IBM WebSphere Application Server Network Deployment
for IBM i, Version 8.0

Overview

Note
FBefore using this information, be sure to read the general information under [‘Notices” on page 1159

Compilation date: July 16, 2011

© Copyright IBM Corporation 2011.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents
How to send your comments

Changes to serve you more quickly .

Chapter 1. Learn about WebSphere applications: Overview and new features .

Guided activities for the administrative console

Tutorials .

Accessing the samples

Assembly tools

WebSphere Application Server archltecture
Three-tier architectures

Chapter 2. ActivitySessions .

The ActivitySession service .
Usage model for using ActmtySessmns W|th HTTP sessions
ActivitySession and transaction contexts .
ActivitySession and transaction container policies in comblnatlon
ActivitySession samples .
ActivitySession service: Resources for Iearnlng

Chapter 3. Application profiling
Application profiling.
Tasks and units of work consrderatlons
Application profiles .
Application profiling tasks

Chapter 4. Asynchronous beans .
Asynchronous beans .
Work managers .
Timer managers .
Example: Using connect|ons W|th asynchronous beans

Chapter 5. Batch applications .
Batch concepts . ..
Batch overview

Chapter 6. Bean Validation
Bean Validation . .

Chapter 7. Communications Enabled Applications .
Communications Enabled Applications concepts .

CEA call flow . .

CEA collaboration flow

CEA iWidgets .

Collaboration Dialog

Collaborative two-way forms

REST APIs in CEA .

Directory conventions .

Chapter 8. Client applications .
Types of client applications .
Terms used for clients. .
Application Client for WebSphere Appllcatlon Server

© Copyright IBM Corp. 2011

. XV

. XVii

.10
.10
.1
. 13
.14
.17

.19
.19
. 20
.22
. 23
. 29
. 30

. 33
. 33
. 34
. 35
. 36

. 39
. 39
. 42
. 48
. 49

. 51
. 51
. 51

. 57
. 57

. 61
. 61
. 62
. 63
. 65
. 65
. 68
. 70
. 76

. 79
. 79
. 81
. 82

Stand-alone thin clients .

Java EE client.

Java thin client

Applet client .
ActiveX to Enterprise JavaBeans (EJB) Bndge.
Pluggable Application Client Coe

Chapter 9. Data access resources
Data concepts.
Relational resource adapters and JCA
JDBC providers .
Data sources .
Data access beans . .
Connection management arch|tecture .
Data access: Resources for learning .
Service Data Objects: Resources for Iearnrng
Java Persistence APl (JPA) architecture.
JPA for WebSphere Application Server .
wsjpaversion command . .
wsjpa properties
Transaction support in WebSphere Applrcat|on Server
Resource manager local transaction (RMLT) .
Global transactions
Local transaction contamment
Local and global transactions
Client support for transactions
Commit priority for transactional resources.
Transactional high availability .
Transaction compensation and business actrvrty support
JTA support .

Chapter 10. Dynamic caching .
Dynamic cache service eviction policies.
Disk cache infrastructure enhancements
Eviction policies using the disk cache garbage coIIector
Example: Caching web services
Caching with Servlet 3.0

Chapter 11. EJB applications .

Enterprise beans .

Java EE application resource declaratlons
Message-driven beans - automatic message retrleval

Message-driven beans, activation specifications, and listener ports.

Message processing in ASF mode and non-ASF mode .
Message-driven beans - JCA components .
J2C activation specification configuration and use .
Activation specification optional binding properties .
Message-driven beans - transaction support . .
Message-driven beans - listener port components .
Access intent policies for EJB 2.x entity beans .
Concurrency control .
Read-ahead scheme hints.
Database deadlocks caused by lock upgrades
Access intent assembly settings
Java Persistence API (JPA) architecture.
JPA for WebSphere Application Server .

iV Overview

. 82
. 83
. 84
. 85
. 86
. 86

. 87
. 87
. 87
.9
. 93
. 94
. . 9
. 110
11
. 112
. 113
. 114
. 115
. 116
. 117
. 117
. 118
. 121
. 122
. 123
. 124
. 131
. 134

. 139
. 139
. 139
. 140
141
. 144

. 145
. 145
. 146
. 150
. 151
. 153
. 157
. 157
. 158
. 159
. 160
. 162
. 162
. 163
. 164
. 165
. 166
. 168

wsjpaversion command .
wsjpa properties
Transaction support in WebSphere Appllcatlon Server
Resource manager local transaction (RMLT) .
Global transactions
Local transaction contalnment
Local and global transactions
Client support for transactions
Commit priority for transactional resources.
Transactional high availability . .
Transaction compensation and business act|V|ty support.
JTA support . e

Chapter 12. Mail, URLs, and other Java EE resources
Mail service providers and mail sessions .o
Mail: Resources for learning .
JavaMail support for Internet Protocol 6. 0
URLs
URLs: Resouroes for Iearmng

Chapter 13. Managed beans
Managed beans .o

Chapter 14. Messaging resources .
Styles of messaging in applications
Types of messaging providers
Default messaging . .
JCA activation speC|f|cat|ons and service |ntegrat|on .
JMS connection factories and service integration
JMS queue resources and service integration
JMS topic resources and service integration .
Client access to JMS resources.
The createQueue or createTopic method and the default messagmg prowder
How JMS applications connect to a messaging engine on a bus. .

Chapter 15. Interoperation with WebSphere MQ.

Comparison of WebSphere Application Server and WebSphere MQ messagmg

Interoperation with WebSphere MQ: Comparison of architectures

Interoperation with WebSphere MQ: Comparison of key features

Interoperation with WebSphere MQ: Key WebSphere MQ concepts

Interoperation using the WebSphere MQ messaging provider . .
Network topologies: Interoperating by using the WebSphere MQ messagmg prowder .
WebSphere MQ messaging provider activation specifications . .
Enhanced features of the WebSphere MQ messaging provider .

Strict message ordering with the WebSphere MQ messaging provider and message drlven bean

(MDB) applications.
WebSphere MQ custom propemes
WebSphere MQ messages
How messages are passed between service |ntegrat|on and a WebSphere MQ network
Differences between service integration and a WebSphere MQ network . .
How service integration converts messages to and from WebSphere MQ format .
How to address bus destinations and WebSphere MQ queues
JNDI namespaces and connecting to different JMS provider enwronments
Interoperation using a WebSphere MQ link
Network topologies for interoperation using a WebSphere MQ I|nk
Message exchange through a WebSphere MQ link

Contents

. 168
. 170
. 170
. 172
. 172
. 173
. 176
177
177
. 179
. 186
. 189

. 193
. 193
. 193
. 194
. 194
. 194

. 197
. 197

. 199
. 199
. 200
. 202
. 203
. 203
. 204
. 205
. 207
. 209
.21

. 233
. 233
. 234
. 237
. 240
. 242
. 243
. 254
. 256

. 258
. 264
. 268
. 268
. 269
. 269
. 271
. 273
. 273
. 274
. 279

\'}

Point-to-point messaging with a WebSphere MQ network

Publish/subscribe messaging through a WebSphere MQ link .

Request-reply messaging through a WebSphere MQ link

Strict message ordering using the strict message ordering facility of the WebSphere Appl|cat|on

Server default messaging provider .

Securing connections to a WebSphere MQ network

Messaging between two application servers through WebSphere MQ .

Messaging between two WebSphere MQ networks through an application server
Interoperation using a WebSphere MQ server

Differences between a WebSphere MQ server and a WebSphere MQ I|nk

WebSphere MQ queue points and mediation points Coe

WebSphere MQ server and mediated exchange scenarios .

WebSphere MQ server: Connection and authentication .

User identification . .

Request-reply messaging usmg a WebSphere MQ server .

WebSphere MQ server: Transport chain security .

WebSphere MQ server: Restrictions with mixed level cells and clusters .

Chapter 16. Message-driven beans - automatic message retrieval.
Message-driven beans, activation specifications, and listener ports .
Message processing in ASF mode and non-ASF mode .
Message-driven beans - JCA components .

J2C activation specification configuration and use .

Activation specification optional binding properties .

Message-driven beans - transaction support .

Message-driven beans - listener port components .

Chapter 17. JMS interfaces - explicit polling for messages
Chapter 18. JMS components on Version 5 nodes.

Chapter 19. Naming and directory .
Naming. .o
Namespace Ioglcal view
Initial context support .
Lookup names support in deployment descrlptors and th|n cl|ents .
JNDI support in WebSphere Application Server .
Configured name bindings. .
Namespace federation .
Naming roles
Foreign cell bindings . .
Naming and directories: Resources for Iearnlng .

Chapter 20. Object Request Broker (ORB)

Object Request Brokers .
Logical pool distribution. .
Object Request Brokers: Resouroes for Iearnmg.

Chapter 21. About OSGi Applications.
An introduction to OSGi Applications .
Business goals and OSGi Applications .
The modularization challenge
The OSGi Framework
Enterprise OSGi .
The WebSphere programmlng model and OSGl.
The Blueprint Container. G

Vi Overview

. 283
. 285
. 290

. 292
. 293
. 294
. 295
. 296
. 297
. 300
. 301
. 304
. 306
. 307
. 307
. 308

. 311
. 312
. 313
. 317
. 318
. 319
. 319
. 321

. 323

. 325

. 327
. 327
. 327
. 330
. 331
. 334
. 334
. 336
. 337
. 339
. 339

. 341
. 341
. 341
. 342

. 343
. 344
. 344
. 345
. 346
. 347
. 348
. 351

Blueprint bundles .
Blueprint XML .
Beans and the Blueprint Contamer
Services and the Blueprint Container .
References and the Blueprint Container.
Scopes and the Blueprint Container .
Object values and the Blueprint Container .
Object life cycles and the Blueprint Container.
Resource references and the Blueprint Container .
Dynamism and the Blueprint Container .
Type converters and the Blueprint Container .
JNDI lookup for blueprint components
OSGi bundles and bundle archives
Enterprise bundle archives
Composite bundles
Application bundles, use bundles and prOV|S|on bundles
Web application bundles
Bundle and package versioning .
Manifest files. .
Example: OSGi bundle manlfest f|Ie . .
Example: OSGi composite bundle manifest file .
Example: OSGi application manifest file.
OSGi deployment manifest file .
Provisioning for OSGi applications.
OSGi application isolation and sharing .
Java 2 security and OSGi Applications .
JMS and OSGi Applications .
JPA and OSGi Applications
SCA and OSGi Applications . .
Transactions and OSGi Applications . .
Conversion of an enterprise application to an OSGl apphca‘uon .

Chapter 22. Portlet appllcatlons
Portlet container .
Portlets.
Portlet filters .
Portlet container

Chapter 23. Service integration .
Service integration technologies.
Service integration buses .
Bus members
Messaging engines
Mechanisms for stopping messagmg englnes
Message points. o
Messaging engine commumcahon
Security for messaging engines.
Applications with a dependency on messagmg engme ava|lab|I|ty
Bus destinations .
How JMS destinations relate to service mtegratlon destlnatlons .
Queue destinations .
Publish/subscribe messaging and toplc spaces .
Foreign destinations and alias destinations
Permanent bus destinations .
Temporary bus destinations .
Exception destinations .

Contents

. 351
. 352
. 353
. 355
. 356
. 358
. 359
. 361
. 362
. 363
. 365
. 366
. 367
. 367
. 370
. 371
. 372
. 373
. 375
. 375
. 376
. 377
. 380
. 380
. 382
. 383
. 384
. 385
. 387
. 387
. 390

. 393
. 393
. 393
. 393
. 395

. 397
. 397
. 398
. 400
. 401
. 402
. 403
. 408
. 413
. 414
. 414
. 416
. 418
. 419
. 424
. 428
. 429
. 430

Vii

Destination mediation
Destination routing paths .
Message points.
Message ordering . :
Strict message ordering for bus destlnatrons .
Message selection and f|lter|ng
Message stores
Relative advantages of a frle store and a data store
File stores.
Data stores .
Message store high avarlabrlrty
Service integration security .o
Service integration security plannrng
Messaging security and multiple security domalns
Messaging security
Security event logging . .
Messaging security audit events
Client authentication on a service |ntegrat|on bus
Role-based authorization .
Destination security .
Mediations security
Topic security .
Access control for multlple buses .
Message security in a service integration bus
High availability and workload sharing
WebSphere Application Server high ava|Iab|I|ty
Workload sharing . Coe
High availability .

Service integration high avarlabllrty and workload sharlng conflguratlons .

Mediations .
Mediation handlers and medratron handler Irsts .
Transactionality in mediations
Performance tuning for mediations.
Performance monitoring for mediations .
Concurrent mediations .

Mediation points .
Mediation context |nformat|on
Mediations security

Mediation application |nstallat|on
Mediation programming. .

Service integration configurations .
Bus configurations.

Bootstrap members .
Service integration notification events

Message reliability levels - JMS delivery mode and service mtegratron qualrty of service .

Dynamic reloading of configuration files .
Service integration backup.

Chapter 24. Session Initiation Protocol (SIP) applications .

SIP in WebSphere Application Server
SIP applications Coe .
SIP container
SIP converged proxy.

SIP high availability .

Chapter 25. Spring applications .

Viil Overview

. 431
. 432
. 433
. 439
. 441
. 443
. 444
. 444
. 445
. 447
. 452
. 455
. 456
. 458
. 459
. 460
. 460
. 463
. 464
. 465
. 466
. 467
. 469
. 470
. 47
. 471
. 471
. 491
. 494
. 522
. 523
. 525
. 525
. 526
. 526
. 526
. 527
. 527
. 528
. 529
. 531
. 532
. 561
. 562
. 563
. 566
. 567

. 569
. 569
. 570
. 583
. 583
. 584

. 591

Spring Framework.

Presentation layer and the Sprrng Framework
Data access and the Spring Framework. .
Transaction support and the Spring Framework .
JMX and MBeans with the Spring Framework
JMS and the Spring Framework. .
Class loaders and the Spring Framework .
Thread management and the Spring Framework

Chapter 26. Transactions

Transaction support in WebSphere Applrcatron Server
Resource manager local transaction (RMLT) .
Global transactions
Local transaction contarnment
Local and global transactions
Client support for transactions
Commit priority for transactional resources.
Transactional high availability .
Transaction compensation and business actrvrty support
JTA support .

Chapter 27. Work area.
Overview of work area service .
Work area property modes
Nested work areas
Distributed work areas . .
WorkArea service: Special consrderatrons .

Chapter 28. Web applications .
Learn about web applications
Web applications . .
Asynchronous request drspatcher .
Sessions . .
Session management support
Distributed sessions . .
Memory-to-memory rephcatron .
Memory-to-memory session part|t|on|ng
Clustered session support .
Scheduled invalidation . .
Base in-memory session pool size.
HTTP session invalidation .
Write operations
HTTP sessions: Resources for Iearnmg
Asynchronous request dispatcher .
Asynchronous request dispatcher .

Chapter 29. Web services
Overview: Online garden retailer web services scenarios .
Web services online garden retailer scenario: Static inquiry on supplrer .

Web services online garden retailer scenario: Dynamic inquiry on supplier .

Web services online garden retailer scenario: Cross supplier inquiry .
Service-oriented architecture . .

Web services approach to a service- orlented archltecture .

Web services business models supported in SOA .
Web services

Web Services for Java EE specrfrcatron

. 591
. 591
. 591
. 593
. 595
. 596
. 597
. 597

. 599
. 599
. 600
. 600
. 601
. 605
. 605
. 606
. 607
. 615
. 618

. 623
. 623
. 624
. 625
. 626
. 627

. 629
. 629
. 629
. 641
. 647
. 647
. 648
. 648
. 651
. 651
. 652
. 652
. 653
. 654
. 654
. 655
. 655

. 661
. 661
. 663
. 665
. 666
. 668
. 669
. 670
. 671
. 672

Contents

ix

Artifacts used to develop web services .674

WSDL067
SOAP L s s s s e
L T 1210}
JAXB LT
JAX-RPC Lo e e s a2
WS-I Basic Profile.T714
WS-I Attachments ProfileT716
Overview of IBMJAX-RST16
Web Services Addressing support L oo TT
Web Services Addressing overview . . . Y 4210
Web Services Addressing version mteroperabrlrty Y 2353
Web Services Addressing application programming model727
Web Services Addressing annotations .T727
Web Services Addressing security Y 22°
Web Services Addressing: firewalls and |ntermed|ary nodes Y 4< 10]
Web Services Addressing and the service mtegratron bus T32
Web Services Addressing APIs Y <
IBM proprietary Web Services Addressing SPIs e e e e T35
Web Services Resource Framework support .738
Web Services Resource Framework base faults. T40
Web Services Resource Framework resource property and Ilfecycle operatlons e T44
Web Services Distributed Management Y 416}
Web Services Distributed Management resource management Co . . 748
Web Services Distributed Management manageab|l|ty capabilities for WebSphere Applrcat|on
Server resource types . . . e T48
Web Services Distributed Management support in the applrcatron server. 755
Web Services Distributed Management in a stand-alone application server mstance S . 757
Web Services Distributed Management in a WebSphere Application Server, Network Deployment
cell Y Y4
Web Services Dlstnbuted Management in an adm|n|strat|ve agent enwronment 758
Notifications from the application server Web Services Distributed Management resources 759
Web Services Invocation Framework (WSIF) . 761
Goalsof WSIFo Tet
WSIF Overview.T7863
WS-Policy. . . . e e eT66
Web service prowders and polrcy conflguratlon sharlng .. B (74
Web service clients and policy configuration to use the service prowder pollcy Y (1]
WS-MetadataExchange requestsT72
WS-ReliableMessaging . . . Y ¢
WS-ReliableMessaging - How it works e £
Benefits of using WS-ReliableMessaging .775
Qualities of service for WS-ReliableMessaging .775
Use patterns for WS-ReliableMessaging .776
WS-ReliableMessaging sequences .780
WS-ReliableMessaging - terminology. . . . Y £ < {0]
WS-ReliableMessaging: supported speC|f|cat|ons and standards £ <1
WS-ReliableMessaging roles and goals 783
WS-ReliableMessaging - requirements for mteractron W|th other |mplementat|ons 784
WS-Transaction eT785
Web Services Atomic Transactlon support in the appllcatlon server.785
Web Services Business Activity support in the application server . . . £ S 1°)
Web services transactions, high availability, firewalls and intermediary nodes B £)
Transaction compensation and business activity support.793
WS-Transaction and mixed-versioncells .79
Business activity API. .T798

X Overview

Overview of the Version 3 UDDI registry
Databases and production use of the UDDI regrstry
UDDI registry terminology .
Web Services Security concepts .
What is new for securing web services .
Web Services Security configuration con3|derat|ons
Default bindings and runtime properties for Web Services Securlty .
Web Services Security provides message integrity, confrdentrahty, and authentlcatlon .
Bus-enabled web services.
Bus-enabled web services: Frequently asked questrons
Planning your bus-enabled web services installation .
Endpoint listeners and inbound ports: Entry points to the service mtegratron bus
Outbound ports and port destinations.
Service integration technologies and JAX-RPC handlers
Non-bound WSDL.

UDDI registries: Web service dlrectorles that can be referenced by bus enabled web services

SOAP with attachments: A definition .
Operation-level security: Role-based authorrzatlon
Service integration technologies and WS-Security .

Web services gateway .
Web services gateway: Frequently asked questrons
What is new and changed: Web services gateway .
Target services and gateway services
JAX-RPC handlers and proxy operation.
Coexistence: Preserve or migrate a Version 5.1 gateway

Chapter 30. WS-Notification
WS-Notification: Overview .
Base notification
Brokered notification .
WS-Topics .
WS-Notification: Benefrts .
WS-Notification and end-to-end rellablllty
WS-Notification terminology .
Terminology from the WS- Notlflcat|on standards
WebSphere Application Server-specific WS-Notification termmology
WS-Notification: How client applications interact at runtime.
WS-Notification: Supported bindings .
WS-Notification and policy set configuration
Reasons to create multiple WS-Notification services in a bus
Reasons to create multiple WS-Notification service points .
Options for associating a permanent topic namespace with a bus toplc space
WS-Notification topologies.
Simple web services topology .
Topology for WS-Notification as an entry or exrt pornt to the service |ntegrat|on bus
Network deployment of WS-Notification topology
WS-Notification in a clustered environment
Event publication between cells topology .
Event publication between cells through an MQ network topology .

Chapter 31. XML applications .
Overview of XML support . .

XSLT 2.0, XPath 2.0, and XQuery 1 0 major new functrons
Overview of the XML Samples application . S
Building and running a sample XML application .

Contents

. 800
. 802
. 803
. 806
. 806
. 834
. 836
. 838
. 906
. 906
. 907
. 908
. 909
. 909
. 910

911

. 912
. 913
. 913
. 915
. 915
. 916
. 917
. 917
. 918

. 921
. 921
. 924
. 924
. 926
. 928
. 929
. 930
. 930
. 934
. 936
. 937
. 938
. 939
. 940
. 940
. 942
. 944
. 945
. 946
. 947
. 951
. 952

. 955
. 955
. 955
. 957
. 960

Xi

Chapter 32. What is new in this release .

Chapter 33. Overview and new features for administering applications and their environments

What is new for administrators .

Introduction: System administration
Welcome to basic administrative archrtecture
Introduction: Administrative console .
Introduction: Administrative scripting (wsadmrn) .
Introduction: Administrative commands .
Introduction: Administrative programs.
Introduction: Administrative configuration data
Product library, directories, subsystem, job queue, job descnptron and output queues

Introduction: Environment . .
Introduction: Cell-wide settings .

Introduction: Application servers.
Introduction: Application servers.
Introduction: Web servers .
Introduction: Clusters. .

Mail, URLs, and other J2EE resources .

Data access resources .

Messaging resources

Chapter 34. Overview and new features for securing applications and their environment
Security ..
What is new for securlty specrallsts
What is new for securing web services .
Web Services Security enhancements
Supported functionality from OASIS specmcatrons
Web Services Security specification - a chronology .
Security planning overview .
Security considerations when regrsterlng a base Applrcat|on Server node W|th the admlnrstratrve
agent .
Security consrderatlons when addlng a base Appllcatron Server node to WebSphere Applrcatlon
Server, Network Deployment A e e e
Security: Resources for learning .

Chapter 35. Overview and new features for developing and deploying applications .
What is new for developers . .
Learn about WebSphere applications: OverV|ew and new features
Specifications and APl documentation .
Introduction: Web services . .
Introduction: Messaging resources .
Introduction: Dynamic cache
Learn about SIP applications
Learn about WebSphere programming extensrons
Introduction: Dynamic cache
Accessing the samples
Mail, URLs, and other J2EE resources.
Data access resources
Messaging resources .

Chapter 36. Overview and new features for monitoring
Performance: Resources for learning

Chapter 37. Overview and new features for tuning performance .

Xii Overview

. 963

973

. 973
. 973
. 974
. 976
. 977
. 978
. 978
. 978
. 978
. 980
. 981
. 981
. 981
. 982
. 983
. 984
. 985
. 986

. 987

. 987

. 994

. 994
.. 997
. 1001
. 1016
. 1022

. 1030

. 1031
. 1033

. 1037
. 1037
. 1037
. 1046
. 1058
. 1059
. 1059
. 1062
. 1063
. 1064
. 1066
. 1068
. 1069
. 1070

. 1071
. 1071

. 1075

Chapter 38. Overview and new features for troubleshooting
What is new for troubleshooters .

Chapter 39. What has changed in this release .
Chapter 40. WebSphere Application Server roles and goals
Chapter 41. Fast paths for WebSphere Application Server .

Chapter 43. WebSphere platform and related software

Chapter 44. Guided activities for the administrative console .

Chapter 45. Tutorials .

Chapter 46. Accessing the samples .

Chapter 47. Using the administrative clients
Chapter 48. Specifications and APl documentation .

Chapter 49. WebSphere Application Server architecture .
Three-tier architectures e e e e e

Chapter 50. Deprecated, stabilized, and removed features .

Deprecated features
Features deprecated in Version 8.0 .
Features deprecated in Version 7.0 .
Features deprecated in Version 6.1 .
Features deprecated in Version 6.0.2
Features deprecated in Version 6.0 .
Features deprecated in Version 5.1.1
Features deprecated in Version 5.1 .
Features deprecated in Version 5.0.2
Features deprecated in Version 5.0.1
Features deprecated in Version 5.0 .

Stabilized features .

Removed features Coe
Features removed in Version 8.0 .
Features removed in Version 7.0 .
Features removed in Version 6.1 .
Features removed in Version 6.0 .

Chapter 51. Assembly tools .

Chapter 52. Web resources for learning
Appendix. Directory conventions .
Notices .

Trademarks and service marks .

Index .

. 1077
. 1078

. 1079

. 1081

. 1083

. 1087

. 1089

. 1091

. 1093

. 1097

. 1099

111
. 1113

. 1115
. 1115
. 1116
. 1120
. 1124
. 1128
. 1128
. 1132
. 1132
. 1136
. 1138
. 1140
. 1142
. 1143
. 1144
. 1146
. 1148
. 1149

. 1151

. 1153

. 1157

. 1159

. 1161

. 1163

Contents

xiii

XiV Overview

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.
+ To send comments on articles in the WebSphere Application Server Information Center
1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail
form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

* To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax
them to 919-254-5250.

Be sure to include the document name and number, the WebSphere Application Server version you are
using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2011 XV

XVi Overview

Changes to serve you more quickly

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The
information center is the official delivery format for IBM WebSphere Application Server documentation. If
you use the PDF books primarily for convenient printing, it is now easier to print various parts of the
information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon
is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation
tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a
separate browser window as one HTML file. The HTML file includes each of the topics in the section,
with a table of contents at the top.

4. Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your
selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a
preferable limit. The feedback link is available at the end of most information center pages.

Under construction!

The Information Development Team for IBM WebSphere Application Server is changing its PDF book
delivery strategy to respond better to user needs. The intention is to deliver the content to you in PDF
format more frequently. During a temporary transition phase, you might experience broken links. During
the transition phase, expect the following link behavior:

» Links to Web addresses beginning with http:// work
» Links that refer to specific page numbers within the same PDF book work
* The remaining links will not work. You receive an error message when you click them

Thanks for your patience, in the short term, to facilitate the transition to more frequent PDF book updates.

© Copyright IBM Corp. 2011 Xvii

xvili Overview

Chapter 1. Learn about WebSphere applications: Overview
and new features

Use the Learn about WebSphere applications section as a starting point to study the programing model,
encompassing the many parts used in and by various application types supported by the application
server.

The programming model for applications deployed on this product has the following aspects.
» Java specifications and other open standards for developing applications
+ WebSphere® programming model extensions to enhance application functionality

» Containers and services in the application server, used by deployed applications, and which sometimes
can be extended

The diagram shows a single application server installation. The parts pertaining to the programming model
are discussed here. Other parts comprise the product architecture, independent of the various application
types outlined by the programming model. See r‘WebSphere Application Server architecture” on page 14.|

Java EE application components

The product supports application components that conform to Java Platform, Enterprise Edition (Java EE)
specifications.

Web applications run in the web container

The web container is the part of the application server in which web application components run.
Web applications are comprised of one or more related servlets, JavaServer Pages technology
(JSP files), and Hyper Text Markup Language (HTML) files that you can manage as a unit.
Combined, they perform a business logic function.

The web container processes servlets, JSP files, and other types of server-side includes. Each
application server runtime has one logical web container, which can be modified, but not created
or removed. Each web container provides the following.

Web container transport chains
Requests are directed to the web container using the web container inbound transport
chain. The chain consists of a TCP inbound channel that provides the connection to the
network, an HTTP inbound channel that serves HTTP requests, and a web container
channel over which requests for servlets and JSP files are sent to the web container for
processing.

Servlet processing
When handling servlets, the web container creates a request object and a response
object, then invokes the servlet service method. The web container invokes the servlet's
destroy method when appropriate and unloads the servlet, after which the JVM performs
garbage collection.

Servlets can perform such tasks as supporting dynamic web page content, providing
database access, serving multiple clients at one time, and filtering data.

JSP files enable the separation of the HTML code from the business logic in web pages.
IBM® extensions to the JSP specification make it easy for HTML authors to add the power
of Java technology to web pages, without being experts in Java programming.

HTML and other static content processing
Requests for HTML and other static content that are directed to the web container are

© IBM Corporation 2003 1

served by the web container inbound chain. However, in most cases, using an external
web server and web server plug-in as a front end to the web container is more appropriate
for a production environment.

Session management
Support is provided for the javax.servlet.http.HttpSession interface as described in the
Servlet application programming interface (API) specification.

An HTTP session is a series of requests to a servlet, originating from the same user at the
same browser. Sessions allow applications running in a web container to keep track of
individual users. For example, many web applications allow users to dynamically collect
data as they move through the site, based on a series of selections on pages they visit.
Where the user goes next, or what the site displays next, might depend on what the user
has chosen previously from the site. To maintain this data, the application stores it in a
"session."

SIP applications and their container

SIP applications are Java programs that use at least one Session Initiation Protocol (SIP)
servlet. SIP is used to establish, modify, and terminate multimedia IP sessions including IP
telephony, presence, and instant messaging.

Portlet applications and their container

Portlet applications are special reusable Java servlets that appear as defined regions on
portal pages. Portlets provide access to many different applications, services, and web
content.

EJB applications run in the EJB container

The EJB container provides all of the runtime services needed to deploy and manage enterprise
beans. It is a server process that handles requests for both session and entity beans.

Enterprise beans are Java components that typically implement the business logic of Java EE
applications, as well as accessing data. The enterprise beans, packaged in EJB modules, installed
in an application server do not communicate directly with the server. Instead, the EJB container is
an interface between EJB components and the application server. Together, the container and the
server provide the enterprise bean runtime environment.

The container provides many low-level services, including threading and transaction support. From
an administrative perspective, the container handles data access for the contained beans. A single
container can host more than one EJB Java archive (JAR) file.

Client applications and other types of clients

In a client-server environment, clients communicate with applications running on the server. Client
applications or application clients generally refers to clients implemented according to a particular set of
Java specifications, and which run in the client container of a Java EE-compliant application server. Other
clients in the WebSphere Application Server environment include clients implemented as web applications
(web clients), clients of web services programs (web services clients), and clients of the product systems
administration (administrative clients).

Client applications and their container
The client container is installed separately from the application server, on the client machine. It
enables the client to run applications in an EJB-compatible Java EE environment. The diagram
shows a Java client running in the client container.

This product provides a convenient |IaunchCIient tool| for starting the application client, along with
its client container runtime.

Depending on the source of technical information, client applications sometimes are called
application clients. In this documentation, the two terms are synonymous.

2 Overiew

Web clients, known also as web browser clients
The diagram shows a web browser client, which can be known simply as a web client, making a
request to the web container of the application server. A web client or web browser client runs in a
web browser, and typically is a web application.

Web services clients
Web services clients are yet another kind of client that might exist in your application serving
environment. The diagram does not depict a web services client. The web services information
includes information about this type of client.

Administrative clients
The diagram shows two kinds of administrative clients: a scripting client and the administrative
console that is the graphical user interface (GUI) for administering this product. Both are accessing
parts of the systems administration infrastructure. In the sense that they are basically the same for
whatever kind of applications you are deploying on the server, administrative clients are part of the
product architecture. However, because many of these clients are programs you create, they are
discussed as part of the programming model for completeness.

Web services

Web services
The diagram shows the web services engine, part of the web services support in the application
server runtime. Web services are self-contained, modular applications that can be described,
published, located, and invoked over a network. They implement a service-oriented architecture
(SOA), which supports the connecting or sharing of resources and data in a flexible and
standardized manner. Services are described and organized to support their dynamic, automated
discovery and reuse.

The product acts as both a web services provider and as a requestor. As a provider, it hosts web
services that are published for use by clients. As a requester, it hosts applications that invoke web
services from other locations. The diagram shows the web services engine in this capacity,
contacting a web services provider or gateway.

SCA composites

Service Component Architecture (SCA)
SCA composites consist of components that implement business functions in the form of services.

Data access, messaging, and Java EE resources

Data access resources
Connection management for access to enterprise information systems (EIS) in the application
server is based on the Java EE Connector Architecture (JCA) specification. The diagram shows
JCA services helping an application to access a database in which the application retrieves and
persists data.

The connection between the enterprise application and the EIS is done through the use of
EIS-provided resource adapters, which are plugged into the application server. The architecture
specifies the connection management, transaction management, and security contracts between
the application server and EIS.

The Connection Manager (not shown) in the application server pools and manages connections. It
is capable of managing connections obtained through both resource adapters defined by the JCA
specification and data sources defined by the JDBC 2.0 Extensions specification.

JDBC resources (JDBC providers and data sources) are a type of Java EE resource used by
applications to access data. Although data access is a broader subject than that of JDBC
resources, this information often groups data access under the heading of Java EE resources for
simplicity.

Chapter 1. Learn about WebSphere applications: Overview and new features 3

JCA resource adapters are another type of Java EE resource used by applications. The JCA
defines the standard architecture for connecting the Java EE platform to heterogeneous EIS.
Imagine an ERP, mainframe transaction processing, database systems, and legacy applications
not written in the Java programming language.

The JCA resource adapter is a system-level software driver supplied by EIS vendors or other
third-party vendors. It provides the connectivity between Java EE application servers or clients and
an EIS. To use a resource adapter, install the resource adapter code and create configurations
that use that adapter. The product provides a predefined relational resource adapter for your use.

Messaging resources and messaging engines
JMS support enables applications to exchange messages asynchronously with other JMS clients
by using JMS destinations (queues or topics). Applications can use message-driven beans to
automatically retrieve messages from JMS destinations and JCA endpoints without explicitly polling
for messages.

For inbound non-JMS requests, message-driven beans use a Java EE Connector Architecture
(JCA) 1.5 resource adapter written for that purpose. For JMS messaging, message-driven beans
can use a JCA-based messaging provider such as the default messaging provider that is part of
the product.

The messaging engine supports the following types of message providers.

Default messaging provider (service integration bus)
The default messaging provider uses the service integration bus for transport. The default
message provider provides point-to-point functions, as well as publish and subscribe
functions. Within this provider, you define JMS connection factories and destinations that
correspond to service integration bus destinations.

WebSphere MQ provider
You can use WebSphere MQ as the external JMS provider. The application server
provides the JMS client classes and administration interface, while WebSphere MQ
provides the queue-based messaging system.

Generic JMS provider
You can use another messaging provider as long as it implements the ASF component of
the JMS 1.0.2 specification. JMS resources for this provider cannot be configured using
the administrative console.

transition: Version 6 replaces the Version 5 concept of a JMS server with a messaging engine
built into the application server, offering the various kinds of providers mentioned
previously. The Version 5 messaging provider is offered for configuring resources for
use with Version 5 embedded messaging. You also can use the Version 5 default
messaging provider with a service integration bus.

EJB 2.1 introduces an ActivationSpec for connecting message-driven beans to
destinations. For compatibility with Version 5, you still can configure JMS
message-driven beans (EJB 2.0) against a listener port. For those message-driven
beans, the message listener service provides a listener manager that controls and
monitors one or more JMS listeners, each of which monitors a JMS destination on
behalf of a deployed message-driven bean.

Service integration bus

The service integration bus provides a unified communication infrastructure for messaging and
service-oriented applications. The service integration bus is a JMS provider that provides reliable
message transport and uses intermediary logic to adapt message flow intelligently into the
network. It supports the attachment of web services requestors and providers. Its capabilities are
fully integrated into product architecture, including the security, system administration, monitoring,
and problem determination subsystems.

4 Overiew

The service integration bus is often referred to as just a bus. When used to host JMS applications,
it is often referred to as a messaging bus. It consists of the following parts (not shown at this level
of detail in the diagram).

Bus members
Application servers added to the bus.

Messaging engine
The component that manages bus resources. It provides a connection point for clients to
produce or from where to consume messages.

Destinations
The place within the bus to which applications attach to exchange messages. Destinations
can represent web services endpoints, messaging point-to-point queues, or messaging
publish and subscribe topics. Destinations are created on a bus and hosted on a
messaging engine.

Message store
Each messaging engine uses a set of tables in a supported data store (such as a JDBC

database) to hold information such as messages, subscription information, and transaction
states.

Through the service integration bus web services enablement, you can:

* Make an internal service that is already available at a service destination available as a web
service.

* Make an external web service available at a service destination.
* Use the web services gateway to map an existing service, either an internal service or an
external web service, to a new web service that appears to be provided by the gateway.

Mail, URLs, and other Java EE resources

The following kinds of Java EE resources are used by applications deployed on a J2EE-compliant

application server.

» JDBC resources and other technology for data access (previously discussed)

» JCA resource adapters (previously discussed)

» JMS resources and other messaging support (previously discussed)

» JavaMail support, for applications to send Internet mail
The JavaMail APIs provide a platform and protocol-independent framework for building
Java-based mail client applications. The APIs require service providers, known as protocol
providers, to interact with mail servers that run on the appropriate protocols.
A mail provider encapsulates a collection of protocol providers, including Simple Mail Transfer
Protocol (SMTP) for sending mail; Post Office Protocol (POP) for receiving mail; and Internet
Message Access Protocol (IMAP) as another option for receiving mail. To use another protocol,
you must install the appropriate service provider for the protocol.
JavaMail requires not only service providers, but also the JavaBeans Activation Framework
(JAF), as the underlying framework to handle complex data types that are not plain text, such
as Multipurpose Internet Mail Extensions (MIME), URL pages, and file attachments.

* URLSs, for describing logical locations
URL providers implement the functionality for a particular URL protocol, such as HTTP, enabling
communication between the application and a URL resource that is served by a particular
protocol. A default URL provider is included for use by any URL resource with protocols based
on the supported Java Platform, Standard Edition (Java SE) specification, such as HTTP, FTP,
or File. You also can plug in your own URL providers that implement additional protocols.

* Resource environment entries, for mapping logical names to physical names

Chapter 1. Learn about WebSphere applications: Overview and new features 5

The java:comp/env environment provides a single mechanism by which both the JNDI name
space objects and local application environment objects can be looked up. The product provides
numerous local environment entries by default.

The Java EE specification also provides a mechanism for defining customer environment entries
by defining entries in the standard deployment descriptor of an application. The Java EE
specification uses the following methods to separate the definition of the resource environment
entry from the application.

— Requiring the application server to provide a mechanism for defining separate administrative
objects that encapsulate a resource environment entry. The administrative objects are
accessible using JNDI in the application server local name space (java:comp/env).

— Specifying the administrative object's JNDI lookup name and expected returned object type.
This specification is performed in the aforementioned resource environment entry in the
deployment descriptor.

The product supports the use of resource environment entries with the following administrative
concepts.

— A resource environment entry defines the binding target (JNDI name), factory class, and
return object type (via the link to a referenceable) of the resource environment entry.

— A referenceable defines the class name of the factory that returns object instances
implementing a Java interface.

— A resource environment provider groups together the referenceable, resource environment
entries and any required custom properties.

Security

Security programming model and infrastructure
The product provides security infrastructure and mechanisms to protect sensitive Java EE
resources and administrative resources and to address enterprise end-to-end security
requirements on authentication, resource access control, data integrity, confidentiality, privacy, and
secure interoperability.

Security infrastructure and mechanisms protect Java Platform, Enterprise Edition (Java EE)
resources and administrative resources, addressing your enterprise security requirements. In turn,
the security infrastructure of this product works with the existing security infrastructure of your
multiple-tier enterprise computing framework. Based on open architecture, the product provides
many plug-in points to integrate with enterprise software components to provide end-to-end
security.

The security infrastructure involves both a programming model and elements of the product
architecture that are independent of the application type.

Additional services for use by applications

Naming and directory
Each application server provides a naming service that in turn provides a Java Naming and
Directory Interface (JNDI) name space. The service is used to register resources hosted on the
application server. The JNDI implementation is built on top of a Common Object Request Broker
Architecture (CORBA) naming service (CosNaming).

JNDI provides the client-side access to naming and presents the programming model used by
application developers. CosNaming provides the server-side implementation and is where its name
space is actually stored. JNDI essentially provides a client-side wrapper of the name space stored
in CosNaming, and interacts with the CosNaming server on behalf of the client.

Clients of the application server use the naming architecture to obtain references to objects related
to those applications. The objects are bound into a mostly hierarchical structure called the name

6 Overiew

space. It consists of a set of name bindings, each one of which is a name relative to a specific
context and the object bound with that name. The name space can be accessed and manipulated
through a name server.

This product provides the following naming and directory features.

» Distributed name space, for additional scalability

» Transient and persistent partitions, for binding at various scopes

* Federated name space structure across multiple servers

» Configured bindings for defining bindings bound by the system at server startup

» Support for CORBA Interoperable Naming Service (INS) object URLs

Note that with the addition of virtual member manager to provide federated repository support for

product security, the product now offers more extensive and sophisticated identity management
capabilities than ever before, especially in combination with other WebSphere and Tivoli® products.

Object Request Broker (ORB)
The product uses an ORB to manage interaction between client applications and server
applications, as well as among product components. An ORB uses IIOP to enable clients to make
requests and receive requests from servers in a network distributed environment.

The ORB provides a framework for clients to locate objects in the network and call operations on
those objects as though the remote objects were located in the same running process as the
client, providing location transparency.

Although not shown in the diagram, one place in which the ORB comes into play is where the
client container is contacting the EJB container on behalf of a Java client.

Transactions
Part of the application server is the transaction service. The product provides advanced
transactional capabilities to help application developers avoid custom coding. It provides support
for the many challenges related to integrating existing software assets with a Java EE
environment. These measures include ActivitySessions (described below).

Applications running on the server can use transactions to coordinate multiple updates to
resources as one unit of work such that all or none of the updates are made permanent.
Transactions are started and ended by applications or the container in which the applications are
deployed.

The application server is a transaction manager that supports coordination of resource managers
and participates in distributed global transactions with other compliant transaction managers.

The server can be configured to interact with databases, JMS queues, and JCA connectors
through their local transaction support when distributed transaction support is not required.
How applications use transactions depends on the type of application, for example:

» A session bean either can manage its transactions itself, or delegate the management of
transactions to the container.

« Entity beans use container-managed transactions.
* Web components, such as servlets, use bean-managed transactions.

The product handles transactions with the following components.

» A transaction manager supports the enlistment of recoverable XAResources and ensures each
resource is driven to a consistent outcome, either at the end of a transaction, or after a failure
and restart of the application server.

» A container manages the enlistment of XAResources on behalf of deployed applications when it
performs updates to transactional resource managers such as databases. Optionally, the
container can control the demarcation of transactions for EJB applications that have enterprise
beans configured for container-managed transactions.

Chapter 1. Learn about WebSphere applications: Overview and new features 7

* An API handles bean-managed enterprise beans and servlets, allowing such application
components to control the demarcation of their own transactions.

WebSphere extensions

WebSphere programming model extensions are the programming model benefits you gain by purchasing
this product. They represent leading edge technology to enhance application capability and performance,
and make programming and deployment faster and more productive.

In addition, your applications can use the Eclipse extension framework. Your applications are extensible as
soon as you define an extension point and provide the extension processing code for the extensible area
of the application. You can also plug an application into another extensible application by defining an
extension that adheres to the target extension point requirements. The extension point can find the newly
added extension dynamically and the new function is seamlessly integrated in the existing application. It
works on a cross Java Platform, Enterprise Edition (Java EE) module basis. The application extension
registry uses the Eclipse plug-in descriptor format and application programming interfaces (APIs) as the
standard extensibility mechanism for WebSphere applications. Developers who build WebSphere
application modules can use WebSphere Application Server extensions to implement Eclipse tools and to
provide plug-in modules to contribute functionality such as actions, tasks, menu items, and links at
predefined extension points in the WebSphere application. For more information about this feature, see
[Application extension registry|

The various WebSphere programming model extensions, and the corresponding application services that
support them in the application server runtime, can be considered in three groups: Business Object Model
extensions, Business Process Model extensions, and extensions for producing Next Generation
Applications.

Extensions pertaining to the Business Object Model

Business object model extensions operate with business objects, such as enterprise bean (EJB)
applications.

Application profiling
Application profiling is a WebSphere extension for defining strategies to dynamically control
concurrency, prefetch, and read-ahead.

Application profiling and access intent provide a flexible method to fine-tune application
performance for enterprise beans without impacting source code. Different enterprise beans, and
even different methods in one enterprise bean, can have their own intent to access resources.
Profiling the components based on their access intent increases performance in the application
server runtime.

Dynamic query
Dynamic query is a WebSphere programming extension for unprecedented application flexibility. It
lets you dynamically build and submit queries that select, sort, join, and perform calculations on
application data at runtime. Dynamic Query service provides the ability to pass in and process EJB
query language queries at runtime, eliminating the need to hard-code required queries into
deployment descriptors during application development.

Dynamic query improves enterprise beans by enabling the client to run custom queries on EJB
components during runtime. Until now, EJB lookups and field mappings were implemented at
development time and required further development or reassembly in order to be changed.

Dynamic cache
The dynamic cache service improves performance by caching the output of servlets, commands,
and JSP files. This service within the application server intercepts calls to cacheable objects and
either stores the output of the object or serves the content of the object from the dynamic cache.

8 Overiew

Because Java EE applications have high read-write ratios and can tolerate small degrees of
latency in the currency of their data, the dynamic cache can create opportunity for significant gains
in server response time, throughput, and scalability.

Features include cache replication among clusters, cache disk offload, Edge side include caching,
and external caching - the ability to control caches outside of the application server, such as that
of your Web server.

Extensions pertaining to the Business Process Model

Business process model extensions provide process, workflow functionality, and services for the
application server. Use them in conjunction with business integration capabilities.

ActivitySessions
ActivitySessions are a WebSphere extension for reducing the complexity of dealing with
commitment rules and limitations associated with one-phase commit resources.

ActivitySessions provide the ability to extend the scope of multiple local transactions, and to group
them. This enables them to be committed based on deployment criteria or through explicit program
logic.

Web services
Web services are self-contained, modular applications that can be described, published, located,
and invoked over a network. They implement a services oriented architecture (SOA), which
supports the connecting or sharing of resources and data in a very flexible and standardized
manner. Services are described and organized to support their dynamic, automated discovery and
reuse.

Extensions for creating next generation applications

Next generation extentions can be used in applications that need the specific extensions. These enable
next generation development by leveraging the latest innovations that build on today's Java EE standards.
This provides greater control over application development, execution, and performance than was ever
possible before.

Asynchronous beans
Asynchronous beans offer performance enhancements for resource-intensive tasks by enabling
single tasks to run as multiple tasks. Asynchronous scheduling facilities can also be used to
process parallel processing requests in "batch mode" at a designated time. The product provides
full support for asynchronous execution and invocation of threads and components within the
application server. The application server provides execution and security context for the
components, making them an integral part of the application.

Startup beans
Startup beans allow the automatic execution of business logic when the application server starts or
stops. For example, they might be used to pre-fill application-specific caches, initialize
application-level connection pools, or perform other application-specific initialization and
termination procedures.

Object pools
Object pools provide an effective means of improving application performance at runtime, by
allowing multiple instances of objects to be reused. This reuse reduces the overhead associated
with instantiating, initializing, and garbage-collecting the objects. Creating an object pool allows an
application to obtain an instance of a Java object and return the instance to the pool when it has
finished using it.

Internationalization
The internationalization service is a WebSphere extension for improving developer productivity. It
allows you to automatically recognize the time zone and location information of the calling client,

Chapter 1. Learn about WebSphere applications: Overview and new features 9

so that your application can act appropriately. The technology enables you to deliver each user,
around the world, the right date and time information, the appropriate currencies and languages,
and the correct date and decimal formats.

Scheduler
The scheduler service is a WebSphere programming extension responsible for starting actions at
specific times or intervals. It helps minimize IT costs and increase application speed and
responsiveness by maximizing utilization of existing computing resources. The scheduler service
provides the ability to process workloads using parallel processing, set specific transactions as
high priority, and schedule less time-sensitive tasks to process during low traffic off-hours.

Work areas
Work areas are a WebSphere extension for improving developer productivity. Work areas provide
a capability much like that of "global variables." They provide a solution for passing and
propagating contextual information between application components.

Work areas enable efficient sharing of information across a distributed application. For example,
you might want to add profile information as each customer enters your application. By placing this
information in a work area, it will be available throughout your application, eliminating the need to
hand-code a solution or to read and write information to a database.

Guided activities for the administrative console

The topic describes the guided activities that are available in the administrative console. Guided activities
lead you through common administrative tasks that require you to visit multiple administrative console
pages.

Table 1. Quick reference: Accessing the guided activities. The following table gives you the web address for the
guided activities in the administrative console.

