
IBM WebSphere Application Server, Version 5

Servers

���

Note
Before using this information, be sure to read the general information under “Trademarks and service marks” on page v.

Compilation date: July 21, 2003

© Copyright International Business Machines Corporation 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Trademarks and service marks v

Chapter 1. Welcome to Servers 1

Chapter 2. Configuring application
servers 3
Application servers 3
Creating application servers 4
Configuring application servers for UTF-8 encoding 5
Managing Application Servers 5
Application server collection 6

Name 6
Node 6
Status 6

Application server settings 6
Name 7
Application Class loader Policy 7
Application Classloading Mode 7
Short name 7
Unique Id 7
Process ID 7
Cell Name 8
Node Name 8
State 8

End point collection 8
End Point Name 8

End point settings 8
End Point Name 8
Host 9
Port 9

Custom property collection 9
Name 9
Value 9
Description 9
Required 9
Valid Expression 9

Custom property settings 9
Name 10
Value 10
Description 10

Server component collection 10
Type 10

Server component settings 10
Name 10
Initial State 10

Thread pool settings 11
Minimum size 11
Maximum size 11
Thread inactivity timeout 11
Growable thread pool 11

Starting servers 12
Running an Application Server with a non-root user
ID and the nodeagent as root 12
Running an Application Server and nodeagent with
a non-root user ID 14

Detecting and handling problems with run-time
components 16
Stopping servers 17
Transports 17
Configuring transports 17
HTTP transport collection 18

Host 18
Port 18
SSL Enabled 18

HTTP transport settings 18
Host 19
Port 19
SSL Enabled 19
SSL 19

Example: Setting custom properties for an HTTP
transport 19
Custom services 21
Developing custom services 21
Custom service collection 23

External Configuration URL 23
Classname 23
Display Name 23
Startup 23

Custom service settings 23
Startup 23
External Configuration URL 23
Classname 24
Display Name 24
Description 24
Classpath 24

Process definition 24
Defining application server processes 24
Process definition settings 25

Start Command 25
Start Command Args 25
Stop Command 26
Stop Command Args 26
Terminate Command 26
Terminate Command Args 26
Executable Name 26
Executable Arguments 26
Working Directory 27

Process execution settings 27
Process Priority 27
UMASK 27
Run As User 27
Run As Group 27
Run In Process Group 28

Process logs settings 28
Stdout File Name 28
Stderr File Name 28

Monitoring policy settings 28
Maximum Startup Attempts 29
Ping Interval 29
Ping Timeout 29
Automatic Restart 29

© Copyright IBM Corp. 2002 iii

Node Restart State 29
Java virtual machines (JVMs) 30
Using the JVM 30
Java virtual machine settings 30

Classpath 30
Boot Classpath 31
Verbose Class Loading 31
Verbose Garbage Collection 31
Verbose JNI 31
Initial Heap Size 31
Maximum Heap Size 32
Run HProf 32
HProf Arguments 32
Debug Mode 32
Debug Arguments 32
Generic JVM Arguments 33
Executable JAR File Name 34
Disable JIT 34
Operating System Name 34

Example: Configuring JVM sendRedirect calls to use
context root 34
Preparing to host applications 35
Java memory tuning tips 35
Application servers: Resources for learning 40

Chapter 3. Balancing workloads with
clusters 41
Workload management (WLM) 41

Techniques for managing state 42
Clusters 43
Creating clusters 43

Server cluster collection 44
Server cluster settings 45

Creating cluster members 46

Cluster member collection 47
Member name 47
Node 47
Status 47
Cluster member settings 47

Replication 48
Replication entry 48
Replication domain 49

Replicating data 49
Internal replication domain collection 51

Name 51
Internal replication domain settings 51

Name 52
Request Timeout 52
Encryption Type 52
DRS Partition Size 52
Single Replica 53
Serialization Method 53
DRS Pool Size 53
DRS Pool Connections 54

Replicator entry collection 54
Replicator Name 54

Replicator entry settings 54
Replicator Name 54
Server 54
Replicator and Client Host Name 54
Replicator Port 55
Client Port 55

Starting clusters 55
Stopping clusters 56
Tuning a workload management configuration . . 56
Workload management run-time exceptions . . . 57
Clustering and workload management: Resources
for learning 58

iv IBM WebSphere Application Server, Version 5: Servers

Trademarks and service marks

The following terms are trademarks of IBM Corporation in the United States, other
countries, or both:
v Everyplace
v iSeries
v IBM
v Redbooks
v ViaVoice
v WebSphere
v zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product and service names may be trademarks or service marks of
others.

© Copyright IBM Corp. 2002 v

vi IBM WebSphere Application Server, Version 5: Servers

Chapter 1. Welcome to Servers

The product provides application servers and more.

Application servers

Application servers extend the ability of a Web server to handle Web application
requests. An application server enables a server to generate a dynamic, customized
response to a client request.

You can configure one or more application servers and enhance the operation of an
application server as follows.
v “Configuring transports” on page 17
v “Developing custom services” on page 21
v “Defining application server processes” on page 24 from the command line
v Settings that improve the use of “Java virtual machines (JVMs)” on page 30.

See Chapter 2, “Configuring application servers,” on page 3.

Application servers use an Object Request Broker (ORB) for RMI/IIOP
communication.

Java Messaging (JMS) servers

The product supports asynchronous messaging based on the Java Messaging
Service (JMS) of a JMS provider that conforms to the JMS specification version
1.0.2 and supports the Application Server Facility (ASF) function defined within
that specification.

For IBM WebSphere Application Server, the JMS functions (of the JMS provider) for
an application server are served by the JMS server within the application server.

© Copyright IBM Corp. 2002 1

2 IBM WebSphere Application Server, Version 5: Servers

Chapter 2. Configuring application servers

An application server configuration provides settings that control how an
application server provides services for running enterprise applications and their
components.

This section describes how to create and configure application servers, and how to
otherwise handle server configurations.

A WebSphere Application Server administrator can configure one or more
application servers and perform tasks such as the following:

Steps for this task
1. Create application servers.
2. Manage application servers.
3. (Optional) Configure transports.
4. (Optional) Develop custom services.
5. (Optional) Define processes for the application server. As part of defining

processes, you can define process execution statements for starting or
initializing a UNIX process, monitoring policies to track the performance of a
process, process logs to which standard out and standard error streams write,
and name-value pairs for properties.

6. (Optional) Use the Java virtual machine.

After preparing a server, deploy an application or component on the server. See
″″Preparing to host applications″″ for a sample procedure that you might follow in
configuring the application server run-time and resources.

Application servers
Application servers extend a Web server’s capabilities to handle Web application
requests, typically using Java technology. An application server makes it possible
for a server to generate a dynamic, customized response to a client request.

For example, suppose—
1. A user at a Web browser on the public Internet visits a company Web site. The

user requests to use an application that provides access to data in a database.
2. The user request flows to the Web server.
3. The Web server determines that the request involves an application containing

resources not handled directly by the Web server (such as servlets). It forwards
the request to a WebSphere Application Server product.

4. The WebSphere Application Server product forwards the request to one of its
application servers on which the application is running.

5. The invoked application then processes the user request. For example:
v An application servlet prepares the user request for processing by an

enterprise bean that performs the database access.
v The application produces a dynamic Web page containing the results of the

user query.

© Copyright IBM Corp. 2002 3

6. The application server collaborates with the Web server to return the results to
the user at the Web browser.

The WebSphere Application Server product provides multiple application servers
that can be either separately configured processes or nearly identical clones.

Creating application servers
You can create a new application server using the wsadmin tool or the Create New
Application Server page of the administrative console. The steps below describe
how to use the Create New Application Server page.

Steps for this task
1. Go to the Application Servers page and click New. This brings you to the

Create New Application Server page.
2. Follow the instructions on the Create New Application Server page and define

your application server.
a. Select a node for the application server.
b. Type in a name for the application server. The name must be unique within

the node.
c. Select whether the new server will have unique ports for each HTTP

transport. By default, this option is enabled. If you select this option, you
might need to update the alias list for the virtual host that you plan to use
with this server to contain these new port values. If you deselect this
option, ensure that the default port values do not conflict with other servers
on the same physical machine.

d. Select a template to be used in creating the new server. You can use a
default application server template for your new server or use an existing
application server as a template. The new application server will inherit all
properties of the template server.

e. If you create the new server using an existing application server as a model,
select whether to map applications from the existing server to the new
server. By default, this option is disabled.

3. (Optional) To use multiple language encoding support in the administrative
console, configure an application server with UTF-8 encoding enabled.

Results

The new application server appears in the list of servers on the Application Servers
page.

What to do next

Note that the application server created has many default values specified for it.
An application server has many properties that can be set and creating an
application server on the Create New Application Server page specifies values for
only a few of the important properties. To view all of the properties of your
application server and to customize your application server further, click on the
name of your application server on the Application Servers page and change the
settings for your application server as needed.

4 IBM WebSphere Application Server, Version 5: Servers

Configuring application servers for UTF-8 encoding
To use multiple language encoding support in the administrative console, you
must configure an application server with UTF-8 encoding enabled.

Steps for this task
1. Create an application server or use an existing application server.
2. On the Application Server page, click on the name of the server you want

enabled for UTF-8.
3. On the settings page for the selected application server, click Process

Definition.
4. On the Process Definition page, click Java Virtual Machine.
5. On the Java Virtual Machine page, specify -Dclient.encoding.override=UTF-8

for Generic JVM Arguments and click OK.
6. Click Save on the console taskbar.
7. Restart the application server.

Note that the autoRequestEncoding option does not work with UTF-8 encoding
enabled. The default behavior for WebSphere Application Server is, first, to check if
charset is set on content type header. If it is, then the product uses content type
header for character encoding; if it is not, then the product uses character encoding
set on server using the system property default.client.encoding. If charset is not
present and the system property is not set, then the product uses ISO-8859-1.
Enabling autoRequestEncoding on a Web module changes the default behavior: if
charset it not present on an incoming request header, the product checks the
Accept-Language header of the incoming request and does encoding using the first
language found in that header. If there is no charset on content type header and no
Accept language header, then the product uses character encoding set on server
using the system property default.client.encoding. As with the default behavior, if
charset is not present and the system property is not set, then the product uses
ISO-8859-1.

Managing Application Servers
To view information about an Application Server, use the Application Servers page.
For the Network Deployment product, you can also use the Application Servers
page to manage Application Servers. For the base WebSphere Application Server
product, you cannot manage Application Servers from the administrative console;
you must manage Application Servers from a console hosted by a Network
Deployment deployment manager (dmgr) process. From the base product or the
Network Deployment product, use the wasadmin tool or command line tools such
as startServer and stopServer to manage the Application Server.

Steps for this task
1. Access the Application Servers page. Click Servers > Application Servers in

the console navigation tree.
2. View information about Application Servers.

 The Application Servers page lists Application Servers in the cell and the nodes
holding the Application Servers.
 To view additional information about a particular Application Server or to
further configure an Application Server, click on the Application Server name
under Name. This accesses the settings page for an Application Server.
 To view product information for an Application Server:

Chapter 2. Configuring application servers 5

a. Verify that the Application Server is running.
b. Display the Runtime tab on the settings page for an Application Server.
c. Click Product Information.

 The Product Information page displayed lists the WebSphere Application Server
products installed for the Application Server, the version and build levels for
the products, the build dates, and any interim fixes applied to the Application
Server.

3. Create an Application Server. Click New and follow the instructions on the
Create New Application Server page.

4. Monitor the running of Application Servers.
5. (Optional) Delete an Application Server.

a. Click Servers > Application Servers in the console navigation tree to access
the Application Servers page.

b. Place a checkmark in the check box beside an Application Server to delete
it.

c. Click Delete.
d. Click OK to confirm the deletion.

Application server collection
Use this page to view information about and manage application servers.

The Application Servers page lists application servers in the cell and the nodes
holding the application servers.

To view this administrative console page, click Servers > Application Servers.

Name
Specifies a logical name for the server. Server names must be unique within a
node.

Node
Specifies the name of the node for the application server.

Status
Indicates whether the application server is started or stopped.

Note that if the status is Unavailable, the node agent is not running in that node
and you must restart the node agent before you can start the server.

Application server settings
Use this page to view or change the settings of an application server instance.

To view this administrative console page, click Servers > Application Servers >
server_name.

The Configuration tab provides editable fields and the Runtime tab provides
read-only information. The Runtime tab is available only when the server is
running.

6 IBM WebSphere Application Server, Version 5: Servers

Name
Specifies a logical name for the server. Server names must be unique within a
node.

 Data type String
Default server1

Application Class loader Policy
Specifies whether to use a single class loader to load all applications or to use a
different class loader for each application.

The options are SINGLE and MULTIPLE. The default is to use a separate class
loader for each application (MULTIPLE).

 Data type String
Default MULTIPLE

Application Classloading Mode
Specifies whether the class loader should search in the parent class loader or in the
application class loader first to load a class. The standard for JDK class loaders and
WebSphere class loaders is PARENT_FIRST. By specifying PARENT_LAST, your
application can override classes contained in the parent class loader, but this action
can potentially result in ClassCastException or LinkageErrors if you have mixed
use of overriden classes and non-overriden classes.

The options are PARENT_FIRST and PARENT_LAST. The default is to search in
the parent class loader before searching in the application class loader to load a
class.

 Data type String
Default PARENT_FIRST

Short name
Specifies the short name of the server.

