IBM WebSphere Application Server - Express for IBM i,
Version 8.5

Securing applications and their
environment

..ll

Note
FBefore using this information, be sure to read the general information under [‘Notices” on page 1043)

Compilation date: June 5, 2012

© Copyright IBM Corporation 2012.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

How to send your comments.

Using this PDF.

Chapter 1. Overview and new features for securing applications and their environment .

Security planning overview

Chapter 2. Securing the Liberty profile and its applications
Getting started with security in the Liberty profile . .
Liberty profile: Quick overview of security. .
Setting up BasicRegistry and role mapping on the L|berty proflle .
Securing communications with the Liberty profile . S
Enabling SSL communication for the Liberty profile .
Creating SSL certificates from the command prompt
Configuring your web application and server for client cert|f|cate authentlcanon
Authenticating users in the Liberty profile. .
Configuring a user registry for the Liberty profile .
Configuring the authentication cache on the Liberty profile
Configuring a JAAS custom login module for the Liberty profile.
Configuring LTPA on the Liberty profile
Customizing SSO configuration using LTPA cook|es for the L|berty prof|le
Configuring RunAs authentication in the Liberty profile . Coe
Configuring TAI for the Liberty profile .
Authorizing access to resources in the Liberty proflle
Configuring authorization for applications on the Liberty proflle
Accessing JMX connectors on the Liberty profile .
Configuring web security related properties for the Liberty prof|Ie
Customizing SSO configuration using LTPA cookies for the Liberty prof|le
Configuring your web application and server for client certificate authentication .
Configuring JCA security for the Liberty profile .
Developing extensions to the Liberty profile security mfrastructure
Developing a custom TAI for the Liberty profile. .
Developing JAAS custom login modules for a system Iogm conflguratlon .
Customizing an application login to perform an identity assertion using JAAS

Chapter 3. How do | secure applications and their environments? .
Chapter 4. Task overview: Securing resources

Chapter 5. Setting up, enabling and migrating security

Migrating, coexisting, and interoperating — Security considerations

Interoperating with previous product versions .
Migrating trust association interceptors

Migrating Common Object Request Broker Archltecture programmahc Iogln to Java Authentlcatlon

and Authorization Service (CORBA and JAAS) .

Migrating from the CustomLoginServlet class to servlet f|Iters

Migrating Java 2 security policy . .

Migrating with Tivoli Access Manager for authentlcatlon enabled .

Migrating Java thin clients that use the password encoding algorithm
Enabling security .

Administrative security.

Application security .

Java 2 security

© Copyright IBM Corp. 2012

. Xi

. Xiii

.1
.1
. 13
.14
. 15
. 15
. 20
.21
. 23
. 23
. 26
.27
. 28
. 28
. 29
. 30
. 31
. 31
. 33
. 34
. 34
. 35
. 36
. 36
.37
. 38
. 42

. 45

. 47

. 49
. 49
. 50
. 52

. 54
. 57
. 58
. 61
. 62
. 62
. 64
. 66
. 66

Enabling security for the realm

Testing security after enabling it.

Security Configuration Wizard

Security configuration report .

Adding a new custom property in a global securlty conflguratlon orina secunty domam

configuration .

Modifying an existing custom property in a global secunty conflguratlon orina secunty domam
configuration .

Deleting an existing custom property ina gIobaI securlty conflguratlon orina securlty domam
configuration .

Chapter 6. Configuring multiple security domains .
Multiple security domains .
Creating new multiple security domalns
Deleting multiple security domains .
Copying multiple security domains.
Configuring inbound trusted realms for mult|ple securlty domams
Configure security domains
Name
Description
Assigned Scopes .
Application Security: .
Enable application security
Java 2 security:.)
Use global security settmgs .
Customize for this domain .
Use Java 2 security to restrict appllcatlon access to Iocal resources
Warn if applications are granted custom permissions .
Restrict access to resource authentication data .
User Realm: .
Trust Association: .
Interceptors .
Enable trust assomahon .
SPNEGO Web Authentication:
RMI/IIOP Security:
CSIv2 inbound communlcatlons
CSlIv2 outbound communications .
JAAS Application logins.
Use global and domain-specific Ioglns
JAAS System Logins:
System Logins . .
JAAS J2C Authentlcatlon Data
Use global and domain-specific entries .
Java Authentication SPI (JASPI)
Authentication Mechanism Attributes: .
Authorization Provider: .
Custom properties.
Web Services Bindings .
External realm name.
External realm name.
Trust all realms .
Trust all realms (mcludmg those external to th|s ceII)
Trust realms as selected
Add External Realm...
Security domains collection
Maximum rows .

iv Securing applications and their environment

. 76
. 105
. 106
. 106

. 109

. 110

11

. 113
. 116
. 132
. 135
. 136
. 139
. 139
. 140
. 140
. 140
. 140
. 140
141
141
141
141
141
141
. 142
. 142
. 142
. 143
. 143
. 143
. 143
. 143
. 144
. 144
. 144
. 144
. 144
. 144
. 144
. 145
. 145
. 145
. 145
. 145
. 145
. 146
. 146
. 146
. 146
. 146
. 146

Retain filter criteria
Copy selected domain .
Copy global security .
Authentication cache settings
Enable authentication cache .
Cache timeout: .
Initial cache size:
Maximum cache size.
Use basic authentication cache keys (password one- way hashed)

Chapter 7. Authenticating users .
Selecting a registry or repository .
Configuring local operating system reglstrles
Configuring Lightweight Directory Access Protocol user reglstrles
Configuring stand-alone custom registries .
Managing the realm in a federated repository conflguratlon
Standalone Lightweight Directory Access Protocol registries
Selecting an authentication mechanism .
Lightweight Third Party Authentication
Configuring LTPA and working with keys
Kerberos (KRB5) authentication mechanism support for securlty
Setting up Kerberos as the authentication mechanism for WebSphere Appllcatlon Server
RSA token authentication mechanism e e
Configuring the RSA token authentication mechanlsm
Simple WebSphere authentication mechanism (deprecated)
Message layer authentication Coe
Integrating third-party HTTP reverse proxy servers.
Trust associations . -
Trust association settings .
Trust association interceptor collectlon
Trust association interceptor settings .
Single sign-on for authentication
Single sign-on for authentication using LTPA cookles .
Using a WebSphere Application Server API to achieve downstream web smgle srgn on wrth an
LtpaToken2 cookie.
Enterprise Identity Mapping . .
Global single sign-on principal mapplng for authent|cat|on .
Implementing single sign-on to minimize web user authentications .
Single sign-on for HTTP requests using SPNEGO web authentication.
Creating a single sign-on for HTTP requests using SPNEGO Web authentlcatron
Creating a single sign-on for HTTP requests using the SPNEGO TAI (deprecated) .
Configuring single sign-on capability with Enterprise Identity Mapping . .
Configuring single sign-on capability with Tivoli Access Manager or WebSEAL
Configuring administrative authentication e e e
Java Authentication and Authorization Service
Java Authentication and Authorization Service authorlzatlon
Using the Java Authentication and Authorization Service programming model for web authentlcatlon
Developing custom login modules for a system login configuration for JAAS
Performing identity mapping for authorization across servers in different realms .
Configuring inbound identity mapping.
Configuring outbound identity mapping to a dlfferent target realm
Security attribute propagation
Default authentication token . .
Propagating security attributes among appllcatlon servers .
Using the default authorization token to propagate security attrlbutes
Using the default propagation token to propagate security attributes

Contents

. 146
. 146
. 147
. 147
. 147
. 147
. 148
. 148
. 148

. 149
. 149
. 152
. 156
. 183
. 212
. 323
. 328
. 330
. 331
. 332
. 340
. 341
. 343
. 348
. 348
. 349
. 350
. 354
. 355
. 355
. 355
. 356

. 357
. 358
. 359
. 360
. 363
. 368
. 369
. 407
. 420
. 435
. 436
. 437

439

. 441
. 454
. 456
. 463
. 467
. 471
. 472
. 475
. 478

\'}

Using the default single sign-on token with default or custom token factory to propagate security
attributes
Configuring the authentlcatlon cache

Configuring Common Secure Interoperability VerS|on 2 (CSIV2) mbound and outbound communlcatlon

. 485
. 486
. 492
. 499
. 503
. 506
. 507

settings .
Configuring Common Secure Interoperablhty VerS|on 2 |nbound commun|cat|ons
Configuring Common Secure Interoperability Version 2 outbound communications .
Configuring inbound transports .
Configuring outbound transports
Configuring inbound messages .
Configuring outbound messages
Common Secure Interoperability Version 2 and Securlty Authentlcatlon Servrce (SAS) cllent
configuration .
Example 1: Configuring ba3|c authentlcatlon and |dent|ty assertlon
Example 2: Configuring basic authentication, identity assertion, and client cert|f|cates
Example 3: Configuring client certificate authentication and RunAs system .
Example 4: Configuring TCP/IP transport using a virtual private network .
Authentication protocol for EJB security . e
Authentication protocol support .
Common Secure Interoperability Version 2 features
Identity assertion to the downstream server
Identity assertions with trust validation
Message layer authentication
Using Microsoft Active Directory for authent|cat|on
Authentication using Microsoft Active Directory . .
Groups spanning domains with Microsoft Active Drrectory .
Microsoft Active Directory Global Catalog . .
Options for finding group membership within a Mrcrosoft Actrve D|rectory forest .
Authenticating users with LDAP registries in a Microsoft Active Directory forest
SAML web single sign-on .
SAML single sign-on scenarios, features and I|m|tat|ons .
Enabling your system to use the SAML web single sign-on (SSO) feature .
Configuring single sign-on (SSO) partners .
SAML web single sign-on (SSO) trust association mterceptor (TAI) custom propertles
Adding SAML web single sign-on (SSO) trust association interceptor (TAl) using the wsadmin
command-line utility .
Deleting SAML web single sign-on (SSO) |dent|ty provrder (IdP) partner usrng the wsadmrn
command-line utility .
Deleting SAML web single sign-on (SSO) trust assomatron mterceptor (TAI) usrng the wsadmm
command-line utility
Exporting SAML web service provrder metadata usrng the wsadmm command Ilne ut|I|ty
Importing SAML identity provider (IdP) partner metadata using the wsadmin command-line utility
Displaying SAML identity provider (IdP) partner configuration using the wsadmin command-line
utility .
Displaying SAML web smgle 3|gn on (SSO) trust assomatron |nterceptor (TAI) conf|gurat|on usrng
the wsadmin command-line utility

Chapter 8. Authorizing access to resources .
Authorization technology .
Administrative roles and naming service authorrzatlon
Role-based authorization .
Administrative roles .
Authorization providers .
Delegations . .
Authorizing access to Java EE resources usrng T|voI| Access Manager .
Using the built-in authorization provider .

Vi Securing applications and their environment

. 483

. 484

. 508
. 513
. 514
. 515
. 516
. 517
. 521
. 521
. 522
. 523
. 524
. 525
. 526
. 530
. 532
. 535
. 538
. 540
. 541
. 544
. 545
. 548

. 554

. 556

. 557
. 558

559

. 560

. 561

. 563
. 563
. 564
. 570
. 572
. 576
. 593
. 595
. 596

Enabling an external JACC provider .
Authorizing access to administrative roles .
Administrative user roles settings and CORBA namlng service user settlngs
Administrative group roles and CORBA naming service groups .
Assigning users to naming roles
Propagating administrative role changes to T|voI| Access Manager
migrateEAR utility for Tivoli Access Manager .
Assigning users from a foreign realm to the admin- authz me
Fine-grained administrative security
New Administrative Authorization Group.
Administrative Authorization Group collection .
Creating a fine-grained administrative authorization group usrng the admlnlstratlve oonsole
Editing a fine-grained administrative authorization group using the administrative console
Fine-grained administrative security in heterogeneous and single-server environments

Chapter 9. Securing communications.
Secure communications using Secure Sockets Layer (SSL)
SSL configurations
Keystore configurations for SSL .
Dynamic outbound selection of Secure Sockets Layer conflguratlons .
Central management of SSL configurations .
Secure Sockets Layer node, application server, and cluster |solat|on .
Certificate options during profile creation
Default chained certificate configuration in SSL .
Dynamic configuration updates in SSL .
Certificate management using iKeyman prior to SSL
Certificate management in SSL .
Using the retrieveSigners command in SSL to enable server to server trust
Creating a Secure Sockets Layer configuration .
SSL certificate and key management.
SSL configurations for selected scopes .
SSL configurations collection .
SSL configuration settings .
Secure Sockets Layer client certlflcate authentloatlon
Certificate authority (CA) client configuration .
Certificate authority (CA) client configuration coIIectlons
Creating a chained personal certificate in SSL
Recovering deleted certificates in SSL .
Renewing a certificate in SSL
Revoking a CA certificate in SSL
Using a CA client to create a personal cert|f|cate to be used as the default personal certlflcate
Creating a CA certificate in SSL.
Developing the WSPKIClient interface for communlcatlng W|th a certlflcate authorlty
Creating a custom trust manager configuration for SSL .
Creating a custom key manager for SSL

Associating a Secure Sockets Layer configuration dynamlcally W|th an outbound protocol and

remote secure endpoint .
Quality of protection (QoP) settlngs
ssl.client.props client configuration file
Creating a CA client in SSL .
Deleting a CA client in SSL
Viewing or modifying a CA client in SSL .
Creating a keystore configuration for a preexisting keystore f|Ie .
Recreating the .kdb keystore internal password record
Configuring a hardware cryptographic keystore .
Managing keystore configurations remotely

Contents

. 600
. 630
. 631
. 633
. 635
. 635
. 636
. 639
. 639
. 651
. 652
. 652
. 655
. 657

. 659
. 659
. 666
. 675
. 677
. 678
. 679
. 684
. 686
. 697
. 697
. 699
. 702
. 704
. 707
. 708
. 709
. 709
.71
. 715
. 717
. 717
. 718
. 719
. 720

720

. 722
. 723
. 724
. 729

. 734
. 744
. 746
. 753
. 754
. 755
. 756
. 756
. 757
. 758

Vii

Keystores and certificates collection .

Key store settings .

Key managers collection

Key managers settings .

Creating a self-signed certificate .

Replacing an existing personal certlflcate . .

Creating a new SSL certificate to replace an eX|st|ng one in a node

Creating new SSL certificates to replace existing ones in a cell .
Creating a certificate authority request

Certificate request settings

Personal certificates collection

Self-signed certificates settings . .

Personal certificate requests collection .

Personal certificate requests settings .

Extract certificate request .

Receiving a certificate issued by a certlflcate authorlty

Replace a certificate .

Extracting a signer certificate from a personal certlflcate

Extract certificate .

Extract signer certificate

Retrieving signers using the retrleveS|gners ut|I|ty at the cllent

Changing the signer auto-exchange prompt at the client.
Retrieving signers from a remote SSL port.

Retrieve from port.

Adding a signer certificate to a keystore

Add signer certificate settings

Signer certificates collection .

Signer certificate settings . .
Adding a signer certificate to the default S|gners keystore .
Exchanging signer certificates .

Keystores and certificates exchange S|gners .

Configuring certificate expiration monitoring

Manage certificate expiration settings.

Notifications .

Notifications settings . .

Key management for cryptographlc uses
Creating a key set configuration.

Active key history collection .

Add key alias reference settings

Key sets collection

Key sets settings . .

Creating a key set group conf|gurat|on .

Example: Retrieving the generated keys from a key set group

Example: Developing a key or key pair generation class for automated key generatlon

Key set groups collection . Coe e

Key set groups settings.

Chapter 10. Developing extensions to the WebSphere security infrastructure .
Developing stand-alone custom registries . .
Creating a classes subdirectory in your profile for custom classes .
Result.java file . Ce e e
UserRegistry.java files . .
Implementing custom password encryptlon
Developing applications that use programmatic securlty .
Protecting system resources and APIs (Java 2 security) for developlng appllcatlons
Developing with programmatic security APIs for web applications ..

viii Securing applications and their environment

. 759
. 761
. 763
. 763
. 765
. 765
. 766
. 768
. 769
. 770
. 770
. 771
. 774
. 775
. 777
. 777
. 781
. 782
. 783
. 783
. 783
. 785
. 786
. 787
. 788
. 788
. 789
. 790
. 790
. 792
. 793
. 793
. 795
. 797
. 797
. 798
. 799
. 801
. 801
. 802
. 802
. 804
. 805
. 807
. 809
. 809

. 813
. 813
. 814
. 815
. 816
. 821
. 822
. 823
. 844

Developing with programmatic APIs for EJB applications
Customizing web application login .
Developing servlet filters for form login processmg .
Secure transports with JSSE and JCE programming mterfaces . .
Configuring Federal Information Processing Standard Java Secure Socket Extensmn flles .
WebSphere Application Server security standards configurations
Convert certificates
Manage FIPS . .
Configuring WebSphere Appllcat|on Server for the Swte B securlty standard .
Transitioning WebSphere Application Server to the SP800-131 security standard
Configuring WebSphere Application Server for SP800-131 standard strict mode .
Implementing tokens for security attribute propagation
Implementing a custom propagation token for security attrlbute propagatlon
Implementing a custom authorization token for security attribute propagation .
Implementing a custom single sign-on token for security attribute propagation.
Implementing a custom authentication token for security attribute propagation.
Propagating a custom Java serializable object for security attribute propagation .
Enabling a plugpoint for custom password encryption . e e e
Plug point for custom password encryption
Implementing a custom authentication provider using JASPI
Developing a custom JASPI authentication provider .
Configuring a new JASPI authentication provider using the admlnlstratlve console .
Modifying an existing JASPI authentication provider using the administrative console .
Deleting a JASPI authentication provider using the administrative console .
Enabling JASPI authentication using the Map JASPI prowder opt|on durlng appI|cat|on deployment
JASPI authentication providers collection .
JASPI authentication provider details . ..
JASPI authentication enablement for applications .

Chapter 11. Auditing the security infrastructure.
Enabling the security auditing subsystem
Security Auditing detail .
Context object fields .
Creating security auditing event type fllters
Auditable security events .
Event type filter settings
Event type filters collection
Example: Generic Event Interface .
Context objects for security auditing .
Context object fields .
Configuring security audit subsystem fa|Iure not|f|cat|ons
Audit monitor collection .
Audit notification settings .
Configuring the default audit service prowders for securlty audltlng
Audit service provider collection.
Audit service provider settings .
Example: Base Generic Emitter Interface . .
Configuring a third party audit service providers for secunty aud|t|ng .
Example: Base Generic Emitter Interface .
Configuring audit event factories for security aud|t|ng
Audit event factory configuration collection.
Audit event factory settings
Example: Generic Event Factory Interface
Protecting your security audit data.
Encrypting your security audit records
Signing your security audit records

Contents

. 852
. 856
. 860
. 863
. 867
. 869
. 871
. 872
. 873
. 874
. 877
. 879
. 879
. 886
. 892
. 901
. 908
. 9N
. 912
. 913
. 915
. 919
. 920
. 921

921

. 922
. 923
. 923

. 925
. 926
. 927
. 928
. 931
. 932
. 933
. 934
. 934
. 936
. 936
. 939
. 940
. 941
. 941
. 943
. 943
. 945
. 945
. 946
. 947
. 947
. 948
. 949
. 950
. 951
. 952

ix

Audit encryption keystores and certificates collection .
Audit record encryption configuration settings.
Audit record signing configuration settings .
Audit record keystore settings
Using the audit reader .

Chapter 12. Tuning, hardening, and maintaining security configurations .

Tuning security configurations
Secure Sockets Layer performance tlps
Tuning security performance .
Hardening security configurations .
Enablement and migration considerations of Securlty hardenlng features
Securing passwords in files
Password encoding and encrypt|on
Encoding passwords in files .
Enabling custom password encryption
Backing up security configuration files

Chapter 13. Troubleshooting security configurations.

Security components troubleshooting tips .

Security configuration and enablement errors.

Security enablement followed by errors .

Access problems after enabling security .

SSL errors for security .

Single sign-on configuration troubleshootlng t|ps for securlty

Enterprise Identity Mapping troubleshooting tips

Security authorization provider troubleshooting tips .

Password decoding troubleshooting tips for security .

SPNEGO trust association interceptor (TAI) troubleshooting t|ps (deprecated)
SPNEGO troubleshooting tips . C e e e

Chapter 14. Directory conventions
Notices .
Trademarks and service marks.

Index .

X Securing applications and their environment

. 953
. 953
. 954
. 955
. 956

. 961
. 961
. 964
. 966
. 966
. 967
. 969
. 969
. 972
. 979
. 981

. 983
. 983
. 995
. . 998
. 1006
. 101
. 1015
. 1018
. 1019
. 1023
. 1023
. 1030

. 1041
. 1043
. 1045

. 1047

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.
+ To send comments on articles in the WebSphere Application Server Information Center
1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an email
form appears.

3. Fill out the email form as instructed, and submit your feedback.
* To send comments on PDF books, you can email your comments to: wasdoc@us.ibm.com.

Your comment should pertain to specific errors or omissions, accuracy, organization, subject matter, or
completeness of this book. Be sure to include the document name and number, the WebSphere
Application Server version you are using, and, if applicable, the specific page, table, or figure number
on which you are commenting.

For technical questions and information about products and prices, please contact your IBM branch office,
your IBM business partner, or your authorized remarketer. When you send comments to IBM, you grant
IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without
incurring any obligation to you. IBM or any other organizations will only use the personal information that
you supply to contact you about your comments.

© Copyright IBM Corp. 2012 Xi

xii Securing applications and their environment

Using this PDF

Links

Because the content within this PDF is designed for an online information center deliverable, you might
experience broken links. You can expect the following link behavior within this PDF:

» Links to Web addresses beginning with http:// work.
» Links that refer to specific page numbers within the same PDF book work.
* The remaining links will not work. You receive an error message when you click them.

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The
information center is the official delivery format for IBM WebSphere Application Server documentation. If
you use the PDF books primarily for convenient printing, it is now easier to print various parts of the
information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon
is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation
tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a
separate browser window as one HTML file. The HTML file includes each of the topics in the section,
with a table of contents at the top.

4. Print the HTML file.
For performance reasons, the number of topics you can print at one time is limited. You are notified if your

selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a
preferable limit. The feedback link is available at the end of most information center pages.

© Copyright IBM Corp. 2012 xiii

xiv Securing applications and their environment

Chapter 1. Overview and new features for securing
applications and their environment

Use the links provided in this topic to learn more about the security infrastructure.

[What is new for security specialists|

This topic provides an overview of new and changed features in security.

This topic describes how IBM® WebSphere® Application Server provides security infrastructure and
mechanisms to protect sensitive Java Platform, Enterprise Edition (Java EE) resources and
administrative resources and to address enterprise end-to-end security requirements on
authentication, resource access control, data integrity, confidentiality, privacy, and secure
interoperability.

[“Security planning overview”|

Several communication links are provided from a browser on the Internet, through web servers
and product servers, to the enterprise data at the back-end. This topic examines some typical
configurations and common security practices. WebSphere Application Server security is built on a
layered security architecture. This section also examines the security protection offered by each
security layer and common security practice for good quality of protection in end-to-end security.

Samples

The|Samples documentation| offers:

* Login - Form Login
The Form Login Sample demonstrates a very simple example of how to use the login facilities for
WebSphere Application Server to implement and configure login applications. The Sample uses the
Java Platform, Enterprise Edition (Java EE) form-based login technology to customize the look and feel
of the login screens. It uses servlet filters to log the user information and the date information. The
Sample finishes the session by using the form-based logout function, an IBM extension to the Java EE
specification.

* Login - JAAS Login
The JAAS Login Sample demonstrates how to use the Java Authentication and Authorization Service
(JAAS) with WebSphere Application Server. The Sample uses server-side login with JAAS to
authenticate a real user to the WebSphere security run time. Based upon a successful login, the
WebSphere security run time uses the authenticated Subject to perform authorization checks on a
protected stateless session enterprise bean. If the Sample runs successfully, it displays all the principals
and public credentials of the authenticated user.

Security planning overview

When you access information on the Internet, you connect through web servers and product servers to the
enterprise data at the back end. This section examines some typical configurations and common security
practices.

This section also examines the security protection that is offered by each security layer and common

security practice for good quality of protection in end-to-end security. The following figure illustrates the
building blocks that comprise the operating environment for security within WebSphere Application Server:

© IBM Corporation 2003 1

WebSphere security layers

- Naming - HTML

- Userregistry - Serviet or JSP file WebSphere Application Server resources

- JMXmessage - Enterprise beans

beans - Web services
L X
H i
Access control ; -

Yy v

WebSphere security WebSphere Application Server security

J2EE security API

CORBA security (CSlv2)

Java security

Java 2 security

Java virtual machine (JYM) Version 5.0

Operating system security

Platform security

Metwork security

The following information describes each of the components of WebSphere Application Server security,
Java security, and Platform security that are illustrated in the previous figure.

WebSphere Application Server security

WebSphere security
WebSphere Application Server security enforces security policies and services in a unified
manner on access to Web resources, enterprise beans, and JMX administrative resources.
It consists of WebSphere Application Server security technologies and features to support
the needs of a secure enterprise environment.

Java security

Java Platform, Enterprise Edition (Java EE) security application programming interface
(API) The security collaborator enforces Java Platform, Enterprise Edition (Java EE)-based
security policies and supports Java EE security APlIs.

Java 2 security
The Java 2 Security model offers fine-grained access control to system resources
including file system, system property, socket connection, threading, class loading, and so
on. Application code must explicitly grant the required permission to access a protected
resource.

Java Virtual Machine (JVM) 5.0
The JVM security model provides a layer of security above the operating system layer. For
example, JVM security protects the memory from unrestricted access, creates exceptions
when errors occur within a thread, and defines array types.

Platform security
IITE Operating system security

2 Securing applications and their environment

The security infrastructure of the underlying operating system provides certain security
services for WebSphere Application Server. These services include the file system security
support that secures sensitive files in the product installation for WebSphere Application
Server. The system administrator can configure the product to obtain authentication
information directly from the operating system user registry.

The security infrastructure of the underlying operating system provides certain security
services for WebSphere Application Server. The operating system identity of the servant,
controller, and daemon Started Task, as established by the STARTED profile, is the
identity that is used to control access to system resources such as files or sockets.
Optionally, the operating system security can provide authentication services using the
User Registry of local operating system, and/or authorization services using SAF
Authorization for the WebSphere Administration console and for applications running under
the application server.

In addition to knowledge of Secure Sockets Layer (SSL) and Transport Layer Security
(TLS), the administrator must be familiar with System Authorization Facility (SAF) and
Resource Access Control Facility (RACF®), or an equivalent SAF based product.

The identity and verification of users can be managed by using a Local Operating System
as the User Registry, RACF or equivalent SAF base product. Alternatively, an LDAP,
Custom, or Federated User Registry can be used.

WebSphere can be configured to use SAF Authorization, which will use RACF or an
equivalent SAF based product to manage and protect users and group resources.
Alternatively, WebSphere can be configured to use WebSphere Authorization or a JACC
External Authorization Provider.

When using either Local Operating System as the User Registry and/or using SAF
Authorization, security auditing is an inherit feature of RACF or the equivalent SAF based
products.

Network security
The Network Security layers provide transport level authentication and message integrity
and confidentiality. You can configure the communication between separate application
servers to use Secure Sockets Layer (SSL). Additionally, you can use IP Security and
Virtual Private Network (VPN) for added message protection.

Each product application server consists of a web container, an Enterprise Java Beans (EJB) container,
and the administrative subsystem.

The administrative console is a special Java EE web application that provides the interface for performing
administrative functions. WebSphere Application Server configuration data is stored in XML descriptor files,
which must be protected by operating system security. Passwords and other sensitive configuration data
can be modified using the administrative console. However, you must protect these passwords and
sensitive data. For more information, see ['Encoding passwords in files” on page 972

The administrative console web application has a setup data constraint that requires access to the
administrative console servlets and JavaServer Pages (JSP) files only through an SSL connection when
administrative security is enabled.

ITTE In WebSphere Application Server Version 6.0.x and earlier, the administrator console HTTPS
port was configured to use DummyServerKeyFile.jks and DummyServerTrustFile.jks with the default self-
signed certificate. The dummy certificates and keys must be replaced immediately after WebSphere
Application Server installation; the keys are common in all of the installation and are therefore insecure.
WebSphere Application Server Version 6.1 provides integrated certificate and key management, which
generate distinct private key and self-signed certificate with embedded server host name to enable host

Chapter 1. Overview and new features: Securing 3

name verification. WebSphere Application Server Version 6.1 also enables integration with external
certificate (CA) authority to use CA-issued certificates. The WebSphere Application Servers Version 6.1
installation process provides an option to enable administrative security during installation. As a result, a
WebSphere Application Server process is secured immediately after installation. WebSphere Application
Server Version 7.0 extends the embedded certificate management capabilities by creating a chained
certificate (personal certificate signed by a root certificate) to enable refresh of the personal certificate
without affecting the trust established. It also enables tailoring of the certificate during profile creation (you
can import your own or change the distinguished name (DN) of the one created by default) as well as the
ability to change the default keystore password.

Administrative security

LI WebSphere Application Servers interact with each other through CSIv2 and Secure
Authentication Services (SAS) security protocols as well as the HTTP and HTTPS protocols.

Important: SAS is supported only between Version 6.0.x and previous version servers that have been
federated in a Version 6.1 cell.

You can configure these protocols to use Secure Sockets Layer (SSL) when you enable WebSphere
Application Server administrative security. The WebSphere Application Server administrative subsystem in
every server uses SOAP, Java Management Extensions (JMX) connectors and Remote Method Invocation
over the Internet Inter-ORB Protocol (RMI/IIOP) JMX connectors to pass administrative commands and
configuration data. When administrative security is disabled, the SOAP JMX connector uses the HTTP
protocol and the RMI/IIOP connector uses the TCP/IP protocol. When administrative security is enabled,
the SOAP JMX connector always uses the HTTPS protocol. When administrative security is enabled, you
can configure the RMI/IIOP JMX connector to either use SSL or to use TCP/IP. It is recommended that
you enable administrative security and enable SSL to protect the sensitive configuration data.

Security for Java EE resources

Security for Java EE resources is provided by the web container and the EJB container. Each container
provides two kinds of security: declarative security and programmatic security.

In declarative security, an application security structure includes network message integrity and
confidentiality, authentication requirements, security roles, and access control. Access control is expressed
in a form that is external to the application. In particular, the deployment descriptor is the primary vehicle
for declarative security in the Java EE platform. WebSphere Application Server maintains Java EE security
policy, including information that is derived from the deployment descriptor and specified by deployers and
administrators in a set of XML descriptor files. At runtime, the container uses the security policy that is
defined in the XML descriptor files to enforce data constraints and access control.

When declarative security alone is not sufficient to express the security model of an application, you might
use programmatic security to make access decisions. When administrative security is enabled and
application server security is not disabled at the server level, Java EE applications security is enforced.
When the security policy is specified for a web resource, the web container performs access control when
the resource is requested by a web client. The web container challenges the web client for authentication
data if none is present according to the specified authentication method, ensures that the data constraints
are met, and determines whether the authenticated user has the required security role. The web security
collaborator enforces role-based access control by using an access manager implementation. An access
manager makes authorization decisions that are based on security policy derived from the deployment
descriptor. An authenticated user principal can access the requested servlet or JSP file if the user principal
has one of the required security roles. Servlets and JSP files can use the HttpServietRequest methods,
isUserInRole and getUserPrincipal.

4 Securing applications and their environment

BT When administrative security and application security are enabled, and the application server
level application security is not disabled, the EJB container enforces access control on EJB method
invocation.

The authentication occurs regardless of whether method permission is defined for the specific EJB
method. The EJB security collaborator enforces role-based access control by using an access manager
implementation. An access manager makes authorization decisions that are based on security policy
derived from the deployment descriptor. An authenticated user principal can access the requested EJB
method if it has one of the required security roles. EJB code can use the EJBContext methods,
isCallerinRole and getCallerPrincipal. Use the Java EE role-based access control to protect valuable
business data from access by unauthorized users through the Internet and the intranet. Refer to
\web applications using an assembly tool} and [Securing enterprise bean applications]|

Role-based security

WebSphere Application Server extends the security, role-based access control to administrative resources
including the JMX system management subsystem, user registries, and Java Naming and Directory
Interface (JNDI) name space. WebSphere administrative subsystem defines four administrative security
roles:

Monitor role
A monitor can view the configuration information and status but cannot make any changes.

Operator role
An operator can trigger run-time state changes, such as start an application server or stop an
application but cannot make configuration changes.

Configurator role
A configurator can modify the configuration information but cannot change the state of the runtime.

Administrator role
An operator as well as a configurator, which additionally can modify sensitive security configuration
and security policy such as setting server IDs and passwords, enable or disable administrative
security and Java 2 security, and map users and groups to the administrator role.

iscadmins
The iscadmins role has administrator privileges for managing users and groups from within the
administrative console only.

WebSphere Application Server defines two additional roles that are available when you use wsadmin
scripting only.

Deployer
A deployer can perform both configuration actions and run-time operations on applications.

Adminsecuritymanager
An administrative security manager can map users to administrative roles. Also, when fine grained
admin security is used, users granted this role can manage authorization groups.

Auditor
An auditor can view and modify the configuration settings for the security auditing subsystem.

A user with the configurator role can perform most administrative work including installing new applications
and application servers. Certain configuration tasks exist that a configurator does not have sufficient
authority to do when administrative security is enabled, including modifying a WebSphere Application
Server identity and password, Lightweight Third-Party Authentication (LTPA) password and keys, and
assigning users to administrative security roles. Those sensitive configuration tasks require the
administrative role because the server ID is mapped to the administrator role.

Chapter 1. Overview and new features: Securing 9

Enable WebSphere Application Server administrative security to protect administrative subsystem integrity.
Application server security can be selectively disabled if no sensitive information is available to protect. For
securing administrative security, refer to [‘Authorizing access to administrative roles” on page 630 and
[Assigning users and groups to roles|

Java 2 security permissions

WebSphere Application Server uses the Java 2 security model to create a secure environment to run
application code. Java 2 security provides a fine-grained and policy-based access control to protect
system resources such as files, system properties, opening socket connections, loading libraries, and so
on. The Java EE Version 1.4 specification defines a typical set of Java 2 security permissions that web
and EJB components expect to have.

Table 1. Java EE security permissions set for web components. The Java EE security permissions set for web
components are shown in the following table.

Security Permission Target Action
java.lang.RuntimePermission loadLibrary

java.lang.RuntimePermission queuePrintJob

java.net.SocketPermission * connect
java.io.FilePermission * read, write
java.util.PropertyPermission * read

Table 2. Java EE security permissions set for EJB components. The Java EE security permissions set for EJB
components are shown in the following table.

Security Permission Target Action
java.lang.RuntimePermission queuePrintJob

java.net.SocketPermission * connect
java.util.PropertyPermission * read

The WebSphere Application Server Java 2 security default policies are based on the Java EE Version 1.4
specification. The specification grants web components read and write file access permission to any file in
the file system, which might be too broad. The WebSphere Application Server default policy gives web
components read and write permission to the subdirectory and the subtree where the web module is
installed. The default Java 2 security policies for all Java virtual machines and WebSphere Application
Server processes are contained in the following policy files:

L /QIBM/ProdData/Java400/jdk15/1ib/security/java.policy
Used as the default policy for the Java virtual machine (JVM).

I ${USER_INSTALL_ROOT}/properties/server.policy
This file is used as the default policy for all product server processes.

To simplify policy management, WebSphere Application Server policy is based on resource type rather
than code base (location). The following files are the default policy files for a WebSphere Application
Server subsystem. These policy files, which are an extension of the WebSphere Application Server
runtime, are referred to as Service Provider Programming Interfaces (SPI), and shared by multiple Java
EE applications:

LM
« [profile_rool/config/cel1s/cell_name/nodes/node_name/spi.policy

Used for embedded resources defined in the resources.xml file, such as the Java Message Service
(JMS), JavaMail, and JDBC drivers.

« |profile_root/config/cells/cell_name/nodes/node_name/1ibrary.policy
Used by the shared library that is defined by the WebSphere Application Server administrative console.

« [profile_rool/config/cel1s/cell_name/nodes/node name/app.policy

6 Securing applications and their environment

Used as the default policy for Java EE applications.

In general, applications do not require more permissions to run than those recommended by the Java EE
specification to be portable among various application servers. However, some applications might require
more permissions. WebSphere Application Server supports the packaging of a was.policy file with each
application to grant extra permissions to that application.

Attention: Grant extra permissions to an application only after careful consideration because of the
potential of compromising the system integrity.

Loading libraries into WebSphere Application Server does allow applications to leave the Java sandbox.
WebSphere Application Server uses a permission filtering policy file to alert you when an application
installation fails because of additional permission requirements. For example, it is recommended that you
not give the java.lang.RuntimePermission exitVM permission to an application so that application code
cannot terminate WebSphere Application Server.

The filtering policy is defined by the filtermask in the[profile_rool/config/cells/cell_name/filter.policy
file. Moreover, WebSphere Application Server also performs run-time permission filtering that is based on
the run-time filtering policy to ensure that application code is not granted a permission that is considered
harmful to system integrity.

Therefore, many applications developed for prior releases of WebSphere Application Server might not be
Java 2 security ready. To quickly migrate those applications to the latest version of WebSphere Application
Server, you might temporarily give those applications the java.security.AllPermission permission in the
was.policy file. Test those applications to ensure that they run in an environment where Java 2 security is
active. For example, identify which extra permissions, if any, are required, and grant only those
permissions to a particular application. Not granting the A11Permission permission to applications can
reduce the risk of compromising system integrity. For more information on migrating applications, refer to
[‘Migrating Java 2 security policy” on page 58

The WebSphere Application Server runtime uses Java 2 security to protect sensitive run-time functions.
Applications that are granted the Al11Permission permission not only have access to sensitive system
resources, but also WebSphere Application Server run-time resources and can potentially cause damage
to both. In cases where an application can be trusted as safe, WebSphere Application Server does support
having Java 2 security disabled on a per application server basis. You can enforce Java 2 security by
default in the administrative console and clear the Java 2 security flag to disable it at the particular
application server.

When you specify the Enable administrative security and Use Java 2 security to restrict application
access to local resources options on the Global security panel of the administrative console, the
information and other sensitive configuration data, are stored in a set of XML configuration files. Both
role-based access control and Java 2 security permission-based access control are employed to protect
the integrity of the configuration data. The example uses configuration data protection to illustrate how
system integrity is maintained.

Attention: The Enable global security option in previous releases of WebSphere Application Server is
the same as the Enable administrative security option in Version 8.5. Also, the Enable Java
2 security option in previous releases is the same as the Use Java 2 security to restrict
application access to local resources option in Version 8.5.

» When Java 2 security is enforced, the application code cannot access the WebSphere Application
Server run-time classes that manage the configuration data unless the code is granted the required
WebSphere Application Server run-time permissions.

* When Java 2 security is enforced, application code cannot access the WebSphere Application Server
configuration XML files unless the code is granted the required file read and write permission.

* The JMX administrative subsystem provides SOAP over HTTP or HTTPS and a RMI/IIOP remote
interface to enable application programs to extract and to modify configuration files and data. When

Chapter 1. Overview and new features: Securing 7

administrative security is enabled, an application program can modify the WebSphere Application Server
configuration if the application program has presented valid authentication data and the security identity
has the required security roles.

» |f a user can disable Java 2 security, the user can also modify the WebSphere Application Server
configuration, including the WebSphere Application Server security identity and authentication data with
other sensitive data. Only users with the administrator security role can disable Java 2 security.

» Because WebSphere Application Server security identity is given to the administrator role, only users
with the administrator role can disable administrative security, change server IDs and passwords, and
map users and groups to administrative roles, and so on.

| _ievi [
Other Runtime resources

Other WebSphere Application Server run-time resources are protected by a similar mechanism, as
described previously. It is very important to enable WebSphere Application Server administrative security
and to use Java 2 security to restrict application access to local resources. Java EE Specification defines
several authentication methods for web components: HTTP Basic Authentication, Form-Based
Authentication, and HTTPS Client Certificate Authentication. When you use client certificate login, it is
more convenient for the browser client if the web resources have integral or confidential data constraint. If
a browser uses HTTP to access the web resource, the web container automatically redirects the browser
to the HTTPS port. The CSIv2 security protocol also supports client certificate authentication. You can also
use SSL client authentication to set up secure communication among a selected set of servers based on a
trust relationship.

If you start from the WebSphere Application Server plug-in at the web server, you can configure SSL
mutual authentication between it and the WebSphere Application Server HTTPS server. When using a
certificate, you can restrict the WebSphere Application Server plug-in to communicate with only the
selected two WebSphere Application Servers as shown in the following figure. Note that you can use
self-signed certificates to reduce administration and cost.

For example, you want to restrict the HTTPS server in WebSphere Application Server A and in WebSphere

Application Server B to accept secure socket connections only from the WebSphere Application Server

plug-in W.

BT To complete this task, you can generate three certificates using the IKEYMAN and the
certificate management utilities. Also, you can use certificate W and trust certificate A and B. Configure
the HTTPS server of WebSphere Application Server A to use certificate A and to trust certificate W.

Configure the HTTPS server of WebSphere Application Server B to use certificate B and to trust certificate
W.

Table 3. Trust relationships from example. The trust relationship that is depicted in the previous figure is shown in the
following table.

Server Key Trust
WebSphere Application Server plug-in W A B
WebSphere Application Server A A w
WebSphere Application Server B B w

When WebSphere Application Server is configured to use Lightweight Directory Access Protocol (LDAP)
user registry, you also can configure SSL with mutual authentication between every application server and
the LDAP server with self-signed certificates so that a password is not visible when it is passed from
WebSphere Application Server to the LDAP server.

8 Securing applications and their environment

T WebSphere Application Server does not provide a registry configuration or management utility.
In addition, it does not dictate the registry password policy. It is recommended that you use the password
policy recommended by your registry, including the password length and expiration period.

Before securing your WebSphere Application Server environment, determine which versions of WebSphere
Application Server you are using, review the WebSphere Application Server security architecture, and
review each of the following topics:
* |“Common Secure Interoperability Version 2 features” on page 521|
* |“Identity assertion to the downstream server’ on page 522|
« [“Selecting an authentication mechanism” on page 328|

— WEIIEE [‘Simple WebSphere authentication mechanism (deprecated)” on page 348|

The Simple WebSphere Authentication Mechanism (SWAM) is deprecated in WebSphere Application
Server Version 8.5. It will be removed in a future release. As an alternative, it is recommended that
you use Lightweight Third Party Authentication (LTPA).
— |‘Lightweight Third Party Authentication” on page 330|
— [“Trust associations” on page 350
— [*Single sign-on for authentication using LTPA cookies” on page 356
« [“Selecting a registry or repository” on page 149
— [“Local operating system registries” on page 153
— [|“Standalone Lightweight Directory Access Protocol registries” on page 323
« [“Java 2 security” on page 66)
— [Java 2 security policy files” on page 71|
[Java Authentication and Authorization Service” on page 436)
— |Programmatic login for JAAS|
+ [Java EE connector security|
+ [“Access control exception for Java 2 security” on page 75|
— |“‘Role-based authorization” on page 570|
— [‘Administrative roles and naming service authorization” on page 564
+ [“Implementing a custom authentication provider using JASPI” on page 913

Chapter 1. Overview and new features: Securing 9

10 Securing applications and their environment

Chapter 2. Securing the Liberty profile and its applications

This information applies generally to all types of applications deployed on the Liberty profile.
About this task

Security in the Liberty profile supports all the Servlet 3.0 security features. In addition, it also secures Java
JMX connections. The following server features are applicable to security in the Liberty profile:

» appSecurity-1.0 enables security for all web resources.
* ss1-1.0 enables SSL connections using HTTPS.
* restConnector-1.0 enables remote access by JMX client through a REST-based connector.

To learn about how security works in the Liberty profile, see|Liberty profile: Security|

There are several security configuration examples under the /templates/config directory of the server
image for reference when configuring security for your applications on the Liberty profile.

Best practice: When you use the developer tools to configure the security on the Liberty profile, make
sure that the configuration created by the tools is similar to the examples in the
${wlp.install.dir}/templates/config directory of the server image. This directory
includes examples of configuring some of the most common security features. If you see
any differences in the configuration created by the developer tools and the examples,
modify the configuration to fit the configuration in the examples for that feature.

Procedure

+ [Use quickStartSecurity for minimal security configuration|

+ [Secure communication with the Liberty profile]

+ [Access secured JMX connector on the Liberty profile]
[Authenticate users in the Liberty profile|

[Authorize access to resources in the Liberty profile]

[Secure a database access application|

+ [Develop extensions to the Liberty profile security infrastructure]

Getting started with security in the Liberty profile

You can use the quickStartSecurity element to quickly enable a simple (one user) security setup for the
Liberty profile.

About this task

This topic goes through the basic steps required to set up a secured Liberty profile server and web
application. Additionally, configuration actions within the Liberty profile are dynamic, which means the
configuration updates take effect without having to restart the server.

Procedure
1. Create and start your server.
* BT On all systems other than Windows systems:

bin/server create MyNewServer
bin/server start MyNewServer

2. Include the appSecurity-1.0 feature in the server.xml file. The server.xml file is located in the server
directory of myNewServer, for example, wip\usr\servers\myNewServer\server.xml.

© Copyright IBM Corp. 2012 11

<featureManager>
<feature>appSecurity-1.0</feature>
</featureManager>

3. Define the user name and password that is to be granted the Administrator role for server
management activities.

<quickStartSecurity userName="Bob" userPassword="bobpwd" />

Note: Choose a user name and password that are meaningful to you. Never use the name and
password in the example for your applications.

4. Configure the deployment descriptor with the relevant security constraints to protect the web resource.
For example, use <auth-constraint> and <role-name> elements to define a role that is allowed to
access the web resource.

The following example web.xml file shows that access to all the URIs in the application is protected by
the testing role.

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app id="myWebApp">

<!-- SERVLET DEFINITIONS -->

<servlet id="Default">
<servlet-name>myWebApp</servlet-name>
<servlet-class>com.web.app.MyWebAppServiet</servlet-class>
<load-on-startup/>

</servlet>

<!-- SERVLET MAPPINGS -->

<servlet-mapping id="ServletMapping_Default">
<servlet-name>myWebApp</servlet-name>
<url-pattern>/*</url-pattern>

</servlet-mapping>

<!-- SECURITY ROLES -->
<security-role>

<role-name>testing</role-name>
</security-role>

<!-- SECURITY CONSTRAINTS -->
<security-constraint>
<web-resource-collection>
<url-pattern>/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>testing</role-name>
</auth-constraint>
</security-constraint>

<!-- AUTHENTICATION METHOD: Basic authentication -->
<login-config>

<auth-method>BASIC</auth-method>
</login-config>

</web-app>
5. Configure your application in the server.xml file.

In the following example, the user Bob is mapped to the testing role of the application:

<application type="war" id="myWebApp" name="myWebApp"
location="$§{server.config.dir}/apps/myWebApp.war">
<application-bnd>
<security-role name="testing">

12 Securing applications and their environment

<user name="Bob" />
</security-role>
</application-bnd>
</application>
6. Access your application and log in with the user name Bob. The default URL for the myWebApp
application is http://1ocalhost:9080/myWebApp

Results

You have now secured your application.

Liberty profile: Quick overview of security

This topic describes some of common security terms, along with an example which helps you understand
the basic workflow of security in the Liberty profile.

Security key terms

Authorization
The process of determining whether or not to grant a user access to resources within the system
is known as authorization. The Java EE model uses subjects, resources and roles to determine
what should and should not be allowed.

Authentication
The process of confirming the identity of a user is known as authentication. The most common
form of authentication is user name and password, such as through either basic authentication or
form login for web applications. Once a user is authenticated, the source of a request is
represented as a Subject object at the run time.

Resource
Also known as an object, resources are things within the system. A resource can be any
non-active entity, such as a web application.

Role Arrole is a logical collection of privileges that can be assigned to a user or group. Some roles are
predefined by the system (such as the Administrator role). Others are defined by the application
developer. In Java EE, subjects are usually granted or denied access to resources based on the
roles they do (or do not) possess.

Subject
A subject is both a general term, as well as a Java object javax.security.auth.Subject.
Generally, the term subject means active entities within the system, such as users on the system,
and even the system process itself.

Security workflow
The following example demonstrates how the security works when a user requests access to a resource.

For example, a user Bob wants to access a servlet myWebApp. See the code samples in|“Getting started|
\with security in the Liberty profile” on page 11|

In order to do this, the following conditions must be true:
1. Bob must be able to log into the system because the servlet is protected.

2. Bob must be in the testing role because the servlet is restricted using an auth-constraint element in
the deployment descriptor.

If Bob cannot log into the system, or Bob is not in the testing role, then the access to the serviet myWebApp
is denied.

Another user Alice can log into the system because Alice is a valid user. But Alice is not in the testing
role. An HTTP 403 error (Access Denied/Forbidden) shows up when Alice logs in.

Chapter 2. Securing the Liberty profile and its applications 13

Setting up BasicRegistry and role mapping on the Liberty profile

You can configure the Liberty profile to authenticate and authorize users using a basic user registry.
Before you begin

The server feature appSecurity-1.0 must be enabled in the server.xml file of the Liberty profile.
About this task

This topic goes through the steps to set up a basic user registry and configure more role mapping in the
server.xml file for a Liberty profile server.

Procedure

1. Configure the basic registry as follows. Make sure to use a user name and password that are
meaningful to you. Never use the name and password in the example for your applications.
<basicRegistry id="basic" realm="WebRealm">

<user name="Bob" password="bobpwd" />
</basicRegistry>

2. Optional: Grant the user with the Administrator role if the user is used to perform remote system
management activities. This step is done automatically when |using quickStartSecurity element
<administrator-role>

<user>Bob</user>
</administrator-role>

3. Encode the password within the configuration. You can get the encoded value by using the
lsecurityUtility encode] task.

