Resource Environment Provider configurations for application clients
	Example: Configuring Resource Environment settings
	Example: Configuring Resource Environment custom settings for application clients

	Removing application client resources

	Running application clients
	launchClient tool

	Application client troubleshooting tips

	Chapter 7. Developing and managing Web services
	Web services
	Developing a Simple Object Access Protocol client
	Deploying Web services applications
	Administering deployed Web services (XML-SOAP administrative tool)
	Securing Simple Object Access Protocol services
	Migrating SOAP security
	Securing Simple Object Access Protocol services with HTTP basic authentication
	Securing Simple Object Access Protocol services on Secured Socket Layer
	Securing SOAP services on SSL with SOAP Signature
	Simple Object Access Protocol signature architecture

	UDDI4J specifications
	Web services: Resources for learning

	Chapter 8. Enabling Web services to use the Web Services Invocation Framework
	Goals of WSIF
	WSIF - Web services are not just SOAP services
	WSIF - tying client code to a particular protocol implementation is restricting
	WSIF - incorporating new bindings into client code is hard
	WSIF - multiple bindings can be used in flexible ways
	WSIF - a freer Web services environment enables intermediaries

	An overview of WSIF
	WSIF architecture
	Using WSIF with Web services that offer multiple bindings
	WSIF and WSDL
	WSIF usage scenarios
	Dynamic invocation

	Using WSIF to invoke Web services
	Using the WSIF providers
	Using the SOAP provider
	Using the JMS providers
	Using the Java provider
	Using the EJB provider

	Developing a WSIF service
	Developing the WSIF client - the Address Book sample

	Using complex types
	Using JNDI
	Interacting with the WebSphere J2EE container
	Running WSIF as a client

	WSIF system management and administration
	Maintaining the WSIF properties file
	Enabling security for WSIF
	WSIF troubleshooting tips
	Trace and logging for WSIF
	WSIF (Web Services Invocation Framework) messages

	WSIF API
	WSIF API reference: Creating a message for sending to a port
	WSIF API reference: Finding a port factory or service
	WSIFService interface
	WSIFServiceFactory class

	WSIF API reference: Using ports
	WSIFPort interface
	WSIFOperation interface

	WSIF: Resources for learning

	Chapter 9. Classloading
	Classloaders
	Classloader collection
	Classloader ID
	Classloader Mode
	Classloader settings
	Classloader ID
	Classloader Mode

	Migrating the classloader Module Visibility Mode setting
	Classloading: Resources for learning

	Chapter 10. Using EJB query
	EJB query language
	Example: EJB queries
	FROM clause
	Inheritance in EJB query
	Path expressions
	WHERE clause
	Literals
	Input parameters
	Expressions
	Basic predicates
	Quantified predicates
	BETWEEN predicate
	IN predicate
	LIKE predicate
	NULL predicate
	EMPTY collection predicate
	MEMBER OF predicate
	EXISTS predicate
	IS OF TYPE predicate

	Scalar functions
	EJB query: Scalar functions

	Aggregation functions
	SELECT clause
	ORDER BY clause
	Subqueries
	EJB query restrictions
	EJB Query: Reserved words
	EJB query: BNF syntax
	Comparison of EJB 2.0 specification and WebSphere query language

	Chapter 11. Internationalizing applications
	Internationalization
	Identifying localizable text
	Creating message catalogs
	Composing language-specific strings
	Localization API support
	LocalizableTextFormatter class
	Creating a formatter instance
	Setting optional localization values
	Composing complex strings
	Nesting formatter instances for localized substrings

	Generating localized text
	Customizing the behavior of a formatting method

	Preparing the localizable-text package for deployment
	LocalizableTextEJBDeploy command

	Internationalization: Resources for learning

	Chapter 12. Using the transaction service
	Transaction support in WebSphere Application Server
	Resource manager local transaction (RMLT)
	Global transactions
	Local transaction containment (LTC)
	Using local transactions

	Local and global transaction considerations

	Developing components to use transactions
	Setting transactional attributes in the deployment descriptor
	Using bean-managed transactions

	Configuring transaction properties for an application server
	Transaction service settings
	Transaction log directory
	Total transaction lifetime timeout
	Client inactivity timeout

	Managing active transactions
	Managing transaction logging for optimum server availability
	Configuring transaction aspects of servers for optimum availability
	Moving a transaction log from one server to another
	Restarting an application server on a different host

	Transactional interoperation with non-WebSphere application servers
	Troubleshooting transactions
	Transaction service exceptions
	Standard exceptions
	Heuristic exceptions

	UserTransaction interface - methods available

	Chapter 13. Using naming
	Naming
	New features for name space support
	Name space logical view
	Name space partitions

	Initial context support
	Initial contexts registered with the ORB as initial references
	Default initial contexts

	Lookup names support in deployment descriptors and thin clients
	Relative names
	Qualified names

	JNDI support in WebSphere Application Server
	Developing applications that use JNDI
	Example: Getting the default initial context
	Determining which server is used to obtain the initial context

	Example: Getting an initial context by setting the provider URL property
	Using a CORBA object URL
	Using a CORBA object URL with multiple name server addresses
	Using a CORBA object URL from an non-WebSphere Application Server JNDI
	Using an IIOP URL

	Example: Setting the provider URL property to select a different root context as the initial context
	Selecting the initial root context with a CORBA object URL
	Selecting the initial root context with the name space root property

	Example: Looking up an EJB home with JNDI
	JNDI lookup from an application running in a container
	JNDI lookup from an application that does not run in a container
	JNDI lookup with a corbaname URL