The guided activities are available from the main page of the administrative console. The page is displayed after you
log into the administrative console. To open the console, enter this web address in your web browser:

http://your_fully qualified server_name:9060/ibm/console

Depending on your configuration, your web address might differ. Other factors can affect your ability to access the
console. See |Starting and logging off the administrative console| for details, as needed.

Guided activities display each administrative console page that you need to perform a task, surrounded by
the following information to help you perform the task successfully.

* An introduction to the task, introducing essential concepts and describing when and why to perform the
task

» Other tasks to do before and after performing the task

* The main steps to complete during this task

* Hints and tips to help you avoid and recover from problems

» Links to field descriptions and extended task information in the online documentation

Tutorials

This topic describes how to find tutorials and their accompanying samples, for learning how to accomplish
your goals with the product.

IBM Education Assistant tutorials
The [IBM Education Assistant site| provides education resources that you can use at your
convenience.

developerWorks tutorials and training
The [Tutorials and Training page]| of developerWorks provides tutorials and other training resources
that you can use at your convenience.

10 Overview

http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp
http://www.ibm.com/developerworks/training/tutorials.html

Accessing the samples

The product offers samples that demonstrate common enterprise application tasks. Many samples also
provide instructions for deployment and coding examples.

The product provides samples in two ways:

Plants By WebSphere sample installed with the product

If you select to install samples when installing the product and when creating an application server

profile, the Plants By WebSphere application is included with the product. The application

demonstrates several Java Platform, Enterprise Edition (Java EE) functions, using an online store

that specializes in plant and garden tool sales.

See |Installing the Plants By WebSphere sample}

Samples downloadable from the Samples, Version 8.0 information center
The product provides component-specific samples that you can download at any time from a
download site.

+ [Available samples|
+ [Downloading samples|

Installing the Plants By WebSphere sample

To install the Plants By WebSphere sample, perform the following steps.
1. Install the product.

By default, only the Plants By WebSphere sample is installed in the app_server_root/samples directory.

A Plants By WebSphere pre-built enterprise archive named pbw-ear.ear is in the /samples/
PlantsByWebSphere/pbw-ear/target directory.

Installation instructions are in the /samples/PlantsByWebSphere/docs directory.

You can build or modify the sample source code to support your project. The source code is in a src

directory.

2. To run the sample in a distributed WebSphere Application Server, Network Deployment environment,
install and configure the samples in a stand-alone application server profile installation, and then add

the stand-alone application server profile as a managed node of the deployment manager cell.

You can use a deployment manager administrative console or wsadmin addNode command to make

an application server a managed node of a deployment manager. For the wsadmin addNode
command, use the dmgr_host argument with the -includeapps and -includebuses options.

For example:

addNode dmgr_hostname -includeapps -includebuses

where dmgr_hostname is name of the computer that hosts your deployment manager profile.
3. Start the application server.

Available samples

Samples that you can download include, for example, the following materials:

Communications Enabled Applications (CEA) samples

The CEA sample applications provide two main services, telephony access and multi-modal web

interaction. Use this collection of sample applications to explore the services and to use as a
starting point when developing your own communication enabled applications.

OSGi samples

The OSGi samples help you develop and deploy modular applications that use both Java EE and

OSGi technologies.

Chapter 1. Learn about WebSphere applications: Overview and new features

1

XML samples
The XML samples demonstrate use of the XML API and supported specifications.

Internationalization service sample
The Internationalization service sample demonstrates how to use the internationalization service in
Java EE applications, specifically within servlets and enterprise beans.

Web services samples

These samples demonstrate both Java API for XML-based RPC (JAX-RPC) and Java API for XML
Web Services (JAX-WS) web services that use Java Platform, Enterprise Edition (Java EE) beans
and JavaBeans components.

The JAX-WS web service samples demonstrate the implementation of one-way and two-way web
services that highlight the use of web services standards such as WS-Addressing (WS-A) ,
WS-Reliable Messaging (WS-RM), and WS-Secure Conversation (WS-SC) and the SOAP
Message Transmission Optimization Mechanism (MTOM) technology.

Service Data Objects (SDO) sample
This sample demonstrates data access to a relational database through Service Data Objects
(SDO) and Java DataBase Connectivity (JDBC) Mediator technologies.

Downloading samples

You can download samples from the Samples, Version 8.0 information center.
1. Go to the Samples, Version 8.0 information center.

2. Determine which samples you want to download.

3. On the Downloads tab for the samples that you want, click a Download Sample link.

4. In the authentication window, click OK.

5. Download the compressed file, or individual sample files, to a directory on your workstation.

You might create the /samples/sample_type directory path on your workstation and download the
sample files to that directory path.

Many sample compressed files have an /installableApps directory that contains deployable prebuilt
archives. Other directories contain files such as sample-specific source archives, scripts, and instructions
for building deployable archives.

Limitations of the samples
* The samples are for demonstration purposes only.

The code that is provided is not intended to run in a secured production environment. The samples
support Java 2 Security, therefore the samples implement policy-based access control that checks for
permissions on protected system resources, such as file I/0.

The samples also support administrative security.

* Many of the samples connect to an Apache Derby database using the embedded framework of Apache
Derby. The embedded framework of Apache Derby has a limitation that only one Java virtual machine
(JVM) can access a given database instance. As a result, in a clustered application server environment,
the second server in the node fails to start the sample applications, because the first server (JVM)
already holds a connection to that database instance.

For applications that require multiple Java virtual machines to access the same Apache Derby instance,
use the Apache Derby networkServer framework.

Additional samples and examples

Samples on developerWorks®
Additional product samples are available on [WebSphere developerWorks

12 Overview

http://www.ibm.com/developerworks/websphere/library/samples/AppServer.html

Samples in tutorials
Many product tutorials rely on sample code. To find tutorials that demonstrate specific
technologies, browse the links in [‘Tutorials” on page 10

Examples in the product documentation
The product documentation contains many code snippets and examples. To locate these examples
easily, see the developer examples in the Reference section of the information center navigation
for the product edition that you are using.

IBM Telephone Directory
The IBM Telephone Directory business application is shipped separately from the product. For
information about obtaining and using the IBM Telephone Directory application, see
in the topic on e-business and web serving in the IBM i information center.

Assembly tools

WebSphere Application Server supports assembly tools that you can use to develop, assemble, and
deploy Java Platform, Enterprise Edition (Java EE) modules.

The IBM Rational® Application Developer for WebSphere Software product and the IBM Assembly and
Deploy Tools for WebSphere Administration product are supported assembly tools. Although this
information center refers to the products as the assembly tools, you can use the products to do more than
assemble modules.

The Rational Application Developer product provides an integrated development environment to design,
develop, analyze, test, profile, and deploy web, service-oriented architecture (SOA), Java, and Java EE
applications. It contains tools for software developers, including many simple wizards and visual editors,
that support the Java EE programming model.

The Rational Application Developer product provides Service Component Architecture (SCA) Development

Tools that you can use to assemble SOA components based on open SCA specifications. Use the tools to

do the following:

» Develop SCA service components implemented with annotated Java code.

» Wire components together graphically to form new composite services.

» Associate protocol bindings and quality of service intents to SCA components.

» Package SCA assets and deploy them to a WebSphere Application Server server or cluster in a
business-level application.

A subset of the capability in the Rational Application Developer product is available in Assembly and
Deploy Tools for WebSphere Administration, which is available with WebSphere Application Server. With
these tools, you can assemble and deploy applications to a WebSphere Application Server server or
cluster .

For documentation on the tools, see "Rational Application Developer documentation." Topics on application
assembly in this information center supplement that documentation.

The assembly tools are available in the WebSphere Application Server disc package with two licenses.
The license for IBM Assembly and Deploy Tools for WebSphere Administration does not expire. The
license for IBM Rational Application Developer for WebSphere Software is available on a Trial basis and is
only available for a limited time.

The Trial download for Rational Application Developer is available at http://www.ibm.com/developerworks/
downloads/r/rad/.

Chapter 1. Learn about WebSphere applications: Overview and new features 13

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzaty/itd.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzaty/itd.htm

Important: The assembly tools run on Windows and Linux Intel platforms. Users of WebSphere
Application Server on all platforms must assemble their modules using an assembly tool
installed on Windows or Linux Intel platforms. To install an assembly tool, follow instructions
available with the tool.

WebSphere Application Server architecture
This topic introduces the parts of the WebSphere Application Server.

Servers

WebSphere Application Server. An application server is a Java virtual machine (JVM) running user
applications. Application servers use Java technology to extend web server capabilities to handle web
application requests. An application server makes it possible for a server to generate a dynamic,
customized response to a client request. The WebSphere Application Server provides application servers.

For more introduction, refer to [“Introduction: Application servers” on page 981

For more information, refer to|Server collection|

Web servers. In the WebSphere Application Server, an application server works with a web server to
handle requests for web applications. The application server and web server communicate using an HTTP
plug-in for the web server.

For more information, refer to [Implementing a web server plug-in|

Clusters

Clusters. In the WebSphere Application Server, Network Deployment product, clusters and cluster
members help you monitor application servers and manage the workloads of servers.

For more information, refer to [Balancing workloads]

Core groups

Core groups settings. A core group is a statically defined component of the high availability manager.
The high availability manager is a product function that monitors the application server environment and
provides peer-to-peer failover of application server components.

Core group bridge settings. A core group bridge is a configurable service for communication between
core groups.

For more information, refer to |Core groups (high availability domains)l

Resources

JMS providers. The product supports messaging by providing a range of Java Message Service (JMS)
providers that conform to the JMS specifications. There are three main types of JMS provider that can be
configured in WebSphere Application Server: The WebSphere Application Server default messaging
provider (uses service integration as the provider), the WebSphere MQ messaging provider (uses your
WebSphere MQ system as the provider) and 3rd party messaging providers (use another company's
product as the provider).

For more information, refer to |“Introduction: Messaging resources” on page 1059.|

14 Overview

Environment

Cell-wide settings help handle requests among Web applications, web containers, and application servers
in a logical administrative domain called a cell.

Virtual hosts. A virtual host is a configuration enabling a single host to resemble multiple logical hosts.
Each virtual host has a logical name and a list of one or more DNS aliases by which it is known. A DNS
alias is the TCP/IP host name and port number that are used to request the servlet, for example:
hostname :80. The DNS alias might be the host name and port of a web server that routes to the
application server or the actual host name and port on which the application server is listening. Java
Platform, Enterprise Edition (Java EE) web modules are mapped to a virtual host at installation time. Web
modules that use the same virtual host can dispatch to resources within one another.

For more information, refer to |Virtual hosts|

WebSphere variables. Variables are used to control settings and properties relating to the server
environment. WebSphere variables are used to configure product path names such as JAVA_HOME,
cell-wide customization values, and the WebSphere Application Server for zZOS® location service.

For more information, refer to|WebSphere variables|

Shared libraries. Shared libraries are files used by multiple applications. You can define a shared library
at the cell, node, or server level. You can then associate the library to an application or server in order for
the classes represented by the shared library to be loaded in either a server-wide or application-specific
class loader.

For more information, refer to|Managing shared libraries|

Replication domains. Replication is a service that transfers data, objects, or events among application
servers. Data replication service (DRS) is the internal WebSphere Application Server component that
replicates data. Replication domains transfer data, objects, or events for session manager, dynamic cache,
or stateful session beans among application servers in a cluster.

For more information, refer to [Data replication|

System administration

Administrative console. The administrative console is a graphical interface that provides many features
to guide you through deployment and systems administration tasks. Use it to explore available
management options.

For more introduction, refer to [“Introduction: Administrative console” on page 976.|

Scripting client (wsadmin). The WebSphere administrative (wsadmin) scripting program is a powerful,
non-graphical command interpreter environment enabling you to run administrative operations in a
scripting language. You can also submit scripting language programs to run. The wsadmin tool is intended
for production environments and unattended operations.

For more introduction, refer to |“Introduction: Administrative scripting (wsadmin)” on page 977.|

Administrative programs (Java Management Extensions). The product supports a Java programming
interface for developing administrative programs. All of the administrative tools that are supplied with the
product are written according to the API, which is based on the industry standard Java Management
Extensions (JMX) specification.

For more introduction, refer to [‘Introduction: Administrative programs” on page 978

Chapter 1. Learn about WebSphere applications: Overview and new features 15

Command line tools. Command-line tools are simple programs that you run from an operating system
command-line prompt to perform specific tasks, as opposed to general purpose administration. Using the
tools, you can start and stop application servers, check server status, add or remove nodes, and complete
similar tasks.

For more introduction, refer to |“Introduction: Administrative commands” on page 978.|

Configuration files. Product configuration data resides in XML files that are manipulated by the previously
mentioned administrative clients.

For more introduction, refer to[“Introduction: Administrative configuration data” on page 978

Domains (cells, nodes). Servers, nodes and node agents, cells, and the deployment manager are
fundamental concepts in the administrative universe of the product. It is also important to understand the
various processes in the administrative topology and the operating environment in which they apply.

For more introduction, refer to[“Welcome to basic administrative architecture” on page 974/

Monitoring and tuning

Monitoring tools. Performance monitoring is an activity in which you collect and analyze data about the
performance of your applications and their environments. Performance monitoring tools include :

* Performance Monitoring Infrastructure (PMI) for monitoring to understand overall system health. For
more information, see |Performance Monitoring Infrastructure (PMI)|

» Request metrics for monitoring to understand resource usage. For more information, see [Why use
[request metrics?|

 Tivoli Performance Viewer (TPV) for viewing the performance data that you collected. For more
information, see [Why use Tivoli Performance Viewer?|

Tuning tools. Tuning the product helps you obtain the best performance from your website. Tuning the
product involves analyzing performance data and determining the optimal server configuration. This
determination requires considerable knowledge about the various components in the application server
and their performance characteristics. The performance advisors encapsulate this knowledge, analyze the
performance data and provide configuration recommendations to improve the application server
performance. Therefore, the performance advisors provide a starting point to the application server tuning
process and help you without requiring that you become an expert.

For more information, refer to [Obtaining advice from the advisors|

Troubleshooting

Diagnostic tools. Diagnostic tools help you isolate the source of problems. Many diagnostic tools are
available for this product.

For more information, refer to |Working with troubleshooting tools|

Support and self-help IBM Support can assist in deciphering the output of diagnostic tools. Refer to the
WebSphere Application Server Technical Support website for current information on known problems and
their resolution. Documents at this site can save you time gathering information that is needed to resolve a
problem.

For more information, refer to the |WebSphere Application Server Support pagel

16 Overview

http://www.ibm.com/software/webservers/appserv/was/support/

Three-tier architectures

WebSphere Application Server provides the application logic layer in a three-tier architecture, enabling
client components to interact with data resources and legacy applications.

Collectively, three-tier architectures are programming models that enable the distribution of application
functionality across three independent systems, typically:

» Client components running on local workstations (tier one)
* Processes running on remote servers (tier two)
» A discrete collection of databases, resource managers, and mainframe applications (tier three)

These tiers are logical tiers. They might or might not be running on the same physical server.

Tier 1 Tier 2 Tier 3
Presentation Business Logic Data/Resource
Clients Application Sarvers Existing Enterprise
information Systems
@ --
— -
: Rt~
Q . -: i
i
L=
e -
L
(] &
@ - -; I e f
1 =
: P I _
|)
i | F Resource Resources
= Manager [for example;
databases)

First tier. Responsibility for presentation and user interaction resides with the first-tier components. These
client components enable the user to interact with the second-tier processes in a secure and intuitive
manner. WebSphere Application Server supports several client types. Clients do not access the third-tier
services directly. For example, a client component provides a form on which a customer orders products.
The client component submits this order to the second-tier processes, which check the product databases
and perform tasks that are needed for billing and shipping.

Second tier. The second-tier processes are commonly referred to as the application logic layer. These
processes manage the business logic of the application, and are permitted access to the third-tier
services. The application logic layer is where most of the processing work occurs. Multiple client
components can access the second-tier processes simultaneously, so this application logic layer must
manage its own transactions.

In the previous example, if several customers attempt to place an order for the same item, of which only
one remains, the application logic layer must determine who has the right to that item, update the
database to reflect the purchase, and inform the other customers that the item is no longer available.
Without an application logic layer, client components access the product database directly. The database
is required to manage its own connections, typically locking out a record that is being accessed. A lock can
occur when an item is placed into a shopping cart, preventing other customers from considering it for
purchase. Separating the second and third tiers reduces the load on the third-tier services, supports more
effective connection management, and can improve overall network performance.

Third tier. The third-tier services are protected from direct access by the client components residing within
a secure network. Interaction must occur through the second-tier processes.

Chapter 1. Learn about WebSphere applications: Overview and new features 17

Communication among tiers. All three tiers must communicate with each other. Open, standard protocols
and exposed APls simplify this communication. You can write client components in any programming
language, such as Java or C++. These clients run on any operating system, by speaking with the
application logic layer. Databases in the third tier can be of any design, if the application layer can query
and manipulate them. The key to this architecture is the application logic layer.

18 Overview

Chapter 2. ActivitySessions

This page provides a starting point for finding information about ActivitySessions, a WebSphere extension
for reducing the complexity of commitment rules and limitations that are associated with one-phase commit
resources.

Use ActivitySessions to extend the scope and group multiple local transactions. With this capability, you
can commit these transactions based on either deployment criteria or through explicit program logic.

[More introduction.. |

The ActivitySession service

The ActivitySession service provides an alternative unit-of-work (UOW) scope to that provided by global
transaction contexts. An ActivitySession context can be longer-lived than a global transaction context and
can encapsulate global transactions.

Support for the ActivitySession service is shown in the following figure:

Resource adapter

Local

transaction
EJB
Container 1
|
F 3 F 3
A 4
EJBObject Bean

Enterprise application

A 4

UserActivitySession

| ActivitySession service |

Application server

Figure 1. The ActivitySession service. This figure shows the main components of the ActivitySession service in
WebSphere Application server. For an overview of these components, see the text that accompanies this figure.

Although the purpose of a global transaction is to coordinate multiple resource managers, enterprise
applications often use global transaction context as a “session” context through which to access Enterprise
JavaBeans (EJB) instances. An ActivitySession context is such a session context, and can be used in
preference to a global transaction in cases where coordination of two-phase commit resource managers is
not needed. Further, an ActivitySession can be associated with an HttpSession to extend a “client session”
to an HTTP client.

© IBM Corporation 2009 19

ActivitySession support is available to Web, EJB, and Java platform for enterprise applications client
components. EJB components can be divided into beans that exploit container-managed ActivitySessions
and beans that use bean-managed ActivitySessions.

The ActivitySession service provides a UserActivitySession application programming interface available to
enterprise application components that use bean-managed ActivitySessions for application-managed
demarcation of ActivitySession context. The ActivitySession service also provides a system programming
interface for container-managed demarcation of ActivitySession context and for container-managed
enlistment of one-phase resources (resource manager local transactions (RMLTs)) in such contexts.

The UserActivitySession interface is obtained by a Java Naming and Directory Interface (JNDI) lookup of
java:comp/websphere/UserActivitySession. This interface is not available to enterprise beans that use
container-managed ActivitySessions, and any attempt by such beans to obtain the interface results in a
NotFound exception.

A common scenario is an enterprise application accessing one or more enterprise beans backed by
non-transactional (one-phase commit) resources. The application, or its container, uses the
UserActivitySession interface to define the demarcation boundaries within which operations against the
enterprise beans are grouped and to control whether those grouped operations should be checkpointed or
discarded. The business logic of the enterprise beans does not need to use any ActivitySession interfaces.
The container into which the enterprise beans are deployed ensures that updates to the underlying
one-phase resource managers are coordinated.

The application can checkpoint an ActivitySession to create a new point of consistency within the
ActivitySession without ending the ActivitySession. The application can also use a reset operation to return
work performed in the ActivitySession back to the last point of consistency. The application can end the
ActivitySession with an operation to either checkpoint or reset all resources.

Usage model for using ActivitySessions with HTTP sessions

This topic describes how a Web application that runs in the WebSphere Web container can participate in
an ActivitySession context.

If the Web application is designed such that several servlet invocations occur as part of the same logical
application, then the servlets can use the HttpSession to preserve state across servlet invocations. The
ActivitySession context is one state that can be suspended into the HttpSession and resumed on a future
invocation of a servlet that accesses the HitpSession.

An ActivitySession is associated automatically with an HttpSession, so can be used to extend access to
the ActivitySession over multiple HTTP invocations, over inclusion or forwarding of servlets, and to support
Enterprise JavaBeans (EJB) activation periods that can be determined by the lifecycle of the Web HTTP
client. An ActivitySession context stored in an HttpSession can also be used to relate work for the
ActivitySession back to a specific Web HTTP client.

The Web container manages ActivitySessions based on deployment descriptor attributes associated with
servlets in the Web application module. The two usage models are:
* The Web container starts and ends ActivitySessions.

The Web application invokes a servlet that has been configured for container control of ActivitySessions.

— If an HitpSession exists then it has an associated ActivitySession.

— If an HitpSession does not exist, the servlet can start an HttpSession, which causes an
ActivitySession to be started automatically and associated with the HttpSession.

A servlet cannot start a new HttpSession until an existing HttpSession has been ended. Within an
HttpSession, the Web application can invoke other servlets that can use the associated ActivitySession
context. When the Web application invokes a servlet that ends the HttpSession, the ActivitySession is
ended automatically. This is shown in the following diagram:

20 Overview

Web application
invokes servlet

l

HttpSession

ActivitySession

As1

— —

— — — ‘_

Servlet starts
HttpSession
(ActivitySession started
automatically

L4
I
I
I
I
i
I
1
I
I

* The Web application starts and ends ActivitySessions.
The Web application invokes a servlet that has been configured for application control of

ActivitySesions.

*
I
1
I
I
I
I
1
I
I

Servlet invalidates
HttpSession
(ActivitySession checkpointed
automatically

— If an HttpSession exists and has an associated ActivitySession, the servlet can use or end that

ActivitySession context.

— If an HttpSession does not exist, the servlet can start an HttpSession, but this does not automatically

start an ActivitySession.

— If an HttpSession exists but does not have an associated ActivitySession, the servlet can start a new
ActivitySession. This automatically associates the ActivitySession with the HitpSession. The

ActivitySession lasts either until the ActivitySession is specifically ended or until the HttpSession is

ended.

The servlet cannot start a new ActivitySession until an existing ActivitySession has been ended. The

servlet cannot start a new HttpSession until an existing HttpSession has been ended.

Within an HttpSession, the Web application can invoke other servlets that can use or end an existing

ActivitySession context or, if no ActivitySession exists start a new ActivitySession. When the Web
application invokes a servlet that ends the HttpSession, the ActivitySession is ended automatically. This
is shown in the following diagram:

Web application
invokes servlet

l

HttpSession

ActivitySession

l

?y

s1

(PASZ

— —

’
I
I
I
I
I
I
1
I
I

Servlet
starts

HttpSession

A Web application can invoke servlets configured for either usage model.

Servlet starts and
ends ActivitySessions

The following points apply to both usage models:

i

specifically

*
I
1
I
I
I
I
1
I
I

Servlet invalidates
HttpSession
(ActivitySession As2
checkpointed automatically)

Chapter 2. ActivitySessions

21

To end an HttpSession (and any associated ActivitySession), the Web application must invalidate that
session. This causes the ActivitySession to be checkpointed.

Any downstream enterprise beans activated within the context of an ActivitySession can be held in
memory rather than passivated between servlet invocations, because the client effectively becomes the
Web HTTP client.

Web applications can be composed of many servlets, and each servlet in the Web application can be
configured with a value for ActivitySessionControl. ActivitySessionControl determines whether the servlet
or its container starts any ActivitySessions.

An ActivitySession context that encapsulates an active transaction context cannot be associated with an
HttpSession, because a transaction can hold database locks and should be designed to be shortlived. If

an application moves an active transaction to an HttpSession, the transaction is rolled back and the

ActivitySession is suspended into the HTTPSession. In general, you should design applications to use

ActivitySessions or other constructs as the long-lived entities and ACID transactions as short-duration

entities within these.

* Only one ActivitySession can be associated with an HttpSession at any time, for the duration of the
ActivitySession. An ActivitySession associated with an HttpSession remains associated for the duration
of that ActivitySession, and cannot be replaced with another until the first ActivitySession is completed.
The ActivitySession can be accessed by multiple servlets if they have shared access to the
HttpSession.

» ActivitySessions are not persistent. If a persistent HitpSession exists longer than the server hosting it,
any cached ActivitySession is terminated when the hosting server ends.

* |f the HttpSession times out before the associated ActivitySession has ended, then the ActivitySession is
reset’. This rolls back the ActivitySession resources to the last point of consistency:

— If the Web application invoked a servlet that has been configured for container control of
ActivitySessions, the ActivitySession resources are rolled back completely.

— If the Web application invoked a servlet that has been configured for application control of
ActivitySessions, the ActivitySession resources are rolled back to the last checkpoint taken by the
servlet, or completely if no checkpoint has been taken.

 If the ActivitySession times out, it is reset to the last point of consistency (see previous item), then the
HttpSession is ended.

ActivitySession and transaction contexts

This topic describes the hierarchical relationship between transaction and ActivitySession contexts. This
relationship, defined by the ActivitySession service, requires that any transaction context be either wholly
inside or wholly outside an ActivitySession context.

An ActivitySession context is very similar to a transaction context and extends the lifecycle choices for
activation of enterprise beans; it can encapsulate one or more transactions. The ActivitySession context is
a distributed context that, like the transaction context, can be bean- or container-managed. An
ActivitySession context is used mainly by a client to scope the lifecycle of an enterprise bean that it uses
either beyond or in the absence of individual transactions started by that client.

ActivitySessions have a lower overhead than transactions and can be used instead of transactions that are
only used to scope the lifecycle of a called enterprise bean. For a bean with an activation policy of
ActivitySession, the duration of any resource manager local transactions (RMLTs) started by that bean can
be bounded by the duration of the ActivitySession instead of the bean method in which the RMLT was
started. This provides flexibility and potential for using RMLTs in an enterprise bean beyond the scenarios
described in the Enterprise JavaBeans (EJB) specifications. The EJB specifications define that RMLTs
need to be completed before the end of the bean method, because the bean method is the only
containment boundary for local transactions available in those specifications.

1. Resetting an ActivitySession causes all the resources involved in the current ActivitySession to be rolled back to the last point of
consistency, but allows further work within the ActivitySession. When the reset completes, the thread is associated with the same
ActivitySession as it was before the reset was called. The ActivitySession resources remain associated with the ActivitySession
although they cannot participate further in the ActivitySession

22 Overview

The following rules defines the relationship between transactions and ActivitySessions.

* The EJB or Web container always uses a local transaction containment (LTC) if there is no global
transaction present. An LTC can be method-scoped or ActivitySession-scoped.

+ Before a method dispatch, the container ensures that there is always either an LTC or global transaction
context, but never both contexts.

+ ActivitySessions cannot be nested within each other. Any attempt to start a nested ActivitySession
results in a com.ibm.websphere.ActivitySession.NotSupportedException on
UserActivitySession.beginSession().

» An ActivitySession can wholly encapsulate one or more global transactions.

» The application can end an ActivitySession with an operation to either checkpoint or reset all resources.
The endSession(EndModeCheckpoint) operation checkpoints the work coordinated under the
ActivitySession then ends the context. The endSession(EndModeReset) operation resets, to the last
point of consistency, the work coordinated under the ActivitySession then ends the context.

* An ActivitySession cannot be encapsulated by a global transaction nor should ActivitySession and global
transaction boundaries overlap. Any attempt to start an ActivitySession in the presence of a global
transaction context results in a com.ibm.websphere.ActivitySession.NotSupportedException on
UserActivitySession.beginSession(). Any attempt to call endSession(EndModeCheckpoint) on an
ActivitySession that contains an incomplete global transaction results in a
com.ibm.websphere.ActivitySession.ContextPendingException. Neither the global transaction nor the
ActivitySession context are affected. If endSession(EndModeReset) is called then the ActivitySession is
reset and the global transactions marked rollback_only.

» Each global transaction wholly encapsulated by an ActivitySession is independent of every other global
transaction within that ActivitySession. A rollback of one global transaction does not affect any others or
the ActivitySession itself.

+ ActivitySession and global transaction contexts can coexist with an ActivitySession encapsulating one or
more serially-running global transactions.

+ EJB home methods cannot participate in an ActivitySession because this situation might cause
deadlocks. EJB home methods run in their own independent LTC.

ActivitySession and transaction container policies in combination

This topic provides details about the relationship between the deployment descriptor properties that
determine how the container manages ActivitySession boundaries.

If an enterprise bean uses ActivitySessions, how the EJB container manages ActivitySession boundaries
when delegating a method invocation depends on both the ActivitySession kind and Container
transaction type deployment descriptor attributes configured for the enterprise bean. The following table
lists the relationship between these two properties.

In each row, the final column describes the behavior that the EJB container takes with respect to global
transaction and ActivitySession context, based on the following abbreviations:

Sn An ActivitySession, where n indicates the ActivitySession instance.

Tn A transaction, where n indicates the transaction instance.

In every case where the container does not start or leave a global transaction context associated with the
thread, it starts (or obtains from the bean instance) a local transaction containment and associates that
with the thread. The duration of the local transaction containment is determined by a combination of the
local-transaction boundary descriptor (configured as part of the application deployment descriptor, and not
shown in the following table) and the presence or not of an ActivitySession context, as described in
IActivitySessions and transaction contexts,.

The rows highlighted in bold are not allowed.

Chapter 2. ActivitySessions 23

Table 2. Container behavior for activitysession and transaction policies deployment settings

Bean ActivitySession
policy(ActivitySession kind)

Bean transaction
policy(Container transaction

Received contexts

Container behavior

Required

type)
Required None Start S1, Start T1
S Start T1
T Suspend T1, Start S1, Start T2
S1, T1 No Action
Requires new None Start S1, Start T1
S Start T1
T Suspend T1, Start S1, Start T2
S1, T1 Suspend T1, Start T2
Supports None Start S1
S1 No Action
T Suspend T1, Start S1
S1, T1 No Action
Not supported None Start S1
S1 No Action
T Suspend T1, Start S1
S1, T1 Suspend T1
Mandatory None Exception
S1 Exception
T Exception
S1, T1 No action
Never None Start S1
S1 No Action
T1 Suspend T1, Start S1
S1, T1 Exception

24 Overview

Table 2. Container behavior for activitysession and transaction policies deployment settings (continued)

Bean ActivitySession
policy(ActivitySession kind)

Bean transaction
policy(Container transaction

Received contexts

Container behavior

Requires new

type)
Required None Start S1 + T1
S1 Suspend S1, Start S2 + T1
T1 Suspend T1, Start S1 + T2
S1+T1 Suspend S1 + T1, Start S2 +
T2
Requires new None Start S1 + T1
S1 Suspend S1, Start S2 + T1
T1 Suspend T1, Start S1 + T2
S1+T1 Suspend S1 + T1, Start S2 +
T2
Supports None Start S1
S1 Suspend S1, Start S2
T1 Suspend T1, Start S1
S1, T1 Suspend S1 + T1, Start S2
Not supported None Start S1
S1 Suspend S1, Start S2
T1 Suspend T1, Start S1
S1, T1 Suspend S1 + T1, Start S2
Mandatory None Exception
S1 Exception
T1 Exception
S1, T1 Exception
Never None Start S1
S1 Suspend S1, Start S2
T1 Suspend T1, Start S1
S1, T1 Suspend S1 + T1, Start S2

Chapter 2. ActivitySessions

25

Table 2. Container behavior for activitysession and transaction policies deployment settings (continued)

Bean ActivitySession Bean transaction Received contexts Container behavior
policy(ActivitySession kind) policy(Container transaction
type)
Supports Required None Start T1
S Start T1
T1 No Action
S1, T1 No Action
Requires new None Start T1
S Start T1
T Suspend T1, Start T2
S1, T1 Suspend T1, Start T2
Supports None No Action
S1 No Action
T1 No Action
S1, T1 No Action
Not supported None No Action
S1 No Action
T1 Suspend T1
S1, T1 Suspend T1
Mandatory None Exception
S1 Exception
T1 No Action
S1, T1 No Action
Never None No Action
S1 No Action
T Exception
S1, T1 Exception

26 Overview

Table 2. Container behavior for activitysession and transaction policies deployment settings (continued)

Bean ActivitySession Bean transaction Received contexts Container behavior
policy(ActivitySession kind) policy(Container transaction
type)
Not supported Required None Start T1
S1 Suspend S1, Start T1
T1 No Action
S1, T1 Suspend S1 + T1, Start T2
Requires new None Start T1
S1 Suspend S1, Start T1
T1 Suspend T1, Start T2
S1, T1 Suspend S1 + T1, Start T2
Supports None No Action
S1 Suspend S1
T1 No Action
S1, T1 Suspend S1 + T1
Not supported None No Action
S1 Suspend S1
T1 Suspend T1
S1, T1 Suspend S1 + T1
Mandatory None Exception
S1 Exception
T1 No Action
S1,T1 Exception
Never None No Action
S1 Suspend S1
T1 Exception
S1, T1 Suspend S1 + T1

Chapter 2. ActivitySessions

27

Table 2. Container behavior for activitysession and transaction policies deployment settings (continued)

Bean ActivitySession
policy(ActivitySession kind)

Bean transaction
policy(Container transaction

Received contexts

Container behavior

Mandatory

type)

Required None Exception
S Start T1
T Exception
S1, T1 No Action

Requires new None Exception
S Start T1
T Exception
S1, T1 Suspend T1, Start T2

Supports None Exception
S1 No Action
T Exception
S1, T1 No Action

Not supported None Exception
S1 No Action
T Exception
S1, T1 Suspend T1

Mandatory None Exception
S1 Exception
T Exception
S1, T1 No Action

Never None Exception
S1 No Action
T Exception
S1,T1 Exception

28 Overview

Table 2. Container behavior for activitysession and transaction policies deployment settings (continued)

Bean ActivitySession Bean transaction Received contexts Container behavior
policy(ActivitySession kind) policy(Container transaction
type)
Never Required None Start T1

S1 Exception
T1 No Action
S1, T1 Exception

Requires new None Start T1
S1 Exception
T1 Suspend T1, Start T2
S1,T1 Exception

Supports None No Action
S1 Exception
T1 No Action
S1,T1 Exception

Not supported None No Action
S1 Exception
T1 Suspend T1
S1,T1 Exception

Mandatory None Exception
S1 Exception
T1 No Action
S1,T1 Exception

Never None No Action
S1 Exception
T1 Exception
S1,T1 Exception

Bean managed Bean managed None No Action

S1 Suspend S1
T1 Suspend T1
S1, T1 Suspend S1 + T1

ActivitySession samples

WebSphere Application Server provides some ActivitySession samples.
MasterMind sample
This sample is based on the game MasterMind. It consists of the following components:
» A servlet, configured with the ActivitySession control kind attribute set to Container, that
accesses a stateful session bean.
» A stateful session bean, configured with an activation policy of ActivitySession containing
transient state data.

The servlet begins an HttpSession at the start of each new game, and ends it at the end of each
game; therefore an ActivitySession lasts for the duration of each game. The ActivitySession
activation policy stops the bean from being passivated and therefore the transient data remains in
memory. This sample demonstrates the association between HttpSession and ActivationSession in
the web container, and an ActivitySession-scoped activation policy.
Enterprise application client container and a CMP entity bean backed by a one-phase commit data
source
In this sample, the entity bean is configured with the following properties:

Chapter 2. ActivitySessions 29

+ TX_NOT_SUPPORTED

* An ActivitySession container managed policy of REQUIRES
* An LTC boundary of ActivitySession

* An LTC Resolution Control of ContainerAtBoundary

The client accesses the UserActivitySession, begins an ActivitySession, updates two instances of

the bean, then ends the ActivitySession. It does this twice using EndModeReset then

EndModeCheckpoint. This sample demonstrates the following functionality:

» Client access to the UserActivitySession interface

» Multiple resource manager local transactions (RMLTs) being scoped to the ActivitySession and
taking their completion direction automatically from that of the ActivitySession

The entity bean also holds a transient variable that each method call increments (gets and sets for
the persistent data). This value is checked before the end of the ActivitySession to show that the
same bean instance is used. The client checks for the correct results.
An enterprise application client container and two session beans with different ActivitySession
types This sample consists of an enterprise application client container and the following session beans:
+ SLBH1, a stateless session bean configured with an ActivitySession Type of Bean.
» SFB2, a stateful session bean configured with ActivitySession Type of Requires, an LTC
boundary of ActivitySession, LTC Resolution Contol of APPLICATION, and an LTC Unresolved
Action of ROLLBACK.

Both beans are configured with TX_NOTSUPPORTED.

This sample uses the following steps:

1. The client starts SLB1

2. SLB1 accesses the UserActivitySession interface, begins an ActivitySession, then calls a
method on SFB2

3. SFB2 accesses the UserActivitySession interface, begins an ActivitySession, calls a method on
SFB2

4. SFB2 gets a connection (setAutoCommit false) then uses JDBC to update a single-phase data
source.

5. Optionally, SLB1 calls a separate method on SFB2 to finish the work, either committing or
rolling back the RMLT.

6. SLB1 then ends the ActivitySession with an EndModeCheckpoint.

This sample demonstrates the following functionality:

» The ActivitySession completion direction is unconnected to the direction of the RMLTs, although
the containment of the RMLTs is bound to the ActivitySession.

* The container using the unresolved action when an RMLT is not completed.

* A bean-managed ActivitySessions bean using the UserActivitySession interface.

The sample checks for correct results and reports them back to the client.

ActivitySession service: Resources for learning

Use the links in this topic to find relevant supplemental information about ActivitySessions. The information
resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the
information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere
Application Server product, but is useful all or in part for understanding the product. When possible, links
are provided to technical papers and Redbooks® that supplement the broad coverage of the release
documentation with in-depth examinations of particular product areas.

Programming model and decisions
* The application programming interface (API) reference information.

30 Overview

Programming specifications
- [J2EE Activity Service for Extended Transactions|
- [Java Transaction API (JTA) 1.0.1]

Other
+ |WebSphere Business Integration Server Foundation|

« |List of IBM WebSphere Redbooks|
» |WebSphere technical library, including links to white papersl

Chapter 2. ActivitySessions 31

http://www.jcp.org/jsr/detail/95.jsp
http://java.sun.com/products/jta/
http://www.ibm.com/software/integration/wbisf/
http://www.redbooks.ibm.com/websphere
http://www.ibm.com/software/websphere/sw-library/

32 Overview

Chapter 3. Application profiling

This page provides a starting point for finding information about application profiling, a WebSphere
extension for defining strategies to dynamically control concurrency, prefetch, and read-ahead.

Application profiling and access intent provide a flexible method to fine-tune application performance for
enterprise beans without impacting source code. Different enterprise beans, and even different methods in
one enterprise bean, can have their own intent to access resources. Profiling the components based on
their access intent increases performance in the application server run time.

The application profiling service is not available for Enterprise JavaBeans (EJB) that are contained in a
web archive (WAR). As a result, application profiling tasks can not be accessed from an EJB in a WAR.

Application profiling

You can use application profiling to identify particular units of work to the product runtime environment.
The run time can tailor its support to the exact requirements of that unit of work.

Application profiling requires accurate knowledge of an application's transactional configuration and the
interaction of the application with its persistent state during the course of each transaction.

You can execute the analysis in either closed world or open world mode. A closed-world analysis assumes
that all possible clients of the application are included in the analysis and that the resulting analysis is
complete and correct. The results of a closed-world analysis report the set of all transactions that can be
invoked by a web, JMS, or application client. The results exclude many potential transactions that never
execute at run time.

An open-world analysis assumes that not all clients are available for analysis or that the analysis cannot
return complete or accurate results. An open-world analysis returns the complete set of possible
transactions.

The results of an analysis persist as an application profiling configuration. The assembly tool establishes
container managed tasks for servlets, JavaServer Pages (JSP) files, application clients, and Message
Driven Beans (MDBs). Application profiles for the tasks are constructed with the appropriate access intent
for the entities enlisted in the transaction represented by the task. However, in practice, there are many
situations where the tool returns at best incomplete results. Not all applications are amenable to static
analysis. Some factory and command patterns make it impossible to determine the call graphs. The tool
does not support the analysis of ActivitySessions.

You should examine the results of the analysis very carefully. In many cases you must manually modify
them to meet the requirements of the application. However, the tool can be an effective starting place for
most applications and may offer a complete and quick configuration of application profiles for some
applications.

Access intent is the only runtime component that makes use of the application profiling functionality. For
example, you can configure one transaction to load an entity bean with strong update locks and configure
another transaction to load the same entity bean without locks.

Application profiling introduces two new concepts in order to achieve this function: tasks and profiles.

Tasks A task is a configurable name for a unit of work. Unit of work in this case means either a
transaction or an ActivitySession. The task name is typically assigned declaratively on a J2EE
component that can initiate a unit of work. Most commonly, the task is configured on a method of
an Enterprise JavaBeans file that is declared either for container-managed transactions or
bean-managed transactions. Any unit of work that begins in the scope of a configured task is
associated with that task name. A unit of work can only be named when it is initiated, and the

© Copyright IBM Corp. 2011 33

name cannot change for the lifetime of that unit of work. A unit of work ignores any subsequent
task name configurations at any point after it has begun. The task is used for the duration of its
unit of work to identify configured policies specific to that unit of work.

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service's
console page, then tasks configured on J2EE 1.3 applications are not necessarily
associated with units of work and can arbitrarily be applied and overridden. This is not a
recommended mode of operation and can lead to unexpected deadlocks during database
access. Tasks are not communicated on requests between applications that are running
under the Application Profiling 5.x Compatibility Mode and applications that are not running
under the compatibility mode.

For a Version 6.x client to interact with applications run under the Application Profiling 5.x
Compatibility Mode, you must set the appprofileCompatibility system property to true in the
client process. You can do this by specifying the -CCDappprofileCompatibility=true option
when invoking the launchClient command.
Profiles
A profile is simply a mapping of a task to a set of access intent policies that are configured on
entity beans. When an invocation on a bean (whether by a finder method, a CMR getter, or a
dynamic query) requires data to be retrieved from the back end system, the current task
associated with the request is used to determine the exact requirement of the transaction. The
same bean loads and behaves differently in the context of the task-to-profile mapping. Each profile
provides the developer an opportunity to reconfigure the application's access intent. If a request is
operating in the absence of a task, the runtime environment uses either a method-level access
intent (if any) or a bean-level default access intent.

Note: The application profile configuration is application scope configuration data. If any
Enterprise JavaBean (EJB) module contains an application profile configuration, all other
EJB modules are implicitly regulated by the Application Profiling service even if they do not
contain application profile configuration data.

For example, an application has two EJB modules: EJBModule1 and EJBModule2.

The EJBModule1 has an application profile named AppProfile1. This AppProfile1 is
registered by a task named task1. This task1 becomes a known-to-application task and is
honored when associated with a unit of work within this application. With the presence of
any known-to-application task, method level access intent configurations are ignored and
only bean level access intent configurations are applied.

The EJBModule2 contains no application profile configuration data. All entity beans are not
configured with bean level access intent explicitly, but some methods have method level
access intent configurations. If an entity bean in the EJBModule2 is loaded in a unit of work
that is associated with task1, the bean-level access intent configuration is applied and
method level access intent configuration is ignored. Because the bean level access intent is
not set explicitly, the default bean level access intent, which is wsPessimisticUpdate-
WeakestLockAtLoad, is applied.

Tasks and units of work considerations

The application profiling function works under the unit of work (UOW) concept. UOW in this case means
either a transaction or an ActivitySession.

The task name on a method is used only when a UOW is begun, because of that method being invoked.

This gives it a more predictable data access pattern based on the active unit of work. To be more specific,
this approach ensures that a bean type with only one configured access intent is loaded within a UOW,

34 oOverview

because a bean is configured with only one access intent within an application profile. This configured
access intent for a bean type is determined at assembly time and is enforced by the Application Profile
service.

A task name is always associated with a unit of work, and that task name does not change for the duration
of that UOW. When a UOW associated with a method is begun because of that method being invoked, if a
task name is associated with the method then that task name is used to name the UOW. A task assigned
to a unit of work is considered a named UOW.

If a task name is not associated with the method that began the UOW, then a default access intent is used
and the UOW is unnamed. A unit of work can only be named when the UOW is begun and that task name
remains for the life of the UOW. Furthermore, the task assigned to a UOW can never be changed for the
life of that UOW. Any task names associated with a method are ignored if that method does not begin a
UOW (either container managed or component managed).

It is not possible to change the task name assigned to a unit of work. However, it is possible that in a call
sequence consisting of many different application calls a different task name might need to be used for
different calls. In this case it is important for the deployer to begin a new UOW and associate with the
UOW the necessary task name. For example, assume you have the following beans: sb1 is a session
bean, eb2 and eb3 are container managed persistence (CMP) entity beans. When sb1 is called, a
transaction is begun and task 't1' is associated with it. Further assume that sb1 then calls eb2 and eb3. If
neither eb2 or eb3 create a unit of work, then these beans execute within the UOW context from sb1 and
as such its task name (t1). If eb2 or eb3 need to execute within a task name other than t1, then these
beans must define a unit of work and associate with it the appropriate task name.

Note that if an application deployer does not specifically configure a transaction on a method, WebSphere
Application Server creates a global transaction by default. This is important because if a task is defined on
a method, but a UOW is not specifically configured on that method, the EJB container automatically
creates a global transaction on behalf of that method. As such, this task name is associated with the UOW
and any application profiles mapped to this task are used.

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service's console page,
then tasks configured on J2EE 1.3 applications are not necessarily associated with units of work
and can arbitrarily be applied and overridden. This is not a recommended mode of operation and
can lead to unexpected deadlocks during database access. Tasks are not communicated on
requests between applications that are running under the Application Profiling 5.x Compatibility
Mode and applications that are not running under the compatibility mode.

Application profiles

An application profile is the set of access intent policies that should be selectively applied for a particular
unit of work (a transaction or ActivitySession).

Application profiling enables applications to run under different sets of policies depending on the active
task under which the application is operating.

The active task depends upon the current unit of work mechanism. If the current unit of work is a global
transaction, then the task is the name associated with that transaction. If the global transaction was not
named when it was initiated, then there is no active task anywhere in the scope of that transaction.

If the current unit of work is a local transaction associated with an ActivitySession, then the task is the
name associated with that ActivitySession. If the ActivitySession was not named when it was initiated, then
there is no active task for any local transaction bound to that ActivitySession. If the current unit of work is
a local transaction that is not associated with an ActivitySession, then the task is the name associated with
that local transaction. If the local transaction was not associated with a task when the local transaction
was initiated, then there is no active task for the duration of that local transaction. In other words, the

Chapter 3. Application profiing 35

active task is the task associated with the unit of work on the thread that is coordinating database
resources. If the controlling unit of work was not associated with a task when that unit of work was
initiated, then there is no active task in the scope of that unit of work.

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service's console page,
then tasks configured on J2EE 1.3 applications are not necessarily associated with units of work
and can arbitrarily be applied and overridden. This is not a recommended mode of operation and
can lead to unexpected deadlocks during database access. Tasks are not communicated on
requests between applications that are running under the Application Profiling 5.x Compatibility
Mode and applications that are not running under the compatibility mode.

For a Version 6.x client to interact with applications run under the Application Profiling 5.x
Compatibility Mode, you must set the appprofileCompatibility system property to true in the client
process. You can do this by specifying the -CCDappprofileCompatibility=true option when invoking
the launchClient command.

Consider an application that centralizes the student records for a school district. These records are
frequently accessed by the school district's central office in order to generate reports. The report
generation process would be optimized if it held no locks with the back end system, and if the records
could be read into memory with as few back end operations as possible. Occasionally, however, the
records are updated by the students' instructors. Without the ability to distinguish between transactions,
the developer is forced to assume a worst-case scenario and, wishing to use pessimistic concurrency, lock
the records for all transactions.

Using the application profiling service, the developer can configure in as many ways as necessary the
access intent under which the students' records are loaded. Under one profile, the records can be
configured with an exclusive pessimistic update intent, not only locking-out competing transactions but
ensuring that the student is not removed from the system before the transaction completes. Under another
profile, the records can be configured with an optimistic intent as part of an object graph that is read from
the back end system in a single database operation. The task represented by the pessimistic profile
receives the strong-locking semantics required for certain transactions, while the task represented by the
optimistic profile receives the performance benefits appropriate for other transactions.

Application profiling tasks

Tasks are named units of work. They are the mechanism by which the runtime environment determines
which access intent policies to apply when an entity bean's data is loaded from the back end system.

Application profiles enable developers to configure an entity bean with multiple access intent policies; if
there are ninstances of profiles in a given application, each bean can be configured with as many as n
access intent policies.