4. Add additional users. Make sure each user name is unique.

<basicRegistry id="basic" realm="WebRealm">
<user name="Bob" password="bobpwd" />
<user name="userl" password="userlpwd" />
<user name="user2" password="user2pwd" />
</basicRegistry>
5. Create groups for users. Make sure each group name must be unique.
<basicRegistry id="basic" realm="WebRealm">
<user name="Bob" password="bobpwd" />

<user name="userl" password="userlpwd" />
<user name="user2" password="user2pwd" />

<group name="myAdmins">
<member name="Bob" />
<member name="userl" />
</group>

<group name="users">
<member name="userl" />
<member name="user2" />
</group>
</basicRegistry>
6. Assign a user group to the Administrator role.
<administrator-role>
<user>Bob</user>
<group>myAdmins</group>
</administrator-role>

7. Assign some users and groups to the testing role of an application.

<application type="war" id="myWebApp" name="myWebApp"
Tocation="${server.config.dir}/apps/myWebApp.war">
<application-bnd>
<security-role name="tesing">

14 Securing applications and their environment

<user name="Bob" />
<user name="userl" />
<group name="users" />
</security-role>
</application-bnd>
</application>

What to do next

Configure security related elements in the deployment descriptor of your application. See|“Getting started
\with security in the Liberty profile” on page 11|for a sample web.xm1 file.

Securing communications with the Liberty profile

You can configure the Liberty profile server to provide secure communications between a client and the
server.

About this task

To configure secure communications, you can either specify a|minimal SSL configuration| or ja detailed SSL|
in the server.xml file. The minimal configuration only requires the SSL feature and a

keystore entry to be specified. In the samples directory of the Liberty profile, there is an ss1Config.xml file
that contains several examples of SSL configurations.

The following topics are covered in this section:

Procedure

« [Enable SSL communications between a client and a Liberty profile server|

« Optional: [Create a keystore from the command prompf{

« Optional: [Encode passwords from the command prompf

« Optional: [Configure client certificate authentication between your application and the Liberty profile|

|serve!|

Enabling SSL communication for the Liberty profile

To enable SSL communication for the Liberty profile, there is a minimal set of SSL configuration options. It
assumes most of the SSL options and only requires some keystore configuration information.

About this task

SSL client authentication occurs during the connection handshake using SSL certificates. The SSL
handshake is a series of messages that are exchanged over the SSL protocol to negotiate for
connection-specific protection. During the handshake, the secure server requests that the client send back
a certificate or certificate chain for the authentication. To do this, you add the ss1-1.0 server feature to the
server.xml file, along with code that tells the server the keystore information for authentication.

Procedure
1. Enable the appSecurity-1.0 and ss1-1.0 server features in the server.xml file.
<featureManager>

<feature>appSecurity-1.0</feature>
<feature>ss1-1.0</feature>
</featureManager>
2. Add the keystore service object entry to the server.xml file. The keyStore element is called
defaultKeyStore and contains the keystore password. The password can be entered in clear text or
encoded. The [securityUtility encode] option can be used to encode the password.

<keyStore id="defaultKeyStore" password="yourPassword" />

Chapter 2. Securing the Liberty profile and its applications 15

Avoid trouble: When using the developer tools to create a minimal SSL configuration, make sure to
enter defaultKeyStore in the id field and a password. Otherwise, the SSL
configuration fails and the services using this configuration fails to start. For example,
if the httpEndpoint element is using this SSL configuration, the HTTPS port doesn't
start.

In this configuration the keystore type is JKS. You can create this default keystore using the

lsecurityUtility createSSL Certificate| option, the server creates the keystore for you if it does not exist

during SSL initialization. The password must be at least 6 characters long. The type of the keystore is

JKS by default. Keystore of other types can also be specified in the minimal SSL configuration if the

keystore file is already created. Only JKS keystore files are created by the server if the keystore file

does not exist. The certificate has a validity period of 365 days, the CN value of the subjectDN is the
hostname of the machine where the server is running, and the signature algorithm of the certificate is

SHA1 with RSA.

The single keystore entry for a minimal SSL configuration can be extended to include the location and
type as well.

<keyStore id="defaultKeyStore" Tlocation="myKeyStore.pl2" password="yourPassword" type="PKCS12"/>

The Tocation parameter can be an absolute path to the keystore file. If it is an absolute path, then the
keystore file is assumed to have been already created. Keystore of other types can also be specified in
the minimal SSL configuration as long as the keystore file is already created. When the minimal SSL
configuration is used, the SSL configuration defaults are used to create the SSL context for an SSL
handshake. The configuration protocol is SSL_TLS by default. The HIGH ciphers, 128 bit and higher
cipher suites can be used.

Liberty profile: SSL configuration attributes
SSL configurations contain attributes that you use to control the behavior of the server SSL transport layer
on a Liberty profile. This document iterates all the settings available for an SSL configuration.

SSL Feature

To enable SSL on a server, the SSL feature must be included in the server.xm1 file:

<featureManager>
<feature>ss1-1.0</feature>
</featureManager>

SSL Default

You can have multiple SSL configurations configured. If more than one is configured, then the default SSL
configuration must be specified in the server.xml file using the ss1Default service configuration.

Table 4. Attribute of the SSLDefault element. This table describes the attribute of the SSLDefault element.

Attribute Description Default Value

ss1Ref The ss1Ref attribute specifies the The default SSL Configuration name
SSL configuration to be used as the |is defaultSSLSettings.

default. If this attribute is not
specified, then the value used is
defaultSSLSettings.

In the server.xml file, the entry looks like this:
<ss1Default ss1Ref="mySSLSettings" />

SSL Configuration

You use the SSL configuration attributes to customize the SSL environment to suit your needs. These
attributes can be set on the ss1 service configuration element in the server.xml file.

16 Securing applications and their environment

Table 5. Attributes of the SSL element. This table describes the attributes of the ssl element.

Attribute Description Default Value
id The id attribute assigns a unique No default value; a unique name
name to the SSL configuration object. | must be specified.
keyStoreRef The keyStoreRef attribute names the | No default value; a keystore
keystore service object that defines reference must be specified.
the SSL configurations keystore. The
keystore holds the key needed to
make an SSL connection.
trustStoreRef The trustStoreRef attribute names trustStoreRef is an optional attribute

the keystore service object that
defines the SSL configurations
truststore. The truststore holds
certificates needed for signing
verification.

if the reference is missing. The
keystore specified by keyStoreRef is
used.

clientAuthentication

The clientAuthentication attribute
determines whether SSL client
authentication is required.

Default value is false.

clientAuthenticationSupported

The clientAuthenticationSupported
attribute determines whether SSL
client authentication is supported. The
client does not have to supply a client
certificate. If the clientAuthentication
attribute is set to true, the value of the
clientAuthenticationSupported
attribute is overwritten.

Default value is false.

ss1Protocol

The ss1Protocol attribute defines the
SSL handshake protocol. The protocol
can be SDK dependent, so if
modifying the protocol make sure the
value is supported by the SDK you are
running under.

Default value is SSL_TLS.

securitylevel

The securityLevel attribute
determines the cipher suite group to
be used by the SSL handshake. The
attribute has one of the following
values:

» HIGH (128-bit ciphers and higher)
e MEDIUM (40-bit ciphers)

» WEAK (for all ciphers without
encryption)

» CUSTOM (if the cipher suite group is
customized).

When you set the enableCiphers
attribute with a specific list of ciphers,
the system ignores this attribute.

Default value is HIGH.

enableCiphers

The enableCiphers attribute is used to
specify a unique list of cipher suites.
Separate each cipher suite in the list
with a space. If the enableCiphers
attribute is set then the securityLevel
attribute is ignored

No default value.

Chapter 2. Securing the Liberty profile and its applications 17

Table 5. Attributes of the SSL element (continued). This table describes the attributes of the ssl element.

Attribute Description Default Value

serverKeyAlias The serverKeyAlias attribute names No default value.

the key in the keystore to be used as
the SSL configurations key. This
attribute is only needed if the keystore
has more than one key entry in it. If
the keystore has more than one key
entry and this attribute does not
specify a key, then the JSSE picks a
key.

clientKeyAlias The clientKeyAliasattribute names No default value.

the key in the keystore to be used as
the key for SSL configuration when
clientAuthentication is enabled. The
attribute is only required if the keystore
contains more than one key entry.

Note:

* The key manager is used by the SSL Handshake to determine what certificate alias to use. The
key manager is not configured in the server.xml file, it is retrieved from the security property
ss1.KeyManagerFactory.algorithm of the SDK.

* The trust manager is used by the SSL handshake to make trust decisions. The trust manager is

not configured in the server.xml file, it is retrieved from the security property
ss1.TrustManagerFactory.algorithm of the SDK.

Here is an example of how the ss1 element is configured in theserver.xml file:

<l--
<l--

Simple ss1 configuration service object. This assumes there is a keystore object named -->
defaultKeyStore and a truststore object named defaultTrustStore in the server.xml file. -->

<ss1 id="myDefaultSSLConfig"

<l--
<l--

keyStoreRef="defaultKeyStore"
trustStoreRef="defaultTrustStore" />

A ss1 configuration service object that enabled clientAuthentication -->
and specifies the TLS protocol be used. -->

<ss1 id="myDefaultSSLConfig"

<l--
<l--

keyStoreRef="defaultKeyStore"
trustStoreRef="defaultTrustStore"
clientAuthentication="true"
ss1Protocol="TLS" />

A ss1 configuration service object that names the serverKeyAlias to be use by the handshake. -->
This assumes there is a certificate called "default" in the keystore defined by keyStoreRef. -->

<ss1 id="myDefaultSSLConfig"

keyStoreRef="defaultKeyStore"
serverKeyAlias="default" />

Keystore Configuration

The keystore configuration consists of the attributes needed to load a keystore. These attribute can be set
on the keystore service configuration in the server.xml file.

18 Securing applications and their environment

Table 6. Attributes of the keystore element. This table explains the attributes of keystore element.

Attribute

Description

Default Value

id

The id attribute defines a unique
identifier of the keystore object.

No default value, a unique name
must be specified.

location

The Tocation attribute specifies the
keystore file name. The value can
include the absolute path to the file. If
the absolute path is not provided, then
the code looks for the file in the
${server.config.dir}/resources/
security directory.

In the |SSL minimal configuration} the
location of the file is assumed to be
${server.config.dir}/resources/
security/key.jks.

type

The type attribute specifies the type of
the keystore. Check that the keystore
type that you specify is supported by
the SDK you are running on.

Default value is jks.

password

The password attribute specifies the
password used to load the keystore
file. The password can be stored
either in clear text or encoded. For
information about how to encode the

password, see the |securityUtility]

option.

Must be provided.

provider

The provider attributes specifies the
provider to be used to load the
keystore. Some keystore types
required a provider other then the SDK
default.

By default no provider is specified.

fileBased

The fileBased attribute specifies
whether or not the keystore is
file-based.

Default value is true.

Here is an example of how the keystore element is configured in the server.xml file:
<l-- A keystore object called defaultKeyStore provides a Tocation, -->

<!-- type, and password. The MyKeyStoreFile.jks file is assumed -->

<l-- to be Tocated in ${server.config.dir}/resources/security -->

keyStore id="defaultKeyStore"
location="MyKeyStoreFile.jks"
type="JKS" password="myPassword" />

Full SSL Configuration Example

Here is an example of a full SSL configuration in the server.xml file. This example has the following SSL

configurations:
* defaultSSLSettings
* mySSLSettings

By default, the SSL configuration is set to defaultSSLSettings.

<featureManager>
<feature>ss1-1.0</feature>
</featureManager>

<l-- default SSL configuration is defaultSSLSettings ->
<ss1Default ss1Ref="defaultSSLSettings" />

<ss1 id="defaultSSLSettings"

Chapter 2. Securing the Liberty profile and its applications 19

keyStoreRef="defaultKeyStore"
trustStoreRef="defaultTrustStore"
clientAuthenticationSupported="true" />
<keyStore id="defaultKeyStore"
location="key.jks"
type="JKS" password="defaultPwD" />
<keyStore id="defaultTrustStore"
lTocation="trust.jks"
type="JKS" password="defaultPwD" />

<ss1 id="mySSLSettings"
keyStoreRef="myKeyStore"
trustStoreRef="myTrustStore"
clientAuthentication="true" />
<keyStore id="LDAPKeyStore"
location="${server.config.dir}/myKey.p12"
type="PKCS12"
password="{xor}CDo9Hgw=" />
<keyStore id="LDAPTrustStore"
location="${server.config.dir}/myTrust.pl2"
type="PKCS12"
password="{xor}CDo9Hgw=" />

Creating SSL certificates from the command prompt

You can use the securityUtility command to create a default SSL certificate for use by the Liberty
profile configuration.

Procedure
1. Open a command prompt, then change directory to the wip directory.
2. Create an SSL certificate.

Run the following command. If you do not specify a server name or a password, the command does
not run. See |“Liberty profile: securityUtility command.’1

bin/securityUtility createSSLCertificate --server server_name --password your password

Results

You have created a default keystore key. jks for the specified server. The keystore file is located under the
/resources/security directory of the specified server. If a default keystore already exists, the command
does not execute successfully.

What to do next

You can configure your server to use the keystore and enable the SSL in the server configuration by
adding the following lines to the server configuration file:

<featureManager>
<feature>ss1-1.0</feature>
</featureManager>

<keyStore id="defaultKeyStore" password="keystore password" />

See [‘Enabling SSL communication for the Liberty profile” on page 15.|

Liberty profile: securityUtility command
The securityUtility command supports plain text encryption and SSL certificate creation for a Liberty
profile.

20 Ssecuring applications and their environment

Syntax

The command syntax is as follows:
securityUtility task [options]

where the options are different based on the value of task.
Parameters

The following tasks are available for the securityUtility command:

encode
Encodes the provided text using Base64 encryption. If no arguments are specified , the command
enters interactive mode. Otherwise, the provided text is encoded. Text with spaces must be put in
quotation marks if specified as an argument.

createSSLCertificate
Creates a default SSL certificate for use in server configuration. Generated keystore file key.js is
placed under /resources/security directory of the server specified in --server name. The key
algorithm is RSA and signature algorithm is SHA1 with RSA. For more control over the certificate
creation, use keytool directly.

The arguments are:

--server=name
Specifies the name of the Liberty profile server for keystore creation. This option is

required.

--password=passwd
Specifies the password to be used in the keystore, which must be at least 6 characters in

length. This option is required.

--validity=days
Specifies the number of days that the certificate is valid, which must be equal to or greater
than 365. The default value is 365. This option is optional.

--subject=DN
Specifies the Domain Name (DN) for the certificate subject and issuer. The default value is
CN=Tocalhost,0=ibm,C=us. This option is optional.

help Prints help information for specified task.
Usage

The following examples demonstrate correct syntax:

securityUtility encode GiveMeLiberty
securityUtility createSSLCertificate --server=myserver --password=mypassword --validity=365 --subject=CN=mycompan
securityUtility help createSSLCertificate

Configuring your web application and server for client certificate

authentication
You can configure your web application on the Liberty profile using SSL client authentication.

Before you begin

This topic assumes that you have already created the SSL certificates, for example as described in
[‘Creating SSL certificates from the command prompt” on page 20|

Chapter 2. Securing the Liberty profile and its applications 21

About this task

Client certificate authentication occurs if the server side requests that the client side send a certificate. A
Websphere server can be configured for client certificate authentication on the SSL configuration. To do
this, you add the ss1-1.0 server feature to the server.xml file, along with code that tells the server the
keystore information for authentication.

For details of which aspects of SSL are supported, see|Liberty profile: Server featuresl

Procedure

1.

Ensure that the deployment descriptor for your web application is specified with<auth-method>CLIENT-
CERT</auth-method>

Note: Typically, you would use a tool such as Rational® Application Developer to create the
deployment descriptor.

Optional: Generate an SSL certificate using the command prompt. See [Liberty profile: securityUtility|

fcommand” on page 20.|

Configure your server to enable SSL client authentication by adding the following lines to the

server.xml file:

<featureManager>
<feature>ss1-1.0</feature>
<featureManager>

<ssl id="defaultSSLSettings" keyStoreRef="defaultKeyStore"
trustStoreRef="defaultTrustStore" clientAuthenticationSupported="true" />

<keyStore id="defaultKeyStore" Tlocation="key.jks" type="JKS" password="defaultPWD" />

<keyStore id="defaultTrustStore" location="trust.jks" type="JKS" password="defaultPWD" />

» If you specify clientAuthentication="true", the server requests that a client send a certificate.
However, if the client does not have a certificate, or the certificate is not trusted by the server, the
handshake does not succeed.

» If you specify clientAuthenticationSupported="true", the server requests that a client send a
certificate. However, if the client does not have a certificate, or the certificate is not trusted by the
server, the handshake might still succeed.

* If you do not specify either clientAuthentication or clientAuthenticationSupported, or you
specify clientAuthentication="false" or clientAuthenticationSupported="false", the server does
not request that a client send a certificate during the handshake.

Add a client certificate to your browser. See the documentation of your browser for adding client

certificates.

Make sure the server trusts any client certificates that are used.

Make sure any client certificates used for client authentication are mapped to a user identity in your

registry.

» For the basic registry, the user identity is the common name (CN) from the distinguished name (DN)
of the certificate.

» For a Lightweight Directory Access Protocol (LDAP) registry, the DN from the client certificate must
be in the LDAP registry.

To fall back to basic authentication (user ID and password only) if client certificate authentication does

not succeed, add the following line to your server.xml file.

<webAppSecurity allowFailOverToBasicAuth="true" />

Note: If you specify allowFailOverToBasicAuth="false" or do not specify allowFailOvertoBasicAuth,
and the client certificate authentication does not succeed, the request generates a 403
Authentication error message and the client is not prompted for basic authentication.

22 Securing applications and their environment

Authenticating users in the Liberty profile

The Liberty profile server uses a user registry to authenticate a user and retrieve information about users
and groups to perform security-related operations, including authentication and authorization.

About this task

To learn about how authentication works in the Liberty profile, see |Liberty profile: Authenticationl.

The authentication tasks that you can configure might vary depending on your requirements. Unless you
have used |the quickStartSecurity elementl that can configure only one user, you can configure the user
registry at the least . You do not have to configure the values for JAAS, authentication Cache and SSO
tasks unless you want to change the default values. Configure TAI configuration only when you have an
implementation of TAl interface to handle authentication.

You can complete one or more of the following authentication tasks:

Procedure

+ [Configure authentication cache on the Liberty profile]

+ [Configure a custom JAAS login module for the Liberty profile|
+ [Configure SSO on the Liberty profile]

« [Configure a user registry for the Liberty profile]

+ [Configure RunAS authentication in the Liberty profile]

+ [Configure TAI for the Liberty profile|

Configuring a user registry for the Liberty profile

You can store user and group information for authentication in several types of registry. For example you
can use a basic user registry, or an LDAP registry.

Procedure
« [Configure a basic user registry for the Liberty profile|
« [Configure an LDAP user registry for the Liberty profile|

Configuring a basic user registry for the Liberty profile
You can configure a basic user registry in the Liberty profile for authentication.

About this task

You can use a basic user registry by defining the users and groups information for authentication on the
Liberty profile server. To do this, you add the appSecurity-1.0 server feature to the server.xml file, along
with user information in the basicRegistry element.

Procedure
1. Add the appSecurity-1.0 server feature to the server.xml file.

2. Optional: To use SSL, add the ss1-1.0 server feature in the server.xml file. See ['Enabling SS
|communication for the Liberty profile” on page 15.|

3. Configure the basic registry for the server as follows:

<basicRegistry id="basic" realm="customRealm">
<user name="mlee" password="p@sswOrd" />
<user name="rkumar" password="pa$$wOrd" />
<user name="gjones" password="{xor}Lz4sLCgwlLTs=" />
<group name="students">

Chapter 2. Securing the Liberty profile and its applications 23

<member name="mlee" />
<member name="rkumar" />
</group>
</basicRegistry>

Notes:
* You must use unique names for your users and groups.
* You should remove all trailing and leading spaces from the user and group names.

* If you edit the server.xml file directly, you can use the securityUtility encode command
to encode the password for each user. The securityUtility command-line tool is available
in the $INSTALL_ROOT/bin directory. When you run the securityUtility encode command,
you either supply the password to encode as an input from the command line or, if no
arguments are specified, the tool prompts you for the password. The tool then outputs the
encoded value. Copy the value output by the tool, and use that value for the password. For
example, to encode the password GiveMeLiberty, run the following command:
securityUtility encode GiveMelLiberty

* A more complete sample configuration of the basic registry is available in file
${wlp.install.dir}/templates/config/basicRegistry.xml.

Configuring an LDAP user registry with the Liberty profile
You can configure a Lightweight Directory Access Protocol (LDAP) server with the Liberty profile for
authentication.

Before you begin

Ensure your LDAP server is up and running, and that the host name and port number of the LDAP server
are already in your known list.

About this task

You can use an existing LDAP server for application authentication on the Liberty profile. To do this, you
add the appSecurity-1.0 server feature to the server.xml file, and specify in the server.xml file the
configuration information for connecting to the LDAP server.

Avoid trouble: You can refer to the sample LDAP configuration 1dapRegistry.xml file in the
${wip.install.dir}/templates/config directory, and make sure the configuration in your
server.xml file is similar to the one in the sample file.

Note: There is no support of certificate filter for LDAP.

Procedure
1. Add the appSecurity-1.0 server feature to the server.xml file.

2. Optional: To communicate with an SSL-enabled LDAP server , add the ss1-1.0 server feature in the
server.xml file.

3. Optional: Copy the truststore to the server configuration directory (for example, by using the
${server.config.dir} variable).

For SSL communication with an LDAP server to succeed, the Signer certificate for the LDAP server
must be added to the truststore that is referenced by the ss1Alias attribute of the <ldapRegistry>
element. In the following examples, the Signer certificate must be added to the
LdapSSLTrustStore. jks.

4. Configure the LDAP entry for the server.

If you do not need SSL for the LDAP server, remove all SSL and keystore related lines from the
following examples.

24 Securing applications and their environment

You configure the LDAP server in the server.xml file or using the Liberty profile developer tools. For
sample configuration of other LDAP server, refer to the ${wlp.install.dir}/templates/config/
1dapRegistry.xml file.

* For IBM Directory Server:

<ldapRegistry id="1dap" realm="SampleLdapIDSRealm"
host="1dapserver.mycity.mycompany.com" port="389" ingnoreCase="true"
baseDN="o=mycompany,c=us"
userFilter="(&amp; (uid=%v) (objectclass=ePerson))"
groupFilter="(&amp; (cn=%v) (| (objectclass=groupOfNames)

(objectclass=group0fUniqueNames) (objectclass=groupOfURLs)))"
userIdMap="+:uid"
groupIdMap="+:cn"
groupMemberIdMap="mycompany-allGroups:member;mycompany-allGroups:uniqueMember;
groupOfNames :member;group0fUniqueNames:uniqueMember"

1dapType="IBM Tivoli Directory Server"
ss1EnabTed="true"
ss1Ref="LDAPSSLSettings">

</1dapRegistry>

<ss1Default ssTRef="LDAPSSLSettings" />
<ss1 id="LDAPSSLSettings" keyStoreRef="LDAPKeyStore" trustStoreRef="LDAPTrustStore" />

<keyStore id="LDAPKeyStore" Tocation="${server.config.dir}/LdapSSLKeyStore.jks"
type="JKS" password="{xor}CDo9Hgw=" />

<keyStore id="LDAPTrustStore" location="${server.config.dir}/LdapSSLTrustStore.jks"
type="JKS" password="{xor}CDo9Hgw=" />

» For Microsoft Active Directory Server:

<ldapRegistry id="1dap" realm="SamplelLdapADRealm"
host="1dapserver.mycity.mycompany.com" port="389" ignoreCase="true"
baseDN="cn=users,dc=adtest,dc=mycity,dc=mycompany,dc=com"
bindDN="cn=testuser,cn=users,dc=adtest,dc=mycity,dc=mycompany,dc=com"
bindPassword="testuserpwd"
userFilter="(& (sAMAccountName=%v) (objectcategory=user))"
groupFilter="(& (cn=%v) (objectcategory=group))"
userIdMap="user:sAMAccountName"
groupIdMap="+*:cn"
groupMemberIdMap="memberof:member"
1dapType="Microsoft Active Directory"
ss1EnabTed="true"
ss1Ref="LDAPSSLSettings">

</1dapRegistry>

<ss1Default ssT1Ref="LDAPSSLSettings" />
<ss1 id="LDAPSSLSettings" keyStoreRef="LDAPKeyStore" trustStoreRef="LDAPTrustStore" />

<keyStore id="LDAPKeyStore" location="§{server.config.dir}/LdapSSLKeyStore.jks"
type="JKS" password="{xor}CDo9Hgw=" />
<keyStore id="LDAPTrustStore" location="$§{server.config.dir}/LdapSSLTrustStore.jks"
type="JKS" password="{xor}CDo9Hgw=" />
If you use the Liberty profile developer tools, the bindPassword password is encoded for you
automatically. If you edit the server.xml file directly, you can use the securityUtility encode
command to encode the bindPassword password for you. The securityUtility command-line tool is
available in the $INSTALL_ROOT/bin directory. When you run the securityUtility encode command,

you either supply the password to encode as an input from the command line or, if no arguments are

specified, the tool prompts you for the password. The tool then outputs the encoded value. Copy the
value output by the tool, and use that value for the bindPassword password.

Optional: Configure failover for multiple LDAP servers.

<ldapRegistry id="LDAP" realm="SampleLdapIDSRealm"
host="1dapserverl.mycity.mycompany.com" port="389" ignoreCase="true"
baseDN="o=ibm,c=us" 1dapType="IBM Tivoli Directory Server" idsFilters="ibm_dir_server">
<failoverServers name="failoverLdapServersGroupl">
<server host="1dapserver2.mycity.mycompany.com" port="389" />

Chapter 2. Securing the Liberty profile and its applications

25

<server host="1dapserver3.mycity.mycompany.com" port="389" />
</failoverServers>
<failoverServers name="failoverLdapServersGroup2">

<server host="1dapserver4.mycity.mycompany.com" port="389" />
</failoverServers>
</1dapRegistry>

<idsLdapFilterProperties id="ibm_dir_server"
userFilter="(& (uid=%v) (objectclass=ePerson))"
groupFilter="(& (cn=%v) (| (objectclass=groupOfNames)
(objectclass=group0fUniqueNames) (objectclass=groupOfURLs)))"
userIdMap="+:uid" groupIldMap="+:cn"
groupMemberIdMap="1ibm-al1Groups:member;ibm-allGroups:uniqueMember;
groupOfNames :member;group0fUniqueNames:uniqueMember">
</idsLdapFilterProperties>

For more information about the 1dapRegistry and failoverServers elements, see|Liberty profile]
[Configuration elements in the server.xml filel

Configuring the authentication cache on the Liberty profile
This topic describes how to modify the way that authenticated users are cached on the Liberty profile.

About this task

Because the creation of a subject is relatively expensive, the Liberty profile provides an authentication
cache to store a subject after an authentication of a user is successful. The cache is initialized with a
certain number of entries, determined by the initialSize attribute, and has a maximum number of entries,
determined by the maxSize attribute. If the maximum size is reached, then the least recently used entries
are removed from the cache. Also, if a user has been inactive for more than a certain time period
determined by the timeout attribute, then the entry for that user is removed from the cache. By default, the
cache size is initialized to 50 entries and a maximum of 25000 entries with a timeout of 600 seconds.

You do not have to configure the values for the authCache element unless you want to change the default
values of the authentication cache.

See|Authentication Cachelfor more detail.

Note:

* Any changes to the user registry configuration in server.xml file will clear the authentication
cache. However, if changes are done to an external user registry (LDAP, for example), the
authentication cache is not impacted

* You must consider the following effects of the timeout value on your configuration:

— Larger authentication cache timeout values can increase the security risk. For example, you
might revoke a user in the user registry or repository. However, the revoked user can log in
using the credential that is cached in the authentication cache until the cache is refreshed.

— Smaller authentication cache timeout values can affect performance. When this value is
smaller, the Liberty profile server accesses the user registry or repository more frequently.

— Larger numbers of entries in the authentication cache, which is due to an increased number
of users, increases the memory usage by the authentication cache. Thus, the application
server might slow down and affect performance.

Procedure
1. Enable the appSecurity-1.0 server feature in the server.xml file.

<featureManager>
<feature>appSecurity-1.0</feature>
</featureManager>

26 Securing applications and their environment

2. If you want to change the default options for the authentication cache, add the authCache element to
the server.xml file. In the following example, the initial size of the authentication cache is changed to
100 entries with a maximum of 50000 entries, and the timeout is changed to 15 minutes.

<authCache initialSize="100" maxSize="50000" timeout="15m"/>

Note: If you want to disable the authentication cache, set the attribute cachEnabled to false in the
authentication element as follows:

<authentication id="Basic" cacheEnabled="false" />

For more information on the authCache and authentication elements, see|Liberty profile: Configuration|
[elements in the server.xml filg}

Configuring a JAAS custom login module for the Liberty profile

You can configure a custom Java Authentication and Authorization Service (JAAS) login module before or
after the Liberty profile server login module.

Before you begin

This topic assumes that you have a JAR file containing the JAAS custom login module, which implements
the javax.security.auth.spi.LoginModule interface and uses hashtable, callbacks or shared state variables
provided by the Liberty profile server to pass authentication data to the system login module.

About this task

You can use a custom login module to either make additional authentication decisions, or add information
to the Subject to make finer-grained authorization decisions inside your application. See |[JAAS
[configuration| and [JAAS login modules|for a more detailed overview.

See also [‘Developing JAAS custom login modules for a system login configuration” on page 38|

Procedure
1. Enable the appSecurity-1.0 server feature in the server.xml file.

2. Create a class com.ibm.ws.security.authentication.modules.CustomLoginModule that implements the
LoginModule interface and package it into the CustomLoginModule. jar file.

3. Create a Tibrary element that uses a fileset element indicating where the CustomLoginModule.jar
file is. In this example, the libraryid is customLoginLib.

4. Create a jaasLoginModule element. In this example, the id is custom. Configure the custom login
module to require a successful authentication by setting the controlFlag attribute to REQUIRED. Set
the TibraryRef attribute to customLoginLib, the id of the Tibrary element configured in the previous
step. This login module also has two options: UserRegistry is Tdap and mapToUser is userl.

5. Create a jaasLogincontextEntry element with an id and name of the system-defined JAAS
configuration: system_WEB_INBOUND (you can also set this to system.DEFAULT, WSLogin or your
own JAAS configuration). On the ToginModuleRef attribute, add custom, the id of the jaasLoginModule
element created in the previous step. Putting this id first in the list means that it is the first JAAS login
module to be called. You must also list the other default login modules: hashtable,
userNameAndPassword, certificate and token.

See the following server.xml file as an example:

<featureManager>
<feature>appSecurity-1.0</feature>
</featureManager>

<jaasLoginContextEntry id="system.WEB_INBOUND" name="system.WEB_INBOUND"
loginModuleRef="custom, hashtable, userNameAndPassword, certificate, token" />

<jaasLoginModule id="custom"

Chapter 2. Securing the Liberty profile and its applications 27

className="com.ibm.ws.security.authentication.modules.CustomLoginModule"
controlFlag="REQUIRED" TibraryRef="customLoginLib">
<options userRegistry="1dap" mapToUser="userl"/>
</jaasLoginModule>

<library id="customLoginLib">
<fileset dir="§{server.config.dir}" includes="CustomLoginModule.jar"/>
</Tibrary>

Note: The option name cannot start with a period (.), config., or service. Also, the property name id
or ID is not allowed.

For more information on the jaasLoginContextEntry, jaasLoginModule, options and 1ibrary elements,
see [Liberty profile: Configuration elements in the server.xml file}

Configuring LTPA on the Liberty profile

This topic describes how you can configure a Liberty profile server to use a specific Lightweight Third
Party Authentication (LTPA) keys file, user-defined password, and expiration time.

About this task

The LTPA is configured by default when security is enabled for a Liberty profile server for the first time.
The default location of the automatically generated LTPA keys file is §{server.config.dir}/resources/
security/Ttpa.keys. The keys are encrypted with a random generated key and a default password of
WebAS is initially used to protect the keys. The password is required when importing the keys into another
server. Therefore, to protect the security of the LTPA keys, you must change the password. When the keys
are exchanged between the servers, this password must match across the servers for Single Sign On
(SSO) to work.

The default expiration timeout is 120 minutes. The expiration value refers to how long the LTPA tokens are
valid before they expire.

See [LTPA concept in the Liberty profile}

Procedure

1. Configure the 1tpa element in the server.xml file as follows, replacing the sample values in the
example with your values.

<Itpa keysFileName="yourLTPAKeysFileName.keys" keysPassword="keysPassword" expiration="120" />

2. Encode the password within the configuration. You can get the encoded value by using the
|securityUtiIity encode| command.

For more information on 1tpa element, see [Liberty profile: Configuration elements in the server.xml file]

Customizing SSO configuration using LTPA cookies for the Liberty
profile

With single sign-on (SSO) configuration support, web users can authenticate once when accessing Liberty
profile resources (such as HTML, JavaServer Pages (JSP) files, and servlets), or accessing resources in
multiple Liberty profile servers that share the same Lightweight Third Party Authentication (LTPA) keys.

Example
When a user passes authentication on one of Liberty profile servers, authentication information generated

by the server is transported to the browser in a cookie. The cookie is used to propagate the authentication
information to other Liberty profile servers.

28 Securing applications and their environment

The LTPA is configured and ready for immediate use. The default cookie name used to store the SSO
token is called TtpaToken2. If you want to use a different name for the cookie, you can customize the
cookie name using the ssoCookieName attribute of webAppSecurity element. If you customize the cookie
name, make sure that all the servers that participate in SSO use the same cookie name.

See [SSO concept in the Liberty profilel

The following example code sets the user to be logged out after the HTTP session expires and the name
of the SSO cookie as myCookieName.

<webAppSecurity logoutOnHttpSessionExpire="true" ssoCookieName="myCookieName" />

Note: In order for SSO to work across servers, the Liberty profile servers must have the same LTPA keys
and shared the same user registry.

For details of all the available SSO settings, see the webAppSecurity element in [Liberty profile:
[Configuration elements in the server.xml filel

Configuring RunAs authentication in the Liberty profile

You can delegate to another identity during authentication by configuring RunAs specification for the
Liberty profile.

About this task

By mapping a specified user identity and optionally password to a RunAs role, you can delegate the
authentication process to a user with the RunAs role. You must enable appSecurity-1.0 server feature
and have a user registry for your application to configure the RunAs role.

See [RunAs() authentication|on how RunAs authentication works.

Procedure

1. Enable appSecurity-1.0 server feature in the server.xml file.

2. [Configure a user registry for your application |

3. Specify the run-as element in the deployment descriptor of your application.

Here is an example of a web.xm1 that specifies subsequent calls be delegated to the user mapped to
the role of Employee:

<servlet id="Servlet_1">
<servlet-name>RunAsServlet</servlet-name>
<display-name>RunAsServiet</display-name>
<description>RunAsServlet</description>
<servlet-class>web.RunAsServiet</servlet-class>
<run-as>

<role-name>Employee</role-name>

</run-as>

</servlet>

4. Map this role to a user. You can do this either in the ibm-application-bnd.xmi/xml or in the
server.xml file. In the run-as element, you must specify a user name, and you can optionally specify a
password. If the password is present, it is recommended to encode it. For example, encode the
password using [securityUtility encodel command in the /bin directory of the Liberty profile.

Here is an example of using run-as element within the application-bnd element in the server.xml file,
where the Employee role has been mapped to the RunAs user of userb :
<application-bnd>
<security-role name="Employee">
<user name="userl" />

Chapter 2. Securing the Liberty profile and its applications 29

<user name="user5" />
<run-as userid="user5" password="{xor}Lz4sLCgwLTs=" />
</security-role>
</application-bnd>

Note:

* Because the password is optional, you can also use the following code for a user without a
password:
<application-bnd>
<security-role name="Employee">
<user name="userl" />
<user name="user5" />
<run-as userid="user5" />
</security-role>
</application-bnd>
 If you specify the application-bnd element in the server.xml file, your application must not
be in the dropins folder. If you leave it in the dropins folder, then you must disable
application monitoring by setting the following in your server.xml file:

<applicationMonitor dropinsEnabled="false" />
For more information about the run-as element, see |Liberty profile: Configuration elements in the|

Configuring TAI for the Liberty profile

You can configure the Liberty profile to integrate with a third party security service using Trust Association
Interceptors (TAIl). The TAI can be called before or after single sign on (SSO).

Before you begin

This topic assumes that you have already installed a third party security server as a reverse proxy server,
which can act as a front end authentication server when the Liberty profile server applies its own
authorization policy onto the resulting credentials that are passed by the proxy server. Meanwhile, you
have a JAR file that contains the custom TAI class, which implements the

com.ibm.wsspi.security.tai. TrustAssociationInterceptor interface.

Note: There is no support for monitoring changes of this JAR file.
About this task

A TAl is used to validate HTTP requests between a third party security server and a Liberty profile server.
It inspects the HTTP requests from the third party security server to see if there are any security attributes.
If the validation for a request is successful in the interceptor, the Liberty profile server authorizes the
request by checking whether the client user has the required permission to access the resources.

See also ['Developing a custom TAI for the Liberty profile” on page 37|and [‘Customizing SSO configuration|
using LTPA cookies for the Liberty profile” on page 28,

Procedure
1. Enable the appSecurity-1.0 server feature in the server.xml file.

2. Deploy your applications onto the Liberty profile server and enable all required server features, such
asjsp-2.2, jdbc-4.0 and so on.

3. Place the TAl implementation library simpl1eTAI.jar at your server directory.

4. Update the server.xml file with the TAI configuration options and location of the TAI implementation
library.

See the following server.xml file as an example:

30 Securing applications and their environment

<featureManager>
<feature>appSecurity-1.0</feature>
</featureManager>

<trustAssociation id="myTrustAssociation" invokeForUnprotectedURI="false"
failOverToAppAuthType="false">
<interceptors id="simpleTAI" enabled="true"
className="com.ibm.websphere.security.sample.SimpTeTAI"
invokeBeforeSSO="true" invokeAfterSSO="false" libraryRef="simpleTAI">
<properties hostName="machinel" application="testl"/>

</interceptors>
</trustAssociation>

<library id="simpleTAI">
<fileset dir="§{server.config.dir}
</library>

includes="simpleTAI.jar"/>

The custom TAl is enabled in the example, but it does not perform authentication for unprotected URIs
and does not allow to fallback to application authentication method if the TAI authentication fails. As
shown in the example, the following configuration elements are available for TAl support:

* trustAssociation
* 1interceptors
e properties

Note: The property name can not start with a period (.), config., or service. Also, the property name
id or ID is not allowed.

For more information on the trustAssociation, interceptors and properties elements, see also
[Liberty profile: Configuration elements in the server.xml file]

Authorizing access to resources in the Liberty profile

The purpose of authorization is to determine whether a user or group has the necessary privileges to
access a resource.

About this task

To learn about how authorization works in the Liberty profile, see |Liberty profile: Authorization|

The following topics are covered in this section:

Procedure

[Configure authorization for applications in a Liberty profile server

Configuring authorization for applications on the Liberty profile

Configuring authorization for your application is to verify whether a user or group belongs to a specified
role, and whether this role has the privilege to access a resource.

About this task

The Liberty profile server extracts user and group mapping information from a user registry, then checks
an authorization table for the application to determine whether a user or group is assigned to one of the
required roles. Then the server reads the deployment descriptor of the application, to determine whether
the user or group has the privilege to access the resource.

Chapter 2. Securing the Liberty profile and its applications 31

Procedure

1.

2.

32

Enable the appSecurity-1.0 server feature in the server.xml file.
For example:

<featureManager>
<feature>appSecurity-1.0</feature>
</featureManager>

Configure a user registry for authentication on the Liberty profile server.
See f‘Authenticating users in the Liberty profile” on page 23.|

Ensure that the deployment descriptor for your application includes security constraints and other
security related information.

Note: Typically, you would use a tool such as Rational Application Developer to create the deployment
descriptor.

Configure the authorization information (the user and group to role mapping).
You can configure the authorization table in the following ways:

» If you have an EAR file, you can add the authorization table definition to the ibm-application-
bnd.xm1 or ibm-application-bnd.xmi file.

» If you have standalone WAR files, you can add the authorization table definitions to the server.xml
file under the respective application element. You can use the Liberty profile developer tools to do
this.

Notes:

» If you have an EAR file, the authorization table might already exist. In EAR files that are
written to the current specification, this information is stored in an ibm-application-bnd.xm]l
file; in older EAR files, this information is stored in an ibm-application-bnd.xmi file.

» If your EAR file does not already contain an ibm-application-bnd.xm= file, it is not a
straightforward task to create one and you might prefer to add the authorization table to the
server.xml file.

» |If the authorization table for the EAR file is defined in an ibm-application-bnd.xm* file and
also in the server.xml file, then the two tables are merged. If there are any conflicts, the
information from the table in the server.xml file is used.

« If you modify your user registry, be sure to review the authorization table for necessary
changes. For example, if you are specifying an access-id element and change the realm
name of the registry, you must also change the realm name in the access-id element.

* If you specify the application-bnd element in the server.xml file, your application must not
be in the dropins folder. If you leave it in the dropins folder, then you must disable
application monitoring by setting the following in your server.xml file:

<applicationMonitor dropinsEnabled="false" />

A role can be mapped to a user, a group, or a special subject. The two types of special subject are
EVERYONE and ALL_AUTHENTICATED_USERS. When a role is mapped to the EVERYONE special subject, there
is no security because everyone is allowed access and you are not prompted to enter credentials.
When a role is mapped to the ALL_AUTHENTICATED_USERS special subject, then any user who has been
authenticated by the application server can access the protected resource.

Here is example code for configuring the user and group to role mapping in the server.xml file:

<application type="war" id="myapp" name="myapp" location="${server.config.dir}/apps/myapp.war">
<application-bnd>

<security-role name="user">

<group name="students" />

</security-role>

<security-role name="admin">

<user name="gjones" />

<group name="administrators" />
</security-role>

Securing applications and their environment

<security-role name="AT1Authenticated">
<special-subject type="ALL AUTHENTICATED USERS" />
</security-role>
</application-bnd>

</application>
In this example, the admin role is mapped to the user ID gjones and all users in the group
administrators. The Al11AuthenticatedRole is mapped to the special subject
ALL_AUTHENTICATED_USERS, meaning that any user has access as long as they provide valid credentials
for authentication.

Accessing JMX connectors on the Liberty profile

This topic describes how to access Java Management Extensions (JMX) connectors on the Liberty profile.
About this task

There are two JMX connectors supported on the Liberty profile, each connector is enabled through a
different server feature: TocalConnector-1.0 and restConnector-1.0.

» The local connector is enabled through the server feature TocalConnector-1.0. Access through the local
connector is protected by the policy implemented by the SDK in use. Currently the SDKs require that
the client runs on the same host as the Liberty profile, and under the same user ID.

* The REST connector is enabled through the server feature restConnector-1.0. Remote access through
the REST connector is protected by a single administrator role. In addition, SSL is required to keep the
communication confidential. The restConnector-1.0 feature already includes the ss1-1.0 feature.

Note: An application deployed on the Liberty profile has unrestricted access to its MBeanServer directory.

The following section describes how to configure and access the REST connector on the Liberty profile.

Procedure
1. Enable the REST connector using the following code in the server.xml file.
<featureManager>
<feature>restConnector-1.0</feature>
</featureManager>

2. |Configure SSL certificates|in the server.xml file.
3. Configure a user or group to the administrator role in the server.xml file.
+ |Map to the administrator role for the Liberty profile|

4. Access the REST connector from a[JMX client application|or using the jConsole tool provided in the
Java SDK. Use -J flags to pass the system properties as Java options and set the class path to
include the connector class files. The connector class files are packed in the clients/
restConnector. jar file.

* Use the following properties for SSL certificates:

-J-Djavax.net.ssl.trustStore=<location of your client trust store>
-J-Djavax.net.ssl.trustStorePassword=<password for the trust store>
-J-Djavax.net.ssl.trustStoreType=<type of trustore>

An example of using the jConsole tool with SSL configurations is as follows:

jconsole -J-Djava.class.path=%JAVA HOME%/1ib/jconsole.jar;
%JAVA_HOME%/1ib/tools.jar;
%WLP_HOME%/c1ients/restConnector.jar
-J-Djavax.net.ssl.trustStore=key.jks
-J-Djavax.net.ss1.trustStorePassword=Liberty
-J-Djavax.net.ssl.trustStoreType=jks

Chapter 2. Securing the Liberty profile and its applications 33

After the jConsole starts, select Remote Process, and enter the JMX service URL:
service:jmx:rest://<host>:<port>/IBMIMXConnectorREST. You must provide the username and
password as well.

Note:

There is no way to pass in timeout options when using thejConsole tool, however, the keys for
these options are programmed as system property names in the Liberty profile, so you can
specify these options as system properties, where the value passed in the map takes
precedence, followed by the system property, and finally the default. For a full list of available
options, see |Liberty profile: JMX connector options|.

Configuring web security related properties for the Liberty profile

You can configure web security related properties for the Liberty profile, such as SSO and client certificate
authentication.

About this task

You can use the webAppSecurity element to configure web container application security for the Liberty
profile. Make sure you add the appSecurity-1.0 and other required server features to the server.xml file
of the Liberty profile.

For all available attributes in the webAppSecurity element, see |Liberty profile: Configuration elements in the]

server.xml filg| .

You can choose to complete one or more of the following tasks according to your requirements.

Procedure
« [‘Customizing SSO configuration using LTPA cookies for the Liberty profile” on page 28|
« [“Configuring your web application and server for client certificate authentication” on page 21|

Customizing SSO configuration using LTPA cookies for the Liberty
profile

With single sign-on (SSO) configuration support, web users can authenticate once when accessing Liberty
profile resources (such as HTML, JavaServer Pages (JSP) files, and servlets), or accessing resources in
multiple Liberty profile servers that share the same Lightweight Third Party Authentication (LTPA) keys.

Example

When a user passes authentication on one of Liberty profile servers, authentication information generated
by the server is transported to the browser in a cookie. The cookie is used to propagate the authentication
information to other Liberty profile servers.

The LTPA is configured and ready for immediate use. The default cookie name used to store the SSO
token is called TtpaToken2. If you want to use a different name for the cookie, you can customize the
cookie name using the ssoCookieName attribute of webAppSecurity element. If you customize the cookie
name, make sure that all the servers that participate in SSO use the same cookie name.

See [SSO concept in the Liberty profile}

The following example code sets the user to be logged out after the HTTP session expires and the name
of the SSO cookie as myCookieName.

<webAppSecurity TogoutOnHttpSessionExpire="true" ssoCookieName="myCookieName" />

34 Securing applications and their environment

Note: In order for SSO to work across servers, the Liberty profile servers must have the same LTPA keys
and shared the same user registry.

For details of all the available SSO settings, see the webAppSecurity element in [Liberty profile:
[Configuration elements in the server.xml file}

Configuring your web application and server for client certificate

authentication
You can configure your web application on the Liberty profile using SSL client authentication.

Before you begin

This topic assumes that you have already created the SSL certificates, for example as described in
|“Creating SSL certificates from the command prompt” on page 20.|

About this task

Client certificate authentication occurs if the server side requests that the client side send a certificate. A
Websphere server can be configured for client certificate authentication on the SSL configuration. To do
this, you add the ss1-1.0 server feature to the server.xml file, along with code that tells the server the
keystore information for authentication.

For details of which aspects of SSL are supported, see|Liberty profile: Server features|

Procedure

1. Ensure that the deployment descriptor for your web application is specified with<auth-method>CLIENT-
CERT</auth-method>

Note: Typically, you would use a tool such as Rational Application Developer to create the deployment
descriptor.
2. Optional: Generate an SSL certificate using the command prompt. See [“Liberty profile: securityUtility|
[command” on page 20|
3. Configure your server to enable SSL client authentication by adding the following lines to the
server.xml file:

<featureManager>
<feature>ss1-1.0</feature>
<featureManager>

<ssl id="defaultSSLSettings" keyStoreRef="defaultKeyStore"
trustStoreRef="defaultTrustStore" clientAuthenticationSupported="true" />

<keyStore id="defaultKeyStore" location="key.jks" type="JKS" password="defaultPwD" />
<keyStore id="defaultTrustStore" location="trust.jks" type="JKS" password="defaultPWD" />

» If you specify clientAuthentication="true", the server requests that a client send a certificate.
However, if the client does not have a certificate, or the certificate is not trusted by the server, the
handshake does not succeed.

 If you specify clientAuthenticationSupported="true", the server requests that a client send a
certificate. However, if the client does not have a certificate, or the certificate is not trusted by the
server, the handshake might still succeed.

 If you do not specify either clientAuthentication or clientAuthenticationSupported, or you
specify clientAuthentication="false" or clientAuthenticationSupported="false", the server does
not request that a client send a certificate during the handshake.

4. Add a client certificate to your browser. See the documentation of your browser for adding client
certificates.

5. Make sure the server trusts any client certificates that are used.

Chapter 2. Securing the Liberty profile and its applications 35

6. Make sure any client certificates used for client authentication are mapped to a user identity in your
registry.
* For the basic registry, the user identity is the common name (CN) from the distinguished name (DN)
of the certificate.

* For a Lightweight Directory Access Protocol (LDAP) registry, the DN from the client certificate must
be in the LDAP registry.
7. To fall back to basic authentication (user ID and password only) if client certificate authentication does
not succeed, add the following line to your server.xml file.