The name is 1-8 characters, alpha-numeric or national language. It cannot start
with a numeric.

The system assigns a cell-unique, default short name.

Unique Id
Specifies the unique ID of this server.

The unique ID property is read only. The system automatically generates the value.

Process ID
Specifies a string identifying the process.

 Data type String

Chapter 2. Configuring application servers 7

Cell Name
Specifies the name of the cell for the application server.

 Data type String
Default host_nameNetwork

Node Name
Specifies the name of the node for the application server.

 Data type String

State
Indicates whether the application server is started or stopped.

 Data type String
Default Started

End point collection
Use this page to view and manage communication end points used by run-time
components running within a process. End points provide host and port
specifications for a server.

To view this administrative console page, click Servers > Application Servers >
server_name > End Points.

Note that this page displays only when you are working with end points for
application servers.

End Point Name
Specifies the name of an end point. Each name must be unique within the server.

End point settings
Use this to view and change the configuration for a communication end point used
by run-time components running within a process. An end point provides host and
port specifications for a server.

To view this administrative console page, click Servers > Application Servers >
server_name > End Points > end_point_name

End Point Name
Specifies the name of the end point. The name must be unique within the server.

Note that this field displays only when you are defining an end point for an
application server.

 Data type String

8 IBM WebSphere Application Server, Version 5: Servers

Host
Specifies the IP address, domain name server (DNS) host name with domain name
suffix, or just the DNS host name, used by a client to request a resource (such as
the naming service, administrative service, or JMS broker).

For example, if the host name is myhost, the fully qualified DNS name can be
myhost.myco.com and the IP address can be 155.123.88.201.

 Data type String
Default *

Port
Specifies the port for which the service is configured to accept client requests. The
port value is used in conjunction with the host name.

 Data type Integer
Default None

Custom property collection
Use this page to view and manage arbitrary name-value pairs of data, where the
name is a property key and the value is a string value that can be used to set
internal system configuration properties.

To view this administrative console page, click Servers > Application Servers >
server_name > Custom Properties

Name
Specifies the name (or key) for the property.

Value
Specifies the value paired with the specified name.

Description
Provides information about the name-value pair.

Required
Specifies whether the value field requires a value. If this box is checked, you must
provide a value.

Valid Expression

Custom property settings
Use this page to configure arbitrary name-value pairs of data, where the name is a
property key and the value is a string value that can be used to set internal system
configuration properties. Defining a new property enables you to configure a
setting beyond that which is available in the administrative console.

To view this administrative console page, click Servers > Application Servers >
server_name > Custom Properties > property_name

Chapter 2. Configuring application servers 9

Name
Specifies the name (or key) for the property.

 Data type String

Value
Specifies the value paired with the specified name.

 Data type String

Description
Provides information about the name-value pair.

 Data type String

Server component collection
Use this page to view information about and manage server component types such
as application servers, messaging servers, or name servers.

To view this administrative console page, click Servers > Application Servers >
server_name > Server Components.

Type
Specifies the type of internal server.

Server component settings
Use this page to view or configure a server component instance.

To view this administrative console, click Servers > Application Servers >
server_name > Server Components > server_component_name.

Name
Specifies the name of the component.

 Data type String

Initial State
Specifies the desired state of the component when the server process starts. The
options are: Started and Stopped. The default is Started.

 Data type String
Default Started

10 IBM WebSphere Application Server, Version 5: Servers

Thread pool settings
Use this page to configure a group of threads that an application server uses.
Requests are sent to the server through any of the HTTP transports. A thread pool
enables components of the server to reuse threads to eliminate the need to create
new threads at run time. Creating new threads expends time and resources.

To view this administrative console page, click Servers > Manage Application
Servers > server_name > ORB Service > Thread Pool. (You can reach this page
through more than one navigational route.)

Minimum size
Specifies the minimum number of threads to allow in the pool.

 Data type Integer
Default 10

Maximum size
Specifies the maximum number of threads to allow in the pool.

If your Tivoli Performance Viewer shows the Percent Maxed metric to remain
consistently in the double digits, consider increasing the Maximum size. The
Percent Maxed metric indicates the amount of time that the configured threads are
used. If there are several simultaneous clients connecting to the server-side ORB,
increase the size to support up to 1000 clients.

 Data type Integer
Default 50
Recommended 50 (25 on Linux systems)

Thread inactivity timeout
Specifies the number of milliseconds of inactivity that should elapse before a
thread is reclaimed. A value of 0 indicates not to wait and a negative value (less
than 0) means to wait forever.

 Data type Integer
Units Milliseconds
Default 3500

Growable thread pool
Specifies whether the number of threads can increase beyond the maximum size
configured for the thread pool.

 Data
type

Boolean

Default Not enabled (false)
Range Valid values are Allow thread allocation beyond maximum thread size or Not

enabled.

Chapter 2. Configuring application servers 11

Starting servers
Starting a server starts a new server process based on the process definition
settings of the current server configuration.

There are several options for starting an Application Server:

Steps for this task
1. (Optional) Use the startServer command to start an Application Server from

the command line.
2. (Optional) Start an Application Server for tracing and debugging.

 To start the Application Server with standard Java debugging enabled:
a. Click Servers > Application Servers from the administrative console

navigation tree. Then, click the Application Server whose processes you
want to trace and debug, Process Definition, and Java Virtual Machine.

b. On the Java Virtual Machine page, place a checkmark in the check box for
the Debug Mode setting to enable the standard Java debugger. If needed,
set debug arguments. Then, click OK.

c. Save the changes to a configuration file.
d. Stop the Application Server.
e. Start the Application Server again as described previously.

Running an Application Server with a non-root user ID and the
nodeagent as root

Use this task to configure an Application Server to run as non-root.

By default, WebSphere Application Server on UNIX platforms uses the root user ID
to run Application Servers. You can use a non-root user ID to run Application
Servers.

If global security is enabled, it is not recommended that the Local OS be used for
user registry. In general, using the Local OS user registry requires that all processes
run as root. Refer to ″Local operating system user registries″ (not in this document)
for details.

Using a non-root user ID to run Application Servers can be done by setting all the
Application Servers to run under the same operating system group. If running the
WebSphere JMS provider, add the jmsserver server to the mqm group to allow
jmsserver to start the message queue. If not running jmsserver, you can use a
group other than mqm in the following steps:

Steps for this task
 1. Log on as root.
 2. Create the was1 user ID to be used to run the Application Server.
 3. Add users root and was1 to the mqm group.
 4. Reboot the machine.
 5. Configure Application Server properties for the root and was1 users.

 Use the administrative console to complete the following steps:
a. Define the nodeagent to run as a root process.

12 IBM WebSphere Application Server, Version 5: Servers

Click System Management > Node Agents > nodeagent (for the node) >
Process Definition > Process Execution and change these values:

 Property Value

Run As User root

Run As Group mqm

UMASK 002

b. Define each Application Server to run as a was1 process. Substitute the
name of each server for server1.
 Click Servers > Application Servers > server1 > Process Definition >
Process Execution and change these values:

 Property Value

Run As User was1

Run As Group mqm

UMASK 002

c. If running the WebSphere JMS provider, define the jmsserver process to
run as a root process.
 Click JMS Servers > jmsserver (for the node) > Process Definition >
Process Execution and change these values:

 Property Value

Run As User root

Run As Group mqm

UMASK 002

 6. Save and synchronize.
 7. Stop all servers, including the server1 and jmsserver servers.

 Use the stopserver command:
stopserver server1
stopserver jmsserver

 8. Stop the node.
 Use the stopnode command:
stopnode

 9. As root, use operating system tools to change file permissions.
 The following examples assume that the WebSphere Application Server
installation root directory is /opt/WebSphere/AppServer:
 chgrp mqm /opt/WebSphere
 chgrp mqm /opt/WebSphere/AppServer
 chgrp -R mqm /opt/WebSphere/AppServer/config
 chgrp -R mqm /opt/WebSphere/AppServer/logs
 chgrp -R mqm /opt/WebSphere/AppServer/wstemp
 chgrp -R mqm /opt/WebSphere/AppServer/installedApps
 chgrp -R mqm /opt/WebSphere/AppServer/temp
 chgrp -R mqm /opt/WebSphere/AppServer/tranlog
 chgrp -R mqm /opt/WebSphere/AppServer/cloudscape50
 chgrp -R mqm /opt/WebSphere/AppServer/cloudscape51
 chgrp -R mqm /opt/WebSphere/AppServer/bin/DefaultDB
 chmod g+w /opt/WebSphere
 chmod g+w /opt/WebSphere/AppServer
 chmod -R g+w /opt/WebSphere/AppServer/config

Chapter 2. Configuring application servers 13

chmod -R g+w /opt/WebSphere/AppServer/logs
 chmod -R g+w /opt/WebSphere/AppServer/wstemp
 chmod -R g+w /opt/WebSphere/AppServer/installedApps
 chmod -R g+w /opt/WebSphere/AppServer/temp
 chmod -R g+w /opt/WebSphere/AppServer/tranlog
 chmod -R g+w /opt/WebSphere/AppServer/cloudscape50
 chmod -R g+w /opt/WebSphere/AppServer/cloudscape51
 chmod -R g+w /opt/WebSphere/AppServer/bin/DefaultDB

10. Start the node, the jmsserver, and all Application Servers.
 Start the nodeagent and the jmsserver from root. Start each Application Server
from the was1 user.

11. If running the WebSphere JMS provider, verify that the MQ queue is running.
 Run the dspmq command:
dspmq
 The name of the queue is WAS_wasnode_jmsserver.

Results

You can start an Application Server from a non-root user.

Running an Application Server and nodeagent with a non-root user ID
By default, each base Application Server node on Linux and UNIX platforms uses
the root user ID to run the nodeagent process, the jmsserver process, and all
Application Server processes. You can run the nodeagent, the jmsserver, and all
Application Server processes under the same non-root user and user group.

If global security is enabled, the user registry must not be Local OS. Using the
Local OS user registry requires the nodeagent to run as root.

Using the same non-root user and user group gives the nodeagent process the
operating system permissions to start all other server processes. If using the
WebSphere JMS provider, the user group must be mqm for the jmsserver to start the
message queue. If you are not using the WebSphere JMS provider, you can specify
a user group other than mqm.

For the steps that follow, assume that:
v wasadmin is the user to run all servers
v wasnode is the node name
v wascell is the cell name
v mqm and mqbrkrs are user groups associated with the WebSphere JMS provider
v server1 is the Application Server
v /opt/WebSphere/Appserver is the installation root
v jmsserver exists because you are using the WebSphere JMS provider

To configure a user ID to run the nodeagent and all server processes, complete the
following steps:

Steps for this task
 1. Log on as root.
 2. Create user wasadmin with primary group mqm.

 Also add user wasadmin to group mqbrkrs if you are running the WebSphere
JMS provider.

14 IBM WebSphere Application Server, Version 5: Servers

3. Reboot the machine.
 4. Define the nodeagent to run as a wasadmin process.

 Click System Management > Node Agents > nodeagent (for the node) >
Process Definition > Process Execution and change these values:

 Property Value

Run As User wasadmin

Run As Group mqm

UMASK 002

 5. Define each Application Server to run as a wasadmin process. Substitute the
name of each server for server1.
 Click Servers > Application Servers > server1 > Process Definition > Process
Execution and change these values:

 Property Value

Run As User wasadmin

Run As Group mqm

UMASK 002

 6. If running the WebSphere JMS provider, define the jmsserver process to run
as a wasadmin process.
 Click JMS Servers > jmsserver (for the node) > Process Definition > Process
Execution and change these values:

 Property Value

Run As User wasadmin

Run As Group mqm

UMASK 002

 7. Save and synchronize.
 8. Stop all servers, including the server1 and jmsserver servers.

 Use the stopserver command:
stopserver server1
stopserver jmsserver

 9. Stop the node.
 Use the stopnode command:
stopnode

10. If running the WebSphere JMS provider, delete the default queue manager for
the Application Server.
 From the install_root/bin directory, run the deletemq command as root:
deletemq.sh wascell wasnode jmsserver

 11. If running the WebSphere JMS provider, create the WebSphere JMS provider
queue manager and broker for the Application Server.
 Run the createmq command as wasadmin:
createmq.sh /opt/WebSphere/AppServer wascell wasnode jmsserver

 12. As root, use operating system tools to change file permissions:
 chgrp mqm /opt/WebSphere
 chgrp mqm /opt/WebSphere/AppServer
 chgrp -R mqm /opt/WebSphere/AppServer/config

Chapter 2. Configuring application servers 15

chgrp -R mqm /opt/WebSphere/AppServer/logs
 chgrp -R mqm /opt/WebSphere/AppServer/wstemp
 chgrp -R mqm /opt/WebSphere/AppServer/installedApps
 chgrp -R mqm /opt/WebSphere/AppServer/temp
 chgrp -R mqm /opt/WebSphere/AppServer/tranlog
 chgrp -R mqm /opt/WebSphere/AppServer/cloudscape50
 chgrp -R mqm /opt/WebSphere/AppServer/cloudscape51
 chgrp -R mqm /opt/WebSphere/AppServer/bin/DefaultDB
 chmod g+w /opt/WebSphere
 chmod g+w /opt/WebSphere/AppServer
 chmod -R g+w /opt/WebSphere/AppServer/config
 chmod -R g+w /opt/WebSphere/AppServer/logs
 chmod -R g+w /opt/WebSphere/AppServer/wstemp
 chmod -R g+w /opt/WebSphere/AppServer/installedApps
 chmod -R g+w /opt/WebSphere/AppServer/temp
 chmod -R g+w /opt/WebSphere/AppServer/tranlog
 chmod -R g+w /opt/WebSphere/AppServer/cloudscape50
 chmod -R g+w /opt/WebSphere/AppServer/cloudscape51
 chmod -R g+w /opt/WebSphere/AppServer/bin/DefaultDB

13. Log in as wasadmin.
 14. From wasadmin, run the startNode command to start the nodeagent process:

 startnode

15. From wasadmin, run the startserver command to start the jmsserver and all
Application Servers:
 startserver jmsserver
 startserver server1

16. If running the WebSphere JMS provider, verify that the MQ queue is running:
 Run the dspmq command:
dspmq
 The name of the queue is WAS_wasnode_jmsserver.