A task is associated with a transaction or an ActivitySession at the initiation of the unit of work. The task,
which cannot change for the lifetime of the unit of work, is always available anywhere within the scope of
that unit of work to apply the access intent policy configured for that particular unit of work.

If an enterprise application is configured to use application profiling in any part of the application, then
application profiling is active and method-level access intent configurations are ignored when units of
works are associated with known-to-application tasks.

If an entity bean is loaded in a unit of work that is not associated with a task, or is associated with a task
that is unassociated with an application profile, the default bean-level access intent or the method-level
access intent configuration is applied. If a unit of work is associated with a task that is configured with an
application profile, the bean-level access intent configuration within the appropriate application profile is
applied.

36 Overview

Note: The application profile configuration is application scope configuration data. If any Enterprise
Javabeans (EJB) module contains an application profile configuration, all other EJB modules are
implicitly regulated by the Application Profiling service even if they do not contain application profile
configuration data.

For example, an application has two EJB modules: EJBModule1 and EJBModule2.

The EJBModule1 has an application profile named AppProfile1. This AppProfile1 is registered by a
task named task1. This task1 becomes a known-to-application task and is honored when
associated with a unit of work within this application. With the presence of any known-to-application
task, method level access intent configurations are ignored and only bean level access intent
configurations are applied.

The EJBModule2 contains no application profile configuration data. All entity beans are not
configured with bean level access intent explicitly, but some methods have method level access
intent configurations. If an entity bean in the EJBModule2 is loaded in a unit of work that is
associated with task1, the bean-level access intent configuration is applied and method level
access intent configuration is ignored. Because the bean level access intent is not set explicitly, the
default bean level access intent, which is wsPessimisticUpdate-WeakestLockAtLoad, is applied.

The active task depends upon the current unit of work mechanism. If the current unit of work is a global
transaction, then the task is the name associated with that transaction. If the global transaction was not
named when it was initiated, then there is no active task anywhere in the scope of that transaction.

If the current unit of work is a local transaction associated with an ActivitySession, then the task is the
name associated with that ActivitySession. If the ActivitySession was not named when it was initiated, then
there is no active task for any local transaction bound to that ActivitySession. If the current unit of work is
a local transaction that is not associated with an ActivitySession, then the task is the name associated with
that local transaction. If the local transaction was not associated with a task when the local transaction
was initiated, then there is no active task for the duration of that local transaction. In other words, the
active task is the task associated with the unit of work on the thread that is coordinating database
resources. If the controlling unit of work was not associated with a task when that unit of work was
initiated, then there is no active task in the scope of that unit of work.

For example, consider a school district application that calls through a session bean in order to interact
with student records. One method on the session bean allows administrators to modify the students'
records; another method supports student requests to view their own records. Without application profiling,
the two tasks would operate anonymously and the runtime environment would be unable to distinguish
work operating on behalf of one task or the other. To optimize the application, a developer can configure
one of the methods on the session bean with the task "updateRecords" and the other method on the
session bean with the task "readRecords". When registered with an application profile that has the student
bean configured with the appropriate locking access intent, the "updateRecords" task is assured that it is
not unnecessarily blocking transactions that need to_only read the records. For more information about the
relationships between tasks and units of work, see[‘Tasks and units of work considerations” on page 34.|

Tasks can be configured to be managed by the container or to be programmatically established by the
application. Container managed tasks can be configured on servlets, JavaServer Pages (JSP) files,
application clients, and the methods of Enterprise JavaBeans (EJB). Configured container-managed tasks
are only associated with units of work that the container initiates after the task name is set. Application
managed tasks can be configured on all J2EE components. In the case of enterprise beans they must be
bean managed transactions."

best-practices: If you select the 5.x Compatibility Mode attribute on the Application Profile Service's
console page, then tasks configured on J2EE 1.3 applications are not necessarily
associated with units of work and can arbitrarily be applied and overridden. This is not a
recommended mode of operation and can lead to unexpected deadlocks during database

Chapter 3. Application profiling 37

access. Tasks are not communicated on requests between applications that are running
under the Application Profiling 5.x Compatibility Mode and applications that are not
running under the compatibility mode.

For a Version 6.x client to interact with applications run under the Application Profiling 5.x
Compatibility Mode, you must set the appprofileCompatibility system property to true in
the client process. You can do this by specifying the -CCDappprofileCompatibility=true
option when invoking the launchClient command.

38 Overview

Chapter 4. Asynchronous beans
This page provides a starting point for finding information about asynchronous beans.

Asynchronous beans and asynchronous scheduling facilities offer performance enhancements for
resource-intensive tasks by enabling single tasks to run as multiple tasks.

Asynchronous beans

An asynchronous bean is a Java object or enterprise bean that can run asynchronously by a Java
Platform, Enterprise Edition (Java EE) application, using the Java EE context of the asynchronous bean
creator.

Asynchronous beans can improve performance by enabling a Java EE program to decompose operations
into parallel tasks. Asynchronous beans support the construction of stateful, active Java EE applications.
These applications address a segment of the application space that Java EE has not previously addressed
(that is, advanced applications that require application threading, active agents within a server application,
or distributed monitoring capabilities).

Asynchronous beans can run using the Java EE security context of the creator Java EE component.

These beans also can run with copies of other Java EE contexts, such as:

* Internationalization context

» Application profiles, which are not supported for Java EE 1.4 applications and deprecated for Java EE
1.3 applications

* Work areas

Asynchronous bean interfaces

Four types of asynchronous beans exist:

Work object
There are two work interfaces that essentially accomplish the same goal. The legacy
Asynchronous Beans work interface is com.ibm.websphere.asynchbeans.Work, and the CommonJ
work interface is commonj.work.Work. A work object runs parallel to its caller using the work
manager startWork or schedule method (startWork for legacy Asynchronous Beans and schedule
for CommondJ). Applications implement work objects to run code blocks asynchronously. For more
information on the Work interface, refer to the generated API documentation.

Timer listener
This interface is an object that implements the commonj\timers\TimerListener interface. Timer
listeners are called when a high-speed transient timer expires. For more information on the
TimerListener interface, refer to the generated API documentation.

Alarm listener
An alarm listener is an object that implements the com.ibom.websphere.asynchbeans.AlarmListener
interface. Alarm listeners are called when a high-speed transient alarm expires. For more
information on the AlarmListener interface, refer to the generated APl documentation.

Event listener
An event listener can implement any interface. An event listener is a lightweight, asynchronous
notification mechanism for asynchronous events within a single Java virtual machine (JVM). An
event listener typically enables Java EE components within a single application to notify each
other about various asynchronous events.

Supporting interfaces

Work manager
Work managers are thread pools that administrators create for Java EE applications. The
administrator specifies the properties of the thread pool and a policy that determines which Java
EE contexts the asynchronous bean inherits.

© Copyright IBM Corp. 2011 39

Commond Work manager
The Commond work manager is similar to the work manager. The difference between the two is
that the CommondJ work manager contains a subset of the asynchronous beans work manager
methods. Although CommondJ work manager functions in a Java EE 1.4 environment, each JNDI
lookup of a work manager does not return a new instance of the WorkManager. All the JNDI
lookup of work managers within a scope have the same instance.

Timer manager
Timer managers implement the commonj.timers.TimerManager interface, which enables Java EE
applications, including servlets, EJB applications, and JCA Resource Adapters, to schedule future
timer notifications and receive timer notifications. The timer manager for Application Servers
specification provides an application-server supported alternative to using the J2SE
java.util.Timer class, which is inappropriate for managed environments.

Event source
An event source implements the com.ibm.websphere.asynchbeans.EventSource interface. An
event source is a system-provided object that supports a generic, type-safe asynchronous
notification server within a single JVM. The event source enables event listener objects, which
implement any interface to be registered. For more information on the EventSource interface, refer
to the generated APl documentation.

Event source events
Every event source can generate its own events, such as listener count changed. An application
can register an event listener object that implements the class
com.ibm.websphere.asynchbeans.EventSourceEvents. This action enables the application to catch
events such as listeners being added or removed, or a listener throwing an unexpected exception.
For more information on the EventSourceEvents class, refer to the generated APl documentation.

Additional interfaces, including alarms and subsystem monitors, are introduced in the Developing
Asynchronous scopes topic, which discusses some of the advanced applications of asynchronous beans.

Transactions

Every asynchronous bean method is called using its own transaction, much like container-managed
transactions in typical enterprise beans. It is very similar to the situation when an Enterprise Java Beans
(EJB) method is called with TX_NOT_SUPPORTED. The runtime starts a local transaction containment
before invoking the method. The asynchronous bean method is free to start its own global transaction if
this transaction is possible for the calling Java EE component. For example, if an enterprise bean creates
the component, the method that creates the asynchronous bean must be TX_BEAN_MANAGED.

When you call an entity bean from within an asynchronous bean, for example, you must have a global
transactional context available on the current thread. Because asynchronous bean objects start local
transactional contexts, you can encapsulate all entity bean logic in a session bean that has a method
marked as TX_REQUIRES or equivalent. This process establishes a global transactional context from
which you can access one or more entity bean methods.

If the asynchronous bean method throws an exception, any local transactions are rolled back. If the
method returns normally, any incomplete local transactions are completed according to the unresolved
action policy configured for the bean. EJB methods can configure this policy using their deployment
descriptor. If the asynchronous bean method starts its own global transaction and does not commit this
global transaction, the transaction is rolled back when the method returns.

Access to Java EE component metadata
If an asynchronous bean is a Java EE component, such as a session bean, its own metadata is active
when a method is called. If an asynchronous bean is a simple Java object, the Java EE component

metadata of the creating component is available to the bean. Like its creator, the asynchronous bean can
look up the java:comp namespace. This look up enables the bean to access connection factories and

40 oOverview

enterprise beans, just as it would if it were any other Java EE component. The environment properties of
the creating component also are available to the asynchronous bean.

The java:comp namespace is identical to the one available for the creating component; the same
restrictions apply. For example, if the enterprise bean or servlet has an EJB reference of
java:comp/env/ejb/MyEJB, this EJB reference is available to the asynchronous bean. In addition, all of the
connection factories use the same resource-sharing scope as the creating component.

Connection management

An asynchronous bean method can use the connections that its creating Java EE component obtained
using java:comp resource references. (For more information on resource references, refer to the
References topic). However, the bean method must access those connections using a get, use or close
pattern. There is no connection caching between method calls on an asynchronous bean. The connection
factories or datasources can be cached, but the connections must be retrieved on every method call,
used, and then closed. While the asynchronous bean method can look up connection factories using a
global Java Naming and Directory Interface (JNDI) name, this is not recommended for the following
reasons:

« The JNDI name is hard coded in the application (for example, as a property or string literal).

» The connection factories are not shared because there is no way to specify a sharing scope.

For code examples that demonstrate both the correct and the incorrect ways to access connections from
asynchronous bean methods, refer to the Example: Asynchronous bean connection management topic.

Deferred start of Asynchronous Beans

Asynchronous beans support deferred start by allowing serialization of Java EE service context
information. The WorkWithExecutionContext createWorkWithExecutionContext(Work r) method on the
WorkManager interface will create a snapshot of the Java EE service contexts enabled on the
WorkManager. The resulting WorkWithExecutionContext object can then be serialized and stored in a
database or file. This is useful when it is necessary to store Java EE service contexts such as the current
security identity or Locale and later inflate them and run some work within this context. The
WorkWithExecutionContext object can run using the startWork() and doWork() methods on the
WorkManager interface.

All WorkWithExecutionContext objects must be deserialized by the same application that serialized it. All
EJBs and classes must be present in order for Java to successfully inflate the objects contained within.

Deferred start and security

The asynchronous beans security service context might require Common Secure Interoperability Version 2
(CSIv2) identity assertion to be enabled. Identity assertion is required when a WorkWithExecutionContext
object is deserialized and run to Java Authentication and Authorization Service (JAAS) subject identity
credential assignment. Review the following topics to better understand if you need to enable identity
assertion, when using a WorkWithExecutionContext object:

» Configuring Common Secure Interoperability Version 2 and Security Authentication Service
authentication protocol

* Identity Assertion

There are also issues with interoperating with WorkWithExecutionContext objects from different versions of
the product. Refer to the Interoperating with asynchronous beans topic.

JPA-related limitations

Use of asynchronous beans within a JPA extended persistence context is not supported.

Chapter 4. Asynchronous beans 41

A JPA extended persistence context is inconsistent with the scheduling and multi-threading capabilities of
asynchronous beans and will not be accessible from an asynchronous bean thread.

Likewise, an asynchronous bean should not be created such that it takes a
javax.persistence.EntityManager (or subclass) as a parameter since EntityManager instances are not
intended to be thread safe.

Work managers

A work manager is a thread pool created for Java Platform, Enterprise Edition (Java EE) applications that
use asynchronous beans.

Using the administrative console, an administrator can configure any number of work managers. The
administrator specifies the properties of the work manager, including the Java EE context inheritance
policy for any asynchronous beans that use the work manager. The administrator binds each work
manager to a unique place in Java Naming and Directory Interface (JNDI). You can use work manager
objects in any one of the following interfaces:

* Asynchronous beans
» Commond work manager (For details, see the CommondJ work manager section in this article.)

The selected type of interface is resolved during the JNDI lookup time. The interface type is the value that
you specify in the ResourceRef, rather than the interface type specified in the configuration object. For
example, you can have one ResourceRef for each interface per configuration object, and each
ResourceRef lookup returns that appropriate type of instance.

The work managers provide a programming model for the Java EE 1.4 applications. For more information,
see the Programming model section in this article.

Important: The javax.resource.spi.work.WorkManager class is a Java interface to be used by Java EE
Connector Architecture (JCA) resource adapters. It is not an actual implementation of the
WorkManager which is used by Java EE applications.

When writing a Web or Enterprise JavaBeans (EJB) component that uses asynchronous beans, the
developer should include a resource reference in each component that needs access to a work manager.
For more information on resource references, refer to the References topic. The component looks up a
work manager using a logical name in the component, java:comp namespace, just as it looks up a data
source, enterprise bean or connection factory.

The deployer binds physical work managers to logical work managers when the application is deployed.

For example, if a developer needs three thread pools to partition work between bronze, silver, and gold
levels, the developer writes the component to pick a logical pool based on an attribute in the client
application profile. The deployer has the flexibility to decide how to map this request for three thread pools.
The deployer might decide to use a single thread pool on a small machine. In this case, the deployer
binds all three resource references to the same work manager instance (that is, the same JNDI name). A
larger machine might support three thread pools, so the deployer binds each resource reference to a
different work manager. Work managers can be shared between multiple Java EE applications installed on
the same server.

An application developer can use as many logical work managers as necessary. The deployer chooses

whether to map one physical work manager or several to the logical work manager defined in the
application.

42 Overview

All Java EE components that need to share asynchronous scope objects must use the same work
manager. These scope objects have an affinity with a single work manager. An application that uses
asynchronous scopes should verify that all of the components using scope objects use the same work
manager.

When multiple work managers are defined, the underlying thread pools are created in a Java virtual
machine (JVM) only if an application within that JVM looks up the work manager. For example, there might
be ten thread pools (work managers) defined, but none are actually created until an application looks
these pools up.

Important: Asynchronous beans do not support submitting work to remote JVMs.
CommondJ Work Manager

The Commond work manager is similar to the work manager. The difference between the two is that the
Commond work manager contains a subset of the asynchronous beans work manager methods. Although
Commond work manager functions in a Java EE 1.4 environment, the interface does not return a new
instance for each JNDI naming lookup, since this specification is not included in the Java EE specification.

Remote start of work. The CommonJ Work specification optional feature for work running remotely is not
supported. Even if a unit of work implements the java.io.Serializable interface, the unit of work does
not run remotely.

How to look up a work manager

An application can look up a work manager as follows. Here, the component contains a resource
reference named wm/myWorkManager, which was bound to a physical work manager when the component
was deployed:

InitialContext ic = new InitialContext();
WorkManager wm = (WorkManager)ic.lookup("java:comp/env/wm/myWorkManager");

Inheritance Java EE contexts

Asynchronous beans can inherit the following Java EE contexts.

Internationalization context
When this option is selected and the internationalization service is enabled, and the
internationalization context that exists on the scheduling thread is available on the target thread.

Work area
When this option is selected, the work area context for every work area partition that exists on the
scheduling thread is available on the target thread.

Application profile (deprecated)
Application profile context is not supported and not available for Java EE 1.4 applications. For
Java EE 1.3 applications, when this option is selected, the application profile service is enabled,
and the application profile service property, 5.x compatibility mode, is selected. The application
profile task that is associated with the scheduling thread is available on the target thread for Java
EE 1.3 applications. For Java EE 1.4 applications, the application profile task is a property of its
associated unit of work, rather than a thread. This option has no effect on the behavior of the task
in Java EE 1.4 applications. The scheduled work that runs in a Java EE 1.4 application does not
receive the application profiling task of the scheduling thread.

Security
The asynchronous bean can be run as anonymous or as the client authenticated on the thread
that created it. This behavior is useful because the asynchronous bean can do only what the caller
can do. This action is more useful than a RUN_AS mechanism, for example, which prevents this
kind of behavior. When you select the Security option, the JAAS subject that exists on the
scheduling thread is available on the target thread. If not selected, the thread runs anonymously.

Chapter 4. Asynchronous beans 43

Component metadata
Component metadata is relevant only when the asynchronous bean is a simple Java object. If the
bean is a Java EE component, such as an enterprise bean, the component metadata is active.

The contexts that can be inherited depend on the work manager used by the application that creates the
asynchronous bean. Using the administrative console, the administrator defines the sticky context policy of
a work manager by selecting the services on which the work manager is to be made available.

Programming model

Work managers support the following programming models.

« Commond Specification. The Application Server Version 6.0 CommondJ programming model uses the
WorkManager and TimerManager to manage threads and timers asynchronously in the Java EE 1.4
environment.

« Asynchronous beans and Commond specification extensions. The current asynchronous beans
Event Source, asynchronous scopes, subsystem monitors and Java EE Context interfaces are a part of
the Commond extension.

The following table describes the method mapping between the CommondJ and Asynchronous beans APIs.
You can change the current asynchronous beans interfaces to use the Commond interface, while
maintaining the same functions.

Table 3. Method mapping between the CommondJ and Asynchronous beans APls. Method mapping between the
Commond and Asynchronous beans APIs

Commond package API Asynchronous beans |API

package

Work manager Work manager

Asynchronous beans Field - IMMEDIATE (long) Field - IMMEDIATE (int)

Field - INDEFINITE Field - INDEFINITE

schedule(Work) throws startWork(Work) throws

WorkException, WorkException,
lllegalArgumentException lllegalArgumentException
schedule(Work, startWork(Work, timeout_ms,
WorkListener) throws WorkListener) throws
WorkException, WorkException,
lllegalArgumentException lllegalArgumentException

Important: Configure the
work manager work timeout
property to the value you
previously specified as
timeout_ms on startWork.
The default timeout value is

INDEFINITE.
waitForAll(workltems, join(workltems, JOIN_AND,
timeout_ms) timeout_ms)

waitForAny(workltems,

join(workltems, JOIN_OR,

timeout_ms) timeout_ms)
Workltem Workltem

getResult getResult

getStatus getStatus
WorkListener WorkListener

workAccepted(WorkEvent)

workAccepted(WorkEvent)

44 overview

Table 3. Method mapping between the CommondJ and Asynchronous beans APIs (continued). Method mapping
between the CommondJ and Asynchronous beans APIls

workCompleted(WorkEvent)

workCompleted(WorkEvent)

workRejected(WorkEvent)

workRejected(WorkEvent)

workStarted(WorkEvent)

workStarted(WorkEvent)

WorkEvent

WorkEvent

Field - WORK_ACCEPTED

Field - WORK_ACCEPTED

Field -
WORK_COMPLETED

Field - WORK_COMPLETED

Field - WORK_REJECTED

Field - WORK_REJECTED

Field - WORK_STARTED

Field - WORK_STARTED

getException

getException

getType

getType

getWorkltem().getResult()
Important: This API is valid
only after the work is
complete.

getWork

Work

(extends Runnable)

Work

(Extends Runnable)

isDaemon

*

release

release

RemoteWorkltem

RemoteWorkltem capability
is not provided by
WebSphere Application
Sever. Use Distributed
WorkManager in the
WebSphere Extended
Deployment product.

NA

TimerManager

AlarmManager

resume

*

schedule(Listener, Date)

create(Listener, context, time) **
need to convert the parameters

schedule(Listener, Date,
period)

schedule(Listener, delay,
period)

scheduleAtFixedRate
(Listener, Date, period)

scheduleAtFixedRate
(Listener, delay, period)

stop

suspend

Timer

Alarm

cancel

cancel

getPeriod

getTimerListener

getAlarmListener

scheduledExecutionTime

TimerListener

AlarmListener

Chapter 4. Asynchronous beans

45

Table 3. Method mapping between the CommondJ and Asynchronous beans APIs (continued). Method mapping
between the Commond and Asynchronous beans APIls

timerExpired(timer) fired(alarm)
StopTimerListener Not applicable

timerStop(timer)
CancelTimerListener Not applicable

timerCancel(timer)
WorkException (Extends Exception) WorkException (Extends WsException)
WorkCompletedException| (Extends WorkException) WorkCompletedException (Extends WorkException)
WorkRejectedException | (Extends WorkException) WorkRejectedException | (Extends WorkException)

For more information on work manager APIs, refer to the Javadoc.

Work manager examples

Table 4. Look up work manager. Work manager

Asynchronous beans Commond

InitialContext ctx = new InitialContext(); InitialContext ctx = new InitialContext();

com. ibm.websphere.asynchbeans.WorkManager wm = |commonj.work.WorkManager wm =

(com.ibm.websphere.asynchbeans.WorkManager) (commonj .work.WorkManager)
ctx.Tookup("java:comp/env/wm/MyWorkMgr") ; ctx.Tookup("java:comp/env/wm/MyWorkMgr") ;

Table 5. Create your work using MyWork. MyWork

Asynchronous beans Commond
public class MyWork implements public class MyWork implements
com.ibm.websphere.asynchbeans.Work { commonj .work.Work{
public void release() { public boolean isDaemon() f{
...... return false;
public void run() { public void release () {
System.out.printIn("Running..... 1
} 1
public void run () {
System.out.printIn("Running..... ")
}
Table 6. Submit the work. Submit work
Asynchronous beans |CommonJ

46 Overview

Table 6. Submit the work (continued). Submit work

MyWork workl = new MyWork();
MyWork work2 = new MyWork();

WorkItem
WorkItem
Iteml=wm.
Item2=wm.

iteml;
item2;
startWork(workl);
startWork (work?2) ;

// case 1: block until all items are done
ArrayList coll = new ArrayList();
Coll.add(iteml);
Coll.add(item2);
wm. join(coll, WorkManager.JOIN_AND,
WorkManager.INDEFINITE)
// when the works are done
System.out.printIn("workl data="+workl.getData());
System.out.printIn("work2 data="+work2.getData());
// you should complete case 1 before case 2
//case 2: wait up to 1000 milliseconds

for any of the items to complete.

Boolean ret = wm.join(coll,

WorkManager.JOIN_OR, 1000);

new MyWork();
new MyWork();

MyWork workl
MyWork work?2

WorkItem
WorkItem
Iteml=wm.
Item2=wm.

iteml;
item2;
schedule(workl);
schedule(work2) ;

// case 1: block until all items are done
Collection coll = new ArraylList();
coll.add(iteml);

coll.add(item2);

wm.waitForAl1(coll, WorkManager.INDEFINITE);

// when the works are done
System.out.printIn("workl data="+workl.getData());
System.out.printIn("work2 data="+work2.getData());

// // you should complete case 1 before case 2
//case 2: wait up to 1000 milliseconds
for any of the items to complete.
Collection finished = wm.waitForAny(coll,
// check the workItems status
if (finished != null) {
Iterator I = finished.iterator();
if (i.hasNext()) {
WorkItem wi = (WorkItem) i.next();
if (wi.equals(iteml)) {
System.out.printin("workl =
"+ workl.getData());
} else if (wi.equals(item2)) {
System.out.printin("workl =
"+ workl.getData());
}

Table 7. Create a timer manager. Timer manager

Asynchronous beans

Commond

InitialContext ctx new InitialContext();
com. ibm.websphere.asynchbeans.WorkManager wm
(com.ibm.websphere.asynchbeans.WorkManager)
ctx.Tookup("java:comp/env/wm/MyWorkMgr") ;

AsynchScope ascope;
Try {
Ascope = wm.createAsynchScope("ABScope");
} Catch (DuplicateKeyException ex)
{

Ascope = wm.findAsynchScope ("ABScope");
ex.printStackTrace();

}

// get an AlarmManager
AlarmManager aMgr= ascope.getAlarmManager();

InitialContext ctx new InitialContext();
Commonj.timers.TimerManager tm
(commonj.timers.TimerManager)

ctx.Tookup("java:comp/env/tm/MyTimerManager");

Table 8. Fire the timer. Fire timer

Asynchronous beans

|CommonJ

Chapter 4. Asynchronous beans

47

Table 8. Fire the timer (continued). Fire timer

// create alarm // create Timer

ABATarmListener listener = new ABAlarmListener(); TimerListener listener =

Alarm am = new StockQuoteTimerListener("qqq",
aMgr.create(listener, "SomeContext", 1000%60); "johndoe@example.com") ;

Timer timer = tm.schedule(Tistener, 1000%60);

// Fixed-delay: schedule timer to expire in
// 60 seconds from now and repeat every

// hour thereafter.

Timer timer = tm.schedule(Tistener, 1000%60,
1000%30) ;

// Fixed-rate: schedule timer to expire in

// 60 seconds from now and repeat every

// hour thereafter

Timer timer = tm.scheduleAtFixedRate(1istener,
1000+60, 1000+%30);

Timer managers

The timer manager combines the functions of the asynchronous beans alarm manager and asynchronous
scope. So, when a timer manager is created, it internally uses an asynchronous scope to provide the timer
manager life cycle functions.

You can look up the timer manager in the Java Naming and Directory Interface (JNDI) name space. This
capability is different from the alarm manager that is retrieved through the asynchronous beans scope.
Each lookup of the timer manager returns a new logical timer manager that can be destroyed
independently of all other timer managers.

A timer manager can be configured with a number of thread pools through the administrative console. For
deployment you can bind this timer manager to a resource reference at assembly time, so the resource
reference can be used by the application to look up the timer manager.

The Java code to look up the timer manager is:

InitialContext ic = new InitialContext();
TimerManager tm = (TimerManager)ic.lookup("java:comp/env/tm/TimerManager");

The programming model for setting up the alarm listener and the timer listener is different. The following
code example shows that difference.

Table 9. Set up the timer listener. Programming model for setting up the timer listener

Asynchronous beans CommondJ

48 Overview

Table 9. Set up the timer listener (continued). Programming model for setting up the timer listener

public class ABATarmListener implements public class StockQuoteTimerListener implements
AlarmListener { TimerListener {
public void fired(Alarm alarm) { String context;
System.out.printin("Alarm fired. String url;
Context =" + alarm.getContext()); public StockQuoteTimerListener(String context,
} String url){

this.context = context;
This.url = url;
}
public void timerExpired(Timer timer) {
System.out.printIn("Timer fired. Context ="+
((StockQuoteTimerListener)timer.getTimerListener())
.getContext());

1
public String getContext() {

return context;
}
1

Example: Using connections with asynchronous beans

An asynchronous bean method can use the connections that its creating Java Platform, Enterprise Edition

(Java EE) component obtained using java:comp resource references.

For more information on resource references, refer to the References topic. The following is an example of

an asynchronous bean that uses connections correctly:

class GoodAsynchBean
{
DataSource ds;
public GoodAsynchBean ()
throws NamingException
{
// ok to cache a connection factory or datasource
// as class instance data.
InitialContext ic = new InitialContext();
// it is assumed that the created Java EE component has this
// resource reference defined in its deployment descriptor.
ds = (DataSource)ic.lookup("java:comp/env/jdbc/myDataSource");

// When the asynchronous bean method is called, get a connection,
// use it, then close it.
void anEventListener()
{
Connection ¢ = null;
try
{
¢ = ds.getConnection();
// use the connection now...

}
finally

if(c = null) c.close()s
}

}

}

The following example of an asynchronous bean that uses connections incorrectly:

class BadAsynchBean

{

DataSource ds;
// Do not do this. You cannot cache connections across asynch method calls.

Chapter 4. Asynchronous beans

49

Connection c;

public BadAsynchBean()
throws NamingException
{
// ok to cache a connection factory or datasource as
// class instance data.
InitialContext ic = new InitialContext();
ds = (DataSource)ic.lookup("java:comp/env/jdbc/myDataSource");
// here, you broke the rules...
¢ = ds.getConnection();
}
// Now when the asynch method is called, illegally use the cached connection
// and you Tikely see J2C related exceptions at run time.
// close it.
void someAsynchMethod()
{
// use the connection now...
}
1

50 overview

Chapter 5. Batch applications
This page provides a starting point for finding information about batch applications.

The Java Platform, Enterprise Edition (Java EE) applications that are typically hosted by WebSphere
Application Server perform short, lightweight, transactional units of work. In most cases, an individual
request can be completed with seconds of processor time and relatively little memory. Many applications,
however, must complete batch work that is computational and resource intensive.

Batch concepts

Learn about what the batch function is, the major components, the batch environment, and the grid
endpoints.

Batch overview

The Java Platform, Enterprise Edition (Java EE) applications that are typically hosted by WebSphere
Application Server perform short, lightweight, transactional units of work. In most cases, an individual
request can be completed with seconds of processor time and relatively litle memory. Many applications,
however, must complete batch work that is computational and resource intensive.

The batch function extends the application server to accommodate applications that must perform grid
work alongside transactional applications, as shown in the following graphic. Grid work might take hours or
even days to finish and uses large amounts of memory or processing power while it runs.

Batch support includes a Web-based application for managing jobs, called the job management console.
Through this console, you can submit jobs, monitor job execution, perform operational actions against
jobs, and view job logs.

Jobs express units of grid work. A job describes the work, which application must perform the work, and
can include additional information to help WebSphere Application Server handle the work effectively and
efficiently. Jobs are specified in an XML dialect called xJCL and can be submitted programmatically or
through a command-line interface. As part of a job submission, the job is persisted in an external database
and given to the job scheduler. The job scheduler distributes waiting jobs to available grid endpoints to
run.

Learn more about batch

After you install the product in your environment, you might want to learn about more advanced system
configurations and function. The following websites and tools are provided, in addition to the information
center, to help you learn more:

» Administrative console for the product

Use the following administrative console features to learn more about the product:

— Guided activities, available as a navigation section in the administrative console, help you to
complete a complex task that involves multiple console pages. The guided activities bring tasks
together in one place, so that you can easily complete fields and follow basic directions to achieve a
goal.

— The help files provide field-level help to use administrative console panels and overview information
about the product in your environment.
IBM Education Assistant]

The IBM Education Assistant for the product integrates narrated presentations, Show Me
demonstrations, tutorials, and resource links to help you successfully use the batch capability. You can
also use IBM Education Assistant for other IBM software products.

© Copyright IBM Corp. 2011 51

http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp

* [Redbooks

IBM Redbooks are developed and published by International Technical Support Organization (ITSO) of
IBM. They deliver skills, technical knowledge, and materials to technical professionals of IBM Business
Partners and customers, and to the marketplace in general.

Getting started with batch
The major components of batch include the command-line interface, Enterprise JavaBeans (EJB) interface,
web services interface, job scheduler, and grid endpoint.

The following diagram shows the major components of batch. The batch components in the diagram
include the command-line interface, EJB interface, web services interface, and Job management console.
These components each communicate with the job scheduler. The job scheduler has a job database that
contains all the jobs. The job scheduler in the diagram communicates with two node endpoints, while an
application server that is doing transactional work runs on another node.

Node
\ Endpoints

_Command-line Node
interface T
EJB interface
Web services : Job scheduler
interface

Node
Job
management %
console /

- Endpoints
Job
database
Node
4 N\
Application server
doing
transactional work
o)

Figure 2. Batch components

The job management console provides a graphical user interface (GUI) with which you can perform job
management functions. Most of the function from other interfaces is also available from the job
management console.

52 oOverview

http://www-1.ibm.com/support/search.wss?rs=3023&tc=SSPPLQ&rank=8&dc=DA4A20+DA700&dtm

With the command-line interface, you can submit and control the batch jobs in the system. The enterprise
bean and web services interfaces provide similar function to both Java Platform, Enterprise Edition (Java
EE) and non-Java EE programs through programmatic interfaces. The administrative console provides a
graphical user interface (GUI) with which you can configure the job scheduler, and view the location of
endpoint servers.

Batch administrators and submitters can use the job management console to view, manage and perform
job-related actions that include submitting a job, viewing of jobs, canceling or suspending a job, and
resuming a suspended job.

The job scheduler accepts and schedules the execution of batch jobs. It manages the job database,
assigns job IDs, and selects where jobs run.

The grid endpoints are application servers that are augmented to provide the runtime environments

needed by batch applications.

» The grid endpoints support batch applications that are compute-intensive. Compute-intensive batch
applications are built using a simple programming model based on asynchronous beans. Read about
compute-intensive programming for more information.

» The batch system supports transactional batch applications. These applications perform record
processing like more traditional Java EE applications, but are driven by batch inputs rather than
interactive users. This environment builds on familiar Plain Old Java Objects (POJOs) to provide batch
applications with a rich programming model that supports container-managed restartable processing and
the ability to pause and cancel running jobs. Read about the batch programming model for more
information.

Understanding the elements in the batch environment:
This topic describes elements that comprise a typical batch environment.

The basic batch environment is composed of the elements depicted in the following diagram:

Chapter 5. Batch applications 53

-y .- \

LVVeb Shell APIJ Server WebSphere Application

WebSphere Application
Server

(Job (Batch

xJCL [1 scheduler [1 container

JDBC P> JDBC

(S J

~_ Java EE

batch
application

—®| | Scheduler tables |

| Container tablesl <

~ _)

Figure 3. The batch elements

The following list describes the items in the previous diagram:

Job scheduler

The job scheduler is the batch component that provides all job management functions, such as submit,
cancel, and restart. It maintains a history of all jobs, including those waiting to run, those running, and
those having already run. The job scheduler is hosted in a WebSphere Application Server or cluster in a
WebSphere Network Deployment environment.

Batch container

The batch container is the batch component that provides the execution environment for the batch jobs.
Java Platform, Enterprise Edition (Java EE) based batch applications run inside the batch container.
The batch container is hosted in a WebSphere Application Server or cluster in a WebSphere Network
Deployment environment.

Java EE batch application

Java EE batch applications are regular WebSphere Java EE applications, deployed as Enterprise
Archive (EAR) files, that contain implementations of one or more Java batch applications. These Java
batch applications follow either the transactional batch or compute-intensive programming models.
xJCL

Jobs are described using a job control language. The batch jobs use an XML-based job control
language. The job description identifies which application to run, its inputs, and outputs.

Web, Shell, API
The job scheduler exposes three API types to access its management functions: A web interface called

the job management console, a shell command line called Ircmd, and APls, available as either web
services and EJBs.

Scheduler tables

The job scheduler uses a relational database to store job information. It can be any relational database
supported by WebSphere Application Server. If the job scheduler is clustered, the database must be a
network database, such as DB2°.

54 overview

e Container tables

The batch container uses a relational database to store checkpoint information for transactional batch
applications. The database can be any relational database supported by WebSphere Application Server.
If the batch container is clustered, the database must be a network database, such as DB2.

+ JDBC

The JDBC is standard JDBC connectivity to the scheduler and container tables, as supported by the
WebSphere Application Server connection manager.

Batch applications, jobs, and job definitions:

A batch application is a Java Platform, Enterprise Edition (Java EE) application that conforms to one of the
batch programming models. Grid work is expressed as jobs. Jobs are made up of steps. All steps in a job
are processed sequentially.

All jobs contain the following information:

* The identity of the batch application that performs the work

* One or more job steps that must be performed to complete the work

» The identity of an artifact within the application that provides the logic for each job step

» Key and value pairs for each job step to provide additional context to the application artifacts

Jobs for batch applications contain additional information specific to the batch programming model:
» Definitions of sources and destinations for data
» Definitions of checkpoint algorithms

xJCL - job definition
Jobs are expressed using an XML dialect called XML Job Control Language (xJCL). This dialect
has constructs for expressing all of the information needed for both compute-intensive and batch
jobs, although some elements of xJCL are only applicable to compute-intensive or batch jobs. See
the xJCL provided with the Sample applications and the xJCL schema document for more
information about xJCL. The xJCL definition of a job is not part of the batch application. This
definition is constructed separately and submitted to the job scheduler to run. The job scheduler
uses information in the xJCL to determine where and when the job runs.

Interfaces used to submit and control jobs
xJCL jobs can be submitted and controlled through the following interfaces:
* A command-line interface
* An EJB interface described by the com.ibm.ws.batch.JobScheduler interface. For more
information, see the APl documentation for this interface.
* A Web service interface
* The job management console

The grid endpoint
Batch applications run in a special runtime environment. This runtime environment is provided by a
product-provided Java EE application, the batch execution environment. This application is
deployed automatically by the system when a batch application is installed. The application serves
as an interface between the job scheduler and batch applications. It provides the runtime
environment for both compute-intensive and transactional batch applications.

Grid endpoints:

The product packages and deploys batch applications as Java Platform, Enterprise Edition (Java EE)
Enterprise Archive (EAR) files.

Chapter 5. Batch applications 55

Deploying a batch application is like deploying a transactional (Java EE) application. A batch application is
hosted in grid endpoints.

The deployment target is automatically enabled on the grid endpoints when you install or deploy a batch
application, whether it is a compute-intensive or a batch application.

Batch frequently asked questions:

When you use batch, you might have questions about the functionality of some of its features.
What are the criteria that the job scheduler uses to select a JVM to run the job?
Availability, capability, and capacity.

Can the job scheduler be run in an active-active mode? What kind of control is used to
synchronize the state between them?

Yes, you can have multiple active-active job scheduler instances. For this, you must provide a network
database (like DB2) for the job scheduler to persist job and job definition information.

From a user-interface perspective, what control does the administrator have to control batch jobs
and the job scheduler?

The product provides a job console that you can use to submit, monitor, and manage all jobs in the

domain from a single location. This job management console also includes support for creating and
managing job schedules (jobs that are run at a specific time or day once or repeatedly).

56 oOverview

Chapter 6. Bean Validation

The Bean Validation API is introduced with the Java Enterprise Edition 6 platform as a standard
mechanism to validate Enterprise JavaBeans in all layers of an application, including, presentation,
business and data access. Before the Bean Validation specification, the JavaBeans were validated in each
layer. To prevent the reimplementation of validations at each layer, developers bundled validations directly
into their classes or copied validation code, which was often cluttered. Having one implementation that is
common to all layers of the application simplifies the developers work and saves time.

Bean Validation

The Bean Validation API is introduced with the Java Enterprise Edition 6 platform as a standard
mechanism to validate JavaBeans in all layers of an application, including presentation, business, and data
access.

Before the Bean Validation specification, JavaBeans were validated in each layer. To prevent the
reimplementation of validations at each layer, developers bundled validations directly into their classes or
copied validation code, which was often cluttered. Having one implementation that is common to all layers
of the application simplifies the developers work and saves time.

The Bean Validation specification defines a metadata model and an API that are used to validate
JavaBeans for data integrity. The metadata source is the constraint annotations defined that can be
overridden and extended using XML validation descriptors. The set of APIs provides an ease of use
programming model allowing any application layer to use the same set of validation constraints. Validation
constraints are used to check the value of annotated fields, methods, and types to ensure that they adhere
to the defined constraint.

Constraints can be built in or user-defined. Several built-in annotations are available in the
javax.validation.constraints package. They are used to define regular constraint definitions and for
composing constraints. For a list of built-in constraints, see the topic, [Bean validation built-in constraints]
For more details about the Bean Validation metadata model and APls see the JSR 303 Bean Validation
specification document.

The following example is a simple Enterprise JavaBeans (EJB) class that is decorated with built-in
constraint annotations.
public class Home {

@Size(Max=20)

String builder;

@NotNull @Size(Max=20)

String address;

public String getAddress() f{
return address;
}
public String getBuilder() {
return address;
1
public String setAddress(String newAddress) {

return address = newAddress;
}

public String setBuilder(String newBuilder) {
return builder = newBuilder;
}

© IBM Corporation 2009 57

The @Size annotations on builder and address specify that the string value assigned should not be
greater 20 characters. The @NotNull annotation on address indicates that it cannot be null. When the
Home object is validated, the builder and address values are passed to the validator class defined for the
@Size annotation. The address value is also be passed to the @NotNull validator class. The validator
classes handle checking the values for the proper constraints and if any constraint fails validation, a
ConstraintViolation object is created, and is returned in a set to the caller validating the Home object.

Validation APIs

The javax.validation package contains the bean validation APIs that describe how to programmatically
validate JavaBeans.

ConstraintViolation is the class describing a single constraint failure. A set of ConstraintViolation classes is
returned for an object validation. The constraint violation also exposes a human readable message
describing the violation.

ValidationException are raised if a failure happens during validation.

The Validator interface is the main validation APl and a Validator instance is the object that is able to
validate the values of the Java object fields, methods, and types. The bootstrapping API is the mechanism
used to get access to a ValidatorFactory that is used to create a Validator instance. For applications
deployed on the product, bootstrapping is done automatically. There are two ways for applications to get
the validator or the ValidatorFactory. One way is injection, for example, using the @Resource annotation,
and the other way is the java: lookup.

The following example uses injection to obtain a ValidatorFactory and a Validator:

@Resource ValidatorFactory _validatorFactory;
@Resource Validator _validator;

Attention: When using @Resource to obtain a Validator or ValidatorFactory, the authenticationType and
shareable elements must not be specified.

The following example uses JNDI to obtain a ValidatorFactory and a Validator:

ValidatorFactory validatorFactory = (ValidatorFactory)context.lookup("java:comp/ValidatorFactory");
Validator validator = (Validator)context.lookup("java:comp/Validator");

Constraint metadata request APIs

The metadata APIs support tool providers, provides integration with other frameworks, libraries, and Java
Platform, Enterprise Edition technologies. The metadata repository of object constraints is accessed
through the Validator instance of a given class.

XML deployment descriptors
Besides declaring constraints in annotations, support exists for using XML to declare your constraints.

The validation XML description is composed of two kinds of xml files. The META-INF/validation.xml file
describes the bean validation configuration for the module. The other XML file type describes constraints
declarations and closely matches the annotations declaration method. By default, all constraint
declarations expressed through annotations are ignored for classes described in XML. It is possible to
force validation to use both the annotations and the XML constraint declarations by using the
ignore-annotation="false" setting on the bean. The product ensures that application modules deployed
containing a validation.xml file and constraints defined in XML files are isolated from other module
validation.xml and constraint files by creating validator instances specific to the module containing the XML
descriptors.

58 oOverview

Advanced bean validation concepts

The Bean Validation API provides a set of built-in constraints and an interface that enables you to declare
custom constraints. This is accomplished by creating constraint annotations and declaring an annotation
on a bean type, field, or property. Composing constraints is also done by declaring the constant on
another constraint definition.

Custom constraint and validator example

The following example shows creating a CommentChecker constraint that is defined to ensure a comment
string field is not null. The comment text is enclosed by brackets, such as [fex{].

package com.my.company;
import java.lang.annotation.Documented;
import java.lang.annotation.Retention;
import java.lang.annotation.Target;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.ElementType.FIELD;
import static java.lang.annotation.RetentionPolicy.RUNTIME;

import javax.validation.Constraint;
import javax.validation.Payload;
@Documented
@Constraint(validatedBy = CommentValidator.class)
@Target({ METHOD, FIELD })
@Retention (RUNTIME)
public @interface CommentChecker {
String message() default "The comment is not valid.";
Class<?>[] groups() default {};
Class<? extends Payload>[] payload() default {};
.

The next example shows the constraint validator that handles validating elements with the
@CommentChecker annotation. The constraint validator implements the ConstraintValidator interface
provided by the Bean Validation API.

package com.my.company

import javax.validation.ConstraintValidator;

import javax.validation.ConstraintValidatorContext;

public class CommentValidator implements ConstraintValidator<CommentChecker, String> {
public void initialize(CommentChecker arg0) {

public boolean isValid(String comment, ConstraintValidatorContext context) {
if (comment == null) {
// Null comment is not allowed, fail the constraint.
return false;
}
if (!comment.contains("[") && !comment.contains("]")) {
// Can't find any open or close brackets, fail the constraint
return false;
}
// Ignore leading and trailing spaces
String trimmedComment = comment.trim();
return // validate '[' prefix condition
trimmedComment.charAt(0) == '[' &&
// validate ']' suffix condition
trimmedComment.charAt (trimmedComment.size()-1) == ']"';

}

After the @ CommentChecker is defined, it can be used to ensure that the comment string field is a valid
comment based on the CommentValidator isValid() implementation. The following example shows the use
of the @ CommentChecker constraint. When the myChecker bean is validated, the comment string is
validated by the CommentValidator class to ensure the constraints defined are met.

Chapter 6. Bean Validaton 59

package com.my.company;
public myChecker {

@CommentChecker
String comment = null;

}
Using a different bean validation provider

The product provides a specific bean validation provider, but it might be necessary for an application to
use or require another provider.

This method can be accomplished by using the validator methods to set the provider programmatically and
create a validation factory. Or, by using the validation.xml default-provider element. The specific provider
that is defined and used to create the validation factory and not the default provider provided by the
application server in the default implementation. If you want to ensure that the user-provided
implementation does not conflict with the default implementation, the server or application class loading
parameter, the class loader order should be set to be loaded with local class loader first (parent last). See
additional information in the class loading documentation on how to set this setting.

Validation.xml deployment descriptor and class loading

The Bean Validation specification indicates that if more than one validation.xml file is found in the class
path, a ValidationException occurs. However, WebSphere Application Server supports an environment
where multiple teams develop modules that are assembled and deployed into the Application Server
together. In this environment, all EJB modules within an application are loaded with the same class loader
and it is possible to configure the application class loaders so that all EJB and web archive (WAR)
modules are loaded by a single class loader. Because of this, the product provides support for multiple
validation.xml files in the same class path.

When an application using bean validation and XML descriptors contains multiple EJB modules and web
modules, each validation.xml file is associated with a validation factory that is specific to that module. In
this environment, any constraint-mapping elements that are defined are only looked up in the module
where the validation.xml file is defined. For example, if an EJB module building.jar contains a
META-INF/validation.xml file and the validation.xml file defined the following constraints, both the
META-INF/constraints-house.xml and META-INF/constraints-rooms.xml files must also be located in the
building.jar file:

<constraint-mapping>META-INF/constraints-house.xml</constaint-mapping>
<constraint-mapping>META-INF/constraints-rooms.xml</constraint-mapping>

The exception to this behavior is when all bean validation constraints classes and configuration are visible
to all application modules. It is the case where a single validation.xml file is defined in an EAR file and no
other validation.xml files are visible a modules class path. In this environment any module creating a
validator factory or validator uses the same validation.xml file. This makes it possible for other modules to
create a validator factory that uses the validation.xml file of another module as long the class path has
been configured so that both modules are visible on the same class path and only one validation.xml file is
visible.

For a more detailed understanding about the Bean Validation APIs and metadata see the JSR 303 Bean
Validation specification document.

60 Overview

Chapter 7. Communications Enabled Applications

Communications Enabled Applications (CEA) is a functionality that provides the ability to add dynamic web
communications to any application or business process. The product provides a suite of integrated
telephony and collaborative web services that extends the interactivity of enterprise and web commerce
applications. With the CEA capability, enterprise solution architects and developers can use a single core
application to enable multiple modes of communication. Enterprise developers do not need to have
extensive knowledge of telephony or Session Initiation Protocol (SIP) to implement CEA. The CEA
capability delivers call control, notifications, and interactivity and provides the platform for more complex
communications.

Communications Enabled Applications concepts

Communications Enabled Applications (CEA) is a programming model that provides the ability to add
dynamic web communications to any application or business process.

Note: You can take advantage of integrated telephony and collaborative web services to extend the
interactivity of Enterprise and web commerce applications. With the CEA capability, Enterprise
solution architects and developers can use a single core application to enable multiple modes of
communication. Enterprise developers do not need to have extensive knowledge of telephony or
Session Initiation Protocol (SIP) to implement CEA. The CEA capability delivers call control,
notifications, and interactivity and provides the platform for more complex communications.