<webAppSecurity allowFailOverToBasicAuth="true" />

Note: If you specify allowFailOverToBasicAuth="false" or do not specify allowFailOvertoBasicAuth,
and the client certificate authentication does not succeed, the request generates a 403
Authentication error message and the client is not prompted for basic authentication.

Configuring JCA security for the Liberty profile

You can configure an authentication data alias to use with a resource reference for Java EE Connector
Architecture (JCA) security for authentication on the Liberty profile.

About this task
You can use an authentication data alias by defining a user and password for authentication in the Liberty
profile. To do this, add the jdbc-4.0 server feature to the server.xml file and add at least one authData

element.

Note: There is no Java 2 Connector (J2C) principal mapping module support.

Procedure
1. Add the jdbc-4.0 server features in the server.xml file.
<featureManager>
<feature>jdbc-4.0</feature>
</featureManager>

2. Configure the authData element in the server.xml file as follows. You must use a unique name for the
assigned id attribute value.
<authData id="authl" user="dbuserl" password="dbuserlpwd"/>
3. Configure the IBM deployment descriptor, for example, the ibm-web-bnd.xm1 file, of your application by
using the authentication-alias element in the resource reference. The name attribute value must
match the id attribute defined in the server.xml file.

<resource-ref name="jdbc/mydbresource" binding-name="jdbc/mydbresource">
<authentication-alias name="authl"/>
</resource-ref>

Developing extensions to the Liberty profile security infrastructure

The Liberty profile server provides various plug points so that you can extend the security infrastructure.
About this task
The following topics are covered in this section:

Procedure

* Follow the instructions in |“Developing a custom TAI for the Liberty profile” on page 37| to develop
custom trust association interceptors (TAl) to extend the security infrastructure of Liberty profile server.

36 Securing applications and their environment

« Follow the instructions in [‘Developing JAAS custom login modules for a system login configuration” on|
to develop JAAS custom login modules to extend the security infrastructure of Liberty profile
server.

Developing a custom TAIl for the Liberty profile

You can develop a custom trust association interceptor (TAI) class by implementing the
com.ibm.wsspi.security.tai. TrustAssociationInterceptor interface provided in the Liberty profile server.

About this task

The trust association interface is a service provider API that enables the integration of third party security
services with a Liberty profile server. When processing the web request, the Liberty profile server calls out
and passes the HttpServietRequest and HttpServietResponse to the trust association interceptors. The
HttpServietRequest calls the isTargetInterceptor method of the interceptor to see whether the
interceptor can process the request. After an appropriate trust association interceptor is selected, the
HttpServletRequest is processed by the negotiateValidateandEstablishTrust method of the interceptor,
and the result is returned in a TAIResult object. You can add your own logic code to each method of the
custom TAI class.

See also the Java API document for the TAl interface. The Java APl document for each Liberty profile API
is detailed in the [Programming Interfaces (APIs)| section of the information center, and is also available as
a JAR file under the /dev/ibm-api/javadoc directory of the server image.

Example

Here is a sample TAI class called SimpleTAI, which also lists all available methods from the
TrustAssociationInterceptor interface.

package com.ibm.websphere.security.sample;
import java.util.Properties;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.ibm.websphere.security.WebTrustAssociationException;
import com.ibm.websphere.security.WebTrustAssociationFailedException;
import com.ibm.wsspi.security.tai.TAIResult;

import com.ibm.wsspi.security.tai.TrustAssociationInterceptor;

public class SimpleTAI implements TrustAssociationInterceptor {
public SimpleTAI() {
super();

/*
* @see com.ibm.wsspi.security.tai.TrustAssociationInterceptor#isTargetInterceptor
* (javax.servlet.http.HttpServletRequest)
*

/
public boolean isTargetInterceptor(HttpServletRequest req)

throws WebTrustAssociationException {
//Add logic to determine whether to intercept this request
return true;

}

/*

* @see com.ibm.wsspi.security.tai.TrustAssociationInterceptor#negotiateValidateandEstablishTrust
% (javax.servlet.http.HttpServietRequest,javax.servlet.http.HttpServletResponse)

*/

public TAIResult negotiateValidateandEstablishTrust(HttpServietRequest req,

Chapter 2. Securing the Liberty profile and its applications 37

HttpServletResponse resp) throws WebTrustAssociationFailedException {
// Add Togic to authenticate a request and return a TAI result.
String tai_user = "taiUser";
return TAIResult.create(HttpServietResponse.SC OK, tai_user);

}
/*

* @see com.ibm.wsspi.security.tai.TrustAssociationInterceptor#initialize(java.util.Properties)
*/
public int initialize(Properties arg0)
throws WebTrustAssociationFailedException {
return 0;

}
/*

* @see com.ibm.wsspi.security.tai.TrustAssociationInterceptor#getVersion()
*/
public String getVersion() {
return "1.0";
}

/*
* @see com.ibm.wsspi.security.tai.TrustAssociationInterceptor#getType()
*/
public String getType() {
return this.getClass().getName();
}

/*

* @see com.ibm.wsspi.security.tai.TrustAssociationInterceptor#cleanup()
*/

public void cleanup()

{}
}

What to do next

Put the custom TAI class in a jar file, for example simpTeTAI. jar, then make the jar file available to the
Liberty profile server. See [‘Configuring TAI for the Liberty profile” on page 30

Developing JAAS custom login modules for a system login

configuration

For a Liberty profile server, multiple Java Authentication and Authorization Service (JAAS) plug-in points
exist for configuring system logins. The Liberty profile uses system login configurations to authenticate
incoming requests. You can develop a custom JAAS login module to add information to the Subject of a
system login configuration.

About this task

Application login configurations are called by servlet applications for obtaining a Subject that is based on
specific authentication information. When you write a login module that plugs into a Liberty profile
application login or system login configuration, you must develop login configuration logic that knows when
specific information is present, and how to use the information. See|JAAS configuration|and |JAAS login|
for more details.

To develop a JAAS custom login module for a system login configuration, follow the steps in the
procedure:

38 Securing applications and their environment

Procedure

Understand usable callbacks and how they work.
See [Programmatic login for JAAS| for more information about usable callbacks.

Note: The Liberty profile only supports the following callbacks:

callbacks[0] = new javax.security.auth.callback.NameCallback("Username: ");

callbacks[1] = new javax.security.auth.callback.PasswordCallback("Password: ", false);

callbacks[2] = new com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl("Credential Token: ");
callbacks[3] = new com.ibm.websphere.security.auth.callback.WSServletRequestCallback("HttpServietRequest: ")
callbacks[4] = new com.ibm.websphere.security.auth.callback.WSServletResponseCallback("HttpServletResponse: ");
callbacks[5] = new com.ibm.websphere.security.auth.callback.WSAppContextCallback("ApplicationContextCallback: ");
callbacks[6] = new WSRealmNameCallbackImpl("Realm Name: ", default_realm);

callbacks[7] = new WSX509CertificateChainCallback("X509Certificate[]: ");

callbacks[8] = wsAuthMechOidCallback = new WSAuthMechOidCallbackImpl("AuthMechQid: ");

Understand shared state variables and how they work.

If you want to access the objects that the WebSphere Application Server full profile creates during a
login, refer to the following shared state variables. For more information about these variables, see the
“System Programming Interfaces” subtopic of [Programming Interfaces}

com.ibm.wsspi.security.auth.callback.Constants.WSPRINCIPAL_KEY
Specifies an implemented object of the java.security.Principal interface. This shared state
variable is for read-only purposes. Do not set this variable in the shared state for custom login
modules. The default login module sets this variable.

com.ibm.wsspi.security.auth.callback.Constants. WSCREDENTIAL_KEY
Specifies the com.ibm.websphere.security.cred.WSCredential object. This shared state variable
is for read-only purposes. Do not set this variable in the shared state for custom login modules.
The default login module will set this variable.

com.ibm.wsspi.security.auth.callback.Constants. WSSSOTOKEN_KEY
Specifies the com.ibm.wsspi.security.token.SingleSignonToken object. Do not set this variable in
the shared state for custom login modules. The default login module sets this variable.

ogin module|for more details.

» Optional: Understand hashtables for custom JAAS login modules in the Liberty profile. See |[Hashtable

Develop a sample custom login module using callbacks and shared state.

You can use the following sample to learn on how to use some of the callbacks and shared state
variables.

public class CustomCallbackLoginModule implements LoginModule {

protected Map<String, ?> _sharedState;

protected Subject _subject = null;

protected CallbackHandler _callbackHandler;

private final String customPrivateCredential = "CustomLoginModuleCredential";

[x*
* Initialization of login module
*
/
public void initialize(Subject subject, CallbackHandler callbackHandler,
Map<String, ?> sharedState, Map<String, ?> options) {
_sharedState = sharedState;
_subject = subject;
_callbackHandler = callbackHandler;

}

public boolean login() throws LoginException {
try {
AccessController.doPrivileged(new PrivilegedExceptionAction<Object>() {
public Object run() throws Exception {
_subject.getPrivateCredentials().add(customPrivateCredential);
return null;

Chapter 2. Securing the Liberty profile and its applications 39

}
1

} catch (PrivilegedActionException e) {
throw new LoginException(e.getlLocalizedMessage());

}

String username

= null;

char passwordChar[] = null;

byte[] credToken = null;
HttpServletRequest request = null;
HttpServletResponse response = null;
Map appContext = null;

String realm

null;

String authMechOid = null;
java.security.cert.X509Certificate[] certChain = null;

NameCallback nameCallback = null;

PasswordCallback passwordCallback = null;
WSCredTokenCallbackImpl wsCredTokenCallback = null;
WSServletRequestCallback wsServletRequestCallback = null;
WSServletResponseCallback wsServietResponseCallback = null;
WSAppContextCallback wsAppContextCallback = null;
WSReaTmNameCallbackImpl wsRealmNameCallback = null;
WSX509CertificateChainCallback wsX509CertificateCallback = null;
WSAuthMechOidCallbackImpl wsAuthMechOidCallback = null;

Callback[] callbacks = new Callback[9];

callbacks[0]
callbacks[1]
callbacks[2]
callbacks[3]
callbacks[4]
callbacks[5]
callbacks[6]
callbacks[7]
callbacks[8]

try {

nameCallback = new NameCallback("Username: ");

passwordCallback = new PasswordCallback("Password: ", false);

wsCredTokenCallback = new WSCredTokenCallbackImpl("Credential Token: ");
wsServietRequestCallback = new WSServietRequestCallback("HttpServletRequest: ");
wsServletResponseCallback = new WSServletResponseCallback("HttpServietResponse: ");
wsAppContextCallback = new WSAppContextCallback("ApplicationContextCallback: ");
wsRealmNameCallback = new WSRealmNameCallbackImpl("Realm name:");
wsX509CertificateCallback = new WSX509CertificateChainCallback("X509Certificate[]: ");
wsAuthMechOidCallback = new WSAuthMechOidCallbackImpl("AuthMechOid: ");

_callbackHandler.handle(callbacks);
} catch (Exception e) {
// handle exception

}

if (nameCallback != null)
nameCallback.getName();

username =

if (passwordCallback != null)

passwordChar

= passwordCallback.getPassword();

if (wsCredTokenCallback != null)
credToken = wsCredTokenCallback.getCredToken();

if (wsServletRequestCallback != null)
request = wsServletRequestCallback.getHttpServletRequest();

if (wsServletResponseCallback != null)
response = wsServletResponseCallback.getHttpServlietResponse();

if (wsAppContextCallback != null)
appContext = wsAppContextCallback.getContext();

if (wsRealmNameCallback != null)
realm = wsRealmNameCallback.getRealmName();

40 Ssecuring applications and their environment

if (wsX509CertificateCallback != null)
certChain = wsX509CertificateCallback.getX509CertificateChain();

if (wsAuthMechOidCallback != null)
authMechOid = wsAuthMechOidCallback.getAuthMech0id();

_subject.getPrivateCredentials().add("username = " + username);
_subject.getPrivateCredentials().add("password = " + String.valueOf(passwordChar));
_subject.getPrivateCredentials().add("realm = " + realm);

_subject.getPrivateCredentials().add("authMechOid = " + authMechOid.toString());

return true;

}

public boolean commit() throws LoginException {
return true;
}

public boolean abort() {
return true;
1

public boolean Togout() {
return true;
}

}

» Optional: Develop a sample custom login module using hashtable login.
You can use the following sample to learn on how to use hashtable login.
package com.ibm.websphere.security.sample;

import java.util.Map;

import javax.security.auth.Subject;

import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.login.LoginException;
import javax.security.auth.spi.LoginModule;

import com.ibm.wsspi.security.token.AttributeNameConstants;

[**
* Custom login module that adds another PublicCredential to the subject
*/

@SuppressWarnings ("unchecked")

public class CustomHashtableLoginModule implements LoginModule {

protected Map<String, ?> _sharedState;
protected Map<String, ?> options;

[x*

* Initialization of Togin module

*/

public void initialize(Subject subject, CallbackHandler callbackHandler, Map<String, ?> sharedState, Map<Stri
_sharedState = sharedState;
_options = options;

}

public boolean login() throws LoginException {
try {
java.util.Hashtable<String, Object> customProperties = (java.util.Hashtable<String, Object>) _sharedS
if (customProperties == null) {
customProperties = new java.util.Hashtable<String, Object>();

Chapter 2. Securing the Liberty profile and its applications 41

}

customProperties.put (AttributeNameConstants.WSCREDENTIAL USERID, "userId");
// Sample of creating custom cache key
customProperties.put (AttributeNameConstants.WSCREDENTIAL CACHE_KEY, "customCacheKey");

/*

Sample for creating user ID and security name

customProperties.put (AttributeNameConstants.WSCREDENTIAL UNIQUEID, "userlId");
customProperties.put (AttributeNameConstants.WSCREDENTIAL SECURITYNAME, "securityName");
customProperties.put (AttributeNameConstants.WSCREDENTIAL REALM, "realm");
customProperties.put (AttributeNameConstants.WSCREDENTIAL GROUPS, "groupList");

* Ok % X X

*/
/*
* Sample for creating user ID and password
* customProperties.put (AttributeNameConstants.WSCREDENTIAL USERID, "userId");
* customProperties.put(AttributeNameConstants.WSCREDENTIAL PASSWORD, "password");
*
/
Map<String, java.util.Hashtable> mySharedState = (Map<String, java.util.Hashtable>) sharedState;
mySharedState.put(AttributeNameConstants.WSCREDENTIAL PROPERTIES KEY, customProperties);
} catch (Exception e) {
throw new LoginException("LoginException: " + e.getMessage());
}

return true;

}

public boolean commit() throws LoginException {
return true;
}

public boolean abort() {
return true;
}

public boolean logout() {
return true;
}

}
What to do next

Add your custom login module into the WEB_INBOUND, and DEFAULT Java Authentication and
Authorization Service (JAAS) system login configurations of the server.xml file. Put the custom login
module class in a JAR file, for example, customLoginModule. jar, then make the JAR file available to the
Liberty profile server. See [‘Configuring a JAAS custom login module for the Liberty profile” on page 27.|

Customizing an application login to perform an identity assertion
using JAAS

Using the Java Authentication and Authorization Service (JAAS) login framework, you can create a JAAS
login configuration that can be used to perform login to an identity assertion on the Liberty profile.

About this task

By configuring identity assertion with trust validation, an application can use the JAAS login configuration
to perform a programmatic identity assertion. See [IdentityAssertionLoginModule|for more detail.

To customize the application login to perform an identity assertion with trust validation, follow these steps:

42 Securing applications and their environment

Procedure

1. Delegate trust validation to a user implemented plug point. Trust validation must be accomplished in a
custom login module. This custom login module should perform any trust validation required, then set
the trust and identity information in the shared state to be passed on to the identity assertion login
module. A map is required in the shared state key,
com.ibm.wsspi.security.common.auth.module.ldentityAssertionLoginModule.state. If the state is missing
then a WSLoginFailedException is reported by the IdentityAssertionLoginModule. This map must
include:

* A trust key called com.ibm.wsspi.secuirty.common.auth.module.ldentityAssertionLoginModule.trust. If
the key is set to true, then trust is established. If the key is set to false, then no trust is established.
If the trust key is not set to true, then the IdentityAssertionLoginModule creates a
WSLoginFailedException

* An identity key is set: A java.security.Principal can be set in the
com.ibm.wsspi.security.common.auth.module.ldentityAssertionLoginModule.principal key.

* Or a java.security.cert.X509Certificate[] can be set in the
com.ibm.wsspi.security.common.auth.module.ldentityAssertionLoginModule.certficates key.

If both a principal and certificate are supplied, then the principal is used and a warning is reported.

2. Create a new JAAS configuration for application logins. The JAAS configuration will contain the user
implemented trust validation custom login module and the IdentityAssertionlLoginModule. Then to
configure an application login configuration, add the following code in the server.xml file:
<jaasLoginContextEntry id="CustomIdentityAssertion" name="CustomlIdentityAssertion"

loginModuleRef="customIdentityAssertion,identityAssertion" />
<jaasLoginModule id="customIdentityAssertion"
className="com.ibm.ws.security.authentication.IdentityAssertionLoginModule"
controlFlag="REQUIRED" TlibraryRef="customLoginLib"/>
<library id="customLoginLib">
<fileset dir="§{server.config.dir}" includes="IdentityAssertionLoginModule.jar"/>
</Tibrary>

This JAAS configuration is then used by the application to perform an Identity Assertion.

3. Perform the programmable identity assertion. A program can now use the JAAS login configuration to
perform a programmatic identity assertion. The application program can create a login context for the
JAAS configuration created in step 2, then login to that login context with the identity they would assert
to. If the login is successful then that identity can be set in the current running process. Here is a
example of how such code would operate:

NameCallback handler = new NameCallback(new MyPrincipal("Joe"));
LoginContext 1c = new LoginContext("customIdentityAssertion", handler);
Tc.login(); //assume successful

Subject s = Tc.getSubject();

WSSubject.setRunAsSubject(s);

// From here on , the runas identity is "Joe"

Note: The MyPrincipal class is the implementation of java.security.Principal interface in the example.
Results

Using the JAAS login framework and two user implemented login modules, you can create a JAAS login
configuration that can be used to perform login to an identity assertion.

Chapter 2. Securing the Liberty profile and its applications 43

44 Securing applications and their environment

Chapter 3. How do | secure applications and their
environments?

Follow these shortcuts to get started quickly with popular tasks.

When you visit a task in the information center, look for the IBM Suggests feature at the bottom of the
page. Use it to find available tutorials, demonstrations, presentations, developerWorks® articles,
Redbooks®, support documents, and more.

[Secure HTTP sessions|

[Develop applications that use programmatic security|

|Configure declarative security for EJB applications that use J2EE authorization|

|Deve|op programmatic security for EJB applications that use J2EE authorization|

IApply Web Services Security (WS-Security) to applications]

[Enable Java 2 security with the console]

[Enable Java 2 security with scripting|

[Developing custom login modules|

[Enable resource security for J2C and JDBC data sources]

[Enable resource security for JavaMail|

[[mplement a custom authentication provider using JASPI|

Secure the application hosting environment. The counterpart of securing your applications before and
after deployment is to secure the server hosting environment into which the applications are deployed.

[Assign users to roles|

[Configure security with wsadmin scripting|

By default, security is enabled out of box. You have an opportunity to modify the default whenever you
create a profile, at installation time or any other time. If you do not deselect it, administrative security will
be enabled for a profile. Out of box security authenticates users against the file-based federated repository
powered by virtual member manager.

[Enable and configure administrative security with the console]

[Enable and configure administrative security with scripting|

[Authenticate users with the local operating system user registry|

[Authenticate users with an LDAP user registry|

|Authenticate with a custom user registry

|Authenticate with the file-based federated repository|

© IBM Corporation 2003, 2006 45

[Set up single sign-on (SSO)|

[Access secure resources using SSL and applet clients

[Set up Secure Sockets Layer (SSL) between remote servers or clients and servers|

Set up CSlv2

[Configure an authorization provider|

[Troubleshoot security]

46 Securing applications and their environment

Chapter 4. Task overview: Securing resources

WebSphere Application Server supports the Java Platform, Enterprise Edition (Java EE) model for
creating, assembling, securing, and deploying applications. Applications are often created, assembled, and
deployed in different phases and by different teams.

About this task

You can secure resources in a Java EE environment by following the required high-level steps. Consult
the Java EE specifications for complete details.

Procedure

» Set up and enable security. You must address several issues prior to authenticating users, authorizing
access to resources, securing applications, and securing communications. These security issues include
migration, interoperability, and installation. After installing WebSphere Application Server, you must
determine the proper level of security that is needed for your environment. For more information, see
|Chapter 5, “Setting up, enabling and migrating security,” on page 49.|

» Configure multiple domains. Security domains enable you to define multiple security configurations for
use in your environment. For example, you can define different security (such as a different user
registry) for user applications than for administrative applications. You can also define separate security
configurations for user applications deployed to different servers and clusters. For more information, see
[Chapter 6, “Configuring multiple security domains,” on page 113

Authenticate users. The process of authenticating users involves a user registry and an authentication
mechanism. Optionally, you can define trust between WebSphere Application Server and a proxy server,
configure single sign-on capability, and specify how to propagate security attributes between application
servers. For more information, see [Chapter 7, “Authenticating users,” on page 149

» Authorize access to resources. WebSphere Application Server provides many different methods for
authorizing accessing resources. For example, you can assign roles to users and configure a built-in or
external authorization provider. For more information, see [Chapter 8, “Authorizing access to resources,’]

» Secure communications. WebSphere Application Server provides several methods to secure
communication between a server and a client. For more information, see [Chapter 9, “Securing|
[communications,” on page 659

» Develop extensions to the WebSphere security infrastructure. WebSphere Application Server provides
various plug points so that you can extend the security infrastructure. For more information, see
[Chapter 10, “Developing extensions to the WebSphere security infrastructure,” on page 813

» Use the Auditing Facility to report and track auditable events to ensure the integrity of your system. For
more information, see |Chapter 11, “Auditing the security infrastructure,” on page 925|

» Secure various types of WebSphere applications. See Securing WebSphere applications for tasks
involving developing, deploying, and administering secure applications, including web applications, web
services, and many other types. This section highlights the security concerns and tasks that are specific
to each type of application.

» Tune, harden, and maintain security configurations. After you have installed WebSphere Application
Server, there are several considerations for tuning, strengthening, and maintaining your security
configuration. For more information, see [Chapter 12, “Tuning, hardening, and maintaining security|
[configurations,” on page 961

Troubleshoot security configurations. For more information, see [Chapter 13, “Troubleshooting security|
[configurations,” on page 983

Results

Your applications and production environment are secured.

© IBM Corporation 2002, 2006 47

Example

See the Security: Resources for learning article for more information on the WebSphere Application Server
security architecture.

48 Securing applications and their environment

Chapter 5. Setting up, enabling and migrating security

You must address several issues prior to authenticating users, authorizing access to resources, securing
applications, and securing communications. These security issues include migration, interoperability, and
installation.

About this task

After installing WebSphere Application Server, you can determine the proper level of security that is
needed for your environment. By default, administrative security is enabled and provides the authentication
of users using the WebSphere administration functions, the use of Secure Sockets Layer (SSL), and the
choice of user account repository.

You can also use the following permissions to enhance security:

» Use the getSSLConfig permission to give your application code the ability to call several of the
JSSEHelper methods. For more information about these methods, see the description of the
com.ibm.websphere.ssl.JSSEHelper API in the Programming interfaces section of the Information
Center.

* Use the AdminPermission permission to give your application code the ability to call WebSphere
Application Server administrative APIs. See the topic Setting Java 2 security permissions for an
example of how to set this permission.

» Use the accessRuntimeClasses permission to give your application code the ability to load classes that
are included with the product. If you are operating in an environment that normally restricts access to
these classes, this permission enables your application code to bypass this restriction during class
loading. See the topic Global security settings for a description of how to set this permission.

The following information is covered in this section:
Procedure

Enable security for all your application servers or for specific application servers in your realm.
For more information, see [‘Enabling security” on page 62|

What to do next

After installing WebSphere Application Server and securing your environment, you must authenticate
users. For more information, see[Chapter 7, “Authenticating users,” on page 149

Migrating, coexisting, and interoperating — Security considerations

Use this topic to migrate the security configuration of previous WebSphere Application Server releases and
its applications to the new installation of WebSphere Application Server.

Before you begin

This information addresses the need to migrate your security configurations from a previous release of

IBM WebSphere Application Server to WebSphere Application Server 8.0. Complete the following steps to

migrate your security configurations:

» If security is enabled in the previous release, obtain the administrative server ID and password of the
previous release. This information is needed in order to run certain migration jobs.

* You can optionally disable security in the previous release before migrating the installation. No logon is
required during the installation.

© IBM Corporation 2005, 2008 49

Note: In WebSphere Application Server Version 8.0, be aware of the following additional migration
requirements for security:

* When migrating from WebSphere Application Server Version 7.x to Version 8.0, if you have a
business need to preserve security audit logs from the older release you must first archive the
security audit log files in Version 7.x. WebSphere Application Server does not support the
migration of security audit log files from the older release to Version 8.0.

* If your WebSphere Application Server Version 7.x environment is enabled for Kerberos, and you
are migrating to version 8.0 on a different machine, the keytab and configuration files for
Kerberos must be at the same location on the Version 8.0 machine as on the Version 7.x
machine or the configuration will not work.

Procedure
IIITEE Follow the steps in "Migrating product configurations”.
Results

The security configuration of previous WebSphere Application Server releases and its applications are
migrated to the new installation of WebSphere Application Server Version 8.5.

What to do next
You must migrate any custom class files that are not migrated.

I If the previous version instance is configured to enable secure connections using digital
certificates that are signed by the Digital Certificate Manager (DCM) local certificate authority, those
certificates must be renewed. For example, they must be renewed for the previous version instance, the
WebSphere Application Server Version 8.5 profile, and all of the Secure Socket Layer-enabled clients and
servers that connect to WebSphere Application Server. For more information, see [SSL handshake failure]
[using digital certificates signed by a Digital Certificate Manager (DCM) local certificate authorityl

T 1BM i *SYSTEM certificate stores for applications are deprecated in WebSphere Application
Server Version 5. In WebSphere Application Server Version 8.5, you must migrate your applications to use
Java keystores.

Interoperating with previous product versions

IBM WebSphere Application Server inter-operates with the previous product versions. Use this topic to
configure this behavior.

Before you begin

LI The current release of the Application Server distinguishes the identities of the user who acts
as an administrator, managing the Application Server environment, from the identity of the user that is
used for authenticating between servers. In prior releases, the end user had to specify a server user ID
and password as the user identity for authenticating between servers. In the current release of the
Application Server, the server user ID is generated automatically and internally; however, the end user can
specify that the server user ID and password not be automatically generated. This option is especially
important in the case of a mixed-release cell, where the server user ID and password are specified in a
down-level version of the Application Server. In such a scenario, the end user should opt out of
automatically generating the server user ID and instead use the server user ID and password that is
specified in the down-level version of the Application Server, in order to ensure backwards compatibility.

T Interoperability is achieved only when the Lightweight Third Party Authentication (LTPA)
authentication mechanism and a distributed user registry is used such as Lightweight Directory Access
Protocol (LDAP) or a distributed Custom user registry. LocalOS on most platforms is not considered a

50 Securing applications and their environment

http://www-1.ibm.com/support/docview.wss?rs=727&uid=swg21198366
http://www-1.ibm.com/support/docview.wss?rs=727&uid=swg21198366

distributed user registry (except on z/OS® within the z/OS environment).

Procedure

1.

Configure WebSphere Application Server Version 8.5 with the same distributed user registry (that is,
LDAP or Custom) that is configured with the previous version. Make sure that the same LDAP user
registry is shared by all of the product versions.

a. In the administrative console, select Security > Global security.
b. Choose an available Realm definition and click Configure.

C. MM Enter a Primary administrative user name. This identity is the user with administrative
privileges that is defined in your local operating system. If you are not using the local OS ad the
user registry, select the Server identity that is stored in the user repository, enter the
Server user ID, and the associated password. The user name is used to log on to the
administrative console when administrative security is enabled. WebSphere Application Server
Version 6.1 requires an administrative user that is distinct from the server user identity so that
administrative actions can be audited.

Attention: In WebSphere Application Server, Version 6.0.x, a single user identity is required for
both administrative access and internal process communication. When migrating to Version 8.5,
this identity is used as the server user identity. You need to specify another user for the
administrative user identity.

d. When interoperating with Version 6.0.x or previous versions, you must select the Server identity
that is stored in the user repository. Enter the Server user id and the associated Password.

Configure the LTPA authentication mechanism. Automatic generation of the LTPA keys should be
disabled. If not, keys used by a previous release are lost. Export the current LTPA keys from
WebSphere Application Server Version 8.0 and import them into the previous release or export the
LTPA keys from the previous release into Version 8.0.

a. In the administrative console select Security > Global security.
b. From Authentication mechanisms and expiration, click LTPA.

c. Click the Key set groups link , then click the key set group that displays in the Key set groups
panel.

d. Clear the Automatically generate keys check box.

Click OK, then click Authentication mechanisms and expiration in the path at the top of the Key set
groups panel.

f. Scroll down to the Cross-cell single sign-on section, and enter a password to use for encrypting the
LTPA keys when adding them to the file.

g. Enter the password again to confirm the password.
h. Enter the Fully qualified key file name that contains the exported keys.
i. Click Export keys.

j- Follow the instructions provided in the previous release to import the exported LTPA keys into that
configuration.

If you are using the default SSL configuration, extract all of the signer certificates from the WebSphere
Application Server Version 8.5 common trust store. Otherwise, extract signers where necessary to
import them into the previous release.

a. In the administrative console, click Security > SSL certificate and key management.
b. Click Key stores and certificates.

c. Click NodeDefaultTrustStore.

d. Click Signer certificates.

e. Select one signer and click Extract.

f. Enter a unique path and filename for the signer. For example, /tmp/signerl.arm.

g. Click OK. Repeat for all of the signers in the trust store.

Chapter 5. Setting up, enabling and migrating security 51

h. Check other trust stores for other signers that might need to be shared with the other server.
Repeat steps e through h to extract the other signers.

You can also import a signer certificate, which is also called a certificate authority (CA) certificate, from
a truststore on a non-z/OS platform server to a z/OS keyring. the z/OS keyring contains the signer
certificates that originated on the non-z/OS platform server. For more information, see Importing a
signer certificate from a truststore to a z/OS keyring.

4. Add the exported signers to DummyServerTrustFile.jks and DummyClientTrustFile.jks in the /etc
directory of the back-level product version. If the previous release is not using the dummy certificate,
the signer certificate(s) from the previous release must be extracted and added into the WebSphere
Application Server Version 8.5 release to enable SSL connectivity in both directions.

a. Open the key management utility, iKeyman, for that product version.

Start ikeyman.bat or ikeyman.sh from the ${USER_INSTALL ROOT}/bin directory.
Select Key Database File > Open.

Open ${USER_INSTALL_ROOT}/etc/DummyServerTrustFile.jks.

Enter WebAS for the password.

Select Add and enter one of the files extracted in step 2. Continue until you have added all of the
signers.

g. Repeat steps c through f for the DummyClientTrustFile. jks file.

5. Verify that the application uses the correct Java Naming and Directory Interface (JNDI) name and
naming bootstrap port for performing a naming lookup.

6. Stop and restart all of the servers.

~®ooovT

Migrating trust association interceptors
Use this topic to manually migrate trust associations.

Before you begin

Note: Data sources are not supported for use within a Trust Association Interceptor (TAl). Data sources
are intended for use within J2EE applications and designed to operate within the EJB and web
containers. Trust Association Interceptors do not run within a container, and while data sources may
function in the TAI environment, they are untested and not guaranteed to function properly.

The following topics are addressed in this document:

« [Changes to the product-provided trust association interceptors|
« [Migrating product-provided trust association interceptors|

« [Changes to the custom trust association interceptors|

« [Migrating custom trust association interceptors|

Changes to the product-provided trust association interceptors

For the product-provided implementation for the WebSEAL server, a new optional
com.ibm.websphere.security.webseal.ignoreProxy property is added. If this property is set to true or yes,
the implementation does not check for the proxy host names and the proxy ports to match any of the host
names and ports that are listed in the com.ibm.websphere.security.webseal.hostnames and the
com.ibm.websphere.security.webseal.ports property respectively. For example, if the VIA header contains
the following information:

HTTP/1.1 Fred (Proxy), 1.1 Sam (Apache/1.1),
HTTP/1.1 webseall:7002, 1.1 webseal2:7001

and the com.ibm.websphere.security.webseal.ignoreProxy property is set to true or yes, the host name
Fred, is not used when matching the host names. By default, this property is not set, which implies that
any proxy host names and ports that are expected in the VIA header are listed in the host names and the
ports properties to satisfy the isTargetinterceptor method.

52 securing applications and their environment

The previous VIA header information was split onto two lines for illustrative purposes only.

For more information about the com.ibm.websphere.security.webseal.ignoreProxy property, see the article
in the information center on configuring single signon using trust association interceptor ++.

Migrating product-provided trust association interceptors

The properties that are located in the webseal.properties and trustedserver.properties files are not
migrated from previous versions of WebSphere Application Server. You must migrate the appropriate
properties to WebSphere Application Server Version 6.0.x using the trust association panels in the
administrative console. For more information, see |Configuring trust association interceptors|

Changes to the custom trust association interceptors

If the custom interceptor extends the
com.ibm.websphere.security. WebSphereBaseTrustAssociationInterceptor property, implement the following
new method to initialize the interceptor:

public int init (java.util.Properties props);

WebSphere Application Server checks the return status before using the trust association implementation.
Zero (0) is the default value for indicating that the interceptor is successfully initialized.

However, if a previous implementation of the trust association interceptor returns a different error status,

you can either change your implementation to match the expectations or make one of the following

changes:

Method 1:
Add the com.ibm.websphere.security.trustassociation.initStatus property in the trust association
interceptor custom properties. Set the property to the value that indicates the interceptor is
successfully initialized. All of the other possible values imply failure. In case of failure, the
corresponding trust association interceptor is not used.

Method 2:
Add the com.ibm.websphere.security.trustassociation.ignorelnitStatus property in the trust
association interceptor custom properties. Set the value of this property to true, which tells
WebSphere Application Server to ignore the status of this method. If you add this property to the
custom properties, WebSphere Application Server does not check the return status, which is
similar to previous versions of WebSphere Application Server.

The public int init (java.util.Properties props method replaces the public int init (String propsFile) method.

The init(Properties) method accepts a java.util.Properties object, which contains the set of properties that
is required to initialize the interceptor. All of the properties set for an interceptor are sent to this method.
The interceptor can then use these properties to initialize itself. For example, in the product-provided
implementation for the WebSEAL server, this method reads the hosts and ports so that a request coming
in can be verified to come from trusted hosts and ports. A return value of Zero (0) implies that the
interceptor initialization is successful. Any other value implies that the initialization is not successful and
the interceptor is not used.

The init(String) method still works if you want to use it instead of implementing the init(Properties) method.
The only requirement is that you enter the file name containing the custom trust association properties
using the Custom Properties link of the interceptor in the administrative console or by using scripts. You
can enter the property using either of the following methods. The first method is used for backward
compatibility with previous versions of WebSphere Application Server.
T Method 1:
The same property names used in the previous release are used to obtain the file name. The file
name is obtained by concatenating .config to the

Chapter 5. Setting up, enabling and migrating security 53

com.ibm.websphere.security.trustassociation.types property value. If the myTAI.properties file is

located in the profile_root]/properties directory, set the following properties:

e com.ibm.websphere.security.trustassociation.types = myTAItype

* com.ibm.websphere.security.trustassociation.myTAItype.config =
properties/myTAI.properties

I Method 2:

You can set the com.ibm.websphere.security.trustassociation.initPropsFile property in the trust
association custom properties to the location of the file. For example, set the following property:

com.ibm.websphere.security.trustassociation.initPropsFile=
properti es/myTAI.properties

The previous line of code is split into two lines for illustrative purposes only. Type as one
continuous line.

However, it is highly recommended that your implementation be changed to implement the init(Properties)
method instead of relying on the init (String propsfile) method.

Migrating custom trust association interceptors

The trust associations from previous versions of WebSphere Application Server are not automatically
migrated to WebSphere Application Server Version 8.5. You can manually migrate these trust associations
using the following steps:

Procedure
1. Recompile the implementation file, if necessary.
For more information, refer to the "Changes to the custom trust association interceptors" section
previously discussed in this document. TN
a. Enter QSH from a command line to start the QShell environment.
b. Change to the directory that contains your Java source file.
c. Enter the command to recompile the implementation file.

javac -Djava.version=1.6 -classpath
p1ugins/com.ibm.ws.runtime.jardev/JavaEE/jZee.jar your_implementation_file.java
2. I Copy the custom trust association interceptor class files to a location in your product class

path. Copy these class files into the c1asses directory.

3. Restart all the serversWebSphere Application Server.

4. Enable security to use the trust association interceptor. The properties that are located in your custom
trust association properties file and in the trustedserver.properties file are not migrated from
previous versions of WebSphere Application Server. You must migrate the appropriate properties to
WebSphere Application Server Version 8.5 using the trust association panels in the administrative
console.

For more information, see [Configuring trust association interceptors|

Migrating Common Object Request Broker Architecture programmatic
login to Java Authentication and Authorization Service (CORBA and
JAAS)

Use this topic as an example of how to perform programmatic login using the CORBA-based
programmatic login APIs.

Before you begin

IEIIIE This document outlines the deprecated Common Object Request Broker Architecture (CORBA)
programmatic login APIs and the alternatives that are provided by JAAS. WebSphere Application Server

54 securing applications and their environment

fully supports the Java Authentication and Authorization Service (JAAS) as programmatic login application
programming interfaces (API). Refer to the Securing applications and their environment PDF for more
details on JAAS support.

The following list includes the deprecated CORBA programmatic login APls.

 BIEEM profile_root/installedApps/sampleApp.ear/default_app.war/WEB-INF/classes/
ServerSideAuthenticator. java.

BT org.omg.SecurityLevel2.Credentials. This API is included with the product, but it is not
recommended that you use the API.

The APIs that are provided in WebSphere Application Server are a combination of standard JAAS APIs
and a product implementation of standard JAAS interfaces.

The following information is only a summary; refer to the JAAS documentation for your platform located at:
Ihttp://www.ibm.com/developerworks/java/jdk/security/ .
* Programmatic login APIs:
— javax.security.auth.login.LoginContext
— javax.security.auth.callback.CallbackHandler interface: The WebSphere Application Server product
provides the following implementation of the javax.security.auth.callback.CallbackHandler interface:
com.ibm.websphere.security.auth.callback.WSCallbackHandlerimpl
Provides a non-prompt CallbackHandler handler when the application pushes basic
authentication data (user ID, password, and security realm) or token data to product login
modules. This API is recommended for server-side login.
T3 com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerimpl
Provides a login prompt CallbackHandler handler to gather basic authentication data (user
ID, password, and security realm). This APl is recommended for client-side login.

If this API is used on the server side, the server is blocked for input.
— javax.security.auth.callback.Callback interface:
javax.security.auth.callback.NameCallback
Provided by JAAS to pass the user name to the LoginModules interface.
javax.security.auth.callback.PasswordCallback
Provided by JAAS to pass the password to the LoginModules interface.
com.ibm.websphere.security.auth.callback.WSCredTokenCallbackimpl
Provided by the product to perform a token-based login. With this API, an application can
pass a token-byte array to the LoginModules interface.
— javax.security.auth.spi.LoginModule interface

WebSphere Application Server provides a LoginModules implementation for client and server-side
login. Refer to the Securing applications and their environment PDF for details.
* javax.security.Subject:
I com.ibm.websphere.security.auth.WSSubject
An extension provided by the product to invoke remote J2EE resources using the credentials in
the javax.security.Subject
com.ibm.websphere.security.cred.WSCredential
After a successful JAAS login with the WebSphere Application Server LoginModules interfaces,
a com.ibm.websphere.security.cred.WSCredential credential is created and stored in the
Subject.
com.ibm.websphere.security.auth.WSPrincipal
An authenticated principal that is created and stored in a Subject that is authenticated by the
WebSphere Application Server LoginModules interface.

Procedure

1. I Use the following as an example of how to perform programmatic login using the
CORBA-based programmatic login APls: The CORBA-based programmatic login APIs are replaced by
JAAS login.

Chapter 5. Setting up, enabling and migrating security 55

http://www.ibm.com/developerworks/java/jdk/security/

Note: The LoginHelper application programming interface (API) that is used in the following example
is deprecated in WebSphere Application Server Version 8.5 and will be removed in a future
release. It is recommended that you use the JAAS programmatic login APls that are shown in
the next step.

public class TestClient {

private void performLogin() {

// Get the ID and password of the user.
String userid = customGetUserid();
String password = customGetPassword();

// Create a new security context to hold authentication data.
LoginHelper loginHelper = new LoginHelper();

try {

// Provide the ID and password of the user for authentication.
org.omg.SecuritylLevel2.Credentials credentials =
loginHelper.login(userid, password);

// Use the new credentials for all future invocations.
loginHelper.setInvocationCredentials(credentials);

// Retrieve the name of the user from the credentials
// so we can tell the user that Togin succeeded.

String username = ToginHelper.getUserName(credentials);
System.out.printin("Security context set for user: "+username);
} catch (org.omg.Securitylevel2.lLoginFailed e) {

// Handle the LoginFailed exception.

1

1

2. Use the following example to migrate the CORBA-based programmatic login APIs to the JAAS
programmatic login APIs.

The following example assumes that the application code is granted for the required Java 2 security
permissions. For more information, see the Securing applications and their environment PDF and the
JAAS documentation located at |http://www.ibm.com/developerworks/java/jdk/security/}

public class TestClient {

private void performLogin() {
// Create a new JAAS LoginContext.
javax.security.auth.login.LoginContext Tc = null;

try {

// Use GUI prompt to gather the BasicAuth data.

1c = new javax.security.auth.login.LoginContext("WSLogin",

new com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl());

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determine how authentication data is collected
// in this case, the authentication date is collected by Togin prompt

// and pass to the authentication mechanism implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.printIn("ERROR: failed to instantiate a LoginContext and the exception:
+ e.getMessage());

e.printStackTrace();

// may be javax.security.auth.AuthPermission "createlLoginContext" is not granted
// to the application, or the JAAS Login Configuration is not defined.
1

if (1c !'= null)

try {

Tc.login(); // perform login
javax.security.auth.Subject s = Tc.getSubject();
// get the authenticated subject

// Invoke a J2EE resources using the authenticated subject
com. ibm.websphere.security.auth.WSSubject.doAs (s,

new java.security.PrivilegedAction() {

public Object run() {

56 Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security/

try {

bankAccount.deposit(100.00); // where bankAccount is an protected EJB
} catch (Exception e) {

System.out.printIn("ERROR: error while accessing EJB resource, exception:
+ e.getMessage());

e.printStackTrace();

}

return null;

}

1

)s

// Retrieve the name of the principal from the Subject
// so we can tell the user that login succeeded,

// should only be one WSPrincipal.

java.util.Set ps =
s.getPrincipals(com.ibm.websphere.security.auth.WSPrincipal.class);
java.util.Iterator it = ps.iterator();

while (it.hasNext()) {
com.ibm.websphere.security.auth.WSPrincipal p =
(com.ibm.websphere.security.auth.WSPrincipal) it.next();
System.out.printIn("Principal: " + p.getName());

1

} catch (javax.security.auth.login.LoginException e) {
System.err.printIn("ERROR: Togin failed with exception: " + e.getMessage());
e.printStackTrace();

// login failed, might want to provide relogin logic
1
}

Migrating from the CustomLoginServlet class to servlet filters

Use this topic to allow migration in an application that uses form-based login and servlet filters without the
use of the CustomLoginServlet class.

Before you begin

The CustomLoginServlet class is deprecated in WebSphere Application Server Version 5. Those
applications using the CustomLoginServlet class to perform authentication now need to use form-based
login. Using the form-based login mechanism, you can control the look and feel of the login screen. In
form-based login, a login page is specified and displays when retrieving the user ID and password
information. You also can specify an error page that displays when authentication fails.

If login and error pages are not enough to implement the CustomLoginServlet class, use servlet filters.
Servlet filters can dynamically intercept requests and responses to transform or use the information that is
contained in the requests or responses. One or more servlet filters attach to a servlet or a group of
servlets. Servlet filters also can attach to JavaServer Pages (JSP) files and HTML pages. All the attached
servlet filters are called before invoking the servlet.

Both form-based login and servlet filters are supported by any Servlet 2.3 specification-compliant web
container. A form login servlet performs the authentication and servlet filters can perform additional
authentication, auditing, or logging tasks.

To perform pre-login and post-login actions using servlet filters, configure these servlet filters for either
form login page or for /j_security_check URL. The j_security_check is posted by the form login page with
the j_username parameter that contains the user name and the j_password parameter that contains the
password. A servlet filter can use user name and password information to perform more authentication or
meet other special needs.

Chapter 5. Setting up, enabling and migrating security 57

Procedure

1. Develop a form login page and error page for the application.
Refer to the Securing applications and their environment PDF for details.

2. Configure the form login page and the error page for the application.
Refer to the Securing applications and their environment PDF for details.

3. Develop servlet filters if additional processing is required before and after form login authentication.
Refer to the Securing applications and their environment PDF for details.

4. Configure the servlet filters that are developed in the previous step for either the form login page URL
or for the /j_security_check URL. Use an assembly tool or development tools like Rational Application
Developer to configure filters. After configuring the servlet filters, the web-xm1 file contains two stanzas.
The first stanza contains the servlet filter configuration, the servlet filter, and its implementation class.
The second stanza contains the filter mapping section and a mapping of the servlet filter to the URL.

For more information, see the Securing applications and their environment PDF.
Results

This migration results in an application that uses form-based login and servlet filters without the use of the
CustomLoginServlet class.

What to do next

The new application uses form-based login and servlet filters to replace the CustomLoginServlet class.
Servlet filters also are used to perform additional authentication, auditing, and logging.

Migrating Java 2 security policy
Use this topic for guidance pertaining to migrating Java 2 security policy.

About this task
Previous WebSphere Application Server releases

WebSphere Application Server uses the Java 2 security manager in the server runtime to prevent
enterprise applications from calling the System.exit and the System.setSecurityManager methods. These
two Java application programming interfaces (API) have undesirable consequences if called by enterprise
applications. The System.exit API, for example, causes the Java virtual machine (application server
process) to exit prematurely, which is not a beneficial operation for an application server.

To support Java 2 security properly, all the server runtime must be marked as privileged (with
doPrivileged API calls inserted in the correct places), and identify the default permission sets or policy.
Application code is not privileged and subject to the permissions that are defined in the policy files. The
doPrivileged instrumentation is important and necessary to support Java 2 security. Without it, the
application code must be granted the permissions that are required by the server runtime. This situation is
due to the design and algorithm that is used by Java 2 security to enforce permission checks. Refer to the
Java 2 security check permission algorithm.

The following two permissions are enforced by the Java 2 security manager (hard coded) for WebSphere
Application Server:

* java.lang.RuntimePermission(exitVM)

 java.lang.RuntimePermission(setSecurityManager)

Application code is denied access to these permissions regardless of what is in the Java 2 security policy.

However, the server runtime is granted these permissions. All the other permission checks are not
enforced.

58 Securing applications and their environment

Only two permissions are supported:
» java.net.SocketPermission
» java.net.NetPermission

However, not all the product server runtime is properly marked as privileged. You must grant the
application code all the other permissions besides the two listed previously or the enterprise application
can potentially fail to run. This Java 2 security policy for enterprise applications is liberal.

What changed

Java 2 Security is fully supported in WebSphere Application Server, which means that all permissions are
enforced. The default Java 2 security policy for an enterprise application is the recommended permission
set defined by the Java Platform, Enterprise Edition (Java EE) Version 1.4 specification. Refer to the

rofile_rootfconfig/cells/cell_name/nodes/node_name/app.policy file for the default Java 2 security
policy that is granted to enterprise applications. This policy is a much more stringent compared to previous
releases.

All policy is declarative. The product security manager honors all policy that is declared in the policy files.

There is an exception to this rule: enterprise applications are denied access to permissions that are

declared in the conﬁg/ce1 1s/cell_name/filter.policy file.

Note: The default Java 2 security policy for enterprise applications is much more stringent and all the
permissions are enforced in WebSphere Application Server Version 8.5. The security policy might
fail because the application code does not have the necessary permissions granted where system

resources, such as file 1/0, can be programmatically accessed and are now subject to the
permission checking.

In application code, do not use the setSecurityManager permission to set a security manager. When an
application uses the setSecurityManager permission, there is a conflict with the internal security manager
within WebSphere Application Server. If you must set a security manager in an application for RMI
purposes, you also must enable the Use Java 2 security to restrict application access to local
resources option on the Global security page within the WebSphere Application Server administrative
console. WebSphere Application Server then registers a security manager. The application code can verify
that this security manager is registered by using System.getSecurityManager() application programming
interface (API).

Migrating system properties

The following system properties are used in previous releases in relation to Java 2 security:

» java.security.policy. The absolute path of the policy file (action required). This system property
contains both system permissions (permissions granted to the Java virtual machine (JVM) and the
product server runtime) and enterprise application permissions. Migrate the Java 2 security policy of the
enterprise application to Version 8.5. For Java 2 security policy migration, see the steps for migrating
Java 2 security policy.

+ enabledJava2Security. Used to enable Java 2 security enforcement (no action required). This system
property is deprecated; a flag in the WebSphere configuration application programming interface (API) is
used to control whether to enable Java 2 security. Enable this option through the administrative console.

» was.home. Expanded to the installation directory of WebSphere Application Server (action might be
required). This system property is deprecated; superseded by the ${user.install.root} and
${was.install.root} properties. If the directory contains instance-specific data then ${user.install.root} is
used; otherwise ${was.install.root} is used. Use these properties interchangeably for the WebSphere
Application Server or the WebSphere Application Server, Network Deployment environments. See the
steps for migrating Java 2 security policy.