Results

You can start an Application Server, the jmsserver, and the nodeagent from a
non-root user.

Detecting and handling problems with run-time components
You must monitor the status of run-time components to ensure that, once started,
they remain operational as needed.

Steps for this task
1. Regularly examine the status of run-time components.

 One way is using the Logging and Tracing page of the administrative console.
Click Troubleshooting > Logs and Trace in the console navigation tree to
access the page.
 Another way is to browse messages displayed under Websphere Runtime
Messages in the WebSphere status area at the bottom of the console. The
run-time event messages marked with a red X provide detailed information on
event processing.

2. If an application stops running when it should be operational, examine the
application’s status on an Applications page and try restarting the application.

3. If the run-time components do not restart, re-examine the messages and read
information on problem determination to help you to restart the components.

16 IBM WebSphere Application Server, Version 5: Servers

Stopping servers
Stopping an Application Server stops a server process based on the process
definition settings in the current Application Server configuration.

Steps for this task
1. Use the stopServer command to stop an Application Server from the command

line.
 A warning message appears if you are stopping the Application Server that is
running the administrative console application.

Transports
A transport is the request queue between a WebSphere Application Server plug-in
for Web servers and a Web container in which the Web modules of an application
reside. When a user at a Web browser requests an application, the request is
passed to the Web server, then along the transport to the Web container.

Transports define the characteristics of the connections between a Web server and
an application server, across which requests for applications are routed.
Specifically, they define the connection between the Web server plug-in and the
Web container of the application server.

Administering transports is closely related to administering WebSphere Application
Server plug-ins for Web servers. Indeed, without a plug-in configuration, a
transport configuration is of little use.

The internal transport

The internal HTTP transport allows HTTP requests to be routed to the application
server directly or indirectly through a Web server plug-in. By default, the internal
HTTP transport listens for HTTP requests on port 9080 and for HTTPS requests on
port 9443.

For example, use the URL http://localhost:9080/snoop to send requests to the
snoop servlet on the local machine over HTTP and https://localhost:9443/snoop
to send requests to the snoop servlet on the local machine over HTTPS.

At times, you might be able to configure the internal transport to use ports other
than 9080 and 9443. The transport configuration is a part of the Web container
configuration. To change the port number, you must adjust your virtual host alias
and what you type into the Web browser.

Configuring transports
You configure transports to specify:
v How to manage a set of connections. For example, to specify the number of

concurrent requests to allow.
v Whether to secure the connections with SSL
v Host and IP information for the transport participants

Steps for this task
1. Create an HTTP transport.

a. Ensure that virtual host aliases include port values for the new transport.

Chapter 2. Configuring application servers 17

b. Go to the HTTP Transports page and click New.
c. On the settings page for an HTTP transport, specify values such as the

transport’s host name and port number, then click OK.
2. (Optional) Change the configuration for an existing transport.

a. Ensure that virtual host aliases include port values for the transport your
are changing.

b. Go to the HTTP Transports page and click on the transport under Host
whose configuration you want to change.

c. On the settings page for an HTTP transport, which might have the page
title DefaultSSLSettings, change the specified values as needed, then click
OK.

3. Regenerate the WebSphere plug-in for the Web server.

What to do next

If the Web server is located on a machine remote from the application server, you
might also need to perform special configuration tasks to redirect application
requests from the Web server machine to the application server machine.

HTTP transport collection
Use this page to view or manage HTTP transports. Transports provide request
queues between WebSphere plug-ins for Web servers and Web containers in which
the Web modules of applications reside. When you request an application in a Web
browser, the request is passed to the Web server, then along the transport to the
Web container.

To view this administrative console page, click Servers > Application Servers >
server_name > Web Container > HTTP Transports.

Host
Specifies the host IP address to bind for transport. If the application server is on a
local machine, the host name might be localhost.

Port
Specifies the port to bind for transport. The port number can be any port that
currently is not in use on the system. The port number must be unique for each
application server instance on a given machine.

SSL Enabled
Specifies whether to protect connections between the WebSphere plug-in and
application server with Secure Sockets Layer (SSL). The default is not to use SSL.

HTTP transport settings
Use this page to view and configure an HTTP transport. The name of the page
might be that of an SSL setting such as DefaultSSLSettings.

To view this administrative console page, click Servers > Application Servers >
server_name > Web Container > HTTP Transports > host_name.

18 IBM WebSphere Application Server, Version 5: Servers

Host
Specifies the host IP address to bind for transport.

If the application server is on a local machine, the host name might be localhost.

 Data type String

Port
Specifies the port to bind for transport. Specify a port number between 1 and
65535. The port number must be unique for each application server on a given
machine.

 Data type Integer
Range 1 to 65535

SSL Enabled
Specifies whether to protect connections between the WebSphere plug-in and
application server with Secure Sockets Layer (SSL). The default is not to use SSL.

 Data type Boolean
Default false

SSL
Specifies the Secure Sockets Layer (SSL) settings type for connections between the
WebSphere plug-in and application server. The options include one or more SSL
settings defined in the Security Center; for example, DefaultSSLSettings,
ORBSSLSettings, or LDAPSSLSettings.

 Data type String
Default An SSL setting defined in the Security Center

Example: Setting custom properties for an HTTP transport
WebSphere Application Server has several transport properties that are not shown
in the settings page for an HTTP transport. They are as follows:

ConnectionIOTimeout
Specifies the maximum number of seconds to wait when trying to read or
process data during a request. Data type: Integer.

 The default value is five seconds. This value determines how long to wait
while receiving two subsequent data packets for the same HTTP request.
For example, using the default ConnectionIOTimeout setting of five
seconds, if an HTTP client sends two data packets spaced six seconds
apart, the timeout will fire, and a java.io.InterruptedIOException is raised.
This will terminate the HTTP request and it will not be read.. The HTTP
client will have to reissue the request.

ConnectionKeepAliveTimeout
Specifies the maximum number of seconds to wait for the next request on
a keep alive connection. Data type: Integer.

MaxKeepAliveConnections
Specifies the maximum number of concurrent keep alive (persistent)

Chapter 2. Configuring application servers 19

connections across all HTTP transports. To make a particular transport
close connections after a request, you can set MaxKeepAliveConnections to
0 (zero) or you can set KeepAliveEnabled to false on that transport.

 The Web server plug-in keeps connections open to the application server as
long as it can. However, if the value of this property is too small,
performance is negatively impacted because the plug-in has to open a new
connection for each request instead of sending multiple requests through
one connection. The application server might not accept a new connection
under a heavy load if there are too many sockets in TIME_WAIT state. If
all client requests are going through the Web server plug-in and there are
many TIME_WAIT state sockets for port 9080, the application server is
closing connections prematurely, which decreases performance. The
application server closes the connection from the plug-in, or from any
client, for any of the following reasons:
v The client request was an HTTP 1.0 request when the Web server plug-in

always sends HTTP 1.1 requests.
v The maximum number of concurrent keep-alives was reached. A

keep-alive must be obtained only once for the life of a connection, that
is, after the first request is completed, but before the second request can
be read.

v The maximum number of requests for a connection was reached,
preventing denial of service attacks in which a client tries to hold on to a
keep-alive connection forever.

v A time out occurred while waiting to read the next request or to read
the remainder of the current request.

 Data type Integer

Default 90% of the maximum number of threads in
the Web container thread pool. This prevents
all of the threads from being held by keep
alive connections so that there are threads
available to handle new incoming connect
requests.

MaxKeepAliveRequests
Specifies the maximum number of requests which can be processed on a
single keep alive connection.This parameter can help prevent denial of
service attacks when a client tries to hold on to a keep-alive connection.
The Web server plug-in keeps connections open to the application server as
long as it can, providing optimum performance.

 Data type Integer

Default 100

KeepAliveEnabled
Specifies whether to keep connections alive or not. Data type: Boolean.
Default is true.

 You can set these properties on either the Web Container or HTTP Transport
Custom Properties pages. When set on the Web container Custom Properties page,
all transports inherit the properties. Setting the same properties on a transport
overrides like settings defined for a Web container.

20 IBM WebSphere Application Server, Version 5: Servers

To specify values for these custom properties for a specific transport on the HTTP
Transport Custom Properties page:

Steps for this task
1. Access the settings page for transport properties:

a. In the console navigation tree, click Servers > Application Servers >
server_name > Web Container > HTTP Transport

b. Click on the HOST whose properties you want to set.
c. Under Additional Properties select Custom Properties.
d. On the Custom Properties page, click New.

2. On the settings page for a new property, enter the name of the transport
property and the value to which you want it set. For example, if you want the
transport to wait a maximum of 60 seconds when trying to read or write data
during a request, enter ConnectionIOTimeout for name and 60 for value. Then
click OK.

3. Click Save on the console taskbar and save the changes to the configuration.
4. Restart the server.
5. Regenerate the Web server plug-in.

Custom services
A custom service provides the ability to plug into a WebSphere application server
to define a hook point that runs when the server starts and shuts down.

A developer implements a custom service containing a class that implements a
particular interface. The administrator configures the custom service in the
administrative console, identifying the class created by the developer. When an
application server starts, any custom services defined for the application server are
loaded and the server run-time calls their initialize methods.

Developing custom services
To define a hook point to be run when a server starts and shuts down, you
develop a custom service class and then use the administrative console to
configure a custom service instance for an application server. When the application
server starts, the custom service starts and initializes.

Steps for this task
1. Develop a custom service class that implements the

com.ibm.websphere.runtime.CustomService interface.
 The properties passed by the application server run-time to the initialize
method can include one for an external file containing configuration
information for the service (retrieved with externalConfigURLKey). In addition,
the properties can contain any name-value pairs that are stored for the service,
along with the other system administration configuration data for the service.
The properties are passed to the initialize method of the service as a Properties
object.
 There is a shutdown method for the interface as well. Both methods of the
interface declare that they may throw an exception, although no specific
exception subclass is defined. If an exception is thrown, the run-time logs it,
disables the custom service, and proceeds with starting the server.

Chapter 2. Configuring application servers 21

2. On the Custom Service page of the administrative console, click New. Then, on
the settings page for a custom service instance, create a custom service
configuration for an existing application server, supplying the name of the class
implemented.
 If your custom services class requires a configuration file, specify the
fully-qualified path name to that configuration file in the externalConfigURL
field. This file name is passed into your custom service class.

3. Stop the application server and then restart the server.
4. Check the application server to ensure that the initialize method of the custom

service ran as intended. Also ensure that the shutdown method performs as
intended when the server stops.

Usage scenario

As mentioned above, your custom services class must implement the
CustomService interface. In addition, your class must implement the initialize and
shutdown methods. Suppose the name of the class that implements your custom
service is ServerInit, your code would declare this class as shown below. The code
below assumes that your custom services class needs a configuration file. It shows
how to process the input parameter in order to get the configuration file. If your
class does not require a configuration file, the code that processes configProperties
is not needed.
public class ServerInit implements CustomService
{
/**
* The initialize method is called by the application server run-time when the
* server starts. The Properties object passed to this method must contain all
* configuration information necessary for this service to initialize properly.
*
* @param configProperties java.util.Properties
*/
 static final java.lang.String externalConfigURLKey =
 "com.ibm.websphere.runtime.CustomService.externalConfigURLKey";

 static String ConfigFileName="";

 public void initialize(java.util.Properties configProperties) throws Exception
 {
 if (configProperties.getProperty(externalConfigURLKey) != null)
 {
 ConfigFileName = configProperties.getProperty(externalConfigURLKey);
 }

 // Implement rest of initialize method
 }

/**
* The shutdown method is called by the application server run-time when the
* server begins its shutdown processing.
*
* @param configProperties java.util.Properties
*/
 public void shutdown() throws Exception
 {
 // Implement shutdown method
 }

22 IBM WebSphere Application Server, Version 5: Servers

Custom service collection
Use this page to view a list of services available to the application server and to
see whether the services are enabled. A custom service provides the ability to plug
into a WebSphere application server and define code that runs when the server
starts or shuts down.

To view this administrative console page, click Servers > Application Servers >
server_name > Custom Services.

External Configuration URL
Specifies the URL for a custom service configuration file.

If your custom services class requires a configuration file, the value provides a
fully-qualified path name to that configuration file. This file name is passed into
your custom service class.

Classname
Specifies the class name of the service implementation. This class must implement
the Custom Service interface.

Display Name
Specifies the name of the service.

Startup
Specifies whether the server attempts to start and initialize the service when its
containing process (the server) starts. By default, the service is not enabled when
its containing process starts.

Custom service settings
Use this page to configure a service that runs in an application server.