Using this simplified programming model for adding web-based communications, Enterprise developers
can do the following:

» Enable any application to quickly add communications support; for example, click-to-call integration
* Enable shared sessions between end users and the company

* Push relevant session data for application use; for example, customer phone numbers

» Deliver automated notifications and instant messaging support

* Provide enterprise-grade security, scalability, and high availability

* Integrate with customer private branch exchange (PBX) systems

CEA has two main services, telephony access and multimodal web interaction:

» Telephony access allows you to create a unified communications environment from within business
applications to increase the efficiency of processes, reduce communications errors, and optimize
business interactions in real time. CEA provides telephony access through a REST interface, through a
web services client, and by using click-to-call widgets.

* Multimodal web interaction allows you to provide session linking (shared sessions) between users
browsing the same website from different locations. With session linking, users can interact dynamically
in collaborative ways, such as cobrowsing or coshopping web sessions. Commerce web sites can use
this service to provide product or customer support, while protecting information on the internal site.
Commerce sites can use the collaborative shopping experience to attract more customers to their sites.
With a combination of click-to-call functionality and multimodal interaction, you can support two-way
synchronized text forms between the user and a customer service representative (CSR).

CEA is based on SIP-enabled services that use Representation State Transfer (REST) servlets and web
services in a converged HTTP and SIP application. CEA includes a library of Dojo-style widgets for use in
web applications. Dojo widgets are prepackaged components of JavaScript and HTML code that add
interactive features that work across platforms and browsers. CEA widgets are extensible, allowing
developers to customize them to handle more advanced tasks.

© IBM Corporation 2009 61

The CEA samples package includes three different sample applications that you can use to explore the
telephony access and multi-modal web interaction services. To learn more, see the information on
accessing the samples and setting up the communications enabled application samples.

CEA call flow

In a Web telephony session, users can make phone calls using the ClicktoCall widget in their Web
browsers. The call flow diagram illustrates the Communications Enabled Applications (CEA) call flow.

Note: The system application must first be configured with the IP private branch exchange (PBX) address.

The following configuration applies to this call flow:
1. A user clicks the ClickToCall widget, which sends an HTTP REST request.
2. The Web container calls the system application.
e An HTTP servlet interprets the REST request.
3. The system application sends SIP messages to the IP PBX using the ECMA TR/87 standard protocol.

In addition to TR/87, PBX vendors can choose to expose a web service interface based on a Web
Services Description Language (WSDL) file that is provided with CEA. This WSDL file is included in
the installation path, |app_server_roofsystemApps/commsvc.ear/commsvc.rest.war/WEB-INF/wsdl/
ControllerService.wsdl. Using this WSDL file enables you to configure CEA to call out to a PBX
through a web service instead of relying on TR/87.

Restriction: The IP PBX must support the ECMA TR/87 protocol or the CEA web service interface.
4. The IP PBX notifies the user agent client (UAC) to call the user agent server (UAS).
5. Acall is established between the two users.

Note: UAC and UAS are SIP instances.

62 Overview

Make a Call Flow

HTTP request
[
LB
Proxy Proxy
Container | | Container | | Container
@ System System System
App App App
\ _/
IP/PBX
UAC = UAS

(@)

®

Figure 4. CEA call flow

Cc

EA collaboration flow

A Communications Enabled Applications (CEA) Web collaboration session allows dynamic interaction

be
co
co

1.

tween users sharing linked browser sessions. Users connect their Web sessions using the CEA
llaboration widget. Use the collaboration flow illustrated in this topic to understand how live Web
llaboration works.

User A initiates collaboration by clicking the collaboration widget, which sends a specific HTTP REST
request.

The container calls the system application:

» User Ais placed in the user registry.

» User A's session is established.

The response to User A includes a uniform resource locator (URI) for peers to start collaboration.
User A sends User B the "for peer collaboration URI."

» The "for peer collaboration URI" contains a nonce, a unique identifier which is particular to the
collaboration session. The nonce helps ensure security in the collaboration session.

User B responds by sending a request with that URI.

63

Chapter 7. Communications Enabled Applications

6. The container calls the system application:
» User B is placed in the user registry.
» User A is found in the user registry.
* A'link" is established between them.
7. Aresponse is sent to User B.
* Includes URI to exchange data.
» Activates modal windows in each widget.
8. User B highlights text, scrolls, or fills in a form.
9. User B's widget sends these events through the send URI.
10. The container sends data to User A's session.
11. User A's widget polls for events with the fetch URI.
12. User B's events are captured in User A's widget.

The following diagram shows the collaboration flow between linked user sessions.

Collaboration Flow

»12 Widget Widget 8\
N v

A ===

&% 69

Container

Z |/

User A C User B

Session Session
L (10)

-

Figure 5. CEA Web collaboration

64 Overview

CEA iWidgets

An iWidget is a browser-oriented component designed to work within the framework defined by the iWidget
specification. Such a component only occupies a portion of the overall working canvas and is typically
designed in a way that makes it easy for the canvas assembler to connect the iWidget to other iWidgets
on the canvas.

The ClickToCall, CallNotification and Cobrowse widgets have each been wrapped according to the iWidget
specification and packaged together in an iWidget package (WAR file). This package is included in the
installation path, |app_server_rooi’instalIabIeApps/cea.war.

Attention: For instructions on how to publish this iWidget package, see the documentation for the iWidget
container that you plan to use.

After you publish the iWidget package and place the iWidget on a page, the widget loads to the following

state:

The service is currently unavailable.

For most scenarios the iWidget container runs separately from the Communications Enabled Applications
(CEA) application server. This type of environment requires the use of a proxy to proxy the request from
the widget to the Representational State Transfer (REST) service. The proxy mapping must be configured
to proxy GET, POST, PUT, and DELETE methods to:

cea_server:cea_server_port:/commsvc.rest/CommServiet/*
After the proxy is configured, go to the edit settings, view and then choose to edit the widget settings.

From the edit settings page you can configure the various widget attributes to be used by the widget on
the current page. From this page modify the ceaContextRoot setting to point the proxy URL for the REST
service. After you specify the correct ceaContextRoot value, save the settings for the widget to update to
the default state.

For some scenarios it might make sense to hard code the widget attributes before publishing the iWidget
package. To do so, open the cea.war file and modify itemSet "userPrefs" in clickToCall.xml,
callNotification.xml, or cobrowse.xml. Save the changes, and publish the cea.war file to the iWidget
container.
<iw:itemSet id="userPrefs">

<iw:item id="ceaContextRoot" value="/commsvc.rest"/>

<jw:item id="widgetNumber" value=""/>

<iw:item id="enableCollaboration" value="false"/>

<iw:item id="defaultCollaborationUri" value=""/>

<jw:item id="canControlCollaboration" value="false"/>

<iw:item id="highlightElementList" value="DIV,SPAN,TR,TH,TD,P"/>

<jw:item id="isHighlightableCallback" value=""/>

<iw:item id="isClickableCallback" value=""/>
</iw:itemSet>

For more information about iWidgets, see the IBM Mashup Center wiki.

Collaboration Dialog

The Collaboration Dialog allows two users to share information over linked browser sessions. Use this
topic to understand how the Collaboration Dialog works.

The Collaboration Dialog widget is used by the ClickToCall, CallNotification, and Cobrowse widgets to
provide peer-to-peer page sharing and allow one user to control a collaboration session. With the
Collaboration Dialog, page sharing is not screen sharing because each browser makes its own connection
to the server for the content.

Chapter 7. Communications Enabled Applications 65

The Collaboration Dialog interface has three parts. At the top of a web page, the widget toolbar shows the
browser and collaboration controls for driving the peer-to-peer session. The content pane is in the middle
of the page, which is the area that loads the pages that can be shared with the peer. A footer bar at the
bottom of the page displays status information for the collaboration session.

] GrantControl < Highlight

==

45 http:/localhost:9080/PlantsByWebSphereAjax/index.html [sendPage L Follow Me

Figure 6. Collaboration Dialog toolbar

" Connected Peer Window is Open _,6 Controlling Navigation

Figure 7. Collaboration Dialog footer bar

When two users are involved in a collaboration session, the initiator of the session has control and is the
active peer. The passive peer can see the actions taken by the active peer. If the Grant Control option
(see Collaboration controls) is used, then the active and passive roles can switch. Only one user can have
control at a time.

Browser controls

The Collaboration Dialog give users the following controls to enable page navigation:

+ Click the Back icon to go back one page. If Follow Me is enabled, the peer's window is also updated to
load the same page.

+ Click the Forward icon to go forward one page. If Follow Me is enabled, the peer's window is also
updated to load the same page.

» Click the Refresh icon to reload the current page. If Follow Me is enabled, the peer's window is also
updated to reload the same page.

* Type a URL into the Location bar and press enter to browse to the page. This URL must be on the
same domain as the page used to display the Collaboration Dialog.

Collaboration controls

The Collaboration Dialog toolbar contains the following collaboration controls: Send Page, Follow Me,

Grant Control, and Highlight.

* The Send Page icon allows the active peer, the user driving the collaboration session, to send the URL
of the current page to the passive peer. The send page function is useful when the active peer only
needs to show the peer certain pages and not the path taken to browse to that page. To send the page,
click the Send Page icon and the current URL of the page is sent to the passive peer.

Remember: The following behavior applies to the send page function:
— The URL of the current page is sent and not the current text in the Location bar.

— Any customization on the current page, for example, a highlight or any changes to the
page made from Ajax requests, are reset when the page reloads.

* The Follow Me icon allows the active peer to send clicks to the passive peer. The Collaboration Dialog
widget captures any clicks that the active peer makes on the page when Follow Me is enabled. This
information is then sent to the passive peer to simulate the clicks in their Collaboration Dialog. To stop
sending this information, the active peer toggles the Follow Me control. The follow me function is useful
when:

— The active peer needs to show the passive peer how to navigate to a page.

66 Overview

— Navigating sites that are built using Web 2.0 technologies; for example, sites using Ajax-style
requests to update content instead of full page refreshes.

The Grant Control icon allows the active peer to transfer control to the passive peer, providing the
passive peer has the appropriate permission to drive the collaboration session. Once the active and
passive roles are switched, the new active peer will have their collaboration controls enabled. If the
passive peer does not have permission to drive the collaboration session, the Grant Control icon
remains disabled.

The Highlight icon allows the active peer to highlight a section of the page currently displayed by the
Collaboration Dialog. This information is then sent to the peer, and the same section is highlighted on
their page. Both the active peer and the passive peer can perform highlights. To perform a highlight,
click the Highlight icon, and then move the cursor over the section of the page to be highlighted. As the
cursor moves, the sections change color to show what can be highlighted. Once the user is at the
section they want to highlight, left-click to send the highlight to the peer.

Collaboration Dialog status

The Collaboration Dialog has the following status indicators in the footer bar:

The Connection status icon displays the connection status of the Collaboration Dialog. When either
peer disconnects, this status is updated to show the disconnected status. States included are:
Connected and Disconnected.

The Peer Window status icon updates as either peer opens and closes their Collaboration Dialog.
States included are: Peer window is open and Peer window is closed.

The Collaboration Action status icon displays collaboration action and whether the user is currently
controlling the session. States included are: Controlling navigation, Cobrowsing web, Follow me, and
Coauthoring form.

gotcha:

* When URLs are passed between the Collaboration Dialog peers using the Send Page
function, the entire URL is sent to the peer. If the browser for the active peer is on the same
machine as the server, and the active peer uses local host to access the server, this
environment causes issues for the passive peer if they are on separate machines. Because
the entire URL is passed, the passive peer attempts to access the page using local host and a
failure occurs.

When you test the Collaboration Dialog, and the browsers are on separate machines, you
must specify the host name or IP address of the server that is accessible to both peers in the
URL instead of the local host. This process is necessary under the following conditions:

— When you access a page that contains an embedded widget
— When you enter addresses into the Location Bar of the Collaboration Dialog

Note: The sendPageUrIRewriteCallback attribute is added to all the widgets to enable the
application to provide the name of a callback JavaScript function:

sendPageUrlRewriteCallback
A string containing the name of the callback function to execute when send
page is called to rewrite the current URL.

This is useful when the peers are accessing the application on different domains or
through a proxy.

» |If you want to browse pages by way of Hypertext Transfer Protocol Secure (HTTPS) using the
Collaboration Dialog, the page containing the embedded CEA widget must also be accessed
by means of HTTPS. If you launch one of the CEA widgets from a page accessed through
HTTP, and then during the Collaboration Dialog session you view a page through HTTPS, the
Follow Me and Highlight functionality will not work for that page due to the JavaScript same

Chapter 7. Communications Enabled Applications 67

origin policy. This same issue occurs if you load the page containing the embedded CEA
widget through HTTPS, and then you try to view a page in the Collaboration Dialog through
HTTP.

Collaborative two-way forms
You can use attributes to customize web-based two-way forms.

The Communication Enabled Applications (CEA) two-way form widget is used to create HTML forms in
which two people can collaboratively input text and validate entries. Both users can see the same form.
The fields in the form change in response to input provided by either person.

The writer is the user who is responsible for driving the interaction between the two users.

The reader is the user who is responsible for providing information to the writer. The reader can provide
information verbally to the writer, who copies the information into the form's fields. Since updates to the

fields are visible to the reader, the reader can confirm or validate the correctness of the information. The
reader can be prompted to enter sensitive information into the form, such as credit card numbers. Such

private information is generally filtered so that the writer cannot see it.

Two-way form widgets

Any Dijit form widgets and their subclass widgets that are part of a two-way form automatically
support two-way editing. A widget supporting two-way editing must have an ID specified. You can
specify additional attributes on the widgets to expand their capabilities.

ceaCollabWriteAccess

In a two-way form, fields might exist that only one user should have write access to. For example,
a two-way interaction might involve a salesperson who is responsible for submitting the form,
designated as the writer, and a customer who is responsible for filling out certain portions of the
form, designated as the reader. The reader might be prompted to enter credit card information, for
example, in a particular field. This field must not be editable by the writer. To ensure this, specify
the input field setting for the ceaCollabWriteAccess attribute to "reader":

<input type="text" name="textName" id="textName" value="" size="30"
ceadojoType="dijit.form.TextBox" ceaCollabWriteAccess="reader" />

There might also be input fields that the writer fills out that the reader must not have access to. In
this case, specify the input field setting for the ceaCollabWriteAccess attribute to "writer":

<input type="text" name="textName" id="textName" value="" size="30"
ceadojoType="dijit.form.TextBox" ceaCollabWriteAccess="writer" />

Important: Use this attribute in conjunction with the ceaCollabValidation attribute to ensure that
only one user can change a particular field; thereby preventing both users from being
able to validate the same field.

ceaCollabFilter

The ceaCollabFilter attribute is used to specify a JavaScript method that is used to mask values.
This is useful for fields that contain sensitive information that only one user should be allowed to
see (for example, Social Security numbers). If the attribute has the value default, a default
masking function is used that replaces every character of input with an asterisk. Otherwise, the
value of the attribute is used to call a method that takes a string (the value of the input field) and
is expected to return a masked version of that value.

For example, consider the following JavaScript method, used here as a masking method:

function mask(value) {
return "XXXX";

}

68 Overview

You can specify that this masking function be used with a text input field by specifying it in the
ceaCollabFilter attribute:

<input type="text" name="textName" id="textName" value="" size="30"
ceadojoType="dijit.form.TextBox" ceaCollabFilter="mask" />

ceaCollabValidation

Two-way form functionality allows for validation to occur on any input field. This means that any
change to the input field by one user will require another user to accept or decline the changes.
You can submit the form only after all input fields that require validation have been accepted.

By default, the CEA TwoWayForm widget provides for a simple validation widget that appears
alongside an input field widget when validation is required. To enable this widget, simply set the
value of the ceaCollabValidation attribute on the input field widget to default, for example:

<input type="text" name="textName" id="textName" value="" size="30"
ceadojoType="dijit.form.TextBox" ceaCollabValidation="default" />

In some cases, you might not want to use the default validation widget. You can create your own
by subclassing cea.widget.validation.ValidationWidget and overriding methods related to
creating, showing, and hiding the validation widget. For more information about how a custom
class is implemented, see the JavaScript comments in app_server_root\etc\cea\javascript\
ceadojo\cea\widget\validation\ValidationWidget.js.

ceaCollabName

When validation is defined for an input field, an alert notifies the writer when one or more input
fields have not been validated by the reader. By default, this alert only lists the input field IDs. If a
more descriptive label is needed, use the ceaCollabName attribute on the input field widget, for
example:

<input type="text" name="textName" id="textName" value="" size="30"
ceadojoType="dijit.form.TextBox" ceaCollabValidation="default" />

ceaCollabHandleRemoveNotification/ceaCollabHandleShowNotification

When any field in a two-way form changes, the user gets a notification. By default, the field is
highlighted, and the appearance of the highlighting is determined by the two-way form CSS (the
TwoWayForm.css file referred to earlier in this topic). However, you can change the highlight styling
in the following two ways:

» Changing the styling in TwoWayForm.css or, creating a new CSS file that redefines the styles
present in TwolWayForm.css

+ Defining alternative notification methods

Defining alternative notification methods gives you more control over how notifications are
presented to the user, if at all. Define two methods, both of which accept a Dijit widget object. The
first method is used to control removing the notification, and the second is used to control showing
the notification. For example, consider the following JavaScript methods:

function removeFunc(widget) {

ceadijit.hideTooltip (widget.domNode);
}

function showFunc(widget) {
ceadijit.showTooltip ("Value changed", widget.domNode);

}

The alternative notification methods handle showing and hiding a tooltip instead of the default

notification method that involves highlighting a field. To use these methods, specify them in the

ceaCollabHandleRemoveNotification and ceaCollabHandleShowNotification attributes on the

desired input field:

<input type="text" name="textName" id="textName" value="" size="30"
ceadojoType="dijit.form.TextBox"

ceaCollabHandleRemoveNotification="removeFunc"
ceaCollabHandleShowNotification="showFunc" />

Chapter 7. Communications Enabled Applications 69

REST APIs in CEA

You can use the Communications Enabled Applications (CEA) feature to integrate either web telephony or

web collaboration into applications using a Representational State Transfer (REST) APIl. REST is a

network architecture that defines how resources on the Internet are accessed. REST is not a standard, but

uses common Internet standards such as HTTP and HTML.

REST API overview

The following tables show the REST APIs and commands used in CEA, including a generic list of each

aspect of the requests and responses. Also see the information on accessing telephony and data sharing

browser sessions using REST APIs.

Table 10. REST API overview.

This table shows an overview of the REST API.

HTTP Method and URI

Description

PUT /collaborationSession

Enable collaboration

GET /collaborationSession; <encodedSession>

Get collaboration status

GET /collaborationSession;
<encodedPeerAddressOfRecord>

Start a collaboration session with a peer

DELETE /collaborationSession; <encodedSession>

End a collaboration session

POST /collaborationSession/data; <encodedSession>

Send data to the collaboration peer

GET /event; <encodedSession>

Retrieve event data (call status, collaboration status,
collaboration data)

PUT /call

Make a call

GET /call; <encodedSession>

Get status on an active call

DELETE /call; <encodedSession>

End a call

PUT /callNotification

Register for call notification

GET /callNotification; <encodedSession>

Get call notification information

DELETE /callNotification; <encodedSession>

Unregister for call notification

URI parameters

URI parameters are used by the REST API. These parameters are located after the path portion of the
request URI; for example:
http://host:port/commsvc.rest/CommServlet/collaborationSession?JSON=true&addressOfRecord=tel:987654321

Table 11. URI parameters.

This table shows URI parameters and their descriptions.

Parameter Applicable HTTP Method and URI Description

Optional parameter that you can use
on any REST request. When the
JSON parameter is detected and set
to true, the REST response is
formatted as JSON; otherwise XML.
The presence of this parameter does
not affect the format of the request.

JSON All

70 Overview

Table 11. URI parameters (continued).

This table shows URI parameters and their descriptions.

Parameter

Applicable HTTP Method and URI

Description

addressOfRecord

PUT /collaborationSession

Optional parameter when enabling
collaboration. It allows the specified
value to be used as an identifier of
the session. This identifier gets
exposed to other users of
collaboration. If absent, a random
identifier is created. Whether
specified or not, the identifier is
returned in the response as the
collaborationld.

peerAddressOfRecord

GET /collaborationSession

Required parameter when starting a
collaboration session with a peer. It
represents the identifier of the peer to
which a collaboration must be
established. This identifier is the
collaborationld that was returned to
the peer when the peer enabled
collaboration.

returnAllEvents

GET /event; <encodedSession>

Optional parameter used to get new
events. If set to true, all available
events are returned. Otherwise, only
the next single event is returned. If
this parameter is not used, the default
is to return a single event.

ceaVersion

All

Required parameter used to declare
the version of the client sending the
request. It is used to support
backward compatibility.

replaceRequest

GET /event; <encodedSession>

Optional parameter used to force a
new GET /event request to replace an
outstanding GET /event request. The
outstanding request gets a 304 error
response.

Request fields

With some REST APIs, additional information is provided in the body of the HTTP message, which must
be formatted as either XML or JSON. The following table explains those request fields. Some fields are
specific to web telephony or web collaboration while others apply to both. As another reference, see the
schema that describes the REST requests and response format. It is called CommServietSchema.xsd and
can be found in the WebSphere Application Server installation directory under /etc/cea/schema.

Chapter 7. Communications Enabled Applications 71

Table 12. Request fields.

This table shows request fields and their descriptions.

Request fields

Applicable HTTP Method and URI

Description

addressOfRecord

PUT /call
PUT /callNotification

Required when making a call or
registering for call notification. It
represents the address of record of
the phone making the call, or the
phone registering for call notification.
Common to all address of record
references in this REST API, the
values can be either SIP or TEL
URIs.

peerAddressOfRecord

PUT /call

This field is required when making a
call. It represents the address of
record of the phone to be called.

collaborationData

POST /event; <encodedSession>

This field is required when sending
data to a collaboration peer. It
represents the data being sent.

enableCollaboration

PUT /call
PUT /callNotification

Optional when either making a call or
registering for call notification. It
allows collaboration to be enabled at
the same time.

peerDeviceControlled

PUT /call

By default, PUT /call causes the
device associated with the
addressOfRecord to be controlled and
originate the call. When
peerDeviceControlled is set to true,
the device associated with the
peerAddressOfRecord is controlled
and originates the call.

Response fields

The response to the REST API is described in the following table. As with the request fields, some
response fields are specific to web telephony or web collaboration, while others apply to both. Many of the
response fields include URIs that can be used in follow on REST requests. They are encoded to ensure
that subsequent requests, related to the originally passed in address of record, remain associated with the
same session. As another reference, see the schema that describes the REST requests and response
format. It is called CommServietSchema.xsd and can be found in the WebSphere Application Server
installation directory under /etc/cea/schema.

Table 13. Response fields.

This table shows response fields and their descriptions.

Response field

Applicable HTTP Method and URI

Description

infoMsg All Message indicating the results of the
requested operation.
returnCode All Number that represents the result of

the requested operation. For example,
when a request operation completes
successfully, the response is 200.
This full list of return codes can be
seen in the REST interface schema.
See table 5 for a complete list.

72 Overview

Table 13. Response fields (continued).

This table shows response fields and their descriptions.

Response field

Applicable HTTP Method and URI

Description

eventList

GET /event

Array of events (web collaboration
data available, web collaboration
status or call status changes) used in
response to GET /event. Each event
has three fields: type, data, and
infoMsg. The different types include
call status, collaboration status and
collaboration data. The data is
dependent on the event type, but is
similar to the REST response fields of
callStatus and collaborationStatus, or
the data sent with POST /event. The
infoMsg is additional information
about the event. The following is a
JSON formatted eventList:
[{ "type" :2, "data":

"information from peer",

"infoMsg": "Successfully

fetched data"}]

Possible event types based on their
enum values include:

0: Data Event

1: Call Status Event

2: Web Collab Status Event
3: Failover Event

eventUri

All except GET /event

This encoded URI is returned from
multiple REST APlIs. It can be used to
post new data in a collaboration
session or to poll an event, such as a
change in call status, change in
collaboration status, or new data
becoming available in a collaboration
session. It doesn't return immediately.
It will wait for an event to occur
before a response is sent, or when a
configured amount of time transpires.
You can configure the time from the
administrative console and is called
the Maximum hold time.

callerAddressOfRecord

All including /call or /callNotification in
the URI

Address of record for the calling
phone.

calleeAddressOfRecord

All including /call or /callNotification in
the URI

Address of record for the phone that
was called.

callServiceUri

All including /call or /callNotification in
the URI

Encoded URI is returned from the
make a call request, used for getting
status on, or ending a call.

callNotifyUri

All except GET /event

This encoded URI is returned from
registering for call notification, used
for monitoring a phone to see if a call
has arrived or to unregister call
notification.

Chapter 7. Communications Enabled Applications

73

Table 13. Response fields (continued).

This table shows response fields and their descriptions.

Response field

Applicable HTTP Method and URI

Description

callld

All including /call or /callNotification in
the URI when a call is active

Call ID associated with the current
active call.

callFailureReason

GET /call

Upon a failed call, this is a message
indicating the reason for the failure.

callStatus

GET /call

Represents the status of the call
(initiated, established, failed, cleared).

collaborationStatus

All except GET /event

Represents the status of a web
collaboration session. Valid states are
as follows: ESTABLISHED,
NOT_ESTABLISHED, STARTING,
and READY.

collaborationServiceUri

All except GET /event when
collaboration is enabled

This encoded URI is returned from
the enable collaboration request, used
for getting status or ending a web
collaboration session.

collaborationid

All except GET /event when
collaboration is enabled

Unique identifier of a user
collaboration session. If an optional
address of record is provided when
enabling collaboration, then the
collaborationld matches that value.

forPeerCollaborationUri

All except GET /event when
collaboration is enabled

URI that a user can send to a peer.

The peer uses it to establish a web

collaboration session. It includes the
peerAddressOfRecord parameter.

peerCollaborationUri

All except GET /event when
collaboration is enabled and the peer
in the collaboration session has been
found

This encoded URI can be used to
establish a web collaboration with the
other user on the phone call.

ceaVersion

All

This string represents the version of
the server.

Return codes

The following table lists the possible return codes seen in the REST response returnCode field.

Table 14. Return codes.

This table shows possible return codes and their descriptions.

Code number

Description

API.

200 Similar to an HTTP 200 OK. No problems were detected.

201 Response to the GET /event request if no new events are
found. This return does not imply an error because an
event might not have been generated.

300 REST request was invalid. For example, the HTTP

method and URI did not match what is supported by the

74 Overview

Table 14. Return codes (continued).

This table shows possible return codes and their descriptions.

Code number

Description

301

REST request was a follow-on request, such as getting
call or collaboration status, but no existing session
information was found.

302

An error occurred when trying to parse the REST request.
An error exists in the format of the JSON or XML
provided.

303

For telephony-related REST requests, a user name was
not found in the credentials. This would only happen if the
configuration indicates that the user name associated with
a caller should be retrieved from the request credentials.

304

Response to an outstanding GET /event request if, before
a response is sent, a redundant GET /event request is
received.

305

REST request is missing required parameters or fields.
For example, this return results if the APl makes a call
that was sent without providing an addressOfRecord
identifying the caller.

306

An unexpected error occurred.

307

A telephony related REST request was made that did not
locate a call.

308

A collaboration-related REST request was made, but
collaboration was not enabled for in the session.

Sample REST requests and responses

Enabling collaboration with JSON

REST Request:

PUT http://host:port/commsvc.rest/CommServiet/collaborationSession?JSON=true&ceaVersion=1.0.0.1

REST Response:

{

"returnCode":200,

"infoMsg":"Successfully enabled collaboration",
"collaborationId":"Tocal.1242138965934 1",

"callNotifyUri":"CommServiet/callerNotification;ibmappid=local.1242138965934 1",

"collaborationStatus":"NOT_ESTABLISHED",

"collaborationServiceUri":"CommServiet/collaborationSession;ibmappid=1ocal.1242138965934 1",
"forPeerCollaborationUri":"CommServiet/collaborationSession?addressOfRecord=1ocal.1242138965934 1",
"eventUri":"CommServiet/event;ibmappid=local.1242138965934 1"

"ceaVersion":"1.0.0.1"

}

Enabling collaboration with XML

REST Request:

PUT http://host:port/commsvc.rest/CommServiet/collaborationSession?ceaVersion=1.0.0.1

REST Response:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<CommRestResponse xmins="http://jaxb.servlet.commsvc.ws.ibm.com/">

<returnCode>200</returnCode>
<infoMsg>Successfully enabled collaboration</infoMsg>

<callNotifyUri>CommServiet/callerNotification;ibmappid=Tocal.1242140626552_1</callNotifyUri>

<collaborationId>Tocal.1242140626552_1</collaborationId>

<collaborationStatus>NOT_ESTABLISHED</collaborationStatus>

<collaborationServiceUri>CommServiet/collaborationSession;ibmappid=T1ocal.1242140626552_1</collaborationServiceUri>
<forPeerCollaborationUri>CommServiet/collaborationSession?addressOfRecord=Tocal.1242140626552_1</forPeerCollaborationUri>
<eventUri>CommServlet/event;ibmappid=local.1242140626552_1</eventUri>

<ceaVersion>1.0.0.1</ceaVersion>
</CommRestResponse>

Chapter 7. Communications Enabled Applications 75

Making a call with JSON

REST Request
PUT http://host:port/commsvc.rest/CommServiet/call?JSON=true&ceaVersion=1.0.0.1
{
"enableCollaboration": false,
"addressOfRecord":"sip:phonel@192.168.1.100",
"peerAddressOfRecord":"sip:phone2@192.168.1.100"
1

REST Response:
{
"returnCode":200,
"infoMsg":"Call attempted between sip:phonel@192.168.1.100 and sip:phone2@192.168.1.100.",
"callerAddressOfRecord":"sip:phonel@192.168.1.100",
"calleeAddressOfRecord":"sip:phone20192.168.1.100",
"callServiceUri":"CommServlet/call;ibmappid=local.1242140626552_42",
"callNotifyUri":"CommServiet/callerNotification;ibmappid=Tocal.1242140626552_42",
"collaborationStatus":"NOT_ESTABLISHED",
"eventUri":"CommServiet/event;ibmappid=Tlocal.1242140626552_42"
"ceaVersion":"1.0.0.1"

}
Making a call with XML

REST Request

PUT http://host:port/commsvc.rest/CommServiet/call?ceaVersion=1.0.0.1

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<CommRestRequest xmlns="http://jaxb.servlet.commsvc.ws.ibm.com/">
<addressOfRecord>sip:phonel@192.168.1.100</address0fRecord>
<peerAddressOfRecord>sip:phone2@192.168.1.100</peerAddressOfRecord>
<enableCollaboration>true</enableCollaboration>

</CommRestRequest>

REST Response

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<CommRestResponse xmlns="http://jaxb.servlet.commsvc.ws.ibm.com/">
<returnCode>200</returnCode>
<infoMsg>Call attempted between sip:phonel@192.168.1.100 and sip:phone2@192.168.1.100.</infoMsg>
<callerAddressOfRecord>sip:phonel@192.168.1.100</callerAddressOfRecord>
<calleeAddressOfRecord>sip:phone2@192.168.1.100</calleeAddressOfRecord>
<callServiceUri>CommServiet/call;ibmappid=Tlocal.1242140626552_33</callServiceUri>
<callNotifyUri>CommServiet/callerNotification;ibmappid=Tocal.1242140626552_33</callNotifyUri>
<collaborationStatus>NOT_ESTABLISHED</collaborationStatus>
<eventUri>CommServlet/event;ibmappid=local.1242140626552_33</eventUri>
<ceaVersion>1.0.0.1</ceaVersion>

</CommRestResponse>

Directory conventions

References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This topic describes the conventions in use for WebSphere Application Server.

Default product locations - IBM i

These file paths are default locations. You can install the product and other components in any directory
where you have write access. You can create profiles in any valid directory where you have write access.
Multiple installations of WebSphere Application Server products or components require multiple locations.

app_client_root
The default installation root directory for the Application Client for IBM WebSphere Application
Server is the /QIBM/ProdData/WebSphere/AppClient/V8/client directory.

app_client_user_data_root
The default Application Client for IBM WebSphere Application Server user data root is the
/QIBM/UserData/WebSphere/AppClient/V8/client directory.

app_client_profile_root
The default Application Client for IBM WebSphere Application Server profile root is the
/QIBM/UserData/WebSphere/AppClient/V8/client/profiles/profile name directory.

76 Overview

app_server_root
The default installation root directory for WebSphere Application Server Network Deployment is the
/QIBM/ProdData/WebSphere/AppServer/V8/ND directory.

java_home

Table 15. Root directories for supported Java Virtual Machines.

This table shows the root directories for all supported Java Virtual Machines (JVMs).

JVM Directory
32-bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/32bit
64-bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/64bit

plugins_profile_root
The default Web Server Plug-ins profile root is the /QIBM/UserData/WebSphere/Plugins/V8/
webserver/profiles/profile_name directory.

plugins_root
The default installation root directory for Web Server Plug-ins is the /QIBM/ProdData/WebSphere/
Plugins/V8/webserver directory.

plugins_user_data_root
The default Web Server Plug-ins user data root is the /QIBM/UserData/WebSphere/Plugins/V8/
webserver directory.

product_library

product_lib
This is the product library for the installed product. The product library for each Version 8.0
installation on the system contains the program and service program objects (similar to .exe, .d11,
.s0 objects) for the installed product. The product library name is QWAS8x (where x is A, B, C, and
so on). The product library for the first WebSphere Application Server Version 8.0 product installed
on the system is QWAS8A. The app_server _root/properties/product.properties file contains the
value for the product library of the installation, was.install.library, and is located under the
app_server_root directory.

profile_root
The default directory for a profile named profile_name for WebSphere Application Server Network
Deployment is the /QIBM/UserData/WebSphere/AppServer/V8/ND/profiles/profile name directory.

shared_product_library
The shared product library, which contains all of the objects shared by all installations on the
system, is QWAS8. This library contains objects such as the product definition, the subsystem
description, the job description, and the job queue.

user_data_root
The default user data directory for WebSphere Application Server Network Deployment is the
/QIBM/UserData/WebSphere/AppServer/V8/ND directory.

The profiles and profileRegistry subdirectories are created under this directory when you
install the product.

web_server_root
The default web server path is /www/web_server_name.

Chapter 7. Communications Enabled Applications 77

78 Overview

Chapter 8. Client applications

This page provides a starting point for finding information about application clients and client applications.
Application clients provide a framework on which application code runs, so that your client applications can
access information on the application server.

For example, an insurance company can use application clients to help offload work on the server and to
perform specific tasks. Suppose an insurance agent wants to access and compile daily reports. The
reports are based on insurance rates that are located on the server. The agent can use application clients
to access the application server where the insurance rates are located. More introduction...

Types of client applications

You can write client applications that run separately from your application server. A client application uses
the framework provided by an underlying client to access the resources provided by WebSphere
Application Server.

Several types of clients are installed either with WebSphere Application Server or, optionally, with the
Application Client for WebSphere Application Server.

WebSphere Application Server

J2SE client

_I. Application server
application AP files P
Stand-alone Messaging engine
thin clients
JSP files :
Application Client for | Applgt cl!ent
WebSphere Application Server application
/Plugins
API files API files
% x x

Client container Client container
| |

“Java thin client” “Java EE client” “Java thin client” “Java EE client”

A
A

J2SE client
application

Java EE client
application

J2SE client
application

Java EE client
application

ActiveX client
application

ActiveX client
application

Figure 8. Clients provided for WebSphere Application Server

Stand-alone thin clients and resource adapter for JMS
The stand-alone thin clients are small, embeddable Java SE clients that you can run either on
their own or, to provide different features, with one or more other stand-alone thin clients. The
resource adapter for JMS is a stand-alone resource adapter that provides third party application
servers with full connectivity to service integration resources running inside WebSphere Application
Server.

The following table provides a comparison of the different types of clients that are available.

© Copyright IBM Corp. 2011 79

Table 16. Client comparison. The first column of this table lists the attributes that are being compared, and the
remaining seven columns show the comparison information for each of the different types of client that are available.

environment

Stand-alone | Resource Java EE Java thin Java EE Java thin Pluggable
thin clients Adapter for client (Java client (Java client (Java client (Java Application
JMS EE mode of SE mode of EE mode of SE mode of Client
Application Application Application Application (deprecated)
Client) Client) Server! Server) !
Unique Embeddable |JCAv1.5 Large client Large client Very large Very large Large client
characteristics | single jar with | resource footprint with | footprint with server footprint | server footprint | footprint with
small footprint | adapter with many files many files with many files | with many files | many files
small footprint (subset of
Application
Client for
WebSphere
Application
Server
Supported Java SE Java EE v1.4 |Java EE client |Java SE Java EE client | Java SE Java SE
execution application container container
environment server: Apache
Geronimo,
WebSphere
Application
Server
Community
Edition, JBoss
Supported IBM, Sun, and | As per J2EE | Supplied IBM | Supplied IBM | Supplied IBM | Supplied IBM | Sun
Java vendors | HP-UX vendor application application application application
server server server server
Supported See . 15 Supplied IBM | Supplied IBM | Supplied IBM | Supplied IBM | 1.5+
Java version .16 JRE JRE JRE JRE
Supported No No No No No No No
transactions transactions transactions, transactions, transactions, transactions, transactions, transactions,
and local local and local and local local and local and local
transactions transactions, transactions transactions transactions transactions transactions
and XA for IMS for JIMS for JIMS for JIMS for JMS
transactions
for JIMS
Easily Yes No No No No No No
embedded
Include JNDI | Available Not applicable | Yes Yes Yes Yes Yes
lookup through the (relies on host
capability to Thin Client for | application
WebSphere Enterprise server JNDI)
Application JavaBeans
Server (EJB)
Connectivity TCP and SSL | TCP and SSL | TCP, HTTP, TCP, HTTP, TCP, HTTP, TCP, HTTP, TCP and
support and SSL and SSL and SSL and SSL HTTP
Notable Thin Client for | No HTTP None None None None No SSL
restrictions JMS does not | connectivity support
support HTTP
connectivity.
For web
services, the
use of
SOAP/JMS is
not supported
by the thin
client

80 Overview

Table 16. Client comparison (continued). The first column of this table lists the attributes that are being compared,
and the remaining seven columns show the comparison information for each of the different types of client that are

available.
Stand-alone | Resource Java EE Java thin Java EE Java thin Pluggable
thin clients Adapter for client (Java client (Java client (Java client (Java Application
JMS EE mode of SE mode of EE mode of SE mode of Client
Application Application Application Application (deprecated)
Client) Client) Server! Server) !

License type IPLA IPLA IPLA IPLA IPLA IPLA IPLA
(unlimited (unlimited (unlimited (unlimited (unlimited
copy but no copy but no copy but no copy but no copy but no
redistribution), | redistribution), | redistribution), | redistribution), redistribution),
and ILAN and ILAN and ILAN and ILAN and ILAN
(redistribution) | (redistribution) | (redistribution) | (redistribution) (redistribution)

' The information in this column relates to WebSphere Application Server when used as the client runtime

environment.

The following table provides additional information on the supported JRE versions for stand-alone thin

clients.

Table 17. Supported JRE versions. The first column of this table lists the stand-alone thin clients, and the second
column lists the supported JRE versions for each of the stand-alone thin clients.

Type JRE Versions
Enterprise JavaBeans thin client .« 15
16
Java Message Service thin client .« 15
16
Java API for XML-based RPC (JAX-RPC) thin client .- 16
Java API for XML-Based Web Services (JAX-WS) thin client . 16
Administrative thin client . 16
Java Persistence API (JPA) . 15
16

Terms used for clients

Clients provided by WebSphere Application Server, and client applications that you develop, are referred to
by similar terms. The terms described in this topic should help you better understand other client-related
information.

Application Client
Application Client for WebSphere Application Server is the package that you can use to install a
variety of clients.

Application Client also forms the runtime for Java EE clients and Java thin clients on a system that
does not have the Application Server installed.

client Provides a framework on which an application runs, so that the application can access information
on an application server. Clients are provided as part of the Application Client for WebSphere

Application Server or as part of a WebSphere Application Server installation.
Clients are sometimes referred to as “application clients”.

client application
The application program that you develop to access information on an application server. The
application is built on the framework provided by one or more clients.

Chapter 8. Client applications 81

Java EE client
The Java Platform, Enterprise Edition (Java EE) client is a Java EE mode of using the runtime
environment of either an Application Client installation or a WebSphere Application Server
installation. The Java EE client uses the Client Container in the runtime environment to simplify
access to system services such as security, transactions, naming, and database access for use by
Java EE client applications.

The Java EE client is sometimes referred to as the “Java EE application client” or “J2EE
application client”.

Java thin client
The Java thin client is a JavaPlatform, Standard Edition (Java SE) mode of using the runtime
environment of either an Application Client installation or a WebSphere Application Server
installation. The Java thin client runtime environment provides the support needed by full-function
Java SE client applications for object resolution, security, Reliability Availability and Servicability
(RAS), and other services. However, the Java thin client does not support a Client Container that
provides easy access to these services.

The Java thin client is sometimes referred to as the “Java thin application client”.

stand-alone thin client
Small embeddable Java SE clients that you can use either on their own or, to provide different
features, with one or more other stand-alone thin clients. Stand-alone thin clients are provided as
embeddable JAR files, and have names such as “IBM Thin Client for feature”; for example, “IBM
Thin Client for Java Messaging Service (JMS)”.

Application Client for WebSphere Application Server

Application Client for WebSphere Application Server is the package that you can use to install a variety of
clients. Application Client also forms the runtime for Java EE clients and Java thin clients on a system that
does not have the Application Server installed.

The Application Client for WebSphere Application Server is packaged with the following components:

* The Java extensions needed to work with the IBM i server Java Development Kit. The IBM i product
does not include a stand-alone JRE.

* The runtime environment for Java EE client applications (that use services provided by the Java EE
Client Container)

« The runtime environment for Java thin client applications (Java SE applications that do not use services
provided by the Java EE Client Container)

» A variety of stand-alone thin clients, as embeddable JAR files

Stand-alone thin clients

Small embeddable Java SE clients that you can use either on their own (stand-alone) or, to provide
different features, with one or more other stand-alone thin clients.

The stand-alone thin clients are provided as embeddable JAR files in the %WAS_HOME%/runtimes
directory of either an Application Client installation or a WebSphere Application Server installation.

IBM Thin Client for Java Messaging Service (JMS)
The Thin Client for JMS is a Java service integration bus JMS client designed to run as an
embeddable client in Java SE applications under the IBM, Sun and HP Java run-time
environments (JREs). The client supports no transaction and local transaction models.

IBM Thin Client for Enterprise JavaBeans (EJB)
The Thin Client for EJB allows Java SE applications to access remote Enterprise Java Beans on a
server through Java Naming and Directory Interface (JNDI) look up. It can be embedded in a Java
SE application running under the IBM, Sun, or HP JREs.

82 Overview

IBM Thin Client for Java API for XML-based Web Services (JAX-WS)
The Thin Client for JAX-WS allows Java SE client applications to use JAX-WS to invoke web
services that are hosted by an application server. Such unmanaged client applications can use
JAX-WS APIs to directly inspect a WSDL file and formulate the calls to web services

IBM Thin Client for Java API for XML-based RPC (JAX-RPC)
The Thin Client for JAX-RPC allows Java SE client applications to use JAX-RPC to invoke web
services that are hosted by an application server. Such unmanaged client applications can access
a web service as if the web service is a local object mapped into the client address space even
though the web service provider is located in another part of the world.

IBM Thin Client for Java API for RESTful Web Services (JAX-RS)
The Thin Client for JAX-RS is a stand-alone Java SE 6 client environment that enables running
unmanaged JAX-RS RESTful web services client applications in a non-WebSphere environment to
invoke JAX-RS RESTful web services that are hosted by the application server.

IBM Thin Client for Java Persistence API (JPA)
The Thin Client for JPA allows Java SE client applications to use the Java Persistence APl (JPA)
to store and retrieve persistent data without the use of an application server.

If you are running two or more of these stand-alone thin clients together, you must obtain all the clients
that you are using from the same installation of Application Client for WebSphere Application Server, the
same installation of the WebSphere Application Server product, or the same service refresh.

Although the stand-alone thin clients can coexist with each other, none of them can coexist with the
Administration Thin Client for WebSphere Application Server.

WebSphere Application Server and IBM Application Client for WebSphere Application Serveralso provide a
resource adapter for JMS that enables a third-party application server to be a stand-alone JMS client of
WebSphere Application Server:

IBM Resource Adapter for JMS with WebSphere Application Server
A Java EE Connector Architecture (JCA) V1.5-compliant resource adapter that runs in a supported
Java EE V1.4 compliant application server. The resource adapter provides full two-phase
transaction support through an XA interface, supports inbound messages through message-driven
beans (MDBs) and supports connection pooling with lazy association.

Java EE client

The Java Platform, Enterprise Edition (Java EE) client is a Java EE mode of using the runtime
environment of either an Application Client installation or a WebSphere Application Server installation. The
Java EE client uses the Client Container in the runtime environment to simplify access to system services
such as security, transactions, naming, and database access for use by Java EE client applications.

The Java EE client is sometimes referred to as the “Java EE application client” or “J2EE application
client”.

The Client Container enables Java EE client applications to use logical names (“nicknames”) for enterprise
beans and local resources, and to leave the resolution of those names to a look up in the Java Naming
and Directory Interface (JNDI) namespace of an application server. Besides simplifying resolution to
enterprise beans and local resources references, this use of logical names and JNDI lookups eliminates
changes to the client application code if the underlying object or resource either changes or moves to a
different application server.

The Java EE client initializes the runtime environment for a Java EE client application. A deployment

descriptor defines the unique initialization for a client application, and defines the logical names used by
the application.

Chapter 8. Client applications 83

The logical names are defined within the deployment descriptor of a Java EE client application. These
logical deployment descriptors identify enterprise beans or local resources (Java Database Connectivity
(JDBC) data sources, J2C connection factories, Java Message Service (JMS) resources, and JavaMail
and URL APIs) for simplified resolution through JNDI lookup.

Storing the resource information separately from the client application program makes the client application
program portable and more flexible. If you develop a client application using and adhering to the Java EE
platform, you can port the client application from one Java EE platform implementation to another. The
code of the client application does not change, but the application package might need redeployment
using the deployment tool of the new Java EE platform.

Attention: The Java EE client does not support connection pools. The application client calls the
database directly, without a datasource. If you want to use the getConnection() request from a Java EE
client application, configure the JDBC provider in the application deployment descriptors, using Rational®
Application Developer or an assembly tool. The connection is established between the client application
and the database.

The Java EE client uses the Java Remote Method Invocation technology over Internet Inter-Orb Protocol
(RMI-1IOP). Using this protocol enables a Java EE client application to access enterprise bean references
and to use Common Object Request Broker Architecture (CORBA) services provided by the Java EE client
runtime. Use of the RMI-IIOP protocol and the accessibility of CORBA services assist users in developing
a Java EE client application that requires access to both enterprise bean references and CORBA object
references.

Java thin client

The Java thin client is a JavaPlatform, Standard Edition (Java SE) mode of using the runtime environment
of either an Application Client installation or a WebSphere Application Server installation. The Java thin
client runtime environment provides the support needed by full-function Java SE client applications for
object resolution, security, Reliability Availability and Servicability (RAS), and other services. However, the
Java thin client does not support a Client Container that provides easy access to these services.

The Java thin client is sometimes referred to as the “Java thin application client”.

The Java thin client is designed to support those users who want a full-function Java SE client application
programming environment, to use the supplied IBM JRE, without the overhead of the Java Platform,
Enterprise Edition (Java EE) platform on the client machine.

The Java thin client does not perform initialization of any of the services that the client application might
require. For example, the client application is responsible for the initialization of the naming service, either
through CosNaming or JNDI APlIs.

The Java thin client does not support the use of use of logical names (“nicknames”) for enterprise beans
and local resources. When a client application resolves a reference for an enterprise bean (using either
Java Naming and Directory Interface (JNDI) or CosNaming), the application must know the location of the
name server and the fully-qualified name used when the reference was bound into the name space. When
a client application resolves a reference for a local resource, the client application cannot resolve to the
resource through a JNDI lookup. Instead the client application must explicitly create the connection to the
resource using the appropriate API; for example, JDBC or Java Message Service (JMS). If the location of
an enterprise bean or resource changes, the thin client application must also change the value placed on
the lookup() statement.

The Java thin client runtime environment provides support for Java SE client applications to access remote
enterprise beans, and provides the implementation for various enterprise bean services. Client applications
can also use the Java thin client runtime environment to access CORBA objects and CORBA based
services.