Migrating the Java 2 Security Policy

Chapter 5. Setting up, enabling and migrating security 59

No easy way exists to migrate the Java policy file to Version 8.5 automatically because of a mixture of
system permissions and application permissions in the same policy file. Manually copy the Java 2 security
policy for enterprise applications to a was.policy or app.policy file. However, migrating the Java 2
security policy to a was.policy file is preferable because symbols or relative code base is used instead of
an absolute code base. This process has many advantages. Grant the permissions that are defined in the
was.policy to the specific enterprise application only, while permissions in the app.policy file apply to all
the enterprise applications that run on the node where the app.policy file belongs.

Refer to the Securing applications and their environment PDF for more details on policy management.

The following example illustrates the migration of a Java 2 security policy from a previous release. The
contents include the Java 2 security policy file for the appl.ear enterprise application and the system
permissions, which are permissions that are granted to the Java virtual machine (JVM) and the product
server runtime.

EEIEEE The default location for the Java 2 security policy file is properties/java.policy.

Default permissions are omitted for clarity:

// For product Samples
grant codeBase "file:${app_server_root}/installedApps/appl.ear/-" {
permission java.security.SecurityPermission "printIdentity";
permission java.io.FilePermission "${app_server_root}${/}temp${/}somefile.txt",
"read";
IH

For clarity of illustration, all the permissions are migrated as the application level permissions in this
example. However, you can grant permissions at a more granular level at the component level (Web,
enterprise beans, connector or utility Java archive (JAR) component level) or you can grant permissions to
a particular component.

Procedure
1. Ensure that Java 2 security is disabled on the application server.

2. Create a new was.policy file, if the file is not present, or update the was.policy file for migrated
applications in the configuration repository with the following contents:
grant codeBase "file:${application}" {
permission java.security.SecurityPermission "printlIdentity";
permission java.io.FilePermission "
${user.install.root}${/}temp${/}somefile.txt", "read";
}s

The third and fourth lines in the previous code sample are presented on two lines for illustrative
purposes only.

The was.policy file is located in the profile root]/config/cells/cell_name/applications/app.ear/
deployments/app/META-INF/ directory.

3. Use an assembily tool to attach the was.policy file to the enterprise archive (EAR) file.

You also can use an assembly tool to validate the contents of the was.policy file. For more
information, see the Securing applications and their environment PDF.

4. Validate that the enterprise application does not require additional permissions to the migrated Java 2
security permissions and the default permissions set declared in the ${user.install.root}/config/
cells/cell_name/nodes/node_name/app.policy file. This validation requires code review, code
inspection, application documentation review, and sandbox testing of migrated enterprise applications
with Java 2 security enabled in a preproduction environment. Refer to developer kit APIs protected by
Java 2 security for information about which APIs are protected by Java 2 security. If you use third-party
libraries, consult the vendor documentation for APIs that are protected by Java 2 security. Verify that
the application is granted all the required permissions, or it might fail to run when Java 2 security is
enabled.

5. Perform preproduction testing of the migrated enterprise application with Java 2 security enabled.
Enable trace for the WebSphere Application Server Java 2 security manager in a preproduction testing

60 Securing applications and their environment

environment with the following trace string: com.ibm.ws.security.core.SecurityManager=all=enabled.
This trace function can be helpful in debugging the AccessControlException exception that is created
when an application is not granted the required permission or some system code is not properly
marked as privileged. The trace dumps the stack trace and permissions that are granted to the classes
on the call stack when the exception is created.

For more information, see the Securing applications and their environment PDF.

Note: Because the Java 2 security policy is much more stringent compared with previous releases,
the administrator or deployer must review their enterprise applications to see if extra
permissions are required before enabling Java 2 security. If the enterprise applications are not
granted the required permissions, they fail to run.

Migrating with Tivoli Access Manager for authentication enabled

When Tivoli® Access Manager security is configured for your existing environment and security is enabled,
you can migrate to WebSphere Application Server, Version 8.5.

Before you begin
Your profiles must be migrated using the migration tools to migrate product configurations.

Important: Do not restart the WebSphere Application Server Version 8.5 server until after performing the
following procedure. The migration tools omit some files that enable the server to start
correctly.

About this task

After migrating your profiles, additional steps are required when Tivoli Access Manager security is
configured.

Note: WebSphere Application Server Version 8.0 and above hosts Tivoli Access Manager specific files
under the %WAS_HOME%/tivoli/tam directory. In previous versions, these files were hosted under the
%WAS_HOME%/java/jre/ hierarchy.

Procedure

1. I Copy the profile_rootl/PolicyDirector directory and it's contents to
profile root2/PolicyDirector. For this example:

« profile_root1 is the [oot] directory of the profile being migrated.
- profile_root2 is the [oot| directory of the version 6.1 profile.
a. From an IBM i command line, type STRQSH and press Enter.
b. Type cp -R profile_rootl/PolicyDirector profile root2 and press Enter.
2. IS Copy the key file of the profile being migrated to the version 8.0 profile. The location of the
key file is defined in profile_rootl/PolicyDirector/PdPerm.properties. For this example:
* The PdPerm.properties file contains pdcert-url=file\:/QIBM/UserData/WebAS51/Base/AppSvri/etc/
AppSvri.kab.
* /QIBM/UserData/WebAS51/Base/AppSvrl is the root directory of a Version 6.1 profile.
a. From an IBM i command line type STRQSH and press Enter.
b. Type cp /QIBM/UserData/WebAS51/Base/AppSvrl/etc/AppSvrl.kdb profile root2/etc/AppSvrl.kdb
and press Enter.

3. JEIIIE Edit the property values in profile_root2/PolicyDirector/PdPerm.properties and in
profile_root2/PolicyDirector/Pd.properties to replace occurrences of profile_root1 with
profile_root2 in the file path name values.

Chapter 5. Setting up, enabling and migrating security 61

Migrating Java thin clients that use the password encoding algorithm
To migrate Java thin clients that are enabled for OS400 password encoding, use the following information

to modify the Java client invocation so that the 0s400.security.password properties are no longer set on
the invocation.

About this task

The password encoding feature offers the following encoding algorithms:
+ XOR, which is the default
* 0S400

In Version 5 and later, the value of the 0s400.security.password.validation.list.object property is dependant
upon the property value passed to the thin client using the JAVA_FLAGS environment variable. The
JAVA_FLAGS environment variable is set by the setupClient script. The setupClient script calls the
setupCmdLine script, which is where the value for the 0s400.security.password.validation.list.object
property is set. For example, if a Version 6.x Base Edition Java client is passed -profileName default,

then the setupClient script calls the defau1 t/bin/setupCmdLine file.

To migrate Java thin clients that are enabled for OS400 password encoding, modify the Java client
invocation so that the 0s400.security.password properties are no longer set on the invocation. The
following code sample does not contain the 0s400.security.password properties:

Jjava -classpath $MY_CLIENT_CLASSES:app_server_root/classes/wsa400.jar:$WAS_CLASSPATH \
$CLIENTSAS $JAVA_FLAGS \
-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory \
-Djava.naming.provider.url=iiop://serverl:10151 \

MyClientClass $*
Perform the following steps if the following condition is true:

 |f the passwords in the sas.client.props file for that profile are encoded with the OS400 password
encoding algorithm

Procedure

1. Replace all of the OS400 encoded passwords, which have {OS400}) prefixes in the sas.client.props
file for the Application Server profile, with the clear text values of the passwords.

2. Encode the passwords using the PropFilePasswordEncoder Qshell command.
For more information, see [‘PropFilePasswordEncoder command reference” on page 975.|

Results

Attention: You can configure a WebSphere Application Server profile to encode passwords with the
XOR algorithm even though the profile is enabled to decode passwords that were encoded with either the
0S400 algorithm or the XOR algorithm. If you encode these passwords with the XOR algorithm, then the
passwords in the sas.client.props file are encoded with the XOR algorithm.

Enabling security

The following provides information on how to configure security when security was not enabled during the
WebSphere Application Sever profile creation.

Before you begin
When you are installing WebSphere Application Server, it is recommended that you install with security
enabled. By design, this option ensures that everything has been properly configured. By enabling security,

you protect your server from unauthorized users and are then able to provide application isolation and
requirements for authenticating application users.

62 Securing applications and their environment

It is helpful to understand security from an infrastructure perspective so that you know the advantages of
different authentication mechanisms, user registries, authentication protocols, and so on. Picking the right
security components to meet your needs is a part of configuring security. The following sections help you
make these decisions.

After you understand the security components, you can proceed to configure security in WebSphere
Application Server.

Procedure
1. Start the WebSphere Application Server administrative console.

If security is currently disabled, you are prompted for a user ID. Log in with any user ID. However, if
security is currently enabled, you are prompted for both a user ID and a password. Log in with a
predefined administrative user ID and password.

2. Click Security > Global security.

Use the Security Configuration Wizard, or configure security manually. The configuration order is not
important.

gotcha: You must separately enable administrative security, and application security. Because of this
split, WebSphere Application Server clients must know whether application security is
disabled at the target server. Administrative security is enabled, by default. Application
security is disabled, by default. Before you attempt to enable application security on the
target server, verify that administrative security is enabled on that server. Application security
can be in effect only when administrative security is enabled.

For more information on manual configuration, see|Authenticating users|.

3. Configure the user account repository. For more information, see [‘Selecting a registry or repository’]
On the Global security panel, you can configure user account repositories such as

federated repositories, local operating system, stand-alone Lightweight Directory Access Protocol
(LDAP) registry, and stand-alone custom registry.

Note: You can choose to specify either a server ID and password for interoperability or enable a
WebSphere Application Server installation to automatically generate an internal server ID. For
more information about automatically generating server IDs, see[‘Local operating system|
[settings” on page 154

One of the details common to all user registries or repositories is the Primary administrative user

name. This ID is a member of the chosen repository, but also has special privileges in WebSphere

Application Server. The privileges for this ID and the privileges that are associated with the

administrative role ID are the same. The Primary administrative user name can access all of the

protected administrative methods.

In stand-alone LDAP registries, verify that the Primary administrative user name is a member of the
repository and not just the LDAP administrative role ID. The entry must be searchable.

IEIIFE The Primary administrative user name does not run WebSphere Application Server
processes. Rather, the process ID runs the WebSphere Application Server processes.

In the default configuration, WebSphere Application Server processes run under the
QEJBSVR system-provided user profile.

4. Select the Set as current option after you configure the user account repository. When you click
Apply and the Enable administrative security option is set, a verification occurs to see if an
administrative user ID has been configured and is present in the active user registry. The
administrative user ID can be specified at the active user registry panel or from the console users
link. If you do not configure an administrative ID for the active user registry, the validation fails.

Note: When you switch user registries, the admin-authz.xml1 file should be cleared of existing
administrative ids and application names. Exceptions will occur in the logs for ids that exist in
the admin-authz.xml file but do not exist in the current user registry.

Chapter 5. Setting up, enabling and migrating security 63

10.

11.

Configure the authentication mechanism.

Configure Lightweight Third-Party Authentication (LTPA) or Kerberos, which is new to this release of
WebSphere Application Server, under Authentication mechanisms and expiration. LTPA credentials
can be forwarded to other machines. For security reasons, credential expire; however, you can
configure the expiration dates on the console. LTPA credentials enable browsers to visit different
product servers, which means you do not have to authenticate multiple times. For more information,
see|Configuring the Lightweight Third Party Authentication mechanism|

Note: You can configure Simple WebSphere Authentication Mechanism (SWAM) as your
authentication mechanism. However, SWAM was deprecated in WebSphere Application Server
Version 8.5 and will be removed in a future release. SWAM credentials are not forwardable to
other machines and for that reason do not expire.

Optional: Import and export the LTPA keys for cross-cell single Sign-on (SSO) between cells. For

more information, see the following articles:

+ [Exporting Lightweight Third Party Authentication keys}

+ [Importing Lightweight Third Party Authentication keys|

gotcha: If one of the cells you are connecting to resides on a Version 6.0.x system, see the topic
Configuring Lightweight Third Party Authentication keys in the Version 6.0.x Information
Center for more information.

Configure the authentication protocol for special security requirements from Java clients, if needed.

You can configure Common Secure Interoperability Version 2 (CSIv2) through links on the
Global security panel. The Security Authentication Service (SAS) protocol is provided for backwards
compatibility with previous product releases, but is deprecated. Links to the SAS protocol panels
display on the Global security panel if your environment contains servers that use previous versions
of WebSphere Application Server and support the SAS protocol. For details on configuring CSIv2 or
SAS, see the article, [“Configuring Common Secure Interoperability Version 2 (CSIV2) inbound and|
[outbound communication settings” on page 485
Attention: IR 'BM no longer ships or supports the Secure Authentication Service (SAS)
[IOP security protocol. It is recommended that you use the Common Secure Interoperability version 2
(CSIv2) protocaol.
Click Security > Global security to configure the rest of the security settings and enable security.
For information about these settings, see [‘Global security settings” on page 78|
Validate the completed security configuration by clicking OK or Apply. If problems occur, they display
at the top of the console page in red type.
If there are no validation problems, click Save to save the settings to a file that the server uses when
it restarts. Saving writes the settings to the configuration repository.

Important: If you do not click Apply or OK in the Global security panel before you click Save, your
changes are not written to the repository. The server must be restarted for any changes
to take effect when you start the administrative console.

Start the WebSphere Application Server administrative console.

If security is currently disabled, log in with any user ID. If security is currently enabled, log in with a
predefined administrative ID and password. This ID is typically the server user ID that is specified
when you configured the user registry.

Administrative security

Administrative security determines whether security is used at all, the type of registry against which
authentication takes place, and other values, many of which act as defaults. Proper planning is required
because incorrectly enabling administrative security can lock you out of the administrative console or
cause the server to end abnormally.

64 Securing applications and their environment

Note: It is strongly recommended that you allow the default installation to install administrative security as
on by default.

Administrative security can be thought of as a "big switch" that activates a wide variety of security settings
for WebSphere Application Server. Values for these settings can be specified, but they will not take effect
until administrative security is activated. The settings include the authentication of users, the use of Secure
Sockets Layer (SSL), and the choice of user account repository. In particular, application security, including
authentication and role-based authorization, is not enforced unless administrative security is active.
Administrative security is enabled by default.

Note: Administrative security need not be activated in order for WebSphere applications to make use of
JSSE methods to encrypt communication to remote sites.

Administrative security represents the security configuration that is effective for the entire security domain.
A security domain consists of all of the servers that are configured with the same user registry realm
name. In some cases, the realm can be the machine name of a local operating system registry. In this
case, all of the application servers must reside on the same physical machine. In other cases, the realm
can be the machine name of a stand-alone Lightweight Directory Access Protocol (LDAP) registry.

The basic requirement for a security domain is that the access ID that is returned by the registry or
repository from one server within the security domain is the same access ID as that returned from the
registry or repository on any other server within the same security domain. The access ID is the unique
identification of a user and is used during authorization to determine if access is permitted to the resource.

The administrative security configuration applies to every server within the security domain.
Why turn on administrative security?

Turning on administrative security activates the settings that protect your server from unauthorized users.
Administrative security is enabled by default during the profile creation time. There might be some
environments where no security is needed such as a development system. On these systems you can
elect to disable administrative security. However, in most environments you should keep unauthorized
users from accessing the administrative console and your business applications. Administrative security
must be enabled to restrict access.

What does administrative security protect?

The configuration of administrative security for a security domain involves configuring the following
technologies:

» Authentication of HTTP clients

» Authentication of IIOP clients

* Administrative console security

* Naming security

» Use of SSL transports

* Role-based authorization checks of servlets, enterprise beans, and mbeans

* Propagation of identities (RunAs)

* The common user registry

* The authentication mechanism

» Other security information that defines the behavior of a security domain includes:

— The authentication protocol (Remote Method Invocation over the Internet Inter-ORB Protocol
(RMI/IIOP) security)

— Other miscellaneous attributes

Chapter 5. Setting up, enabling and migrating security 65

Note: It is recommended that before registering a node with an administrative agent process, that you first
have administrative security enabled in the administrative agent and base profile. Once you register
a profile with the administrative agent, the state of administrative security enablement cannot be
changed.

Application security

Application security enables security for the applications in your environment. This type of security
provides application isolation and requirements for authenticating application users

In previous releases of WebSphere Application Server, when a user enabled global security, both
administrative and application security were enabled. In WebSphere Application Server Version 6.1, the
previous notion of global security is split into administrative security and application security, each of which
you can enable separately.

As a result of this split, WebSphere Application Server clients must know whether application security is
disabled at the target server. Administrative security is enabled, by default. Application security is disabled,
by default. Before you can enable application security, you must verify that administrative security is
enabled. Application security is in effect only when administrative security is enabled.

An Application Server Enablement Tag, which is specific to WebSphere Application Server, is imported into
the Interoperable Object Reference (IOR) to indicate if application security is disabled for the server where
the object lives. This tag is server-specific and enables clients to know when application security is
disabled at the target server of its request.

For web resources, when application security is enabled, security constraints on those resources in
web.xml are enforced. When accessing a protected resource, a web client is prompted for authentication.

For enterprise bean resources, when application security is disabled, the client Common Secure
Interoperability version 2 (CSIv2) code ignores the CSIv2 security tags for objects that are unknown
system objects. When pure clients see that application security is disabled, these clients prompt for
naming lookups, but do not prompt for enterprise bean operations.

Java 2 security

Java 2 security provides a policy-based, fine-grain access control mechanism that increases overall
system integrity by checking for permissions before allowing access to certain protected system resources.
Java 2 security guards access to system resources such as file I/O, sockets, and properties. Java 2
Platform, Enterprise Edition (J2EE) security guards access to web resources such as servlets, JavaServer
Pages (JSP) files and Enterprise JavaBeans (EJB) methods.

Because Java 2 security is relatively new, many existing or even new applications might not be prepared
for the very fine-grain access control programming model that Java 2 security is capable of enforcing.
Administrators need to understand the possible consequences of enabling Java 2 security if applications
are not prepared for Java 2 security. Java 2 security places some new requirements on application
developers and administrators.

Important: JNEIEE Java 2 security only restricts Java programs that run in a Java virtual machine that
has Java 2 security enabled. It does not protect system resources if Java 2 Security is
disabled or if system resources are accessed from other programs or commands. Therefore, if
you want to protect your system resources, you need to use operating system security.

Note: The application server does not support a custom Java security manager implementation.

66 Securing applications and their environment

Java 2 security for deployers and administrators

Although Java 2 security is supported, it is disabled by default. You can configure Java 2 security and
administrative security independently of one another. Disabling administrative security does not disable
Java 2 security automatically. You need to explicitly disable it.

If your applications, or third-party libraries are not ready, having Java 2 security enabled causes problems.
You can identify these problems as Java 2 security AccessControlExceptions in the system log or trace
files. If you are unsure about the Java 2 security readiness of your applications, disable Java 2 security
initially to get your application installed and verify that it is working properly.

The policy embodied by these policy files cannot be made more restrictive because the product might not
have the necessary Java 2 security doPrivileged APIs in place. The restrictive policy is the default policy.
You can grant additional permissions, but you cannot make the default more restrictive because
AccessControlExceptions exceptions are generated from within WebSphere Application Server. The
product does not support a more restrictive policy than the default that is defined in the policy files
previously mentioned.

Several policy files are used to define the security policy for the Java process. These policy files are static
(code base is defined in the policy file) and in the default policy format provided by the IBM Developer Kit,
Java Technology Edition. For enterprise application resources and utility libraries, WebSphere Application
Server provides dynamic policy support. The code base is dynamically calculated based on deployment
information and permissions are granted based on template policy files during runtime. Refer to the
12 security policy files” on page 71|for more information.

Syntax errors in the policy files cause the application server process to fail, so edit these policy files
carefully.

Note: JNITHE Edit these policy files using the Policy Tool that is provided by the IBM Developer Kit,
Java Technology Edition. See ['Using PolicyTool to edit policy files for Java 2 security” on page 824
for more information.

If an application is not prepared for Java 2 security, if the application provider does not provide a
was.policy file as part of the application, or if the application provider does not communicate the expected
permissions the application is likely to cause Java 2 security access control exceptions at runtime. It might
not be obvious that an application is not prepared for Java 2 security. Several run-time debugging aids
help troubleshoot applications that might have access control exceptions. See the Java 2 security
debugging aids for more details. See |[‘Handling applications that are not Java 2 security ready” on page 69|
for information and strategies for dealing with such applications.

It is important to note when Java Security is enabled in the administrative security settings, the installed
security manager does not currently check modifyThread and modifyThreadGroup permissions for
non-system threads. Allowing web and Enterprise JavaBeans (EJB) application code to create or modify a
thread can have a negative impact on other components of the container and can affect the capability of
the container to manage enterprise bean life cycles and transactions.

Java 2 security for application developers

Application developers must understand the permissions that are granted in the default WebSphere policy
and the permission requirements of the SDK APIs that their application calls to know whether additional
permissions are required. The Permissions in the Java 2 SDK reference in the resources section describes
which APIs require which permission.

Application providers can assume that applications have the permissions granted in the default policy
previously mentioned. Applications that access resources not covered by the default WebSphere policy are
required to grant the additional Java 2 security permissions to the application.

Chapter 5. Setting up, enabling and migrating security 67

While it is possible to grant the application additional permissions in one of the other dynamic WebSphere
policy files or in one of the more traditional java.policy static policy files, the was.policy file, which is
embedded in the EAR file ensures the additional permissions are scoped to the exact application that
requires them. Scoping the permission beyond the application code that requires it can permit code that
normally does not have permission to access particular resources.

If an application component is being developed, like a library that might actually be included in more than
one .ear file, then the library developer needs to document the required Java 2 permissions that are
required by the application assembler. There is no was.policy file for library-type components. The
developer must communicate the required permissions through application programming interface (API)
documentation or some other external documentation.

If the component library is shared by multiple enterprise applications, the permissions can be granted to all
enterprise applications on the node in the app.policy file.

Note: Updates to the app.policy file only apply to the enterprise applications on the node to which the
app.policy file belongs.

If the permission is only used internally by the component library and the application is never granted
access to resources that are protected by the permission, it might be necessary to mark the code as
privileged. Refer to the, |AccessControlException| topic for more details. However, improperly inserting a
doPrivileged call might open up security holes. Understand the implication of doPrivileged call to make a
correct judgement.

The section on Dynamic policy files in [‘Java 2 security policy files” on page 71| describes how the
permissions in the was.policy files are granted at runtime.

Developing an application to use with Java 2 security might be a new skill and impose a security
awareness not previously required of application developers. Describing the Java 2 security model and the
implications on application development is beyond the scope of this section. The following URL can help
you get started: [http:/java.sun.com/j2se/1.5.0/docs/guide/security/index.htmi,

Debugging Aids

The WebSphere Application Server SYSOUT file and the com.ibm.websphere.java2secman.norethrow
property are the two primary aids for debugging.

The WebSphere System Log or Trace Files

The AccessControl exception that is logged in the system log or trace files contains the permission
violation that causes the exception, the exception call stack, and the permissions granted to each stack
frame. This information is usually enough to determine the missing permission and the code requiring the
permission.

The com.ibm.websphere.java2secman.norethrow property

When Java 2 security is enabled in WebSphere Application Server, the security manager component
creates a java.security.AccessControl exception when a permission violation occurs. This exception, if not
handled, often causes a run-time failure. This exception is also logged in the SYSOUT file.

However, when the Java virtual machine com.ibm.websphere.java2secman.norethrow property is set and

has a value of true, the security manager does not create the AccessControl exception. This information is
logged.

68 Securing applications and their environment

http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html

This property is intended for a sandbox or debug environment because it instructs the security manager
not to create the AccessControl exception. Java 2 security is not enforced. Do not use this property in a
production environment where a relaxed Java 2 security environment weakens the integrity that Java 2

security is intended to produce.

This property is valuable in a sandbox or test environment where the application can be thoroughly tested
and where the system log or trace files can be inspected for AccessControl exceptions. Because this
property does not create the AccessControl exception, it does not propagate the call stack and does not
cause a failure. Without this property, you have to find and fix AccessControl exceptions one at a time.

Handling applications that are not Java 2 security ready

If the increased system integrity that Java 2 security provides is important, then contact the application
provider to have the application support Java 2 security or at least communicate the required additional
permissions beyond the default WebSphere Application Server policy that must be granted.

The easiest way to deal with such applications is to disable Java 2 security in WebSphere Application
Server. The downside is that this solution applies to the entire system and the integrity of the system is not
as strong as it might be. Disabling Java 2 security might not be acceptable depending on the organization
security policies or risk tolerances.

Another approach is to leave Java 2 security enabled, but to grant either just enough additional
permissions or grant all permissions to just the problematic application. Granting permissions however,
might not be a trivial thing to do. If the application provider has not communicated the required
permissions in some way, no easy way exists to determine what the required permissions are and granting
all permissions might be the only choice. You minimize this risk by locating this application on a different
node, which might help isolate it from certain resources. Grant the java.security.AllPermission permission
in the was.policy file that is embedded in the application .ear file, for example:

grant codeBase "file:${application}" {
permission java.security.Al1Permission;

The server.policy file

IITE The server.policy file is located in the properties directory.

This policy defines the policy for the WebSphere Application Server classes. At present, all the server
processes on the same installation share the same server.policy file. However, you can configure this file
so that each server process can have a separate server.policy file. Define the policy file as the value of
the java.security.policy Java system properties . For details of how to define Java system properties, refer
to the Process definition section of the Manage application servers file.

The server.policy file is not a configuration file managed by the repository and the file replication service.
Changes to this file are local and do not get replicated to other machines. Use the server.policy file to
define Java 2 security policy for server resources. Use the app.policy file (per node) or the was.policy file
(per enterprise application) to define Java 2 security policy for enterprise application resources.

Note: Updates to the app.policy file only apply to the enterprise applications on the node to which the
app.policy file belongs.

The java.policy file

The file represents the default permissions that are granted to all classes. The policy of this file applies to
all the processes launched by the Java Virtual Machine in the WebSphere Application Server.

BEIEE Thejava.policy file is located in the${java.home}/1ib/security/ directory where ${java.home}
is the path to the Software Development Kit (SDK) that you are using. The policy file is used throughout

Chapter 5. Setting up, enabling and migrating security 69

the operating system. Do not edit the java.policy file.

Troubleshooting
Error message CWSCJ0314E

Symptom:

Error message CWSCJO314E: Current® Java 2 security policy reported a potential violation of Java 2
security permission. Refer to Problem Determination Guide for further information.{O}Permission\
:{1}Code\:{2}{3}Stack Trace\:{4}Code Base Location\:{5} Current Java 2 security policy reported a
potential violation of Java 2 Security Permission. Refer to Problem Determination Guide for further
information.{0}Permission\:{1}Code\:{2}{3}Stack Trace\:{4}Code Base Location\:{5}

Problem:

The Java security manager checkPermission method reported a security exception on the subject
permission with debugging information. The reported information can be different with respect to
the system configuration. This report is enabled by either configuring a Reliability Availability
Service Ability (RAS) trace into debug mode or specifying a Java property.

See |Enabling trace| for information on how to configure RAS trace in debug mode.

Specify the following property in the JVM Settings panel from the administrative console:
java.security.debug. Valid values include:
access
Print all debug information including: required permission, code, stack, and code base
location.
stack Print debug information including: required permission, code, and stack.
failure Print debug information including: required permission and code.

Recommended response:

The reported exception might be critical to the secure system. Turn on security trace to determine
the potential code that might have violated the security policy. After the violating code is
determined, verify if the attempted operation is permitted with respect to Java 2 security, by
examining all applicable Java 2 security policy files and the application code.

If the application is running with Java Mail, this message might be benign. You can update the
was.policy file to grant the following permissions to the application:

permission java.io.FilePermission "${user.nome}${/}.mailcap", "read";
permission java.io.FilePermission "${user.nome}${/}.mime.types", "read";
permission java.io.FilePermission "${java.home}${/}lib${/}mailcap", "read";
permission java.io.FilePermission "${java.home}${/}lib${/}mime.types", "read";

SecurityException - Access denied

Permission:

Symptom:

If Java security is enabled, and permissions to read the jaxm.properties file is not granted, when a
SOAPFactory instance is created through a call to javax.xml.soap.SOAPFactory.newlInstance(), or
a MessageFactory instance is created through a call to MessageFactory.newlnstance(), a
SecurityException exception occurs, and the following exception is written to the system log:

/opt/IBM/WebSphere/AppServer/java/jre/1ib/jaxm.properties : access denied

(java.io.Fi
read)

Code:

lePermission /opt/IBM/WebSphere/AppServer/java/jre/1ib/jaxm.properties

com.ibm.ws.wsfvt.test.binding.addrl.binder.AddressBinder
in {file:/opt/IBM/WebSphere/AppServer/profiles/AppSrv0l/installedApps/
ahp6405Node01Cel1/DataBinding.ear/addressl.war/WEB-INF/1ib
/addressbinderl.jar}

70 Securing applications and their environment

Stack Trace:

java.security.AccessControlException: access denied (java.io.FilePermission
/opt/1BM/WebSphere/AppServer/java/jre/1ib/jaxm.properties read)

Problem:
The Java 2 Security policy reports a potential violation of Java 2 Security permission.
Recommended response:

The SOAPFactory ignores the exception, and continues on to the next means of determining
which implementation to load. Therefore, you can ignore the log entry for this security exception.

Because this product uses the SOAPFactory to support other web services technologies, such as
WS-Addressing (WS-A), WS-Atomic Transaction (WS-AT), and WS-Notification, you can ignore
this SecurityException in any web services application where Java security is enabled.

Messages

Message: CWSCJO313E: Java 2 security manager debug message flags are initialized\: TrDebug: {0},
Access: {1}, Stack: {2}, Failure: {3}

Problem: Configured values of the valid debug message flags for security manager.

Message: CWSCJ0307E: Unexpected exception is caught when trying to determine the code base location.
Exception: {0}

Problem: An unexpected exception is caught when the code base location is determined.

Java 2 security policy files

The Java 2 Platform, Enterprise Edition (J2EE) Version 1.3 and later specifications have a well-defined
programming model of responsibilities between the container providers and the application code. Using
Java 2 security manager to help enforce this programming model is recommended. Certain operations are
not supported in the application code because such operations interfere with the behavior and operation of
the containers. The Java 2 security manager is used in the product to enforce responsibilities of the
container and the application code.

Note: The application server does not support a custom Java security manager implementation.

This product provides support for policy file management. A number of policy files in the product are either
static or dynamic. Dynamic policy is a template of permissions for a particular type of resource. No relative
code base is defined in the dynamic policy template. The code base is dynamically calculated from the
deployment and run-time data.

Static policy files
Table 7. Static policy files.

This table lists the location of the static policy files.

Policy file Location

java.policy

server.policy brofileﬂ/properties/server.po] icy. Default permissions are granted to all the product servers.

client.policy properties/c]ient.po] icy. Default permissions are granted for all of the product client containers and

applets on a node.

The static policy files are not managed by confiﬁuration and file replication services. Changes made in
these files are local and are not replicated to other nodes in the WebSphere Application Server, Network
Deployment cell.

Chapter 5. Setting up, enabling and migrating security 71

Dynamic policy files

Table 8. Dynamic policy files.

This table lists the location of the dynamic policy files.

Policy file

Location

spi.policy

config/cells/cell_name

/nodes/node_name/spi.policy

This template is for the Service Provider Interface (SPI) or the third-party resources that are embedded in the product.
Examples of SPI are the Java Message Service (JMS) in MQ Series and Java database connectivity (JDBC) drivers. The
code base for the embedded resources are dynamically determined from the configuration (resources.xml file) and
run-time data, and permissions that are defined in the spi.policy files are automatically applied to these resources and
JAR files that are specified in the class path of a resource adapter. The default permission of the spi.policy file is
java.security.AllPermissions.

library.policy

[orofile_rooy/ config/cel1s/cell_name/nodes

/node_name/1ibrary.policy

This template is for the library (Java library classes). You can define a shared library to use in multiple product
applications. The default permission of the 1ibrary.policy file is empty.

app.policy

[profile_rooy/ config/cel1s/cell_name

/nodes/node_name/app.policy

The app.policy file defines the default permissions that are granted to all of the enterprise applications running on
node_name in cell_name.

Note: Updates to the app.policy file only apply to the enterprise applications on the node to which the app.policy file
belongs.

was.policy

config/cells/cell_name
/applications/ear_file_name/deployments/
application_name/META-INF/was.policy

This template is for application-specific permissions. The was.policy file is embedded in the enterprise archive (EAR)
file.

ra.xml

rar_file_name/META-INF/was.policy.RAR.

This file can have a permission specification that is defined in the ra.xml file. The ra.xml file is embedded in the RAR
file.

Grant entries that are specified in the app.policy and was.policy files must have a code base defined. If
grant entries are specified without a code base, the policy files are not loaded properly and the application
can fail. If the intent is to grant the permissions to all applications, use file:${application} as a code base in

the grant entry.

Syntax of the policy file

A policy file contains several policy entries. The following example depicts each policy entry format:

grant [codebase <Codebase>] {
permission <Permission>;
permission <Permission>;
permission <Permission>;

<CodeBase>: A URL.
For example, "file:${java.home}/1ib/tools.jar"
When [codebase <Codebase>] is not specified, listed
permissions are applied to everything.
If URL ends with a JAR file name, only the classes in the
JAR file belong to the codebase.
If URL ends with "/", only the class files in the specified
directory belong to the codebase.
If URL ends with "+", all JAR and class files in the specified
directory belong to the codebase.
If URL ends with "-", all JAR and class files in the specified
directory and its subdirectories belong to the codebase.
<Permissions>: Consists from

Permission Type : class name of the permission
Target Name : name specifying the target
Actions : actions allowed on target

For example,
java.io.FilePermission "/tmp/xxx", "read,write"

72 Securing applications and their environment

Refer to developer kit specifications for the details of each permission.
Syntax of dynamic policy

You can define permissions for specific types of resources in dynamic policy files for an enterprise
application. This action is achieved by using product-reserved symbols. The reserved symbol scope
depends on where it is defined. If you define the permissions in the app.policy file, the symbol applies to
all the resources on all of the enterprise applications that run on node_name. If you define the permissions
in the META-INF/was.policy file, the symbol applies only to the specific enterprise application. Valid
symbols for the code base are listed in the following table:

Table 9. Dynamic policy syntax.

This table describes valid symbols for the code base for dynamic policy files.

Symbol Meaning
Permissions apply to all the resources within the application

file:${application}

file:${jars} Permissions apply to all the utility Java archive (JAR) files within the
application

file:${ejoComponent} Permissions apply to the Enterprise JavaBeans (EJB) resources within the
application

file:${webComponent} Permissions apply to the web resources within the application

file:${connectorComponent} Permissions apply to the connector resources within the application

You can specify the module name for a granular setting, except for these entries that are specified by the
code base symbols. For example:

grant codeBase "file:DefaultWebApplication.war" {
permission java.security.SecurityPermission "printIdentity";

grant codeBase "file:IncCMP11.jar" {

permission java.io.FilePermission

"${user.install.root}${/}bin${/}DefaultDB${/}-",

"read,write,delete";

The sixth and seventh lines in the previous code sample are one continuous line. You can use a relative
code base only in the META-INF/was.policy file. Several product-reserved symbols are defined to

associate the permission lists to a specific type of resources.

Table 10. Dynamic policy syntax.

This table describes several product-reserved symbols that are defined to associate the permission lists to a specific
type of resource.

Symbol Meaning
Permissions apply to all the resources within the application

file:${application}
file:${jars} Permissions apply to all the utility JAR files within the application

file:${ejpComponent} Permissions apply to the enterprise beans resources within the application

file:${webComponent} Permissions apply to the web resources within the application

Permissions apply to the connector resources both within the application

file:${connectorComponent}
and in the standalone connector resources.

Five embedded symbols are provided to specify the path and the name for the java.io.FilePermission
ermission. These symbols enable flexible permission specification. The absolute file path is fixed after the

installation of the application.

Table 11. Dynamic policy syntax.

This table describes the embedded symbols that are provided to specify the path and name for the
java.io.FilePermission permission.

Symbol Meaning

${app.installed.path} Path where the application is installed

Chapter 5. Setting up, enabling and migrating security 73

Table 11. Dynamic policy syntax (continued).

This table describes the embedded symbols that are provided to specify the path and name for the
java.io.FilePermission permission.

Symbol Meaning

${was.module.path} Path where the module is installed
${current.cell.name} Current cell name
${current.node.name} Current node name
${current.server.name} Current server name

Attention: Do not use the ${was.module.path} in the §{application} entry.

Carefully determine where to add a new permission. An incorrectly specified permission causes an
AccessControlException exception. Because dynamic policy resolves the code base at runtime,
determining which policy file has a problem is difficult. Add a permission only to the necessary resources.
For example, use ${ejbcomponent}, and etc instead of ${application}, and update the was.policy file
instead of the app.policy file, if possible.

Static policy filtering

Limited static policy filtering support exists. If the app.policy file and the was.policy file have permissions
that are defined in the filter.policy file with thefilterMask keyword, the runtime removes the permissions
from the applications and an audit message is logged. However, if the permissions that are defined in the
app.policy and the was.policy files are compound permissions, for example, java.security.AllPermission,
the permission is not removed, but a warning message is written to the log file. The policy filtering only
supports Developer Kit permissions; the permissions package name begins with java or javax.

Run-time policy filtering support is provided to force stricter filtering. If the app.policy file and the
was.policy file have permissions that are defined in the filter.policy file with the runtimeFilterMask
keyword, the runtime removes the permissions from the applications no matter what permissions are
granted to the application. For example, even if a was.policy file has the java.security.AllPermission
permission granted to one of its modules, specified permissions such as the runtimeFilterMask permission
are removed from the granted permission during runtime.

Policy file editing

Using the policy tool that is provided by the Developer Kit {app_server root|/java/jre/bin/policytool), to
edit the previous policy files is recommended. For WebSphere Application Server, Network Deployment,
extract the policy files from the repository before editing. After the policy file is extracted, use the policy
tool to edit the file. Check the modified policy files into the repository and synchronize them with other
nodes.

Troubleshooting

To debug the dynamic policy, choose one of three ways to generate the detail report of the
AccessControlException exception.
* Trace (Configured by RAS trace). Enables traces with the trace specification:

Attention: The following command is one continuous line

com.ibm.ws.security.policy.*=all=enabled:
com.ibm.ws.security.core.SecurityManager=all=enabled

« Trace (Configured by property). Specifies a Java java.security.debug property. Valid values for the
java.security.debug property are as follows:
— Access. Print all debug information including required permission, code, stack, and code base
location.
— Stack. Print debug information including, required permission, code, and stack.

74 Securing applications and their environment

— Failure. Print debug information including required permission and code.
» ffdc. Enable ffdc, modify the ffdcRun.properties file by changing Level=4 and LAE=true. Look for an
Access Violation keyword in the log file.

Access control exception for Java 2 security

The Java 2 security behavior is specified by its security policy. The security policy is an access-control
matrix that specifies which system resources certain code bases can access and who must sign them. The
Java 2 security policy is declarative and it is enforced by the
java.security.AccessController.checkPermission method.

The following example depicts the algorithm for the java.security.AccessController.checkPermission
method. For the complete algorithm, refer to the Java 2 security check permission algorithm in the
Security: Resources for learning article.

i=m;
while (i > 0) {
if (caller i's domain does not have the permission)
throw AccessControlException;
else if (caller i is marked as privileged)
return;
i=1i-1;

}s

The algorithm requires that all the classes or callers on the call stack have the permissions when a
java.security.AccessController.checkPermission method is performed or the request is denied and a
java.security.AccessControlException exception is created. However, if the caller is marked as privileged
and the class (caller) is granted these permissions, the algorithm returns and does not traverse the entire
call stack. Subsequent classes (callers) do not need the required permission granted.

A java.security.AccessControlException exception is created when certain classes on the call stack are

missing the required permissions during a java.security.AccessController.checkPermission method. Two

possible resolutions to the java.security.AccessControlException exception are as follows:

 If the application is calling a Java 2 security-protected application programming interface (API), grant the
required permission to the application Java 2 security policy. If the application is not calling a Java 2
security-protected API directly, the required permission results from the side-effect of the third-party APIs
accessing Java 2 security-protected resources.

 If the application is granted the required permission, it gains more access than it needs. In this case, it
is likely that the third party code that accesses the Java 2 security-protected resource is not properly
marked as privileged.

Example call stack

This example of a call stack indicates where application code is using a third-party API utility library to
update the password. The following example is presented to illustrate the point. The decision of where to
mark the code as privileged is application-specific and is unique in every situation. This decision requires
great depth of domain knowledge and security expertise to make the correct judgement. A number of well
written publications and books are available on this topic. Referencing these materials for more detailed
information is recommended.

Chapter 5. Setting up, enabling and migrating security 75

AccessController checkPermission()
SecurityManager. checkPermission()
SecurityManager. .checkWrital)

System domain java.in FileQutputStraamid)

PasswordUtil updatePasswordFile()

Utility library domain PasswordUtil getPassword()

Application domain Cllen Code .

You can use the PasswordUtil utility to change the password of a user. The utility types in the old
password and the new password twice to ensure that the correct password is entered. If the old password
matches the one stored in the password file, the new password is stored and the password file updates.
Assume that none of the stack frame is marked as privileged. According to the
java.security.AccessController.checkPermission algorithm, the application fails unless all the classes on the
call stack are granted write permission to the password file. The client application does not have
permission to write to the password file directly and to update the password file at will.

However, if the PasswordUtil.updatePasswordFile method marks the code that accesses the password file
as privileged, then the check permission algorithm does not check for the required permission from
classes that call thePasswordUtil.updatePasswordFile method for the required permission as long as the
PasswordUtil class is granted the permission. The client application can successfully update a password
without granting the permission to write to the password file.

The ability to mark code privileged is very flexible and powerful. If this ability is used incorrectly, the overall
security of the system can be compromised and security holes can be exposed. Use the ability to mark
code privileged carefully.

Resolution to the java.security.AccessControlException exception

As described previously, you have two approaches to resolve a java.security.AccessControlException
exception. Judge these exceptions individually to decide which of the following resolutions is best:

1. Grant the missing permission to the application.

2. Mark some code as privileged, after considering the issues and risks.

Enabling security for the realm

Use this topic to enable IBM WebSphere Application Server security. You must enable administrative
security for all other security settings to function.

About this task

WebSphere Application Server uses cryptography to protect sensitive data and to ensure confidentiality
and integrity of communications between WebSphere Application Server and other components in the
network. Cryptography is also used by Web Services Security when certain security constraints are
configured for the web services application.

Attention: Fix packs that include updates to the Software Development Kit (SDK) might overwrite

unrestricted policy files. Back up unrestricted policy files before you apply a fix pack and reapply these
files after the fix pack is applied.

76 Securing applications and their environment

Note: Fix packs that include updates to the Software Development Kit (SDK) might overwrite unrestricted

policy files. Back up unrestricted policy files before you apply a fix pack and reapply these files after
the fix pack is applied.

Important: Your country of origin might have restrictions on the import, possession, use, or re-export to

another country, of encryption software. Before downloading or using the unrestricted policy
files, you must check the laws of your country, its regulations, and its policies concerning the
import, possession, use, and re-export of encryption software, to determine if it is permitted.

Complete the following steps to download and install the new policy files:

Click Java SE 6

Scroll down the page then click IBM SDK Policy files.

The Unrestricted JCE Policy files for SDK 6 website displays.

Click Sign in and provide your IBM.com ID and password.

Select Unrestricted JCE Policy files for SDK 6 and click Continue.
View the license and click | Agree to continue.

Click Download Now.

Extract the unlimited jurisdiction policy files that are packaged in the compressed file. The compressed
file contains a US_export_policy.jar file and a Tocal _policy.jar file.

IIIEE 'n your WebSphere Application Server installation, go to the $JAVA_HOME/jre/1ib/security
directory and back up your US_export _policy.jar and local policy.jar files.

Replace your US_export_policy.jar and local _policy.jar files with the two files that you
downloaded from the IBM.com website.

Complete the following steps to enable security for the realm:

Procedure

1.

Enable security in the WebSphere Application Server. Make sure that all node agents within the cell
are active beforehand.

For more information, see [‘Enabling security” on page 62.] It is important to click Security > Global
security. Select an available realm definition from the list, and then click Set as current so that
security is enabled upon a server restart.

Note: In previous releases of WebSphere Application Server, the Set as current option is known as
the Enable global security option.

Before restarting the server, log off the administrative console. You can log off by clicking Logout at
the top menu bar.

Stop the server by going to the command line in the WebSphere Application Server
app_server_root/bin directory and issue a stopServer server_name command.

Restart the server in secure mode by issuing the command startServer server_name. Once the server
is secure, you cannot stop the server again without specifying an administrative user name and
password. To stop the server once security is enabled, issue the command, stopServer server_name
-username user_id -password password. Alternatively, you can edit the soap.client.props file in the
profile_root/properties directory, and edit the com.ibm.S0AP.loginUserid or

com. ibm.SOAP.ToginPassword properties to contain these administrative IDs.

If you have any problems restarting the server, review the output logs in the profile root/logs/
server_name directory. Check the |Chapter 13, “Troubleshooting security configurations,” on page 983|
article for any common problems.

LI The app_server_root variable refers to the app_server_root/bin/ default directory.

Chapter 5. Setting up, enabling and migrating security 77

Global security settings

Use this panel to configure administration and the default application security policy. This security
configuration applies to the security policy for all administrative functions and is used as a default security
policy for user applications. Security domains can be defined to override and customize the security
policies for user applications.

To view this administrative console page, click Security > Global security.

T Security has some performance impacts on your applications. The performance impacts can
vary depending upon the application workload characteristics. You must first determine that the needed
level of security is enabled for your applications, and then measure the impact of security on the
performance of your applications.

When security is configured, validate any changes to the user registry or authentication mechanism
panels. Click Apply to validate the user registry settings. An attempt is made to authenticate the server ID
or to validate the admin ID (if internalServerID is used) to the configured user registry. Validating the user
registry settings after enabling administrative security can avoid problems when you restart the server for
the first time.

Security configuration wizard:

Launches a wizard that enables you to configure the basic administrative and application security settings.
This process restricts administrative tasks and applications to authorized users.

Using this wizard, you can configure application security, resource or Java 2 Connector (J2C) security, and
a user registry. You can configure an existing registry and enable administrative, application, and resource
security.

When you apply changes made by using the security configuration wizard, administrative security is turned
on by default.

Security configuration report:

Launches a report that gathers and displays the current security settings of the application server.
Information is gathered about core security settings, administrative users and groups, CORBA naming
roles, and cookie protection. When multiple security domains are configured the report displays the
security configuration associated with each domain.

A current limitation to the report is that it does not display application level security information. The report
also does not display information on Java Message Service (JMS) security, bus security, or Web Services
Security.

Enable administrative security:

Specifies whether to enable administrative security for this application server domain. Administrative
security requires users to authenticate before obtaining administrative control of the application server.

For more information, see the related links for administrative roles and administrative authentication.

When enabling security, set the authentication mechanism configuration and specify a valid user ID and
password (or a valid admin ID when internalServerID feature is used) in the selected registry configuration.

Note: There is a difference between the user ID (which is normally called the admin ID), which identifies

administrators who manage the environment, and a server ID, which is used for server-to-server
communication. You do not need to enter a server ID and password when you are using the

78 Securing applications and their environment

internal server ID feature. However, optionally, you can specify a server ID and password. To
specify the server ID and password, complete the following steps:

1. Click Security > Global security.
2. Under User accounts repository, select the repository and click Configure.
3. WIIEEm Srecify the server ID and password in the Server user identity section.

Information Value
Default: Enabled

Enable application security:

Enables security for the applications in your environment. This type of security provides application
isolation and requirements for authenticating application users

In previous releases of WebSphere Application Server, when a user enabled global security, both
administrative and application security were enabled. In WebSphere Application Server Version 6.1, the
previous notion of global security is split into administrative security and application security, each of which
you can enable separately.

As a result of this split, WebSphere Application Server clients must know whether application security is
disabled at the target server. Administrative security is enabled, by default. Application security is disabled,
by default. To enable application security, you must enable administrative security. Application security is in
effect only when administrative security is enabled.

Information Value
Default: Disabled

Use Java 2 security to restrict application access to local resources:

Specifies whether to enable or disable Java 2 security permission checking. By default, access to local
resources is not restricted. You can choose to disable Java 2 security, even when application security is
enabled.

When the Use Java 2 security to restrict application access to local resources option is enabled and
if an application requires more Java 2 security permissions than are granted in the default policy, the
application might fail to run properly until the required permissions are granted in either the app.policy file
or the was.policy file of the application. AccessControl exceptions are generated by applications that do
not have all the required permissions. See the related links for more information about Java 2 security.

Information Value
Default: Disabled

Warn if applications are granted custom permissions:

Specifies that during application deployment and application start, the security runtime issues a warning if
applications are granted any custom permissions. Custom permissions are permissions that are defined by
the user applications, not Java API permissions. Java API permissions are permissions in the java.* and
Jjavax.* packages.

The application server provides support for policy file management. A number of policy files are available
in this product, some of them are static and some of them are dynamic. Dynamic policy is a template of
permissions for a particular type of resource. No code base is defined and no relative code base is used in
the dynamic policy template. The real code base is dynamically created from the configuration and

Chapter 5. Setting up, enabling and migrating security 79

run-time data. The filter.policy file contains a list of permissions that you do not want an application to
have according to the J2EE 1.4 specification. For more information on permissions, see the related link
about Java 2 security policy files.

Important: You cannot enable this option without enabling the Use Java 2 security to restrict
application access to local resources option.