To view this administrative console page, click Servers > Application Servers >
server_name > Custom Services > custom_service_name.

Startup
Specifies whether the server attempts to start and initialize the service when its
containing process (the server) starts. By default, the service is not enabled when
its containing process starts. To enable the service, place a checkmark in the check
box.

 Data type Boolean
Default false

External Configuration URL
Specifies the URL for a custom service configuration file.

If your custom services class requires a configuration file, specify the
fully-qualified path name to that configuration file for the value. This file name is
passed into your custom service class.

Chapter 2. Configuring application servers 23

Data type String
Units URL

Classname
Specifies the class name of the service implementation. This class must implement
the Custom Service interface.

 Data type String
Units Java class name

Display Name
Specifies the name of the service.

 Data type String

Description
Describes the custom service.

 Data type String

Classpath
Specifies the class path used to locate the classes and JAR files for this service.

 Data type String
Units Class path

Process definition
A process definition specifies the run-time characteristics of an application server
process.

A process defintions can include characteristics such as JVM settings, standard in,
error and output paths, and the user ID and password under which a server runs.

Defining application server processes
To enhance the operation of an application server, you can define command-line
information for starting or initializing an application server process. Such settings
define run-time properties such as the program to run, arguments to run the
program, the working directory.

Steps for this task
1. Go to the settings page for a process defintion in the administrative console.

Click Servers > Application Servers in the console navigation tree, click on an
application server name and then Process Definition.

2. On the settings page for a process defintion, specify the name of the executable
to run, any arguments to pass when the process starts running, and the
working directory in which the process will run. Then click OK.

3. (Optional) Specify process execution statements for starting or initializing a
UNIX process.

24 IBM WebSphere Application Server, Version 5: Servers

4. (Optional) Specify monitoring policies to track the performance of a process.
5. (Optional) Specify process logs to which standard out and standard error

streams write. Complete this step if you do not want to use the default file
names.

6. (Optional) Specify name-value pairs for properties needed by the process
definition.

7. Stop the application server and then restart the server.
8. Check the application server to ensure that the process definition runs and

operates as intended.

Process definition settings
Use this page to view or change settings for a process definition, which provides
command-line information for starting or initializing a process.

To view this administrative console page, click Servers > Application Servers >
server_name > Process Definition.

Start Command
Specifies the platform-specific command to launch the server process.

Control process

 Data type String
Format START control JCL procedure name
Example START BBO5ACR

Servant process

 For the servant process, the value on the start command specifies the
procedure name that Workload Manger (WLM) uses to start the servant
process. This value is used only if the WLM Dynamic Application
Environment feature is installed.

 Data type String
Format START servant JCL procedure name
Example START BBO5ASR

Start Command Args
Specifies any additional arguments required by the start command.

Control process

 Data
type

String

Format JOBNAME=server short name,ENV=cell short name.node short name.server short name
Example JOBNAME=BBOS001,ENV=SY1.SY1.BBOS001

Servant process

 Data
type

String

Format JOBNAME=server short nameS,ENV=cell short name.node short name.server short
name

Example JOBNAME=BBOS001S,ENV=SY1.SY1.BBOS001

Chapter 2. Configuring application servers 25

Stop Command
Specifies the platform-specific command to stop the server process

Specify two commands in the field, one for the Stop command and one for the
Immediate Stop (CANCEL) command.

 Data type String
Format STOP server short name;CANCEL server short name
Example STOP BBOS001;CANCEL BBOS001

Stop Command Args
Specifies any additional arguments required by the stop command.

Specify arguments for the Stop command and the Immediate Stop (CANCEL)
command.

 Data type String
Format stop command arg string;immediate stop

command arg string
Example ;ARMRESTART

Note: In this example, Stop has no
arguments. Immediate Stop has the argument
ARMRESTART. A semicolon precedes
ARMRESTART.

Terminate Command
Specifies the platform-specific command to terminate the server process

 Data type String
Format FORCE server short name
Example FORCE BBOS001

Terminate Command Args
Specifies any additional arguments required by the terminate command.

The default is an empty string.

 Data type String
Format terminate command arg string
Example ARMRESTART

Executable Name
Specifies the executable name of the process.

 Data type String

Executable Arguments
Specifies executable commands that run when the process starts.

26 IBM WebSphere Application Server, Version 5: Servers

For example, the executable target program might expect three arguments: arg1
arg2 arg3.

 Data type String
Units Java command-line arguments

Working Directory
Specifies the file system directory in which the process will run.

This directory is used to determine the locations of input and output files with
relative path names.

Passivated enterprise beans are placed in the current working directory of the
application server on which the beans are running. Make sure the working
directory is a known directory under the root directory of the WebSphere
Application Server product.

 Data type String

Process execution settings
Use this page to view or change command-line information for starting or
initializing a UNIX process.

To view this administrative console page, click Servers > Application Servers >
server_name > Process Definition > Process Execution.

Process Priority
Specifies the operating system priority for the process. Only root users can change
this value.

 Data type Integer
Default 1000 for WebSphere Application Server on

most operating systems. On OS/400, the
default is 25.

UMASK
Specifies the user mask under which the process runs (the file-mode permission
mask).

 Data type Integer

Run As User
Specifies the user that the process runs as.

 Data type String

Run As Group
Specifies the group that the process is a member of and runs as.

On OS/400, the Run As Group setting is ignored.

Chapter 2. Configuring application servers 27

Data type String

Run In Process Group
Specifies a specific process group for the process. This process group is useful for
such things as processor partitioning. A system admininistor can assign a process
group to run on, for example, 6 of 12 processors. The default (0) is not to assign
the process to any specific group.

On OS/400, the Run In Process Group setting is ignored.

 Data type Integer
Default 0

Process logs settings
Use this page to view or change settings for specifying the files to which standard
out and standard error streams write.

To view this administrative console page, click Servers > Application Servers >
server_name > Process Definition > Process Logs.

Stdout File Name
Specifies the file to which the standard output stream is directed. The file name
can include a symbolic path name defined in the variable entries.

Use the field on the configuration tab to specify the file name. Use the field on the
runtime tab to select a file for viewing. View the file by clicking View.

Direct server output to the administrative console or to the process that launched
the server, by either deleting the file name or specifying console on the
configuration tab.

 Data type String
Units File path name

Stderr File Name
Specifies the file to which the standard error stream is directed. The file name can
include a symbolic path name defined in the variable entries.

Use the field on the configuration tab to specify the file name. Use the field on the
runtime tab to select a file for viewing. View the file by clicking View.

 Data type String
Units File path name

Monitoring policy settings
Use this page to view or change settings that control how the node agent monitors
and restarts a process.

28 IBM WebSphere Application Server, Version 5: Servers

To view this administrative console page, click Servers > Application Servers >
server_name > Process Definition > Monitoring Policy.

Maximum Startup Attempts
Specifies the maximum number of times to attempt to start the application server
before giving up.

 Data type Integer

Ping Interval
Specifies the frequency of communication attempts between the parent process,
such as the node agent, and the process it has spawned, such as an application
server. Adjust this value based on your requirements for restarting failed servers.
Decreasing the value detects failures sooner; increasing the value reduces the
frequency of pings, reducing system overhead.

 Data type Integer

Ping Timeout
When a parent process is spawning a child process, such as when a process
manager spawns a server, the parent process pings the child process to see
whether the child was spawned successfully. This value specifies the number of
seconds that the parent process should wait (after pinging the child process) before
assuming that the child process failed.

 Data type Integer
Units Seconds

Automatic Restart
Specifies whether the process should restart automatically if it fails. The default is
to restart the process automatically.

 Data type Boolean
Default true

Node Restart State
Specifies the desired state for the process after the node completely shuts down
and restarts. The options are: STOPPED, RUNNING, PREVIOUS. The default is
STOPPED.

 Data type String
Default STOPPED
Range Valid values are STOPPED, RUNNING, or PREVIOUS.

Chapter 2. Configuring application servers 29

Java virtual machines (JVMs)
The Java virtual machine (JVM) is an interpretive computing engine responsible for
executing the byte codes in a compiled Java program. The JVM translates the Java
byte codes into the native instructions of the host machine. The application server,
being a Java process, requires a JVM in order to run, and to support the Java
applications running on it. JVM settings are part of an application server
configuration.

Using the JVM
As part of configuring an application server, you might define settings that
enhance your system’s use of the Java virtual machine (JVM).

To view and change the JVM configuration for an application server’s process, use
the Java Virtual Machine page of the console or use wsadmin to change the
configuration through scripting.

Steps for this task
1. Access the Java Virtual Machine page.

a. Click Servers > Application Servers in the console navigation tree.
b. On the Application Server page, click on the name of the server whose JVM

settings you want to configure.
c. On the settings page for the selected application server, click Process

Definition.
d. On the Process Definition page, click Java Virtual Machine.

2. On the Java Virtual Machine page, specify values for the JVM settings as
needed and click OK.

3. Click Save on the console taskbar.
4. Restart the application server.

Usage scenario

″″Configuring application servers for UTF-8 encoding″″ provides an example that
involves specifying a value for the Generic JVM Arguments property on the Java
Virtual Machine page to enable UTF-8 encoding on an application server. Enabling
UTF-8 allows multiple language encoding support to be used in the administrative
console.

″″Example: Configuring JVM sendRedirect calls to use context root″″ provides an
example that involves defining a property for the JVM.

Java virtual machine settings
Use this page to view and change the Java virtual machine (JVM) configuration for
the application server’s process.

To view this administrative console page, click Servers > Application Servers >
server_name > Process Definition > Java Virtual Machine.

Classpath
Specifies the standard class path in which the Java virtual machine code looks for
classes.

30 IBM WebSphere Application Server, Version 5: Servers

Enter each classpath entry into a table row. You do not need to add the colon or
semicolon at the end of each entry.

 Data type String
Units Class path

Boot Classpath
Specifies bootstrap classes and resources for JVM code. This option is only
available for JVM instructions that support bootstrap classes and resources. You
can separate multiple paths by a colon (:) or semi-colon (;), depending on
operating system of the node.

 Data type String

Verbose Class Loading
Specifies whether to use verbose debug output for class loading. The default is not
to enable verbose class loading.

 Data type Boolean
Default false

Verbose Garbage Collection
Specifies whether to use verbose debug output for garbage collection. The default
is not to enable verbose garbage collection.

 Data type Boolean
Default false

Verbose JNI
Specifies whether to use verbose debug output for native method invocation. The
default is not to enable verbose Java Native Interface (JNI) activity.

 Data type Boolean
Default false

Initial Heap Size
Specifies the initial heap size available to the JVM code, in megabytes.

Increasing the minimum heap size can improve startup. The number of garbage
collection occurrences are reduced and a 10% gain in performance is realized.

In general, increasing the size of the Java heap improves throughput until the heap
no longer resides in physical memory. After the heap begins swapping to disk,
Java performance suffers drastically.

 Data type Integer
Default 64 for OS/400, 50 for all other platforms

Chapter 2. Configuring application servers 31

Maximum Heap Size
Specifies the maximum heap size available to the JVM code, in megabytes.

Increasing the heap size can improve startup. The number of garbage collection
occurrences are reduced and a 10% gain in performance is realized.

In general, increasing the size of the Java heap improves throughput until the heap
no longer resides in physical memory. After the heap begins swapping to disk,
Java performance suffers drastically. Therefore, set the maximum heap size low
enough to contain the heap within physical memory.

 Data type Integer
Default 0 for OS/400, 256 for all other platforms.

Keep the value low enough to avoid paging
or swapping-out-memory-to-disk.

Run HProf
Specifies whether to use HProf profiler support. To use another profiler, specify the
custom profiler settings using the HProf Arguments setting. The default is not to
enable HProf profiler support.

If you set the Run HProf property to true, then you must specify command-line
profiler arguments as values for the HProf Arguments property.

 Data type Boolean
Default false

HProf Arguments
Specifies command-line profiler arguments to pass to the JVM code that starts the
application server process. You can specify arguments when HProf profiler support
is enabled.

HProf arguments are only required if the Run HProf property is set to true.

 Data type String

Debug Mode
Specifies whether to run the JVM in debug mode. The default is not to enable
debug mode support.

If you set the Debug Mode property to true, then you must specify command-line
debug arguments as values for the Debug Arguments property.

 Data type Boolean
Default false

Debug Arguments
Specifies command-line debug arguments to pass to the JVM code that starts the
application server process. You can specify arguments when Debug Mode is
enabled.

32 IBM WebSphere Application Server, Version 5: Servers

Debug arguments are only required if the Debug Mode property is set to true.

 Data type String
Units Java command-line arguments

Generic JVM Arguments
Specifies command line arguments to pass to the Java virtual machine code that
starts the application server process.