84 oOverview

The Java thin client uses the RMI-IIOP protocol, which enables the client application to access both
enterprise bean references and CORBA object references. Using this protocol also allows the client
application to use any supported CORBA services. Using the RMI-IIOP protocol along with the accessibility
of CORBA services can help you develop a client application that needs to access both enterprise bean
references and CORBA object references.

If you choose to use both enterprise beans and CORBA programming models in the same client
application, you need to understand the differences between those programming models to manage both
environments. For example, the CORBA programming model requires the CORBA CosNaming name
service for object resolution in a name space. The enterprise beans programming model requires the JNDI
name service. The client application must initialize and properly manage these two naming services.

Another difference applies to the enterprise bean model, for which the JNDI implementation initializes the
Object Request Broker (ORB); the client application is unaware that an ORB is present. The CORBA
model, however, requires the client application to explicitly initialize the ORB through the ORB.init() static
method.

Note: The CORBA model does not allow for workload management (WLM) functionality and cluster
failover. Use the enterprise bean model (with JNDI) to access objects in a clustered environment.

The Java thin application client provides a batch command that you can use to set the CLASSPATH and
JAVA_HOME environment variables to enable the Java thin application client run time.

Applet client

The Applet client provides a browser-based Java run time capable of interacting with enterprise beans
directly, instead of indirectly through a servlet.

This client is designed to support users who want a browser-based Java client application programming
environment that provides a richer and more robust environment than the one offered by the Applet >
Servlet > enterprise bean model.

The programming model for this client is a hybrid of the Java application thin client and a servlet client.
When accessing enterprise beans from this client, the applet can consider the enterprise bean object
references as CORBA object references.

No tooling support exists for this client to develop, assemble or deploy the applet. You are responsible for
developing the applet, generating the necessary client bindings for the enterprise beans and CORBA
objects, and bundling these pieces together to install or download to the client machine. The Java applet
client provides the necessary run time to support communication between the client and the server. The
applet client run time is provided through the Java applet browser plug-in that you install on the client
machine.

Generate client-side bindings using an Jassembly tooll An applet can utilize these bindings, or you can
generate client-side bindings using the rmic command. This command is part of the IBM Developer Kit,

Java edition that is installed with the WebSphere Application Server.

The applet client uses the RMI-IIOP protocol. Using this protocol enables the applet to access enterprise
bean references and CORBA object references, but the applet is restricted in using some supported
CORBA services.

If you combine the enterprise bean and CORBA environments in one applet, you must understand the

differences between the two programming models, and you must use and manage each model
appropriately.

Chapter 8. Client applications 85

The applet environment restricts access to external resources from the browser runtime environment. You
can make some of these resources available to the applet by setting the correct security policy settings in
the WebSphere Application Server client.policy file. If given the correct set of permissions, the applet
client must explicitly create the connection to the resource using the appropriate API. This client does not
perform initialization of any service that the client applet can need. For example, the client application is
responsible for the initialization of the naming service, either through the CosNaming, or the Java Naming
and Directory Interface (JNDI) APIs.

ActiveX to Enterprise JavaBeans (EJB) Bridge

WebSphere Application Server provides an ActiveX to EJB bridge that enables ActiveX programs to
access enterprise beans through a set of ActiveX automation objects.

The bridge accomplishes this access by loading the Java virtual machine (JVM) into any ActiveX
automation container such as Visual Basic, VBScript, and Active Server Pages (ASP).

There are two main environments in which the ActiveX to EJB bridge runs:

» Client applications, such as Visual Basic and VBScript, are programs that a user starts from the
command line, desktop icon, or Start menu shortcut.

» Client services, such as Active Server Pages, are programs started by some automated means like the
Services control panel applet.

The ActiveX to EJB bridge uses the Java Native Interface (JNI) architecture to programmatically access
the JVM code. Therefore the JVM code exists in the same process space as the ActiveX application
(Visual Basic, VBScript, or ASP) and remains attached to the process until that process terminates. To
create JVM code, an ActiveX client program calls the XJBInit() method of the XJB.JClassFactory object.

After an ActiveX client program has initialized the JVM code, the program calls several methods to create
a proxy object for the Java class. When accessing a Java class or object, the real Java object exists in the
JVM code; the automation container contains the proxy for that Java object. The ActiveX program can use
the proxy object to access the Java class, object fields, and methods.

To convert primitive data types, the client program uses the COM IDispatch interface (use of the IlUnknown
interface is not directly supported). Primitive data types are automatically converted between native
automation types and Java types. All other types are handled automatically by the proxy objects.

Any exceptions thrown in Java code are encapsulated and thrown again as a COM error, from which the
ActiveX program can determine the actual Java exceptions.

The ActiveX to EJB bridge supports both free-threaded and apartment-threaded access and implements
the free threaded marshaler (FTM) to work in a hybrid environment such as Active Server Pages.

For more information about ActiveX client programming with the ActiveX to EJB bridge, refer to the
Developing ActiveX client application code topic.

Pluggable Application Client

The Pluggable Application Client for WebSphere Application Server provides a downloadable run time for
Java client applications to run with the Sun Java Runtime Environment (JRE) on the Windows platform.

Important: The Pluggable Application Client is deprecated. It is replaced by the stand-alone thin client,
IBM Thin Client for EJB.

The Pluggable Application Client runs only on the Windows platform and requires that you have previously

installed the Sun Java Runtime Environment (JRE) files. In all other aspects, the Pluggable Application
Client and the Java thin application client are similar.

86 Overview

Chapter 9. Data access resources

This page provides a starting point for finding information about data access. Various enterprise
information systems (EIS) use different methods for storing data. These backend data stores might be
relational databases, procedural transaction programs, or object-oriented databases.

The flexible IBM WebSphere Application Server provides several options for accessing an information
system backend data store:

* Programming directly to the database through the JDBC 4.0 API, JDBC 3.0 API, or JDBC 2.0 optional
package API.

* Programming to the procedural backend transaction through various J2EE Connector Architecture (JCA)
1.0 or 1.5 compliant connectors.

* Programming in the bean-managed persistence (BMP) bean or servlets indirectly accessing the
backend store through either the JDBC API or JCA-compliant connectors.

» Using container-managed persistence (CMP) beans.

» Using the IBM data access beans, which also use the JDBC API, but give you a rich set of features and
function that hide much of the complexity associated with accessing relational databases.

Service Data Objects (SDO) simplify the programmer experience with a universal abstraction for messages
and data, whether the programmer thinks of data in terms of XML documents or Java objects. For
programmers, SDOs eliminate the complexity of the underlying data access technology such as JDBC,
RMI/IIOP, JAX-RPC, and JMS, and message transport technology such as, java.io.Serializable, DOM
Objects, SOAP, and JMS.

Data concepts

Relational resource adapters and JCA

A resource adapter is a system-level software driver that a Java application uses to connect to an
enterprise information system (EIS). A resource adapter plugs into an application server and provides
connectivity between the EIS, the application server, and the enterprise application.

WebSphere Application Server supports JCA versions 1.0, 1.5 and 1.6, including additional configurable
features for JCA 1.5 resource adapters with activation specifications that handle inbound requests. The
JCA Version 1.6 specification also adds support for Java annotations in RAR modules. For more
information on annotation support see the topic, JCA 1.6 support for annotations in RAR modules.

Data access for container-managed persistence (CMP) beans is indirectly managed by the WebSphere
Persistence Manager. The JCA specification supports persistence manager delegation of the data access
to the JCA resource adapter without knowing the specific backend store. For the relational database
access, the persistence manager uses the relational resource adapter to access the data from the
database.

You can find the supported database platforms for the JDBC API at the WebSphere Application Server
prerequisite website.

Java EE Connector Architecture and WebSphere relational resource adapters
An application server vendor extends its system once to support the Java Platform, Enteprise Edition
Connector Architecture (JCA) and is then assured of seamless connectivity to multiple EISs. Likewise, an

EIS vendor provides one standard resource adapter with the capability to plug into any application server
that supports the connector architecture.

© IBM Corporation 2009 87

The product supports any resource adapter that implements version 1.0, 1.5 and 1.6 of this specification.
IBM includes WebSphere MQ and the Service Integration Bus with the Application Server, and IBM
supplies resource adapters for many enterprise systems separately from the WebSphere Application
Server package, which include but are not limited to, the Customer Information Control System (CICS®),
Host On-Demand (HOD), Information Management System (IMS™), and Systems, Applications, and
Products (SAP) R/3 .

The general approach to writing an application that uses a JCA resource adapter is to develop EJB
session beans or services with tools such as Rational Application Developer. The session bean uses the
javax.resource.cci interfaces to communicate with an enterprise information system through the resource
adapter.

WebSphere Relational Resource Adapter

WebSphere Application Server provides the WebSphere Relational Resource Adapter implementation. This
resource adapter provides data access through JDBC calls to access the database dynamically. The
connection management is based on the JCA connection management architecture and provides
connection pooling, transaction, and security support. The WebSphere RRA is installed and runs as part of
WebSphere Application Server, and needs no further administration.

The RRA supports both the configuration and use of JDBC data sources and JCA connection factories.
The RRA supports the configuration and use of data sources implemented as either JDBC data sources or
Java EE Connector Architecture connection factories. Data sources can be used directly by applications,
or they can be configured for use by container-managed persistence (CMP) entity beans.

For more information about the WebSphere Relational Resource Adapter, see the following topics:

» For information about resource adapters and data access, see the topic Data access portability
features.

» For RRA settings, see the topic WebSphere relational resource adapter settings.

» For information about enterprise beans, see the topic EJB applications.

Using a single instance of a resource adapter
You can restrict certain resource adapters to a single runtime instance inside the Java Virtual Machine
(JVM).

Before you begin

Enabling this setting imposes a highly restrictive environment on the system and should be used with
caution.

About this task

Using the single-instance resource adapter configuration option on some resource adapters can enable
you to set up an environment that optimally behaves. Some resource adapters that support inbound
communications from the enterprise information system (EIS) might require single-instance behavior. By
enabling this setting, server startup time can be optimized. Other resource adapters might not require this
setting. You need to determine if you should configure the resource adapter for single-instance behavior.

Consider using the single-instance resource adapter configuration for testing and troubleshooting
problems. Placing the single-instance restriction on some resource adapters might work as a corrective
action for problems; enabling single-instance behavior on one or more resource adapters thought to be
involved in a problem can help isolate the specific issue.

This design does not allow two resource adapter JavaBeans instances that would return true from the
equals method to coexist in the same JVM, if any one of them is configured as single-instance. For

88 Overview

example, if two applications that have embedded the same resource adapter, or one application that
embeds a resource adapter and the same resource adapter is installed in the server as a stand-alone
resource adapter, are configured on the same server such that even though some of their config attributes
are different, the ones that the equals() method evaluates are equal, this will no longer be allowed, and will
return a ResourceException.

Note: The vendor of a resource adapter which cannot tolerate multiple instances does not have a
JCA-defined method of communicating this. Therefore, it is up to the deployer to recognize the
need, and configure resource adapter(s) for single-instance behavior.

WebSphere relational resource adapter settings
Use this page to view the settings of the WebSphere relational resource adapter. This adapter is
preinstalled in the product to provide access to relational databases.

Restriction: Although the default relational resource adapter settings are viewable, you cannot make
changes to them.

To view this administrative console page, click Resources > Resource adapters > Resource adapters.
Expand the Preferences section at the top of the page. Select Show built-in resources. The table of
configured resource adapters now displays the WebSphere Relational Resource Adapter.

Name:

Specifies the name of the resource provider.

Data type String

Description:

Specifies a description of the relational resource adapter.

Data type String

Scope:

Specifies the scope of the relational resource adapter.

Data type String

Data access portability features
These interfaces work with the relational resource adapter (RRA) to make database-specific functions
operable on connections between the application server and that database.

In other words, your applications can access data from different databases, and use functions that are
specific to the database, without any code changes. Additionally, WebSphere Application Server enables
you to plug in a data source that is not supported by WebSphere persistence. However, the data source
must be implemented as either the XADataSource type or the ConnectionPoolDataSource type, and it
must be in compliance with the JDBC 2.x specification.

You can achieve application portability through the following:

DataStoreHelper interface
With this interface, each data store platform can plug in its own private datastore specific functions
that the relational resource adapter runtime uses. WebSphere Application Server provides an
implementation for each supported JDBC provider.

Chapter 9. Data access resources 89

The interface also provides a GenericDataStoreHelper class for unsupported data sources to use.
You can subclass the GenericDataStoreHelper class or other WebSphere provided helpers to
support any new data source.

Note: If you are configuring data access through a user-defined JDBC provider, do not implement
the DataStoreHelper interface directly. Either subclass the GenericDataStoreHelper class or
subclass one of the DataStoreHelper implementation classes provided by IBM (if your
database behavior or SQL syntax is similar to one of these provided classes).

For more information, see the APl documentation DataStoreHelper topic (as listed in the API
documentation index).

The following code segment shows how a new data store helper is created to add new error
mappings for an unsupported data source.

public class NewDSHelper extends GenericDataStoreHelper
{
public NewDSHelper(java.util.Properties dataStoreHelperProperties)
{
super(dataStoreHelperProperties);
java.util.Hashtable myErrorMap = null;
myErrorMap = new java.util.Hashtable();
myErrorMap.put (new Integer(-803), myDuplicateKeyException.class);
myErrorMap.put(new Integer(-1015), myStaleConnectionException.class);
myErrorMap.put ("S1000", MyTableNotFoundException.class);
setUserDefinedMap (myErrorMap) ;

}
}
WSCallHelper class
This class provides two methods that enable you to use vendor-specific methods and classes that
do not conform to the standard JDBC APIs (and are not part of WebSphere Application Server
extension packages).
» jdbcCall() method

By using the static jdbcCall() method, you can invoke vendor-specific, nonstandard JDBC
methods on your JDBC objects. (For more information, see the API documentation
WScCallHelper topic.) The following code segment illustrates using this method with a DB2 data
source:

Connection conn = ds.getConnection();

// get connection attribute

String connectionAttribute =(String) WSCallHelper.jdbcCall(DataSource.class, ds,
"getConnectionAttribute", null, null);

// setAutoClose to false

WSCallHelper.jdbcCall(java.sql.Connection.class,

conn, "setAutoClose",

new Object[] { new Boolean(false)},

new Class[] { boolean.class });

// get data store helper

DataStoreHelper dshelper = WSCallHelper.getDataStoreHelper(ds);

» jdbcPass() method

Use this method to exploit the nonstandard JDBC classes that some database vendors provide.
These classes contain methods that require vendors' proprietary JDBC objects to be passed as
parameters.

In particular, implementations of Oracle can involve use of nonstandard classes furnished by the
vendor. Methods contained within these classes include:

oracle.sql.ArrayDescriptor ArrayDescriptor.createDescriptor(java.lang.String, java.sql.Connection)
oracle.sql.ARRAY new ARRAY(oracle.sql.ArrayDescriptor, java.sql.Connection, java.lang.Object)
oracle.xml.sql.query.OracleXMLQuery(java.sql.Connection, java.lang.String)
oracle.sql.BLOB.createTemporary(java.sql.Connection, boolean, int)
oracle.sql.CLOB.createTemporary(java.sql.Connection, boolean, int)
oracle.xdb.XMLType.createXML(java.sql.Connection, java.lang.String)

90 Overview

The following code sample demonstrates how to use jdbcPass to call the Oracle method
XMLType.createXML on a connection. This Oracle function creates an XML type object out of the
XML data that the database passes to your application.
XMLType poXML = (XMLType) (WSCallHelper.jdbcPass(XMLType.class,

"createXML", new Object[]{conn,poString},

new Class[]{java.sql.Connection.class, java.lang.String.class},

new int[]{WSCallHelper.CONNECTION,WSCallHelper.IGNORE}));
For more examples of using jdbcPass and a complete list of method parameters, see the API
documentation for the WSCallHelper class. In this information center, access the API
documentation with the following steps:

1. Click Reference > Developer APl documentation > Application programming interfaces
2. Click com.ibm.websphere.rsadapter
3. Under the Class Summary heading, click WSCallHelper

The first section on jdbcPass discusses using the method to call database static methods. The
second section on jdbcPass addresses database non-static methods.

CAUTION: Use of the jdbcPass() method causes the JDBC object to be used outside of the
protective mechanisms of WebSphere Application Server. Performing certain
operations (such as setting autoCommit, or transaction isolation settings, etc.)
outside of these protective mechanisms will cause problems with the future use of
these pooled connections. IBM does not guarantee stability of the object after
invocation of this method; it is the user's responsibility to ensure that invocation of
this method does not perform operations that harm the object. Use at your own risk.

Because of these potential problems, WebSphere Application Server strictly controls
which methods are allowed to be invoked using the jdbcPass() method support. If
you require support for a method that is not listed previously in this document,
contact WebSphere Application Server Support with information on the method you
require.

JDBC providers

Installed applications use JDBC providers to interact with relational databases.

The JDBC provider object supplies the specific JDBC driver implementation class for access to a specific
vendor database. To create a pool of connections to that database, you associate a data source with the
JDBC provider. Together, the JDBC provider and the data source objects are functionally equivalent to the
Java Platform, Enterprise Edition (Java EE) Connector Architecture (JCA) connection factory, which
provides connectivity with a non-relational database.

For a current list of supported providers, see the WebSphere Application Server prerequisite website. For
detailed descriptions of the providers, including the supported data source classes and their required
properties, refer to the topics on data source required minimum required settings, by vendor.

Configuring QueryTimeout
You can configure a timeout on the data source of an application so that the transaction or statement
timeout occurs if a query fails to return, because of a deadlock or blocked transactions.

Before you begin

Traditional Java Database Connectivity (JDBC) provides a standard interface, called
java.sql.Statement.setQueryTimeout, to limit the number of seconds that a JDBC driver waits for a
statement to execute. This can used by an application to control the maximum amount of time the
application waits for an SQL statement to complete before the request is interrupted. With earlier versions
of WebSphere Application Server, the only way of setting a query timeout is by programmatically

Chapter 9. Data access resources 91

establishing an SQL query timeout in the application by invoking the java.sql.Statement.setQueryTimeout
interface on every statement.

About this task

In Version 8, you can configure this query timeout using either of the following two custom properties at
the data source level:

* webSphereDefaultQueryTimeout establishes a default query timeout, which is the number of seconds
that an SQL statement may execute before timing out. This default value is overridden during a Java
Transaction API (JTA) transaction if the syncQueryTimeoutWithTransactionTimeout custom property is
enabled.

* syncQueryTimeoutWithTransactionTimeout uses the time remaining (if any) in a JTA transaction as the
default query timeout for SQL statements.

By default, query time is disabled. Based on the presence and value of the two new data source custom
properties, a timeout value is calculated of either:

 the time remaining in the current JTA transaction based on the TM timeout setting -
syncQueryTimeoutWithTransactionTimeout

» the absolute number of seconds specified by configuration - webSphereDefaultQueryTimeout

The calculated timeout is then used in conjunction with the JDBC API to set a query timeout value on each
statement.

Procedure
1. Open the administrative console.
2. Go to the WebSphere Application Server Data Source properties panel for the data source.
a. Click Resources > JDBC > Data Sources > data_source
b. Click WebSphere Application Server Data Source properties.

3. Click Custom properties under Additional Properties.

4. Click New.

5. Enter webSphereDefaultQueryTimeout in the Name field.

6. Enter the number of seconds to use for the default query timeout in the Value field. The timeout value
is in seconds. A value of 0 (zero) indicates no timeout.

7. Click OK.

8. Click New.

9. Enter syncQueryTimeoutWithTransactionTimeout in the Name field.

10. Enter true or false in the Value field. A value of true indicates to use the time remaining in a JTA
transaction as the default query timeout.

11. Click OK.
12. Save your changes. The updates go into effect after the server is restarted.

Results
You have configured the query timeout on the data source of your application.
Example

The following example illustrates using webSphereDefaultQueryTimeout = 20 and
syncQueryTimeoutWithTransactionTimeout = true:

92 Overview

statement = connection.createStatement();

statement.executeUpdate(sqlcommandl); // query timeout of 20 seconds is used

statement.executeUpdate(sqlcommand2); // query timeout of 20 seconds is used

transaction.setTransactionTimeout(30);

transaction.begin();

try

{
statement.executeUpdate(sqlcommand3); // query timeout of 30 seconds is used
// assume the above operation took 5 seconds, remaining time = 30 - 5 seconds
statement.executeUpdate(sqlcommand4); // query timeout of 25 seconds is used
// assume the above operation took 10 seconds, , remaining time = 25 - 10 seconds
statement.executeUpdate(sqlcommand5); // query timeout of 15 seconds is used

}

finally

{

}

statement.executeUpdate(sqlcommand6); // query timeout of 20 seconds is used

transaction.commit();

The following example illustrates using webSphereDefaultQueryTimeout = 20 and
syncQueryTimeoutWithTransactionTimeout = false:

statement = connection.createStatement();

statement.executeUpdate(sqlcommandl); // query timeout of 20 seconds is used

statement.executeUpdate(sqlcommand2); // query timeout of 20 seconds is used

transaction.setTransactionTimeout (30);

transaction.begin();

try

{
statement.executeUpdate(sqlcommand3); // query timeout of 20 seconds is used
// assume the above operation took 5 seconds
statement.executeUpdate(sqlcommand4); // query timeout of 20 seconds is used
// assume the above operation took 10 seconds
statement.executeUpdate(sqlcommand5); // query timeout of 20 seconds is used

}

finally

{

}

statement.executeUpdate(sqlcommand6); // query timeout of 20 seconds is used

transaction.commit();

You can override the query timeout for a statement at any time by invoking the
java.sql.Statement.setQueryTimeout interface from your application code.

Data sources

Installed applications use a data source to obtain connections to a relational database. A data source is
analogous to the Java Platform, Enterprise Edition (Java EE) Connector Architecture (JCA) connection
factory, which provides connectivity to other types of enterprise information systems (EIS).

A data source is associated with a JDBC provider, which supplies the driver implementation classes that
are required for JDBC connectivity with your specific vendor database. Application components transact
directly with the data source to obtain connection instances to your database. The connection pool that

corresponds to each data source provides connection management.

You can create multiple data sources with different settings, and associate them with the same JDBC
provider. For example, you might use multiple data sources to access different databases within the same
vendor database application. WebSphere Application Server requires JDBC providers to implement one or
both of the following data source interfaces, which are defined by Sun Microsystems. These interfaces
enable the application to run in a single-phase or two-phase transaction protocol.

Chapter 9. Data access resources 93

» ConnectionPoolDataSource - a data source that supports application participation in local and global
transactions, excepting two-phase commit transactions. When a connection pool data source is involved
in a global transaction, transaction recovery is not provided by the transaction manager. The application
is responsible for providing the backup recovery process if multiple resource managers are involved.

Note: A connection pool data source does support two-phase commit transactions in these cases:
— the data source is making use of Last participant support. Last participant support enables a
single one-phase commit resource to participate in a global transaction with one or more
two-phase commit resources.

For more information, consult the article, Using one-phase and two-phase commit resources in
the same transaction.
» XADataSource - a data source that supports application participation in any single-phase or two-phase
transaction environment. When this data source is involved in a global transaction, the product
transaction manager provides transaction recovery.

Prior to version 5.0 of the application server, the function of data access was provided by a single
connection manager (CM) architecture. This connection manager architecture remains available to support
Java 2 Platform, Enterprise Edition (J2EE) 1.2 applications, but another connection manager architecture
is provided, based on the JCA architecture supporting the J2EE 1.3 application style, J2EE 1.4 and Java
EE applications.

These architectures are represented by two types of data sources. To choose the right data source,

administrators must understand the nature of their applications, EJB modules, and enterprise beans.

» Data source (WebSphere Application Server V4) - This data source runs under the original CM
architecture. Applications using this data source behave as if they were running in Version 4.0.

» Data source - This data source uses the JCA standard architecture to provide support for J2EE version
1.3 and 1.4, as well as Java EE applications. It runs under the JCA connection manager and the
relational resource adapter.

Choice of data source
» J2EE 1.2 application - all EJB 1.1 enterprise beans, JDBC applications, or Servlet 2.2 components must
use the 4.0 data source.
» J2EE 1.3 (and subsequent releases) application -
— EJB 1.1 module - all EJB 1.x beans must use the 4.0 data source.
— EJB 2.0 (and subsequent releases) module - enterprise beans that include container-managed
persistence (CMP) Version 1.x, 2.0, and beyond must use the new data source.
— JDBC applications and Servlet 2.3+ components - must use the new data source.

Data access beans

Data access beans provide a rich set of features and function, while hiding much of the complexity
associated with accessing relational databases.

They are Java classes written to the Enterprise JavaBeans specification.

You can use the data access beans in JavaBeans-compliant tools, such as the IBM Rational Application
Developer. Because the data access beans are also Java classes, you can use them like ordinary classes.

The data access beans (in the package com.ibm.db) offer the following capabilities:

Feature
Details

Caching query results
You can retrieve SQL query results all at once and place them in a cache. Programs using the
result set can move forward and backward through the cache or jump directly to any result row in
the cache.

94 Overview

For large result sets, the data access beans provide ways to retrieve and manage packets,
subsets of the complete result set.

Updating through result cache
Programs can use standard Java statements (rather than SQL statements) to change, add, or
delete rows in the result cache. You can propagate changes to the cache in the underlying
relational table.

Querying parameter support
The base SQL query is defined as a Java String, with parameters replacing some of the actual
values. When the query runs, the data access beans provide a way to replace the parameters with
values made available at run time. Default mappings for common data types are provided, but you
can specify whatever your Java program and database require.

Supporting metadata
A StatementMetaData object contains the base SQL query. Information about the query (metadata)
enables the object to pass parameters into the query as Java data types.

Metadata in the object maps Java data types to SQL data types (as well as the reverse). When
the query runs, the Java-datatyped parameters are automatically converted to SQL data types as
specified in the metadata mapping.

When results return, the metadata object automatically converts SQL data types back into the
Java data types specified in the metadata mapping.

Connection management architecture

The connection management architecture for both relational and procedural access to enterprise
information systems (EIS) is based on the Java Platform, Enterprise Edition (Java EE) Connector
Architecture (JCA) specification. The Connection Manager (CM), which pools and manages connections
within an application server, is capable of managing connections obtained through both resource adapters
(RAs) defined by the JCA specification, and data sources defined by the Java Database Connectivity
(JDBC) 2.0 (and later) Extensions specification.

To make data source connections manageable by the CM, the WebSphere Application Server provides a
resource adapter (the WebSphere Relational Resource Adapter) that enables JDBC data sources to be
managed by the same CM that manages JCA connections. From the CM point of view, JDBC data
sources and JCA connection factories look the same. Users of data sources do not experience any
programmatic or behavioral differences in their applications because of the underlying JCA architecture.
JDBC users still configure and use data sources according to the JDBC programming model.

Applications migrating from previous versions of WebSphere Application Server might experience some
behavioral differences because of the specification changes from various Java EE requirements levels.
These differences are not related to the adoption of the JCA architecture.

If you have Java 2 Platform, Enterprise Edition (J2EE) 1.2 applications using the JDBC API that you wish
to run in WebSphere Application Server 6.0 and later, the JDBC CM from Application Server version 4.0 is
still provided as a configuration option. Using this configuration option enables J2EE 1.2 applications to run
unaltered. If you migrate a Version 4.0 application to Version 6.0 or later, using the latest migration tools,
the application automatically uses the Version 4.0 connection manager after migration. However, EJB 2.x
modules in J2EE 1.3, J2EE 1.4 and Java Platform, Enterprise Edition (Java EE) applications cannot use
the JDBC CM from WebSphere Application Server Version 4.0.

Connection pooling
Using connection pools helps to both alleviate connection management overhead and decrease
development tasks for data access.

Each time an application attempts to access a backend store (such as a database), it requires resources

to create, maintain, and release a connection to that datastore. To mitigate the strain this process can
place on overall application resources, the Application Server enables administrators to establish a pool of

Chapter 9. Data access resources 95

backend connections that applications can share on an application server. Connection pooling spreads the
connection overhead across several user requests, thereby conserving application resources for future
requests.

The application server supports JDBC 4.0 APIs for connection pooling and connection reuse. The
connection pool is used to direct JDBC calls within the application, as well as for enterprise beans using
the database.

Benefits of connection pooling

Connection pooling can improve the response time of any application that requires connections, especially
Web-based applications. When a user makes a request over the web to a resource, the resource
accesses a data source. Because users connect and disconnect frequently with applications on the
Internet, the application requests for data access can surge to considerable volume. Consequently, the
total datastore overhead quickly becomes high for Web-based applications, and performance deteriorates.
When connection pooling capabilities are used, however, web applications can realize performance
improvements of up to 20 times the normal results.

With connection pooling, most user requests do not incur the overhead of creating a new connection
because the data source can locate and use an existing connection from the pool of connections. When
the request is satisfied and the response is returned to the user, the resource returns the connection to the
connection pool for reuse. The overhead of a disconnection is avoided. Each user request incurs a fraction
of the cost for connecting or disconnecting. After the initial resources are used to produce the connections
in the pool, additional overhead is insignificant because the existing connections are reused.

When to use connection pooling

Use connection pooling in an application that meets any of the following criteria:

It cannot tolerate the overhead of obtaining and releasing connections whenever a connection is used.

* It requires Java Transaction API (JTA) transactions within the Application Server.

* |t needs to share connections among multiple users within the same transaction.

* It needs to take advantage of product features for managing local transactions within the application
server.

* It does not manage the pooling of its own connections.

* It does not manage the specifics of creating a connection, such as the database name, user name, or
password

How connections are pooled together

When you configure a unique data source or connection factory, you must give it a unique Java Naming
and Directory Interface (JNDI) name. This JNDI name, along with its configuration information, is used to
create the connection pool. A separate connection pool exists for each configured data source or
connection factory.

Furthermore, the application server creates a separate instance of the connection pool in each application
server that uses the data source or connection factory. For example:

* If you run a three server cluster in which all of the servers use myDataSource, and myDataSource has
a Maximum Connections setting of 10, then you can generate up to 30 connections (three servers times
10 connections).

Consider how this behavior potentially impacts the number of connections that your backend resource can
support. See the topic, Connection pool settings, for more information.

Other considerations for determining the maximum connections setting:

96 Overview

» Each entity bean transaction requires an additional database connection, dedicated to handling the
transaction.

» If clones are used, one data pool exists for each clone.

It is also important to note that when using connection sharing, it is only possible to share connections
obtained from the same connection pool.

Connection and connection pool statistics:

WebSphere Application Server supports use of PMI APIs to monitor the performance of data access
applications.

Performance Monitoring Infrastructure (PMI) method calls that are supported in the two existing
Connection Managers (JDBC and J2C) are supported in this version of WebSphere Application Server.
The calls include:

» ManagedConnectionsCreated

* ManagedConnectionsAllocated

* ManagedConnectionFreed

* ManagedConnectionDestroyed

* BeginWaitForConnection

* EndWaitForConnection

» ConnectionFaults

* Average number of ManagedConnections in the pool

» Percentage of the time that the connection pool is using the maximum number of ManagedConnections
» Average number of threads waiting for a ManagedConnection

» Average percent of the pool that is in use

» Average time spent waiting on a request

* Number of ManagedConnections that are in use

* Number of Connection Handles

* FreePoolSize

* UseTime

Java Specification Request (JSR) 77 requires statistical data to be accessed through managed beans
(Mbeans) to facilitate this. The Connection Manager passes the ObjectNames of the Mbeans created for
this pool. In the case of Java Message Service (JMS) null is passed in. The interface used is:
PmiFactory.createJ2CPerf (

String pmiName, // a unique Identifier for JCA /JDBC. This is the
// ConnectionFactory name.

ObjectName providerName,// the ObjectName of the J2CResourceAdapter
// or JDBCProvider Mbean

ObjectName factoryName // the ObjectName of the J2CConnectionFactory
// or DataSourceMbean.

)

The following Unified Modeling Language (UML) diagram shows how JSR 77 requires statistics to be
reported:

JCAConnectionPoolStats and JDBCConnectionPoolStats objects do not have a direct implementing
Mbean; the statistics are gathered through a call to PMI. A J2C resource adapter, and JDBC provider each
contain a list of ConnectionFactory or DataSource ObjectNames, respectively. The ObjectNames are used
by PMI to find the appropriate connection pool in the list of PMI modules.

The JCA 1.5 Specification allows an exception from the matchManagedConnection() method that indicates
that the resource adapter requests that the connection not be pooled. In that case, statistics for that
connection are provided separately from the statistics for the connection pool.

Chapter 9. Data access resources 97

Connection life cycle
A ManagedConnection object is always in one of three states: DoesNotExist, InFreePool, or InUse.

Before a connection is created, it must be in the DoesNotExist state. After a connection is created, it can
be in either the InUse or the InFreePool state, depending on whether it is allocated to an application.

Between these three states are transitions. These transitions are controlled by guarding conditions. A
guarding condition is one in which frue indicates when you can take the transition into another legal state.
For example, you can make the transition from the InFreePool state to InUse state only if:
» the application has called the data source or connection factory getConnection() method (the
getConnection condition)
» a free connection is available in the pool with matching properties (the freeConnectionAvailable
condition)
» and one of the two following conditions are true:
— the getConnection() request is on behalf of a resource reference that is marked unsharable
— the getConnection() request is on behalf of a resource reference that is marked shareable but no
shareable connection in use has the same properties.

This transition description follows:

InFreePool > InUse:

getConnection AND

freeConnectionAvailable AND
NOT(shareableConnectionAvailable)

Here is a list of guarding conditions and descriptions.

Table 18. Guarding conditions. Here is a list of guarding conditions and descriptions.

Condition

Description

ageTimeoutExpired

Connection is older then its ageTimeout value.

close

Application calls close method on the Connection object.

fatalErrorNotification

A connection has just experienced a fatal error.

freeConnectionAvailable

A connection with matching properties is available in the
free pool.

getConnection

Application calls getConnection method on a data source
or connection factory object.

markedStale

Connection is marked as stale, typically in response to a
fatal error notification.

noOtherReferences There is only one connection handle to the managed
connection, and the Transaction Service is not holding a
reference to the managed connection.

noTx No transaction is in force.

poolSizeGTMin Connection pool size is greater than the minimum pool
size (minimum number of connections)

poolSizeLTMax Pool size is less than the maximum pool size (maximum

number of connections)

shareableConnectionAvailable

The getConnection() request is for a shareable
connection, and one with matching properties is in use
and available to share.

TxEnds

The transaction has ended.

unshareableConnectionRequest

The getConnection() request is for an unshareable
connection.

98 Overview

Table 18. Guarding conditions (continued). Here is a list of guarding conditions and descriptions.

Condition Description

unusedTimeoutExpired Connection is in the free pool and not in use past its
unused timeout value.

Getting connections

The first set of transitions covered are those in which the application requests a connection from either a
data source or a connection factory. In some of these scenarios, a new connection to the database results.
In others, the connection might be retrieved from the connection pool or shared with another request for a
connection.

DoesNotEXxist

Every connection begins its life cycle in the DoesNotEXxist state. When an application server starts, the
connection pool does not exist. Therefore, there are no connections. The first connection is not created
until an application requests its first connection. Additional connections are created as needed, according
to the guarding condition.

getConnection AND

NOT (freeConnectionAvailable) AND

poolSizelLTMax AND

(NOT (shareableConnectionAvailable) OR
unshareableConnectionRequest)

This transition specifies that a connection object is not created unless the following conditions occur:

* The application calls the getConnection() method on the data source or connection factory

* No connections are available in the free pool (NOT(freeConnectionAvailable))

* The pool size is less than the maximum pool size (poolSizeL. TMax)

» If the request is for a sharable connection and there is no sharable connection already in use with the
same sharing properties (NOT(shareableConnectionAvailable)) OR the request is for an unsharable
connection (unshareableConnectionRequest)

All connections begin in the DoesNotExist state and are only created when the application requests a
connection. The pool grows from 0 to the maximum number of connections as applications request new
connections. The pool is not created with the minimum number of connections when the server starts.

If the request is for a sharable connection and a connection with the same sharing properties is already in
use by the application, the connection is shared by two or more requests for a connection. In this case, a
new connection is not created. For users of the JDBC API these sharing properties are most often
userid/password and transaction context; for users of the Resource Adapter Common Client Interface
(CCl) they are typically ConnectionSpec, Subject, and transaction context.

InFreePool

The transition from the InFreePool state to the InUse state is the most common transition when the
application requests a connection from the pool.

InFreePool>InUse:

getConnection AND

freeConnectionAvailable AND

(unshareableConnectionRequest OR

NOT (shareableConnectionAvailable))

This transition states that a connection is placed in use from the free pool if:

+ the application has issued a getConnection() call
* a connection is available for use in the connection pool (freeConnectionAvailable),

Chapter 9. Data access resources 99

« and one of the following is true:
— the request is for an unsharable connection (unsharableConnectionRequest)
— no connection with the same sharing properties is already in use in the transaction.
(NOT(sharableConnectionAvailable)).

Any connection request that a connection from the free pool can fulfill does not result in a new connection
to the database. Therefore, if there is never more than one connection used at a time from the pool by any
number of applications, the pool never grows beyond a size of one. This number can be less than the
minimum number of connections specified for the pool. One way that a pool grows to the minimum
number of connections is if the application has multiple concurrent requests for connections that must
result in a newly created connection.

InUse

The idea of connection sharing is seen in the transition on the InUse state.

InUse>InUse:
getConnection AND
ShareableConnectionAvailable

This transition indicates that if an application requests a shareable connection (getConnection) with the
same sharing properties as a connection that is already in use (ShareableConnectionAvailable), the
existing connection is shared.

The same user (user name and password, or subject, depending on authentication choice) can share
connections but only within the same transaction and only when all of the sharing properties match. For
JDBC connections, these properties include the isolation level, which is configurable on the
resource-reference (IBM WebSphere extension) to data source default. For a resource adapter factory
connection, these properties include those specified on the ConnectionSpec object. Because a transaction
is normally associated with a single thread, you should never share connections across threads.

Note: It is possible to see the same connection on multiple threads at the same time, but this situation is
an error state usually caused by an application programming error.

Returning connections

All of the transitions discussed previously involve getting a connection for application use. With that goal,
the transitions result in a connection closing, and either returning to the free pool or being destroyed.
Applications should explicitly close connections (note: the connection that the user gets back is really a
connection handle) by calling close() on the connection object. In most cases, this action results in the
following transition:

InUse>InFreePool:

(close AND

noOtherReferences AND

NoTx AND

UnshareableConnection)

OR

(ShareableConnection AND

TxEnds)

Conditions that cause the transition from the InUse state are:

» If the application or the container calls close() (producing the close condition) and there are no
references (the noOtherReferences condition) either by the application (in the application sharing
condition) or by the transaction manager (in the NoTx condition, meaning that the transaction manager
holds a reference when the connection is enlisted in a transaction), the connection object returns to the
free pool.

100 Overview

 |If the connection was enlisted in a transaction but the transaction manager ends the transaction (the
txEnds condition), and the connection was a shareable connection (the ShareableConnection condition),
the connection closes and returns to the pool.

When the application calls close() on a connection, it is returning the connection to the pool of free
connections; it is not closing the connection to the data store. When the application calls close() on a
currently shared connection, the connection is not returned to the free pool. Only after the application
drops the last reference to the connection, and the transaction is over, is the connection returned to the
pool. Applications using unsharable connections must take care to close connections in a timely manner.
Failure to do so can starve out the connection pool, making it impossible for any application running on the
server to get a connection.

When the application calls close() on a connection enlisted in a transaction, the connection is not returned
to the free pool. Because the transaction manager must also hold a reference to the connection object, the
connection cannot return to the free pool until the transaction ends. Once a connection is enlisted in a
transaction, you cannot use it in any other transaction by any other application until after the transaction is
complete.

There is a case where an application calling close() can result in the connection to the data store closing
and bypassing the connection return to the pool. This situation happens if one of the connections in the
pool is considered stale. A connection is considered stale if you can no longer use it to contact the data
store. For example, a connection is marked stale if the data store server is shut down. When a connection
is marked as stale, the entire pool is cleaned out by default because it is very likely that all of the
connections are stale for the same reason (or you can set your configuration to clean just the failing
connection). This cleansing includes marking all of the currently InUse connections as stale so they are
destroyed upon closing. The following transition states the behavior on a call to close() when the
connection is marked as stale:

InUse>DoesNotExist:

close AND

markedStale AND

NoTx AND
noOtherReferences

This transition states that if the application calls close() on the connection and the connection is marked as
stale during the pool cleansing step (markedStale), the connection object closes to the data store and is
not returned to the pool.

Finally, you can close connections to the data store and remove them from the pool.

This transition states that there are three cases in which a connection is removed from the free pool and

destroyed.

1. If a fatal error notification is received from the resource adapter (or data source). A fatal error
notification (FatalErrorNotification) is received from the resource adaptor when something happens to
the connection to make it unusable. All connections currently in the free pool are destroyed.

2. If the connection is in the free pool for longer than the unused timeout period (UnusedTimeoutExpired)
and the pool size is greater than the minimum number of connections (poolSizeGTMin), the connection
is removed from the free pool and destroyed. This mechanism enables the pool to shrink back to its
minimum size when the demand for connections decreases.

3. If an age timeout is configured and a given connection is older than the timeout. This mechanism
provides a way to recycle connections based on age.

Unshareable and shareable connections

The application server supports both unshareable and shareable connections. An unshareable connection
is not shared with other components in the application. The component using this connection has full
control of this connection.

Chapter 9. Data access resources 101

Access to a resource marked as unshareable means that there is a one-to-one relationship between the
connection handle a component is using and the physical connection with which the handle is associated.
This access implies that every call to the getConnection method returns a connection handle solely for the
requesting user. Typically, you must choose unshareable if you might do things to the connection that
could result in unexpected behavior occurring in another application that is sharing the connection (for
example, unexpectedly changing the isolation level).

Marking a resource as shareable allows for greater scalability. Instead of retrieving a new physical
connection from the connection pool for every getConnection() invocation, the physical connection (that is,
managed connection) is shared through multiple connection handles, as long as each getConnection
request has the same connection properties. However, sharing a connection means that each user must
not do anything to the connection that could change its behavior and disrupt a sharing partner (for
example, changing the isolation level). The user also cannot code an application that assumes sharing to
take place because it is up to the run time to decide whether or not to share a particular connection.

Connection property requirements

To permit sharing of connections used within the same transaction, the following data source properties

must be the same:

» Java Naming and Directory Interface (JNDI) name. While not actually a connection property, this
requirement simply means that you can only share connections from the same data source in the same
server.

* Resource authentication

* In relational databases:

— Isolation level (corresponds to access intent policies applied to CMP beans)
— Readonly

— Catalog

— TypeMap

For more information on sharing a connection with a CMP bean, see the topic Sharing a connection with a
CMP bean.

To permit sharing of connections within the same transaction, the following properties must be the same

for the connection factories:

* JNDI name. While not actually a connection property, this requirement simply means that you can only
share connections from the same connection factory in the same server.

* Resource authentication

In addition, the ConnectionSpec object that is used to get the connection must also be the same.
Note: Java Message Service (JMS) connections cannot be shared with non-JMS connections.

JMS connections for the WebSphere MQ JMS Provider cannot be shareable because they are
non-transactional, and the Java™ EE Connector Architecture (JCA) specification only allows
transactional resources to be shareable. If the res-sharing-scope is set to shareable in a JMS
resource reference, the setting will be ignored and unshareable connections will be used. However,
JMS sessions for MQ are transactional, and can be shareable. JMS sessions are shareable by
default, and APAR PK59605 provides the ability to specify unshareable sessions.

JMS connections for the Default Messaging Provider are different. With the Default Messaging

Provider, connections can be shareable. Sessions, on the other hand, are not managed by a
connection pool, and therefore cannot be shareable or unshareable.

102 Overview

Sharing a connection with a CMP bean

The application server allows you to share a physical connection among a CMP bean, a BMP bean, and a
JDBC application to reduce the resource allocation or deadlock scenarios. There are several ways to
ensure that all of these entity beans and the JDBC applications are sharing the same physical connection.

* Sharing a connection between CMP beans or methods

When all CMP bean methods use the same access intent, they all share the same physical connection.
A different access intent policy triggers the allocation of a different physical connection. For example, a
CMP bean has two methods; method 1 is associated with wsPessimisticUpdate intent, whereas method
2 has wsOptimisticUpdate access intent. Method 1 and method 2 cannot share the same physical
connection within a transaction. In other words, an XA data source is required to run in a global
transaction.

You can experience some deadlocks from a database if both methods try to access the same table.
Therefore, sharing a connection is determined by the access intents that are defined in the CMP
methods.

* Sharing a connection between CMP and BMP beans

Remember to first verify that the getConnection methods of both the BMP bean and the CMP bean set
the same connection properties. To match the authentication type of the CMP bean resource, set the
authentication type of the BMP bean resource to container-managed, which is designated in the
deployment descriptor as res-auth = Container.

Additionally, use one of the following options to ensure connection-sharing between the bean types:

— Define the same access intent on both CMP and BMP bean methods. Because both use the same
access intent, they share the same physical connection. The advantage to using this option is that
the backend is transparent to a BMP bean. However, this option also makes the BMP non-portable
because it uses the WebSphere extended API to handle the isolation level. For more information,
refer to the code example in the topic, Example: Accessing data using IBM extended APls to share
connections between container-managed and bean-managed persistence beans.

— Determine the isolation level that the access intent uses on a CMP bean method, then use the
corresponding isolation level that is specified on the resource reference to look up a data source and
a connection. This option is more of a manual process, and the isolation level might be different from
database to database. For more information refer to the isolation level and access intent mapping
table in the topic, Access intent isolation levels and update locks, and the topic, Isolation level and
resource reference section.

» Sharing a connection between CMP and a JDBC application that is used by a servlet or a
session beanDetermine the isolation level that the access intent uses on a CMP bean method, then
use the corresponding isolation level specified on the resource reference to look up a data source and a
connection. For more information see the topic, Access intent isolation levels, and the topic, Isolation
level and resource reference section.

Factors that determine sharing

The listing here is not an exhaustive one. The product might or might not share connections under

different circumstances.

* Only connections acquired with the same resource reference (resource-ref) that specifies the
res-sharing-scope as shareable are candidates for sharing. The resource reference properties of
res-sharing-scope and res-auth and the IBM extension isolationLevel help determine if it is possible to
share a connection. IBM extension isolationLevel is stored in IBM deployment descriptor extension file;
for example: ibm-ejb-jar-ext.xmi.

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending
on whether you are using a pre-dava EE 5 application or module or a Java EE 5 or later
application or module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi
where * is the type of extension or binding file such as app, application, ejb-jar, or web. The
following conditions apply:

Chapter 9. Data access resources 103

— For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

— For an application or module that uses Java EE 5 or later, the file extension must be .xml. If
xmi files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

* You can only share connections that are requested with the same properties.

» Connection sharing only occurs between different component instances if they are within a transaction

(container- or user-initiated transaction).

+ Connection sharing only occurs within a sharing boundary. Current® sharing boundaries include

Transactions and LocalTransactionContainment (LTC) boundaries.

» Connection sharing rules within an LTC Scope:

— For shareable connections, only Connection Reuse is allowed within a single component instance.
Connection reuse occurs when the following actions are taken with a connection: get, use,
commit/rollback, close; get, use, commit/rollback, close. Note that if you use the LTC
resolution-control of ContainerAtBoundary then no start/commit is needed because that action is
handled by the container.

The connection returned on the second get is the same connection as that returned on the first get
(if the same properties are used). Because the connection use is serial, only one connection handle
to the underlying physical connection is used at a time, so true connection sharing does not take
place. The term "reuse"” is more accurate.

More importantly, the LocalTransactionContainment boundary enclosing both get actions is not
complete; no cleanUp() method is invoked on the ManagedConnection object. Therefore the second
get action inherits all of the connection properties set during the first getConnection() call.
» Shareable connections between transactions (either container-managed transactions (CMT),
bean-managed transactions (BMT), or LTC transactions) follow these caching rules:

— In general, setting properties on shareable connections is not allowed because a user of one
connection handle might not anticipate a change made by another connection handle. This limitation
is part of the Java Platform, Enterprise Edition (Java EE) standard.

— General users of resource adapters can set the connection properties on the connection factory
getConnection() call by passing them in a ConnectionSpec.

However, the properties set on the connection during one transaction are not guaranteed to be the
same when used in the next transaction. Because it is not valid to share connections outside of a
sharing scope, connection handles are moved off of the physical connection with which they are
currently associated when a transaction ends. That physical connection is returned to the free
connection pool. Connections are cleaned before going in the free pool. The next time the handle is
used, it is automatically associated with an appropriate connection. The appropriateness is based on
the security login information, connection properties, and (for the JDBC API) the isolation level
specified in the extended resource reference, passed in on the original request that returned the
current handle. Any properties set on the connection after it was retrieved are lost.