Information Value
Default: Disabled

Restrict access to resource authentication data:

Enable this option to restrict application access to sensitive Java Connector Architecture (JCA) mapping
authentication data.

Consider enabling this option when both of the following conditions are true:
» Java 2 security is enforced.

* The application code is granted the accessRuntimeClasses WebSphereRuntimePermission permission
in the was.policy file found within the application enterprise archive (EAR) file. For example, the
application code is granted the permission when the following line is found in your was.policy file:

permission com.ibm.websphere.security.WebSphereRuntimePermission "accessRuntimeClasses";

The Restrict access to resource authentication data option adds fine-grained Java 2 security
permission checking to the default principal mapping of the WSPrincipalMappingLoginModule
implementation. You must grant explicit permission to Java 2 Platform, Enterprise Edition (J2EE)
applications that use the WSPrincipalMappingLoginModule implementation directly in the Java
Authentication and Authorization Service (JAAS) login when Use Java 2 security to restrict application
access to local resources and the Restrict access to resource authentication data options are
enabled.

Information Value
Default: Disabled

Current realm definition:

Specifies the current setting for the active user repository.
This field is read-only.

Available realm definitions:

Specifies the available user account repositories.

The selections appear in a drop-down list containing:
* Local operating system

« Standalone LDAP registry

» Stand-alone custom registry

Configure...:
Select to configure the global security settings.

Web and SIP security:

80 Securing applications and their environment

Under Authentication, expand Web and SIP security to view links to:
* General settings

» Single sign-on (SSO)

* SPNEGO web authentication

» Trust association

General settings:

Select to specify the settings for web authentication.

Single sign-on (SSO):

Select to specify the configuration values for single sign-on (SSO).

With SSO support, web users can authenticate once when accessing both WebSphere Application Server
resources, such as HTML, JavaServer Pages (JSP) files, servlets, enterprise beans, and Lotus® Domino®
resources.

SPNEGO web authentication:

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) provides a way for web clients and the
server to negotiate the web authentication protocol that is used to permit communications.

Trust association:

Select to specify the settings for the trust association. Trust association is used to connect reversed proxy
servers to the application servers.

You can use the global security settings or customize the settings for a domain.

Note: The use of trust association interceptors (TAls) for SPNEGO authentication is now deprecated. The
SPNEGO web authentication panels now provide a much easier way to configure SPNEGO.

RMI/IIOP security:

Under Authentication, expand RMI/IIOP security to view links to:
e CSIv2 inbound communications
e CSIlv2 outbound communications

CSlIv2 inbound communications:

Select to specify authentication settings for requests that are received and transport settings for
connections that are accepted by this server using the Object Management Group (OMG) Common
Secure Interoperability (CSl) authentication protocol.

Authentication features include three layers of authentication that you can use simultaneously:

» CSlv2 attribute layer. The attribute layer might contain an identity token, which is an identity from an
upstream server that already is authenticated. The identity layer has the highest priority, followed by the
message layer, and then the transport layer. If a client sends all three, only the identity layer is used.
The only way to use the SSL client certificate as the identity is if it is the only information that is
presented during the request. The client picks up the interoperable object reference (IOR) from the
namespace and reads the values from the tagged component to determine what the server needs for
security.

» CSlv2 transport layer. The transport layer, which is the lowest layer, might contain a Secure Sockets
Layer (SSL) client certificate as the identity.

Chapter 5. Setting up, enabling and migrating security 81

 BITE CSlIv2 message layer. The message layer might contain a user ID and password or an
authenticated token with an expiration.

CSlIv2 outbound communications:

Select to specify authentication settings for requests that are sent and transport settings for connections
that are initiated by the server using the Object Management Group (OMG) Common Secure
Interoperability (CSI) authentication protocol.

Authentication features include three layers of authentication that you can use simultaneously:

» CSlv2 attribute layer. The attribute layer might contain an identity token, which is an identity from an
upstream server that already is authenticated. The identity layer has the highest priority, followed by the
message layer, and then the transport layer. If a client sends all three, only the identity layer is used.
The only way to use the SSL client certificate as the identity is if it is the only information that is
presented during the request. The client picks up the interoperable object reference (IOR) from the
namespace and reads the values from the tagged component to determine what the server needs for
security.

« CSlv2 transport layer. The transport layer, which is the lowest layer, might contain a Secure Sockets
Layer (SSL) client certificate as the identity.

BT CSIv2 message layer. The message layer might contain a user ID and password or an
authenticated token with an expiration.

Java authentication and authorization service:

Under Authentication, expand Java authentication and authorization service to view links to:
* Application logins

» System logins

» J2C authentication data

Application logins:
Select to define login configurations that are used by JAAS.

Do not remove the ClientContainer, DefaultPrincipalMapping, and WSLogin login configurations because
other applications might use them. If these configurations are removed, other applications might fail.

System logins:

Select to define the JAAS login configurations that are used by system resources, including the
authentication mechanism, principal mapping, and credential mapping.

J2C authentication data:

Select to specify the settings for the Java Authentication and Authorization Service (JAAS) Java 2
Connector (J2C) authentication data.

You can use the global security settings or customize the settings for a domain.
LTPA:

Select to encrypt authentication information so that the application server can send the data from one
server to another in a secure manner.

The encryption of authentication information that is exchanged between servers involves the Lightweight
Third-Party Authentication (LTPA) mechanism.

82 securing applications and their environment

Kerberos and LTPA:

Select to encrypt authentication information so that the application server can send the data from one
server to another in a secure manner.

The encryption of authentication information that is exchanged between servers involves the Kerberos
mechanism.

Note: Kerberos must be configured before this option can be selected.
Kerberos configuration:

Select to encrypt authentication information so that the application server can send data from one server
to anther in a secure manner.

The encryption of the authentication information that is exchanged between servers involves the KRB5 of
LTPA mechanism.

Authentication cache settings:

Select to set your authentication cache settings.

Enable Java Authentication SPI (JASPI):

Select to enable the use of Java Authentication SPI (JASPI) authentication.

You can then click Providers to create or edit a JASPI authentication provider and associated
authentication modules in the global security configuration.

Use realm-qualified user names:

Specifies that user names that are returned by methods, such as the getUserPrincipal() method, are
qualified with the security realm in which they reside.

Security domains:
Use the Security Domain link to configure additional security configurations for user applications.

For example, if you want use a different user registry for a set of user applications than the one used at
the global level, you can create a security configuration with that user registry and associate it with that set
of applications. These additional security configurations can be associated with various scopes (cell,
clusters/servers, SIBuses). Once the security configurations have been associated with a scope all of the
user applications in that scope use this security configuration. Read about [‘Multiple security domains” on|
for more detailed information.

For each security attribute, you can use the global security settings or customize settings for the domain.
External authorization providers:

Select to specify whether to use the default authorization configuration or an external authorization
provider.

The external providers must be based on the Java Authorization Contract for Containers (JACC)
specification to handle the Java(TM) 2 Platform, Enterprise Edition (J2EE) authorization. Do not modify
any settings on the authorization provider panels unless you have configured an external security provider
as a JACC authorization provider.

Chapter 5. Setting up, enabling and migrating security 83

Custom properties:

Select to specify name-value pairs of data, where the name is a property key and the value is a string.

Specify extent of protection wizard settings
Use this security wizard page to determine whether to enable application security and restrict access to
local resources. When you use the wizard, admin security is enabled by default.

To view this security wizard page, click Security > Global security > Security configuration wizard.
Enable application security:

Enables security for the applications in your environment. This type of security provides application
isolation and requirements for authenticating application users

In previous releases of WebSphere Application Server, when a user enabled global security, both
administrative and application security were enabled. In WebSphere Application Server Version 6.1, the
previous notion of global security is split into administrative security and application security, each of which
you can enable separately.

As a result of this split, WebSphere Application Server clients must know whether application security is
disabled at the target server. Administrative security is enabled, by default. Application security is disabled,
by default. To enable application security, you must enable administrative security. Application security is in
effect only when administrative security is enabled.

Information Value
Default: Disabled

Use Java 2 security to restrict application access to local resources:

Specifies whether to enable or disable Java 2 security permission checking. By default, access to local
resources is not restricted. You can choose to disable Java 2 security, even when application security is
enabled.

When the Use Java 2 security to restrict application access to local resources option is enabled and
if an application requires more Java 2 security permissions than are granted in the default policy, the
application might fail to run properly until the required permissions are granted in either the app.policy file
or the was.policy file of the application. AccessControl exceptions are generated by applications that do
not have all the required permissions. See the related links for more information about Java 2 security.

Information Value
Default: Disabled

Security custom properties
Use this page to understand the psecurity.allowCustomHTTPMethodsredefined custom properties that are
related to security.

To view this administrative console page, click Security > Global security > Custom properties. Then
click New to add a new custom property and its associated value.

The custom properties in this topic are set in the administrative console through the previously listed path
unless otherwise stated in the description.

You can use the custom properties page to define the following security custom properties:
+ [“com.ibm.audit.report.granularity” on page 86|

84 Securing applications and their environment

[‘com.ibm.CS|.disablePropagationCallerList’ on page 87|
[‘com.ibm.CSl.propagateFirstCallerOnly” on page 87|
[‘com.ibm.CSI.rmilnboundLoginConfig” on page 87
“com.ibm.CSI.rmiOutboundLoginConfig” on page 88|
“com.ibm.CSl.supportedTargetRealms” on page_88|
“com.ibm.security.multiDomain.setNamingReadUnprotected” on page 88|
“com.ibm.security.useFIPS” on page 88|
“com.ibm.websphere.crypto.config.certexp.notify.fromAddress” on page 88|
“com.ibm.websphere.crypto.config.certexp.notify.textEncoding” on page 89|
“com.ibm.websphere.lookupRegistryOnProcess” on page 89|
“com.ibm.websphere.security.allowAnyLogoutExitPageHost” on page 89|
“com.ibm.websphere.security.alwaysRestoreOriginalURL” on page 89|
“com.ibm.websphere.security.auth.setDRSBootstrap” on page 99|
[‘com.ibm.websphere.security.config.inherit.trustedRealms” on page 90
[‘com.ibm.websphere.security.console.noSSLTreePortEndpoints” on page 90|
[‘com.ibm.websphere.security.customLTPACookieName” on page 90|
[‘com.ibm.websphere.security.customSSOCookieName” on page 91|
[‘com.ibm.websphere.security.displayRealm” on page 91|
[‘com.ibm.websphere.security.disableGetTokenFromMBean” on page 92|
[usec_seccustomprop.dita#com.ibm.websphere.security.enableAuditForlsCallerinRole]
[‘com.ibm.websphere.security.goToLoginPageWhenTAlUserNotFound” on page 92|
[‘com.ibm.websphere.security.Invoke TAlbeforeSSO” on page 93
[‘com.ibm.websphere.security.JAASAuthData.addNodeNameSecDomain” on page 93|
[‘com.ibm.websphere.security.JAASAuthData.removeNodeNameGilobal” on page 93|
[‘com.ibm.websphere.security.krb.canonical_host” on page 93|
[‘com.ibm.websphere.security.ldap.logicRealm” on page 93]
[‘com.ibm.websphere.security.ldapSSLConnectionTimeout” on page 94|
[‘com.ibm.websphere.security.logoutExitPageDomainList’ on page 94|
[‘com.ibm.websphere.security.performTAIForUnprotectedURI” on page 94
[‘com.ibm.websphere.security.recoverContextWithNewKeys” on page 95|
[‘com.ibm.websphere.security.rsaCertificateAliasCache” on page 95
[‘com.ibm.websphere.security.spnego.useBuiltinMappingToSAF” on page 95|
[‘com.ibm.websphere.security.strictCredentialExpirationCheck” on page 95|
“com.ibm.websphere.security.tokenFromMBeanSoapTimeout” on page 96|
“com.ibm.websphere.security.useLoggedSecurityName” on page 96
“com.ibm.websphere.security.util.csiv2SessionCacheldle Time” on pam
“com.ibm.websphere.security.util.csiv2SessionCacheLimitEnabled” on page 96|
“com.ibm.websphere.security.util.csiv2SessionCacheMaxSize” on page 97
“com.ibm.websphere.security.web.removeCacheOnFormLogout” on page 9_7|
“com.ibm.websphere.security.webAlwaysLogin” on page 9§
“com.ibm.websphere.security.useLoggedSecurityName” on page 96|
“com.ibm.ws.security.addHttpOnlyAttributeToCookies” on page 98|
“com.ibm.ws.security.allowNonAdminToSecurityXML” on page 99|
“com.ibm.ws.security.config.SupportORBConfig” on page 99
[‘com.ibm.ws.security.create TokenSubjectForAsynchLogin” on page 99

Chapter 5. Setting up, enabling and migrating security

85

usec_seccustomprop.dita#com.ibm.websphere.security.enableAuditForIsCallerInRole

[‘com.ibm.ws.security.defaultLoginConfig” on page 100]

* [‘com.ibm.ws.security.failSSODuringCushion” on page 100|

* [‘com.ibm.ws.security.Itpa.forceSoftwareJCEProviderForLTPA” on page 100|

* [‘com.ibm.ws.security.ssolnteropModeEnabled” on page 101

* |“com.ibm.ws.security.unprotectedUserRegistryMethods” on page 101|

» |“com.ibm.ws.security.webChallengelfCustomSubjectNotFound” on page 101|

+ [“‘com.ibm.ws.security.weblnboundLoginConfig” on page 101|

. |“com.ibm.ws.security.weblnboundPropagationEnabled” on page 101|

. r‘com.ibm.wsspi.security.cred.refreshGroups” on page 102|

+ [‘com.ibm.wsspi.security.cred.verifyUser” on page 102|

. |“com.ibm.wsspi.security.ltpa.tokenFactory” on page 102|

* |“com.ibm.wsspi.security.token.authenticationTokenFactory” on page 102|

* |“com.ibm.wsspi.security.token.authorizationTokenFactory” on page 103|

« [“com.ibm.wsspi.security.token.propagationTokenFactory” on page 103

+ [“com.ibm.wsspi.security.token.singleSignonTokenFactory” on page 103]

« [“com.ibm.wsspi.wssecurity.kerberos.failAuthForExpiredKerberosToken” on page 103

+ [“security.allowCustomHTTPMethods” on page 103]

+ [“security.enablePluggableAuthentication” on page 104

[“security.useDefaultPolicyWhenJ2SDisabled” on page 104

com.ibm.audit.report.granularity:

Use this property to specify how much auditing data is recorded for each event type. If you only need to
record basic information about an event, such as who did what action to what resource, and when, setting
this property to high, might improve your application server performance.

You can specify values of high, medium, or Tow for this property. The default value is 1ow.

Table 12. Type of data that is recorded for each event type based on the setting for
com.ibm.audit.report.granularity. The following table indicates the type of data that is recorded for each event type
based on the setting for this property.

Event type

high setting

medium setting

Tow setting

SessionContext

sessionld

sessionld, remoteHost

sessionld, remoteHost, remoteAddr,
remotePort

PropagationContext (is only
reported if SAP is enabled)

firstCaller (as part of the who)

firstCaller, and if verbose mode is
enabled, the callerList

firstCaller, and if verbose mode is
enabled, the callerList

RegistryContext nothing is recorded registry type registry type

ProcessContext nothing is recorded realm realm, and domain if verbose is
enabled

EventContext creationTime creationTime, globallnstanceld creationTime, globallnstanceld,

eventTrailld, and lastTrailld if
verbose mode is enabled

DelegationContext

identityName

delegationType, and identityName

delegationType, roleName, and
identityName

AuthnContext nothing is recorded authn type authn type
ProviderContext nothing is recorded provider provider, and providerStatus
AuthnMappingContext mappedUserName mappedUserName, and mappedUserName,
mappedSecurityRealm mappedSecurityRealm, and
mappedSecurityDomain
AuthnTermContext terminateReason terminateReason terminateReason

86 Securing applications and their environment

Table 12. Type of data that is recorded for each event type based on the setting for
com.ibm.audit.report.granularity (continued). The following table indicates the type of data that is recorded for each

event type based on the setting for this property.

Event type high setting medium setting Tow setting
AccessContext progName, action, appUserName, progName, action, appUserName, progName, action, appUserName,
and resourceName resourceName, registryUserName, resourceName, registryUserName,
and accessDecision accessDecision, resourceType,

permissionsChecked,
permissionsGranted, rolesChecked,
and rolesGranted

PolicyContext nothing is recorded policyName policyName, and policyType

KeyContext keyLabel keyLabel, and keyLocation keyLabel, keyLocation, and
certificateLifetime

MgmtContext nothing is recorded mgmtType, and mgmtCommand mgmtType, mgmtCommand, and

targetinfoAttributes

com.ibm.CSl.disablePropagationCallerList:

This property disables the caller list and does not allow the caller list to change. This property prevents the
creation of multiple sessions.

This property completely disables adding a caller or host list in the propagation token. Setting this property
can be a benefit when the caller or host list in the propagation token is not needed in the environment.

gotcha: If the com.ibm.CSl.propagateFirstCallerOnly custom property is set to true, that setting takes
precedence over the setting for this property.

Information Value
Default false

com.ibm.CSl.propagateFirstCallerOnly:

This property limits the caller list to the first caller only, which means the caller list cannot change. Setting
this property to true eliminates the potential for the creation of multiple session entries.

This property logs the first caller in the propagation token that stays on the thread when security attribute
propagation is enabled. Without setting this property, all caller switches get logged, which affects
performance. Typically, only the first caller is of interest.

gotcha: If the com.ibm.CSl.disablePropagationCallerList custom property is set to true, that setting
takes precedence over the setting for this property.

Information Value
Default true

The default value of the com.ibm.CSl.propagateFirstCallerOnly security custom property is set to true.
When this custom property is set to true, the first caller in the propagation token that stays on the thread
is logged when security attribute propagation is enabled. When this property is set to false, all of the
caller switches are logged, which can affect performance.

com.ibm.CSl.rmilnboundLoginConfig:

This property specifies the Java Authentication and Authorization Service (JAAS) login configuration that is
used for Remote Method Invocation (RMI) requests that are received inbound.

Chapter 5. Setting up, enabling and migrating security ~ 87

By knowing the login configuration, you can plug in a custom login module that can handle specific cases
for RMI logins.

Information Value
Default system.RMI_INBOUND

com.ibm.CSI.rmiOutboundLoginConfig:
This property specifies the JAAS login configuration that is used for RMI requests that are sent outbound.

Primarily, this property prepares the propagated attributes in the Subject to be sent to the target server.
However, you can plug in a custom login module to perform outbound mapping.

Information Value
Default system.RMI_OUTBOUND

com.ibm.CSl.supportedTargetRealms:

This property enables credentials that are authenticated in the current realm to be sent to any realm that is
specified in the Trusted target realms field. The Trusted target realms field is available on the CSlv2
outbound authentication panel. This property enables those realms to perform inbound mapping of the
data from the current realm.

You should not send authentication information to an unknown realm. Thus, this property provides a way
to specify that the alternate realms are trusted. To access the CSIv2 outbound authentication panel,
complete the following steps:

1. Click Security > Global security.
2. Under RMI/IIOP security, click CSIv2 outbound authentication.

com.ibm.security.multiDomain.setNamingReadUnprotected:

This property can be set to true if you want the CosNamingRead role to protect all naming read
operations. Setting this property to true is the equivalent of assigning the CosNamingRead role the
Everyone special subject. When this property is set, any assignments made to the CosNamingRead role
are ignored.

Information Value
Default none

com.ibm.security.useFIPS:

Specifies that Federal Information Processing Standard (FIPS) algorithms are used. The application server
uses the IBMJCEFIPS cryptographic provider instead of the IBMJCE cryptographic provider.

Information Value
Default false

com.ibm.websphere.crypto.config.certexp.notify.fromAddress:
This security property is used to customize the “from address” of certificate expiration notification email.

The value you assign to this property should be an internet address, such as “Notification@abc-
company.com”. If this property is not set, the application server uses the email fromAddress:
WebSphereNotification@ibm.com.

88 Securing applications and their environment

Information Value
Default None

com.ibm.websphere.crypto.config.certexp.notify.textEncoding:

This security property is used to customize the text encoding character set for certificate expiration
notification email.

WebSphere Application Server sends notification email for certificate expiration in either US-English or the
machine default character set (if non-English locale is specified). If you want a different text encoding
character set for the certificate expiration notification email, you can use this property to customize the text
encoding character set.

Information Value
Default None

com.ibm.websphere.lookupRegistryOnProcess:

This property can be set when realm registry lookups are performed via an MBean on a remote server,
and the realm is local OS security.

By default, the user registry tasks listRegistryUsers and listRegistryGroups perform lookups from the
current process. In the case of Network Deployment (ND), that is the deployment manager.

When dealing with a local OS user registry, lookup should occur on the actual server where the registry
resides. In an ND environment, the server could be a remote machine. To perform a lookup on the server
process where the registry resides, set the com.ibm.websphere.lookupRegistryOnProcess custom property
to true.

If com.ibm.websphere.lookupRegistryOnProcess is not set, or set to false, then the lookup is performed
on the current process. The custom property can be set using the setAdminActiveSecuritySettings task for
global security or the setAppActiveSecuritySettings task for a security domain.

com.ibm.websphere.security.allowAnyLogoutExitPageHost:

When you are using application form login and logout you can provide a URL for a custom logout page.
By default, the URL must point to the host to which the request is made or to its domain. If this is not
done, then a generic logout page is displayed rather than a the custom logout page. If you want to be able
to point to any host, then you need to set this property in the security.xml file to a value of true. Setting
this property to true might open your systems to URL redirect attacks.

Information Value
Default false

com.ibm.websphere.security.alwaysRestoreOriginalURL:

Use this property to indicate whether a cookie with the value WASReqURL is honored when the custom
form login processor is used.

When this property is set to true, the value of WASReqURL takes precedence over the current URL, and
the WASReqURL cookie is removed from subsequent requests.

When this property is set to false, the value of the current URL takes precedence, and the WASReqURL
cookie is not removed from subsequent requests.

Chapter 5. Setting up, enabling and migrating security 89

Information Value
Default false

com.ibm.websphere.security.config.inherit.trustedRealms:

This property is used to inherit the global trusted realm settings from the global security configuration in
the domain.

Security configuration trusted inbound and outbound realms are not inherited by default. However, there
are some cases where the configuration might want to use (inherit) the settings from the global security
configuration in the domain.

The value of this property can be either true or false.
com.ibm.websphere.security.console.noSSLTreePortEndpoints:
This property is used to improve the response time for large topology configurations.

When this property is set to true the status of the of the SSL port endpoints does not display on the
Manage endpoint security configurations page in the administrative console. Displaying the status of the
SSL port endpoints sometimes makes the administrative console seem like it is no longer functioning
because of a longer than expected response time.

Information Value
Default false

com.ibm.websphere.security.customLTPACookieName:

This property is used to customize the name of the cookies used for Lightweight Third Party Authentication
(LTPA) tokens.

WebSphere Application Server Version 8 and later enables you to customize the name of the cookies used
for LTPA and LTPA2 tokens. Custom cookie names allow you to logically separate authentication between
Single Sign-On (SSO) domains and to enable customized authentication to a particular environment.

To take advantage of this functionality, a custom property must be set. For LTPA tokens, the custom
property com.ibm.websphere.security.customLTPACookieName can be set to any valid string (special
characters and spaces are not permitted) for the LTPA token cookie, and
com.ibm.websphere.security.customSSOCookieName for the LTPA2 (SSO) token cookie. Each property is
case-sensitive.

The value for this property is a valid string.

Note: Before you set this custom property, consider the following:

» This property, as with most custom properties, can be set at the security domain level. In this
manner, a separate login can be forced between an administrative console login and an
application login.

» The original default LTPAToken or LTPAToken2 cookie hames are accepted and trusted by
WebSphere Application Server Version 8 and later. This enables compatibility with products such
as Lotus Domino and WebSphere Portal which both utilize the default cookie name.

« Setting a custom cookie name can cause an authentication failure. For example, a connection to
a server that has a custom cookie property set sends this custom cookie to the browser. A
subsequent connection to a server that uses either the default cookie name or a different cookie
name is not able to authenticate the request via a validation of the inbound cookie.

90 Securing applications and their environment

* This property does not function properly in a mixed-cell environment. For example, a deployment
manager in WebSphere Application Server Version 8 and later might be able to create custom
cookies. However, a WebSphere Application Server Version 7.0 node or server existing in this
same cell does not understand what to do with this cookie and subsequently rejects it.

» If you utilize a product interacting with WebSphere Application Server that generates LTPA
tokens, such as Lotus Domino or WebSphere Portal, be aware that these products might not be
able to handle custom LTPA cookie names. Please consult the documentation for your product
regarding its handling of custom LTPA cookie names.

Note: To activate this property, a restart of WebSphere Application Server is necessary.
com.ibm.websphere.security.customSSOCookieName:

This property is used to customize the name of the cookies used for Lightweight Third Party Authentication
Version 2 (LTPA2) tokens.

WebSphere Application Server Version 8 and later enables you to customize the name of the cookies used
for LTPA and LTPA2 tokens. Custom cookie names allow you to logically separate authentication between
Single Sign-On (SSO) domains and to enable customized authentication to a particular environment.

To take advantage of this functionality, a custom property must be set. For LTPA tokens, the custom
property com.ibm.websphere.security.customLTPACookieName can be set to any valid string (special
characters and spaces are not permitted) for the LTPA token cookie, and
com.ibm.websphere.security.customSSOCookieName for the LTPA2 (SSO) token cookie. Each property is
case-sensitive.

The value for this property is a valid string.

Note: Before you set this custom property, consider the following:

* This property, as with most custom properties, can be set at the security domain level. In this
manner, a separate login can be forced between an administrative console login and an
application login.

* The original default LTPAToken or LTPAToken2 cookie names are accepted and trusted by
WebSphere Application Server Version 8 and later. This enables compatibility with products such
as Lotus Domino and WebSphere Portal which both utilize the default cookie name.

» Setting a custom cookie name can cause an authentication failure. For example, a connection to
a server that has a custom cookie property set sends this custom cookie to the browser. A
subsequent connection to a server that uses either the default cookie name or a different cookie
name is not able to authenticate the request via a validation of the inbound cookie.

* This property does not function properly in a mixed-cell environment. For example, a deployment
manager in WebSphere Application Server Version 8 and later might be able to create custom
cookies. However, a WebSphere Application Server Version 7.0 node or server existing in this
same cell does not understand what to do with this cookie and subsequently rejects it.

 If you utilize a product interacting with WebSphere Application Server that generates LTPA
tokens, such as Lotus Domino or WebSphere Portal, be aware that these products might not be
able to handle custom LTPA cookie names. Please consult the documentation for your product
regarding its handling of custom LTPA cookie names.
Note: To activate this property, a restart of WebSphere Application Server is necessary.
com.ibm.websphere.security.displayRealm:

This property specifies whether the HTTP basic authentication login window displays the realm name that
is not defined in the application web.xm1 file.

Chapter 5. Setting up, enabling and migrating security 91

Note: If the realm name is defined in the application web.xm1 file, this property is ignored.

If the realm name is not defined in the web.xm1 file, one of the following occurs:
« If the property is set to false, the WebSphere realm name display is Default Realm.

« If this property is set to true, the WebSphere realm name display is the user registry realm name
for the LTPA authentication mechanism or the Kerberos realm name for the Kerberos
authentication mechanism.

Important: If this property is set to true, and the user registry's realm name contains sensitive
information, it is displayed to the user. For example, if standalone LDAP configuration is used,
the LDAP server hosthame and port are displayed. For LocalOS, the hostname is displayed.

Information Value
Default false
Type string

com.ibm.websphere.security.disableGetTokenFromMBean:

Use this property to disable the outbound SOAP call to retrieve the subject from the originating server
when Single Sign-On is enabled.

Typically, when Single Sign-On is enabled, and an inbound request needs to be authenticated, the
receiving server attempts to retrieve the authentication from the originating server. The connection
between the sending and receiving servers never times out during this callback process.

When this property is set to true, the receiving server does not attempt to authenticate the inbound
request.

Information Value
Default false

com.ibm.websphere.security.enableAuditForisCallerInRole:
Use this property to enable audit for the isCallerinRole method call.

If you set this property to false, it disables auditing for the invocation of isCallerinRole. In z/OS, SMF
records are not issued for the invocation.

Information Value
Default true

com.ibm.websphere.security.goToLoginPageWhenTAlUserNotFound:

Use this property when the user provided by a TAl is not found in the user registry so that a login page is
displayed instead of an error page.

When the user provided by a TAl is not found in the user registry, WebSphere Application Server displays
an error page. To adjust this behavior, set this property to true. Then the login page is displayed. The
default setting for this property is false and the normal behavior for WebSphere Application Server is to
display an error page.

When this property is set to true, the login page is displayed.

Default false

92 Securing applications and their environment

com.ibm.websphere.security.InvokeTAlbeforeSSO:

Default invocation order of Trust Association Interceptors (TAls) in relation to Single Sign On (SSO) user
authentication can be changed using this property. The default order is to invoke Trust Association
Interceptors after SSO. This property is used to change the default order of TAI invocation with SSO. The
property value is a comma (,) separated list of TAl class names to be invoked before SSO.

Information Value
Default com.ibm.ws.security.spnego.TrustAssociationInterceptorimpl
Type string

com.ibm.websphere.security.JAASAuthData.addNodeNameSecDomain:

By default, when JAAS authentication data entries are created at the domain security level, the alias name
for the entry will be in the format aliasName. You can enable the addition of the node name to the alias
name to create the alias name, in the format nodeName/aliasName, for the entry, by setting the following
property at the domain security level.

You can set com.ibm.websphere.security. JAASAuthData.addNodeNameSecDomain=true at the global
security level, to enable the addition of the node name to the alias name of JAAS authentication data
entries for all security domains.

Information Value
Default false

com.ibm.websphere.security.JAASAuthData.removeNodeNameGlobal:

By default, when JAAS authentication data entries are created at the global security level, the alias name
for the entry is in the format nodeName/aliasName. You can disable the addition of the node name to the
alias name for the entry, by setting a value of true for this property at the global security level.

Information Value
Default false

com.ibm.websphere.security.krb.canonical_host:

This custom property specifies whether the application server uses the canonical form of the URL/HTTP
host name in authenticating a client. This property can be used for both SPNEGO TAI and SPNEGO Web.

If you set this custom property to false, a Kerberos ticket can contain a host name that differs from the
HTTP host name header, and the application server might issue the following message:

CWSPNOO11E: An invalid SPNEGO token has been encountered while authenticating a HttpServletRequest

If you set this custom property to true, you can avoid this error message and allow the application server
to authenticate using the canonical form of the URL/HTTP host name.

Information Value
Default true

com.ibm.websphere.security.ldap.logicRealm:
This custom property enables you to change the name of the realm that is placed in the token.

Chapter 5. Setting up, enabling and migrating security 93

This custom property enables you to configure each cell to have its own LDAP host for interoperability and
backward compatibility. Also, it provides flexibility for adding or removing the LDAP host dynamically. If you
are migrating a previous installation, this modified realm name does not take effect until administrative
security is re-enabled. To be compatible with a previous release that does not support the logic realm, the
name must be the same name that is used by the previous installation. You must use the LDAP host
name, including a trailing colon and port humber.

Information Value
Type String

This property must be set as the custom property of a stand-alone LDAP registry. To set this custom
property, in the administrative console:

1. Click Security > Global security.

2. Under User account repository, expand the Available realm definitions list, and select Standalone
LDAP registry, and then click Configure.

3. Under Custom properties, click New , and then enter com.ibm.websphere.security.ldap.logicRealm in
the Name field, and the new name of the realm that is placed in the token in the Value field.

4. Select this custom property and then click Apply or OK.
com.ibm.websphere.security.ldapSSLConnectionTimeout:

Use this property, when SSL is enabled on the LDAP server, to specify, in milliseconds, the maximum
amount of time the Java Virtual Machine (JVM) waits for a socket connection before issuing a timeout.

If one or more standalone LDAP servers are offline when a server process starts, and LDAP-SSL is
enabled, there might be a delay of up to three minutes in the startup procedure, even if you specify a
value for the com.sun.jndi.ldap.connect.timeout custom property. When LDAP-SSL is enabled, any value
specified for the com.sun.jndi.ldap.connect.timeout property is ignored.

When a value is specified for this property, the JVM tries to use this connection timeout value when
attempting to complete a socket connection, instead of trying to establish a directory context. When no
value is specified for this property, the JVM tries to establish a directory context.

There is no default value for this property.
com.ibm.websphere.security.logoutExitPageDomainList:

When you are using application form login and logout, you can provide a URL for a custom logout page.
By default, the URL must point to the host to which the request is made or to its domain. If this is not
done, then a generic logout page is displayed rather than a the custom logout page. If you need to point to
a different host, then you can populate this property in the security.xml file with a pipe (I) separated list of
URLSs that are allowed for the logout page.

Information Value
Default none

com.ibm.websphere.security.performTAIForUnprotectedURI:

This property is used to specify TAl invocation behavior when Use available authentication data when
an unprotected URI is accessed is selected in the administrative console.

Information Value
Default false

94 Ssecuring applications and their environment

Note: In previous versions of WebSphere Application Server, the default value of this custom property
was true. For WebSphere Application Server Version 8.0.0.1, the default value is now false.

com.ibm.websphere.security.recoverContextWithNewKeys:

This property affects behavior when deserializing a security context that was previously saved as part of
asynchronous security processing for Web Services or Asynch Beans.

When this property is set to true, the security context can be de-serialized even when the LTPA keys have
changed since the context was serialized out. This property should be set to true if the security context
deserialization fails with a WSSecurityException containing this message: Validation of LTPA token
failed due to invalid keys or token type.

Information Value
Default false

com.ibm.websphere.security.rsaCertificateAliasCache:
This property is used to control the size of the alias cache.

The default value is 5000 and can be increased for larger deployments. You do not need to add this
property unless your Job Manager topology exceeds 5000 registered nodes.

The value must be entered into the range of 1 - N, where N is a valid positive integer that is greater than
or equal to the number of nodes registered with the Job Manager.

Information Value
Default 5000

com.ibm.websphere.security.spnego.useBuiltinMappingToSAF:

This property is used to ensure that a mapping from a Kerberos principal to a RACF ID is performed for
SPNEGO web authentication.

If you do not add this property to your security settings, and set it to true, a mapping from a Kerberos
principal to a RACF ID is not performed for SPNEGO web authentication.

gotcha: If Kerberos authentication is used in combination with SPNEGO Web authentication, configuring
a built-in mapping for either Kerberos or SPNEGO results in a mapping being done for both.

Information Value
Default false

com.ibm.websphere.security.strictCredentialExpirationCheck:

Specifies whether credential expiration check occurs for a local Enterprise JavaBeans (EJB) call. Typically,
when an EJB invokes another EJB that is located in a local machine, a direct method invocation occurs
even if the credentials of the original invoker expire before the local EJB call occurs.

If this property is set to true, a credential expiration check occurs on a local EJB call before the EJB is
invoked on the local machine. If the credentials have expired, the EJB call is rejected.

If this property is set to false, a credential expiration check does not occur for a local EJB call.

Chapter 5. Setting up, enabling and migrating security 95

Information Value
Default false

com.ibm.websphere.security.tokenFromMBeanSoapTimeout:

Use this property to specify the amount of time the receiving server waits for an outbound SOAP call to
retrieve the proper authentication from the originating server when Single Sign-On is enabled.

There is no default value for this property. If no value is specified, the global SOAP timeout value is used
as the timeout value for the SOAP connection.

com.ibm.websphere.security.useLoggedSecurityName:
This is a custom property of user registries. This property alters the behavior of creating WSCredential.

A setting of false indicates that the security name returned by a user registry is always used to construct
WSCredential.

A setting of true indicates that either a security name that is supplied by login module is used or a display
name that was supplied by a user registry is used. This setting is compatible with WebSphere Application
Server Version 6.1 and earlier.

Information Value
Default false

com.ibm.websphere.security.util.csiv2SessionCacheldleTime:

This property specifies the time in milliseconds that a CSIv2 session can remain idle before being deleted.
The session is deleted if the com.ibm.websphere.security.util.csiv2SessionCacheLimitEnabled custom
property is set to true, and the maximum size of the CSIv2 session cache is exceeded.

This custom property only applies if you enable stateful sessions, set the
com.ibm.websphere.security.util.csiv2SessionCacheLimitEnabled custom property to true, and set a value
for the com.ibm.websphere.security.util.csiv2SessionCacheMaxSize custom property. Consider decreasing
the value for this custom property if your environment uses Kerberos authentication and has a short clock
skew for the configured key distribution center (KDC). In this scenario, a short clock skew is defined as
less than 20 minutes.

Important: Do not set a value for this function through the custom property panel because the value is
not validated against the expected range of values. Instead, set the value on the CSIv2
outbound communications panel, which is available in the administrative console by
completing the following steps:

1. Expand the Security section and click Global security.
2. Expand the RMI/IIOP security section and click CSIlv2 outbound communications

You can set the value in the Idle session timeout field. However, when you specify this value
on the CSIv2 outbound communications panel, the administrative console value is expected in
seconds and not milliseconds.

The range of values for this custom property is 60,000 to 86,400,000 milliseconds. By default, the value is
not set.

com.ibm.websphere.security.util.csiv2SessionCacheLimitEnabled:

This custom property specifies whether to limit the size of the CSIv2 session cache.

96 Securing applications and their environment

When you set this custom property value to true, you must set values for the
com.ibm.websphere.security.util.csiv2SessionCacheldleTime and
com.ibm.websphere.security.util.csiv2SessionCacheMaxSize custom properties. When you set this custom
property to false, the CSIv2 session cache is not limited. The default property value is false.

Consider setting this custom property to true if your environment uses Kerberos authentication and has a
small clock skew for the configured key distribution center (KDC). In this scenario, a small clock skew is
defined as less than 20 minutes. A small clock skew can result in a larger number of rejected CSlv2
sessions. However, with a smaller value for the
com.ibm.websphere.security.util.csiv2SessionCacheldleTime custom property, the application server can
clean out these rejected sessions more frequently and potentially reduce the resource shortages.

Important: This custom property only applies if you enable the stateful sessions.

Important: Although you can enable the CSIv2 session cache limit option as a custom property, it is
advisable that you enable the option on the CSIv2 outbound communications panel, which is
available in the administrative console by completing the following steps:

1. Expand the Security section and click Global security.
2. Expand the RMI/IIOP security section and click CSIlv2 outbound communications

You can enable the Enable CSIv2 session cache limit option. The default value is false.
com.ibm.websphere.security.util.csiv2SessionCacheMaxSize:

This property specifies the maximum size of the session cache after which expired sessions are deleted
from the cache.

Expired sessions are defined as sessions that are idle longer than the time that is specified by the
com.ibm.websphere.security.util.csiv2SessionCacheldleTime custom property. When you use the
com.ibm.websphere.security.util.csiv2SessionCacheMaxSize custom property, consider setting its value
between 100 and 1000 entries.

Consider specifying a value for this custom property if your environment uses Kerberos authentication and
has a small clock skew for the configured key distribution center (KDC). In this scenario, a small clock
skew is defined as less than 20 minutes. Consider increasing the value of this custom property if the small
cache size causes the garbage collection to run so frequently that it impacts the performance of the
application server.

This custom property only applies if you enable stateful sessions, set the
com.ibm.websphere.security.util.csiv2SessionCacheLimitEnabled custom property to true, and set a value
for the com.ibm.websphere.security.util.csiv2SessionCacheldleTime custom property.

Important: Do not set a value for this function through the custom property panel because the value is
not validated against the expected range of values. Instead, set the value on the CSIv2
outbound communications panel, which is available in the administrative console by
completing the following steps:

1. Expand the Security section and click Global security.
2. Expand the RMI/IIOP security section and click CSIv2 outbound communications

You can set the value in the Maximum cache size field.
The range of values for this custom property is 100 to 1000 entries. By default, the value is not set.

com.ibm.websphere.security.web.removeCacheOnFormLogout:

Chapter 5. Setting up, enabling and migrating security 97

This custom property enables you to specify whether a cached object is removed from the authentication
cache and the dynamic cache when a form logout occurs. A form logout is a mechanism that enables a
user to log out of an application without having to close all Web-browser sessions.

When this property is set to false, corresponding cached entries are not removed from the authentication
cache and the dynamic cache when a form logout occurs. As a result, if the same user logs back in after a
form logout, the cached object is reused.

gotcha: Because the original cached object was created during a previous login session, the expiration
time for the object might be shorter than the configured timeout value.

When this property is set to true, the cached entries are removed from the authentication cache and the
dynamic cache when a form logout occurs.

The default value is true.
com.ibm.websphere.security.webAlwaysLogin:

This property specifies whether the login() method will throw an exception if an identity had already been
authenticated. You can overwrite this behavior by setting this property to true.

Information Value
Default false
Type string

Note: The login() method always uses the user ID and password to authenticate to the WebSphere
application server irrespective of the presence of the SSO information in the HitpServietRequest.

com.ibm.ws.security.addHttpOnlyAttributeToCookies:
This custom property enables you to set the HTTPOnly attribute for single sign-on (SSO) cookies.

You can use the com.ibm.ws.security.addHttpOnlyAttributeToCookies custom property to protect cookies
that contain sensitive values. When you set this custom property value to true, the application server sets
the HTTPOnly attribute for SSO cookies whose values are set by the server. The HTTPOnly attribute
enables the protection of sensitive values in cookies.

Also, a true value enables the application server to properly recognize, accept, and process inbound
cookies with HTTPOnly attributes and inhibit any cross-site scripting from accessing sensitive cookie
information.

A common security problem, which impacts web servers, is cross-site scripting. Cross-site scripting is a
server-side vulnerability that is often created when user input is rendered as HTML. Cross-site scripting
attacks can expose sensitive information about the users of the website. Most modern web browsers
honor the HTTPOnly attribute to prevent this attack. A cookie with this attribute is called an HTTPOnly
cookie. Information that exists in an HTTPOnly cookie is less likely to be disclosed to a hacker or a
malicious website. For more information about the HTTPOnly attribute, see the Open Web Application
Security Project (OWASP) website.

Important: When you use this custom property, HTTPOnly attribute is not added to every cookie that
passes through the application server. Also, the attribute is not added to other non-secure
cookies that are created by the application server. A list of non-HTTPOnly cookies includes:

+ JSESSIONID cookies
» SSO cookies that are created by authenticators or providers from another software vendor
+ Client or browser cookies that do not already contain the HTTPOnly attribute

98 Securing applications and their environment

You can set or remove this custom property from the Single sign-on panel in the administrative console by
doing the following:

1. Click Security > Global security.
2. Under Authentication, click Web and SIP security > Single sign-on (SSO).

Information Value
Default true
Type Boolean

com.ibm.ws.security.allowNonAdminToSecurityXML:

This property specifies whether the non-admin security roles are allowed to modify the security.xml file.
Setting this property to true gives non-admin security roles the ability to modify the security.xml file. In
Version 6.1 and later, by default, non-admin security roles have the ability to modify the security.xml file.

Information Value
Default false
Type Boolean

com.ibm.websphere.security.auth.setDRSBootstrap:
Specifies whether the data replication service (DRS) enables the DRSbootstrap function.

In high volume environments, dynamic cache data replication might increase the amount of time that it
takes a server to start. If you experience slow server startups because of data replication, add this
property to your server security settings and set it to false. When is property is set to false, the data
replication service disables the DRSbootstrap function.

True is the default setting for this property.
com.ibm.ws.security.config.SupportORBConfig:

Specifies whether to check or not check the object request broker (ORB) for properties. This property
needs to be set as a system property. You set this property to true or yes so that the ORB is checked for
properties. For any other setting, the ORB is completely ignored.

The property is to be used when a pluggable application client connects to the WebSphere Application
Server. Specifically, this property is used whenever a hashmap containing security properties is passed in
a hashmap on a new InitialContext(env) call.

com.ibm.ws.security.createTokenSubjectForAsynchLogin:

In this release, the actual LTPA token data is not available from a WSCredential.getCredentialToken() call
when called from an asynchronous bean. For an existing configuration, you can add the
com.ibm.ws.security.createTokenSubjectForAsynchLogin custom property and a true value to allow the
LTPAToken to be forwarded to asynchronous beans. This property allows portlets to successfully perform
LTPA token forwarding. This custom property is case sensitive. You must restart the application server
after you add this custom property.

gotcha: This custom property applies only to system conditions where Server A makes EJB calls from
asynchronous beans to Server B. This property does not apply for JAAS login situations.

Information Value
Default not applicable

Chapter 5. Setting up, enabling and migrating security 99

com.ibm.ws.security.defaultLoginConfig:

This property is the JAAS login configuration that is used for logins that do not fall under the
WEB_INBOUND, RMI_OUTBOUND, or RMI_INBOUND login configuration categories.

Internal authentication and protocols that do not have specific JAAS plug points call the system login
configuration that is referenced by com.ibm.ws.security.defaultLoginConfig configuration.

Information Value
Default system.DEFAULT

com.ibm.ws.security.failSSODuringCushion:

Use the com.ibm.ws.security.failSSODuringCushion custom property to update custom JAAS Subject data
for the LTPA token.

When you do not set this custom property to true, new JAAS Subjects might not contain the custom JAAS
Subject data.

The default value is true.
com.ibm.ws.security.ltpa.forceSoftwareJCEProviderForLTPA:

Use the com.ibm.ws.security.ltpa.forceSoftware JCEProviderForLTPA custom property to correct an “invalid
library name” error when you attempt to use a PKCS11 type keystore with a Java client.

The ss1.client.props file points to a configuration file, which in turn, points to the library name for the
cryptographic device. The code for the Java client looks for a keystore type for the correct provider name.
Without this custom property, the keystore type constant for PKCS11 is not specified correctly as it
references the IBMPKCS11Impl provider instead. Also, the Lightweight Third Party Authentication (LTPA)
code uses the provider list to determine the Java Cryptography Extension (JCE) provider. This approach
causes a problem when Secure Sockets Layer (SSL) acceleration is attempted because the
IBMPKCS11Impl provider needs to be listed before the IBMJCE provider within the java.security file.

This custom property corrects both issues so that SSL and other cryptographic mechanisms can use
hardware acceleration.

Note: LTPA cannot use hardware acceleration because the software keys for LTPA do not implement the
java.security.interfaces.RSAPrivateCrtKey interface, which is required by many accelerator cards.

Set this custom property to true when you want to use a PKCS11 type keystore with a Java client.

Information Value
Default false

com.ibm.ws.security.ltpa.useCRT:

Use this property to improve the CPU utilization during the sign() operation that occurs when a new LTPA2
(SSO) token is created. When this property is set to true, the product implements the Chinese Remainder
Theorem (CRT) algorithm when signing the new token. This property has no effect on the old style LTPA
token.

Information Value
Default false

100 Securing applications and their environment

com.ibm.ws.security.ssolnteropModeEnabled:

This property determines whether to send LtpaToken2 and LtpaToken cookies in the response to a web
request (interoperable).

When this property value is false, the application server just sends the new LtpaToken2 cookie which is
stronger, but not interoperable with some other products and WebSphere Application Server releases prior
to Version 5.1.1. In most cases, the old LtpaToken cookie is not needed and you can set this property to
false.

Information Value
Default true

com.ibm.ws.security.unprotectedUserRegistryMethods:

Specifies the method names on the UserRegistry interface, such as getRealm, getUsers, and isValidUser,
that you do not want protected from remote access. If you specify multiple method names, separate the
names with either a space, a comma, a semi-colon, and a separator bar. See your implementation of the
UserRegistry interface file for a complete list of valid method names.

If you specify an * as the value for this property, all methods are unprotected from remote access. If a
value is not specified for this property, all methods are protected from remote access.

If an attempt is made to remotely access a protected UserRegistry interface method, the remote process
receives a CORBA NO_PERMISSION exception with minor code 49421098.

There is no default value for this property.
com.ibm.ws.security.webChallengelfCustomSubjectNotFound:
This property determines the behavior of a single sign-on LtpaToken2 login.

If the token contains a custom cache key and the custom Subject cannot be found, then the token is used
to log in directly as the custom information needs to be regathered if this property value is set to true. A
challenge also occurs so that the user is required to login again. When this property value is set to false
and the custom Subject is not found, the LtpaToken2 is used to login and gather all of the registry
attributes. However, the token might not obtain any of the special attributes that downstream applications
might expect.

Information Value
Default true

com.ibm.ws.security.weblnboundLoginConfig:
This property is the JAAS login configuration that is used for web requests that are received inbound.

By knowing the login configuration, you can plug in a custom login module that can handle specific cases
for web logins.

Information Value
Default system.WEB_INBOUND

com.ibm.ws.security.weblnboundPropagationEnabled:

Chapter 5. Setting up, enabling and migrating security 101

This property determines whether a received LtpaToken2 cookie should search for the propagated
attributes locally before searching the original login server that is specified in the token. After the
propagated attributes are received, the Subject is regenerated and the custom attributes are preserved.

Information Value
Default true

com.ibm.wsspi.security.cred.refreshGroups:

This property affects behavior when deserializing a security context that was previously saved as part of
asynchronous security processing for Web Services or Asynch Beans.

When this property is set to true, the user registry is accessed to get the groups associated with the user.
If the user still exists in the registry, the groups from the user registry are used instead of the groups that
were serialized in the security context. If the user is not found in the user registry, and the verifyUser
property is set to false, the groups from the security context are used.

Information Value
Default false

com.ibm.wsspi.security.cred.verifyUser:

This property affects behavior when deserializing a security context that was previously saved as part of
asynchronous security processing for Web Services or Asynch Beans.

When this property is set to true, the user registry is accessed to verify that the user from the security
context still exists. If it does not exist, a WSLoginFailedException is thrown.

Information Value
Default false

com.ibm.wsspi.security.ltpa.tokenFactory:

This property specifies the Lightweight Third Party Authentication (LTPA) token factories that can be used
to validate the LTPA tokens.