The following are optional command line arguments that you can use by entering
them into the General JVM Arguments field:
v -Xquickstart: You can use this value for initial compilation at a lower

optimization level than in default mode, and later, depending on sampling
results, you can recompile to the level of the initial compile in default mode. Use
quickstart for applications where early moderate speed is more important than
longrun throughput. In some debug scenarios, test harnesses and short-running
tools, it is possible to realize startup time gains between 15-20%.
-DCOPT_NQREACHDEF can improve startup by an additional 15%.

v -Xverify:none: When using this value, the class verification stage is skipped
during class loading . By using -Xverify:none with the just in time (JIT) compiler
enabled, startup time is improved by 10-15%.

v -Xnoclassgc: You can use this value to disable class garbage collection, making
class reuse more available, and slightly improving performance. Class garbage
collection is enabled by default, but it is recommended that you enable it. You
can monitor garbage collection using the verbose:gc configuration setting
because its output includes class garbage collection statistics.

v -Xgcthreads: You can use several garbage collection threads at one time, also
known as parallel garbage collection. When entering this value in the Generic JVM
Arguments field, also enter the number of processors that your machine has, for
example, -Xgcthreads= number_of_processors. It is recommended that you use
parallel garbage collection if your machine has more than one processor. This
argument applies only to the IBM Developer Kit.

v -Xnocompactgc: This value disables heap compaction which is the most
expensive garbage collection operation. Avoid compaction in IBM Developer Kit
1.3. If you disable heap compaction, you eliminate all associated overhead.
When entering this value in the Generic JVM Arguments field, also enter the
number of processors that your machine has, for example, -Xnocompactgc=
number_of_processors.

v -Xinitsh: You can use this value to set the initial heap size where class objects
are stored. The method definitions and static fields are also stored with the class
objects. Although the system heap size has no upper bound, set the initial size
so that you do not incur the cost of expanding the system heap size, which
involves calls to the operating system memory manager. You can compute a
good initial system heap size by knowing the number of classes loaded in the
WebSphere product, which is about 8,000 classes, and their average size. Having
knowledge of the application helps you include them in the calculation.

v -Xmc: The thread local heap size is a portion of the heap that is allocated
exclusively for a thread. Because of the thread local heap size, the thread does
not need to lock the entire heap when allocating objects. However, when the
thread local heap is full, object allocation is done from the heap that needs
synchronization. A good local cache size is critical to performance and requires
knowledge of the application and its objects.

Chapter 2. Configuring application servers 33

v -Xml: You can use this value to set the limit of an object size to allocate from the
local cache. Objects that exceed the limit size need allocating in the regular heap.
Allocate objects from the local cache as much as possible or the local cache
depletes because it does not grow dynamically. If you know some objects are
going to be very large, allocate them from the regular heap.

 Data type String
Units Java command line arguments

Executable JAR File Name
Specifies a full path name for an executable JAR file that the JVM code uses.

 Data type String
Units Path name

Disable JIT
Specifies whether to disable the just in time (JIT) compiler option of the JVM code.

If you disable the JIT compiler, throughput decreases noticeably. Therefore, for
performance reasons, keep JIT enabled.

 Data type Boolean
Default false (JIT enabled)
Recommended JIT enabled

Operating System Name
Specifies JVM settings for a given operating system. When started, the process uses
the JVM settings for the operating system of the node.

 Data type String

Example: Configuring JVM sendRedirect calls to use context root
If the com.ibm.websphere.sendredirect.compatibility property is not set and your
application servlet code has statements such as sendRedirect(″/home.html″), your Web
browser might display messages such as Error 404: No target servlet configured for
uri: /home.html. To instruct the server not to use the Web server’s document root
and to use instead the Web application’s context root for sendRedirect() calls,
configure the JVM by setting the com.ibm.websphere.sendredirect.compatibility
property to a true or false value.

Steps for this task
1. Access the settings page for a property of the JVM.

a. Click Servers > Application Servers in the console navigation tree.
b. On the Application Server page, click on the name of the server whose JVM

settings you want to configure.
c. On the settings page for the selected application server, click Process

Definition.
d. On the Process Definition page, click Java Virtual Machine.
e. On the Java Virtual Machine page, click Custom Properties.

34 IBM WebSphere Application Server, Version 5: Servers

f. On the Properties page, click New.
2. On the settings page for a property, specify a name of

com.ibm.websphere.sendredirect.compatibility and either true or false for
the value, then click OK.

3. Click Save on the console taskbar.
4. Stop the application server and then restart the application server.

Preparing to host applications
The default application server and a set of default resources are available to help
you begin quickly. Suppose you choose instead to configure a new server and set
of resources. Here is what you need to do in order to set up a run-time
environment to support applications.

Steps for this task
 1. Create an application server.
 2. Create a virtual host.
 3. Configure a Web container.
 4. Configure an EJB container.
 5. Create resources for data access.
 6. Create a JDBC provider and data source.
 7. Create a URL and URL provider.
 8. Create a JMS destination, connection, and provider.
 9. Create a JavaMail session.
10. Create resources for session support.
11. Configure a Session Manager.

Java memory tuning tips
Enterprise applications written in the Java language involve complex object
relationships and utilize large numbers of objects. Although, the Java language
automatically manages memory associated with object life cycles, understanding
the application usage patterns for objects is important. In particular, verify the
following:
v The application is not over-utilizing objects
v The application is not leaking objects
v The Java heap parameters are set properly to handle a given object usage pattern

Understanding the effect of garbage collection is necessary to apply these
management techniques.

The garbage collection bottleneck

Examining Java garbage collection gives insight to how the application is utilizing
memory. Garbage collection is a Java strength. By taking the burden of memory
management away from the application writer, Java applications are more robust
than applications written in languages that do not provide garbage collection. This
robustness applies as long as the application is not abusing objects. Garbage
collection normally consumes from 5% to 20% of total execution time of a properly
functioning application. If not managed, garbage collection is one of the biggest
bottlenecks for an application, especially when running on symmetric
multiprocessing (SMP) server machines. The Java virtual machine (JVM) uses a

Chapter 2. Configuring application servers 35

parallel garbage collector to fully exploit an SMP during most garbage collection
cycles where the Sun HotSpot 1.3.1 JVM has a single-threaded garbage collector.
For more information about garbage collection in a Solaris operating environment
see Performance: Resources for learning.

The garbage collection gauge

You can use garbage collection to evaluate application performance health. By
monitoring garbage collection during the execution of a fixed workload, you gain
insight as to whether the application is over-utilizing objects. Garbage collection
can even detect the presence of memory leaks.

You can monitor garbage collection statistics using object statistics in the Tivoli
Performance Viewer, or using the verbose:gc JVM configuration setting. The
verbose:gc format is not standardized between different JVMs or release levels. For
a description of the IBM verbose:gc output and more information about the IBM
garbage collector, see Performance: Resources for learning.

For this type of investigation, set the minimum and maximum heap sizes to the
same value. Choose a representative, repetitive workload that matches production
usage as closely as possible, user errors included.

To ensure meaningful statistics, run the fixed workload until the application state
is steady. It usually takes several minutes to reach a steady state.

Detecting over-utilization of objects

You can use the Tivoli Performance Viewer to check if the application is overusing
objects, by observing the counters for the JVM runtime. You have to set the
-XrunpmiJvmpiProfiler command line option, as well as the JVM module
maximum level in order to enable the Java virtual machine profiler interface
(JVMPI) counters. The best result for the average time between garbage collections
is at least 5-6 times the average duration of a single garbage collection. If you do
not achieve this number, the application is spending more than 15% of its time in
garbage collection.

If the information indicates a garbage collection bottleneck, there are two ways to
clear the bottleneck. The most cost-effective way to optimize the application is to
implement object caches and pools. Use a Java profiler to determine which objects
to target. If you can not optimize the application, adding memory, processors and
clones might help. Additional memory allows each clone to maintain a reasonable
heap size. Additional processors allow the clones to run in parallel.

Detecting memory leaks

Memory leaks in the Java language are a dangerous contributor to garbage
collection bottlenecks. Memory leaks are more damaging than memory overuse,
because a memory leak ultimately leads to system instability. Over time, garbage
collection occurs more frequently until the heap is exhausted and the Java code
fails with a fatal Out of Memory exception. Memory leaks occur when an unused
object has references that are never freed. Memory leaks most commonly occur in
collection classes, such as Hashtable because the table always has a reference to the
object, even after real references are deleted.

36 IBM WebSphere Application Server, Version 5: Servers

High workload often causes applications to crash immediately after deployment in
the production environment. This is especially true for leaking applications where
the high workload accelerates the magnification of the leakage and a memory
allocation failure occurs.

The goal of memory leak testing is to magnify numbers. Memory leaks are
measured in terms of the amount of bytes or kilobytes that cannot be garbage
collected. The delicate task is to differentiate these amounts between expected sizes
of useful and unusable memory. This task is achieved more easily if the numbers
are magnified, resulting in larger gaps and easier identification of inconsistencies.
The following list contains important conclusions about memory leaks:
v Long-running test

 Memory leak problems can manifest only after a period of time, therefore,
memory leaks are found easily during long-running tests. Short running tests
can lead to false alarms. It is sometimes difficult to know when a memory leak
is occurring in the Java language, especially when memory usage has seemingly
increased either abruptly or monotonically in a given period of time. The reason
it is hard to detect a memory leak is that these kinds of increases can be valid or
might be the intention of the developer. You can learn how to differentiate the
delayed use of objects from completely unused objects by running applications
for a longer period of time. Long-running application testing gives you higher
confidence for whether the delayed use of objects is actually occurring.

v Repetitive test

 In many cases, memory leak problems occur by successive repetitions of the
same test case. The goal of memory leak testing is to establish a big gap between
unusable memory and used memory in terms of their relative sizes. By repeating
the same scenario over and over again, the gap is multiplied in a very
progressive way. This testing helps if the number of leaks caused by the
execution of a test case is so minimal that it is hardly noticeable in one run.
 You can use repetitive tests at the system level or module level. The advantage
with modular testing is better control. When a module is designed to keep the
private module without creating external side effects such as memory usage,
testing for memory leaks is easier. First, the memory usage before running the
module is recorded. Then, a fixed set of test cases are run repeatedly. At the end
of the test run, the current memory usage is recorded and checked for significant
changes. Remember, garbage collection must be suggested when recording the
actual memory usage by inserting System.gc() in the module where you want
garbage collection to occur, or using a profiling tool, to force the event to occur.

v Concurrency test

 Some memory leak problems can occur only when there are several threads
running in the application. Unfortunately, synchronization points are very
susceptible to memory leaks because of the added complication in the program
logic. Careless programming can lead to kept or unreleased references. The
incident of memory leaks is often facilitated or accelerated by increased
concurrency in the system. The most common way to increase concurrency is to
increase the number of clients in the test driver.
 Consider the following points when choosing which test cases to use for
memory leak testing:
– A good test case exercises areas of the application where objects are created.

Most of the time, knowledge of the application is required. A description of
the scenario can suggest creation of data spaces, such as adding a new record,
creating an HTTP session, performing a transaction and searching a record.

Chapter 2. Configuring application servers 37

– Look at areas where collections of objects are used. Typically, memory leaks
are composed of objects within the same class. Also, collection classes such as
Vector and Hashtable are common places where references to objects are
implicitly stored by calling corresponding insertion methods. For example, the
get method of a Hashtable object does not remove its reference to the
retrieved object.

Tivoli Performance Viewer can help find memory leaks. For best results, repeat
experiments with increasing duration, like 1000, 2000, and 4000-page requests. The
Tivoli Performance Viewer graph of used memory should have a sawtooth shape.
Each drop on the graph corresponds to a garbage collection. There is a memory
leak if one of the following occurs:
v The amount of memory used immediately after each garbage collection increases

significantly. The sawtooth pattern looks more like a staircase.
v The sawtooth pattern has an irregular shape.

Also, look at the difference between the number of objects allocated and the
number of objects freed. If the gap between the two increases over time, there is a
memory leak.

Heap consumption indicating a possible leak during a heavy workload (the
application server is consistently near 100% CPU utilization), yet appearing to
recover during a subsequent lighter or near-idle workload, is an indication of heap
fragmentation. Heap fragmentation can occur when the JVM can free sufficient
objects to satisfy memory allocation requests during garbage collection cycles, but
the JVM does not have the time to compact small free memory areas in the heap to
larger contiguous spaces.

Another form of heap fragmentation occurs when small objects (less than 512
bytes) are freed. The objects are freed, but the storage is not recovered, resulting in
memory fragmentation until a heap compaction has been run.

To avoid heap fragmentation, turn on the -Xcompactgc flag in the JVM advanced
settings command line arguments. The -Xcompactgc function verifies that each
garbage collection cycle eliminates fragmentation. However, compaction is a
relatively expensive operation. See Heap compaction (-Xnocompactgc) for more
information.

Java heap parameters

The Java heap parameters also influence the behavior of garbage collection.
Increasing the heap size supports more object creation. Because a large heap takes
longer to fill, the application runs longer before a garbage collection occurs.
However, a larger heap also takes longer to compact and causes garbage collection
to take longer. SeeHeap compaction for more information.

For performance analysis, the initial and maximum heap sizes should be equal.

When tuning a production system where the working set size of the Java
application is not understood, a good starting value for the initial heap size is 25%
of the maximum heap size. The JVM then tries to adapt the size of the heap to the
working set size of the application.

38 IBM WebSphere Application Server, Version 5: Servers

Varying Java Heap Settings

Time
0

20

40

60

80

100

-ms128M, -mx128M Time spent in Garbage Collection
C

P
U

%

Processor #1

Processor #2

C
P

U
%

0

20

40

60

80

100

-ms64M, -mx64M Time spent in Garbage Collection

Time

Processor #1

Processor #2

-ms256M, -mx256M Time spent in Garbage Collection

Time

C
P

U
%

0

20

40

60

80
100 Processor #1

Processor #2

The illustration represents three CPU profiles, each running a fixed workload with
varying Java heap settings. In the middle profile, the initial and maximum heap
sizes are set to 128MB. Four garbage collections occur. The total time in garbage
collection is about 15% of the total run. When the heap parameters are doubled to
256MB, as in the top profile, the length of the work time increases between
garbage collections. Only three garbage collections occur, but the length of each
garbage collection is also increased. In the third profile, the heap size is reduced to
64MB and exhibits the opposite effect. With a smaller heap size, both the time
between garbage collections and the time for each garbage collection are shorter.
For all three configurations, the total time in garbage collection is approximately
15%. This example illustrates an important concept about the Java heap and its
relationship to object utilization. There is always a cost for garbage collection in
Java applications.