— For JDBC users, the application server provides an extension to enable passing the connection
properties through the ConnectionSpec.

Use caution when setting properties and sharing connections in a local transaction scope. Ensure
that other components with which the connection is shared are expecting the behavior resulting from
your settings.

* You cannot set the isolation level on a shareable connection for the JDBC API using a relational
resource adapter in a global transaction. The product provides an extension to the resource reference to
enable you to specify the isolation level. If your application requires the use of multiple isolation levels,
create multiple resource references and map them to the same data source or connection factory.

104 Overview

Maximal connection sharing

To maximize connection sharing opportunities for an application, ensure that each component has the local
transaction containment (LTC) Resolver attribute set to ContainerAtBoundary. This setting specifies that
the component container, rather than the application code, resolves all resource manager local
transactions (RMLTs) within the LTC scope. The container begins an RMLT when a connection is first used
within the LTC scope, and completes it automatically at the end of the LTC scope.

See the topic, Configuring transactional deployment attributes, for instructions on setting the transaction
resolution control and other attributes.

Connection sharing violations

There is a new exception, the sharing violation exception, that the resource adapter can issue whenever
an operation violates sharing requirements. Possible violations include changing connection attributes,
security settings, or isolation levels, among others. When such a mutable operation is performed against a
managed connection, the sharing violation exception can occur when both of the following conditions are
true:

* The number of connection handles associated with the managed connection is more than one.

» The managed connection is associated with a transaction, either local or XA.

Both the component and the J2C run time might need to detect this sharing violation exception, depending
on when and how the managed connection becomes unshareable. If the managed connection becomes
unshareable because of an operation through the connection handle (for example, you change the
isolation level), then the component needs to process the exception. If the managed connection becomes
unshareable without being recognized by the application server (due to some component interaction with
the connection handle), then the resource adapter can reject the creation of a connection handle by
issuing the sharing violation exception.

Connection handles

A connection handle is a representation of a physical connection. To use a backend resource, such as a
relational database in WebSphere Application Server, you must get a connection to that resource. When
you call the getConnection() method, you get a connection handle returned. The handle is not the physical
connection. The physical connection is managed by the connection manager.

There are two significant configurations that affect how connection handles are used and how they
behave. The first is the res-sharing-scope, which is defined by the resource-reference used to look up the
DataSource or Connection Factory. This property tells the connection manager whether or not you can
share this connection.

The second factor that affects connection handle behavior is the usage pattern. There are essentially two
usage patterns. The first is called the get/use/close pattern. It is used within a single method and without
calling another method that might get a connection from the same data source or connection factory. An
application using this pattern does the following:

1. gets a connection

2. does its work

3. commits (if appropriate)

4. closes the connection.

The second usage pattern is called the cached handle pattern. This is where an application:
gets a connection

begins a global transaction

does work on the connection

commits a global transaction

does work on the connection again

SAE A

Chapter 9. Data access resources 105

A cached handle is a connection handle that is held across transaction and method boundaries by an
application. Keep in mind the following considerations for using cached handles:

» Cached handle support requires some additional connection handle management across these
boundaries, which can impact performance. For example, in a JDBC application, Statements,
PreparedStatements, and ResultSets are closed implicitly after a transaction ends, but the connection
remains valid.

* You are encouraged not to cache the connection across the transaction boundary for shareable
connections; the get/use/close pattern is preferred.

» Caching of connection handles across servlet methods is limited to JDBC and Java Message Service
(JMS) resources. Other non-relational resources, such as Customer Information Control System (CICS)
or IMS objects, currently cannot have their connection handles cached in a servlet; you need to get,
use, and close the connection handle within each method invocation. (This limitation only applies to
single-threaded servlets because multithreaded servlets do not allow caching of connection handles.)

* You cannot pass a cached connection handle from one instance of a data access client to another
client instance. Transferring between client instances creates the problematic contingency of one
instance using a connection handle that is referenced by another. This relationship can only cause
problems because connection handle management code processes tasks for each client instance
separately. Hence, connection handle transfers result in run-time scenarios that trigger exceptions. For
example:

1. The application code of a client instance that receives a transferred handle closes the handle.

2. If the client instance that retains the original reference to the handle tries to reclaim it, the
application server issues an exception.

The following code segment shows the cached connection pattern.

Connection conn = ds.getConnection();

ut.begin();

conn.prepareStatement("..... "); --> Connection runs in global transaction mode
ut.commit();

conn.prepareStatement("..... "); ---> Connection still valid but runs in autoCommit(True);

Unshareable connections

Some characteristics of connection handles retrieved with a res-sharing-scope of unshareable are
described in the following sections.

* The possible benefits of unshared connections

— Your application always maintains a direct link with a physical connection (managed connection).

— The connection always has a one-to-one relationship between the connection handle and the
managed connection.

— In most cases, the connection does not close until the application closes it.

— You can use a cached unshared connection handle across multiple transactions.

— The connection can have a performance advantage in some cached handle situations. Because
unshared connections do not have the overhead of moving connection handles off managed
connections at the end of the transaction, there is less overhead in using a cached unshared
connection.

* The possible drawbacks of unshared connections
— Inefficient use of your connection resources. For example, if within a single transaction you get more
than one connection (with the same properties) using the same data source or connection factory
(same resource-ref) then you use multiple physical connections when you use unshareable
connections.
— Wasted connections. It is important not to keep the connection handle open (that is, your application
does not call the close() method) any longer then it is needed. As long as an unshareable connection

106 Overview

is open, the physical connection is unavailable to any other component, even if your application is
not currently using that connection. Unlike a shareable connection, an ushareable connection is not
closed at the end of a transaction or servlet call.

— Deadlock considerations. Depending on how your components interact with the database within a
transaction, using unshared connections can lead to deadlock in the database. For example, within a
transaction, component A gets a connection to data source X and updates table 1, and then calls
component B. Component B gets another connection to data source X, and updates/reads table 1
(or even worse the same row as component A). In some circumstances, depending on the particular
database, its locking scheme, and the transaction isolation level, a deadlock can occur.

In the same scenario, but with a shared connection, deadlock does not occur because all the work is
done on the same connection. It is worth noting that when writing code that uses shared
connections, you use a strategy that calls for multiple work items to be performed on the same
connection, possibly within the same transaction. If you decide to use an unshareable connection,
you must set the maximum connections property on the connection factory or data source correctly.
An exception might occur for waiting connection requests if you exceed the maximum connections
value, and unshareable connections are not being closed before the connection wait time-out is
exceeded.

Shareable connections

Some characteristics of connection handles that are retrieved with a res-sharing-scope of shareable are
described in the following sections.

* The possible benefits of shared connections

— Within an instance of connection sharing, application components can share a managed connection
with one or more connection handles, depending on how the handle is retrieved and which
connection properties are used.

— They can more efficiently use resources. Shareable connections are not valid outside of their sharing
boundary. For this reason, at the end of a sharing boundary (such as a transaction) the connection
handle is no longer associated with the managed connection it was using within the sharing
boundary (this applies only when using the cached handle pattern). The managed connection is
returned to the free connection pool for reuse. Connection resources are not held longer than the
end of the current sharing scope.

If the cached handle pattern is used, then the next time the handle is used within a new sharing
scope, the application server run time ensures that the handle is reassociated with a managed
connection that is appropriate for the current sharing scope, and has the same properties with which
the handle was originally retrieved. Remember that it is not appropriate to change properties on a
shareable connection. If properties are changed, other components that share the same connection
might experience unexpected behavior. Futhermore, when using cached handles, the value of the
changed property might not be remembered across sharing scopes.

* The possible drawbacks of shared connections
— Sharing within a single component (such as an enterprise bean and its related Java objects) is not
always supported. The current specification allows resource adapters the choice of only allowing one
active connection handle at a time.

If a resource adapter chooses to implement this option then the following scenario results in an
invalid handle exception: A component using shareable connections gets a connection and uses it.
Without closing the connection, the component calls a utility class (Java object) that gets a
connection handle to the same managed connection and uses it. Because the resource adapter only
supports one active handle, the first connection handle is no longer valid. If the utility object returns
without closing its handle, the first handle is not valid and triggers an exception at any attempt to use
it.

Note: This exception occurs only when calling a utility object (a Java object).

Not all resource adapters have this limitation; it occurs only in certain implementations. The
WebSphere Relational Resource Adapter (RRA) does not have this limitation. Any data source used

Chapter 9. Data access resources 107

through the RRA does not have this limitation. If you encounter a resource adapter with this limitation
you can work around it by serializing your access to the managed connection. If you always close
your connection handle before getting another (or close your handle before calling code that gets
another handle), and before returning from a method, you can allow two pieces of code to share the
same managed connection. You simply cannot use the connection for both events at the same time.

— Trying to change the isolation level on a shareable JDBC-based connection in a global transaction
(that is supported by the RRA) causes an exception. The correct way to get connections with
different transaction isolation levels is by configuring the IBM extended resource-reference.

— Closing connection handles for shareable connections by an application is NOT supported and
causes errors. However, you can avoid this limitation by using the Relational Resource Adapter.

Lazy connection association optimization

The Java Platform, Enterprise Edition (Java EE) Connector (J2C) connection manager implemented smart
handle support. This technology enables allocation of a connection handle to an application while the
managed connection associated with that connection handle is used by other applications (assuming that
the connection is not being used by the original application). This concept is part of the Java EE
Connector Architecture (JCA) 1.5 specification. (You can find it in the JCA 1.5 specification document in
the section entitled "Lazy Connection Association Optimization.") Smart handle support introduces use a
method on the ConnectionManager object, the LazyAssociatableConnectionManager() method, and a new
marker interface, the DissociatableManagedConnection class. You must configure the provider of the
resource adapter to make this functionality available in your environment. (In the case of the RRA,
WebSphere Application Server itself is the provider.) The following code snippet shows how to include
smart handle support:

package javax.resource.spi;
import javax.resource.ResourceException;

interface LazyAssociatableConnectionManager { // application server
void associateConnection(
Object connection, ManagedConnectionFactory mcf,
ConnectionRequestInfo info) throws ResourceException;

}

interface DissociatableManagedConnection { // resource adapter
void dissociateConnections() throws ResourceException;
}

This DissociatableManagedConnection interface introduces another state to the Connection object:
inactive. A Connection can now be active, closed, and inactive. The connection object enters the inactive
state when a corresponding ManagedConnection object is cleaned up. The connection stays inactive until
an application component attempts to re-use it. Then the resource adapter calls back to the connection
manager to re-associate the connection with an active ManagedConnection object.

Transaction type and connection behavior

All connection usage occurs within the scope of either a global transaction or a local transaction
containment (LTC) boundary. Each transaction type places different requirements on connections and
impacts connection settings differently.

Connection sharing and reuse

You can share connections within a global transaction scope (assuming other sharing rules are met). You
can also share connections within a shareable LTC. You can serially reuse connections within an LTC
scope. A get/use/close connection pattern followed by another instance of get/use/close (to the same data
source or connection factory) enables you to reuse the same connection. See the topic, Unshareable and
shareable connections for more details.

108 Overview

JDBC AutoCommit behavior

All JDBC connections, when first obtained through a getConnection() call, contain the setting AutoCommit
= TRUE by default. However, different transaction scope and settings can result in changing, or simply
overriding, the AutoCommit value.

* If you operate within an LTC and have its resolution-control set to Application, AutoCommit remains
TRUE unless changed by the application.

 If you operate within an LTC and have its resolution-control set to ContainerAtBoundary, the application
must not touch the AutoCommit setting. TheWebSphere Application Server run time sets the
AutoCommit value to FALSE before work begins, then commits or rolls back the work, as appropriate, at
the end of the LTC scope.

» If you use a connection within a global transaction, the database ignores the AutoCommit setting so that
the transaction service that controls the commit and rollback processing can manage the transaction.
This action takes place upon first use of the connection to do work, regardless of the user changing the
AutoCommit setting. After the transaction completes, the AutoCommit value returns to the value it had
before the first use of the connection. So even if the AutoCommit value is set to TRUE before the
connection is used in a global transaction, you need not set the value to FALSE because the value is
ignored by the database. In this example, after the transaction completes, the AutoCommit value of the
connection returns to TRUE.

» If you use multiple distinct connections within a global transaction, all work is guaranteed to commit or
roll back together. This is not the case for a local transaction containment (LTC scope). Within an LTC,
work done on one connection commits or rolls back independently from work done on any other
connection within the LTC.

One-phase commit and two-phase commit connections

The type and number of resource managers, such as a database server, that must be accessed by an
application often determines the application transaction requirements. Consequently each type of resource
manager places different requirements on connection behavior.

» A two-phase commit resource manager can support two-phase coordination of a transaction. That
support is necessary for transactions that involve other resource managers; these transactions are
global transactions. See the topic, Transaction support in WebSphere Application Server for further
explanation.

* A one-phase commit resource manager supports only one-phase transactions, or LTC transactions, in
which that resource is the sole participating datastore. See the topic, Transaction support in WebSphere
Application Server for further explanation.

One-phase commit resources are such that work being done on a one phase connection cannot mix with
other connections and ensure that the work done on all of the connections completes or fails atomically.
The product does not allow more than one one-phase commit connection in a global transaction.
Futhermore, it does not allow a one-phase commit connection in a global transaction with one or more
two-phase commit connections. You can coordinate only multiple two-phase commit connections within a
global transaction.

WebSphere Application Server provides last participant support, which enables a single one-phase commit
resource to participate in a global transaction with one or more two-phase commit resources.

Note that any time that you do multiple getConnection() calls using a resource reference that specifies
res-sharing-scope=Unshareable, you get multiple physical connections. This situation also occurs when
res-sharing-scope=Shareable, but the sharing rules are broken. In either case, if you run in a global
transaction, ensure the resources involved are enabled for two-phase commit (also sometimes referred to
as JTA Enabled). Failure to do so results in an XA exception that logs the following message:

WTRNOO63E: An illegal attempt to enlist a one phase capable resource with existing two phase capable
resources has occurred.

Chapter 9. Data access resources 109

Application scoped resources
Use this page to view brief descriptions of the resources that are bundled with your application. You can
view individual resource settings by clicking the resource name.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Application scoped resources.

The Application scoped resources link is not present if there are no application scoped resources.
Each table row corresponds to a resource that is bundled with your application. Click a resource name or
the corresponding provider name to view an administrative console page where you can edit the object
configuration settings.

Name:

Specifies the administrative name that was assigned to this resource.

Click this name to view a page where you can edit the configuration settings.

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name of the resource.

Data type String

Resource type:

Specifies the type of resource, such as a data source or a J2C connection factory.
Provider:

Specifies the resource provider that supplies the class information for this resource object.
Click the provider name to view a page where you can edit the configuration settings.
Description:

Specifies a text description of the resource.

Data access: Resources for learning

Use the following links to find relevant supplemental information about data access. The information
resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the
information.

These links are provided for convenience. Often, the information is not specific to this product, but it can
be useful for understanding concepts or functions used by the application server. When possible, links are
provided to technical papers and Redbooks that supplement the broad coverage of the release
documentation with in-depth examinations of particular product areas.

View links to additional information:

» [“Technologies for data access” on page 111|
+ [‘Databases” on page 111|

+ [“Tools” on page 111|

110 Overview

Technologies for data access
+ (JDBC 3.0 API Documentation|
» Java Persistence API:
— |Java Persistence API FAQ|
— [Introduction to Spring 2 and JPA|
« [J2EE Connector Architecture Version 1.5 specification|
* |Enterprise JavaBeans Technologyl (Source for download of the Enterprise Javabeans 3.0 specification)
+ [Java 2 Platform, Enterprise Edition (J2EE)|

» Container-managed relationships: |Enterprise JavaBeans 2.0 Container-Managed Persistencel
[Examplel Although this article addresses the EJB 2.0 specification, you might find parts of it pertinent to
your environment.

- Resource adapters: [The J2EE Connector Architecture Resource AdapteDeveloper Technical Articles &
|Tips -- Articles: Database Access| (Sun Developer Network)

« Mava Management Extensions (JMX)
* Miscellaneous articles from the Sun Developer Network and IBM developerWorks websites:

— |Sharing connections in WebSphere Application Server V5| This article is still pertinent to WebSphere
Application Server Version 6.0 and later. However, be aware that the container-managed
authentication type is deprecated.

— |Database authentication in WebSphere Application Server V5| This article is still pertinent to
WebSphere Application Server Version 6.0 and later. However, be aware that the container-managed
authentication type is now deprecated.

— |Understanding WebSphere Application Server EJB access intents|
+ [Supported hardware, software, and APIs|

Databases

* Cloudscape:
— [IBM Cloudscape product information|
— |IBM Cloudscape information center|

- [DB2 database software
* |Informix®

Tools
- [Rational Application Developer for WebSphere Software]

Service Data Objects: Resources for learning

Use the following links to find relevant supplemental information about the service data object and various
other functions that can be used with it. The information resides on IBM and non-IBM Internet sites, whose
sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to this product but is useful
all or in part for understanding the product. When possible, links are provided to technical papers and
Redbooks that supplement the broad coverage of the release documentation with in-depth examinations of
particular product areas.

Service Data Objects

For an introduction to Service Data Objects, refer to:
Introduction to Service Data Objects|

For an overview of the Service Data Objects specification, refer to:

Chapter 9. Data access resources 111

http://java.sun.com/j2se/1.3/docs/guide/jdbc/
http://java.sun.com/javaee/overview/faq/persistence.jsp
http://www.ibm.com/developerworks/edu/j-dw-java-spring2-i.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/products/ejb/
http://java.sun.com/j2ee/
http://developer.java.sun.com/developer/technicalArticles/ebeans/EJB20CMP/
http://developer.java.sun.com/developer/technicalArticles/ebeans/EJB20CMP/
http://java.sun.com/developer/technicalArticles/J2EE/connectorclient/resourceadapter.html
http://java.sun.com/developer/technicalArticles/Database/
http://java.sun.com/developer/technicalArticles/Database/
http://java.sun.com/products/JavaManagement/
http://www.ibm.com/developerworks/websphere/library/techarticles/0404_tang/0404_tang.html
http://www.ibm.com/developerworks/websphere/techjournal/0402_tang/0402_tang.html
http://www.ibm.com/developerworks/websphere/techjournal/0406_persson/0406_persson.html
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/software/data/cloudscape/
http://publib.boulder.ibm.com/infocenter/cscv/v10r1/index.jsp
http://www.ibm.com/software/data/db2/
http://www.ibm.com/software/data/informix/
http://www.ibm.com/software/ad/studiointegration/
http://www-106.ibm.com/developerworks/java/library/j-sdo/

« [Service Data Objects|

A good place to start to learn about the Eclipse Modeling Framework is:
« [EMF Eclipse Modeling Framework|

Information about XSD to SDO/EMF mapping for Version 6 can be found at:
Authoring XML Schemas for use with EM

Web application presentation layer technologies

For a brief overview of JavaServer Faces, refer to:
Java Sun J2EE 1.4 tutorial

Good places to start to learn about JavaServer Pages Standard Tag Library are:
« [JavaServer Pages Standard Tag Library
* [AJSTL primer, Part 1: The expression Ianguagel

Java Persistence API (JPA) architecture

Data persistence is the ability to maintain data between application executions. Persistence is vital to
enterprise applications because of the required access to relational databases. Applications that are
developed for this environment must manage persistence themselves or use third-party solutions to handle
database updates and retrievals with persistence. The Java Persistence API (JPA) provides a mechanism
for managing persistence and object-relational mapping and functions for the EJB 3.0 and EJB 3.1
specifications.

The JPA specification defines the object-relational mapping internally, rather than relying on vendor-specific
mapping implementations. JPA is based on the Java programming model that applies to Java EE
environments, but JPA can function within a Java SE environment for testing application functions.

JPA represents a simplification of the persistence programming model. The JPA specification explicitly
defines the object-relational mapping, rather than relying on vendor-specific mapping implementations. JPA
standardizes the important task of object-relational mapping by using annotations or XML to map objects
into one or more tables of a database. To further simplify the persistence programming model:

» The EntityManager API can persist, update, retrieve, or remove objects from a database

» The EntityManager API and object-relational mapping metadata handle most of the database operations
without requiring you to write JDBC or SQL code to maintain persistence

» JPA provides a query language, extending the independent EJB querying language (also known as
JPQL), that you can use to retrieve objects without writing SQL queries specific to the database you are
working with.

JPA is designed to operate both inside and outside of a Java Enterprise Edition (Java EE) container. When
you run JPA inside a container, the applications can use the container to manage the persistence context.
If there is no container to manage JPA, the application must handle the persistence context management
itself. Applications that are designed for container-managed persistence do not require as much code
implementation to handle persistence, but these applications cannot be used outside of a container.
Applications that manage their own persistence can function in a container environment or a Java SE
environment.

Elements of a JPA Persistence Provider
Java EE containers that support the EJB 3.x programming model must support a JPA implementation, also

called a persistence provider. A JPA persistence provider uses the following elements to allow for easier
persistence management in an EJB 3.x environment:

112 Overview

http://www.ibm.com/developerworks/library/specification/ws-sdo/
http://www.eclipse.org/emf/
http://wiki.eclipse.org/Authoring_XML_Schemas_for_use_with_EMF
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://java.sun.com/products/jsp/jstl/index.jsp
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html

* Persistence unit: Consists of the declarative metadata that describes the relationship of entity class
objects to a relational database. The EntityManagerFactory uses this data to create a persistence
context that can be accessed through the EntityManager.

+ EntityManagerFactory: Used to create an EntityManager for database interactions. The application
server containers typically supply this function, but the EntityManagerFactory is required if you are using
JPA application-managed persistence. An instance of an EntityManagerFactory represents a Persistence
Context.

» Persistence context: Defines the set of active instances that the application is manipulating currently.
The persistence context can be created manually or through injection.

« EntityManager: The resource manager that maintains the active collection of entity objects that are
being used by the application. The EntityManager handles the database interaction and metadata for
object-relational mappings. An instance of an EntityManager represents a Persistence Context. An
application in a container can obtain the EntityManager through injection into the application or by
looking it up in the Java component name-space. If the application manages its persistence, the
EntityManager is obtained from the EntityManagerFactory.

Attention: Injection of the EntityManager is only supported for the following artifacts:
— EJB 3.x session beans

— EJB 3.x message-driven beans

— Servlets, Servlet Filters, and Listeners

— JSP tag handlers which implement interfaces javax.servlet. jsp.tagext.Tag and
javax.servlet.jsp.tagext.SimpleTag

— JavaServer Faces (JSF) managed beans
— the main class of the application client.

» Entity objects: a simple Java class that represents a row in a database table in its simplest form.
Entities objects can be concrete classes or abstract classes. They maintain states by using properties or
fields.

For more information about persistence, see the section on Java Persistence API Architecture and the
section on Persistence in the Apache OpenJPA User Guide. For more information and examples on
specific elements of persistence, see the sections on the EntityManagerFactory, and the EntityManager in
the Apache OpendPA User Guide.

JPA for WebSphere Application Server

Java Persistence API (JPA) 2.0 for WebSphere Application Server is built on the Apache OpenJPA 2.x
open source project.

Apache OpenJPA and JPA for WebSphere Application Server

Apache OpendPA is a compliant implementation of the Oracle JPA specification. Using OpenJPA as a base
implementation, WebSphere Application Server employs extensions to provide additional features and
utilities for WebSphere Application Server customers. Because JPA for WebSphere Application Server is
built from OpendPA, all OpenJPA function, extensions, and configurations are unaffected by the
WebSphere Application Server extensions. You do not need to make changes to OpenJPA applications to
use these applications in WebSphere Application Server.

JPA for WebSphere Application Server provides more than compatibility with OpenJPA. JPA for
WebSphere Application Server contains a set of tools for application development and deployment. Other
features of JPA for WebSphere Application Server include support for DB2 Optim™ pureQuery Runtime,
DB2 optimizations, JPA Access Intent, enhanced tracing capabilities, command scripts, and translated
message files. The provider of JPA for WebSphere Application Server is
com.ibm.websphere.persistence.PersistenceProviderImpl.

Chapter 9. Data access resources 113

Apache OpendPA supports the use of properties to configure the persistent environment. JPA for
WebSphere Application Server properties can be specified with either the openjpa or wsjpa prefix. You can
mix the openjpa and wsjpa prefixes as you wish for a common set of properties. Exceptions to the rule are
wsjpa specific configuration properties, which use the wsjpa prefix. When a JPA for WebSphere Application
Server-specific property is used with the openjpa prefix, a warning message is logged indicating that the
offending property is treated as a wsjpa property. The reverse does not hold true for the openjpa prefix. In
that case, the offending property is ignored.

wsjpaversion command

Use this command-line tool to find out information about the installed version of Java Persistence API
(JPA) for WebSphere Application Server.

Run the JPA commands (.bat on Windows or .sh on UNIX) from the <profile_root>/bin directory, to
make sure that you have the latest version of the commands for your release.

Syntax
The command syntax is as follows:
Usage

The version tool can be useful when debugging problems with JPA in applications and providing customer
support teams with the information about the current JPA environment.

The command is run from the <profile_root> directory.
Examples

Find the version information of your JPA installation example output:

[root@atlanta bin]# ./wsjpaversion.sh

WSJPA 2.1.0-SNAPSHOT

version id: WSJPA-2.1.0-SNAPSHOT-r1119:2233
WebSphere JPA svn revision: 1119:2233

OpenJPA 2.1.0-SNAPSHOT
version id: openjpa-2.1.0-SNAPSHOT-r422266:1069208
Apache svn revision: 422266:1069208

os.name: Linux
os.version: 2.6.18-238.1.1.el15
os.arch: x86

java.version: 1.6.0
java.vendor: IBM Corporation

java.class.path:

/root/tc/WASX/as/dev/JavaEE/j2ee. jar
/root/tc/WASX/as/plugins/com.ibm.ws.jpa.jar
/root/tc/WASX/as/plugins/com.ibm.ws.prereq.commons-collections.jar

/root/tc/WASX/as/profiles/AppSrvOl/bin
[root@atlanta bin]#

On Windows operating systems, the output looks like the following:

D:\Users\user\WASV8\1BM\WebSphere\AppServer\bin>wsjpaversion.bat
WSJPA 2.1.0-SNAPSHOT

version id: WSJPA-2.1.0-SNAPSHOT-r1119:2216

WebSphere JPA svn revision: 1119:2216

OpenJPA 2.1.0-SNAPSHOT

version id: openjpa-2.1.0-SNAPSHOT-r422266:1063829

114 Overview

Apache svn revision: 422266:1063829

os.name: Windows 7

os.version: 6.1

os.arch: amd64

java.version: 1.6.0

java.vendor: IBM Corporation

java.class.path:
D:\Users\user\WASV8\IBM\WebSphere\AppServer\dev\JavaEE\j2ee. jar
D:\Users\user\WASV8\IBM\WebSphere\AppServer\plugins\com.ibm.ws.jpa.jar
D:\Users\user\WASV8\1BM\WebSphere\AppServer\plugins\com.ibm.ws.prereq.

commons-collections.jar

C:\Program Files (x86)\IBM\Java60\jre\lib\ext\QTJava.zip
user.dir: D:\Users\user\WASV8\IBM\WebSphere\AppServer\bin
D:\Users\user\WASV8\IBM\WebSphere\AppServer\bin>

Examples

Find the version information of your JPA installation example output:

C:\was70-GM>profiles\al002.07\bin\wsjpaversion.bat
WSJPA 2.0.0-SNAPSHOT

version id: WSJPA-2.0.0-SNAPSHOT-r1118:1843
revision: 1118:1843

OpenJPA 2.0.0-SNAPSHOT
version id: openjpa-2.0.0-SNAPSHOT-r422266:897308
Apache svn revision: 422266:897308

os.name: Windows XP
os.version: 5.1 build 2600 Service Pack 2
os.arch: x86

java.version: 1.6.0
java.vendor: IBM Corporation

java.class.path:
C:\was70-GM\feature_packs\jpa\dev\JavaEE\j2ee.jar
C:\was70-GM\feature_packs\jpa\plugins\com.ibm.ws.jpa.jar
C:\was70-GM\plugins\com.ibm.ws.prereq.commons-collections.jar

user.dir: C:\was70-GM\plugins\com.ibm.ws.jpa.jar

wsjpa properties
The extension properties of Java Persistence APl (JPA) for WebSphere Application Server can be
specified with the openjpa or wsjpa prefix. This topic features the wsjpa properties.

wsjpa.Accessintent

Use this property to define a TaskName that in the persistence.xml file using the wsjpa.Accessintent
property name in a persistence unit. The property value is a list of TaskNames, entity types and access
intent definitions.

For more information and examples on how the wsjpa.Accessintent property is used, see the topic
Specifying TaskName in a JPA persistence unit.

wsjpa.jdbc.Schema
Specifies the schema name in a DB2 package collection when using multiple DB2 package collections.

For more information about using the wsjpa.jdbc.Schema property see the topic, Configuring pureQuery to
use multiple DB2 package collections.

Chapter 9. Data access resources 115

wsjpa.jdbc.Collectionlid
Specifies the collection Id name in a DB2 package collection when using multiple DB2 package
collections.

For more information about using the wsjpa.jdbc.Collectionld property see the topics, Configuring
pureQuery to use multiple DB2 package collections and Configuring data source JDBC providers to use
pureQuery in a Java SE environment.

Transaction support in WebSphere Application Server

Support for transactions is provided by the transaction service within WebSphere Application Server. The
way that applications use transactions depends on the type of application component.

A transaction is unit of activity, within which multiple updates to resources can be made atomic (as an
indivisible unit of work) such that all or none of the updates are made permanent. For example, during the
processing of an SQL COMMIT statement, the database manager atomically commits multiple SQL
statements to a relational database. In this case, the transaction is contained entirely within the database
manager and can be thought of as a resource manager local transaction (RMLT). In some contexts, a
transaction is referred to as a logical unit of work (LUW). If a transaction involves multiple resource
managers, for example multiple database managers, an external transaction manager is required to
coordinate the individual resource managers. A transaction that spans multiple resource managers is
referred to as a global transaction. WebSphere Application Server is a transaction manager that can
coordinate global transactions, can be a participant in a received global transaction, and can also provide
an environment in which resource manager local transactions can run.

The way that applications use transactions depends on the type of application component, as follows:

» A session bean can use either container-managed transactions (where the bean delegates management
of transactions to the container) or bean-managed transactions (component-managed transactions
where the bean manages transactions itself).

» Entity beans use container-managed transactions.

* Web components (servlets) and application client components use component-managed transactions.

WebSphere Application Server is a transaction manager that supports the coordination of resource
managers through their XAResource interface, and participates in distributed global transactions with
transaction managers that support the|[CORBA Object Transaction Service (OTS) protocol or Web Service|
|Atomic Transaction (WS-AtomicTransaction) protocol, WebSphere Application Server also participates in
transactions imported through [Java EE Connector 1.5 resource adapters| You can also configure
WebSphere applications to interact with databases, JMS queues, and JCA connectors through their local
transaction support, when you do not require distributed transaction coordination.

Resource managers that offer transaction support can be categorized into those that support two-phase
coordination (by offering an XAResource interface) and those that support only one-phase coordination (for
example through a LocalTransaction interface). The WebSphere Application Server transaction support
provides coordination, within a transaction, for any number of two-phase capable resource managers. It
also enables a single one-phase capable resource manager to be used within a transaction in the absence
of any other resource managers, although a WebSphere transaction is not necessary in this case.

Under normal circumstances, you cannot mix one-phase commit capable resources and two-phase commit
capable resources in the same global transaction, because one-phase commit resources cannot support
the prepare phase of two-phase commit. There are some special circumstances where it is possible to
include mixed-capability resources in the same global transaction:

* In scenarios where there is only a single one-phase commit resource provider that participates in the
transaction and where all the two-phase commit resource-providers that participate in the transaction
are used in a read-only fashion. In this case, the two-phase commit resources all vote read-only during

116 Overview

http://www.omg.org/cgi-bin/doc?formal/2003-09-02
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://java.sun.com/j2ee/connector/

the prepare phase of two-phase commit. Because the one-phase commit resource provider is the only
provider to complete any updates, the one-phase commit resource does not have to be prepared.

* In scenarios where there is only a single one-phase commit resource provider that participates in the
transaction with one or more two-phase commit resource providers and where last participant support is
enabled. Last participant support enables the use of a single one-phase commit capable resource with
any number of two-phase commit capable resources in the same global transaction. For more
information about last participant support, see|Using one-phase and two-phase commit resources in the|
[same transaction}

The ActivitySession service provides an alternative unit-of-work (UOW) scope to that provided by global
transaction contexts. It is a distributed context that can be used to coordinate multiple one-phase resource
managers. The WebSphere EJB container and deployment tooling support ActivitySessions as an
extension to the Java EE programming model. Enterprise beans can be deployed with lifecycles that are
influenced by ActivitySession context, as an alternative to transaction context. An application can then
interact with a resource manager for the period of a client-scoped ActivitySession, rather than only the
duration of an EJB method, and have the resource manager local transaction outcome directed by the
ActivitySession. For more information about ActivitySessions, see [Using the ActivitySession service]

Resource manager local transaction (RMLT)

A resource manager local transaction (RMLT) is a resource manager view of a local transaction; that is, it
represents a unit of recovery on a single connection that is managed by the resource manager.

Resource managers include:

» Enterprise Information Systems that are accessed through a resource adapter, as described in the
[EE Connector Architecture]

* Relational databases that are accessed through a JDBC datasource.

* JMS queue and topic destinations.

Resource managers offer specific interfaces to enable control of their RMLTs. Resource adapter
components of the Java EE connector architecture that include support for local transactions provide a
LocalTransaction interface. The LocalTransaction interface enables applications to request that the
resource adapter commits or rolls back RMLTs. JDBC datasources provide a Connection interface for the
same purpose.

The boundary at which all RMLTs must be complete is defined in WebSphere Application Server by a
transaction containment (LTC)|

Global transactions

If an application uses two or more resources, an external transaction manager is needed to coordinate the
updates to all the resource managers in a global transaction.

Global transaction support is available to web and enterprise bean components and, with some limitations,
to application client components. Enterprise bean components can be subdivided into two categories:
beans that use container-managed transactions (CMT) and beans that use bean-managed transactions
(BMT).

BMT enterprise beans, application client components, and web components can use the Java Transaction
API (JTA) UserTransaction interface to define the demarcation of a global transaction. To obtain the
UserTransaction interface, use a Java Naming and Directory Interface (JNDI) lookup of
java:comp/UserTransaction, or use the getUserTransaction method from the SessionContext object.

The UserTransaction interface is not available to CMT enterprise beans. If CMT enterprise beans attempt

to obtain this interface, an exception is thrown, in accordance with the Enterprise JavaBeans (EJB)
specification.

Chapter 9. Data access resources 117

http://java.sun.com/j2ee/connector/index.html
http://java.sun.com/j2ee/connector/index.html

Ensure that programs that perform a JNDI lookup of the UserTransaction interface use an InitialContext
that resolves to a local implementation of the interface. Also ensure that such programs use a JNDI
location that is appropriate for the EJB version.

WebSphere Application Server Version 4 and later releases bind the UserTransaction interface at the JNDI
location that is specified in the EJB Version 1.1 specification. This location is java:comp/UserTransaction.

A web component or enterprise bean (CMT or BMT) can use additional interfaces that provide JTA
support. These interfaces provide the transaction identity and a mechanism to receive notification of
transaction completion. The interfaces include the TransactionSynchronizationRegistry interface, the
ExtendedJTATransaction interface, and the UOWSynchronizationRegistry interface.

Local transaction containment

A local transaction containment (LTC) is used to define the application server behavior in an unspecified
transaction context.

Unspecified transaction context is defined in the Enterprise JavaBeans specification, Version 2.0 and later.
For example, see the specification for this technology.

An LTC is a bounded unit-of-work scope, within which zero or more resource manager local transactions
(RMLT) can be accessed. The LTC defines the boundary at which all RMLTs must be complete; any
incomplete RMLTs are resolved, according to policy, by the container. By default, an LTC is local to a bean
instance; it is not shared across beans, even if those beans are managed by the same container. LTCs
are started by the container before dispatching a method on an enterprise application component, such as
an enterprise bean or servlet, whenever the dispatch occurs in the absence of a global transaction context.
LTCs are completed by the container depending on the application-configured LTC boundary; for example,
at the end of the method dispatch. There is no programmatic interface to the LTC support; LTCs are
managed exclusively by the container. The application deployer configures LTCs on individual application
components, either web application or EJB, by using transaction attributes in the application deployment
descriptor.

A local transaction containment (LTC) might be configured as part of an application component's
deployment descriptor to be shareable across multiple application components, including web application
components and enterprise beans that use container-managed transactions, so that those components
can share connections without using a global transaction. Sharing a single resource manager between
application components improves performance, increases scalability, and reduces lock contention for
resources.

LTCs can be shared across multiple components, including web application components and enterprise
beans that use container-managed transactions. This sharing is useful in situations such as frequent use
of web component include() calls, where a thread can have several connections blocked by LTCs in
different web modules. In this situation, the application might encounter code deadlocks under load, when
threads start to wait for themselves to free connections. To overcome this issue without using a global
transaction, specify that application components can share LTCs by setting the Shareable attribute in the
deployment descriptor of each component. You must use a deployment descriptor; you cannot specify this
attribute if annotation has been used.

When you set the Shareable attribute, the extended deployment descriptor XML file includes the following
line of code:

<local-transaction boundary="BEAN_METHOD" resolver="CONTAINER_AT_BOUNDARY"
unresolved-action="COMMIT" shareable="true"/>

To obtain the full benefits of a shared LTC, also ensure that the resource reference for each component
defaults to shareable connections.

118 Overview

In the following diagram, components 1, 2 and 3 are deployed with the Shareable attribute and component
4 is not. If components 2 and 3 both obtain connections to data source B, and their resource references
for data source B default to shareable connections, they share the connection, but component 4 does not.

Applications that use shareable LTCs cannot explicitly commit or roll back resource manager connections
that are used in a shareable LTC. Although, they can use connections that have an autoCommit capability.
This ensures correct encapsulation of connection usage by each component and protects one component
from having to make any assumptions about the behavior of other components that share the connection.

If an application starts any non-autocommit work in an LTC for which the Resolver attribute is set to
Application and the Shareable attribute is set to true, an exception occurs at run time. For example, on a
JDBC connection, non-autocommit work is work that the application performs after using the
setAutoCommit(false) method to disable the autocommit option on the connection. Enterprise beans that
use bean managed transactions (BMT) cannot be assembled with the Shareable attribute set on the LTC
configuration.

A local transaction containment cannot exist concurrently with a global transaction. If application

component dispatch occurs in the absence of a global transaction, the container always establishes an

LTC for enterprise application components at J2EE 1.3 or later. The only exceptions to this are the

following items:

» Application component dispatch occurs without container interposition, for example, for a stateless
session bean create method or a servlet-initiated thread.

» J2EE 1.2 web components.

* J2EE 1.2 bean-managed transaction (BMT) enterprise beans.

A local transaction containment can be scoped to an ActivitySession context that exists longer than the
enterprise bean method in which it is started, as described in the topic about ActivitySessions and
transaction contexts.

Local transaction containment

IBM WebSphere Application Server supports local transaction containment (LTC), which you can configure
using local transaction extended deployment descriptors. LTC support provides certain advantages to
application programmers. Use the scenarios provided, and the list of points to consider, to help you decide
the best way to configure transaction support for local transactions.

The following sections describe the advantages that LTC support provides, and how to set the local
transaction extended deployment descriptors in each situation.
You can develop an enterprise bean or servilet that accesses one or more databases that are
independent and require no coordination.
If an enterprise bean does not have to use global transactions, it is often more efficient to deploy
the bean with the deployment descriptor for the container transaction type set to NotSupported
instead of Required.

With the extended local transaction support of the application server, applications can perform the
same business logic in an unspecific transaction context as they can in a global transaction. An
enterprise bean, for example, runs in an unspecified transaction context if it is deployed with a
container transaction type of NotSupported or Never.

The extended local transaction support provides a container-managed, implicit local transaction
boundary, within which the container commits application updates and cleans up their connections.
You can design applications with more independence from deployment concerns. This makes
using a container transaction type of Supports much simpler, for example, when the business logic
might be called either with or without a global transaction context.

Chapter 9. Data access resources 119

An application can follow a get-use-close pattern of connection usage, regardless of whether the
application runs in a transaction. The application can depend on the close action behaving in the
same way in all situations, that is, the close action does not cause a rollback to occur on the
connection if there is no global transaction.

There are many scenarios where ACID coordination of multiple resource managers is not needed.
In such scenarios, running business logic in a Transaction policy of NotSupported performs better
than in a policy of Required. This benefit is applied through setting the deployment descriptor, in
the Local Transactions section, of the Resolver attribute to ContainerAtBoundary. With this setting,
application interactions with resource providers, such as databases, are managed within implicit
resource manager local transactions (RMLT) that the container both starts and ends. The
container commits RMLTs at the containment boundary that is specified by the Boundary attribute
in the Local Transactions section; for example, at the end of a method. If the application returns
control to the container by an exception, the container rolls back any RMLTs that it has started.

This usage applies to both servlets and enterprise beans.

You can use local transactions in a managed environment that guarantees cleanup.
Applications that want to control RMLTs, by starting and ending them explicitly, can use the default
setting of Application for the Resolver extended deployment descriptor in the Local Transactions
section. In this situation, the container ensures connection cleanup at the boundary of the local
transaction context.

Java platform for enterprise applications specifications that describe application use of local
transactions do so in the manner provided by the default settings of Application for the Resolver
extended deployment descriptor, and Rollback for the Unresolved action extended deployment
descriptor, in the Local Transactions section. When the Unresolved action extended deployment
descriptor in the Local Transactions section is set to Commit, the container commits any RMLTs
that the application starts but that do not complete when the local transaction containment ends
(for example, when the method ends). This usage applies to both servlets and enterprise beans.
You can extend the duration of a local transaction beyond the duration of an EJB component
method.
The Enterprise JavaBeans (EJB) specifications restrict the use of RMLTs to single EJB methods.
This restriction is because the specifications have no scoping device, beyond a container-imposed
method boundary, to which an RMLT can be extended. You can use the Boundary extended
deployment setting in the Local Transactions section to give the following advantages:
 Significantly extend the use cases of RMLTs.
* Make conversational interactions with one-phase resource managers possible through
ActivitySession support.

You can use an ActivitySession to provide a distributed context with a boundary that is longer than
a single method. You can extend the use of RMLTs over the longer ActivitySession boundary,
which a client can control. The ActivitySession boundary reduces the need to use distributed
transactions where ACID operations on multiple resources are not needed. This benefit is applied
through the Boundary extended deployment setting, in the Local transactions section, of
ActivitySession. Such extended RMLTs can remain under the control of the application, or be
managed by the container, depending on the setting of the Resolver deployment descriptor in the
Local Transactions section.

You can coordinate multiple one-phase resource managers.
For resource managers that do not support XA transaction coordination, a client can use
ActivitySession-bounded local transaction contexts. Such contexts give a client the same ability to
control the completion direction of the resource updates by the resource managers as the client
has for transactional resource managers. A client can start an ActivitySession and call its entity
beans in that context. Those beans can perform their RMLTs within the scope of that
ActivitySession and return without completing the RMLTs. The client can later complete the
ActivitySession in a commit or rollback direction and cause the container to drive the
ActivitySession-bounded RMLTs in that coordinated direction.

You can use shareable LTCs to reduce the nhumber of connections you require.
Application components can share LTCs. If components obtain connections to the same resource

120 Overview

manager, they can share that connection if they run under the same global transaction or
shareable LTC. To configure two components to run under the same shareable LTC, set the
Shareable attribute of the Local Transactions section in the deployment descriptor of each
component. Make sure that the resource reference in the deployment descriptor for each
component uses the default value of Shareable for the res-sharing-scope element, if this element
is specified. A shareable LTC can reduce the numbers of RMLTs an application uses. For example,
an application that makes frequent use of web module include calls can share resource manager
connections between those web modules, exploiting either shareable LTCs, or a global
transaction, reducing lock contention for resources.

Examples of local transaction support configurations

The following list gives scenarios that use local transactions, and points to consider when deciding the
best way to configure the transaction support for an application.

You want to start and end global transactions explicitly in the application (bean-managed transaction
session beans and servlets only).

For a session bean, set the Transaction type to Bean (to use bean-managed transactions) in the
deployment descriptor of the component. You do not have to do this for servlets.
You want to access only one XA or non-XA resource in a method.

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver
attribute to ContainerAtBoundary. In the Container Transactions section, set the container transaction
type to Supports.

You want to access several XA resources atomically across one or more bean methods.

In the deployment descriptor of the component, in the Container Transactions section, set the container
transaction type to Required, RequiresNew, or Mandatory.

You want to access several non-XA resources in a method without needing to manage your own local
transactions.

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver
attribute to ContainerAtBoundary. In the Container Transactions section, set the container transaction
type to NotSupported.

You want to access several non-XA resources in a method and want to manage them independently.

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver
attribute to Application and set the Unresolved action attribute to Rollback. In the Container Transactions
section, set the container transaction type to NotSupported.

You want to access one or more non-XA resources across multiple EJB method calls without needing to
manage your own local transactions.

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver
attribute to ContainerAtBoundary and set the Boundary attribute to ActivitySession. In the Bean Cache
section, set the Activate at attribute to ActivitySession. In the Container Transactions section, set the
container transaction type to NotSupported and set the ActivitySession kind attribute to Required,
RequiresNew, or Mandatory.

You want to access several non-XA resources across multiple EJB method calls and want to manage
them independently.

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver
attribute to Application and set the Boundary attribute to ActivitySession. In the Bean Cache section, set
the Activate at attribute to ActivitySession. In the Container Transactions section, set the container
transaction type to NotSupported and set the ActivitySession kind attribute to Required, RequiresNew,
or Mandatory.

Local and global transactions

Applications use resources, such as Java Database Connectivity (JDBC) data sources or connection
factories, that are configured through the Resources view of the administrative console. How these
resources participate in a global transaction depends on the underlying transaction support of the resource
provider.

Chapter 9. Data access resources 121

For example, most JDBC providers can provide either XA or non-XA versions of a data source. A non-XA
data source can support only resource manager local transactions (RMLT), but an XA data source can
support two-phase commit coordination, as well as local transactions.

If an application uses two or more resource providers that support only RMLTs, atomicity cannot be
assured because of the one-phase nature of these resources. To ensure atomic behavior, the application
must use resources that support XA coordination and must access those resources in a global transaction.

If an application uses only one RMLT, atomic behavior can be guaranteed by the resource manager, which
can be accessed in a local transaction containment (LTC) context.

An application can also access a single resource manager in a global transaction context, even if that
resource manager does not support the XA coordination. An application can do this because the
application server performs an “only resource optimization” and interacts with the resource manager in a
RMLT. In a global transaction context, any attempt to use more than one resource provider that supports
only RMLTs causes the global transaction to be rolled back.

At any moment, an instance of an enterprise bean can have work outstanding in either a global transaction
context or a local transaction containment context, but not both. An instance of an enterprise bean can
change from running in one type of context to the other (in either direction), if all outstanding work in the
original context is complete. Any violation of this principle causes an exception to be thrown when the
enterprise bean tries to start the new context.

Client support for transactions
Application clients can, within certain limits, support the use of transactions.

Application clients running in an enterprise application client container can explicitly demarcate transaction
boundaries, as described in the topic about using component-managed transactions. Application clients
cannot perform, directly in the client container, transactional work in the context of any global transaction
that they start, because the client container is not a recoverable process.

Application clients can make requests to remote objects, such as enterprise beans, in the context of a
client-initiated transaction. Any transactional work performed in a remote, recoverable, server process is
coordinated as part of the client-initiated transaction. The transaction coordinator is created on the first
server process to which the client-initiated transaction is propagated.

A client can begin a transaction, then, for example, access a JDBC data source directly in the client
process. In such cases, any work performed through the JDBC provider is not coordinated as part of the
global transaction. Instead, the work runs under a resource manager local transaction. The client container
process is non-recoverable and contains no transaction coordinator with which a resource manager can be
enlisted.

A client can begin a transaction, then call a remote application component such as an enterprise bean. In
such cases, the client-initiated transaction context is implicitly propagated to the remote application server,
where a transaction coordinator is created. Any resource managers accessed on the recoverable
application server (or any other application server hosting application components invoked by the client)
are enlisted in the global transaction.