Validation occurs in the order in which the token factories are specified because LTPA tokens do not have
object identifiers (OIDs) that specify the token type. The Application Server validates the tokens using each
token factory until validation is successful. The order that is specified for this property is the most likely
order of the received tokens. Specify multiple token factories by separating them with a pipe (I) without
spaces before or following the pipe.

Information Value

Default com.ibm.ws.security.ltpa.LTPATokenFactory |
com.ibm.ws.security.ltpa.LTPAToken2Factory |
com.ibm.ws.security.ltpa.AuthzPropTokenFactory

com.ibm.wsspi.security.token.authenticationTokenFactory:
This property specifies the implementation that is used for an authentication token in the attribute

propagation framework. The property provides an old LTPA token implementation for use as the
authentication token.

102 Securing applications and their environment

Information Value
Default com.ibm.ws.security.ltpa.LTPATokenFactory
com.ibm.wsspi.security.token.authorizationTokenFactory:

This property specifies the implementation that is used for an authorization token. This token factory
encodes the authorization information.

Information Value
Default com.ibm.ws.security.ltpa.AuthzPropTokenFactory
com.ibm.wsspi.security.token.propagationTokenFactory:

This property specifies the implementation that is used for a propagation token. This token factory encodes
the propagation token information.

The propagation token is on the thread of execution and is not associated with any specific user Subjects.
The token follows the invocation downstream flow wherever the process leads.

Information Value
Default com.ibm.ws.security.ltpa.AuthzPropTokenFactory

com.ibm.wsspi.security.token.singleSignonTokenFactory:

This property specifies the implementation that is used for a Single Sign-on (SSO) token. This
implementation is the cookie that is set when propagation is enabled regardless of the state of the
com.ibm.ws.security.ssolnteropModeEnabled property.

By default, this implementation is the LtpaToken2 cookie.

Information Value
Default com.ibm.ws.security.ltpa.LTPAToken2Factory

com.ibm.wsspi.wssecurity.kerberos.failAuthForExpiredKerberosToken:

Use this property to specify how you want the system to handle authentication for a request after the
Kerberos token for the request expires.

When this property is set to true, if a Kerberos token cannot be refreshed after it expires, authentication
for the request fails.

When this property is set to false, authentication for the request does not fail even if the token has
expired.

The default value for this property is false.
security.allowCustomHTTPMethods:

Use this custom property to permit custom HTTP methods. The custom HTTP methods are other than the
standard HTTP methods, which are: DELETE, GET, HEAD, OPTIONS, POST, PUT or TRACE.

When this property is set to false, which is the default, if a combination of a URI pattern and a custom
HTTP method are not listed in the security-constraint element, a search of the security constraint is

Chapter 5. Setting up, enabling and migrating security 103

performed using an URI pattern only. If there is a match, the value of the <auth-constraints> element is
enforced. This behavior minimizes a potential security exposure.

When this property is set to true, the custom HTTP methods are treated as the standard HTTP methods.
An authorization decision is made by both the URI pattern and the HTTP method. To properly protect a
target URI, make sure that the proper HTTP methods are listed in the <web-resource-collection> element.
security.enablePluggableAuthentication:

This property is no longer used. Instead, use WEB_INBOUND login configuration.

Complete the following steps to modify the WEB_INBOUND login configuration:
1. Click Security > Global security.
2. Under Java Authentication and Authorization Service, click System logins.

Information Value

Default true
security.useDefaultPolicyWhenJ2SDisabled:

The NullDynamicPolicy.getPermissions method provides an option to delegate a default policy class to

construct a Permissions object when this property is set to true. When this property is set to false, an
empty Permissions object is returned.

Information Value
Default false

Security custom property collection
Use this page to view and manage arbitrary name-value pairs of data, where the name is a property key
and the value is a string value that can be used to set internal system configuration properties.

The administrative console contains several custom properties pages that work similarly. To view one of
these administrative pages, click a Custom properties link.

Name:
Specifies the name (or key) for the property.

Each property name must be unique. If the same name is used for multiple properties, the value specified
for the first property is used.

Do not start your property names with was. because this prefix is reserved for properties that are
predefined in the application server.

Value:
Specifies the value paired with the specified name.
Description:

Provides information about the name-value pair.

104 Securing applications and their environment

Security custom property settings

Use this page to configure arbitrary name-value pairs of data, where the name is a property key and the
value is a string value that can be used to set internal system configuration properties. Defining a new
property enables you to configure a setting beyond that which is available in the administrative console.

The administrative console contains several custom property settings pages that work similarly. To view
one of these administrative pages, click Custom properties.

Name:
Specifies the name (or key) for the property.

Each property name must be unique. If the same name is used for multiple properties, the value specified
for the first property is used.

Do not start your property names with was. because this prefix is reserved for properties that are
predefined in the product.

Information Value
Data type String
Value:

Specifies the value paired with the specified name.

Information Value
Data type String
Description:

Provides information about the name and value pair.

Information Value
Data type String

Testing security after enabling it

Basic tests are available that show whether the fundamental security components are working properly.
Use this task to validate your security configuration.

Before you begin

After configuring administrative security and restarting all of your servers in a secure mode, validate that
security is properly enabled.

IEITE There are a few techniques that you can use to test the various security login types. For
example, you can test the Web-based BasicAuth login, Web-based form login, and the Java client
BasicAuth login.

Basic tests are available that show whether the fundamental security components are working properly.
Complete the following steps to validate your security configuration:

Procedure
1. After enabling security, verify that your system comes up in secure mode.

Chapter 5. Setting up, enabling and migrating security 105

2. INIITEM Test the Web-based BasicAuth with Snoop, by accessing the following URL:
http://hostname.domain:9080/snoop.

3. Test the Web-based form login by starting the administrative console: http://
hostname.domain:port_number/ibm/console. A form-based login page is displayed. If a login page does
not appear, try accessing the administrative console by typing https://myhost.domain:9043/1bm/
console.

BT Type in the administrative user ID and password that are used for configuring your user
registry when configuring security.

4. Test Java Client BasicAuth with dumpNameSpace.

BRI Use thelapp_server root]/bin/dumpNameSpace file. A login panel appears. If a login panel
does not appear, there is a problem. Type in any valid user ID and password in your configured user
registry.

5. Test all of your applications in secure mode.

6. If all the tests pass, proceed with more rigorous testing of your secured applications. If you have any
problems, review the SYSOUT and SYSPRINT logs. For more information on common problems, see
[Chapter 13, “Troubleshooting security configurations,” on page 983

Results

The results of these tests, if successful, indicate that security is fully enabled and working properly.

Security Configuration Wizard

The Security Configuration Wizard guides you through the process of completing the basic requirements to
secure your application serving environment.

This wizard is available from the Security menu from the navigation pane of the admin console. To get to
the wizard, navigate to Security > Global security > Security Configuration Wizard.

Step one of the configuration wizard allows you to choose the level of security desired. Application-level
security is selected by default. You also have the option of selecting Java 2 security.

Step two of the configuration wizard allows you to select a user repository. You have the following options:
+ [‘Federated repository wizard settings” on page 224

* [“Local operating system wizard settings” on page 155

+ [“Stand-alone custom registry wizard settings” on page 187]

- [“Standalone LDAP registry wizard settings” on page 162)

Step three of the configuration wizard allows you to specify the local operating system user and group
definitions as the repository, and, if necessary, to provide the name of a user with administrator privileges.

Step four of the configuration wizard provides a summary of the results of the configuration process.

Security configuration report

The security configuration report gathers and displays the current security settings of the application
server. Information is gathered about core security settings, administrative users and groups, CORBA
naming roles, and cookie protection. When multiple security domains are configured, each security domain
has it's own report with a subset of the sections shown in the global security report that apply to the
domain.

The security configuration report now includes information about session security, web Attributes, and the
HttpOnly setting to enable you to get a more complete view of your server security settings.

106 Securing applications and their environment

The report is a table with four columns: Console Name, Security Configuration Name, Value and Console
Path Name. The security information gathered is divided into sections, and groups common security
information. A row highlighted in blue with a title in the first column starts a new section.

The Security Configuration Report can be run from the administrative console by selecting Security >
Global Security and then clicking Security Configuration Report. A new window displays the report
information.

The columns

Console Name
Contains the name of the security attribute as found in the administrative console. If the value in
this column is on a row highlighted in blue, and is the only entry on the row, then it is the start of a
new section.

Security Configuration Name
Contains the security attribute as found in the configuration file.

Value Contains the value of the security attribute.

Console Path Name
Contains the path where the attribute is found on the console.

The sections

Security Settings
Displays information about the top-level security attributes. These attributes set the default for
administrative security for the server, such as whether security is enabled, the default user registry,
or if Java security is enabled.

For more information, read the Global security settings article.

Authentication Mechanisms and expirations
Contains all the attributes associated with each authentication mechanisms and trust associations
as defined in the configuration.

User Registry
Displays the attributes for the default user registry for the server.

Authorization configuration
Displays attributes configured for an external Java Authorization Contract for Containers (JACC)
provider.

Application login configuration
Displays application JAAS login entries and their login modules attributes.

Csl Displays the attributes that define the inbound and outbound information for the Common Secure
Interoperability (CSI) protocol.

SSL configuration repertoires
Displays the attributes that make up the Secure Sockets Layer (SSL) configuration used by the
server. There can be multiple SSL configurations defined, and information about each is displayed.
This object is often referenced by an SSL configuration group object used to associate it with an
inbound or an outbound connection.

For more information, read the SSL configurations collection article.

Key stores
Displays the keystore attributes for each keystore in the configuration. Keystore objects in the
configuration are often referenced by an SSL configuration object in the configuration.

For more information, read the Personal certificates collection article.

Chapter 5. Setting up, enabling and migrating security 107

Trust managers
Displays the attributes that make up trust managers that can be used by the server. Trust manager
objects in the configuration are typically referenced by an SSL configuration object.

For the more information, read the Trust managers collection article.

Key managers
Displays the attributes that make up the key managers that are used by the server. Key manager
objects in the configuration are typically referenced by an SSL configuration object.

For more information, read the Key managers collection article.

SSL configuration group
Displays the attributes that make up an SSL configuration that are used for an outbound or an
inbound connection.

Management scope
Displays the attributes that make up a management scope. The SSL configuration-related objects
in the security configuration are defined within a management scope to reference the management
scope object.

For more information, read the Management scope configurations article.

Key set groups
Displays the attributes that make up a group of key sets, which are used to manage public, private
and shared keys.

For more information, read the Key set groups collection article.

Key set
Displays the attributes that make up the key set, which is used to manage public, private, and
shared keys.

For more information, read the Key sets collection article.

Schedules
Displays the attributes that make up the scheduled process in the security configuration.

Notifications
Displays the attributes that make up notification objects in the security configuration.

Manage certificate expiration
Displays the attributes that define how startCertificateExpMonitor is run on the server.

System login configuration
Displays the attributes that define the System login entries and their login modules.

For more information, read the System login configuration entry settings for Java Authentication
and Authorization Service article.

Custom properties
Displays all the custom properties that are defined in the security configuration.

For more information, read the Custom properties article.

Web Authentication
Displays properties that are used to define web authentication used by the server.

For more information, read the web authentication settings article.

Administrative Users and Groups
Displays the attributes that define roles and the users and groups associated with them as found
in the admin-authz.xml file. The column titled Administrative Role Name contains the name of the
administrative role. A column titled Administrative Role Value contains the user ID associated
with the role (if one exists).

108 Securing applications and their environment

For more information, read the Administrative roles article.

Corba Naming Console Names
Displays the defined CORBA naming roles and the users that are assigned to the roles.

For more information, read the Administrative group roles and CORBA naming service groups
article.

Console Name for Certificate Management
Lists all the certificate in keystore that are defined in the security configuration. There is also
information about the certificates location and their validity period.

Cookie Protection
Displays attributes that pertain to HTTP Cookies. This section differs from other sections since
information is gathered from different configuration files. The HttpOnly custom property, the web
authentication com.ibm.wsspi.security.web.webAuthReq property, and the session security setting
on each server are displayed on the report.

Java Authorization SPI Configuration
Displays the attributes that are defined for the Java Authorization SPI (JASPI) configuration. If
there is a JASPI configuration object in the security configuration, information is included
concerning whether JASPI is enabled, the name of the default JASPI provider, and a list of defined
providers and their authentication modules.

Note: If JASPI has not been configured, this section is not shown in the security configuration
report.

Adding a new custom property in a global security configuration or in
a security domain configuration

Custom properties are arbitrary name-value pairs of data, where the name is a property key and the value
is a string value that can be used to set internal system configuration properties. Defining a new property
enables you to configure settings beyond those that are available in the administrative console. You can
add new security custom properties in a security configuration or in a security domain configuration.

About this task

Adding a new custom property in a global security configuration using the administrative console
1. Click Security > Global security > Custom properties.

2. Click New,

3. Enter the property key name in the Name field.

Each property key name must be unique. If the same name is used for multiple properties, the value
specified for the first property is used.

Do not start your property names with was, because this prefix is reserved for properties that are
predefined in the application server.

4. Enter the property value in the Value field.
5. Click Apply or Save.

You can also use the -customProperties flag in the setAdminActiveSecuritySettings wsadmin command to
add a new custom property in a global security configuration. See the SecurityConfigurationCommands
command group for the AdminTask object article for more information about this command. For example:

wsadmin>AdminTask.setAdminActiveSecuritySettings('[-customProperties
["com.ibm.websphere.security.test=false"]]")

Adding a new custom property in a security domain configuration using the administrative console
1. Click Security > Security domains.

Chapter 5. Setting up, enabling and migrating security 109

Select the global security domain you want to add a new custom property to.
Click Custom properties.

Click New.

Enter the property key name in the Name field.

Each property key name must be unique. If the same name is used for multiple properties, the value
specified for the first property is used.

Do not start your property names with was, because this prefix is reserved for properties that are
predefined in the application server.

6. Enter the property value in the Value field
7. Click Apply or Save.

ok

You can also use the -customProperties flag in the setAppActiveSecuritySettings wsadmin command to
add a new custom property in a global security domain configuration. See the
SecurityConfigurationCommands command group for the AdminTask object article for more information
about this command. Use the -securityDomainName flag to specify the security domain where the custom
property is located. For example:

wsadmin>AdminTask.setAppActiveSecuritySettings('[-securityDomainName testDomain
-customProperties ["com.ibm.websphere.security.test=false"]]")

Modifying an existing custom property in a global security
configuration or in a security domain configuration

Custom properties are arbitrary name-value pairs of data, where the name is a property key and the value
is a string value that can be used to set internal system configuration properties. Defining a new property
enables you to configure settings beyond those that are available in the administrative console. You can
modify existing security custom properties in a global security configuration or in a security domain
configuration.

About this task

Modifying an existing custom property in a global security configuration using the administrative
console

1. Click Security > Global security > Custom properies.

2. Select the custom property you want to modify.

3. Click Edit In the Value field, and then enter the value you want to modify.
4. Click Apply or Save.

You can also use the -customProperties flag in the setAdminActiveSecuritySettings wsadmin command to
modify an existing custom property in a global security configuration. See the
SecurityConfigurationCommands command group for the AdminTask object article for more information
about this command. For example:

wsadmin>AdminTask.setAdminActiveSecuritySettings('[-customProperties
["com.ibm.websphere.security.test=false"]]")

Modifying an existing custom property in a security domain configuration using the administrative
console

Click Security > Security domains.

Select the global security domain you want to modify.

Click Custom properties.

Select the custom property you want to modify.

Click Edit.In the Value field, and then enter the value you want to modify.
Click Apply or Save.

ook wn =

110 Securing applications and their environment

You can also use the -customProperties flag in the setAppActiveSecuritySettings wsadmin command to
modify an existing custom property in a global security domain configuration. See the
SecurityConfigurationCommands command group for the AdminTask object article for more information
about this command. Use the -securityDomainName flag to specify the security domain where the custom
property is located. For example:

wsadmin>AdminTask.setAppActiveSecuritySettings('[-securityDomainName
testDomain -customProperties ["com.ibm.websphere.security.test=false"]]"

Deleting an existing custom property in a global security configuration
or in a security domain configuration

Custom properties are arbitrary name-value pairs of data, where the name is a property key and the value
is a string value that can be used to set internal system configuration properties. Defining a new property
enables you to configure settings beyond those that are available in the administrative console. You can
delete existing security custom properties in a global security configuration or in a security domain
configuration.

About this task

Deleting an existing custom property in a global security configuration using the administrative
console

1. Click Security > Global security > Custom properties.
2. Select the custom property you want to delete.

3. Click Delete.

4. Click Apply or Save.

You can also use the -customProperties flag in the setAdminActiveSecuritySettings wsadmin command to
delete an existing custom property in a global security configuration. See the
SecurityConfigurationCommands command group for the AdminTask object article for more information
about this command. For example:

wsadmin>AdminTask.setAdminActiveSecuritySettings('[-customProperties
["com.ibm.websphere.security.test="]]")

Deleting an existing custom property in a security domain configuration using the administrative
console

Click Security > Security domains.

Click Custom properties.

Select the custom property you want to delete.

Click Delete.

In the Value field, enter the value you want to delete.
Click Apply or Save.

o oA~ N~

You can also use the -customProperties flag in the setAppActiveSecuritySettings wsadmin command to
delete an existing custom property in a global security domain configuration. See the
SecurityConfigurationCommands command group for the AdminTask object article for more information
about this command. Use the -securityDomainName flag to specify the security domain where the custom
property is located. .For example:

wsadmin>AdminTask.setAppActiveSecuritySettings('[-securityDomainName testDomain
-customProperties ["com.ibm.websphere.security.test="]]")

Chapter 5. Setting up, enabling and migrating security 111

112 Securing applications and their environment

Chapter 6. Configuring multiple security domains

By default, all administrative and user applications in WebSphere Application Server use the global
security configuration. For example, a user registry defined in global security is used to authenticate users
for every application in the cell. Out-of-the-box, this behavior is the same as it was in previous releases of
WebSphere Application Server. You can create additional WebSphere security domains if you want to
specify different security attributes for some or all of your user applications. This section describes how to
configure a security domain by using the administrative console.

Before you begin

Only users assigned to the administrator role can configure or create new multiple security domains.
Enable global security in your environment before configuring multiple security domains.

Read about|“MuItipIe security domains” on page 116| for a better understanding of what multiple security
domains are and how they are supported in this version of WebSphere Application Server.

About this task

Security domains enable you to define multiple security configurations for use in your environment. For
example, you can define different security (such as a different user registry) for user applications than for
administrative applications. You can also define separate security configurations for user applications
deployed to different servers and clusters.

Perform the following steps to configure a new security domain by using the administrative console:

Procedure
1. Click Security > Security domains.

2. If you are creating a new multiple security domain, click New. Supply a unique name and description
for the domain and click Apply. If you want to configure an existing multiple security domain, select
one to edit. Once you click Apply the domain name and additional sections are displayed. One section
enables you to define the security attributes for the domain, and another section enables you to select
the scopes to which the domain applies.

3. Under Assigned Scopes, select whether you want to assign the security domain to the entire cell or if
you want to select the specific servers, clusters, and service integration buses to be included in the
security domain. The Assigned Scopes section has two views. The default view is a cell topology. To
assign the security domain to the entire cell, click the check box for the cell and then click Apply or
OK.

The name of the security domain appears next to the cell name, which indicates that the domain is
now assigned to the cell. You can expand the topology and assign the domain to one or more servers
and clusters. When an item in the topology is already assigned to another security domain, the check
box is disabled and the name of the assigned domain is displayed to the right of the scope name. If
you want to assign one of these scopes to the domain, you must first disassociate it with its current
domain.

Select All assigned scopes to view a list of only those resources that are currently assigned to the
security domain.

4. Customize your security configuration by specifying security attributes for your new domain. Attributes
that are not listed can not be customized at the domain level. Domains inherit attributes from the global
security configuration.

There are twelve individually configurable security attribute sections. You can expand and collapse
each section. In the collapsed state, the name and a summary value for the section are displayed.

© Copyright IBM Corp. 2012 113

Additionally, the summary value text indicates whether the attribute is defined in global security and is
reused by the domain (as indicated by gray text) or if it is customized for the domain (as indicated by
black text prefixed by the word “Customized”).

Initially, each security attribute is set to use the global security settings. When an attribute is set to use
global security, there is no domain-specific configuration for that attribute. Applications that use the
domain use the global configuration for these security attributes.

Only configure the security attributes that you want to change. To configure a security attribute for a
domain, expand the security attribute section. The key properties of the global configuration display
beneath the Use global security option. These properties are provided for convenience.

To customize the configuration for the domain, select Customize for this domain. Configure the
property and then click OK or Apply.

Note: In general, when you select Customize for this domain, you override all of the security
configurations that are defined for that section in global security. Application logins, system
logins, and J2C authentication data entries are some exceptions. When you define entries for a
domain, applications in the domain are able to access the global entries in addition to the
domain-specific entries.

For example, you might want to use a different user registry for applications that use the security
domain but also want to use the global security configuration for all of the other security properties. In
this case, expand the User Realm section and select Customize for this domain. Select a user
registry type, click Configure, and provide the appropriate configuration details on the subsequent
panel.

You can change security attributes such as the following:

Application Security
Specifies the settings for application security and Java 2 security. You can use the global
security settings or customize the settings for a domain.

Select Enable application security to enable or disable security this choice for user
applications. When this selection is disabled, all of the EJBs and web applications in the
security domain are no longer protected. Access is granted to these resources without user
authentication. When you enable this selection, the J2EE security is enforced for all of the
EJBs and web applications in the security domain. The J2EE security is only enforced when
Global Security is enabled in the global security configuration, (that is, you cannot enable
application security without first enabling Global Security at the global level).

Java 2 Security
Select Java 2 security to enable or disable Java 2 security at the domain level. This choice
enables or disables Java 2 security at the process (JVM) level so that all applications (both
administrative and user) can enable or disable Java 2 security.

User realm

This section enables you to configure the user registry for the security domain. You can
separately configure any registry that is used at the domain level. Read about [‘Multiple
[security domains” on page 116| for more information.

Trust association
When you configure the trust association interceptor (TAI) at a domain level, the interceptors
configured at the global level are copied to the domain level for convenience. You can modify
the interceptor list at the domain level to fit your needs. Only configure those interceptors that
are to be used at the domain level.

SPNEGO Web Authentication
The SPNEGO web authentication, which enables you to configure SPNEGO for web resource
authentication, can be configured at the domain level.

114 Securing applications and their environment

Note: In WebSphere Application Server Version 6.1, a TAIl that uses the Simple and Protected
GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate
HTTP requests for secured resources was introduced. This function was deprecated in
WebSphere Application Server 7.0. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application
login method.

RMI/IIOP Security

The RMI/IIOP security attribute refers to the CSIv2 (Common Secure Interoperability version 2)
protocol properties. When you configure these attributes at the domain level, the RMI/IIOP
security configuration at the global level is copied for convenience.

You can change the attributes that need to be different at the domain level. The Transport
layer settings for CSlv2 inbound communications should be the same for both the global and
the domain levels. If they are different, the domain level attributes are applied to all of the
application in the process.

JAAS application logins
Specifies the configuration settings for the Java Authentication and Authorization Service

(JAAS) application logins. You can use the global security settings or customize the settings for
a domain.

Note: The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication
data aliases can all be configured at the domain level. By default, all of the applications
in the system have access to the JAAS logins configured at the global level. The
security runtime first checks for the JAAS logins at the domain level. If it does not find
them, it then checks for them in the global security configuration. Configure any of these
JAAS logins at a domain only when you need to specify a login that is used exclusively
by the applications in the security domain.

JAAS system logins
Specifies the configuration settings for the JAAS system logins. You can use the global
security settings or customize the configuration settings for a domain.

JAAS J2C authentication
Specifies the configuration settings for the JAAS J2C authentication data. You can use the
global security settings or customize the settings for a domain.

Java Authentication SPI (JASPI)

Specifies the configuration settings for a Java Authentication SPI (JASPI) authentication
provider and associated authentication modules. You can use the global security settings or
customize the settings for a domain. To configure JASPI authentication providers for a domain,
select Customize for this domain and then enable JASPI. Select Providers to define
providers for the domain.

Note: The JASPI authentication provider can be enabled with providers configured at the
domain level. By default, all of the applications in the system have access to the JASPI
authentication providers configured at the global level. The security runtime first checks
for the JASPI authentication providers at the domain level. If it does not find them, it
then checks for them in the global security configuration. Configure JASPI
authentication providers at a domain only when the provider is to be used exclusively by
the applications in that security domain.

Authentication Mechanism Attributes
Specifies the various cache settings that need to applied at the domain level.

Select Authentication cache settings to specify your authentication cache settings. The
configuration specified on this panel is applied only to this domain.

Chapter 6. Configuring multiple security domains 115

Select LTPA Timeout to configure a different LTPA timeout value at the domain level. The
default timeout value is 120 minutes, which is set at the global level. If the LTPA timeout is set
at the domain level, any token that is created in the security domain when accessing user
applications is created with this expiration time.

When Use realm-qualified user names is enabled, user names returned by methods such as
getUserPrincipal () are qualified with the security realm (user registry) used by applications
in the security domain.

Authorization Provider

You can configure an external third party JACC (Java Authorization Contract for Containers)
provider at the domain level. Tivoli Access Manager's JACC provider can only be configured at
the global level. Security domains can still use it if they do not override the authorization
provider with another JACC provider or with the built-in native authorization.

Custom properties
Set custom properties at the domain level that are either new or different from those at the
global level. By default, all of the custom properties at the global security configuration can be
accessed by all of the applications in the cell. The security runtime code first checks for the
custom property at the domain level. If it does not find it, it then attempts to obtain the custom
property from the global security configuration.

Once you have configured the security attributes and assigned the domain to one or more scopes,
click Apply or OK.

6. Restart all servers and clusters for your changes to take effect.

Multiple security domains

The WebSphere Security Domains (WSD) provide the flexibility to use different security configurations in
WebSphere Application Server. The WSD is also referred to as multiple security domains, or simply,
security domains. You can configure different security attributes, such as the UserRegistry, for different
applications.

Note: Multiple security domain support was introduced in WebSphere Application Server Version 7.0. You

can create different security configurations and assign them to different applications in WebSphere
Application Server processes. By creating multiple security domains, you can configure different
security attributes for both administrative and user applications within a cell environment. You can
configure different applications to use different security configurations by assigning the servers or
clusters or service integration buses that host these applications to the security domains. Only
users assigned to the administrator role can configure multiple security domains.

The following sections describe multiple security domains in more detail:

“Why security domains are useful” on page 117|

“Relationship between global security and security domains” on page 117|

“Contents of a security domain” on page 119|

“Creating security domains” on page 11_9|

[‘Configuring attributes for security domains” on page 120|
“Associating scopes to security domains” on page m

“Relationship between old server level security and the new security domains” on page 122|

“How domain level security attributes are used by security runtime and applications” on page 123|

“Client and application security programming model when using security domains” on page 126|

“Application deployment in multiple domains configurations” on page 128|

“Cross realm communication” on page 128|

“Federating a node with security domains” on page 131

116 Securing applications and their environment

« [“Security domains in a mixed-version environment” on page 131|
* [“Modifying security domains” on page 132

Why security domains are useful

WebSphere Security Domains provide two major benefits:

* WebSphere Application Server administrative applications can be configured with a different set of
security configurations from those for user applications.

* They enable one set of applications to have a different set of security configurations from another set of
applications.

I For example, WebSphere Application Server administration can be configured to a user
registry of federated repository while the applications can be configured to a user registry of LDAP.

In previous versions of WebSphere Application Server, all administrative and user applications use security
attributes different from those attributes that are defined in global security. All administrative and user
applications in WebSphere Application Server use global security attributes by default. For example, a user
registry defined in global security is used to authenticate a user for every application in the cell.

In this release of WebSphere Application Server, however, you can use multiple security attributes for user
applications other than the global security attributes, create a security domain for those security attributes
that must differ, and associate them with the servers and clusters that host those user applications. You
also can associate a security domain with the cell. All of the user applications in the cell use this security
domain if they do not have a domain previously associated with them. However, global security attributes
are still required for administrative applications such as the administrative console, naming resources and
MBeans.

If you have used server level security in previous releases of WebSphere Application Server, you should
now use multiple security domains since they are more flexible and easier to configure.

Server level security is deprecated in this release. Read [‘Relationship between global security and security|
for more information.

Relationship between global security and security domains

Global Security applies to all administrative functions and the default security configuration for user
applications. Security domains can be used to define a customized configuration for user applications.

You must have a global security configuration defined before you can create security domains. The global
security configuration is used by all of the administrative applications such as the administrative console,
naming resources, and Mbeans. If no security domains are configured, all of the applications use
information from the global security configuration. User applications such as Enterprise JavaBeans (EJBs),
servlets and administrative applications use the same security configuration.

When you create a security domain and associate it with a scope, only the user applications in that scope
use the security attributes that are defined in the security domain. The administrative applications as well
as the naming operations in that scope use the global security configuration. Define the security attributes
at the domain level that need to be different from those at the global level. If the information is common,
the security domain does not need to have the information duplicated in it. Any attributes that are missing
in the domain are obtained from the global configuration. The global security configuration data is stored in
the security.xml file, which is located in the $WAS_HOME/profiles/$ProfileName/cells/$Cel1Name
directory.

The following figure provides an example of a security multiple domain where the cell, a server and a
cluster are associated with different security domains. As shown in the figure, the user applications in
server S1.1 as well as the cluster use security attributes that are defined in Domain2 and Domain3

Chapter 6. Configuring multiple security domains 117

respectively (since these scopes are associated with these domains). Server $2.2 is not associated with a
domain. As a result, the user application in $2.2 uses the domain that is associated with the cell (Domainl)
by default . Security attributes that are missing from the domain level are obtained from the global
configuration.

Current global security
configuration (security.xml)

A

Cell

WebSphere security domains
configuration (Domain1)
(security-domain.xml)

WebSphere security domains
configuration (Domain2)
(security-domain.xml)

WebSphere security domains
configuration (Domain3)
$1.2 (security-domain.xml)

User applications

in S1.1 will use the security attributes
defined in Domain2.

S2.1
in cluster will use the security attributes
defined in Domain3.

in S2.2 will use the security attributes
S22 defined in Domain1.

Any attributes that are missing in a
domain are obtained from global
security.xml

Figure 1. Scopes that can be associated to a security domain

The following figure shows the various high-level security attributes that can be defined at the global
security configuration and those that can be overridden at the domain level.

118 Securing applications and their environment

K

Global security configuration (security.xml)
Application security enablement
Java 2 security
User realm (registry)

Trust Association Interceptor (TAI)
SPNEGO Web Authentication
RMI/IIOP Security (CSlv2 Protocol)
JAAS

Authentication mechanism attributes
Authorization Provider

Custom properties

Web attributes (SSO)

The WebSphere security domains configuration can

override (security-domain.xml)
Application security enablement
Java 2 security
User realm (registry)
Trust Association Interceptor (TAI)
SPNEGO Web Authentication
RMI/IIOP Security (CSIv2 Protocol)

Java Authentication and Authorization Service (JAAS)

Authentication mechanism attributes
Authorization Provider
Custom properties

~

Secure Sockets Layer (SSL)

Audit

LTPA Authentication mechanism
Kerberos Authentication mechanism

Note: Only high-level attributes are shown.

- 4

Figure 2. Security attributes that can be configured at the security domain

Contents of a security domain

A security domain is represented by two configuration files. One configuration file contains the list of
attributes that are configured in the security domain. The other configuration file contains the scopes that
use the security domain. The security domain information is stored in the $WAS_HOME/profiles/
$ProfileName/config/waspolicies/default/securitydomains/$SecurityDomainName directory. For every
security domain that is configured, a $SecurityDomainName directory is created with two files in it: the
security-domain.xml file contains the list of security attributes configured for the security domain, and the
security-domain-map.xml file contains the scopes that use the security domain.

The following figure indicates the location of the main security domain related files and the contents of
those files.

These files are located in the

$WAS_HOME/profiles/$ProfileName/config/waspolicies/defaultsecuritydomains/$SecurityDomainName directory
security-domain.xml

security-domain-map.xml

. J

Figure 3. Location and contents of the main security domain related files

Note: You should not modify these files manually. Use administrative console tasks or scripting
commands to modify the files instead. For a complete list of administrative tasks and scripting
commands, see the links in "Related tasks" at the bottom of this document.

Creating security domains
Use the administrative console tasks or scripting commands to create security domains. In the
administrative console, access security domains by clicking Security > Security domains. Help is

available for each administrative console panel.

For a complete list of administrative console tasks and scripting commands, see the links in "Related
tasks" at the bottom of this document.

Chapter 6. Configuring multiple security domains 119

When you create a security domain you must supply a unique name for the domain, the security attributes
you want to configure for the security domain, and the scopes that need to use the security domain. Once
configured, the servers that use the security domain must be restarted. The user applications in those
scopes then use the attributes that are defined in the security domain. Any attributes that are not
configured at the domain level are obtained from the global security configuration. Administrative
applications and naming operations in the scopes always use the security attributes from the global
security configuration. You must actively manage these attributes.

Any new security domain attributes must be compatible with those global security attributes that are
inherited by the user applications that are assigned to the domain.

Other than for JAAS and custom properties, once global attributes are customized for a domain they are
no longer used by user applications.

The security domains panel in the administrative console enables you to assign resources and to select
the appropriate security attributes for your domain. The panel displays the key security attributes at the
global configuration; you can make the decision to override them at the domain level if necessary. Once
you have configured and saved the attributes at the domain level, the summary value on the panel
displays the customized value for the domain (tagged with the word "customized" in black text).

A scope (a server, cluster, service integration bus or a cell) can be associated with only one domain. For
example, you cannot define two domains that both have the cell-wide scope. Multiple scopes, however,
can be defined in the same security domain. For example, a domain can be scoped to Serverl and to
Server2 only within the cell.

The assigned scopes section on the security domain panel displays two views: one view that enables you
to select and assign scopes to the domain, and another view that enables you to see a list of the currently
assigned scopes. For convenience, you also have the flexibility to copy all of the security attributes from
an existing security domain or the global configuration into a new security domain, and then modify only
those attributes that must be different. You must still associate the scopes to these copied domains.

Scripting commands also provide you with the ability to create, copy and modify security domains. Once
you create a domain, you must run the appropriate commands to associate security attributes and scopes
to it.

Configuring attributes for security domains

Security attributes that can be configured at the domain level in WebSphere Application Server Version 8.5
are:

* Application security

» Java 2 security

» User realm (registry)

» Trust association

» Simple and Protected GSS-API Negotiation (SPNEGO) web authentication
* RMI/IIOP security (CSIv2)

» JAAS logins (Application, System and J2C Authentication Data)
» Java Authentication SPI

» Authentication mechanism attributes

* Authorization provider

» Federated repositories

» Custom properties

The security domains panels in the administrative console display all of these security attributes.

120 Securing applications and their environment

Some of the other well-known attributes that you cannot override at the domain level are Kerberos, Audit,
Web Single Sign-on (SSO) and Tivoli Access Manager (TAM). The Secure Socket Layer (SSL) attribute
already supports different scopes, but it is not part of the domain configuration. For all of the attributes that
are not supported at the domain level, user applications in a domain share their configuration from the
global level.

Any new security domain attributes must be compatible with those global security attributes that are
inherited by the user applications that are assigned to the domain. You must actively manage these
attributes. For example, if you customize only a JAAS configuration at the domain level you must make
sure that it works with the user registry configured at the global level (if the user registry is not customized
at the domain level).

Other than for JAAS and custom properties, once global attributes are customized for a domain they are
no longer used by user applications.

The Tivoli Access Manager client runtime is used to provide authentication (used by
TrustAssociationinterceptor and PDLoginModule) and authorization (used for JACC) by contacting TAM
servers. There is only one Tivoli Access Manager runtime shared by all servers in a cell. Read the Tivoli
Access Manager JACC provider configuration topic for more information.

You cannot have a different Tivoli Access Manager configuration at the security domain level to override
the configuration at the cell level. However, you can to some degree specify Trust Association Interceptor
(TAIl) and JACC configuration at the security domain level. For example, you can use a different TAl or a
different authorization provider. Since TAM server connectivity can only be defined at the global level, you
can have a variety of TAls defined and configured at the security domain level. Some of these TAls might
not use the TAM user repository, while others do. The TAls that do need to connect to TAM will also
connect to the globally-defined TAM server. Similarly, for authorization, you can have a variety of external
authorization providers configured at the domain level. However, if any of these external authorization
providers require connection to TAM they end up talking to the singular globally-configured TAM server.

Associating scopes to security domains

In WebSphere Application Server Version 8.5, you can associate a security domain at the cell level, the
server level, the cluster level and the service integration bus level.

Note: For more information about the service integration bus and bus security in multiple security domains
for WebSphere Application Server Version 8.5, see [Messaging security and multiple security|

When a security domain is associated with a server that is not part of a cluster, all user applications in that
server use the attributes from the security domain. Any missing security attributes are obtained from the
global security configuration. If the server is part of a cluster, you can associate the security domain with
the cluster but not with the individual members in that cluster. The security behavior then remains
consistent across all of the cluster members.

If a server is to be part of a cluster, create a cluster first and associate the security domain to it. You might
have associated a domain to a server before it was a member of a cluster. If so, even though the domain
is associated with the server directly, the security runtime code does not look at the domain. When a
server is a cluster member, the security runtime disregards any security domains associated directly to the
server. Remove the server scope from the security domain and associate the cluster scope to it instead.

A security domain can also be associated to the cell. This is usually done when you want to associate all
user applications in WebSphere Application Server to a security domain. In this scenario, all of the
administrative applications and the naming operations use the global security configuration while all of the
user applications use the domain level configuration. If you want to split the security configuration
information for administrative and user applications, this is all that is needed.

Chapter 6. Configuring multiple security domains 121

If you have a mixed-version environment, or plan to have one in future, and you want to associate security
domains at the cell level, read [‘Security domains in a mixed-version environment” on page 131|for more
information.

If you are on a base profile server that has its own security domain defined, which is then federated to a
deployment manager, associate the server scope to the security domain and not the cell scope. When you
federate that node, the security domain information is propagated to the deployment manager. If the cell
scope is associated to it, the network deployment configuration uses this security configuration, which
might impact existing applications. During federation, the cell scope is changed to the server scope that is
being federated. If the server scope is associated with the security domain, only that server uses the
security domain after the federation. Other applications in other servers and clusters are not impacted.
However, if this base profile server is registered to the Administrative Agent process you can associate the
cell scope to the security domain if you want all of the servers from the base profile to use the same
security domain for all of their user applications. Read about [‘Federating a node with security domains” on|
for more information.

You can have a security domain associated at the cell level and also other security domains associated to
various clusters or individual servers (those that are not part of any clusters). In this case, the security
runtime first checks if any security domains are associated with the server or a cluster. If there is a
security domain associated with the server or a cluster, the security attributes defined in it are used for all
of the applications in that server or cluster. Any security attributes missing from this server or cluster
domain are obtained from the global security configuration, and not from the domain configuration
associated with the cell.

If the server or cluster does not have its own domain defined, the security runtime code uses the security
attributes from the domain associated with the cell (if one is defined). Any security attributes missing from
the cell domain are inherited from the global security configuration.

Relationship between old server level security and the new security domains

In previous releases of WebSphere Application Server, you could associate a small set of security
attributes at a server level. These attributes were used by all of the applications at the server level. The
previous way of configuring the security attributes was deprecated in WebSphere Application Server 7.0,
and will be removed in a future release.

You should now use the new security domains support starting in WebSphere Application Server 7.0, as
these security domains are more easily managed and much more flexible. For example, in previous
versions of WebSphere Application Server, you must manually associate the same security configuration to
all of the cluster members by configuring the same security attributes for every server in a cluster.

The migration tool migrates the existing server level security configuration information to the new security
domain configuration when the script compatibility mode is false (-scriptCompatibility="false"). A new
security domain is created for every server security configuration if it is not part of a cluster. If it is part of a
cluster, a security domain is associated with the cluster instead of with all of the servers in that cluster. In
both cases, all of the security attributes that were configured at the server level in previous releases are
migrated to the new security domain configuration, and the appropriate scope is assigned to the security
domains.

If the script compatibility mode is set to true, the server level security configuration is not migrated to the
new security domains configuration. The old server security configuration is migrated without any changes.
The security runtime detects that the old security configuration exists and uses that information, even if a
security domain is associated either directly or indirectly to the server. If the script compatibility mode is set
to true, remove the security configuration from the server level and then create a security domain with the
same set of security attributes.

122 Securing applications and their environment

How domain level security attributes are used by security runtime and
applications

This section describes how the individual attributes at the domain level are used by the security runtime
and how that impacts the user application security. Since all of these security attributes are also defined at
the global level, more information about these attributes can be obtained elsewhere. For the purposes of
this section, the emphasis is on domain level behavior.

1.

Application Security:

Select Enable application security to enable or disable security for user applications. When this
selection is disabled, all of the EJBs and web applications in the security domain are no longer
protected. Access is granted to these resources without user authentication. When you enable this
selection, the J2EE security is enforced for all of the EJBs and web applications in the security
domain. The J2EE security is only enforced when Global Security is enabled in the global security
configuration, (that is, you cannot enable application security without first enabling Global Security at
the global level).

Java 2 Security:

Select Use Java 2 security to enable or disable Java 2 security at the domain level or to assign or
add properties related to Java 2 security. This choice enables or disables Java 2 security at the
process (JVM) level so that all applications (both administrative and user) can enable or disable Java
2 security.

User Realm (User Registry):

This section enables you to configure the user registry for the security domain. You can separately
configure any registry that is used at the domain level. Read about [‘Configuring attributes for security|
[domains” on page 120| for more information.

When configuring a registry at the domain level you can choose to define your own realm name for
the registry. The realm name distinguishes one user registry from another. The realm name is used in
multiple places — in the Java client login panel to prompt the user, in the authentication cache, and
when using native authorization.

At the global configuration level, the system creates the realm for the user registry. In previous
releases of WebSphere Application Server, only one user registry is configured in the system. When
you have multiple security domains you can configure multiple registries in the system. For the realms
to be unique in these domains, configure your own realm name for a security domain. You also can
choose the system to create a unique realm name if it is certain to be unique. In the latter case, the
realm name is based on the registry that is being used.

For LDAP registries, the host:port of the LDAP server is the system-generated realm name. For
localOS, the name of the localOS machine is the realm name. For custom user registries, the realm
is the one returned by the getRealm () method of the custom registry implementation.

If the system generated realm names are unique enough, you can choose the option for the system
to generate the realm name. If not, choose a unique realm name for each security domain where you
have the user registry configured. If the underlying user repository is the same, use the same realm
name in different domains. From a security runtime perspective, same realm names have the same
set of users and groups information. For example, when users and groups information is required
from a realm, the first user repository that matches the realm is used.If a localOS registry that is not
centralized is configured for any domain, and that domain is associated with servers or clusters in
nodes not on the same system as the deployment manager, the realm name has to be provided. This
realm name has to be the same as it would be if it were generated on the node. This realm name
can be obtained by calling the getRealm() method on the SecurityAdmin MBean on that node.
Typically, the realm name for localOS registries is the hostname of the machine. In this case, you
should not let the system generate the realm name but rather get the realm name that is used by the
processes in the node.

If you select the system to generate the realm for the localOS registry at the time of the user registry
configuration, it chooses the localOS registry that is used by the deployment manager. If the realm
configured does not match the realm used by the servers then there are authorization issues. Also

Chapter 6. Configuring multiple security domains 123

note that in this case, the domain using this local registry can only be associated with servers and
clusters that belong to nodes on the same machine.

In WebSphere Application Server Version 7.0, the federated repositories user registry can only be
configured at the global level and have only one instance per cell, but any domain can use it by
configuring it as the active registry. In WebSphere Application Server Version 8.0, you can configure a
unique instance of a federated repository at the domain level in a multiple security domain
environment.

When a security domain is copied from the global level, the users and groups defined at the global
level are also copied to the security domain. This is also true when copying from an existing domain.
A newly-created security domain that uses the file-based VMM repository requires that the user
populate the repository with users and groups.

Also new in this release of WebSphere Application Server, a new checkbox on the Realm
configurations settings administrative console page, Use global schema for model, sets the global
schema option for the data model in a multiple security domain environment. Global schema refers to
the schema of the admin domain.

When more than one user registry is in a process, the naming lookup that uses “UserRegistry” as the
lookup name returns the user registry that is used by user applications. The user registry used by
administrative applications is bound by the lookup name, “AdminUserRegistry”.

As described in [‘Cross realm communication” on page 128,|when an application in one realm
communicates with an application in another realm using LTPA tokens, the realms have to be trusted.
The trust relationship can be established using the Trusted authentication realms — inbound link in
the user registry panel or by using the addTrustedRealms command. You can establish trust between
different realms. A user logged into one realm can access resources in another realm. If no trust is
established between the two realms the LTPA token validation fails.

Note: The realm name used in the web.xml file is not related to the user registry realm.
4. Trust Association:

When you configure the trust association interceptor (TAl) at a domain level, the interceptors
configured at the global level are copied to the domain level for convenience. You can modify the
interceptor list at the domain level to fit your needs. Only configure those interceptors that are to be
used at the domain level.

Tivoli Access Manager's trust association interceptors can only be configured at the global level. The
domain configuration can also use them, but cannot have a different version of the trust association
interceptor. Only one instance of Tivoli Access Manager's trust association interceptors can exist in
the cell.

5. SPNEGO web authentication:

The SPNEGO web authentication, which enables you to configure SPNEGO for web resource
authentication, can be configured at the domain level.

Note: In WebSphere Application Server Version 6.1, a TAI that uses the Simple and Protected
GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate HTTP
requests for secured resources was introduced. In WebSphere Application Server 7.0, this
function was deprecated. SPNEGO web authentication has taken its place to provide dynamic
reload of the SPNEGO filters and to enable fallback to the application login method.

6. RMI/IIOP Security (CSIv2):

The RMI/IIOP security attribute refers to the CSlv2 (Common Secure Interoperability version 2)

protocol properties. When you configure these attributes at the domain level, the RMI/IIOP security

configuration at the global level is copied for convenience.

You can change the attributes that need to be different at the domain level. The Transport layer

settings for CSIv2 inbound communications should be the same for both the global and the domain

levels. If they are different, the domain level attributes are applied to all of the application in the
process.

124 Securing applications and their environment

10.

When a process communicates with another process with a different realm, the LTPA authentication
and the propagation tokens are not propagated to the downstream server unless that server is listed
in the outbound trusted realms list. This can be done using the Trusted authentication realms —
outbound link on the CSIv2 outbound communication panel, or by using the addTrustedRealms
command task. Read about [‘Cross realm communication” on page 128 for more information.

JAAS (Java Authentication and Authorization Service):

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data aliases
can all be configured at the domain level. By default, all of the applications in the system have access
to the JAAS logins configured at the global level. The security runtime first checks for the JAAS logins
at the domain level. If it does not find them, it then checks for them in the global security
configuration. Configure any of these JAAS logins at a domain only when you need to specify a login
that is used exclusively by the applications in the security domain.

For JAAS and custom properties only, once global attributes are customized for a domain they can
still be used by user applications.

Java Authentication SPI (JASPI)

Specifies the configuration settings for a Java Authentication SPI (JASPI) authentication provider and
associated authentication modules to be applied at the domain level.

Select Providers to create or to edit a JASPI authentication provider.

Note: The JASPI authentication provider can be enabled with providers configured at the domain
level. By default, all of the applications in the system have access to the JASPI authentication
providers configured at the global level. The security runtime first checks for the JASPI
authentication providers at the domain level. If it does not find them, it then checks for them in
the global security configuration. Configure JASPI authentication providers at a domain only
when the provider is to be used exclusively by the applications in that security domain.

Authentication Mechanism Attributes:
Specifies the various cache settings that must be applied at the domain level.

a. Authentication cache settings - use to specify your authentication cache settings. The
configuration specified on this panel is applied only to this domain.

b. LTPA Timeout - You can configure a different LTPA timeout value at the domain level. The default
timeout value is 120 minutes, which is set at the global level. If the LTPA timeout is set at the
domain level, any token that is created in the security domain when accessing user applications is
created with this expiration time.

c. Use realm-qualified user names - When this selection is enabled, user names returned by
methods such as getUserPrincipal() are qualified with the security realm (user registry) used
by applications in the security domain.

Authorization Provider:

You can configure an external third party JACC (Java Authorization Contract for Containers) provider
at the domain level. Tivoli Access Manager's JACC provider can only be configured at the global
level. Security domains can still use it if they do not override the authorization provider with another
JACC provider.

The JACC attributes, for example the Policy object, are based at the JVM level. This implies that
there can be only be one JACC policy object in a JVM process. However, when you have multiple
JACC providers configured, the deployment manager process has to handle all these providers in the
same JVM because it has to propagate the authorization policy of applications to the respective
provider based on the application name.

If your JACC provider can handle propagating the authorization policy to multiple providers, you can
configure it at the global level. In this case, when an application is installed, this JACC provider is
called in the deployment manager process and it is the responsibility of this JACC provider to
propagate the information to the corresponding JACC provider based on the application name passed
in the contextID.

Chapter 6. Configuring multiple security domains 125

Another way to achieve this is to set the custom property,
com.ibm.websphere.security.allowMultipledaccProviders=true, at the global security level. When
this property is set, WebSphere Application Server propagates the authorization policy information to
the JACC provider associated with the domain that corresponds to the target server where the
application is installed. This property is only used at the deployment manager process since the
managed servers do not host multiple JACC providers.

11. Custom properties:

Set custom properties at the domain level that are either new or different from those at the global
level. By default, all of the custom properties at the global security configuration can be accessed by
all of the applications in the cell. The security runtime code first checks for the custom property at the
domain level. If it does not find it, it then attempts to obtain the custom property from the global
security configuration.