	Example: Looking up a JavaMail session with JNDI
	JNDI interoperability considerations
	Interoperability with previous WebSphere Application Server Releases
	EJB clients running in an environment other than WebSphere Application Server accessing EJB applications running on WebSphere Application Server v5 servers
	Binding resources from MQSeries 5.2

	JNDI caching
	JNDI cache settings
	com.ibm.websphere.naming.jndicache.cachename
	com.ibm.websphere.naming.jndicache.cacheobject
	com.ibm.websphere.naming.jndicache.maxcachelife
	com.ibm.websphere.naming.jndicache.maxentrylife

	Example: Controlling JNDI cache behavior from a program
	JNDI name syntax
	INS name syntax
	JNDI to CORBA name mapping considerations
	Example: Setting the syntax used to parse name strings

	Developing applications that use CosNaming (CORBA Naming interface)
	Example: Getting an initial context with CosNaming
	Obtaining an ORB reference
	Using an ORB reference to get an initial naming reference
	Using an existing ORB and invoking string_to_object with a CORBA object URL with multiple name server addresses to get an initial context

	Example: Looking up an EJB home with CosNaming
	CosNaming resolve operation using a qualified name
	ORB string_to_object operation using an unqualified stringified name

	Configured name bindings
	Configured binding types

	Name space federation
	Name space bindings
	Configuring and viewing name space bindings
	String binding settings
	Scope
	Binding Type
	Binding Identifier
	Name in Name Space
	String Value

	CORBA object binding settings
	Scope
	Binding Type
	Binding Identifier
	Name in Name Space
	Corbaname URL
	Federated Context

	Indirect lookup binding settings
	Scope
	Binding Type
	Binding Identifier
	Name in Name Space
	Provider URL
	JNDI Name

	EJB binding settings
	Scope
	Binding Type
	Binding Identifier
	Name in Name Space
	Enterprise Bean Location
	Server
	JNDI Name

	Name space binding collection
	Name space bindings

	Configuring name servers
	Name server settings
	Name
	Initial State

	Troubleshooting name space problems
	dumpNameSpace tool
	Example: Invoking the name space dump utility
	Invoking name space dump utility from a command line
	Invoking name space dump utility from a Java program

	Name space dump utility forjava: and local:name space
	Name space dump options
	NameServer MBean invocation
	Name space dump output

	Example: Invoking the name space dump utility for java: andlocal: name spaces
	Dumping a java: name space
	Dumping a local: name space

	Name space dump sample output

	Naming and directories: Resources for learning

	Chapter 14. Improving performance through the dynamic cache service
	Dynamic cache
	Configuring globally the dynamic cache service
	DynamicCache service settings
	Startup state
	Cache Size
	Default Priority
	Disk offload
	Cache replication

	Configuring servlet caching
	Servlet caching

	Configuring cache replication
	Cache replication
	Internal messaging configuration settings

	Configuring the dynamic cache disk offload
	Configuring Edge Side Include caching
	Configuring external cache groups
	External cache group collection
	External cache group settings
	External cache group member collection
	External cache group member settings
	Configuring high-speed external caching through the Web server

	Displaying cache information
	Configuring cacheable objects with the cachespec.xml file
	Verifying the cacheable page
	Cachespec.xml file

	Configuring command caching
	Command class
	CacheableCommandImpl class
	Example: Caching a command object

	Example: Caching Web services
	Example: Configuring the dynamic cache

	Chapter 15. Managing user profiles
	User profile
	UserProfileManager class
	User profile development options
	Extending the data represented in user profiles
	Adding columns to the base user profile implementation
	Extending the User Profile enterprise bean and importing legacy databases
	UPServletExample.java
	UserProfileExtendedSample.java
	UPServletExampleExtended.java
	UserProfileExtended.java
	UPServletExtended.java

	userprofile.xml

	Chapter 16. Assembling applications
	Application assembly and J2EE applications
	Archive support in Version 5.0
	Starting the Application Assembly Tool (AAT)
	Migrating application modules from J2EE 1.2 to J2EE 1.3
	earconvert tool

	Assembling new or modifying existing modules
	Adding files to assembled modules
	Resource environment reference assembly settings
	Name
	Description
	Type

	Resource Adapter Archive file assembly settings
	File name
	Display name
	Description
	EIS type
	Vendor name
	Version
	Specification
	License required
	Implementation
	Interface
	Implementation
	Interface
	Implementation
	Support Reauthentication
	Transaction
	Small Icon
	Large Icon
	Basic Password
	Kerboros V5
	Property Name
	Property Type
	Property Value
	Description
	Permission Specification

	Saving applications after assembly
	Verifying archive files
	Generating code for deployment
	ejbdeploy tool
	ejbdeploy syntax -- relationship to Application Assembly Tool options

	Chapter 17. Deploying and managing applications
	Enterprise applications
	Installing a new application
	Preparing for application install settings
	Path
	Context Root
	Generate Default Bindings
	Prefixes
	Override
	EJB 1.1 CMP bindings
	Connection Factory Bindings
	Virtual Host
	Specific bindings file

	Example: Installing an EAR file using the default bindings

	Enterprise application collection
	Name
	Status
	Enterprise application settings
	Name
	Starting Weight
	Application Binaries
	Use Metadata From Binaries
	Enable Distribution
	Classloader Mode
	WAR Classloader Policy
	Create MBeans for Resources
	Reload Enabled
	Reload Interval
	Target mapping collection

	Starting and stopping applications
	Exporting applications
	Exporting DDL files
	Updating applications
	Hot deployment and dynamic reloading
	Changing or adding application files
	Changing or adding WAR files
	Changing or adding EJB Jar files
	Changing the HTTP plug-in configuration

	Uninstalling applications
	Deploying and managing applications: Resources for learning