Client application components must be aware that locally-accessed resource managers are not
coordinated by client-initiated transactions. Client applications acknowledge this through a deployment
option that enables access to the UserTransaction interface in the client container. By default, access to
the UserTransaction interface in the client container is not enabled. To enable UserTransaction
demarcation for an application client component, set the “Allow JTA Demarcation” extension property in the
client deployment descriptor. For information about editing the client deployment descriptor, refer to the
Rational Application Developer information.

122 Overview

Commit priority for transactional resources

You can specify the order in which transactional resources are processed during two-phase commit
processing.

If you control the order in which transactional resources are processed during two-phase commit
processing, there are two main benefits:

* One-phase commit optimization occurs more often.
» Potential problems caused by transaction isolation are resolved.

To control the order in which transactional resources are processed during two-phase commit processing,
you specify the commit priority of a resource by setting the commit priority attribute on a resource
reference. The larger the commit priority, the earlier the resource is processed. For example, if a resource
has a commit priority of 10, it is processed before a resource with a commit priority of 1. The commit
priority value is of type int and can be between -2147483648 and 2147483647.

If you do not specify a commit priority value, a default value of zero is assigned to the resource and is
used when ordering resources at run time. If two or more resources are configured with the same priority,
including the default priority, they are processed in an unspecified order with respect to each other.

You can specify the commit priority attribute on a resource reference by using Rational Application
Developer tools. For detailed information, see the Rational Application Developer information center. The
application component must have a deployment descriptor; you cannot specify this attribute if annotation
has been used.

One-phase commit optimization

In a transaction with a two-phase commit, if every resource except the last one enlisted in the transaction
votes read-only, indicating that those resources are not interested in the outcome of the transaction, a
one-phase commit can occur. This means that the transaction service does not have to store resource and
transaction information that it would need to roll back a two-phase commit, and therefore performance is
improved.

You can control the order in which transactional resources are processed during two-phase commit, so
you can process the resources that are most likely to vote read-only first. Therefore, you increase the
chance that a one-phase commit might occur.

Typically, for a given transactional resource, you know the work that is performed at run time, so if you can
control the order in which the resources in a transaction are processed, you can increase the likelihood of
a one-phase commit optimization occurring.

Transaction isolation

When resources are involved in a global transaction, updates that are made as part of a transaction are
not visible outside the transaction until the transaction commits, that is, those resources are isolated. This
isolation can cause problems with other application components that act on the updates after they are
committed. For example, further processing can fail, or can fail intermittently, because updates are order
and time dependent. This problem does not occur with service integration bus messaging work in
WebSphere Application Server, but can be a problem for other messaging providers, for example
WebSphere MQ.

If you specify the order in which transactional resources are committed, problems caused by isolation are

resolved for all transactional systems, not just messaging providers and service integration bus in
particular.

Chapter 9. Data access resources 123

The following example describes how problems might occur when you cannot specify the order in which
transactional resources are committed. An application updates a row in a database table, then sends a
JMS message that triggers additional processing of the row. Both of these actions are performed in the
same global transaction, so they are isolated until their respective resources are committed. If the update
to the row is committed before the message is sent, the processing that is triggered by the message can
access the updated row and process it. If the action to send the message is committed first, this action
might trigger the additional processing of the row before the database has committed the update to the
row. In this situation, the updated row is still isolated and is not visible, so the additional processing of the
row fails.

This problem can be more complicated because it is ordering and timing dependent. If the database is
committed first, the problem does not occur. If the action to send the message is committed first, the
problem might occur, but it depends whether the database work is committed before the message triggers
the further processing of the row. Therefore, the problem can be intermittent, so it is harder to identify its
cause.

Restrictions with earlier versions of WebSphere Application Server

If you specify the commit priority of a resource, that is, specify any value other than the default value 0,
the commit priority is added to the partner log in a recoverable unit section. This section in the log file is
recognized in WebSphere Application Server Version 7.0 or later, but not in earlier versions of the
application server.

Therefore, if an application uses the commit priority attribute, you cannot install that application into a
mixed-version cluster where one or more servers in the cluster are at versions of WebSphere Application
Server that are earlier than Version 7.0.

Also, if an application that uses the commit priority attribute is installed in a cluster, you cannot
subsequently add a server to that cluster if the server is at a version of WebSphere Application Server that
is earlier than Version 7.0.

For general information about different versions of the product, see the topic “Overview of migration,
coexistence, and interoperability”.

Transactional high availability

The high availability of the transaction service enables any server in a cluster to recover the transactional
work for any other server in the same cluster. This facility forms part of the overall WebSphere Application
Server high availability (HA) strategy.

As a vital part of providing recovery for transactions, the transaction service logs information about active
transactional work in the transaction recovery log. The transaction recovery log stores the information in a
persistent form, which means that any transactional work in progress at the time of a server failure can be
resolved when the server is restarted. This activity is known as transaction recovery processing. In
addition to completing outstanding transactions, this processing also ensures that any locks held in the
associated resource managers are released.

Peer recovery processing

The standard recovery process that is performed when an application server restarts is for the server to
retrieve and process the logged transaction information, recover transactional work and complete indoubt
transactions. Completion of the transactional work (and hence the release of any database locks held by
the transactions) takes place after the server successfully restarts and processes its transaction logs. If the
server is slow to recover or requires manual intervention, the transactional work cannot be completed and
access to associated databases is disrupted.

124 Overview

To minimize such disruption to transactional work and the associated databases, WebSphere Application
Server provides a high availability strategy known as transaction peer recovery.

Peer recovery is provided within a server cluster. A peer server (another cluster member) can process the
recovery logs of a failed server while the peer continues to manage its own transactional workload. You do
not have to wait for the failed server to restart, or start a new application server specifically to recover the
failed server.

Before pear recovery \> During peer recovery
Application server ! Application server
sarver 1 / sarver 1
L .
\ Recovery o
\ process for pe—me Lag
Mormal Mormal sarver? serverd
runtime runtime —
activity /-’ activity Recovery _-_‘______::3!
processfor |1 Lag
sarverd serverd
x ~ ——
a-'"___*_ . \ .-'-'__"_ B
I S |
Log Log
sarveri sarvari
- o B o

Figure 9. Peer recovery

The peer recovery process is the logical equivalent to restarting the failed server, but does not constitute a
complete restart of the failed server within the peer server. The peer recovery process provides an
opportunity to complete outstanding work; it cannot start new work beyond recovery processing. No
forward processing is possible for the failed server.

Peer recovery moves the high availability requirements away from individual servers and onto the server
cluster. After such failures, the management system of the cluster dispatches new work onto the remaining
servers; the only difference is the potential drop in overall system throughput. If a server fails, all that is
required is to complete work that was active on the failed server and redirect requests to an alternate
server.

By default, peer recovery is disabled until you enable failover of transaction log recovery in the cluster
configuration, and restart the cluster members. After you enable transaction log recovery, WebSphere
Application Server supports two styles for the initiation of transaction peer recovery: automated and
manual. You determine which style is more appropriate, based on your deployment, and specify that style
by configuring the appropriate high availability policy. This high availability policy is referred to elsewhere in
these topics as the policy for the transaction service.

Automated peer recovery
This style is the default for peer recovery initiation. If an application server fails, WebSphere
Application Server automatically selects a server to undertake peer recovery processing on its
behalf, and passes recovery back to the failed server when it restarts. To use this model, enable
transaction log recovery and configure the recovery log location for each cluster member.

Manual peer recovery
You must explicitly configure this style of peer recovery. If an application server fails, you use the
administrative console to select a server to perform recovery processing on its behalf.

In a HA environment, you must configure the compensation logs as well as the transaction logs. For each
server in the cluster, use the compensation service settings to configure a unique compensation log

Chapter 9. Data access resources 125

location, and ensure that all cluster members can access those compensation logs.
Peer recovery example
The following diagrams illustrate the peer recovery process that takes place if a single server fails. Figure

2 shows three stable servers running in a WebSphere Application Server cluster. The workload is balanced
between these servers, which results in locks held by the back-end database on behalf of each server.

Server _
cluster /F
fm ; ‘\\.

Pl 4 't
servert server2 SErvers3
-*‘

v

Figure 10. Server cluster up and running, just before server failure

Figure 3 shows the state of the system after server 1 fails without clearing locks from the database.
Servers 2 and 3 can run their existing transactions to completion and release existing locks in the
back-end database, but further access might be impaired because of the locks still held on behalf of server
1. In practice, some level of access by servers 2 and 3 is still possible, assuming appropriately configured
lock granularity, but for this example assume that servers 2 and 3 attempt to access locked records and
become blocked.

Server Etl]j
T " a

cluster

| -
| r
' ;

g 1 server2 serverd
L
4
v

Figure 11. Server 1 fails. Servers 2 and 3 become blocked as a result

Figure 4 shows a peer recovery process for server 1 running inside server 3. The transaction service
portion of the recovery process retrieves the information that is stored by server 1, and uses that
information to complete any indoubt transactions. In this figure, the peer recovery process is partially
complete as some locks are still held by the database on behalf of server 1.

126 Overview

Server EE_'

cluster =
311}
e

zarver? sarnverd
[Recovery
— process
4 [sarverl)
v

Figure 12. Peer recovery process started in server 3

Figure 5 shows the state of the server cluster when the peer recovery process is complete. The system is
in a stable state with just two servers, between which the workload is balanced. Server 1 can be restarted,
and will have no recovery processing of its own to perform.

Saerver

cluster = I_‘:Jx
2 @
i Sy

sarer2 sarvaers

.

4
¥

Figure 13. Server cluster stable again with just two servers: server 2 and server 3

Deployment for transactional high availability

Before you use the high availability (HA) function, you must consider deployment issues such as your file
system type, or where you plan to store the transaction recovery logs. In particular, your file system type
can have important consequences for your recovery configuration.

Common configuration

Transaction peer recovery requires a common configuration of the resource providers between the
participating server members to undertake peer recovery between servers. Therefore, peer recovery
processing can only take place between members of the same server cluster. Although a cluster can
contain servers that are at different versions of WebSphere Application Server, peer recovery can only be
performed between servers in the cluster that are at Version 6 or later.

Physical storage
For application servers to perform transaction peer recovery for each other, they must be able to access
the transaction recovery logs of all the other members in the cluster. Ensure that the log files are stored on

a medium that is accessible by all members of the cluster, and that each cluster member has a unique log
file location on this medium. This medium, and access to it, for example through a local area network

Chapter 9. Data access resources 127

(LAN), must support the file-based force operation that is used by the recovery log service to force data to
disk. After the force operation is complete, information must be persistently stored on physical disk media.

In a HA environment, application servers must also be able to access the compensation logs. Ensure that
the compensation log files are stored on a medium that is accessible by all members of the cluster, and
that each cluster member has a unique log file location on this medium.

For example, you can store the logs on another IBM i server by using the NetClient file system (QNTC),
which provides access to data on a remote system by using the Server Message Block (SMB) protocol.

Sorver 1 F—
:] — i
“H-\""-\-\._____\- -\-:} {_’_'_,_-o-""ﬂ-;
.______ -FFF::.::_
g _E,.s-"'
e
| File Server
for recovery File Server (SMB-based)
logs |
SR
..ﬂ‘"f E"ﬁ\._ﬁ_
" —
= —
= &
J T
Server 3 Sarver 4

Figure 14. Recovery logs on SMB-based file server are available to all servers

In addition, configure the mechanism by which the remote log files are accessed, to exploit any fault
tolerance in the underlying file system. For example, by using the Network File System (NFS) and hard
mounting the remote directory containing the log files by using the -0 hard option of the NFS mount
command, the NFS client will try a failed operation repeatedly until the NFS server becomes available
again.

Two types of potential server failure exist: software failure and hardware failure. Software failures generally
do not affect other application servers directly. Even servers on the same physical hardware can undertake
peer recovery processing. If a hardware failure occurs, all the servers that are deployed on the failed
hardware become unavailable. Servers on other hardware are required to handle peer recovery
processing. Any HA configuration requires that servers are deployed across multiple and discrete hardware
systems.

File system
The file system type is an important deployment consideration as it is the main factor in deciding whether

to use automated or manual peer recovery. For more information, see [How to choose between automated
land manual transaction peer recovery.’|

How to choose between automated and manual transaction peer recovery:

128 Overview

Your type of file system is the dominant factor in deciding which kind of transaction peer recovery to use.
Different file systems have different behaviors, and the file locking behavior in particular is important when
choosing between automated and manual peer recovery.

WebSphere Application Server high availability (HA) support uses a heartbeat mechanism to determine
whether servers are still running. Servers are considered failed if they stop responding to heartbeat
requests. Some scenarios, such as system overloading and network partitioning (explained elsewhere in
this topic), can cause servers to stop responding to heartbeats, even though the servers are still running.
WebSphere Application Server uses file locking technology to prevent such events from causing
concurrent access to transaction recovery logs, because access to a recovery log by more than one server
can lead to loss of data integrity.

However, not all file systems provide the necessary file locking semantics, specifically that file locks are
released when a server fails. For example, Network File System Version 4 (NFSv4) provides this release
behavior, whereas Network File System Version 3 (NFSv3) does not.

NFSv4 releases locks held on behalf of a host in case that host fails. Peer recovery can occur
automatically without restarting the failed hardware. Therefore, this version of NFS is better suited for use
with automated peer recovery.

NFSv3 holds file locks on behalf of a failed host until that host can restart. In this context, the host is the
physical machine running the application server that requested the lock and it is the restart of the host, not
the application server, that eventually triggers the locks to release.

To illustrate file locking on NFSv3, consider the behavior when a cluster member fails:
1. Server H is running on host H and holds an exclusive file lock for its own recovery log files.
2. Server P is running on host P and holds an exclusive file lock for its own recovery log files.

3. Host H fails, taking server H with it. The NFS lock manager on the file server holds the locks that are
granted to server H on its behalf.

4. A peer recovery event is triggered in server P for server H by WebSphere Application Server.

5. Server P attempts to gain an exclusive file lock for this peer recovery log, but is unable to do so as it
is held on behalf of server H. The peer recovery process is blocked.

6. At an unspecified time, host H is restarted. The locks held on its behalf are released.

7. The peer recovery process in server P is unblocked and granted the exclusive file locks that are
needed to undertake peer recovery.

8. Peer recovery takes place in server P for server H.
9. Server H is restarted.
10. If peer recovery is still in progress in server P, the recovery is halted.

11. Server P releases the exclusive lock on the recovery logs and returns ownership of the recovery logs
back to server H.

12. Server H obtains the exclusive lock and can now undertake standard transaction logging.

Because of this behavior, on NFSv3 you must disable file locking to use automated peer recovery.
Disabling file locking can lead to concurrent access to recovery logs so it is vital that you protect your
system from system overloading and network partitioning first. Alternatively, you can configure manual peer
recovery, where you prevent concurrent access by manually triggering peer recovery processing only for
servers that have failed.

System overloading
System overloading occurs when a machine becomes very heavily loaded such that response
times are extremely poor and requests begin to time out. Several potential causes exist for such
overloading, including:

» The server is underpowered and cannot handle the workload.

Chapter 9. Data access resources 129

» The server received a temporary surge of requests.

 Insufficient physical memory is available. As a result, the operating system is too busy paging to
give the application server the required CPU time.

Network partitioning
Network partitioning occurs when a communications failure in a network results in two smaller
networks that are independent and cannot contact each other.

y

Normal running

Hearbeat operations
time out

P r"’r

Hearbeat operations
unable to cross
partition boundry

% MNetwork partition1 ./ '_ Metwork partition2 ./

During normal running, two servers on the network exchange heartbeats. During system overloading,
heartbeat operations time out, giving the appearance of a server failure. After network partitioning, each
server is in a separate network and heartbeats cannot pass between them, also giving the appearance of

a server failure.)))
Figure 15. Heartbeats in a system running normally, compared to heartbeats after the apparent server failures of

system overloading and network partitioning

High availability policies for the transaction service

WebSphere Application Server provides integrated high availability (HA) support in which system
subcomponents, such as the transaction service, are made highly available. An HA policy provides the
logic that governs the manner in which each WebSphere Application Server HA component behaves within
the overall HA framework. For the transaction service, the transaction HA policy provides the logic to
determine which servers own a recovery log at any time.

Typically, transaction policies assign ownership of a recovery log to the server that originally created it (the
home server) and that server can then use the recovery log for both recovery and normal transactional
activity. In the event that the home server is unavailable or fails, ownership can pass to a peer server to
undertake recovery processing.

130 Overview

Conceptually, a policy can be thought of as consisting of two key components, a policy type and a policy
configuration.

Policy type

The policy type determines whether peer recovery initiation is manual or automated. The policy essentially
provides the logic for determining updated recovery log ownership in the event of a server failure. The
following WebSphere Application Server policy types are used for transaction peer recovery (other HA
policy types exist, but are not used by the transaction service):

Static Ownership of the recovery log is defined in the WebSphere Application Server configuration. At run
time, the static policy assigns ownership accordingly. Any changes to ownership require a change
to the static configuration and therefore this policy type is used for manually initiated peer
recovery.

One-of-N
Ownership of the recovery log is determined dynamically by the WebSphere Application Server HA
framework and assigned to exactly one of the N cluster members. This policy type is used for
automated peer recovery.

Transaction compensation and business activity support

A business activity is a collection of tasks that are linked together so that they have an agreed outcome.
Unlike atomic transactions, activities such as sending an email can be difficult or impossible to roll back
atomically, and therefore require a compensation process in the event of an error. The WebSphere
Application Server business activity support provides this compensation ability through business activity
scopes.

When to use business activity support

Use the business activity support when you have an application that requires compensation. An application
requires compensation if its operations cannot be atomically rolled back. Typically, this scenario is because
of one of the following reasons:

* The application uses multiple non-extended-architecture (XA) resources.

* The application uses more than one atomic transaction, for example, enterprise beans that have
Requires new as the setting for the Transaction field in the container transaction deployment
descriptor.

* The application does not run under a global transaction.

The following diagram shows a simple web service application that uses the business activity support. The
Retailer, Warehouse and Manufacturing services are running in non-WebSphere Application
Serverenvironments. The Retailer service calls the Supplier service, running on WebSphere Application
Server, which delegates tasks to the Warehouse and Manufacturing services. The implementation of the
Supplier service contains a stateless session bean, which calls other stateless session beans that are
associated with the Warehouse and Manufacturing services, and that undertake work that can be
compensated. These other session beans each have a compensation handler; a piece of logic that is
associated with an application component at run time, and performs compensation activity such as
resending an email.

Application design

Business activity contexts are propagated with application messages, and can therefore be distributed
between application components that are not co-located in the same server. Unlike atomic transaction
contexts, business activity contexts are propagated on both synchronous (blocking) call-response
messages and asynchronous one-way messages. An application component that runs under a business

Chapter 9. Data access resources 131

activity scope is responsible for ensuring that any asynchronous work it initiates is complete before the
component's own processing is complete. An application that initiates asynchronous work by using a
fire-and-forget message pattern must not use business activity scopes, because such applications have no
means of detecting whether this asynchronous processing has completed.

Only enterprise beans that have container-managed transactions can use the business activity functions.
Enterprise beans that exploit business activity scopes can offer web service interfaces, but can also offer
standard enterprise bean local or remote Java interfaces. Business activity context is propagated in web
service messages by using a standard, interoperable Web Services Business Activity (WS-BA)
CoordinationContext element. WebSphere Application Server can also propagate business activity context
on RMI calls to enterprise beans when Web services are not being used, but this form of the context is not
interoperable with non-WebSphere Application Server environments. You might want to use this
homogeneous scenario if you require compensation for an application that is internal to your business. If
you want to use business activity compensation in a heterogeneous environment, expose your application
components as web services.

Business activity contexts can be propagated across firewalls and outside the WebSphere Application
Server domain. The topology that you use to achieve this propagation can affect the high availability and
affinity behavior of the business activity transaction.

Application development and deployment

WebSphere Application Server provides a programming model for creating business activity scopes, and
for associating compensation handlers with those business activity scopes. WebSphere Application Server
also provides an application programming interface to specify compensation data, and check or alter the
status of a business activity. To use the business activity support you must set certain application
deployment descriptors appropriately, provide a compensation handler class if required, and enable
business activity support on any servers that run the application.

Note: Applications can exploit the business activity support only if you deploy them to a WebSphere
Application Server at Version 6.1 or later. Applications cannot use the business activity support if
you deploy them to a cluster that includes WebSphere Application ServerVersion 6.0.x servers.

Business activity scopes

The scope of a business activity is that of a main WebSphere Application Server unit of work: a global
transaction, an activity session, or local transaction containment (LTC). A business activity scope is not a
new unit of work (UOW); it is an attribute of an existing main UOW. Therefore, a one-to-one relationship
exists between a business activity scope and a UOW.

In a WS-BA deployment, the UOW must be container-managed:

* The UOW can be a container-managed transaction (CMT) enterprise bean that creates a global
transaction.

* The UOW can be a local transaction containment (LTC) where the container is responsible for initiating
and ending resource manager local transactions (RMLTs). That is, in the transactional deployment
descriptor attributes, the Local Transaction attribute Resolver must be set to ContainerAtBoundary. To
use WS-BA, you must not set the Resolver attribute to Application.

Any main UOW can have a business activity scope associated with it. If a component running under a
UOW that is associated with a business activity scope calls another component, that request propagates
the business activity scope; any work done by the new component is associated with the same business
activity scope as the calling component. The called component can create a new UOW, for example if an
enterprise bean has a Transaction setting of Requires new, or runs under the same UOW as the calling
component. If a new UOW is started then a new business activity scope is created and associated with
the new UOW. The newly created business activity scope is a child of the business activity scope

132 Overview

associated with the calling UOW. In the following diagram, EJB1a running under UOW1 calls two
components: EJB1b that also runs under UOW1, and EJB2 that creates a new UOW, UOW2. The
enterprise bean EJB1b, calls another enterprise bean, EJB3, which creates another new UOW, UOWS3.
Because each new UOW is created by a calling component whose UOW already has an association with
business activity scope BAScope1, the newly created UOWSs are associated with new inner business
activity scopes, BAScope2 and BAScope3.

Inner business activity scopes must complete before the outer business activity scope completes. Inner
business activity scopes, for example BAScope2, have an association with the outer business activity
scope, in this case BAScope1. Each business activity scope is directed to close if its associated UOW
completes successfully, or to compensate if its associated UOW fails. If BAScope2 completes successfully,
any active compensation handlers that are owned by BAScope2 are moved to BAScope1, and are
directed in the same way as the completion direction of BAScope1: either compensate or close. If
BAScope? fails, the active compensation handlers are compensated automatically, and nothing is moved
to the outer BAScope1. When an inner business activity scope fails, as a result of its associated UOW
failing, an application server exception is thrown to the to calling application component, running in the
outer UOW.

For example, if the inner UOW fails it might throw a TransactionRolledBackException exception. If the
calling application can handle the exception, for example by trying the called component again or by
calling another component, then the calling UOW, and its associated business activity scope, can complete
successfully even though the inner business activity scope failed. If the application design requires the
calling UOW to fail, and for its associated business activity scope to be compensated, then the calling
application component must cause its UOW to fail, for example by allowing any system exception from the
UOW that failed to be handled by its container.

When the outer business activity scope completes, its success or failure determines the completion
direction (close or compensate) of any active compensation handlers that are owned by the outer business
activity scope, including those promoted by the successful completion of inner business activity scopes. If
the outer business activity scope completes successfully, it drives all active compensation handlers to
close. If the outer business activity scope fails, it drives all active compensation handlers to compensate.

This compensation behavior is summarized in the following table.

Table 19. Compensation behavior for a single business activity scope. The table lists the possible combinations of
success and failure for the inner and outer business activity scopes, and the compensation behavior associated with
each combination.

Inner Outer
business business
activity scope | activity scope | Compensation behavior

Succeeds Succeeds Any compensation handlers that are owned by the inner business activity scope wait for the
outer UOW to complete. When the outer UOW succeeds, the outer business activity scope
drives all compensation handlers to close.

Fails Succeeds Any active compensation handlers that are owned by the inner business activity scope are
compensated. An exception is thrown to the outer UOW; if this exception is caught, when the
outer UOW succeeds, the outer business activity scope drives all remaining active compensation
handlers to close.

Fails Fails Any active compensation handlers that are owned by the inner business activity scope are
compensated. An exception is thrown to the outer UOW; if this exception is not caught, the outer
business activity scope fails. When the outer business activity scope fails, either because of the
unhandled exception or for some other reason, all remaining active compensation handlers are
compensated.

Succeeds Fails Any compensation handlers that are owned by the inner business activity scope wait for the
outer UOW to complete. When the outer UOW fails, the outer business activity scope drives all
compensation handlers to compensate.

Chapter 9. Data access resources 133

When a UOW with an associated business activity scope completes, the business activity scope always
completes in the same direction as the UOW that it is associated with. The only way that you can
influence the direction of the business activity scope is to influence the UOW that it is associated with,
which you can do by using the setCompensateOnly method of the business activity API.

A compensation handler that is registered within a transactional UOW might initially be inactive, depending
on the method invoked from the business activity API. Inactive handlers in this situation become active
when the UOW in which that handler is declared completes successfully. A compensation handler that is
registered outside a transactional UOW always becomes active immediately. For more information, see the
topic about the business activity API.

Each business activity scope in the diagram represents a business activity. For example, the outer
business activity running under BAScope1 can be a holiday booking scenario, with BAScope2 being a
flight booking activity and BAScope3 a hotel booking. If either the flight or hotel bookings fail, the overall
holiday booking by default also fails. Alternatively if, for example, the flight booking fails, you might want
your application to try booking a flight by using another component that represents a different airline. If the
overall holiday booking fails, the application can use compensation handlers to cancel any flights or hotels
that are already successfully booked.

Use of business activity scopes by application components

Application components do not use business activity scopes by default. You use the WebSphere
Application Server assembly tools to specify the use of a business activity scope and to identify any
compensation handler class for the component:

Default configuration
If a business activity context is present on a request received by a component with no business
activity scope configuration, the context is stored by the container but never used during the
method scope of the target component. A new business activity scope is not created. If the target
component invokes another component, the stored business activity context is propagated and can
be used by other compensating components.

Run enterprise bean methods under a business activity scope
Any business activity context present on the incoming request is received by the container and
made available to the target component. If a new UOW is created for the target method, for
example because the enterprise bean method has a Transaction setting of Requires new, the
received business activity scope becomes an outer business activity scope to a newly created
business activity. If the UOW is propagated from the calling component and used by the method,
then the received business activity scope is used by the method. If a business activity scope does
not exist on the invocation, a new business activity scope is created and used by the method.

To create a business activity scope when an enterprise bean is invoked, you must configure the enterprise
bean to run enterprise bean methods under a business activity scope. You must also configure the
deployment descriptors for the method being invoked, to specify the creation of a new UOW upon
invocation. For details, see the topic about creating an application that uses the WS-BA support.

JTA support

Java Transaction API (JTA) support provides application programming interfaces (APIs) in addition to the
UserTransaction interface that is defined in the JTA 1.1 specification.

These interfaces include the TransactionSynchronizationRegistry interface, which is defined in the JTA 1.1
specification, and the following API extensions:

» SynchronizationCallback interface

ExtendedJTATransaction interface

UOWSynchronizationRegistry interface

UOWManager interface

134 Overview

The APIs provide the following functions:
* Access to global and local transaction identifiers associated with the thread.

The global identifier is based on the transaction identifier in the CosTransactions::PropagationContext:
object and the local identifier identifies the transaction uniquely in the local Java virtual machine (JVM).

* A transaction synchronization callback that any enterprise application component can use to register an
interest in transaction completion.

Advanced applications can use this callback to flush updates before transaction completion and clear up
state after transaction completion. Java EE (and related) specifications position this function typically as
the domain of the enterprise application containers.

Components such as persistence managers, resource adapters, enterprise beans, and web application
components can register with a JTA transaction.

The following information is an overview of the interfaces that the JTA support provides. For more detailed
information, see the generated API documentation.

SynchronizationCallback interface

An object implementing this interface is enlisted once through the ExtendedJTATransaction interface, and
receives notification of transaction completion.

Although an object implementing this interface can run on a Java platform for enterprise applications
server, there is no specific enterprise application component active when this object is called. So, the
object has limited direct access to any enterprise application resources. Specifically, the object has no
access to the java: namespace or to any container-mediated resource. Such an object can cache a
reference to an enterprise application component (for example, a stateless session bean) that it delegates
to. The object would then have all the usual access to enterprise application resources. For example, you
might use the object to acquire a Java Database Connectivity (JDBC) connection and flush updates to a
database during the beforeCompletion method.

ExtendedJTATransaction interface

This interface is a WebSphere programming model extension to the Java EE JTA support. An object
implementing this interface is bound, by enterprise application containers in WebSphere Application Server
that support this interface, at java:comp/websphere/ExtendedJTATransaction. Access to this object, when
called from an Enterprise JavaBeans (EJB) container, is not restricted to component-managed
transactions.

An application uses a Java Naming and Directory Interface (JNDI) lookup of java:comp/websphere/
ExtendedJTATransaction to get an ExtendedJTATransaction object, which the application uses as shown in
the following example:

ExtendedJTATransaction exJTA = (ExtendedJTATransaction)ctx.lookup("
Jjava:comp/websphere/ExtendedJTATransaction");
SynchronizationCallback sync = new SynchronizationCallback();
exJTA.registerSynchronizationCallback(sync);

The ExtendedJTATransaction object supports the registration of one or more application-provided
SynchronizationCallback objects. Depending on how the callback is registered, each registered callback is
called at one of the following points:

» At the end of every transaction that runs on the application server, whether the transaction is started
locally or imported

* At the end of the transaction for which the callback was registered

Note: In this release, the registerSynchronizationCallbackForCurrentTran method is deprecated. Use the
registerinterposedSynchronization method of the TransactionSynchronizationRegistry interface
instead.

Chapter 9. Data access resources 135

TransactionSynchronizationRegistry interface

This interface is defined in the JTA 1.1 specification. System-level application components, such as
persistence managers, resource adapters, enterprise beans, and web application components, can use
this interface to register with a JTA transaction. Then, for example, the component can flush a cache when
a transaction completes.

To obtain the TransactionSynchronizationRegistry interface, use a JNDI lookup of java:comp/
TransactionSynchronizationRegistry.

Note: Use the registerinterposedSynchronization method to register a synchronization instance, rather
than the registerSynchronizationCallbackForCurrentTran method of the ExtendedJTATransaction
interface, which is deprecated in this release.

UOWSynchronizationRegistry interface

This interface provides the same functions as the TransactionSynchronizationRegistry interface, but
applies to all types of units of work (UOWSs) that WebSphere Application Server supports:

» JTA transactions

* local transaction containments (LTCs)

» ActivitySession contexts

System-level application server components such as persistence managers, resource adapters, enterprise
beans, and web application components can use this interface to register with a JTA transaction. The
component can do the following:

* Register synchronization objects with special ordering semantics.
» Associate resource objects with the UOW.

* Get the context of the current UOW.

* Get the current UOW status.

* Mark the current UOW for rollback.

To obtain the UOWSynchronizationRegistry interface, use a JNDI lookup of java:comp/websphere/
UOWSynchronizationRegistry. This interface is available only in a server environment.

The following example registers an interposed synchronization with the current UOW:

// Retrieve an instance of the UOWSynchronizationRegistry interface from JNDI.

final InitialContext initialContext = new InitialContext();

final UOWSynchronizationRegistry uowSyncRegistry =
(UOWSynchronizationRegistry)initialContext.lookup("java:comp/websphere/UOWSynchronizationRegistry");

// Instantiate a class that implements the javax.transaction.Synchronization interface
final Synchronization sync = new SynchronizationImpl();

// Register the Synchronization object with the current UOW.
uowSynchronizationRegistry.registerInterposedSynchronization(sync);

UOWManager interface

The UOWManager interface is equivalent to the JTA TransactionManager interface, which defines the
methods that allow an application server to manage transaction boundaries. Applications can use the
UOWManager interface to manipulate UOW contexts in the product. The UOWManager interface applies
to all types of UOWSs that WebSphere Application Server supports; that is, JTA transactions, local
transaction containments (LTCs), and ActivitySession contexts. Application code can run in a particular
type of UOW without needing to use an appropriately configured enterprise bean. Typically, the logic that
is performed in the scope of the UOW is encapsulated in an anonymous inner class. System-level
application server components such as persistence managers, resource adapters, enterprise beans, and
web application components can use this interface.

136 Overview

WebSphere Application Server does not provide a TransactionManager interface in the API or the system
programming interface (SPI). The UOWManager interface provides equivalent functions, but WebSphere
Application Server maintains control and integrity of the UOW contexts.

To obtain the UOWManager interface in a container-managed environment, use a JNDI lookup of
java:comp/websphere/UOWManager. To obtain the UOWManager interface outside a container-managed
environment, use the UOWManagerFactory class. This interface is available only in a server environment.

You can use the UOWManager interface to migrate a web application to use web components rather than
enterprise beans, but maintain control over the UOWSs. For example, a web application currently uses the
UserTransaction interface to begin a global transaction, makes a call to a method on a session enterprise
bean that is configured as not supported to undertake some non-transactional work, and then completes
the global transaction. You can move the logic that is encapsulated in the session EJB method to the run
method of a UOWAction implementation. Then, you replace the code in the web component that calls the
session enterprise bean with a call to the runUnderUOW method of a UOWManager interface to request
that this logic is run in a local transaction. In this way, you maintain the same level of control over the
UOWs as you had with the original application.

The following example performs some transactional work in the scope of a new global transaction. The
transactional work is performed in an anonymous inner-class that implements the run method of the
UOWAction interface. Any checked exceptions that the run method creates do not affect the outcome of
the transaction.

// Retrieve an instance of the UOWManager interface from JNDI.
final InitialContext initialContext = new InitialContext();
final UOWManager uowManager = (UOWManager)initialContext.lookup("java:comp/websphere/UOWManager");

try

{

// Invoke the runUnderUOW method, indicating that the logic should be run in a global

// transaction, and that any existing global transaction should not be joined, that is,

// the work must be performed in the scope of a new global transaction.

uowManager. runUnderUOW (UOWSynchronizationRegistry.UOW_TYPE_GLOBAL_TRANSACTION, false, new UOWAction()
{

public void run() throws Exception

// Perform transactional work here.
1

1s

}

catch (UOWActionException uowae)

{

// Transactional work resulted in a checked exception being thrown.

}

catch (UOWException uowe)

{
// The completion of the UOW failed unexpectedly. Use the getCause method of the
// UOWException to retrieve the cause of the failure.

}

Chapter 9. Data access resources 137

138 Overview

Chapter 10. Dynamic caching

This page provides a starting point for finding information about the dynamic cache service, which
improves performance by caching the output of servlets, commands, web services, and JavaServer Pages
(JSP) files.

Dynamic caching features include replication of cache entries, cache disk offload, Edge-Side Include
caching, web services, and external caching. Use external caching to control caches outside of the
application server.

Dynamic cache service eviction policies

Disk cache infrastructure enhancements
Several performance enhancements are available for the dynamic cache service.

The dynamic cache service supports persisting objects to disk (specified by a file system location) so that
objects that are evicted from the memory cache are not regenerated by the application server. Objects are
written to disk when they are evicted from memory using a Least Recently Used (LRU) eviction algorithm.
The objects in the memory cache may also be flushed to disk on normal server shutdown. Java objects
that need to be offloaded to the disk should be serializable.

The disk offload function includes the following functions:
* An internal disk cache format for faster deletions and support for new options to limit disk cache size

» The disk cache garbage collector, which evicts objects out of the cache when a configured high
threshold is reached

* Four new performance modes to tune your disk cache performance:

— High performance/memory usage mode - keeps all metadata in system memory and provides the
highest performance

— Balanced performance/memory usage mode - provides optimal balance of performance and memory
usage by keeping some metadata in system memory

— Custom performance/memory usage mode - allows explicit configuration of the memory usage and
customization of performance requirements

— Low performance/memory usage mode - stores most of the metadata on disk for users who are very
constrained on system memory

Limiting the disk cache. The dynamic cache service provides mechanisms to limit the use of the disk
cache by specifying the size of the disk cache in gigabytes, in addition to the maximum number of entries
that are persisted to the disk. The disk cache is considered full when either of these limits is reached and
forms the basis for eviction of objects from the disk. If the cache subsystem cannot offload any more data
to disk, due to either an out-of-disk space condition, insufficient space on disk, or an exception when
writing data to disk as a result of a possibly corrupt disk, the disk offload capability is disabled to prevent
data integrity problems. The event is logged and the disk cache subsystem is deleted. This prevents
serving corrupt data from the cache on a restart. If the option to persist cache data is turned on, some
information such as dependency and template information is flushed to disk on a server shutdown. If a
disk full situation occurs during this shutdown process, any partially-persisted and un-persisted
dependency or template data is removed from the cache. A side effect of this, to preserve integrity, is to
invalidate the cached objects that are associated with the dependency or template data.

Disk cache size in GB. The disk cache size in GB option pertains primarily to the object data (which
includes the cached object, its identifier, and metadata such as expiration time), template information and
dependency information that are written to disk. The cache subsystem allocates separate storage and
volumes (each of which can grow to 1 GB) for object data, templates and dependencies, as needed.

© Copyright IBM Corp. 2011 139

When the total number of volumes on disk exceeds the specified cache size, any subsequent data that is
written to disk is discarded until more space is made available by the disk cache garbage collector. To
preserve data integrity, any information that is related to discarded objects is invalidated as well. The
thresholds for garbage collection (described below) and the disk cache full state are associated with the
space available for object data. It is also possible that in certain, rare scenarios, as information is flushed
to disk, critical system data needs to be written to disk, which may cause the total file system space
required to exceed up to 5% of the specified maximum limit. It is recommended that there be at least 25%
of actual file system space available for disk caching over and above the specified disk cache size in GB.
It is also required that each cache instance has a unique disk offload location and it is recommended that
each offload location be on a dedicated disk partition. The cache file system employs a logical file
manager to manage storage allocation for cached objects, therefore the file system size or the size of the
files in the cache directory may not be an accurate gauge of the available space for the cache subsystem.
At the same time, because of the adjusted limit, the cache subsystem may encounter a cache full state
prior to the approaching the specified maximum limit as measured in allocated file system space. The PMI
counters provide a better picture of how full the cache is.

Disabling the creation of ExtensionRegistry cache files. Whenever a servant restarts, a new
ExtensionRegistry cache file is created in the dynacache directory. These files keep accumulating because
they are never deleted. If you do not need the data that is collected in these cache files, you can add the
disable.dynacache.offload property to the extension registry properties file, and set the value of this
property to true. Setting this property to true disables the creation of ExtensionRegistry cache files for that
server. The extension registry properties file is located at the server configuration level under each profile:

profile_home/config/cells/cell_name/nodes/node_name
/servers/server_name/extensionregistry.properties

Eviction policies using the disk cache garbage collector

The disk cache garbage collector is responsible for evicting objects out of the disk cache, based on a
specified eviction policy.

The garbage collector keeps a certain amount of space on disk available, which is governed by the
configuration attribute that limits the amount of disk space that is used for caching objects. To enable the
eviction policy, enable the Limit disk cache size in GB and/or Limit disk cache size in entries options in the
administrative console.

The garbage collector is triggered when the disk space reaches a specified high threshold (a percentage
of the Limit disk cache size in entries or in GB) and evicts objects, based on the eviction policy, from the
disk in the background until the disk cache size reaches a specified low threshold (a percentage of the
Limit disk cache size in entries or in GB). Eviction triggers when one or both of the high thresholds is
reached for Limit disk cache size in GB and Limit disk cache size in entries. The supported policies are:

* None: This is the default policy. Objects are evicted only when they expire, or if they are invalidated.

* Random: The expired objects are removed first. If the disk size still has not reached the low threshold
limit, objects are picked from the disk cache in random order and removed until the disk size reaches a
low threshold limit.

» Size: The expired objects are removed first. If the disk size still has not reached the low threshold limit,
then largest-sized objects are removed until the disk size reaches a low threshold limit.

Limit disk cache size in GB and High Threshold determines when to trigger eviction and when the disk
cache is considered near full. It is computed as a function of the user-specified limit. If the specified limit is
10 GB (3 GB is the minimum), the cache subsystem initially creates three files that can grow to 1 GB in
size for cache data, dependency ID information, and template information. Each time more space is
needed to contain cache data, dependency ID information, or template information, a new file is created.
Each of these files grow in 1 GB increments until the total number of files that are created is equal to disk
cache in size in GB (in this case ten). Although the initial size of the new file may be much smaller than 1
GB, the dynamic cache service always rounds up to the next GB.

140 Overview

Eviction triggers when the cache data size reaches the high threshold and continues until the cache data
size reaches the low threshold. Calculation of cache data size is dynamic. The following formula describes
how to calculate the actual cache data size limit:

cache data size 1imit = disk cache size (in GB) - number of dependency files per GB - number of template files

When the cache data size limit is defined, the trigger point is calculated as follows:

eviction trigger point = cache data size Timit * high threshold
size of evicted entries = cache data size * (high threshold - low threshold)

Consider the following scenarios:
» Scenario 1
— Disk cache size in GB = 10 GB
— High threshold = 90%
— Low Threshold = 80%
Initially, there is one file for dependency ID and template ID.

cache data size limit = 10-(1+1) = 8 GB
eviction trigger point = 8 * 90% = 7.2 GB

size of evicted entries = 8 * (90% - 80%) = 0.8 GB

In the above scenario, eviction starts when the data cache size reaches 7.2 GB and continues until the
cache size is 6.4 GB (7.2 - 0.8).

* Scenario 2

In scenario 1, if the dependency files grow to more than 1 GB, an additional dependency file generates.
The eviction trigger point launches dynamically as follows:

cache data size limit = 10 - (2+1) = 7GB
eviction trigger point = 7 * 90% = 6.3GB
size of evicted entries = 7 * (90% - 80%) = 0.7GB

In the above scenario, eviction starts when the data cache size reaches 6.3 GB, and continues until the
cache size in 5.6 GB (6.3 - 0.7).

Disk cache eviction for limit disk cache size in entries. Consider the following scenario:
» Disk cache size in entries = 100000

* High threshold = 90%

* Low threshold = 80%

eviction trigger point = 100000 * 90% = 90000
number of entries evicted = 100000 * (90% - 80%) = 10000

In this scenario, eviction starts when the number of cache entries reaches 90000 and 10000 entries are
evicted from the cache.

Example: Caching web services

This topic includes examples of building a set of cache policies and SOAP messages for a web services
application.

The following is a example of building a set of cache policies for a simple web services application. The
application in this example stores stock quotes and has operations to read, update the price of, and buy a
given stock symbol.

Following are two SOAP message examples that the application can receive, with accompanying HTTP
Request headers.

Chapter 10. Dynamic caching 141

The first message sample contains a SOAP message for a GetQuote operation, requesting a quote for
IBM. This is a read-only operation that gets its data from the back end, and is a good candidate for
caching. In this example the SOAP message is cached and a timeout is placed on its entries to guarantee
the quotes it returns are current.

Message example 1

POST /soap/serviet/soaprouter

HTTP/1.1

Host: www.myhost.com

Content-Type: text/xml; charset="utf-8"

SOAPAction: urn:stockquote-Tookup

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>

<m:getQuote xmlns:m="urn:stockquote">

<symbo1>IBM</symbo1>

</m:getQuote>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The SOAPAction HTTP header in the request is defined in the SOAP specification and is used by HTTP
proxy servers to dispatch requests to particular HTTP servers. WebSphere Application Server dynamic
cache can use this header in its cache policies to build IDs without having to parse the SOAP message.

Message example 2 illustrates a SOAP message for a BuyQuote operation. While message 1 is
cacheable, this message is not, because it updates the back end database.

Message example 2

POST /soap/serviet/soaprouter

HTTP/1.1

Host: www.myhost.com

Content-Type: text/xml; charset="utf-8"

SOAPAction: urn:stockquote-update

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>

<m:buyStock xmlns:m="urn:stockquote">

<symbo1>IBM</symbol>

</m:buyStock>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The following graphic illustrates how to invoke methods with the SOAP messages. In web services terms,
especially Web Services Description Language (WSDL), a service is a collection of operations such as
getQuote and buyStock. A body element namespace (urn:stockquote in the example) defines a service,
and the name of the first body element indicates the operation.

The following is an example of WSDL for the getQuote operation:

<?xml version="1.0"?>

<definitions name="StockQuoteService-interface"
targetNamespace="http://www.getquote.com/StockQuoteService-interface"
xmins:tns="http://www.getquote.com/StockQuoteService-interface"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins=soap="http://schemas.xmlsoap.org/wsd1/soap/"
xmins="http://schemas.xmlsoap.org/wsd1/"

<message name="SymbolRequest">

<part name="return" type="xsd:string"/>

</message>

<portType name="StockQuoteService">

<operation name="getQuote">

142 Overview

<input message="tns:SymbolRequest"/>
<output message="tns:QuoteResponse"/>
</operation>

</portType>

<binding name="StockQuoteServiceBinding"
type="tns:StockQuoteService">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="getQuote">

<soap:operation soapAction="urn:stockquote-lookup"/>

<input>

<soap:body use="encoded" namespace="urn:stockquote"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>

<soap:body use="encoded" namespace="urn:stockquotes"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>
</binding>
</definition>

To build a set of cache policies for a web services application, configure WebSphere Application Server

dynamic cache to recognize cacheable service operation of the operation.

WebSphere Application Server inspects the HTTP request to determine whether or not an incoming
message can be cached based on the cache policies defined for an application. In this example, buyStock
and stock-update are not cached, but stockquote-lookup is cached. In the cachespec.xml file for this web

application, the cache policies need defining for these services so that the dynamic cache can handle both

SOAPAction and service operation.

WebSphere Application Server uses the operation and the message body in web services cache IDs, each
of which has a component associated with them. Therefore, each web services <cache-id> rule contains
only two components. The first is for the operation. Because you can perform the stockquote-lookup
operation by either using a SOAPAction header or a service operation in the body, you must define two
different <cache-id> elements, one for each method. The second component is of type "body", and defines
how WebSphere Application Server should incorporate the message body into the cache ID. You can use
a hash of the body, although it is legal to use the literal incoming message in the ID.

The incoming HTTP request is analyzed by WebSphere Application Server to determine which of the

<cache-id> rules match. Then, the rules are applied to form cache or invalidation IDs.

The following is sample code of a cachespec.xml file defining SOAPAction and servicesOperation rules:

<cache>
<cache-entry>
<class>webservice</class>
<name>/soap/servlet/soaprouter</name>
<sharing-policy>not-shared</sharing-policy>
<cache-id>
<component id="" type="SOAPAction">
<value>urn:stockquote-Tookup</value>
</component>
<component id="Hash" type="SOAPEnvelope"/>
<timeout>3600</timeout>
<priority>l<priority>
</component>
</cache-id>
<cache-id>
<component id="" type="serviceOperation">
<value>urn:stockquote:getQuote</value>
</component>
<component id="Hash" type="SOAPEnvelope"/>
<timeout>3600</timeout>

Chapter 10. Dynamic caching

143

<priority>l</priority>
</component>
</cache-id>
</cache-entry>
</cache>

Caching with Servlet 3.0

Dynamic cache provides servlet caching support for the Servlet 3.0 specification.

Be aware of the following API characteristics when using dynamic cache with Servlet 3.0:

» Dynamic cache wraps the ServletRequest and ServletResponse objects with its own cache application
wrapper objects that extend ServletRequestWrapper and ServletResponseWrapper objects.

» Dynamic cache is always the first asyncListener added to the ServletRequest.

» Users of startAsync (ServletRequest req, ServietResponse res) and public AsyncContext startAsync()
should flush the response before calling this method. Flushing the response ensures that any data that
is written to the wrapped cache response is not lost.

* Do not read from or write to the request and response objects that are passed into public void
addListener (asyncListener, req, res). Additional wrapping might have occurred since the given
AsynclListener was registered, and might be used to release any resources that are associated with
them.

» The do-not-consume property is not supported for Servlet 3.0 when using dynamic cache. The runtime
forces the parent servlet to consume subfragments and the do-not-consume property is ignored.

144 Overview

Chapter 11. EJB applications
This page provides a starting point for finding information about enterprise beans.
Based on the Enterprise JavaBeans (EJB) specification, enterprise beans are Java components that

typically implement the business logic of Java 2 Platform, Enterprise Edition (J2EE) applications as well as
access data.

Enterprise beans

An enterprise bean is a Java component that can be combined with other resources to create Java
applications. There are three types of enterprise beans, entity beans, session beans, and message-driven
beans.

All beans reside in Enterprise JavaBeans (EJB) containers, which provide an interface between the beans
and the application server on which they reside.