For JAAS and custom properties only, once global attributes are customized for a domain they can
still be used by user applications.

Client and application security programming model when using security domains

A Java client or an application acting as a client that accesses an EJB typically does a nhaming lookup first.
The naming resource, which is used by both administrative and the user applications, is considered an
administrative resource. It is protected by the global security configuration information. In a multiple
domain setup where the global security is using one realm (the user registry) and a domain is using a
different realm, the Java client must authenticate to two different realms. The first authentication is required
for the realm in the global security configuration for the naming operation to succeed, and the second
authentication is required to access the EJB, which uses a different realm.

The CosNamingRead role protects all naming read operations. This role is usually assigned the Everyone
special subject. This implies that any user, valid or not, can look up the name space. When a multiple
domain is defined, if the CosNamingRead role has the Everyone special subject the security runtime code in
the client side does not prompt you to log in. It uses the UNAUTHENTICATED subject to access the
naming operation instead. Once the naming lookup operation is completed, when the client attempts to
access the EJB it is prompted with a login panel that indicates the realm that is currently used by that EJB
application (that is, the realm used in the domain). The client then presents the appropriate user
credentials for that realm, which can then access the EJB. This logic applies to all variations of login
source, including properties and stdin, not just when the login source is set to prompt.

If the Everyone special subject is removed from the CosNamingRead role, you are prompted twice. If the
login source is properties, you can uncomment the com.ibm.CORBA.ToginRealm property in the
$WAS_HOME/profiles/$ProfileName/properties/sas.client.props file and add the appropriate realms
using “I” as the separator. You must also enter the corresponding users and passwords in the
com.ibm.CORBA.ToginUserid and com.ibm.CORBA.1oginPassword properties respectively. When you are
using the programmatic logon in the Java client code you must authenticate twice with different user
credentials; once prior to do a naming lookup for the EJB (the user should be in the global realm), and
later prior to calling any method in the EJB (the user should be in the EJB domain's realm).

In general, when a Java client needs to authenticate to multiple and different realms it has to provide the
credential information for all of those realms. If the login source is prompt or stdin it is prompted to login
multiple times, once for each realm. If the login source is set to properties, the appropriate properties in
the sas.client.props file (or any related file) are used for authenticating to different realms.

In certain scenarios, a client might make multiple calls to the same realm. For example, the Java client
can access a resource using realml followed by access to a resource using realm2, and then come back
to access a resource in realml again. In this case, the client is prompted three times; first for realml,
secondly for realm2 and finally for realml again.

126 Securing applications and their environment

By default, the subject that is used to login at a realm is not cached by the client side code. If you have
this scenario, and you want the client to cache the subject based on the realm, set the
com.ibm.CSI.isRealmSubjectLookupEnabled property to true in the sas.client.props file. If the
com.ibm.CSI.isRealmSubjectLookupEnabled property is set, the client code caches the subject based on
the realm name. The next time the Java client needs to authenticate to this realm, the cache is located to
obtain the subject and the client is not prompted. Also, when the
com.ibm.CSI.isRealmSubjectLookupEnabled property is set, the same subject that was logged in the first
time is used for subsequent logins. If the subject information needs to change then this property should
not be set.

If the client is doing a programmatic login it can pass the realm along with the user and password that it
needs to authenticate. In this case, when the com.ibm.CORBA.validateBasicAuth property is set to true
(the default value) in the sas.client.props file, the registry that matches the realm name is used for login.
That realm must be supported in the process where the authentication takes place.

When using the WSLogin JAAS configurations, you also must set the use_realm_callback option in the
wsjaas_client.config file in $WAS_HOME/profiles/$ProfileName/properties for the realm name to be
passed to the call back handler. If you want to specify a different provider URL for the name server, set the
use_appcontext_callback option and pass in the provider URL properties in a hash map to WSLogin.

If you do not know the realm name, use <default> as the realm name. The authentication is performed
against the application realm. If the naming read operation does not have the Everyone special subject
assigned, you must provide the realm that is used by the administrative applications (the registry used in
the global security configuration), as well as the appropriate user and password information in that registry
for the lookup operation to succeed.

After the lookup operation succeeds, perform another programmatic login by providing the application
realm (or <default>) and the user and password information for the appropriate user in the registry that is
used by the application. This is similar to the case where the login source is prompt. You must authenticate
twice, once for the registry used by the global security configuration (for the naming lookup operation) and
again for the registry used by the application to access the EJB.

If com.ibm.CORBA.validateBasicAuth is set to false in the $WAS_HOME/profiles/$ProfileName/properties/
sas.client.props file then the programmatic login can use <default> as the realm name for both the
lookup and the EJB operations. The actual authentication occurs only when the resource is accessed on
the server side, in which case the realm is calculated based on the resource that is accessed.

The new security domain support starting in WebSphere Application Version 7.0 does not change the
current application security programming model. However, it provides more flexibility and capabilities such
as the following:

» User applications can still find the user registry object by using the naming lookup for “UserRegistry”.
For the registry object used by administrative applications, the naming lookup for “AdminUserRegistry”
can be used.

* The application usage of the JAAS login configuration does not change in a multiple domain setup.
However, if an application must refer to the JAAS configuration that is specified at the domain level, the
administrator and the deployer of that application must make sure that this domain is configured with
the JAAS configurations that are required by the application.

» If an application needs to communicate with other applications using different realms, trust relationship
should be established for both inbound and outbound communications when using the LTPA tokens.
Read about [‘Cross realm communication” on page 128|for more information.

* When using programmatic login in the applications, if you want to login to the realm used by the
application, use <default> as the realm name or provide the realm name that the application is using. If
you need to login to the global realm, you must provide the global realm name. If you provide any other

Chapter 6. Configuring multiple security domains 127

realm, only a basic authentication subject is created. When the request actually flows to the server
hosting that realm, the actual authentication of the user occurs if that server hosts the realm. If the
server does not host the realm, the login fails.

Application deployment in multiple domains configurations

When deploying an application in a multiple domain setup, all of the modules in the application should be
installed in the servers or clusters that belong to the same security domain. If not, depending on the
security attributes configured in these security domains, inconsistent behavior can result. For example, if
the domains contain different user registries, the users and groups information can be different, which can
cause inconsistent behavior when accessing the modules. Another example is when the JAAS data is
different between the security domains. The JAAS configurations is not accessible from all of the modules
in the application. The security runtime code and the command tasks rely on one domain being associated
with an application when dealing with attributes such as user registry, JAAS login configurations, J2C
authentication data, and authorization.

In most cases, application deployment fails when an application is deployed across different domains.
However, since this was possible in earlier releases of WebSphere Application Server when only a few
attributes were supported at the server level, the deployment tool first checks for attributes that are
configured at the domains. If the attributes in the domain are the same as those supported in previous
releases, the administrative console requests confirmation to ensure that you want to deploy application
modules across multiple security domains. Unless there is an absolute requirement to deploy the
applications across different domains, stop the deployment and select the servers and clusters in the same
security domain.

Cross realm communication

When applications communicate using the RMI/IIOP protocol and LTPA is the authentication mechanism,
the LTPA token is passed between the servers involved. The LTPA token contains the realm-qualified
uniqueld, (also called the accessId), of the user who is logging into the front-end application. When this
token is received by the downstream server it attempts to decrypt the token. If the LTPA keys are shared
between the two servers, decryption succeeds and the accessld of the user is obtained from the token.
The realm in the accessld is checked with the current realm that is used by the application. If the realms
match, the LTPA token validation succeeds and it proceeds with the authorization. If the realms do not
match, the token validation fails since the user from the foreign realm cannot be validated in the current
realm of the application. If applications are not supposed to communicate with each other when using
RMI/IIOP and the LTPA authentication mechanism, you do not to have to do anything further.

If you do want the cross realm communication to succeed when using RMI/IIOP and LTPA tokens, you
must first establish trust between the realms involved, both for inbound and outbound communications.

For the server originating the request, its realm must have the realms that it can trust to send the token to.
This is referred to as outboundTrustedRealms. For the server receiving the request, its realm needs to
trust the realms that it can receive LTPA tokens from. This is referred to as inboundTrustedRealms.

Outbound trusted realms can be established using the addTrustedRealms command with the
—communicationType option set to outbound. It can also be established in the administrative console by
clicking Trusted authentication realms - outbound on the CSIv2 outbound communications panel.

Inbound trusted realms can be established using the same addTrustedRealms command task with the
—communicationType option set to inbound. It can also be established by using the administrative console.

The figure later in this section shows the communication between applications that use different user
realms (registries) using RMI/IIOP. In this example, application appl (for example, a servlet) is configured

128 Securing applications and their environment

to use the realml user registry. The app2 application (for example, an EJB) is configured to use the realm2
user registry. The user (userl) initially logs into the servlet in appl, which then attempts to access an EJB
in app2. The following must be set:

e In Domain1, realml should trust realm2 for the outbound communication.
* In Domain2, realm2 should trust realml for the inbound communication.
» The accessld for userl should be configured in the authorization table for app2.

When the LTPA token that contains the accessld of userl is received by app2, it decrypts the token. Both
of the servers share the same LTPA keys. The LTPA token then ensures that the foreign realm is a trusted
realm, and performs the authorization based on the accessld of userl. If security attribute propagation is
not disabled, then the group information of userl is also propagated to app2. The groups can be used for
the authorization check, provided that the authorization table contains the group information. You can
associate a special subject, A1TAuthenticatedInTrustedRealms, to the roles instead of adding individual
users and groups to the authorization table.

If the applications in the previous example are deployed in different cells, you must do the following:
» Share the LTPA keys between the cells.

* Update the authorization table for app2 with foreign users and groups accesslds by using the wsadmin
utility. The administrative console does not have access to the realms outside of the scope of the cell.

Cell

$1.2 (Domain2)

S1.1 (Domain1)

user1
LTPA Token

Contains accessld
user:realm1/cn=user1,
o=ibm,c=us

user:realm1/cn=user1,
o=ibm,c=us

Application Authorization
Table

Figure 4. Cross realm communication in a multiple realm environment

Once trust has been established between the realms, when the server receives the LTPA token and the
token is decrypted, it checks to see if the foreign realm is in its inbound trusted realms list. If it is trusted,
the authentication succeeds. However, since it is a foreign realm, it does not go search the user registry to
gather information about the user. Whatever information is in the LTPA token is used to authorize the user.

The only information in the LTPA token is the unique id of the user. This unique id of the user should exist

in the authorization table for this application. If it does, authorization succeeds. However, if attribute
propagation is enabled, additional authorization attributes (groups that this user belongs to) for the user

Chapter 6. Configuring multiple security domains 129

are sent from the originating server to the receiving server. These additional attributes are used to make
the access decisions. If the groups information exists in the propagation tokens it is used when making the
authorization decision.

As previously mentioned, the information about the users and or the groups from the trusted realms should
exist in the authorization table of the receiving application. Specifically, the accessld of the users and or
groups should exist in the binding file of the application. This must be the case when the application is
deployed. In the administrative console, when an application is deployed in a domain you can add the
accesslds of the users and groups from any of its trusted realms to the authorization table.

You also have an option to associate a special subject, A11AuthenticatedInTrustedRealms, to the roles
instead of adding individual users and groups. This is similar to the A11Authenticated special subject that
is currently supported. The difference is that the A11Authenticated special subject refers to users in the
same realm as the application while the A11AuthenticatedInTrustedRealms special subject applies to all of
the users in the trusted realms and in the realm of the application.

You can associate the accessld by using the $AdminApp install script. Because the accessld takes a
unique format, use the command task 1istRegistryUsers with displayAccesslIds set to true. If an invalid
name or format is entered in this field, the authorization fails.

User and group information from the trusted realms is obtained by the deployment manager since it has
access to all of the user registry configurations in all domains. However, in certain situations it is not
possible to obtain the users and group information.

For example, if a server hosted on an external node is using localOS as the registry for its domain, the
deployment manager cannot obtain the users and groups information unless it is running in the same
operating system setup. The external operating system should be contacted to obtain this information. This
can be done by directly invoking the registry in the server associated with that domain. The servers
associated with the domain have to be started for this to work. You also must set the property,

com. ibm.websphere.allowRegistryLookupOnProcess, to true in the top-level security custom properties.
When this property is set, the deployment manager code searches one of the servers that is associated
with the security domain and obtains the users and groups information directly from it. This is possible by
calling an MBean in one of the servers.

If the MBean in any of the servers that are using that domain cannot be accessed, the administrative
console displays a panel where you can enter the user and accessld information manually for each user
and group. It is important that the correct accessld format be entered in this field. The accessld format for
the user is user:realmName/userUniqueld. The realmName is the name of the realm where the user
resides, and the userUniqueld is the uniqueld that represents the user, depending on the registry that is
used.

For example, for LDAP, the uniqueUserld is the Distinguished Name (DN), for the Windows localOS
registry and is the SID of the user. For Unix platforms, it is the UID. For custom registries, it depends on
the implementation.

Similarly, for groups, the accessld format is group:realmName/groupUniqueld. As previously mentioned,
use the listRegistryUsers and listRegistryGroups command with the —displayAccesslds option set to true
so that you can obtain the correct format for the domain or realm that you are interested in.

Once users and groups from the trusted realms or the AllAuthenticatedInTrustedRealms special subject is
added to the authorization table of the application, it is ready to accept requests from other applications
that are using any of its trusted realms. The LTPA token validation on the receiving server first checks to
make sure that the realm is trusted. The authorization engine then checks to see if the external user
and/or the groups or the Al11AuthenticatedInTrustedRealms special subject are given access to the roles
needed to access the resource. If true, access is granted.

130 Securing applications and their environment

Cross realm communication is only applicable when using the WebSphere built-in authorization. If you are
using other authorization engines including SAF for z/OS, any cross realm authorization can be achieved
by implementing custom login modules that map external users to users in its own repository.

Federating a node with security domains

When a security domain is configured in the base version and is federated to a cell, the security domain
configured at the base version is also configured for that server in the cell. The same domain security
configuration can be used by the server before and after the federation. If a base server is to be federated
to a cell, the resource assigned to the security domain should be the server scope instead of the cell
scope.

If the base server is expected to be registered with an Administrative Agent process, use the cell scope as
the resource if the intention is to have all of the servers in the base profile use this security domain.

If during federation the security domain at the base already exists at the cell level, the addNode command
fails. You can use the —excludesecuritydomains option not to include the security domain during
federation.

When the federated node is removed from a cell, the resources in that node should be removed from the
security domains. If security domains have clusters associated with them that span nodes, the nodes are
not removed. You can always remove resources from the security domains or any domains that are not
used by using scripting commands or the administrative console.

Security domains in a mixed-version environment

You should create security domains once all of the nodes have been migrated to the latest version. This is
especially true if there is a need to associate the cell with a domain. However, if you want to create
security domains in a mixed- version environment, be aware of the following:

» If a cell-wide domain is created in a mixed version setup, a domain called
PassThroughToGlobalSecurity is created automatically. All mixed clusters are assigned to this domain at
the time of the creation of the cell-wide domain. This PassThroughToGlobalSecurity domain is special in
the sense that attributes cannot be added to it, only resources can be assigned to it.

All resources assigned to the PassThroughToGlobalSecurity domain use the global security
configuration information. Whenever a node in the mixed version setup is migrated to the latest version,
the servers and clusters in these nodes are added to this domain. Applications in all of the servers and
clusters in these nodes do not use the cell-wide domain; they instead use the global security
configuration before and after migration.

If any of these servers need to use the cell-wide domain, you must remove these resources from this
PassThroughToGlobalSecurity domain. New servers and clusters that are created in the migrated node
use the cell-wide domain, not the PassThroughToGlobalSecurity domain. As a result, you have a mix of
servers and clusters, some of them using global security configuration and some using the cell-wide
domain.

* Once a cell-wide domain is created, adding any old version cluster members to a WebSphere
Application Server Version 8.5 cluster is restricted since this action makes it a mixed cluster. This
restriction also holds true when a WebSphere Application Server Version 8.5 cluster is associated with a
domain. and a previous version cluster member is added to this cluster. This restriction is needed to
avoid associating a security domain to a mixed cluster.

 If possible, you should create a cell-wide domain after all of the nodes have been migrated. In this case,
the cell-wide domain is applicable to the entire cell and not just to parts of it. This also eliminates the
need to create the PassThroughToGlobalSecurity domain and the mixed cluster scenario with security
domains.

Chapter 6. Configuring multiple security domains 131

Modifying security domains

Use the administrative console tasks or scripting commands to modify security domains. For a complete
list of administrative tasks and scripting commands, see the links in "Related tasks" at the bottom of this
document.

Once a security domain is created and associated to a set of scopes, the servers associated with this new
domain must be restarted. After the restart, the applications in the scopes associated with the new domain
use the security attributes defined in the domain.

Changes to any of the domain attributes requires the restart of all of the scopes assigned to it. If new
scopes are added they also need to be restarted. Any modifications to the domain configuration, either to
the security attributes or to the scopes, has impacts on those applications that are using the domain
configuration.

Before you make modifications to an existing domain, consider the following potential impacts. For
example, if a user registry that is configured at a domain is removed, and the servers restarted, the user
registry from the cell-wide domain (if one is defined), or the global security configuration is then used. This
can impact application authentication and authorization. Users and groups associated with an application
might no longer be valid in the new registry. Another example to consider is when JAAS configurations are
removed from a domain. Applications that rely on this are no longer be able to use the JAAS
configurations. Whenever a security configuration is changed it might impact your applications, so all
security configuration changes should be made with the utmost care.

Creating new multiple security domains

You can create multiple security domains in your configuration. By creating multiple security domains, you
can configure different security attributes for administrative and user applications within a cell environment.

Before you begin

Only users assigned to the administrator role can create new multiple security domains. Enable global
security in your environment before creating new multiple security domains.

Read about [‘Multiple security domains” on page 116 for a better understanding of what multiple security
domains are and how they are supported in this version of WebSphere Application Server.

About this task

Security domains provide a mechanism to use different security settings for administrative applications and
user applications. They also provide the ability to support multiple security settings so different applications
can use different security attributes like user registry or login configurations.

Use multiple security domains to achieve the following goals:

» Configure different security attributes for administrative and user applications within a cell

» Consolidate server configurations by managing different security configurations within a cell

» Restrict access between applications with different user registries, or configure trust relationships
between applications to support communication across registries

Perform the following steps to create a new security domain using the administrative console:

Procedure
1. Click Security > Security domains.
2. On the Security domains collection page, click New.

132 Securing applications and their environment

Specify a unique name for the domain. A domain name must be unique within a cell and cannot
contain an invalid character. This field is required.

Specify a unique description for the domain. After you click Apply you are returned to the Security
domains detail page

Under Assigned Scopes, assign the security domain to the entire cell or select the specific servers,
clusters, and service integration buses to include in the security domain.

Customize your security configuration by specifying security attributes for your new domain and by
assigning it to cell resources.

You can change security attributes such as the following:

Application Security
Specifies the settings for application security and Java 2 security. You can use the global
security settings or customize the settings for a domain.

Select Enable application security to enable or disable security this choice for user
applications. When this selection is disabled, all of the EJBs and web applications in the
security domain are no longer protected. Access is granted to these resources without user
authentication. When you enable this selection, the J2EE security is enforced for all of the
EJBs and web applications in the security domain. The J2EE security is only enforced when
Global Security is enabled in the global security configuration, (that is, you cannot enable
application security without first enabling Global Security at the global level).

Java 2 Security
Select Java 2 security to enable or disable Java 2 security at the domain level. This choice
enables or disables Java 2 security at the process (JVM) level so that all applications (both
administrative and user) can enable or disable Java 2 security.

User realm

This section enables you to configure the user registry for the security domain. You can
separately configure any registry that is used at the domain level. Read about [‘Multiplg
[security domains” on page 116| for more information.

Trust association
When you configure the trust association interceptor (TAl) at a domain level, the interceptors
configured at the global level are copied to the domain level for convenience. You can modify
the interceptor list at the domain level to fit your needs. Only configure those interceptors that
are to be used at the domain level.

SPNEGO Web Authentication
The SPNEGO web authentication, which enables you to configure SPNEGO for web resource
authentication, can be configured at the domain level.

Note: In WebSphere Application Server Version 6.1, a TAl that uses the Simple and Protected
GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate
HTTP requests for secured resources was introduced. This function was deprecated in
WebSphere Application Server Version 7.0. SPNEGO web authentication has taken its
place to provide dynamic reload of the SPNEGO filters and to enable fallback to the
application login method.

RMI/IIOP Security

The RMI/IIOP security attribute refers to the CSlv2 (Common Secure Interoperability version 2)
protocol properties. When you configure these attributes at the domain level, the RMI/IIOP
security configuration at the global level is copied for convenience.

You can change the attributes that need to be different at the domain level. The Transport
layer settings for CSIv2 inbound communications should be the same for both the global and
the domain levels. If they are different, the domain level attributes are applied to all of the
application in the process.

Chapter 6. Configuring multiple security domains 133

JAAS application logins
Specifies the configuration settings for the Java Authentication and Authorization Service
(JAAS) application logins. You can use the global security settings or customize the settings for
a domain.

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data
aliases can all be configured at the domain level. Be default, all of the applications in the
system have access to the JAAS logins configured at the global level. The security runtime
first checks for the JAAS logins at the domain level. If it does not find them, it then checks for
them in the global security configuration. Configure any of these JAAS logins at a domain only
when you need to specify a login that is used exclusively by the applications in the security
domain.

JAAS system logins
Specifies the configuration settings for the JAAS system logins. You can use the global
security settings or customize the configuration settings for a domain.

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data
aliases can all be configured at the domain level. Be default, all of the applications in the
system have access to the JAAS logins configured at the global level. The security runtime
first checks for the JAAS logins at the domain level. If it does not find them, it then checks for
them in the global security configuration. Configure any of these JAAS logins at a domain only
when you need to specify a login that is used exclusively by the applications in the security
domain.

Note: For both JAAS application logins and JAAS system logins, the collections are not
populated until one is created first. You can do this by selecting customize for this
domain under JAAS application logins or JAAS system logins and then by selecting
Apply or OK.

JAAS J2C authentication
Specifies the configuration settings for the JAAS J2C authentication data. You can use the
global security settings or customize the settings for a domain.

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data
aliases can all be configured at the domain level. Be default, all of the applications in the
system have access to the JAAS logins configured at the global level. The security runtime
first checks for the JAAS logins at the domain level. If it does not find them, it then checks for
them in the global security configuration. Configure any of these JAAS logins at a domain only
when you need to specify a login that is used exclusively by the applications in the security
domain.

Java Authentication SPI (JASPI)

Specifies the configuration settings for a Java Authentication SPI (JASPI) authentication
provider. You can use the global security settings or customize the settings for a domain. To
configure JASPI authentication providers for a domain, select Customize for this domain and
then enable JASPI. Select Providers to define providers for the domain.

Note: The JASPI authentication provider can be enabled with providers configured at the
domain level. By default, all of the applications in the system have access to the JASPI
authentication providers configured at the global level. The security runtime first checks
for the JASPI authentication providers at the domain level. If it does not find them, it
then checks for them in the global security configuration. Configure JASPI
authentication providers at a domain only when the provider is to be used exclusively by
the applications in that security domain.

Authentication Mechanism Attributes

Specifies the various cache settings that need to applied at the domain level.

134 Securing applications and their environment

Select Authentication cache settings to specify your authentication cache settings. The
configuration specified on this panel is applied only to this domain.

Select LTPA Timeout to configure a different LTPA timeout value at the domain level. The
default timeout value is 120 minutes, which is set at the global level. If the LTPA timeout is set
at the domain level, any token that is created in the security domain when accessing user
applications is created with this expiration time.

When Use realm-qualified user names is enabled, user names returned by methods such as
getUserPrincipal() are qualified with the security realm (user registry) used by applications
in the security domain.

Authorization Provider

You can configure an external third party JACC (Java Authorization Contract for Containers)
provider at the domain level. Tivoli Access Manager's JACC provider can only be configured at
the global level. Security domains can still use it if they do not override the authorization
provider with another JACC provider or with the built-in native authorization.

Custom properties
Set custom properties at the domain level that are either new or different from those at the
global level. By default, all of the custom properties at the global security configuration can be
accessed by all of the applications in the cell. The security runtime code first checks for the
custom property at the domain level. If it does not find it, it then attempts to obtain the custom
property from the global security configuration.

7. Click Apply.
8. After you have saved your configuration changes, restart the server for your changes to take effect.

Deleting multiple security domains

You can delete multiple security domains from your configuration. You must remove the resources
assigned to the security domains before deleting them. Only remove those security domains that are not
needed in your security configuration.

Before you begin

Only users assigned to the administrator role can delete security domains. Enable global security in your
environment before deleting security domains.

Read about [‘Multiple security domains” on page 116|for a better understanding of what multiple security
domains are and how they are supported in this version of WebSphere Application Server.

About this task

Security domains provide a mechanism to use different security settings for administrative applications and
user applications. They also provide the ability to support multiple security settings so different applications
can use different security attributes like user registry or login configurations.

Perform the following steps to delete an existing security domain using the administrative console:

Note: Only delete the security domains after first removing any resources associated with them. The
servers impacted should be restarted.

Procedure

1. Click Security > Security domains.

2. On the Security domains collection page, select a domain to delete.
3. Click Delete.

Chapter 6. Configuring multiple security domains 135

Copying multiple security domains

You can copy selected multiple security domains from the domain collection to create a new domain. This
is useful if you want to create a domain that is similar to a previous domain. However, you might want to
make a few slight adjustments. When copying an existing domain, you must supply a unique domain name
for the new one.

Before you begin

Only users assigned to the administrator role can copy or create new multiple security domains. Enable
global security in your environment before copying multiple security domains.

Read about|“MuItipIe security domains” on page 116| for a better understanding of what multiple security
domains are and how they are supported in this version of WebSphere Application Server.

About this task

Security domains provide a mechanism to use different security settings for administrative applications and
user applications. They also provide the ability to support multiple security settings so different applications
can use different security attributes like user registry or login configurations.

Use multiple security domains to achieve the following goals:
» Configure different security attributes for administrative and user applications within a cell
» Consolidate server configurations by managing different security configurations within a cell

» Restrict access between applications with different user registries, or configure trust relationships
between applications to support communication across registries

Perform the following steps to copy an existing security domain using the administrative console:

Procedure
1. Click Security > Security domains.

2. Optional: From Preferences, you can select the maximum number of rows to display when the
domain collection is large. The default number of rows is 20. Rows that exceed that number appear
on subsequent pages.

3. Select a domain to copy.

4. Click Copy Selected Domain... to copy an existing domain from the collection. You can optionally
select Copy Global Security.. to copy an existing domain and have it maintain its global security
settings (collection selections are ignored). A new domain name is also required if you choose this
option.

5. Specify a unique name for the domain. This field is required. A domain name must be unique within a
cell and cannot contain an invalid character.

6. Specify a unique description for the domain.

7. Click Apply. After you click Apply you are returned to the Security domains detail page

8. Under Assigned Scopes, assign the security domain to the entire cell or select the specific servers,
clusters, and service integration buses to include in the security domain.

9. Customize your security configuration by specifying security attributes for your new domain and by
assigning it to cell resources.

You can change security attributes such as the following:

Application Security
Specifies the settings for application security and Java 2 security. You can use the global
security settings or customize the settings for a domain.

136 Securing applications and their environment

Select Enable application security to enable or disable security this choice for user
applications. When this selection is disabled, all of the EJBs and web applications in the
security domain are no longer protected. Access is granted to these resources without user
authentication. When you enable this selection, the J2EE security is enforced for all of the
EJBs and web applications in the security domain. The J2EE security is only enforced when
Global Security is enabled in the global security configuration, (that is, you cannot enable
application security without first enabling Global Security at the global level).

Java 2 Security
Select Java 2 security to enable or disable Java 2 security at the domain level. This choice
enables or disables Java 2 security at the process (JVM) level so that all applications (both
administrative and user) can enable or disable Java 2 security.

User realm

This section enables you to configure the user registry for the security domain. You can
separately configure any registry that is used at the domain level. Read about|‘Multiple
lsecurity domains” on page 116|for more information.

Trust association
When you configure the trust association interceptor (TAl) at a domain level, the interceptors
configured at the global level are copied to the domain level for convenience. You can modify
the interceptor list at the domain level to fit your needs. Only configure those interceptors that
are to be used at the domain level.

SPNEGO Web Authentication
The SPNEGO web authentication, which enables you to configure SPNEGO for web resource
authentication, can be configured at the domain level.

Note: In WebSphere Application Server Version 6.1, a TAI that uses the Simple and
Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. This function was
deprecated in WebSphere Application Server 7.0. SPNEGO web authentication has
taken its place to provide dynamic reload of the SPNEGO filters and to enable fallback
to the application login method.

RMI/IIOP Security

The RMI/IIOP security attribute refers to the CSlv2 (Common Secure Interoperability version
2) protocol properties. When you configure these attributes at the domain level, the RMI/IIOP
security configuration at the global level is copied for convenience.

You can change the attributes that need to be different at the domain level. The Transport
layer settings for CSlv2 inbound communications should be the same for both the global and
the domain levels. If they are different, the domain level attributes are applied to all of the
application in the process.

JAAS application logins
Specifies the configuration settings for the Java Authentication and Authorization Service
(JAAS) application logins. You can use the global security settings or customize the settings
for a domain.

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data
aliases can all be configured at the domain level. Be default, all of the applications in the
system have access to the JAAS logins configured at the global level. The security runtime
first checks for the JAAS logins at the domain level. If it does not find them, it then checks for
them in the global security configuration. Configure any of these JAAS logins at a domain
only when you need to specify a login that is used exclusively by the applications in the
security domain.

Chapter 6. Configuring multiple security domains 137

JAAS system logins
Specifies the configuration settings for the JAAS system logins. You can use the global
security settings or customize the configuration settings for a domain.

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data
aliases can all be configured at the domain level. Be default, all of the applications in the
system have access to the JAAS logins configured at the global level. The security runtime
first checks for the JAAS logins at the domain level. If it does not find them, it then checks for
them in the global security configuration. Configure any of these JAAS logins at a domain
only when you need to specify a login that is used exclusively by the applications in the
security domain.

JAAS J2C authentication
Specifies the configuration settings for the JAAS J2C authentication data. You can use the
global security settings or customize the settings for a domain.

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data
aliases can all be configured at the domain level. Be default, all of the applications in the
system have access to the JAAS logins configured at the global level. The security runtime
first checks for the JAAS logins at the domain level. If it does not find them, it then checks for
them in the global security configuration. Configure any of these JAAS logins at a domain
only when you need to specify a login that is used exclusively by the applications in the
security domain.

Java Authentication SPI (JASPI)

Specifies the configuration settings for a Java Authentication SPI (JASPI) authentication
provider. You can use the global security settings or customize the settings for a domain. To
configure JASPI authentication providers for a domain, select Customize for this domain
and then enable JASPI. Select Providers to define providers for the domain.

Note: The JASPI authentication provider can be enabled with providers configured at the
domain level. By default, all of the applications in the system have access to the
JASPI authentication providers configured at the global level. The security runtime first
checks for the JASPI authentication providers at the domain level. If it does not find
them, it then checks for them in the global security configuration. Configure JASPI
authentication providers at a domain only when the provider is to be used exclusively
by the applications in that security domain.

Authentication Mechanism Attributes
Specifies the various cache settings that need to applied at the domain level.

Select Authentication cache settings to specify your authentication cache settings. The
configuration specified on this panel is applied only to this domain.

Select LTPA Timeout to configure a different LTPA timeout value at the domain level. The
default timeout value is 120 minutes, which is set at the global level. If the LTPA timeout is
set at the domain level, any token that is created in the security domain when accessing user
applications is created with this expiration time.

When Use realm-qualified user names is enabled, user names returned by methods such
as getUserPrincipal() are qualified with the security realm (user registry) used by
applications in the security domain.

Authorization Provider

You can configure an external third party JACC (Java Authorization Contract for Containers)
provider at the domain level. Tivoli Access Manager's JACC provider can only be configured
at the global level. Security domains can still use it if they do not override the authorization
provider with another JACC provider or with the built-in native authorization.

138 Securing applications and their environment

Custom properties
Set custom properties at the domain level that are either new or different from those at the
global level. By default, all of the custom properties at the global security configuration can be
accessed by all of the applications in the cell. The security runtime code first checks for the
custom property at the domain level. If it does not find it, it then attempts to obtain the custom
property from the global security configuration.

10. Click Apply.
11. After you have saved your configuration changes, restart the server for your changes to take effect.

Configuring inbound trusted realms for multiple security domains

You can configure which realms to grant inbound trust to for multiple security domains. The trust
relationship between realms is used when communicating with Lightweight Third-Party Authentication
(LTPA) tokens. Once a LTPA token is decrypted by the receiving server, the realm in the token is checked
to see if it is trusted. If it is not, the validation of the token fails. A realm represents a user registry in
WebSphere Application Server.

Before you begin

For information on cross realm communications, read the section in[“Multiple security domains” on pagel

Only users assigned to the administrator role can configure multiple security domains. Enable global
security in your environment before configuring multiple security domains.

Perform the following steps to grant inbound trusted realms for multiple security domains using the
administrative console:

Procedure

1. Click Security > Security domains.

Select a domain to edit or create a new one. Under Security Attributes, click User realm.
Click Customize for this domain.

Under Related Items, select Trusted authentication realms - inbound.

Select Trust all realms (including those external to this cell) or Trust realms as indicated below.
If Kerberos authentication is enabled, and you have cross realms or trusted realms, you must add the
Kerberos trusted realm by selecting Trust realms as indicated below.

6. Click Apply.

ok N

What to do next

The realms you selected to trust accept messages from other trusted realms but do not accept messages
from untrusted realms. Select Add External Realm to add trust for realms that are external to this cell.

Configure security domains

Use this page to configure the security attributes of a domain and to assign the domain to cell resources.
For each security attribute, you can use the global security settings or customize settings for the domain.

To view this administrative console page, click Security > Security domains. On the Security domains
collection page, select an existing domain to configure, create a new one, or copy an existing domain.

Read about|“MuItipIe security domains” on page 116| for a better understanding of what multiple security
domains are and how they are supported in this version of WebSphere Application Server.

Chapter 6. Configuring multiple security domains 139

Name
Specifies a unique name for the domain. This name can not be edited after the initial submission.

A domain name must be unique within a cell and cannot contain an invalid character.

Description
Specifies a description for the domain.

Assigned Scopes

Select to display the cell topology. You can assign the security domain to the entire cell or select the
specific clusters, nodes and service integration buses to include in the security domain.

If you select All scopes, the entire cell topology is displayed.

If you select Assigned scopes, the cell topology is displayed with those servers and clusters that are
assigned to the current domain.

The name of an explicitly assigned domain appears next to any resource. Checked boxes indicate
resources that are currently assigned to the domain. You also can select other resources and click Apply
or OK to assign them to the current domain.

A resource that is not checked (disabled) indicates that it is not assigned to the current domain and must
be removed from another domain before it can be enabled for the current domain.

If a resource does not have an explicitly-assigned domain, it uses the domain assigned to the cell. If no
domain is assigned to the cell, then the resource uses global settings.

Cluster members cannot be individually assigned to domains; the enter cluster uses the same domain.

Application Security:

Select Enable application security to enable or disable security for user applications. You can use the
global security settings or customize the settings for a domain.

When this selection is disabled, all of the EJBs and web applications in the security domain are no longer
protected. Access is granted to these resources without user authentication. When you enable this
selection, the J2EE security is enforced for all of the EJBs and web applications in the security domain.
The J2EE security is only enforced when Global Security is enabled in the global security configuration,
(that is, you cannot enable application security without first enabling Global Security at the global level).

Enable application security

Enables security for the applications in your environment. This type of security provides application
isolation and requirements for authenticating application users

In previous releases of WebSphere Application Server, when a user enabled global security, both
administrative and application security were enabled. In WebSphere Application Server Version 6.1, the
previous notion of global security were split into administrative security and application security, each of
which you can enable separately.

As a result of this split, WebSphere Application Server clients must know whether application security is
disabled at the target server. Administrative security is enabled, by default. Application security is disabled,
by default. To enable application security, you must enable administrative security. Application security is in
effect only when administrative security is enabled.

140 Securing applications and their environment

When this selection is disabled, all of the EJBs and web applications in the security domain are no longer
protected. Access is granted to these resources without user authentication. When you enable this
selection, the J2EE security is enforced for all of the EJBs and web applications in the security domain.
The J2EE security is only enforced when Global Security is enabled in the global security configuration,
(that is, you cannot enable application security without first enabling Global Security at the global level).

Java 2 security:

Select Use Java 2 security to enable or disable Java 2 security at the domain level or to assign or add
properties related to Java 2 security. You can use the global security settings or customize the settings for
a domain.

This choice enables or disables Java 2 security at the process (JVM) level so that all applications (both
administrative and user) can enable or disable Java 2 security.

Use global security settings
Select to specify the global security settings that are being used.

Customize for this domain

Select to specify the settings that are defined in the domain, such as options to enable application and
Java 2 security and to use realm-qualified authentication data.

Use Java 2 security to restrict application access to local resources

Select to specify whether to enable or disable Java 2 security permission checking. By default, access to
local resources is not restricted. You can choose to disable Java 2 security, even when application security
is enabled.

When the Use Java 2 security to restrict application access to local resources option is enabled and
if an application requires more Java 2 security permissions than are granted in the default policy, the
application might fail to run properly until the required permissions are granted in either the app.policy file
or the was.policy file of the application. AccessControl exceptions are generated by applications that do
not have all the required permissions.

Warn if applications are granted custom permissions

Specifies that during application deployment and application start, the security runtime issues a warning if
applications are granted any custom permissions. Custom permissions are permissions that are defined by
the user applications, not Java API permissions. Java APl permissions are permissions in the java.* and
javax.* packages.

The application server provides support for policy file management. A number of policy files are available
in this product, some of them are static and some of them are dynamic. Dynamic policy is a template of
permissions for a particular type of resource. No code base is defined and no relative code base is used in
the dynamic policy template. The real code base is dynamically created from the configuration and
run-time data. The filter.policy file contains a list of permissions that you do not want an application to
have according to the J2EE 1.4 specification.

Important: You cannot enable this option without enabling the Use Java 2 security to restrict
application access to local resources option.

Restrict access to resource authentication data
This option is disabled if Java 2 security has not been enabled.

Consider enabling this option when both of the following conditions are true:
» Java 2 security is enforced.

Chapter 6. Configuring multiple security domains 141

* The application code is granted the accessRuntimeClasses WebSphereRuntimePermission permission
in the was.policy file found within the application enterprise archive (EAR) file. For example, the
application code is granted the permission when the following line is found in your was.policy file:

permission com.ibm.websphere.security.WebSphereRuntimePermission "accessRuntimeClasses";

The Restrict access to resource authentication data option adds fine-grained Java 2 security
permission checking to the default principal mapping of the WSPrincipalMappingLoginModule
implementation. You must grant explicit permission to Java 2 Platform, Enterprise Edition (J2EE)
applications that use the WSPrincipalMappingLoginModule implementation directly in the Java
Authentication and Authorization Service (JAAS) login when Use Java 2 security to restrict application
access to local resources and the Restrict access to resource authentication data options are
enabled.

Information Value
Default: Disabled

User Realm:

This section enables you to configure the user registry for the security domain. You can separately
configure any registry that is used at the domain level.

When configuring a registry at the domain level you can choose to define your own realm name for the
registry. The realm name distinguishes one user registry from another. The realm name is used in multiple
places — in the Java client login panel to prompt the user, in the authentication cache, and when using
native authorization.

At the global configuration level, the system creates the realm for the user registry. In previous releases of
WebSphere Application Server, only one user registry is configured in the system. When you have multiple
security domains you can configure multiple registries in the system. For the realms to be unique in these
domains, configure your own realm name for a security domain. You also can choose the system to create
a unique realm name if it is certain to be unique. In the latter case, the realm name is based on the
registry that is being used.

Trust Association:

Select to specify the settings for the trust association. Trust association is used to connect reversed proxy
servers to the application servers.

Trust association enables the integration of IBM WebSphere Application Server security and third-party
security servers. More specifically, a reverse proxy server can act as a front-end authentication server
while the product applies its own authorization policy onto the resulting credentials that are passed by the
proxy server.

Tivoli Access Manager's trust association interceptors can only be configured at the global level. The
domain configuration can also use them, but cannot have a different version of the trust association
interceptor. Only one instance of Tivoli Access Manager's trust association interceptors can exist in the
system.

Note: The use of trust association interceptors (TAls) for Simple and Protected GSS-API Negotiation

Mechanism (SPNEGO) authentication is deprecated. The SPNEGO web authentication panels
provide a much easier way to configure SPNEGO.

Interceptors
Select to access or to specify the trust information for reverse proxy servers.

142 Securing applications and their environment

Enable trust association

Select to enable the integration of IBM WebSphere Application Server security and third-party security

servers. More specifically, a reverse proxy server can act as a front-end authentication server while the
product applies its own authorization policy onto the resulting credentials that are passed by the proxy

server.

SPNEGO Web Authentication:

Specifies the settings for Simple and Protected GSS-API Negotiation (SPNEGO) as the web authentication
mechanism.

The SPNEGO web authentication, which enables you to configure SPNEGO for web resource
authentication, can be configured at the domain level.

Note: In WebSphere Application Server Version 6.1, a TAIl that uses the Simple and Protected GSS-API
Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate HTTP requests for
secured resources was introduced. In WebSphere Application Server 7.0, this function is
deprecated. SPNEGO web authentication has taken its place to provide dynamic reload of the
SPNEGO filters and to enable fallback to the application login method.

RMI/IIOP Security:

Specifies the settings for Remote Method Invocation over the Internet Inter-ORB Protocol (RMI/IIOP).

An Object Request Broker (ORB) manages the interaction between clients and servers, using the Internet
InterORB Protocol (IIOP). It enables clients to make requests and receive responses from servers in a
network-distributed environment.

When you configure these attributes at the domain level, the RMI/IIOP security configuration at the global
level is copied for convenience. You can change the attributes that need to be different at the domain
level. The Transport layer settings for CSIv2 inbound communications should be the same for both the
global and the domain levels. If they are different, the domain level attributes are applied to all of the
applications in the process.

When a process communicates with another process with a different realm, the LTPA authentication and
the propagation tokens are propagated to the downstream server unless that server is listed in the
outbound trusted realms list. This can be done using the Trusted authentication realms — outbound link
on the CSIv2 outbound communication panel.

CSlv2 inbound communications

Select to specify authentication settings for requests that are received and transport settings for
connections that are accepted by this server using the Object Management Group (OMG) Common
Secure Interoperability (CSl) authentication protocol.

WebSphere Application Server enables you to specify Internet Inter-ORB Protocol (IIOP) authentication for
both inbound and outbound authentication requests. For inbound requests, you can specify the type of
accepted authentication, such as basic authentication.

CSlv2 outbound communications

Select to specify authentication settings for requests that are sent and transport settings for connections
that are initiated by the server using the Object Management Group (OMG) Common Secure
Interoperability (CSI) authentication protocol.

Chapter 6. Configuring multiple security domains 143

WebSphere Application Server enables you to specify Internet Inter-ORB Protocol (IIOP) authentication for
both inbound and outbound authentication requests. For outbound requests, you can specify properties
such as type of authentication, identity assertion or login configurations that are used for requests to
downstream servers.

JAAS Application logins

Select to define login configurations that are used by JAAS.

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data aliases can
all be configured at the domain level. By default, all of the applications in the system have access to the
JAAS logins configured at the global level. The security runtime first checks for the JAAS logins at the
domain level. If it does not find them, it then checks for them in the global security configuration. Configure
any of these JAAS logins at a domain only when you need to specify a login that is used exclusively by
the applications in the security domain.

For JAAS and custom properties only, once global attributes are customized for a domain they can still be
used by user applications.

Do not remove the ClientContainer, DefaultPrincipalMapping, and WSLogin login configurations because
other applications might use them. If these configurations are removed, other applications might fail.

Use global and domain-specific logins

Select to specify the settings that are defined in the domain, such as options to enable application and
Java 2 security and to use realm-qualified authentication data.

JAAS System Logins:

Specifies the configuration settings for the JAAS system logins. You can use the global security settings or
customize the configuration settings for a domain.

System Logins

Select to define the JAAS login configurations that are used by system resources, including the
authentication mechanism, principal mapping, and credential mapping

JAAS J2C Authentication Data:

Specifies the settings for the JAAS J2C authentication data. You can use the global security settings or
customize the settings for a domain.

Java 2 Platform, Enterprise Edition (J2EE) Connector authentication data entries are used by resource
adapters and Java DataBase Connectivity (JDBC) data sources.

Use global and domain-specific entries

Select to specify the settings that are defined in the domain, such as options to enable application and
Java 2 security and to use realm-qualified authentication data.

Java Authentication SPI (JASPI)

Specifies the configuration settings for a Java Authentication SPI (JASPI) authentication provider and
associated authentication modules. You can use the global security settings or customize the settings for a
domain. To configure JASPI authentication providers for a domain, select Customize for this domain and
then you can enable JASPI. Select Providers to create or to edit a JASPI authentication provider.

Note: The JASPI authentication provider can be enabled with providers configured at the domain level. By
default, all of the applications in the system have access to the JASPI authentication providers

144 Securing applications and their environment

configured at the global level. The security runtime first checks for the JASPI authentication
providers at the domain level. If it does not find them, it then checks for them in the global security
configuration. Configure JASPI authentication providers at a domain only when the provider is to be
used exclusively by the applications in that security domain.

Authentication Mechanism Attributes:
Specifies the various cache settings that must be applied at the domain level.

» Authentication cache settings - use to specify your authentication cache settings. The configuration
specified on this panel is applied only to this domain.

» LTPA Timeout - You can configure a different LTPA timeout value at the domain level. The default
timeout value is 120 minutes, which is set at the global level. If the LTPA timeout is set at the domain
level, any token that is created in the security domain when accessing user applications is created with
this expiration time.

» Use realm-qualified user names - When this selection is enabled, user names returned by methods
such as getUserPrincipal() are qualified with the security realm (user registry) used by applications in
the security domain.

Authorization Provider:

Specifies the settings for the authorization provider. You can use the global security settings or customize
the settings for a domain.

You can configure an external third party JACC (Java Authorization Contract for Containers) provider at
the domain level. Tivoli Access Manager's JACC provider can only be configured at the global level.
Security domains can still use it if they do not override the authorization provider with another JACC
provider or with the built-in native authorization.

Select either the Default authorization or External authorization using a JAAC provider. The
Configure button is only enabled when External authorization using a JAAC provider is selected.

Custom properties
Select to specify name-value pairs of data, where the name is a property key and the value is a string.

Set custom properties at the domain level that are either new or different from those at the global level. By
default, all of the custom properties at the global security configuration can be accessed by all of the
applications in the system. The security runtime code first checks for the custom property at the domain
level. If it does not find it, it then attempts to obtain the custom property from the global security
configuration.

Web Services Bindings
Click Default policy set bindings to set the domain default provider and client bindings.

External realm name

Use this page to add a WebSphere Application Server realm that is external to this cell. The realm is
initially not trusted. Use the Trusted authentication realms - inbound page to establish trust.

To view this administrative console page, click Security > Security domains. Select a domain to edit or
create a new one. Under Security Attributes, click User realm. Click Customize for this domain and then
select a Realm type. Click Configure. Under Related items, click Trusted authentication realms -
inbound or Trusted authentication realms - outbound. Click Add External Realm....

External realm name
Use to specify the name of the realm that is external to the list of realms that are available to receive trust.

Chapter 6. Configuring multiple security domains 145

Trust all realms

Use this page to configure which realms to grant inbound or outbound trust to.

The inbound trust is required to validate LTPA tokens that contain a foreign realm. The outbound trust is
required to send the credential tokens to the trusted realms. For example, if an application using realmA
needs to communicate using LTPA with an application using realmB, realmA should have realmB in its
outbound trust list and realmB should have realmA in its inbound trust list.

To view this administrative console page, click Security > Security domains. Select a domain to edit or
create a new one. Under Security Attributes, click User realm. Click Customize for this domain. Select a
realm type and then click Configure.

Under Related items, click Trusted authentication realms - inbound or Trusted authentication realms -
outbound.

Trust all realms (including those external to this cell)
Select to trust all of the realms listed on this page, including those external to the cell.

Trust realms as selected

Select to trust only those realms that you have selected from the list of realms that are available to receive
inbound trust.

Add External Realm...

Select to add realms that are external to this cell to the list of realms that are available to receive inbound
trust. When an external realm is added, it is trusted by default. If it is not trusted it is removed from the list.

Security domains collection

Security domains provide a mechanism to use different security settings for administrative applications and
user applications. They also provide the ability to support multiple security settings so different application
servers can use different security attributes like user registry or login configurations.

To view this administrative console page, click Security > Security domains.

Read about [‘Multiple security domains” on page 116 for a better understanding of what multiple security
domains are and how they are supported in this version of WebSphere Application Server.

Maximum rows

Specifies the maximum number of rows that display when the collection is large. The rows that are not
displayed appear on the next page.

The default is 20. Rows that exceed the maximum number display on subsequent pages.

Retain filter criteria

Specifies whether to use the same filter criteria entered in the show filter function to display this page the
next time you visit it.

Copy selected domain
Select to copy a selected domain from the collection (a new name is required)

146 Securing applications and their environment

Copy global security

Select to create a domain with a copy of the global security settings (collection selections are ignored). A
domain name is required.

Authentication cache settings

Use this page to specify your authentication cache settings.

To view this administrative console page, click Security > Global security > Authentication cache
settings.

Enable authentication cache
Specifies whether to disable the authentication cache.