Run a series of test experiments that vary the Java heap settings. For example, run
experiments with 128MB, 192MB, 256MB, and 320MB. During each experiment,
monitor the total memory usage. If you expand the heap too aggressively, paging
can occur. Use the vmstat command or the Windows NT or Windows 2000
Performance Monitor to check for paging. If paging occurs, reduce the size of the
heap or add more memory to the system. When all the runs are finished, compare
the following statistics:
v Number of garbage collection calls
v Average duration of a single garbage collection call
v Ratio between the length of a single garbage collection call and the average time

between calls

If the application is not over-utilizing objects and has no memory leaks, the state of
steady memory utilization is reached. Garbage collection also occurs less frequently
and for short duration.

If the heap free space settles at 85% or more, consider decreasing the maximum
heap size values because the application server and the application are
under-utilizing the memory allocated for heap.

Chapter 2. Configuring application servers 39

For more information about garbage collection see Performance: Resources for
learning.

Application servers: Resources for learning
Use the following links to find relevant supplemental information about
configuring application servers. The information resides on IBM and non-IBM
Internet sites, whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

View links to additional information about:
v Programming instructions and examples
v Programming specifications
v Administration

Programming instructions and examples

v

WebSphere Application Server education
(http://www.ibm.com/software/webservers/learn/)

Programming specifications

v

The JavaTM Virtual Machine Specification, Second Edition
(http://java.sun.com/docs/books/vmspec/)

v

Sun’s technology forum for the JavaTM Virtual Machine Specification
(http://forum.java.sun.com/forum.jsp?forum=37)

Administration

v

Listing of all IBM WebSphere Application Server Redbooks
(http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere)

40 IBM WebSphere Application Server, Version 5: Servers

Chapter 3. Balancing workloads with clusters

To monitor application servers and manage the workloads of servers, use server
clusters and cluster members provided by the Network Deployment product.

To assist you in understanding how to configure and use clusters for workload
management, below is a scenario. In this scenario, client requests are distributed
among the cluster members on a single machine. (A client refers to any servlet,
Java application, or other program or component that connects the end user and
the application server that is being accessed.) In more complex workload
management scenarios, you can distribute cluster members to remote machines.

Steps for this task
1. Decide which application server you want to cluster.
2. Decide whether you want to configure replication domains and entries.

Replication enables the sharing of data among processes and the backing up of
failed processes.

3. Deploy the application onto the application server.
4. After configuring the application server and the application components exactly

as you want them to be, create a cluster. The original server instance becomes a
cluster member that is administered through the cluster.

5. If you did not do so when creating a cluster, create one or more cluster
members of the cluster.

6. Start all of the application servers by starting the cluster. Workload
management automatically begins when you start the cluster members of the
application server.

7. Stop the cluster.
8. Upgrade applications on clusters.
9. Detect and handle problems with server clusters and their workloads.

You need to define a bootstrap host for stand-alone Java clients, which are clients
located on a different machine from the application server that have no
administrative server. Add the following line to the Java Virtual Machine (JVM)
arguments for the client:
-Dcom.ibm.CORBA.BootstrapHost=machine_name

where machine_name is the name of the machine on which the administrative server
is running.

Workload management (WLM)
Workload management optimizes the distribution of client processing tasks.
Incoming work requests are distributed to the application servers, enterprise beans,
servlets, and other objects that can most effectively process the requests. Workload
management also provides failover when servers are not available, improving
application availability.

Workload management provides the following benefits to WebSphere Application
Server applications:

© Copyright IBM Corp. 2002 41

v It balances client workloads, allowing processing tasks to be distributed
according to the capacities of the different machines in the system.

v It provides failover capability by redirecting client requests if one or more
servers is unable to process them. This improves the availability of applications
and administrative services.

v It enables systems to be scaled up to serve a higher client load than provided by
the basic configuration. With clustering, additional instances of servers, servlets,
and other objects can easily be added to the configuration.

v It enables servers to be transparently maintained and upgraded while
applications remain available for users.

v It centralizes the administration of servers and other objects.

In the WebSphere Application Server environment, you implement workload
management by using clusters, transports, and replication domains.

Techniques for managing state
Multimachine scaling techniques rely on using multiple copies of an application
server; multiple consecutive requests from various clients can be serviced by
different servers. If each client request is completely independent of every other
client request, it does not matter whether consecutive requests are processed on the
same server. However, in practice, client requests are not independent. A client
often makes a request, waits for the result, then makes one or more subsequent
requests that depend on the results received from the earlier requests. This
sequence of operations on behalf of a client falls into two categories:

Stateless
A server processes requests based solely on information provided with
each request and does not reply on information from earlier requests. In
other words, the server does not need to maintain state information
between requests.

Stateful
A server processes requests based on both the information provided with
each request and information stored from earlier requests. In other words,
the server needs to access and maintain state information generated during
the processing of an earlier request.

 For stateless interactions, it does not matter whether different requests are
processed by different servers. However, for stateful interactions, the server that
processes a request needs access to the state information necessary to service that
request. Either the same server can process all requests that are associated with the
same state information, or the state information can be shared by all servers that
require it. In the latter case, accessing the shared state information from the same
server minimizes the processing overhead associated with accessing the shared
state information from multiple servers.

The load distribution facilities in WebSphere Application Server use several
different techniques for maintaining state information between client requests:
v Session affinity, where the load distribution facility recognizes the existence of a

client session and attempts to direct all requests within that session to the same
server.

v Transaction affinity, where the load distribution facility recognizes the existence
of a transaction and attempts to direct all requests within the scope of that
transaction to the same server.

42 IBM WebSphere Application Server, Version 5: Servers

v Server affinity, where the load distribution facility recognizes that although
multiple servers might be acceptable for a given client requests, a particular
server is best suited for processing that request.

Clusters
Clusters are sets of servers that are managed together and participate in workload
management. The servers that are members of a cluster can be on different host
machines, as opposed to the servers that are part of the same node and must be
located on the same host machine.

A cell can have no clusters, one cluster, or multiple clusters.

Servers that belong to a cluster are members of that cluster set and must all have
identical application components deployed on them. Other than the applications
configured to run on them, cluster members do not have to share any other
configuration data. One cluster member might be running on a huge
multi-processor enterprise server system while another member of that same
cluster might be running on a small laptop. The server configuration settings for
each of these two cluster members are very different, except in the area of
application components assigned to them. In that area of configuration, they are
identical.

A vertical cluster has cluster members on the same node. A horizontal cluster has
cluster members on multiple nodes.

A network dispatcher routes application access among cluster members by
server-weighting, to provide better distribution control.

WebSphere Application Server can respond to increased use of an enterprise
application by automatically replicating the application to additional cluster
members as needed. This lets you deploy an application on a cluster instead of on
a single node, without considering workload.

Creating clusters
You can manage application servers collectively using a cluster. To create a cluster,
view information about clusters, or manage server members on a cluster, use the
Server Cluster page.

Steps for this task
 1. Go to the Server Cluster page. Click Servers > Clusters in the console

navigation tree. The Server Cluster page lists clusters of application servers in
the cell and states whether a cluster is stopped, started or unavailable.

 2. Click New to access the Create New Cluster page.
 3. Type a cluster name.
 4. (Optional) To enable or disable node scoped routing optimization, place a

checkmark in the Prefer local enabled check box. The default is enabled,
which indicates that, if possible, EJB requests are routed to the client’s node. If
you enable this feature, performance is improved because client requests are
sent to local EJBs.

 5. (Optional) To enable memory-to-memory replication of HttpSession (for
failover) or replication of cached data and cache invalidations with a Web
Container’s dynamic caching, select options supporting data replication.

Chapter 3. Balancing workloads with clusters 43

6. Choose whether to create an empty cluster or to create a cluster based on an
existing server.
 To create an empty cluster, do not include an existing server in this cluster.
 To create a cluster based on an existing server member, add server members
to this cluster. To add a server member, choose Select an existing server to
add to this cluster and then, from the drop-down list, select the server you
want to add.

 7. Click Next.
 8. (Optional) Add application servers (cluster members) to the cluster. For each

new cluster member, do the following:
a. Type the name of a new application server (cluster member) to add to the

cluster.
b. Select the node on which the server will reside.
c. Specify the server weight. The weight value controls the amount of work

directed to the application server. If the weight value for the server is
greater than the weight values assigned to other servers in the cluster, then
the server receives a larger share of the servers’ workload. The value can
range from 0 to 20.

d. Specify whether to generate a unique HTTP port.
e. Specify whether to create a replication entry for the server. A replication

entry enables memory-to-memory replication of HttpSession (for failover)
or replication of cached data and cache invalidations with a Web
Container’s dynamic caching.

f. Specify the server template.
g. Click Apply to finish the cluster member. Repeat the above steps to define

another cluster member.
 9. Click Next and review the summary of changes.
10. Click Finish to complete the configuration.
11. Click Save on the administrative console taskbar and save your administrative

configuration. As part of saving the change to the configuration, you can select
Synchronize changes with Nodes before clicking Save on the Save page.

12. Before you can start the cluster, the configuration needs to be synchronized to
the nodes. If you selected Synchronize changes with Nodes when saving
your configuration in the previous step, you can ignore this step. If you are
running automatic synchronization, wait until synchronization runs. Or, run
manual synchronization to get the configuration files moved to the nodes.
Click System Administration > Nodes and, on the Nodes page, select the
node and click Synchronize or Full Resynchronize. The Nodes page displays
status indicating whether the node is synchronized.

13. To further configure a cluster, click on the cluster’s name under Name. This
displays the settings for the server cluster instance. Note that, unless you have
clicked Save and saved your administrative configuration, you only see the
Configuration and Local Topology tabs; to see the Runtime tab as well you
must save your administrative configuration. Also, ensure that changes are
synchronized to the nodes (step 12).

Server cluster collection
Use this page to view information about and manage clusters of application
servers.

To view this administrative console page, click Servers > Clusters.

44 IBM WebSphere Application Server, Version 5: Servers

Click New to access the Create New Cluster page, which you use to define a new
cluster.

Name
Specifies a logical name for the cluster. The name must be unique among clusters
within the containing cell.

Status
Specifies whether cluster members are stopped, starting, or running.

If all cluster members are stopped, the cluster status and state is Stopped. After you
request to start a cluster by clicking Start or Ripplestart, the cluster state briefly
changes to Starting and each server that is a member of that cluster launches, if it
is not already running. When the first member launches, the state changes to
PartialStart. The state remains PartialStart until all cluster members are running,
then the state changes to Running and the status is Started. Similarly, when
stopping a cluster by clicking Stop or ImmediateStop, the state changes to
PartialStop as the first member stops and changes to Stopped when all members are
not running.

Server cluster settings
Use this page to view or change the configuration and local topology of a server
cluster instance. Provided you saved your administrative configuration after
creating the server cluster instance, you can also view run-time information such
as the status of the server cluster instance.

To view this administrative console page, click Servers > Clusters > cluster_name.

Cluster name
Specifies a logical name for the cluster. The name must be unique among clusters
within the containing cell.

 Data type String

Cluster short name
Specifies the cluster short name for this cluster.

The name is 1-8 characters, alpha-numeric or national language. It cannot start
with a numeric.

 Data type String

Unique Id
Specifies the unique ID of this cluster.

The unique ID property is read only. The system automatically generates the value.

Prefer local
Specifies whether enterprise bean requests are routed to the node on which the
client resides, if it is possible to do so.

Select the Prefer Local check box to specify routing of requests to the node on
which the client resides. By default, the Prefer Local check box is selected,
specifying routing of requests to the node.

 Data type Boolean

Chapter 3. Balancing workloads with clusters 45

Default true

wlcID
Specifies the currently registered workload controller (WLC) identifier for the
cluster. This setting might not display for all configurations.

 Data type String

State
Specifies whether cluster members are stopped, starting, or running.

If all cluster members are stopped, the cluster state is websphere.cluster.stopped. After
you request to start a cluster, the cluster state briefly changes to
websphere.cluster.starting and each server that is a member of that cluster launches,
if it is not already running. When the first member launches, the state changes to
websphere.cluster.partial.start. The state remains websphere.cluster.partial.start until all
cluster members are running, then the state changes to websphere.cluster.running.
Similarly, when stopping a cluster, the state changes to websphere.cluster.partial.stop
as the first member stops and changes to websphere.cluster.stopped when all
members are not running.

 Data type String
Range Valid values are websphere.cluster.starting,

websphere.cluster.partial.start,
websphere.cluster.running,
websphere.cluster.partial.stop, or
websphere.cluster.stopped.

Creating cluster members
You create a cluster member to represent an application server in a cluster. To
create a cluster member, view information about cluster members, or manage
members of a cluster, use the Cluster Members page.

Steps for this task
1. Go to the Cluster Members page. Click Servers > Clusters in the console

navigation tree. Then, click a cluster in the collection of clusters and click
Cluster Members. The Cluster Members page lists members of a cluster, states
the nodes on which members reside, and states whether members are started,
stopped or encountering problems.

2. Click New and follow the steps on the Create New Cluster Members page.
a. Type a name for the cluster member (application server).
b. Select the node on which the server will reside.
c. Specify the server weight. The weight value controls the amount of work

directed to the application server. If the weight value for the server is
greater than the weight values assigned to other servers in the cluster, then
the server receives a larger share of the servers’ workload. The value can
range from 0 to 100.

d. Specify whether to generate a unique HTTP port.
e. Specify whether to create a replication entry for the server.
f. Specify the server template.

46 IBM WebSphere Application Server, Version 5: Servers

g. Click Apply to finish the cluster member. Repeat steps 1 through 7 to define
another cluster member.

h. Click Next.
i. Review the summary of information on new cluster members and click

Finish.
3. Click Save on the administrative console taskbar and save your administrative

configuration.
4. To examine a cluster member’s settings, click on the member’s name under

Member Name on the Cluster Members page. This displays the settings page
for the cluster member instance.

Cluster member collection
Use this page to view information about and manage members of an application
server cluster.

To view this administrative console page, click Servers > Clusters > cluster_name >
Cluster Members.

Member name
Specifies the name of the server in the cluster. On most platforms, the name of the
server is the process name. The name must match the (object) name of the
application server.

Node
Specifies the name of the node for the cluster member.

Status
Specifies whether a cluster member is running, stopped, or unavailable.

If a cluster member is stopped, its status is Stopped. After you request to start a
cluster member by clicking Start, the status becomes Started. After you click Stop,
its status changes to Stopped when it stops running.

Note that if the status is Unavailable, the node agent is not running in that node
and you must restart the node agent before you can start the cluster member.

Cluster member settings
Use this page to configure a member instance of an application server cluster.

To view this administrative console page, click Servers > Clusters > cluster_name >
Cluster Members > cluster_member_name.

Member Name
Specifies the name of the server in the cluster. On most platforms, the name of the
server is the process name. The name must match the (object) name of the
application server.

 Data type String

Chapter 3. Balancing workloads with clusters 47

Weight
Controls the amount of work directed to the application server. If the weight value
for the server is greater than the weight values assigned to other servers in the
cluster, then the server receives a larger share of the server workload.

 Data type Integer
Range 0 to 20

Unique ID
Specifies a numerical identifier for the application server that is unique within the
cluster. The ID is used for affinity.

 Data type Integer

Replication
WebSphere Application Server provides a service that transfers data or events
among WebSphere Application Server servers. The service is called WebSphere
Internal Replication, or replication for short.

The replication service transfers both J2EE application data and any internal data
used to maintain the application data among WebSphere run-time processes in a
cluster of application servers.

Currently, the Web container in WebSphere Application Server leverages
replication.

The replication service can replicate HttpSession data among processes and retrieve
the HttpSession if the process that currently maintains the HttpSession fails. Using
replication for HttpSession failover provides a potentially lower cost and more
easily administrable alternative to storing HttpSession in a relational database.
Further, the service can distribute across a WebSphere cluster information on
invalid data and actual cached data maintained by a Web container’s dynamic
caching.

Replication entry
A replication entry (or replicator) is a run-time component that handles the transfer
of internal WebSphere Application Server data.

WebSphere Application Server processes can connect to any replicator within a
domain to receive data from other processes connected to any other replicator in
the same domain. If the replicator a process is connected to goes down, the
WebSphere Application Server process automatically attempts to reconnect to
another replicator in the domain and recover data missed while unconnected.

You can define replicators to operate within a running application server process.
Replicators are not enabled by default. You must define replicators as needed as
part of application server and cluster management.

You can take the default settings for replicators or specify settings values for
replicators that better suit your server configuration. The default configuration
options are suitable for many scenarios.

48 IBM WebSphere Application Server, Version 5: Servers

Replication domain
A replication domain is a collection of replicator entry (or replicator) instances used
by clusters or individual servers within a cell.

All replicators within a replication domain connect with each other, forming a
network of replicators.

The default is to define a replication domain for a cluster when creating the cluster.
However, replication domains can span across clusters.

Global default settings apply to all replication use for a given replication domain
across a cell. Most default settings tune and control the behavior of replicator
entries in managed servers across the cell. Such default settings control the use of
encryption or the serialization and transferring of objects. Some default settings
tune and control how specific WebSphere Application Server functions (for
example, session manager and dynamic caching) leverage replication, such as
session use of partitions.

For situations that require settings values other than the default, change the values
for a given replication domain on the Internal Replication Domains page. Settings
include various resource allocation, replication strategies (such as grouping or
partitioning) and methods, as well as some security related items.

If you are using replication for HttpSession failover, you might need to filter where
the session replicates to. For example, only replicate to two places out of many.
The global default settings define the partition size or number of groups and the
session manager settings define the groups to which a particular instance belongs.

Filtering is less important if you are using replication to distribute information on
invalid data and actual cached data maintained by a Web container’s dynamic
caching. Replication does not occur for failover as much as for data
synchronization across a cluster or cell when you likely want to avoid expensive
costs for generating data potentially needed across those various servers.

Note that you can filter or segment by using multiple replication domains.

Replicating data
To enable the sharing of data among processes and the backing up of failed
processes, you can use the replication service provided by WebSphere Application
Server. To use the service, you define replication domains, which list
interconnected replicator entries (residing in managed servers in the cell) that can
exchange data.

There are two ways to define replication domains and replicator entries:
v You can use the Internal Replication Domains page and Replicator Entry page to

define replication domains and replicator entries. To access the Internal
Replication Domains page, click Environment > Internal Replication Domains
in the console navigation tree. To access the Replicator Entry page, click a
replication domain on the Internal Replication Domains page and then click
Replicator Entries. When you create the entries on the Replicator Entry page,
you can select any server for the replicator to reside in. The page lists all servers
in the cell that do not already have replicators defined.

v You can define replication domains and replicator entries when you create a
cluster on the Create New Cluster page. Using the page allows you to create a

Chapter 3. Balancing workloads with clusters 49

replication domain that has the same name as the cluster and, as you add or
create new application servers in the cluster, define replicator entries in those
servers. To access the Create New Cluster page, click Servers > Clusters in the
console navigation tree to go to the Server Clusters page and click New.

A replicator does not need to run in the same process as the application server that
uses it. However, it might be easier to manage replicators and replication domains
if a one-to-one correspondence exists between replicators and application servers.
During configuration, an application server connects by default to its local
replicator, so you do not need to explicitly specify the replicator to use. All
processes share equally in the replication cost.

Steps for this task
1. Create an application server. Later, enable a replication domain and its

replicators (step 2).
 Or, create a cluster and add an application server to it. When you define the
cluster, you can specify that you want a replication domain associated with the
cluster. Also, when you define a cluster, you can specify that you want a
replicator associated with an application server. For example, you might specify
that a replicator launch in the same Java virtual machine as a Web container.
Or, you can enable a replicator later (step 2).

2. Create a replication domain if one is not already created for the processes you
want supported by data replication. Go to the Replication Domains page and
click New. On the settings for a replication domain instance, specify values for
the instance. The default values generally will be sufficient, especially as to
pooling and timeout values.
a. Name the replication domain.
b. Specify the timeout interval.
c. Specify the encryption type. The DES and TRIPLE_DES options encrypt

data sent between WebSphere Application Server processes and better
secure the network joining the processes.

d. Partition the replication domain to filter the number of processes to which
data is sent. Partitioning the replication domain is most often done if you
are replicating data to support retrieval of an HttpSession if the process
maintaining the HttpSession fails. Partitioning is not supported for sharing
of cached data maintained by Web container dynamic caching.

e. Specify whether you want a single replication of data to be made. Enable
the option if you are replicating data to support retrieval of an HttpSession
if the process maintaining the HttpSession fails.

f. Specify whether processes should receive data in objects or bytes. Processes
receiving data in objects receive the data and class definitions. Processes
receiving data in bytes receive the data only.

g. (Optional) Configure a pool of replication resources. Pooling replication
resources can enhance the performance of the internal data replication
service.

3. Create replicators for the processes you want supported by data replication, if
replicators have not already been created for the processes. The default
convention is to define a replicator in each application server that uses
replication. However, you can define a pool of replicators, separate from the
servers hosting applications.
a. Click on the replication domain instance on the Replication Domains page

and then Replicator Entries to access the Replicator Entry page.

50 IBM WebSphere Application Server, Version 5: Servers

b. Click New and, on the replicator entry settings page, define a replicator.
Specify a replicator name and, from the drop-down list of the available
servers within the cell to which you can assign a replicator, select a server.
Also specify a host name and ports. Note that a replicator has two end
points (replicator and client end points) that use the same host name but
have different ports.

4. If you use the DES or TRIPLE_DES encryption type for a replicator, click
RegenerateKey on the settings for a replication domain instance at regular
intervals, such as monthly.
 Periodically changing the key enhances security.

Internal replication domain collection
Use this page to view and manage replicator instances used within a cell.
Replicators can transfer both application data and any internal data used to
maintain the application data among WebSphere Application Server run-time
processes in a cluster of application servers.

To view this administrative console page, click Environment > Internal
Replication Domains.

Using replicators, you can replicate HttpSession data among processes and retrieve
the HttpSession if the process that currently maintains the HttpSession fails.
Further, you can distribute across a cell the creation, modification, and invalidation
of cached data maintained by a Web container’s dynamic caching.

If you are using replication for HttpSession failover, you will likely need to filter
where the session replicates to. For example, only replicate to two places out of
many. The global default settings define the partition size or number of groups and
the session manager settings define the groups to which a particular instance
belongs. Filtering is less important if you are using replication to distribute
information on cached data maintained by a Web container’s dynamic caching.

The default is to define a replication domain for a cluster when creating the cluster.
However, you can create a new domain from this page. Click New and follow the
instructions on the page displayed.

Clicking Delete deletes a domain and all replicators defined under the domain.

Name
Specifies a name for the replication domain.

Internal replication domain settings
Use this page to configure a replicator instance.

To view this administrative console page, click Environment > Internal
Replication Domains > replication_domain_name.

An application server connected to replicator within a domain can access the same
set of data sent out by any application server connected to any other replicator
(including the same replicator). Data is not shared across replicator domains.

Chapter 3. Balancing workloads with clusters 51

Name
Specifies a name for the replication domain.

 Data type String

Request Timeout
Specifies the number of seconds that a replicator waits when requesting
information from another replicator before giving up and assuming the
information does not exist. The default is 5 seconds.

 Data type Integer
Units Seconds
Default 5

Encryption Type
Specifies the type of encryption used before transfer. The options include NONE,
DES, TRIPLE_DES. The default is NONE. The DES and TRIPLE_DES options
encrypt data sent between WebSphere processes and better secure the network
joining the processes.

If you specify DES or TRIPLE_DES, a key for global data replication is generated
after you click Apply or OK. When you use the DES or TRIPLE_DES encryption
type, click RegenerateKey at regular intervals such as monthly because
periodically changing the key enhances security.

 Data type String
Default NONE

DRS Partition Size
Specifies the number of groups into which a replication domain is partitioned. By
default, data sent by a WebSphere Application Server process to a replication
domain is transferred to all other WebSphere Application Server processes
connected to that replication domain. To filter or reduce the number of destinations
for the data being sent, partition the replication domain. The default partition size
is 10, and the partition size should be 10 or more to enhance performance.

Partitioning the replication domain is most often done if you are replicating data to
support retrieval of an HttpSession if the process maintaining the HttpSession fails.
Partitioning is not supported for sharing of cached data maintained by Web
container dynamic caching. As to dynamic caching, all partitions or groups are
always active and used for data replication.

When you partition a replication domain, you define the total number of groups or
partitions. Use this setting to define the number of groups. Then, when you
configure a specific session manager under a Web container or as part of an
enterprise application or Web module, select the partition to which that session
manager instance listens and from which it accepts data. To specify the groups to
which an application server listens, change the settings for affected servers on a
Session Manager page. In addition, you can set a replicator role for a server. This
replicator role affects whether a WebSphere process sends data to the replication
domain, receives data, or does both. The default is both to receive and send data.

52 IBM WebSphere Application Server, Version 5: Servers

Data type Integer
Default 10

Single Replica
Specifies that a single replication of data be made. Enable this option if you are
replicating data to support retrieval of an HttpSession if the process maintaining
the HttpSession fails. This option restricts the recipient of the data to a single
instance.

This setting provides filtering beyond grouping or partitioning. Using this setting,
you can choose to have data only sent to one other listening instance in the
replication domain.

 Data type Boolean
Default false

Serialization Method
Specifies the object serialization method to use when replicating data. An
administrative concern with replicating Java objects is locating the class definition,
especially in a J2EE environment where class definitions might reside only in
certain web modules or enterprise applications. Object serialization methods define
whether the processes receiving data also need the class definition.

The options for this setting are OBJECT and BYTES. The default is BYTES.

OBJECT instructs a replicator to write the object directly to the stream. With
OBJECT, a replicator must reinstantiate the object on the receiving side so must
have the class definition.

BYTES instructs a replicator to break down the object into bytes and then send
only the bytes across the stream. With BYTES, a replicator does not need to
instantiate the object on the receiving side. The BYTES option is useful for failover,
where the data is not used at the receiving side and thus the class definitions do
not need to be stored there. Or, the option requires that you move class definitions
from the Web application class path to the system class path.