Leave the authentication cache enabled for performance reasons. However, you can disable the
authentication cache for debug or measurement purposes. When this choice is disabled, the performance
is impacted since whenever a user is authenticated the user registry is accessed to gather information
about the user. New tokens are then created for the user.

Information Value
Default: Enabled

Cache timeout:

Specifies the time period at which the authenticated credential in the cache expires. Verify that this time
period is less than the value for the Timeout value for forwarded credentials between servers field (the
LTPA timeout).

If the application server infrastructure security is enabled, the security cache timeout can influence
performance. The timeout setting specifies how often to refresh the security-related caches. Security
information pertaining to beans, permissions, and credentials is cached. When the cache timeout expires,
all cached information not accessed within the timeout period is purged from the cache. Subsequent
requests for the information result in a database lookup. On occasion, acquiring the information requires
invoking a Lightweight Directory Access Protocol (LDAP)-bind or native authentication. Both invocations
are relatively costly operations for performance. Determine the best trade-off for the application by looking
at usage patterns and security needs for the site.

You must consider the following effects of this value on your configuration:

» Larger authentication cache timeout values can increase the security risk. For example, you might
revoke a user in the user registry or repository. However, the revoked user can log into the
administrative console using the credential that is cached in the authentication cache until the cache is
refreshed.

» Smaller authentication cache timeout values can affect performance. When this value is smaller, the
application server accesses the user registry or repository more frequently.

» Larger numbers of entries in the authentication cache, which is due to an increased number of users,
increases the memory usage by the authentication cache. Thus, the application server might slow down
and affect performance.

You can limit the size of the authentication cache by setting the maximum cache size value. Set both the
maximum cache size and the authentication cache timeout values to balance your security risk and
performance needs.

The LTPA timeout value should not be set lower than the security cache timeout value. The LTPA timeout
value should be set later than the ORB request timeout value. However, there is no relation between the
security cache timeout value and the ORB request timeout value. For more information on the LTPA

Chapter 6. Configuring multiple security domains 147

timeout value, see the documentation about authentication mechanisms and expiration. For more
information on the ORB request timeout value, see the documentation about the Object Request Broker
service settings.

Information Value
Default: 10 minutes

Initial cache size:
Specifies the initial size of the hash table caches.

A greater number of available hash values might decrease the occurrence of hash collisions. A hash
collision results in a linear search for the hash bucket, which might decrease the retrieval time. If several
entries compose a hash table cache, create a table with a larger capacity that supports more efficient hash
entries instead of allowing automatic rehashing determine the growth of the table. Rehashing causes every
entry to move each time.

Information Value
Default: 50

Maximum cache size
Indicates the maximum size of the cache.

After this limit is reached, the least used entries are removed from the cache to make space for the new
entries.

Information Value
Default: 25000

Use basic authentication cache keys (password one-way hashed):
Caches the userName and the one-way hashed password as the key lookup in the cache.

Disable this only if you do not want this information to be stored in the cache. If this is disabled, every time
a user logs in with userName and password, the user registry is accessed, which impacts performance.

Information Value
Default: True

148 Securing applications and their environment

Chapter 7. Authenticating users

The process of authenticating users involves a user registry and an authentication mechanism. Optionally,
you can define trust between WebSphere Application Server and a proxy server, configure single sign-on
capability, and specify how to propagate security attributes between application servers.

About this task

The following security topics are covered in this section:

User registries
For information on local operating system, Lightweight Directory Access Protocol (LDAP), custom

user registries, and user repositories such as virtual member manager, see [‘Selecting a registry o
repository.”

Trust associations
For more information on trust associations, see [‘Trust associations” on page 350.

Single sign-on
For more information on single sign-on, see I“Single sign-on for authentication using LTPA cookies"|

on page 356.

Security attribute propagation
For more information on propagation tokens, authorization tokens, single sign-on tokens, and
authentication tokens, see |“Security attribute propagation” on page 467.|

The following information is covered in this section:

Procedure
« Configure a user registry. For more information, see [‘Selecting a registry or repository.’]

+ Configure WebSEAL or a custom trust association interceptor. For more information see,
[third-party HTTP reverse proxy servers” on page 349.|

+ Configure single sign-on. For more information, see|“lmplementing single sign-on to minimize web user|
[authentications” on page 360.|

+ Propagate security attributes. For more information, see [‘Propagating security attributes among|
[application servers” on page 472

. Confii ure the authentication cache. For more information, see[“Configuring the authentication cache” on|

What to do next

After completing the configuring the authentication process, you must authorize access to resources. For
more information, see [Chapter 8, “Authorizing access to resources,” on page 563.|

Selecting a registry or repository

Information about users and groups reside in a user registry. In WebSphere Application Server, a user
registry authenticates a user and retrieves information about users and groups to perform security-related
functions, including authentication and authorization.

Before you begin
Note: During profile creation, either during installation or post-installation, administrative security is

enabled by default. The file-based federated user repository is configured as the active user
registry. Decide if you want a different user registry.

© Copyright IBM Corp. 2012 149

Before configuring the user registry or repository, decide which user registry or repository to use. You can
configure one Active default registry for the Cell.

About this task

WebSphere Application Server provides implementations that support multiple types of registries and
repositories including the local operating system registry, a stand-alone Lightweight Directory Access
Protocol (LDAP) registry, a stand-alone custom registry, and federated repositories.

With WebSphere Application Server, a user registry or a repository, such as a federated repository,
authenticates a user and retrieves information about users and groups to perform security-related functions
including authentication and authorization.

With WebSphere Application Server, a user registry or repository is used for:
» Authenticating a user using basic authentication, identity assertion, or client certificates

» Retrieving information about users and groups to perform security-related administrative functions, such
as mapping users and groups to security roles

In addition to local operating system, LDAP, and Federated repository registries, WebSphere Application
Server also provides a plug-in to support any registry by using the custom registry feature. The custom
registry feature enables you to configure any user registry that is not made available through the security
configuration panels of the WebSphere Application Server.

Configuring the correct registry or repository is a prerequisite to assigning users and groups to roles for
applications. When a user registry or repository is not configured, the local operating system registry is
used by default. If your choice of user registry is not the local operating system registry, you need to first
configure the registry or repository, which is normally done as part of enabling security, restart the servers,
and then assign users and groups to roles for all your applications.

WebSphere Application Server supports the following types of user registries:
* Federated repository
* Local operating system

Restriction: Configuring a transparent LDAP server under the local operating system registry and
having authentication of users take place through that local operating system using LDAP
is unsupported.

« Standalone Lightweight Directory Access Protocol (LDAP) registry
» Stand-alone custom registry

The UserRegistry interface is used to implement both the custom registry and the federated repository
options for the user account repository. The interface is very helpful in situations where the current user
and group information exists in some other formats, for example, a database, and cannot move to local
operating system or LDAP registries. In such a case, you can implement the UserRegistry interface so that
WebSphere Application Server can use the existing registry for all the security-related operations. The
process of implementing a custom registry is a software implementation effort, and it is expected that the
implementation does not depend on WebSphere Application Server resource management for its
operation. For example, you cannot use an Application Server data source configuration; generally you
must invoke database connections and dictate their behavior directly in your code.

Note: WebSphere Application Server has implemented a user registry proxy by using the UserRegistry
interface. However, the return values are little different from the interface. For example,
getUniqueUserld returns the uniquelD with the realm name wrapped. You cannot use the return
value to pass to getUserSecurityName, as shown in the following example:

150 Securing applications and their environment

// Retrieves the default InitialContext for this server.
javax.naming.InitialContext ctx = new javax.naming.InitialContext();

// Retrieves the local UserRegistry object.
com.ibm.websphere.security.UserRegistry reg =
(com.ibm.websphere.security.UserRegistry) ctx.lookup("UserRegistry");

// Retrieves the registry uniqueID based on the userName that is specified
// in the NameCallback.
String uniqueid = reg.getUniqueUserld(userName);
// Strip the realm name and get real uniquelD
String uid = com.ibm.wsspi.security.token.WSSecurityPropagationHelper.getUserFromUniqueID (uniquelD);

// Retrieves the security name from the user registry based on the uniquelD.
String securityName = reg.getUserSecurityName(uid);

You can use a Service Provider Interface (SPI) for this parsing function.

After the applications are assigned users and groups and you need to change the user registries, delete
all the users and groups, including any RunAs role, from the applications, and reassign them after
changing the registry through the administrative console or by using wsadmin scripting. The following
wsadmin command, which uses Jacl, removes all of the users and groups from any application:

$AdminApp deleteUserAndGroupEntries yourAppName

where yourAppName is the name of the application. Backing up the old application is advised before
performing this operation. However, if both of the following conditions are true, you might be able to switch
the registries without having to delete the users and groups information:

» All of the user and group names, including the password for the RunAs role users, in all of the
applications match in both user registries.

» The application bindings file does not contain the access IDs which are unique for each user registry
even for the same user or group name.

By default, an application does not contain access IDs in the bindings file. These IDs are generated when
the applications start. However, if you migrated an existing application from an earlier release, or if you
used the wsadmin script to add access IDs for the applications to improve performance, you have to
remove the existing user and group information and add the information after configuring the new user

registry.

For more information on updating access IDs, see updateAccess IDs in the Commands for the AdminApp
object article.

Attention: WebSphere Application Server supports a variety of user registries and repositories on
different operating systems. During the user authentication process, you might use non-alphanumeric
characters in your user name or password. Restrictions on the use of these non-alphanumeric characters
depends on both the underlying operating system and the user registry type. For more information on
which non-alphanumeric characters are not supported, see your operating system and user registry or
repository documentation.

For a comprehensive list of the non-alphanumeric characters that are not supported, see the IBM AIX
operating system documentation.

Complete one of the following steps to configure your user registry:

Procedure

* [‘Configuring local operating system registries” on page 152|

. “‘Configuring Lightweight Directory Access Protocol user registries” on page 156|
+ [“Configuring stand-alone custom registries” on page 183

* |“Managing the realm in a federated repository configuration” on page 212|

Chapter 7. Authenticating users 151

What to do next

1. If you are enabling security, make sure that you complete the remaining steps. Verify that the User
account repository on the Global security panel is set to the appropriate registry or repository. As the
final step, validate the user ID and the password by clicking Apply on the Global security panel. Save,
stop and start all WebSphere Application Servers.

2. For any changes in user registry panels to be effective, you must validate the changes by clicking
Apply on the Global security panel. After validation, save the configuration and stop and start all
WebSphere Application Servers, including the cells, nodes and all of the application servers. To avoid
inconsistencies between the WebSphere Application Server processes, make sure that any changes to
the registry or repository are done when all of the processes are running. If any of the processes are
down, force synchronization to make sure that the process can start later.

If the server or servers start without any problems, the setup is correct.

Configuring local operating system registries
Use these steps to configure local operating system registries.

Before you begin

For detailed information about using the local operating system user registry, see|“Local operating systemn|
Iregistries” on page 153] These steps set up security based on the local operating system user registry on
which WebSphere Application Server is installed.

TR In WebSphere Application Server Version 6.1, you can use an internally-generated server 1D
because the Security WebSphere Common Configuration Model (WCCM) model contains a new tag,
internalServerld. You do not need to specify a server user ID and a password during security configuration
except in a mixed-cell environment. See [‘Administrative roles and naming service authorization” on page
for more detailed information about the new internal server ID.

About this task

T The following steps are needed to perform this task initially when setting up security for the first
time.

Procedure
1. Click Security > Global security.
2. Under User account repository, select Local operating system and click Configure.

3. BIIIEM Enter a valid user name in the Primary administrative user name field. This value is the
name of a user with administrative privileges that is defined in the registry. This user name is used to
access the administrative console or used by wsadmin.

4. Click Apply.

5. IEIITEM Select either the Automatically generated server identity or Server identity that is
stored in the repository option. If you select the Server identity that is stored in the repository
option, enter the following information:

Server user ID or administrative user on a Version 6.0.x node
Specify the short name of the account that is chosen in the second step.

Server user password
Specify the password of the account that is chosen in the second step.
6. WIS Enter a valid user profile name in the Primary administrative user name field.

The Primary administrative user name specifies the user profile to use when the server authenticates
to the underlying operating system. This identity is also the user that has initial authority to access the
administrative application through the administrative console. The administrative user ID is common to
all user registries. The administrative ID is a member of the chosen registry and it has special

152 Securing applications and their environment

privileges in WebSphere Application Server. However, it does not have any special privileges in the
registry that it represents. In other words, you can select any valid user ID in the registry to use as the
administrative user ID or server user ID.

For the Primary administrative user name field, you can specify any user profile that meets this
criteria:

* The user profile has a status of *ENABLED.
* The user profile has a valid password.
* The user profile is not used as a group profile.

Important: A group profile is assigned a unique group ID number, which is not assigned to a
regular user profile. Run the DSPUSRPRF Display User Profile command to determine if
the user profile you want to use as the Primary administrative user name has a defined
group ID number. If the Group ID field is set to *NONE, you can use the user profile as
the Primary administrative user name.

7. Click OK.

The administrative console does not validate the user ID and password when you click OK. Validation
is only done when you click OK or Apply in the Global security panel. First, make sure that you select
Local operating system as the available realm definition in the User account repository section, and
click Set as current. If security was already enabled and you had changed either the user or the
password information in this panel, make sure to go to the Global security panel and click OK or
Apply to validate your changes. If your changes are not validated, the server might not start.

Important: Until you authorize other users to perform administrative functions, you can only access
the administrative console with the server user ID and password that you specified. For
more information, see [‘Authorizing access to administrative roles” on page 630 |

Results

For any changes in this panel to be effective, you need to save, stop, and start all the product servers,
including nodes and application servers. If the server comes up without any problems, the setup is correct.

After completed these steps, you have configured WebSphere Application Server to use the local
operating system registry to identify authorized users.

What to do next

Complete any remaining steps for enabling security. For more information, see[“Enabling security” on pagel

Local operating system registries
With the registry implementation for the local operating system, the WebSphere Application Server
authentication mechanism can use the user accounts database of the local operating system.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemQut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

T If you want to use the local operating system registry to represent the principals who access
your WebSphere Application Server resources, you do not have to complete any special user registry
setup steps. The local operating system registry is used for authentication and authorization of users who
access WebSphere Application Server resources, but not for WebSphere Application Server users who

Chapter 7. Authenticating users 153

access operating system resources. WebSphere Application Server does not run under the operating
system user profile of Application Server users. Instead, WebSphere Application Server runs under the
operating system profile that is configured by the Application Server administrator.

T If you want to authorize a user for any WebSphere Application Server resource, a user profile
for that user must exist in the operating system. Use the Create User Profile (CRTUSRPRF) command to
create new user IDs that can be used by WebSphere Application Server

[T Do not use a local operating system registry in a WebSphere Application Server environment
where application servers are dispersed across more than one machine because each machine has its
own user registry.

T As mentioned previously, the access IDs taken from the user registry are used during
authorization checks. Because these IDs are typically unique identifiers, they vary from machine to
machine, even if the exact users and passwords exist on each machine.

T Web client certificate authentication is not currently supported when using the local operating
system user registry. However, Java client certificate authentication does function with a local operating
user registry. Java client certificate authentication maps the first attribute of the certificate domain name to
the user ID in the user registry.

T Even though Java client certificates function correctly, the following error displays in the
SystemOut.1og file:

CWSCJ0337E: The mapCertificate method is not supported

The error is intended for web client certificates; however, it also displays for Java client certificates. Ignore
this error for Java client certificates.

Using either the local or the domain user registry

If you want to access users and groups from either the local or the domain user registry, instead of both,
set the com.ibm.websphere.registry.UseRegistry property. This property can be set to either Tocal or
domain. When this property is set to 1ocal (case insensitive) only the local user registry is used. When this
property is set to domain, (case insensitive) only the domain user registry is used.

Set this property by completing the following steps to access the Custom Properties panel in the
administrative console:

1. Click Security > Global security

2. Under User account repository, click the Available realm definitions drop-down list, select Local
operating system, and click Configure.

3. Under Additional properties, click Custom properties.

You can also use wsadmin to configure this property. When the property is set, the privilege requirement
for the user who is running the product process does not change. For example, if this property is set to
local, the user that is running the process requires the same privilege, as if the property was not set.

Using system user registries

The following notes apply when you use system user registries:

Local operating system settings
Use this page to configure local operating system registry settings.

To view this administrative console page, complete the following steps:

154 Securing applications and their environment

1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select Local
operating system.

3. Click Configure.

WebSphere Application Server Version 7.0 distinguishes between the user identities for administrators who
manage the environment and server identities for authenticating server to server communications. In most
cases, server identities are automatically generated and are not stored in a repository.

Primary administrative user name:
Specifies the name of a user with administrative privileges that is defined in your local operating system.
The user name is used to log on to the administrative console when administrative security is enabled..

Attention: In WebSphere Application Server, Version 6.1 and above, a single user identity is required for
both administrative access and internal process communication. When migrating to Version 6.1
and above, this identity is used as the server user identity. You need to specify another user
for the administrative user identity.

Automatically generated server identity:

Enables the application server to generate the server identity, which is recommended for environments
that contain only Version 6.1 or later nodes. Automatically generated server identities are not stored in a
user repository.

Information Value
Default: Enabled

Server identity that is stored in the repository: EITTEE
Specifies a user identity in the repository that is used for internal process communication. Cells that

contain Version 6.1 or later nodes require a server user identity that is defined in the active user
repository.

Information Value
Default: Enabled

Local operating system wizard settings
Use this security wizard page to configure local operating system registry settings.

To view this security wizard page, complete the following steps:

1. Click Security > Global security > Security configuration wizard.
2. Select your protection settings and click Next.

3. Select the Local operating system option and click Next.

Primary administrative user name:
Specifies the name of a user with administrative privileges that is defined in your local operating system.

The user name is used to log on to the administrative console when administrative security is enabled..

Chapter 7. Authenticating users 155

Attention: In WebSphere Application Server, Version 6.1 and above, a single user identity is required for
both administrative access and internal process communication. When migrating to Version 6.1
and above, this identity is used as the server user identity. You need to specify another user
for the administrative user identity.

Configuring Lightweight Directory Access Protocol user registries

To access a user registry using the Lightweight Directory Access Protocol (LDAP), you must know a valid
user name (ID) and password, the server host and port of the registry server, the base distinguished name
(DN) and, if necessary, the bind DN and the bind password. You can choose any valid user in the user
registry that is searchable. You can use any user ID that has the administrative role to log in.

Before you begin

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

There are two different identities that are used for security purposes: the user ID for administrative
functions and the server identity. When administrative security is enabled, the user ID and password for
administrative functions is authenticated with the registry. If authentication fails, access to the
administrative console is not granted or tasks with wsadmin scripts are not completed. It is important to
choose an ID and password that do not expire or change often. If this user ID or password need to
change in the registry, make sure that the changes are performed when all the application servers are up
and running. When changes are to be made in the registry, review the article on [‘Standalone Lightweight
[Directory Access Protocol registries” on page 323|(LDAP) before beginning this task.

The server identity is used for internal process communication. As part of this task, you can change the
server identity from the default automatically generated ID to a server ID and password from the LDAP
repository.

Procedure
1. In the administrative console, click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select
Standalone LDAP registry, and click Configure.

3. Enter a valid user name in the Primary administrative user name field. Typically, the user name is
the short name of the user and is defined by the user filter in the Advanced LDAP settings panel.

4. Determine whether to specify the user identity that is used for internal process communication. Cells
that contain Version 5.1 or 6.x nodes require a server user identity that is defined in the active user
repository. By default, the Automatically generated server identity option is enabled, and the
application server generates the server identity. However, you can select the Server identity that is
stored in the repository option to specify both the server identity and its associated password.

5. Select the type of LDAP server to use from the Type list. The type of LDAP server determines the
default filters that are used by WebSphere Application Server. These default filters change the Type
field to Custom, which indicates that custom filters are used. This action occurs after you click OK or
Apply in the Advanced LDAP settings panel. Choose the Custom type from the list and modify the
user and group filters to use other LDAP servers, if required.

IBM Tivoli Directory Server users can choose IBM Tivoli Directory Server as the directory type. Use
the IBM Tivoli Directory Server directory type for better performance. For a list of supported LDAP
servers, see the [Supported hardware, software, and APls| website.

156 Securing applications and their environment

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

10.
11.

12.

Attention: IBM SecureWay Directory Server has been renamed to IBM Tivoli Directory Server in
WebSphere Application Server version 6.1.

Enter the fully qualified host name of the LDAP server in the Host field. You can enter either the IP
address or domain name system (DNS) name.

Enter the LDAP server port number in the Port field. The host name and the port number represent
the realm for this LDAP server in the WebSphere Application Server cell. So, if servers in different
cells are communicating with each other using Lightweight Third Party Authentication (LTPA) tokens,
these realms must match exactly in all the cells.

The default value is 389. If multiple WebSphere Application Servers are installed and configured to
run in the same single sign-on domain, or if the WebSphere Application Server interoperates with a
previous version of the WebSphere Application Server, then it is important that the port number match
all configurations. For example, if the LDAP port is explicitly specified as 389 in a version 5.x
configuration, and a WebSphere Application Server at version 6.0.x is going to interoperate with the
version 5.x server, then verify that port 389 is specified explicitly for the version 6.0.x server.

You can set the com.ibm.websphere.security.ldap.logicRealm custom property to change the value of
the realm name that is placed in the token. For more information, see the security custom properties
topic.

Enter the base distinguished name (DN) in the Base distinguished name field. The base DN
indicates the starting point for searches in this LDAP directory server. For example, for a user with a
DN of cn=John Doe, ou=Rochester, 0=IBM, c=US, specify the base DN as any of the following
options, assuming a suffix of c=us:

e ou=Rochester, 0=IBM, c=us
e 0=IBM, c=us
* C=us

For authorization purposes, this field is case sensitive by default. Match the case in your directory
server. If a token is received (for example, from another cell or Lotus Domino) the base DN in the
server must match exactly the base DN from the other cell or Domino. If case sensitivity is not a
consideration for authorization, enable the Ignore case for authorization option.

In WebSphere Application Server, the distinguished name is normalized according to the Lightweight
Directory Access Protocol (LDAP) specification. Normalization consists of removing spaces in the
base distinguished name before or after commas and equal symbols. An example of a
non-normalized base distinguished name is o = ibm, ¢ = us or o=ibm, c=us. An example of a
normalized base distinguished name is o=1ibm, c=us.

To interoperate between WebSphere Application Server Version 6.0 and later versions, you must
enter a normalized base distinguished name in the Base Distinguished Name field. In WebSphere
Application Server, Version 6.0 or later, the normalization occurs automatically during runtime.

This field is required for all LDAP directories except the Lotus Domino Directory. The Base
Distinguished Name field is optional for the Domino server.

Optional: Enter the bind DN name in the Bind distinguished name field. The bind DN is required if
anonymous binds are not possible on the LDAP server to obtain user and group information. If the
LDAP server is set up to use anonymous binds, leave this field blank. If a name is not specified, the
application server binds anonymously. See the Base Distinguished Name field description for
examples of distinguished names.

Optional: Enter the password corresponding to the bind DN in the Bind password field.

Optional: Modify the Search time out value. This timeout value is the maximum amount of time that
the LDAP server waits to send a response to the product client before stopping the request. The
default is 120 seconds.

Ensure that the Reuse connection option is selected. This option specifies that the server should
reuse the LDAP connection. Clear this option only in rare situations where a router is used to send
requests to multiple LDAP servers and when the router does not support affinity. Leave this option
selected for all other situations.

Chapter 7. Authenticating users 157

13. Optional: Verify that the Ignore case for authorization option is enabled. When you enable this
option, the authorization check is case insensitive. Normally, an authorization check involves checking
the complete DN of a user, which is unique in the LDAP server and is case sensitive. However, when
you use either the IBM Directory Server or the Sun ONE (formerly iPlanet) Directory Server LDAP
servers, you must enable this option because the group information that is obtained from the LDAP
servers is not consistent in case. This inconsistency affects the authorization check only. Otherwise,
this field is optional and can be enabled when a case sensitive authorization check is required. For
example, you might select this option when you use certificates and the certificate contents do not
match the case of the entry in the LDAP server.

You can also enable the Ignore case for authorization option when you are using single sign-on
(SSO) between the product and Lotus Domino. The default is enabled.

14. Optional: Select the SSL enabled option if you want to use Secure Sockets Layer communications
with the LDAP server.

Important: This step will only be successful provided that the Signer certificate for the LDAP is first
added to the truststore that will be eventually used. If the Signer certificate from the
LDAP is not added to the truststore, then

* An error will be issued by the Administrative console.

» the deployment manager (DMGR) systemout.log will show the CWPKI0022E: SSL
HANDSHAKE FAILURE message indicating that the Signer certificate needs to be
added to the truststore.

To ensure an error free operation for this step, You need to first extract to a file the
Signer certificate of the LDAP and send that file to the WebSphere Application Server
machine. You can then add the certificate to the truststore being defined for the LDAP. In
this way, you are assured that the remaining actions for this step will be successful.

If you select the SSL enabled option, you can select either the Centrally managed or the Use
specific SSL alias option.

Centrally managed
Enables you to specify an SSL configuration for particular scope such as the cell, node,
server, or cluster in one location. To use the Centrally managed option, you must specify the
SSL configuration for the particular set of endpoints. The Manage endpoint security
configurations and trust zones panel displays all of the inbound and outbound endpoints that
use the SSL protocol. If you expand the Inbound or Outbound section of the panel and click
the name of a node, you can specify an SSL configuration that is used for every endpoint on
that node. For an LDAP registry, you can override the inherited SSL configuration by
specifying an SSL configuration for LDAP. To specify an SSL configuration for LDAP,
complete the following steps:

a. Click Security > SSL certificate and key management > Manage endpoint security
configurations and trust zones.

b. Expand Outbound > cell_name > Nodes > node_name > Servers > server_name >
LDAP.

Use specific SSL alias
Select the Use specific SSL alias option if you intend to select one of the SSL configurations
in the menu below the option.

This configuration is used only when SSL is enabled for LDAP. The default is
DefaultSSLSettings. You can click the name of an existing configuration to modify it or
complete the following steps to create a new SSL configuration:

a. Click Security > SSL certificate and key management.
b. Under Configuration settings, click Manage endpoint security configurations.

c. Select a Secure Sockets Layer (SSL) configuration_name for selected scopes, such as a
cell, node, server, or cluster.

158 Securing applications and their environment

d. Under Related items, click SSL configurations.
e. Click New.
15. Click OK and either Apply or Save until you return to the Global security panel.

Results

This set of steps is required to set up the LDAP user registry. This step is required as part of enabling
security in the WebSphere Application Server.

What to do next

1. If you are enabling security, complete the remaining steps as specified in|“Enainng security for the|
[realm” on page 76|

2. Save, stop, and restart all the product servers (deployment managers, nodes and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems the setup is
correct.

Standalone LDAP registry settings
Use this page to configure Lightweight Directory Access Protocol (LDAP) settings when users and groups
reside in an external LDAP directory.

To view this administrative console page, complete the following steps:
1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select
Standalone LDAP registry, and click Configure.

When security is enabled and any of these properties change, go to the Global security panel and click
Apply to validate the changes.

WebSphere Application Server Version 7.0 distinguishes between the user identities for administrators who
manage the environment and server identities for authenticating server to server communications. In most
cases, server identities are automatically generated and are not stored in a repository.

Note: The initial profile creation configures WebSphere Application Server to use a federated repositories
security registry option with the file-based registry. This security registry configuration can be
changed to use other options, including the stand-alone LDAP registry. Instead of changing from
the federated repositories option to the stand-alone LDAP registry option under the User account
repository configuration, consider employing the federated repositories option, which provides for
LDAP configuration. Federated repositories provide a wide range of capabilities, including the ability
to have one or multiple user registries. It supports federating one or more LDAPs in addition to
file-based and custom registries. It also has improved failover capabilities, and a robust set of
member (user and group) management capabilities. Federated repositories is required when you
are using the new member management capabilities in WebSphere Portal 6.1 and above, and
Process Server 6.1 and above. The use of federated repositories is required for following LDAP
referrals, which is a common requirement in some LDAP server environments (such as Microsoft
Active Directory).

It is recommended that you migrate from stand-alone LDAP registries to federated repositories. If
you move to WebSphere Portal 6.1 and above, and or WebSphere Process Server 6.1 and above,
you should migrate to federated repositories prior to these upgrades. For more information about
federated repositories and its capabilities, read the Federated repositories topic. For more
information about how to migrate to federated repositories, read the Migrating a stand-alone LDAP
repository to a federated repositories LDAP repository configuration topic.

Primary administrative user name:

Chapter 7. Authenticating users 159

Specifies the name of a user with administrative privileges that is defined in your user registry.

The user name is used to log onto the administrative console when administrative security is enabled.
Versions 6.1 and later require an administrative user that is distinct from the server user identity so that
administrative actions can be audited.

Attention: In WebSphere Application Server, Version 6.x, a single user identity is required for both
administrative access and internal process communication. When you migrate to Version 8.x,
this identity is used as the server user identity. You need to specify another user for the
administrative user identity.

Automatically generated server identity:

Enables the application server to generate the server identity, which is recommended for environments
that contain only Version 6.1 or later nodes. Automatically generated server identities are not stored in a
user repository.

Information Value

Default: Enabled

Server identity that is stored in the repository: IITEN

Specifies a user identity in the repository that is used for internal process communication. Cells that
contain Version 6.1 or later nodes require a server user identity that is defined in the active user
repository.

Information Value

Default: Enabled

Type of LDAP server:

Specifies the type of LDAP server to which you connect.

T |BM SecureWay Directory Server is not supported.

Host:

Specifies the host ID (IP address or domain name service (DNS) name) of the LDAP server.
Port:

Specifies the host port of the LDAP server.

If multiple application servers are installed and configured to run in the same single sign-on domain or if
the application server interoperates with a previous version, it is important that the port number match all
configurations. For example, if the LDAP port is explicitly specified as 389 in a Version 6.1 and above
configuration, and a WebSphere Application Server at Version 8.x is going to interoperate with the Version
6.1 and above server, verify that port 389 is specified explicitly for the Version 8.x server.

Information Value
Default: 389
Type: Integer

Base distinguished name (DN):

160 Securing applications and their environment

Specifies the base distinguished name (DN) of the directory service, which indicates the starting point for
LDAP searches of the directory service. In most cases, bind DN and bind password are needed. However,
when anonymous bind can satisfy all of the required functions, bind DN and bind password are not
needed.

For example, for a user with a DN of cn=John Doe , ou=Rochester, 0=IBM, c=US, specify the Base DN as
any of the following options: ou=Rochester, 0=IBM, c=US or 0=IBM c=US or c=US. For authorization purposes,
this field is case sensitive. This specification implies that if a token is received, for example, from another
cell or Lotus Domino, the base DN in the server must match the base DN from the other cell or Lotus
Domino server exactly. If case sensitivity is not a consideration for authorization, enable the Ignore case
for authorization option. This option is required for all Lightweight Directory Access Protocol (LDAP)
directories, except for the Lotus Domino Directory, IBM Tivoli Directory Server V6.0, and Novell eDirectory,
where this field is optional.

Bind distinguished name (DN):
Specifies the DN for the application server to use when binding to the directory service.

If no name is specified, the application server binds anonymously. See the Base distinguished name (DN)
field description for examples of distinguished names.

Bind password:
Specifies the password for the application server to use when binding to the directory service.
Search timeout:

Specifies the timeout value in seconds for a Lightweight Directory Access Protocol (LDAP) server to
respond before stopping a request.

Information Value
Default: 120

Reuse connection:

Specifies whether the server reuses the LDAP connection. Clear this option only in rare situations where a
router is used to distribute requests to multiple LDAP servers and when the router does not support
affinity.

Information Value
Default: Enabled
Range: Enabled or Disabled

Important: Disabling the Reuse connection option causes the application server to create a new LDAP
connection for every LDAP search request. This situation impacts system performance if your
environment requires extensive LDAP calls. This option is provided because the router is not
sending the request to the same LDAP server. The option is also used when the idle
connection timeout value or firewall timeout value between the application server and LDAP is
too small.

If you are using WebSphere Edge Server for LDAP failover, you must enable TCP resets with
the Edge server. A TCP reset causes the connection to immediately closed and a backup
server to failover. For more information, see “Sending TCP resets when server is down” at
Ihttp://www.ibm.com/software/webservers/appserv/doc/v50/ec/infocenter/edge/

Chapter 7. Authenticating users 161

http://www.ibm.com/software/webservers/appserv/doc/v50/ec/infocenter/edge/LBguide.htm#HDRRESETSERVER

[LBguide.ntm#HDRRESETSERVER| and the Edge Server V2 - TCP Reset feature in PTF #2
described in: |nttp://publibfp.dhe.ibm.com/epubs/pdf/i1032540.pdil

Ignore case for authorization:
Specifies that a case insensitive authorization check is performed when using the default authorization.
This option is required when IBM Tivoli Directory Server is selected as the LDAP directory server.

This option is required when Sun ONE Directory Server is selected as the LDAP directory server. For
more information, see “Using specific directory servers as the LDAP server” in the documentation.

This option is optional and can be enabled when a case-sensitive authorization check is required. For
example, use this option when the certificates and the certificate contents do not match the case that is
used for the entry in the LDAP server. You can enable the Ignore case for authorization option when
using single sign-on (SSO) between the application server and Lotus Domino.

Information Value
Default: Enabled
Range: Enabled or Disabled

SSL enabled:

Specifies whether secure socket communication is enabled to the Lightweight Directory Access Protocol
(LDAP) server.

When enabled, the LDAP Secure Sockets Layer (SSL) settings are used, if specified.
Centrally managed:

Specifies that the selection of an SSL configuration is based upon the outbound topology view for the Java
Naming and Directory Interface (JNDI) platform.

Centrally managed configurations support one location to maintain SSL configurations rather than
spreading them across the configuration documents.

Information Value
Default: Enabled

Use specific SSL alias:
Specifies the SSL configuration alias to use for LDAP outbound SSL communications.

This option overrides the centrally managed configuration for the JNDI platform.

Standalone LDAP registry wizard settings
Use this security wizard page to provide the basic settings to connect the application server to an existing
Lightweight Directory Access Protocol (LDAP) registry.

To view this security wizard page, click Security > Global security > Security configuration wizard. You
can modify your LDAP registry configuration by completing the following steps:

1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, selectStandalone
LDAP registry, and click Configure.

162 Securing applications and their environment

http://www.ibm.com/software/webservers/appserv/doc/v50/ec/infocenter/edge/LBguide.htm#HDRRESETSERVER
http://publibfp.dhe.ibm.com/epubs/pdf/i1032540.pdf

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your user registry.

The user name is used to log onto the administrative console when administrative security is enabled.

Versions 6.1 and later require an administrative user that is distinct from the server user identity so that

administrative actions can be audited.

Attention: In WebSphere Application Server, Version 6.x, a single user identity is required for both
administrative access and internal process communication. When you migrate to Version 8.x,
this identity is used as the server user identity. You need to specify another user for the
administrative user identity.

Type of LDAP server:

Specifies the type of LDAP server to which you connect.

ITITTE |BM SecureWay Directory Server is not supported.

Host:

Specifies the host ID (IP address or domain name service (DNS) name) of the LDAP server.

Port:

Specifies the host port of the LDAP server.

If multiple application servers are installed and configured to run in the same single sign-on domain or if

the application server interoperates with a previous version, it is important that the port number match all

configurations. For example, if the LDAP port is explicitly specified as 389 in a Version 6.1 and above

configuration, and a WebSphere Application Server at Version 8.x is going to interoperate with the Version
6.1 and above server, verify that port 389 is specified explicitly for the Version 8.x server.

Information Value
Default: 389
Type: Integer

Base distinguished name (DN):

Specifies the base distinguished name (DN) of the directory service, which indicates the starting point for
LDAP searches of the directory service. In most cases, bind DN and bind password are needed. However,
when anonymous bind can satisfy all of the required functions, bind DN and bind password are not
needed.

For example, for a user with a DN of cn=John Doe , ou=Rochester, 0=IBM, c=US, specify the Base DN as
any of the following options: ou=Rochester, 0=IBM, c=US or 0=IBM, c=US or c=US. For authorization purposes,
this field is case sensitive. This specification implies that if a token is received, for example, from another
cell or Lotus Domino, the base DN in the server must match the base DN from the other cell or Lotus
Domino server exactly.

Bind distinguished name (DN):
Specifies the DN for the application server to use when binding to the directory service.

If no name is specified, the application server binds anonymously. See the Base distinguished name (DN)
field description for examples of distinguished names.

Chapter 7. Authenticating users 163

Bind password:

Specifies the password for the application server to use when binding to the directory service.

Advanced Lightweight Directory Access Protocol user registry settings
Use this page to configure the advanced Lightweight Directory Access Protocol (LDAP) user registry
settings when users and groups reside in an external LDAP directory.

To view this administrative page, complete the following steps:
1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select
Standalone LDAP registry, and click Configure.

3. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user
registry settings.

Default values for all the user and group related filters are already completed in the appropriate fields. You
can change these values depending on your requirements. These default values are based on the type of
LDAP server that is selected in the Standalone LDAP registry settings panel. If this type changes, for
example from Netscape to Secureway, the default filters automatically change. When the default filter
values change, the LDAP server type changes to Custom to indicate that custom filters are used. When
security is enabled and any of these properties change, go to the Global security panel and click Apply or
OK to validate the changes.

Note: The initial profile creation configures WebSphere Application Server to use a federated repositories
security registry option with the file-based registry. This security registry configuration can be
changed to use other options, including the stand-alone LDAP registry. Instead of changing from
the federated repositories option to the stand-alone LDAP registry option under the User account
repository configuration, consider employing the federated repositories option, which provides for
LDAP configuration. Federated repositories provide a wide range of capabilities, including the ability
to have one or multiple user registries. It supports federating one or more LDAPs in addition to
file-based and custom registries. It also has improved failover capabilities, and a robust set of
member (user and group) management capabilities. Federated repositories is required when you
are using the new member management capabilities in WebSphere Portal 6.1 and above, and
Process Server 6.1 and above. The use of federated repositories is required for following LDAP
referrals, which is a common requirement in some LDAP server environments (such as Microsoft
Active Directory).

It is recommended that you migrate from stand-alone LDAP registries to federated repositories. If
you move to WebSphere Portal 6.1 and above, and or WebSphere Process Server 6.1 and above,
you should migrate to federated repositories prior to these upgrades. For more information about
federated repositories and its capabilities, read the Federated repositories topic. For more
information about how to migrate to federated repositories, read the Migrating a stand-alone LDAP
repository to a federated repositories LDAP repository configuration topic.

User filter:
Specifies the LDAP user filter that searches the user registry for users.

This option is typically used for security role-to-user assignments and specifies the property by which to
look up users in the directory service. For example, to look up users based on their user IDs, specify
(&(uid=%v) (objectclass=inetOrgPerson)). For more information about this syntax, see the LDAP directory
service documentation.

Information Value
Data type: String

164 Securing applications and their environment

Group filter:
Specifies the LDAP group filter that searches the user registry for groups
This option is typically used for security role-to-group assignments and specifies the property by which to

look up groups in the directory service. For more information about this syntax, see the LDAP directory
service documentation.

Information Value
Data type: String
User ID map:

Specifies the LDAP filter that maps the short name of a user to an LDAP entry.

Specifies the piece of information that represents users when users display. For example, to display
entries of the object class = inetOrgPerson type by their IDs, specify inetOrgPerson:uid. This field takes
multiple objectclass:property pairs delimited by a semicolon (;).

Information Value
Data type: String

Group ID map:
Specifies the LDAP filter that maps the short name of a group to an LDAP entry.

Specifies the piece of information that represents groups when groups display. For example, to display
groups by their names, specify *:cn. The asterisk (*) is a wildcard character that searches on any object
class in this case. This field takes multiple objectclass:property pairs, delimited by a semicolon (;).

Information Value
Data type: String

Group member ID map:
Specifies the LDAP filter that identifies user-to-group relationships.

For directory types SecureWay, and Domino, this field takes multiple objectclass:property pairs, delimited
by a semicolon (;). In an objectclass:property pair, the object class value is the same object class that is
defined in the group filter, and the property is the member attribute. If the object class value does not
match the object class in the group filter, authorization might fail if groups are mapped to security roles.
For more information about this syntax, see your LDAP directory service documentation.

For IBM Directory Server, Sun ONE, and Active Directory, this field takes multiple group attribute:member
attribute pairs delimited by a semicolon (;). These pairs are used to find the group memberships of a
user by enumerating all the group attributes that are possessed by a given user. For example, attribute
pair memberof :member is used by Active Directory, and ibm-allGroup:member is used by IBM Directory
Server. This field also specifies which property of an object class stores the list of members belonging to
the group represented by the object class. For supported LDAP directory servers, see “Supported directory
services”.

Information Value
Data type: String

Chapter 7. Authenticating users 165

Perform a nested group search:
Specifies a recursive nested group search.

Select this option if the Lightweight Directory Access Protocol (LDAP) server does not support recursive
server-side group member searches and if recursive group member search is required. It is not
recommended that you select this option to locate recursive group memberships for LDAP servers.
Application server security leverages the recursive search functionality of the LDAP server to search a
user's group memberships, including recursive group memberships. For example:

« IBM Directory Server is preconfigured by the application server security to recursively calculate a user's
group memberships using the ibm-allGroup attribute.

* SunONE directory server is preconfigured to calculate nested group memberships using the nsRole
attribute.

Information Value
Data type: String

Kerberos user filter:

Specifies the Kerberos user filter value. This value can be modified when Kerberos is configured and is
active as one of the preferred authentication mechanisms.

Information Value
Data type: String

Certificate map mode:

Specifies whether to map X.509 certificates into an LDAP directory by EXACT_DN or
CERTIFICATE_FILTER. Specify CERTIFICATE_FILTER to use the specified certificate filter for the

mapping.

Information Value
Data type: String

Certificate filter:

Specifies the filter certificate mapping property for the LDAP filter. The filter is used to map attributes in the
client certificate to entries in the LDAP registry.

If more than one LDAP entry matches the filter specification at runtime, authentication fails because the
result is an ambiguous match. The syntax or structure of this filter is:
(&(uid=${SubjectCN}) (objectclass=inetOrgPerson)). The left side of the filter specification is an LDAP
attribute that depends on the schema that your LDAP server is configured to use. The right side of the
filter specification is one of the public attributes in your client certificate. The right side must begin with a
dollar sign ($) and open bracket ({) and end with a close bracket (}). You can use the following certificate
attribute values on the right side of the filter specification. The case of the strings is important:
o ${UniqueKey}
e ${PublicKey}
e ${IssuerDN}
e ${Issuer<xx>}
where <xx> is replaced by the characters that represent any valid component of the Issuer
Distinguished Name. For example, you might use ${IssuerCN} for the Issuer Common Name.
e ${NotAfter}
* ${NotBefore}

166 Securing applications and their environment

${SerialNumber}
${SigAlgName}

« ${SigA1g0ID}
${SigAlgParams}
${SubjectDN}

e ${Subject<xx>}

where <xx> is replaced by the characters that represent any valid component of the Subject
Distinguished Name. For example, you might use ${SubjectCN} for the Subject Common Name.
* ${Version}

Information Value
Data type: String

Configuring Lightweight Directory Access Protocol search filters

Use this topic to configure the LDAP search filters. These steps are required to modify existing user and
group filters for a particular LDAP directory type, and also to set up certificate filters to map certificates to
entries in the LDAP server.

Before you begin

WebSphere Application Server uses Lightweight Directory Access Protocol (LDAP) filters to search and
obtain information about users and groups from an LDAP directory server. A default set of filters is
provided for each LDAP server that the product supports. You can modify these filters to fit your LDAP
configuration. After the filters are modified and you click OK or Apply the directory type in the Standalone
LDAP registry panel changes to custom, which indicates that custom filters are used. Also, you can
develop filters to support any additional type of LDAP server. The effort to support additional LDAP
directories is optional and other LDAP directory types are not supported. Complete the following steps in
the administrative console.

Procedure
1. Click Security > Global security.
2. Under User account repository, select Standalone LDAP registry and click Configure.

3. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user
registry settings.

4. Modify the user filter, if necessary. The user filter is used for searching the registry for users and is
typically used for the security role-to-user assignment. The filter is also used to authenticate a user
with the attribute that is specified in the filter. The filter specifies the property that is used to look up
users in the directory service.

In the following example, the property that is assigned to %v, which is the short name of the user,
must be a unique key. Two LDAP entries with the same object class cannot have the same short
name. To look up users based on their user IDs (uid) and to use the inetOrgPerson object class,
specify the following syntax:

(&(uid=%v) (objectclass=inetOrgPerson)
For more information about this syntax, see the r‘Using specific directory servers as the LDAP server’1

on page 170|documentation.

5. Modify the Kerberos user filter, if necessary. The Kerberos user filter name is used for searching the
registry for the Kerberos principal name. Specify the LDAP attribute that holds the Kerberos principal
name.

IBM Lotus Domino default krbuser filter:
(&(krbPrincipalName=%v)(objectcategory=Person))

Chapter 7. Authenticating users 167

10.

IBM SecureWay Directory Server default krbuser filter:
(&(krbPrincipalName=%v)(objectcategory=ePerson))

Microsoft Active Directory default krbuser filter:
(&(userprincipalname=%yV)(objectcategory=user))

Sun Java System Directory Server default krbuser filter:
(&(krbPrincipalName=%v)(objectcategory=inetOrgPerson))

Novell eDirectory default krbuser filter:
(&(krbPrincipalName=%v)(objectcategory=Person))

Optional: If your using Federated Repositories, modify the Kerberos attribute name if necessary. The
Kerberos attribute name is used for searching the registry for Kerberos principal. Specify the LDAP
attribute that holds the Kerberos principal name.

IBM Lotus Domino default krbuser filter:
krbPrincipalName

IBM SecureWay Directory Server default krbuser filter:
krbPrincipalName

Microsoft Active Directory default krbuser filter:
userprincipalname

Sun Java System Directory Server default krbuser filter:
krbPrincipalName

Novell eDirectory default krbuser filter:
krbPrincipalName

Modify the group filter, if necessary. The group filter is used in searching the registry for groups and is
typically used for the security role-to-group assignment. Also, the filter is used to specify the property
by which to look up groups in the directory service.

In the following example, the property that is assigned to %v, which is the short name of the group,
must be a unique key. Two LDAP entries with the same object class cannot have the same short
name. To look up groups based on their common names (CN) and to use either the groupOfNames
object class or the groupOfUniqueNames object class, specify the following syntax:

(&(cn=%v) (| (objectclass=groupOfNames) (objectclass=group0fUniqueNames)))
For more information about this syntax, see the [‘Using specific directory servers as the LDAP server]

on page 170|documentation.

Modify the user ID map, if necessary. This filter maps the short name of a user to an LDAP entry and
specifies the piece of information that represents users when these users are displayed with their
short names. For example, to display entries of object class = inetOrgPerson by their IDs, specify
inetOrgPerson:uid. This field takes multiple objectclass:property pairs, delimited by a semicolon (;).
To provide a consistent value for methods like the getCallerPrincipal method and the getUserPrincipal
method, the short name that is obtained by using this filter is used. For example, the CN=Bob Smith,
ou=austin.ibm.com, 0=IBM, c=US user can log in using any attributes that are defined, for example,
email address, social security number, and so on, but when these methods are called, the bob user
ID is returned no matter how the user logs in.

Note: Only the getUserDisplayName API honors the user ID map.

Modify the group ID map filter, if necessary. This filter maps the short name of a group to an LDAP
entry and specifies the piece of information that represents groups when groups display. For example,
to display groups by their names, specify *:cn. The asterisk (*) is a wildcard character that searches
on any object class in this case. This field takes multiple objectclass:property pairs, delimited by a
semicolon (;).

Modify the group member ID map filter, if necessary. This filter identifies user-to-group memberships.
For SecureWay, and Domino directory types, this field is used to query all the groups that match the

168 Securing applications and their environment

11.

12.

13.

specified object classes to see if the user is contained in the specified attribute. For example, to get
all the users that belong to groups with the groupOfNames object class and the users that are
contained in the member attributes, specify groupOfNames:member. This syntax, which is a property of
an object class, stores the list of members that belong to the group that is represented by the object
class. This field takes multiple objectclass:property pairs that are delimited by a semicolon (;). For
more information about this syntax, see the|“Using specific directory servers as the LDAP server” od

For the IBM Tivoli Directory Server, Sun ONE, and Active Directory, this field is used to query all
users in a group with the information that is stored in the user object. For example, the
memberof:member filter (for Active Directory) is used to get the memberof attribute of the user object
to obtain all the groups to which the user belongs. The member attribute is used to get all the users
in a group that use the Group object. Using the User object to obtain the group information improves
performance.

Select the Perform a nested group search option if your LDAP server does not support recursive
server-side searches.

Modify the Certificate map mode, if necessary. You can use the X.590 certificates for user
authentication when LDAP is selected as the registry. This field is used to indicate whether to map
the X.509 certificates into an LDAP directory user by EXACT_DN or CERTIFICATE_FILTER. If
EXACT_DN is selected, the DN in the certificate must exactly match the user entry in the LDAP
server, including case and spaces.

Select the Ignore case for authorization option on the Standalone LDAP registry settings to make
the authorization case insensitive. To access the Standalone LDAP registry settings panel, complete
the following steps:

a. Click Security > Global security.

b. Under User account repository, click the Available realm definitions drop-down list,
selectStandalone LDAP registry.

If you select CERTIFICATE_FILTER, specify the LDAP filter for mapping attributes in the client
certificate to entries in LDAP. If more than one LDAP entry matches the filter specification at run time,
authentication fails because an ambiguous match results. The syntax or structure of this filter is: LDAP
attribute=${Client certificate attribute} (for example, uid=${SubjectCN}).

The left side of the f