 Data type String
Default BYTES
Range Valid values are OBJECT or BYTES.

DRS Pool Size
Specifies the maximum number of items allowed in a pool of replication resources.
The default is 10.

Pooling replication resources can enhance the performance of the WebSphere
internal data replication service.

 Data type Integer
Default 10
Range 1 to 50

Chapter 3. Balancing workloads with clusters 53

DRS Pool Connections
Specifies whether the data replication service includes replicator connections in a
pool of replication resources. Whether this option is enabled or not, the pool
includes replicator sessions, publishers and subscribers.

The default is not to include replicator connections in the pool.

 Data type Boolean
Default false

Replicator entry collection
Use this page to view and manage replicator entries.

To view this administrative console page, click Environment > Internal
Replication Domains > replication_domain_name > Replicator Entries.

To configure a new replicator entry, click New and follow the instructions on the
page. You add a replicator to an existing server in the cell.

Replicator Name
Specifies a name for the replicator entry.

Replicator entry settings
Use this page to view and configure a replicator entry (or replicator).

To view this administrative console page, click Environment > Internal
Replication Domains > replication_domain_name > Replicator Entries >
replicator_entry_name.

Replicators communicate using TCP/IP. Thus, you must allocate an IP address and
ports for replicators. Use this page to name a replicator and then to allocate an IP
address and two ports (replicator and client ports) for the replicator.

Replicator Name
Specifies a name for the replicator entry.

 Data type String

Server
Specifies the server for which you are defining a replicator. The drop-down list
provides the names of servers that do not already have replicators.

 Data type String
Default None

Replicator and Client Host Name
Specifies the IP address, DNS host name with domain name suffix, or just the DNS
host name, used by a client to request a Web application resource (such as a
servlet, JSP file, or HTML page).

54 IBM WebSphere Application Server, Version 5: Servers

A replicator port and client port share the same host name.

 Data type String
Default None

Replicator Port
Specifies the port for which the Web server is configured to accept client requests.
The port value is used in conjunction with the host name.

The replicator port enables communication among replicators. It provides
replicator port to replicator communication. The usual value specified is 7874.

 Data type Integer
Default None

Client Port
Specifies the port for which the Web server is configured to accept client requests.
The port value is used in conjunction with the host name.

The client port enables communication between an application server process and
a replicator. It provides client port to application server communication. The usual
value specified is 7873.

 Data type Integer
Default None

Starting clusters
You can start all members of a cluster at the same time by requesting that the state
of a cluster change to running. That is, you can start all application servers in a
server cluster at the same time.

When you request that all members of a cluster start, the cluster state changes to
websphere.cluster.partial.start and each server that is a member of that cluster
launches, if it is not already running. After all members of the cluster are running,
the cluster state becomes websphere.cluster.running.

Steps for this task
1. Click Servers > Clusters in the console navigation tree to access the Server

Cluster page.
2. Put a checkmark in the check boxes beside those clusters whose members you

want started.
3. Click Start or RippleStart.
v Start launches the server process of each member of the cluster by calling the

node agent for each server to start the servers. After all servers are running,
the state of the cluster changes to websphere.cluster.running. If the call to a
node agent for a server fails, the server will not start.

v RippleStart combines stopping and starting operations. It first stops and
then restarts each member of the cluster.

Chapter 3. Balancing workloads with clusters 55

Stopping clusters
You can stop all members of a cluster at the same time by requesting that the state
of a cluster change to stopped. That is, you can stop all application servers in a
server cluster at the same time.

Steps for this task
1. Click Servers > Clusters in the console navigation tree to access the Server

Cluster page.
2. Put a checkmark in the check boxes beside those clusters whose members you

want stopped.
3. Click Stop or Immediate Stop.
v Stop halts each server in a manner that allows the server to finish existing

requests and allows failover to another member of the cluster. When the stop
operation begins the cluster state changes to websphere.cluster.partial.stop. After
all servers stop, the cluster state becomes websphere.cluster.stopped.

v Immediate Stop brings down the server quickly without regard to existing
requests. When the stop operation begins, the cluster state changes to
websphere.cluster.partial.stop. After all servers stop, the cluster state becomes
websphere.cluster.stopped.

You can also stop and start server clusters from the settings page for a server
cluster instance. To access such a page, click on the server cluster that you want to
start or stop in the collection under Name on a Server Cluster page. You can view
the status of a server cluster (that is, whether the cluster is started or stopped) on
the Runtime tab of the settings page for a server cluster instance. Note that the
Runtime tab is only shown if you have clicked Save on the administrative console
taskbar since creating the server cluster instance.

Note to Windows users: If you start and stop application servers that are part of a
cluster using the Windows Services facility, the cluster state does not always
update correctly. For example, if a cluster is running and you stop a cluster
member through the Services GUI, the cluster state remains as Started even though
the server is no longer running.

Tuning a workload management configuration
You can set values for several workload management client properties to tune the
behavior of the workload management run time. You set the properties as
command-line arguments for the Java virtual machine (JVM) process in which the
workload management client is running.

Caution: Set the values of these properties only in response to problems that you
encounter. In most cases, you do not need to change the values. If workload
management is functioning correctly, changing the values can produce undesirable
results.

To change the property values, you can use the Java Virtual Machine page of the
administrative console or use the wsadmin tool. In cases such as where a servlet is
a client to an enterprise bean, use the administrative console page for the
application server where the servlet is running to configure the properties. The
steps below describe how to change the values using the console.

Steps for this task

56 IBM WebSphere Application Server, Version 5: Servers

1. Access the Java Virtual Machine page.
a. Click Servers > Application Servers in the console navigation tree.
b. On the Application Server page, click on the name of the server where the

client is running.
c. On the settings page for the selected application server, click Process

Definition.
d. On the Process Definition page, click Java Virtual Machine.

2. On the Java Virtual Machine page, specify one or more of the following
command-line arguments in the Generic JVM arguments field:

-Dcom.ibm.CORBA.RequestTimeout=timeout_interval
If your application is experiencing problems with timeouts, this
argument changes the value for the com.ibm.CORBA.RequestTimeout
property, which specifies the timeout period for responding to requests
sent from the client. This argument uses the -D option. timeout_interval
is the timeout period in seconds. If your network experiences extreme
latency, specify a large value to prevent timeouts. If you specify a value
that is too small, an application server that participates in workload
management can time out before it receives a response.

 Note: Be careful specifying this property; it has no recommended value.
Set it only if your application is experiencing problems with timeouts.

-Dcom.ibm.websphere.wlm.unusable.interval=interval
If the workload management state of the client is refreshing too soon or
too late, this argument changes the value for the
com.ibm.websphere.wlm.unusable.interval property, which specifies the
time interval that the workload management client run time waits after
it marks a server as unavailable before it attempts to contact the server
again. This argument uses the -D option. interval is the time in seconds
between attempts. The default value is 300 seconds. If the property is
set to a large value, the server is marked as unavailable for a long
period of time. This prevents the workload management refresh
protocol from refreshing the workload management state of the client
until after the time period has ended.

3. Click OK.
4. Stop the application server and then restart the application server.

Workload management run-time exceptions
The workload management service can throw the following exceptions if it
encounters problems:

org.omg.CORBA.TRANSIENT with a minor code 1229066306 (0x40421042)
This exception is thrown if the workload management routing service
cannot retry a request and the failure resulted from a connection error. This
exception indicates that the application should invoke some compensation
logic and resubmit the request.

org.omg.CORBA.NO_IMPLEMENT with a minor code 1229066304 (0x49421040)
This exception is thrown if the workload management service cannot
contact any of the EJB application servers that participate in workload
management.

 The WebSphere Application Server client can catch these exceptions and then
implement its own strategies to handle the situation. For example, it can display an
error message if no servers are available.

Chapter 3. Balancing workloads with clusters 57

The workload management routing service can reroute a failed request to a
different target transparently to the application if the application will not be
adversely affected by a second attempt. Currently, the only way is to check if the
request did not execute in whole or part on the previous attempt. When a request
executes in whole or in part, an org.omg.CORBA.TRANSIENT with the minor code
1229066306 (0x49421042) exception is thrown to signal that a request can be made
again. This informs the application that another target might be available to satisfy
the request, but the request could not be failed over transparently to the
application. Thus, the application can resubmit the request. The routing service
throws an org.omg.CORBA.NO_IMPLEMENT with the minor code 1229066304
(0x49421040) exception if it cannot locate a suitable target for the request. The
exception is thrown, for example, if the cluster is stopped or if the application does
not have a path to any of the cluster members.

Clustering and workload management: Resources for learning
Use the following links to find relevant supplemental information about clustering
and workload management. The information resides on IBM and non-IBM Internet
sites, whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

View links to additional information about:
v Programming model and decisions
v Programming instructions and examples

Programming model and decisions

v

Improving availability by clustering the WebSphere Application Server
(http://www-106.ibm.com/developerworks/ibm/library/i-
extreme18/?open&l=937,t=gr)

v

Redbook on WebSphere Scalability: WLM and Clustering Using
WebSphere Application Server Advanced Edition (http://publib-
b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246153.html?Open)

v

Failover and Recovery in WebSphere Application Server Advanced
Edition 4.0 (http://www7.software.ibm.com/vadd-
bin/ftpdl?1/vadc/wsdd/pdf/modjeski.pdf)

Programming instructions and examples

v

WebSphere Application Server education
(http://www.ibm.com/software/webservers/learn/)

v

Listing of all IBM WebSphere Application Server Redbooks
(http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere)

v

Redbook on IBM WebSphere V4.0 Advanced Edition Scalability and
Availability (http://publib-
b.boulder.ibm.com/Redbooks.nsf/9445fa5b416f6e32852569ae006bb65f
/ff31072025dcf5de85256aca00781918?OpenDocument&Highlight=0,plug-in)

58 IBM WebSphere Application Server, Version 5: Servers

	Contents
	Trademarks and service marks
	Chapter 1. Welcome to Servers
	Chapter 2. Configuring application servers
	Application servers
	Creating application servers
	Configuring application servers for UTF-8 encoding
	Managing Application Servers
	Application server collection
	Name
	Node
	Status

	Application server settings
	Name
	Application Class loader Policy
	Application Classloading Mode
	Short name
	Unique Id
	Process ID
	Cell Name
	Node Name
	State

	End point collection
	End Point Name

	End point settings
	End Point Name
	Host
	Port

	Custom property collection
	Name
	Value
	Description
	Required
	Valid Expression

	Custom property settings
	Name
	Value
	Description

	Server component collection
	Type

	Server component settings
	Name
	Initial State

	Thread pool settings
	Minimum size
	Maximum size
	Thread inactivity timeout
	Growable thread pool

	Starting servers
	Running an Application Server with a non-root user ID and the nodeagent as root
	Running an Application Server and nodeagent with a non-root user ID
	Detecting and handling problems with run-time components
	Stopping servers
	Transports
	Configuring transports
	HTTP transport collection
	Host
	Port
	SSL Enabled

	HTTP transport settings
	Host
	Port
	SSL Enabled
	SSL

	Example: Setting custom properties for an HTTP transport
	Custom services
	Developing custom services
	Custom service collection
	External Configuration URL
	Classname
	Display Name
	Startup

	Custom service settings
	Startup
	External Configuration URL
	Classname
	Display Name
	Description
	Classpath

	Process definition
	Defining application server processes
	Process definition settings
	Start Command
	Start Command Args
	Stop Command
	Stop Command Args
	Terminate Command
	Terminate Command Args
	Executable Name
	Executable Arguments
	Working Directory

	Process execution settings
	Process Priority
	UMASK
	Run As User
	Run As Group
	Run In Process Group

	Process logs settings
	Stdout File Name
	Stderr File Name

	Monitoring policy settings
	Maximum Startup Attempts
	Ping Interval
	Ping Timeout
	Automatic Restart
	Node Restart State

	Java virtual machines (JVMs)
	Using the JVM
	Java virtual machine settings
	Classpath
	Boot Classpath
	Verbose Class Loading
	Verbose Garbage Collection
	Verbose JNI
	Initial Heap Size
	Maximum Heap Size
	Run HProf
	HProf Arguments
	Debug Mode
	Debug Arguments
	Generic JVM Arguments
	Executable JAR File Name
	Disable JIT
	Operating System Name

	Example: Configuring JVM sendRedirect calls to use context root
	Preparing to host applications
	Java memory tuning tips
	Application servers: Resources for learning

	Chapter 3. Balancing workloads with clusters
	Workload management (WLM)
	Techniques for managing state

	Clusters
	Creating clusters
	Server cluster collection
	Name
	Status

	Server cluster settings
	Cluster name
	Cluster short name
	Unique Id
	Prefer local
	wlcID
	State

	Creating cluster members
	Cluster member collection
	Member name
	Node
	Status
	Cluster member settings
	Member Name
	Weight
	Unique ID

	Replication
	Replication entry
	Replication domain

	Replicating data
	Internal replication domain collection
	Name

	Internal replication domain settings
	Name
	Request Timeout
	Encryption Type
	DRS Partition Size
	Single Replica
	Serialization Method
	DRS Pool Size
	DRS Pool Connections

	Replicator entry collection
	Replicator Name

	Replicator entry settings
	Replicator Name
	Server
	Replicator and Client Host Name
	Replicator Port
	Client Port

	Starting clusters
	Stopping clusters
	Tuning a workload management configuration
	Workload management run-time exceptions
	Clustering and workload management: Resources for learning