EJB 2.1 and earlier versions of the specification define entity beans as a means to store permanent data,
so they require connections to a form of persistent storage. This storage might be a database, an existing
legacy application, a file, or another type of persistent storage.

The EJB 3.0 specification deprecates EJB 1.1-style entity beans. The Java Persistence API (JPA)
specification is intended to replace the deprecated enterprise beans. While the JPA replacement is called
an entity class, it should not be confused with entity enterprise beans. A JPA entity is not an enterprise
bean and is not required to run in an EJB container.

Session beans typically contain the high-level and mid-level business logic for an application. Each method
on a session bean performs a particular high-level operation. For example, submitting an order or
transferring money between accounts. Session beans often invoke methods on entity beans in the course
of their business logic.

Session beans can be either stateful, stateless, or singleton. A stateful bean instance is intended for use
by a single client during its lifetime, where the client performs a series of method calls that are related to
each other in time for that client. One example is a shopping cart where the client adds items to the cart
over the course of an online shopping session. In contrast, a stateless bean instance is typically used by
many clients during its lifetime, so stateless beans are appropriate for business logic operations that can
be completed in the span of a single method invocation. Stateful beans should be used only where
absolutely necessary. Using stateless beans improves the ability to debug, maintain, and scale the
application.

The EJB 3.1 specification introduces singleton session beans. The EJB container initializes only one
instance of a singleton session bean, and that instance is shared by all clients. Because a single instance
is shared by all clients, singleton session beans have special life cycle and concurrency semantics.
Singleton session beans can have business local, business remote, and web service client views; they
cannot have EJB 2.1 local or remote client views.

The EJB 3.x specifications support stateless and stateful session beans. They follow a simple pattern such
as:

» Define the business interface.
» Define the class that implements it.
* Add metadata with annotations or with XML deployment descriptors.

The result of a simple EJB 3.x stateful session bean looks like the following:

© Copyright IBM Corp. 2011 145

package ejb3demo;

OStateful
public class Cart3Bean implements ShoppingCart {
private ArraylList contents = new ArraylList();

public void addToCart (Object o) {
contents.add(o);

}

public Collection getContents() {
return contents;

}
}

EJB components can use annotations such as @EJB and other injectable @Resource references if the
module is an EJB 3.x module.

Web application clients and application clients can use deployment descriptor-defined EJB references. If
the reference is for an EJB 3.x session bean without a home interface, the reference should be defined
with a null <home> or <local-home> setting in the deployment descriptor.

Web application clients and application clients can also use @EJB injections for references to EJB session
beans within the same enterprise archive (EAR) file, but the binding must either use the AutoLink support
within the container or the annotation must use the name of the reference that is defined by the
deployment descriptor and bound when the application is installed. For more information about AutoLink,
see the topic, "EJB 3.x application bindings support."

Message-driven beans enable asynchronous message servicing.

* The EJB container and a Java Message Service (JMS) provider work together to process messages.
When a message arrives from another application component through JMS, the EJB container forwards
it through an onMessage method call to a message-driven bean instance, which then processes the
message. In other respects, message-driven beans are similar to stateless session beans.

* The EJB container and a Java Connector Architecture (JCA) resource adapter work together to process
messages from an enterprise information system (EIS). When a message arrives from an EIS, the
resource adapter receives the message and forwards it to a message-driven bean, which then
processes the message. The message-driven bean is provided services such as transaction support by
the EJB container in the same way that other enterprise beans are provided service.

Beans that require data access use data sources, which are administrative resources that define pools of
connections to persistent storage mechanisms.

Java EE application resource declarations

You can configure your Java Enterprise Edition (Java EE) applications to declare dependencies on
external resources and configuration parameters. These resources might be injected into the application
code, or might be accessed by the application through the Java Naming and Directory Interface (JNDI).

Resource references allow an application to define and use logical names that you can bind to resources
when the application is deployed.

The following resource types can be declared by Java EE applications: simple environment entries,
Enterprise JavaBeans (EJB) references, web service references, resource manager connection factory
references, resource environment references, message destination references, persistence unit references,
and persistence context references.

146 Overview

Simple Environment Entries

You can define configuration parameters in your Java EE applications to customize business logic using
simple environment entries. As described in the Java EE 6 application, simple environment entry values
might be one of the following Java types: String, Character, Bye, Short, Integer, Long, Boolean, Double,
Float, Class, and any subclass of Enum.

Note: The Java type, Class, and any subclass of Enum are new in Java EE 6.

The application provider must declare all of the simple environment entries accessed from the application
code. The simple environment entries are declared using either annotations (javax.annotation.Resource) in
the application code, or using env-entry elements in the XML deployment descriptor.

In the following example from an application, annotations declare environment entries:

// Retry interval in milliseconds
@Resource long retrylInterval = 3000;

In the previous example, the field default value is 3000. You can use an env-entry-value, which you define
in the XML deployment descriptor to change this value.

In the following example, an application declares a simple environment entry of type Class, and defines
the Class to be injected using an env-entry-value element in the XML deployment descriptor.

@Resource(name=TraceFormatter) Class<?> traceFormatter;

<env-entry>
<env-entry-name>TraceFormatter</env-entry-name>
<env-entry-value>com.sample.trace.StdOutTraceFormatter</env-entry-value>
</env-entry>

In the previous example, the field value is set to the com.sample.trace.StdOutTraceFormatter Class object.

In the following example, an application which declares a simple environment entry called validationMode
as a subclass of Enum in the com.sample.Order class, and configures the Enum value of CALLBACK to
inject using elements in the XML deployment descriptor.

<env-entry>
<env-entry-name>JPAValidation</env-entry-name>
<env-entry-type>javax.persistence.ValidationMode</env-entry-type>
<env-entry-value>CALLBACK</env-entry-value>
<injection-target>
<injection-target-class>com.sample.Order</injection-target-class>
<injection-target-name>validationMode</injection-target-name>
</injection-target>
</env-entry>

In the previous example, the validationMode field is set to the CALLBACK Enum value. Use the same
approach when you use annotations and XML code to declare simple environment entries; for example:

@Resource (name=JPAValidation)
javax.persistence.ValidationMode validationMode;

<env-entry>
<env-entry-name>JPAValidation</env-entry-name>
<env-entry-value>CALLBACK</env-entry-value>
</env-entry>

Note: The simple environment entry support of the Java type, Class, and any subclass of Enum is new
for Java EE 6. Previously, you might have developed your applications to declare these types as
application resources using the resource-env-ref element in the XML deployment descriptor or using

Chapter 11. EJB applications 147

the javax.annotation.Resource annotation. For applications that were using these Java types with
the javax.annotation.Resource annotation, the com.ibm.websphere.ejbcontainer. EE5Compatibility
system property must be enabled. Without the EE5Compatibility system property, the binding-name
element of the resource-env-ref element in the ibm-ejb-jar-bnd.xm1 file is ignored, since the data
type is now treated as a simple environment entry and not a resource environment reference.

Note: The <lookup-name> deployment descriptor element and the Tookup annotation attribute are new in
Java EE 6. They specify the JNDI name of a referenced EJB or resource, relative to the
java:comp/env naming context. If either is used in a simple environment entry, you cannot use an
<env-entry-value> in the same <env-entry>.

Enterprise JavaBeans (EJB) References

As described in the Java EE 6 specification, you can develop your Java EE applications to declare
references to enterprise bean homes or enterprise bean instances using logical names called EJB
references.

When an application declares a reference to an EJB, the EJB that you reference will be resolved with one
of the following techniques.

» Specify an EJB binding in the ibm-ejb-jar-bnd.xml file or ibm-web-bnd.xml file
» Specify an <ejb-link> element in ejb-jar.xml file or web.xml file

» Specify a beanName attribute on the javax.ejb.EJB annotation

» Specify a <lookup-name> element in ejb-jar.xml file or web.xml file

» Specify a lookup attribute on the javax.ejb.EJB annotation

* Locate an enterprise bean that implements the interface declared as the type of the EJB reference
(referred to as AutoLink).

The EJB container attempts to resolve the EJB reference using the previous techniques in the order they
are listed.

Note: If <lookup-name> or 1ookup is used in an EJB reference, you cannot use <ejb-1ink> or beanName in
the same EJB reference.

Note: All of the following EJB reference examples assume the SampleCart bean has only a single
interface. If the SampleCart bean had multiple interfaces, then add the following suffix to the end of
the binding, <ejb-link> element, or beanName attribute : lcom.sample.Cart.

In the following example, an application declares an EJB reference using an annotation, and provides a
binding for resolution.

@EJB(name="Cart")
Cart shoppingCart;

<ejb-ref name="Cart" binding-name="java:app/SampleEJB/SampleCart"/>

In the following example, an application declares an EJB reference using an annotation, and provides an
ejb-link element for resolution.

@EJB(name="Cart")
Cart shoppingCart;

<ejb-local-ref>
<ejb-ref-name>Cart</ejb-ref-name>
<ejb-Tink>SampleEJB/SampleCart</ejb-T1ink>
</ejb-Tocal-ref>

148 Overview

In the following example, an application declares an EJB reference using an annotation, and provides a
lookup attribute for resolution, from the source bean com.sample.SourceBean.

@EJB(name="Cart" lookup="java:app/SampleEJB/SampleCart")
Cart shoppingCart;

The application could alternatively declare the EJB reference using the <lookup-name> element in the
XML deployment descriptor, as in the following example.
<ejb-local-ref>
<ejb-ref-name>Cart</ejb-ref-name>
<lookup-name>java:app/SampleEJB/SampleCart</1ookup-name>
<injection-target>
<injection-target-class>com.sample.SourceBean</injection-target-class>
<injection-target-name>ShoppingCart</injection-target-name>
</injection-target>
</ejb-local-ref>

In the following example, an application declares an EJB reference using an annotation, and provides a
beanName attribute for resolution.

@EJB(name="Cart" beanName="SampleEJB/SampleCart")
Cart shoppingCart;

Resource Environment References

As described in the Java EE 6 specification, you can develop applications to declare references to
administered objects that are associated with a resource, such as a Connecter CCI InteractionSpec
instance, or other object types managed by the EJB container, including javax.transaction.UserTransaction,
javax.ejb.EJBContext, javax.ejb.TimerServcie, org.omg.CORBA.ORB, javax.validation.Validator,
javax.validation.ValidatorFactory, or javax.enterprise.inject.spi.BeanManager.

When an application declares a reference to an administered object, you must provide a binding to the
administered object when the application is deployed. You can provide the binding using the administrative
console when you deploy the application, or you can add the binding to the WebSphere binding XML file,
ibm-ejb-jar-bnd.xml or ibm-web-bnd.xml.

In the following example, an application declares a resource environment reference, and provides a
binding to the resource:

@Resource (name="jms/ResponseQueue")
Queue responseQueue;

<session name="StatelessSampleBean">
<resource-env-ref name="jms/ResponseQueue" binding-name="Jetstream/jms/ResponseQueue"/>
</session>

The application could alternatively declare the resource environment reference using the lookup attribute,
and not require a binding, as in the following example:

@Resource(name="jms/ResponseQueue", lookup="Jetstream/jms/ResponseQueue")
Queue responseQueue;

<resource-env-ref>
<resource-env-ref-name>jms/ResponseBean</resource-env-ref-name>
<resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
</resource-env-ref>

When an application declares a reference to a container managed object type, a binding is not used. The

container provides the correct instance of the referenced object. In the following example, an application
declares a resource environment reference to a container-managed object:

Chapter 11. EJB applications 149

@Resource
javax.validation.Validator validator;

Resource References to Resource References

A new lookup field on the @Resource annotation is added with Java EE 6. You can now declare a
resource reference to a resource reference as shown in the following example:

@Resource(name="java:global/env/jdbc/dslref",
Tookup="java:global/env/jdbc/ds1",
authenticationType=Resource.AuthenticationType.APPLICATION,
shareable=false)

DataSource dslref;

@Resource(name="java:global/env/jdbc/dslrefref",
Tookup="java:global/env/jdbc/dslref",
authenticationType=Resource.AuthenticationType.APPLICATION,
shareable=true)

DataSource dslrefref;

The lookup uses the innermost nesting of references, which in this case is "java:global/env/jdbc/ds1ref".

Message-driven beans - automatic message retrieval

WebSphere Application Server supports the use of message-driven beans as asynchronous message
consumers.

The following figure shows an incoming message being passed automatically to the onMessage() method
of a message-driven bean that is deployed as a listener for the destination. The message-driven bean
processes the message, in this case passing the message on to a business logic bean for business
processing.

| /ff’“‘f’“ —
Message
JMS | — HEFP.’ Listener > ,»/ AT
client / ;1 .. ¥4
e 1 L b /
v ! aiie . / JMS destination
R /
JMS destination f"@;ageﬂm\
'\x____bean ____,f") .'ff
EJB .~ Business logic ™ Enterprise
client S boan - H‘K application

Figure 16. Messaging with message-driven beans

A client sends messages to the destination (or endpoint) for which the message-driven bean is deployed
as the message listener. When a message arrives at the destination, the EJB container invokes the
message-driven bean automatically without an application having to explicitly poll the destination. The
message-driven bean implements some business logic to process incoming messages on the destination.

150 Overview

It can be helpful to separate the business logic of your application from the communication interfaces,
such as the JMS request and response handling. To achieve this separation, you can design your
message-driven bean to delegate the business processing of incoming messages to another enterprise
bean. Separating message handling and business processing enables different users to access the same
business logic in different ways, either through incoming messages or, for example, from a WebSphere
J2EE client.

Message-driven beans can be configured as listeners on a Java EE Connector Architecture (JCA) 1.5
resource adapter or against a listener port (as for WebSphere Application Server Version 5). With a JCA
1.5 resource adapter, message-driven beans can handle generic message types, not just JMS messages.
This makes message-driven beans suitable for handling generic requests inbound to WebSphere
Application Server from enterprise information systems through the resource adapter. In the JCA 1.5
specification, such message-driven beans are commonly called message endpoints or just endpoints.

All message-driven beans must implement the MessageDrivenBean interface. For JMS messaging, a
message-driven bean must also implement the message listener interface, javax.jms.MessageListener.

Messages arriving at a destination being processed by a message-driven bean have no client credentials
associated with them; the messages are anonymous. Security depends on the role specified by the RunAs
Identity for the message-driven bean as an EJB component. For more information about EJB security, see
[Securing enterprise bean applications,

For JMS messaging, message-driven beans can use a JMS provider that has a JCA 1.5 resource adapter,
for example the default messaging provider that is part of WebSphere Application Server or the
WebSphere MQ messaging provider. With a JCA 1.5 resource adapter, you deploy EJB 2.1
message-driven beans as JCA 1.5-compliant resources, to use a J2C activation specification. If the JMS
provider does not have a JCA 1.5 resource adapter, for example the V5 default messaging provider, you
must configure JMS message-driven beans against a listener port.

Message-driven beans, activation specifications, and listener ports

Guidelines, related to versions of WebSphere Application Server, to help you choose when to configure
your message-driven beans to work with listener ports rather than activation specifications.

You can configure the following resources for message-driven beans:

 Activation specifications for message-driven beans that comply with Java EE Connector Architecture
(JCA) Version 1.5.

* The message listener service, listener ports, and listeners for any message-driven beans that you want
to deploy against listener ports.

Activation specifications are the standardized way to manage and configure the relationship between an
MDB running in WebSphere Application Server and a destination in WebSphere MQ. They combine the
configuration of connectivity, the Java Message Service (JMS) destination and the runtime characteristics
of the MDB, within a single object.

Activation specifications supersede the use of listener ports, which became a stabilized feature in
WebSphere Application Server Version 7.0 (for more information, see |“Stabilized features” on page 1142[).
There are several advantages to using activation specifications over listener ports:

» Activation specifications are simple to configure, because they only require two objects: the activation
specification and a message destination. Listener ports require three objects: a connection factory, a
message destination, and the message listener port itself.

» Activation specifications are not limited to the server scope. They can be defined at any administrative
scope in WebSphere Application Server. Message listener ports must be configured at the server scope.
This means that each server in a node requires its own listener port. For example, if a node is made up

Chapter 11. EJB applications 151

of three servers, three separate listener ports must be configured. Activation specifications can be
configured at the node scope, so in the example only one activation specification would be needed.

» Activation specifications are part of the Java Platform, Enterprise Edition Connector Architecture 1.5
standards specification (JCA 1.5). Listener port support in WebSphere Application Server makes use of
the application server facilities interfaces defined in the JMS specification, but is not part of any
specification itself.

For WebSphere Application Server Version 7 and later, listener ports are stabilized. For more information,
read the article on stabilized features. You should plan to migrate your WebSphere MQ message-driven
bean deployment configurations from using listener ports to using activation specifications. However, you
should not begin this migration until you are sure the application does not have to work on application
servers earlier than WebSphere Application Server Version 7. For example, if you have an application
server cluster with some members at Version 6.1 and some at Version 7, you should not migrate
applications on that cluster to use activation specifications until after you migrate all the application servers
in the cluster to Version 7.

If you want to use message-driven beans with a messaging provider that does not have a JCA 1.5
resource adapter, you cannot use activation specifications and therefore you must configure your beans
against a listener port. There are also a few scenarios in which, although you could use activation
specifications, you might still choose to use listener ports. For example, for compatability with existing
message-driven bean applications. Here are some guidelines, related to versions of WebSphere
Application Server, to help you choose when to use listener ports rather than activation specifications:

* WebSphere Application Server Version 4 does not support message-driven beans, so listener ports and
activation specifications are not applicable. WebSphere Application Server Version 4 does support
message beans, but these are not message-driven beans.

* WebSphere Application Server Version 5 supports EJB 2.0 (JMS only) message-driven beans that are
deployed using listener ports. This deployment technology is sometimes called application server facility
(ASF).

» WebSphere Application Server Version 6 continues to support message-driven beans that are deployed
to use listener ports, and also supports JCA, which you can use to deploy message-driven beans that
use activation specifications. This gives you the following options for deploying message-driven beans
on WebSphere Application Server Version 6:

— You must deploy default messaging (service integration bus) message-driven beans to use activation
specifications.
— You must deploy WebSphere MQ message-driven beans to use listener ports.

— You can deploy third-party messaging message-driven beans to use either listener ports or activation
specifications, depending on the facilities available from your third-party messaging provider.

* WebSphere Application Server Version 7.0 or later continues to support the same options for
message-driven bean deployment that WebSphere Application Server Version 6 supports, and adds a
new option for WebSphere MQ message-driven beans. This gives you the following options for
deploying message-driven beans on Version 7.0 or later:

— You must deploy default messaging (service integration bus) message-driven beans to use activation
specifications.

— You can deploy new and existing WebSphere MQ message-driven beans to use listener ports (as on
WebSphere Application Server Version 6) or to use activation specifications.

— You can deploy third-party messaging message-driven beans to use either listener ports or activation
specifications, depending on the facilities available from your third-party messaging provider.

To assist in migrating listener ports to activation specifications, the WebSphere Application Server

administrative console provides a Convert listener port to activation specification wizard on the
Message listener port collection panel. This allows you to convert existing listener ports into activation

152 Overview

specifications. However, this function only creates a new activation specification with the same
configuration used by the listener port. It does not modify application deployments to use the newly
created activation specification.

Message processing in ASF mode and non-ASF mode

Application Server Facilities (ASF) mode is the default method by which the message listener service in
WebSphere Application Server processes messages. This topic explains how WebSphere Application
Server processes messages in ASF mode and how it processes messages when ASF mode is turned off.

For WebSphere Application Server Version 7 and later, listener ports are stabilized. For more information,
read the article on stabilized features. You should plan to migrate your WebSphere MQ message-driven
bean deployment configurations from using listener ports to using activation specifications. However, you
should not begin this migration until you are sure the application does not have to work on application
servers earlier than WebSphere Application Server Version 7. For example, if you have an application
server cluster with some members at Version 6.1 and some at Version 7, you should not migrate
applications on that cluster to use activation specifications until after you migrate all the application servers
in the cluster to Version 7.

Note: If you are using WebSphere MQ as your messaging provider, in the examples in this topic, JMS
provider refers to your WebSphere MQ queue manager.

Main features of ASF mode

By default, message-driven beans (MDBs) that are deployed on WebSphere Application Server for use
with listener ports, use ASF mode to monitor JMS destinations and to process messages.

In ASF mode, a thread is allocated for work when a message is detected at the destination for it to
process. The number of threads that can be active concurrently is dictated by the value specified for the
Maximum Sessions property for the listener port.

In client connection (socket attach) mode, each active thread is an individual physical network connection.
You should keep this in mind when you are deciding whether to use ASF or non-ASF mode in your
configuration. If you are using WebSphere MQ Version 7.0 as your messaging provider, it is possible to
have up to ten threads sharing a single physical network connection.

If WebSphere MQ is your messaging provider, there are several configurations you can use in ASF mode.
With the following configurations each thread uses a separate physical network connection:

* A WebSphere MQ Version 6.0 queue manager.

* A WebSphere MQ Version 7.0 queue manager, using a connection factory that has the Provider
version property set to 6.

* A WebSphere MQ Version 7.0 queue manager, using a connection factory that has the Provider
version property set to 7 or unspecified, connecting over a WebSphere MQ channel that has the
SHARECNV (sharing conversations) parameter set to 0.

With the following configuration, threads share a user-defined number of physical network connections:

* A WebSphere MQ Version 7.0 queue manager, using a connection factory that has the Provider
version property set to 7 or unspecified, connecting over a WebSphere MQ channel that has the
SHARECNV (sharing conversations) parameter set to 1 or higher. In this case each thread represents
an individual connection to a queue manager. However, each thread does not have its own physical
network connection, Instead, the threads share the number of network connections specified in the
SHARECNV (sharing conversations) parameter.

Chapter 11. EJB applications 153

Main features of non-ASF mode

In non-ASF mode threads are active from the moment that the listener port is turned on. The number of
active threads is dictated by the value specified for the Maximum Sessions property on the listener port.
The number of threads specified in Maximum Sessions are active, regardless of the number of messages
that are available to be processed.

In non-ASF mode, when a listener port browses for messages at the destination, it will take the message
that is first in the queue at the destination for processing. This means that messages are processed close
to the order in which they arrive at the destination.

In client connection (socket attach) mode, each active thread is an individual physical network connection.
You should keep this in mind when you are deciding whether to use ASF or non-ASF mode in your
configuration. If you are using WebSphere MQ Version 7.0 as your messaging provider, it is possible to
have up to ten threads sharing a single physical network connection.

If WebSphere MQ is your messaging provider, there are several configurations you can use in non-ASF
mode. With the following configurations each thread uses a separate physical network connection:

* A WebSphere MQ Version 6.0 queue manager.

* A WebSphere MQ Version 7.0 queue manager, using a connection factory that has the Provider
version property set to 6.

* A WebSphere MQ Version 7.0 queue manager, using a connection factory that has the Provider

version property set to 7 or unspecified, connecting over a WebSphere MQ channel that has the
SHARECNV (sharing conversations) parameter set to 0.

With the following configuration, threads share a user-defined number of physical network connections:

* A WebSphere MQ Version 7.0 queue manager, using a connection factory that has the Provider
version property set to 7 or unspecified, connecting over a WebSphere MQ channel that has the
SHARECNV (sharing conversations) parameter set to 1 or higher. In this case each thread represents
an individual connection to a queue manager. However, each thread does not have its own physical
network connection. Instead, the threads share the number of network connections specified in the
SHARECNYV (sharing conversations) parameter.

Note: Non-ASF mode cannot be selected on z/OS systems.
How messages are processed in ASF mode

In ASF mode, server sessions and threads are only allocated for work when a message that is suitable for
the message-driven bean (MDB) is detected.

The default value for Maximum Sessions on listener ports is 1. This means that the MDB can only
process one message at a time. The example shows how messages are processed in ASF mode when
Maximum Sessions is set to 1:

1. When the listener port is started, it opens a connection to the JMS provider and creates an internal
queue agent.
The queue agent listens to the JMS destination for messages.
The queue agent detects a message.
The queue agent checks whether the message is suitable for the MDB that is using the listener port.

If the message is suitable for the MDB, the listener port allocates a thread from the message listener
service thread pool, and allocates a server session from the application server's server session pool.
If this is the first time the server session has been used since the listener port has been started, it
opens a connection to the JMS provider. The allocated server session runs on the allocated thread.

ok~ wDd

154 Overview

6. The queue agent passes the ID of the message to the server session. It then starts listening for
messages again.

7. The server session uses the message ID to retrieve the message from the destination.
8. The server session processes the message by calling the onMessage () method of the MDB.

9. When the message is processed, the server session exits and returns to the application server
session pool. The connection that the server session has opened to the JMS provider remains open
so that the server session does not need to re-establish the connection the next time it is used.

10. The thread exits and returns to the message listener service thread pool.

ASF mode enables you to process more than one message concurrently. To do this, set Maximum
Sessions to a value higher than 1. If, for example, Maximum Sessions is set to 2, messages are
processed in the following way:

1. The queue agent detects the first message and allocates a thread and a server session as in the first
example. The message is processed using the onMessage() method of the MDB.

2. Whilst the first message is processing, the queue agent starts listening for messages again.

3. The queue agent detects the second message and allocates a second thread and a second server
session. The message is processed using the onMessage() method of the MDB.

4. When the first message is processed, the first server session exits and returns to the server session
pool. The first thread exits and returns to the thread pool.

5. When the second message is processed, the second server session exits and returns to the server
session pool. The second thread exits and returns to the thread pool.

How messages are processed in nhon-ASF mode

In non-ASF mode threads are active from the moment that the listener port is started. The number of
active threads is dictated by the value specified for Maximum Sessions. The number of threads specified
in Maximum Sessions are active, regardless of the number of messages that are available to be
processed. Each active thread is an individual physical network connection. If you are using WebSphere
MQ Version 7.0 as your messaging provider, it is possible to have up to ten threads sharing a single
physical network connection.

To activate non-ASF mode you must specify a non-zero value for the NON.ASF.RECEIVE.TIMEOUT
message listener service custom property. The NON.ASF.RECEIVE.TIMEOUT custom property acts as a
switch that turns off ASF mode, and also as a timeout value for the receive() method.

The following message listener service custom properties do not work in non-ASF mode:
« SERVER.SESSION.POOL.REAP

+ SERVER.SESSION.POOL.UNUSED.TIMEOUT

+ SERVER.SESSION.POOL.UNUSED.TIMEOUT.lpaname

The default value for Maximum Sessions is 1. This means that the MDB can only process one message
at a time. Non-ASF mode processes messages in the following way when Maximum Sessions is set to 1:
1. When the listener port is started, it gets one thread from the message listener service thread pool.

2. The listener port opens a connection to the JMS provider on the thread and creates a JMS message
consumer. The message consumer listens to the JMS destination which the listener port is configured
to listen to.

3. The listener port creates a transaction to manage the message processing.

4. The thread calls the receive() method on the message consumer to listen for messages at the
destination. If the receive() method does not detect a message in the time specified for
NON.ASF.RECEIVE.TIMEOUT, the application server rolls back the active transaction and starts a
new one. The thread then starts calling the receive() method again.

Chapter 11. EJB applications 155

5. When the queue agent detects a message it checks whether the message is suitable for the MDB that
is using the listener port.

6. If the message is suitable, the receive() method takes it off the destination and sends it to the thread.

7. The thread invokes the onMessage() method of the MDB on the message consumer, and the message
is processed.

8. If the message finishes processing successfully, the transaction commits. If the message does not
process successfully, the transaction rolls back.

9. A new transaction is started and the message consumer calls the receive() method to listen for new
messages.

Non-ASF mode enables you to process more than one message at once. To do this, set Maximum
Sessions to a value higher than 1. If, for example, Maximum Sessions is set to 2, messages are
processed in the following way:

1. When the listener port is started, it gets two threads from the message listener service thread pool.

2. The listener port creates a message consumer and a transaction on each thread. The message
consumers listen to the destination which the listener port is configured to listen to.

3. Both message consumers call the receive() method to listen for messages on the destination. The
consumers compete to get messages from the destination.

4. When one of the consumers successfully retrieves the message, it processes it by calling the
onMessage() method of the MDB. The other message consumer keeps on calling the receive()
method to listen for messages on the destination.

If your messaging system is running in non-ASF mode, to avoid unwanted transaction timeouts, you must
make sure that the time that you specify for the NON.ASF.RECEIVE.TIMEOUT message listener service
custom property is smaller than the sum of the maximum amount of time that the onMessage () method of
the message-driven bean (MDB) takes to process the message, plus the time you specify for the Total
transaction lifetime timeout transaction service property.

If these properties are not correctly configured, transactions can time out before they are completed. This
is because the thread begins calling the receive() method as soon as the transaction is created. In the
following example, NON.ASF.RECEIVE.TIMEOUT is set to 110000 milliseconds (110 seconds), Total
transaction lifetime timeout is set to 120 seconds and the onMessage () method of the MDB takes 15
seconds to process a message. The example supposes that a message does not appear at the
destination until the receive() method has almost timed out:

1. The listener port starts. It allocates a thread from the thread pool and creates a transaction and a
message consumer on the thread.

2. The thread calls the receive() method to listen for messages.
3. After 110 seconds a message appears at the destination.

4. The thread removes the message from the destination and calls the onMessage() method of the MDB
to begin processing the message.

5. 10 seconds later, the transaction timeout is reached. The application server marks the transaction for
rollback.

6. 5 seconds later, the onMessage () method finishes processing the message and tries to commit the
transaction.

7. The total amount of time that has elapsed since the transaction was started is 125 seconds (110
seconds waiting for a message, plus 15 seconds to process the message). As this is longer than the
transaction timeout, the application server prevents the transaction from being committed, and it is
rolled back.

For further information about how to configure the NON.ASF.RECEIVE.TIMEOUT and Total transaction
lifetime timeout properties to avoid unwanted transaction time outs, see the related tasks.

156 Overview

Message-driven beans - JCA components

There are several administrative components that you configure for message-driven beans as listeners on
a Java EE Connector Architecture (JCA) 1.5 resource adapter.

Components for a JCA resource adapter

When a resource adapter is installed, it provides definitions and classes for administered objects such as
activation specifications. The administrator creates and configures activation specifications with Java
Naming and Directory Interface (JNDI) names that are then available for applications to use.

The JCA resource adapter uses an activation specification to configure a particular endpoint. Each
application that configures one or more endpoints must specify the resource adapter that sends messages
to the endpoint. The application uses the activation specification to provide configuration properties for the
processing of inbound messages.

JMS components used with a JCA messaging provider

Message-driven beans that implement the javax.jms.MessageListener interface can be used with JMS
messaging.

An application that uses JMS messaging needs access at runtime to configured objects such as
connection factories and destinations:

* When the JMS provider is the default JMS provider or the WebSphere MQ messaging provider, the
administrator configures these objects for the JMS provider. For example, to configure a JMS activation
specification for the WebSphere MQ messaging provider, in the WebSphere Application Server
administrative console navigate to Resources > JMS->Activation specifications.

» Otherwise the administrator configures these objects for the JMS resource adapter, which connects the
application to a JMS provider, by navigating to Resources > Resource Adapters.

If the application contains one or more message-driven beans, the administrator must configure either a
JMS activation specification or a message listener port. For JCA-compliant messaging providers, the
administrator usually configures an activation specification. But for the WebSphere MQ messaging provider
there is a choice; the administrator can configure an activation specification or, for compatibility with
previous versions of WebSphere Application Server, the administrator can configure a message listener
port.

The JMS activation specification provides the deployer with information about the configuration properties
of a message-driven bean related to the processing of the inbound messages. For example, a JMS
activation specification specifies the name of the service integration bus to connect to, information about
the message acknowledgement modes, message selectors, destination types, and whether durable
subscriptions are shared across connections with members of a server cluster.

The activation specification identifies a JMS destination by specifying its JNDI name. The message-driven
bean acts as a listener on a specific JMS destination.

The JMS destination refers to a service integration bus destination (or WebSphere MQ destination) that
the administrator must also configure. For more information about JMS resources and service integration,
see [‘Default messaging” on page 202

J2C activation specification configuration and use

Configure J2C activation specifications, and use them in the deployment of message-driven beans for JCA
1.5 resources.

Chapter 11. EJB applications 157

J2C activation specifications are part of the configuration of inbound messaging support that can be part of
a JCA 1.5 resource adapter. Each JCA 1.5 resource adapter that supports inbound messaging defines one
or more types of message listener in its deployment descriptor (messagelistener in the ra.xml). The
message listener is the interface that the resource adapter uses to communicate inbound messages to the
message endpoint. A message-driven bean (MDB) is a message endpoint and implements one of the
message listener interfaces provided by the resource adapter. By allowing multiple types of message
listener, a resource adapter can support a variety of different protocols. For example, the interface
javax.jms.MessageListener, is a type of message listener that supports JMS messaging. For each type of
message listener that a resource adapter implements, the resource adapter defines an associated
activation specification (activationspec in the ra.xml). The activation specification is used to set
configuration properties for a particular use of the inbound support for the receiving endpoint.

When an application containing a message-driven bean is deployed, the deployer must select a resource
adapter that supports the same type of message listener that the message-driven bean implements. As
part of the message-driven bean deployment, the deployer needs to specify the properties to set on the
J2C activation specification. Later, during application startup, a J2C activation specification instance is
created, and these properties are set and used to activate the endpoint (that is, to configure the resource
adapter inbound support for the specific message-driven bean).

Applications with message-driven beans can also specify all, some, or none of the configuration properties
needed by the ActivationSpec class, to override those defined by the resource adapter-scoped definition.
These properties, specified as activation-config properties in the deployment descriptor for the application,
are configured when the application is assembled. To change any of these properties requires redeploying
the application. These properties are unique to this applications use and are not shared with other
message-driven beans. Any properties defined in the application deployment descriptor take precedence
over those defined by the resource adapter-scoped definition. This allows application developers to choose
the best defaults for their applications.

Activation specification optional binding properties

Binding properties that you can specify for activation specifications to be deployed on WebSphere
Application Server.

J2C authentication alias
If you provide values for user name and password as custom properties on an activation
specification, you might not want to have those values exposed in clear text for security reasons.
You can use WebSphere security to securely define an authentication alias for such cases.
Configuration of activation specifications, both as an administrative object and during application
deployment, enable you to use the authentication alias instead of providing the user name and
password.

If you set the authentication alias field, then you should not set the user name and password
custom properties fields. Also, authentication alias properties set as part of application deployment
take precedence over properties set on an activation specification administrative object.

Only the authentication alias is ever written to file in an unencrypted form, even for purposes of
transaction recovery logging. The security service is used to protect the real user name and
password.

During application startup, when the activation specification is being initialized as part of endpoint
activation, the server uses the authentication alias to retrieve the real user name and password
from security then set it on the activation specification instance.

Destination JNDI name
For resource adapters that support JMS you must associate javax.jms.Destinations with an
activation specification, such that the resource adapter can service messages from the JMS
destination. In this case, the administrator configures a J2C Administered Object that implements
the javax.jms.Destination interface and binds it into JNDI.

158 Overview

You can configure a J2C Administered Object to use an ActivationSpec class that implements a
setDestination(javax.jms.Destination) method. In this case, you can specify the destination JNDI
name (that is, the JNDI name for the J2C Administered object that implements the
javax.jms.Destination).

A destination JNDI name set as part of application deployment take precedence over properties
set on an activation specification administrative object.

During application startup, when the activation specification is being initialized as part of endpoint
activation, the server uses the destination JNDI name to look up the destination administered
object then set it on the activation specification instance.

Message-driven beans - transaction support

Message-driven beans can handle messages on destinations (or endpoints) within the scope of a
transaction.

Transaction handling when using the Message Listener Service with WebSphere
MQ JMS

There are three possible cases, based on the message-driven bean deployment descriptor setting you
choose: container-managed transaction (required), container-managed transaction (not supported), and
bean-managed transaction.

In the message-driven bean deployment descriptor settings, you can choose whether the message-driven
bean manages its own transactions (bean-managed transaction), or whether a container manages
transactions on behalf of the message-driven bean (container-managed transaction). If you choose
container-managed transactions, in the deployment descriptor notebook, you can select a container
transaction type for each method of the bean to determine whether container transactions are required or
not supported. The default container transaction type is required.

Container-managed transaction (required)

In this case, the application server starts a global transaction before it reads any incoming
message from the destination, and before the onMessage() method of the message-driven bean is
invoked by the application server. This means that other EJBs that are invoked in turn by the
message, and interactions with resources such as databases can all be scoped inside this single
global transaction, within which the incoming message was obtained.

If this application flow completes successfully, the global transaction is committed. If the flow does
not complete successfully, (if the transaction is marked for rollback or if a runtime exception
occurs), the transaction is rolled back, and the incoming message is rolled back onto the
message-driven bean destination.

Container-managed transaction (not supported)

In this case there is no global transaction, but the JMS provider can still deliver a message from a
message-driven bean destination to the application server in a unit of work. You can consider this
as a local transaction, because it does not involve other resources in its transactional scope.

The application server acknowledges message delivery on successful completion of the
onMessage() dispatch of the message-driven bean (using the acknowledgement mode specified
by the assembler of the message-driven bean).

However, the application server does not perform an acknowledge, if an unchecked runtime
exception is thrown from the onMessage() method. So, does the message roll back onto the
message-driven bean destination (or is it acknowledged and deleted)?

The answer depends on whether a syncpoint is used by the WebSphere MQ JMS provider and
can vary depending on the operating platform (in particular the z/OS operating platform can impart
different behavior here).

Chapter 11. EJB applications 159

If WebSphere MQ establishes a syncpoint around the message-driven bean message
consumption in this container-managed transaction (not supported) case, the message is rolled
back onto the destination after an unchecked exception.

If a syncpoint is not used, then the message is deleted from the destination after an unchecked
exception.

For related information, see the technote 'MDB behavior is different on z/OS than on distributed
when getting nonpersistent messages within syncpoint' at |http://www.ibm.com/support/1
[docview.wss?uid=swg21231549|

Bean-managed transaction

In this case, the action is similar to the container-managed transaction (not supported) case. Even
though there might be a user transaction in this case, any user transaction started within the
onMessage dispatch of the message-driven bean does not include consumption of the message
from the message-driven bean destination within the transaction scope. To do this, use the
container-managed transaction (required) scenario.

Message redelivery

In each of the previous three cases, a message that is rolled back onto the message-driven bean
destination is eventually re-dispatched. If the original rollback was due to a temporary system problem, you
would expect the re-dispatch of the message-driven bean with this message to succeed on re-dispatch. If,
however, the rollback was due to a specific message-related problem, the message would repeatedly be
rolled back and re-dispatched. This would be an inefficient use of processing resources.

The application server handles this scenario which is known as a poison message scenario, by tracking
the frequency with which a message is dispatched, and by stopping the associated listener port after a
specified number of redeliveries has occurred. This is a configurable value on the Maximum Retries
property on a listener port. For more information, see [Listener port settings|

Note: A Maximum Retries value of zero stops the listener port after a single failure to successfully
complete an onMessage().

Because stopping the listener port stops the processing for all message-driven beans mapped to that
listener port, this solution is rather unspecific. Instead of relying on the WebSphere Application Server
message listener service to stop the listener port if a poison message scenario occurs, the other solution
is to set up a backout queue (BOQUEUE), and a backout threshold value (BOTHRESH). If you do this,
WebSphere MQ handles the poison message. For more information about handling poison messages, see
the WebSphere MQ Using Java section of the [WebSphere MQ library}

Inbound resource adapter transaction handling

An MDB can be configured for bean or container transaction handling. The owner of the resource adapter
must tell the MDB developer how to set up the MDB for transaction handling.

Message-driven beans - listener port components

The WebSphere Application Server support for message-driven beans deployed against listener ports is
based on JMS message listeners and the message listener service, and builds on the application server
facility (ASF) support in the JMS provider.

Note: From WebSphere Application Server Version 7, listener ports are stabilized. For more information,
read the article on stabilized features. For information about the facilities available to aid migration
of configuration information from a listener port to an activation specification for use with the
Websphere MQ messaging provider, refer to related tasks.

160 Overview

http://www.ibm.com/support/docview.wss?uid=swg21231549
http://www.ibm.com/support/docview.wss?uid=swg21231549
http://www.ibm.com/software/integration/wmq/library/

The main components of WebSphere Application Server support for message-driven beans are shown in
the following figure and described after the figure:

WebSphere Application Server

Message-driven beans (_ MDB1> (MDB2)>

4 r' s
Message i
listener service

e s [»|LP3lv.
X @

Listeners CD ----------- RS » LP2 4|:_‘ Connection
istener factories

F y
ports
o e PO W N e

JMS
D1 D2 D3 Destinations
Message I I Connections

JMS provider
destinations

JMS Provider

Figure 17. The main components for message-driven beans

The message listener service is an extension to the JMS functions of the JMS provider and provides a
listener manager, which controls and monitors one or more JMS listeners. Each listener monitors either a
JMS queue destination (for point-to-point messaging) or a JMS topic destination (for publish/subscribe
messaging).

A connection factory is used to create connections with the JMS provider for a specific JMS queue or topic
destination. Each connection factory encapsulates the configuration parameters needed to create a
connection to a JMS destination.

A listener port defines the association between a connection factory, a destination, and a deployed
message-driven bean. Listener ports are used to simplify the administration of the associations between
these resources.

When you deploy a message-driven bean, you associate the bean with a listener port. When a message
arrives on the destination, the listener passes the message to a new instance of a message-driven bean
for processing.

When an application server is started, it initializes the message listener service based on the configuration

data. The message listener service creates a dynamic session thread pool for use by listeners, creates

and starts listeners, and during server termination controls the cleanup of message listener service

resources. Each listener completes several steps for the JMS destination that it is to monitor, including:

» Creating a JMS server session pool, and allocating JMS server sessions and session threads for
incoming messages.

* Interfacing with JMS ASF to create JMS connection consumers to listen for incoming messages.

 If specified, starting a transaction and requesting that it is committed (or rolled back) when the EJB
method has completed.

Chapter 11. EJB applications 161

* Processing incoming messages by invoking the onMessage() method of the specified enterprise bean.

Access intent policies for EJB 2.x entity beans

An access intent policy is a named set of properties or access intents that govern data access for
Enterprise JavaBeans (EJB) persistence. You can assign policies to an entity bean and to individual
methods on an entity bean's home, remote, or local interfaces during assembly. You can set access
intents only within EJB Version 2.x-compliant and later modules for entity beans with CMP Version 2.x.

This product supplies a number of access intent policies that specify permutations of read intent and
concurrency control; the pessimistic and update policy can be qualified further. The selected policy
determines the appropriate isolation level and locking strategy used by the run time environment.

transition: Access intent policies are specifically designed to supplement the use of isolation level and
access intent method-level modifiers found in the extended deployment descriptor for EJB
version 1.1 enterprise beans. You cannot specify isolation level and read-only modifiers for
EJB version 2.x and later enterprise beans.

Access intent policies configured on an entity basis define the default access intent for that entity. The
default access intent controls the entity unless you specify a different access intent policy based on either
method-level configuration or application profiling.

Note: Method level access intents were deprecated in Version 6.x.

You can use application profiling or method level access intent policies to control access intent more
precisely. Method-level access intent policies are named and defined at the module level. A module can
have one or many policies. Policies are assigned, and apply, to individual methods of the declared
interfaces of entity beans and their associated home interfaces. A method-based policy is acted upon by
the combination of the EJB container and persistence manager when the method causes the entity to
load.

For entity beans that are backed by tables with nullable columns, use an optimistic policy with caution. The
top down default mapping excludes nullable fields. You can override this when doing a meet-in-the-middle
mapping. The fields used in overqualified updates are specified in the ejb-rdb mapping. If nullable columns
are selected as overqualified columns, partial update should also be selected.

An entity that is configured with a read-only policy that causes a bean to be activated can cause problems
if updates are attempted within the same transaction. Those changes are not committed, and the process
displays an exception because data integrity might be compromised.

Concurrency control

Concurrency control is the management of contention for data resources. A concurrency control scheme is
considered pessimistic when it locks a given resource early in the data access transaction and does not
release it until the transaction is closed. A concurrency control scheme is considered optimistic when locks
are acquired and released over a short period of time at the end of a transaction.

The objective of optimistic concurrency is to minimize the time that a given resource is unavailable for use
by other transactions. This is especially important with long-running transactions, which under a
pessimistic scheme would lock up a resource for unacceptably long periods of time.

Under an optimistic scheme, locks are obtained immediately before a read operation and released

immediately after. Update locks are obtained immediately before an update operation and held until the
end of the transaction.

162 Overview

To enable optimistic concurrency, this product uses an overqualified update scheme to test if the
underlying data source has been updated by another transaction since the beginning of the current
transaction. With this scheme, the columns marked for update and their original values are added explicitly
through a WHERE clause in the UPDATE statement so that the statement fails if the underlying column
values have been changed. As a result, this scheme can provide column-level concurrency control;
pessimistic schemes can control concurrency at the row level only.

Optimistic schemes typically perform this type of test only at the end of a transaction. If the underlying
columns have not been updated since the beginning of the transaction, pending updates to
container-managed persistence fields are committed and the locks are released. If locks cannot be
acquired or if some other transaction has updated the columns since the beginning of the current
transaction, the transaction is rolled back: All work performed within the transaction is lost.

Pessimistic and optimistic concurrency schemes require different transaction isolation levels. Enterprise
beans that participate in the same transaction and require different concurrency control schemes cannot
operate on the same underlying data connection.

best-practices: Whether to use optimistic concurrency depends on the type of transaction. Transactions
with a high penalty for failure might be better managed with a pessimistic scheme. A
high-penalty transaction is one for which recovery is risky or resource-intensive. For
low-penalty transactions, it is often worth the risk of failure to gain efficiency through the
use of an optimistic scheme. In general, optimistic concurrency is more efficient when
update collisions are expected to be infrequent; pessimistic concurrency is more efficient
when update collisions are expected to occur often.

Read-ahead scheme hints

Read-ahead schemes enable applications to minimize the number of database round trips by retrieving a
working set of container-managed persistence (CMP) beans for the transaction within one query.
Read-ahead involves activating the requested CMP beans and caching the data for their related beans,
which ensures that data is present for the beans that an application most likely needs next. A read-ahead
hint is a representation of the related beans to read. The hint is associated with the findByPrimaryKey
method for the requested bean type, which must be an EJB 2.x-compliant CMP entity bean.

A read-ahead hint takes the form of a character string. You do not have to provide the string; the wizard
generates it for you based on the container-managed relationships (CMRs) that are defined for the bean.
The following example is provided as supplemental information only. Suppose a CMP bean type A has a
finder method that returns instances of bean A. A read-ahead hint for this method is specified using the
following notation: RelB.RelC; RelD

Interpret the preceding notation as follows:
* Bean type A has a CMR with bean types B and D.
» Bean type B has a CMR with bean type C.

For each bean of type A that is retrieved from the database, its directly-related B and D beans and its
indirectly-related C beans are also retrieved. The order of the retrieved bean data columns in each row of
the result set is the same as the order in the read-ahead hint: an A bean, a B bean (or null), a C bean (or
null), a D bean (or null). For hints in which the same relationship is mentioned more than once, for
example, RelB.RelC;RelB.RelE, the data columns for a bean occur only once in the result set, at the
position the bean first occupies in the hint.

The tokens shown in the notation, like RelB, must be CMR field names for the relationships, as defined in

the deployment descriptor for the bean. In indirect relationships such as RelB.RelC, RelC is a CMR field
name that is defined in the deployment descriptor for bean type B.

Chapter 11. EJB applications 163

A single read-ahead hint cannot refer to the same bean type in more than one relationship. For example, if
a Department bean has an employees relationship with the Employee bean and also has a manager
relationship with the Employee bean, the read-ahead hint cannot specify both employees and manager.

For more information about how to set read-ahead hints, see the documentation for the Rational
Application Developer product.

Run-time behaviors of read-ahead hints

When developing your read-ahead hints, consider the following tips and limitations:

* Read-ahead hints on long or complex paths can result in a query that is too complex to be useful.
Read-ahead hints on root or leaf inheritance mappings need particular care. Add up the number of
tables that potentially comprise a read-ahead preload to gauge the complexity of the join operations that
are required. Consider if the resulting statement constitutes a reasonable query on your target
database.

* Read-ahead hints do not work in the following cases:
— Preload paths across M:N relationships
— Preload paths across recursive enterprise bean relationships or recursive fk relationships

— When a read-head hint applies to a SELECT FOR UPDATE statement that requires a table join in a
database that does not support the combination of those two operations.

Generally, the persistence manager issues a SELECT FOR UPDATE statement for a bean only if the
bean has an access intent that enforces strict locking policies. Strict locking policies require SELECT
FOR UPDATE statements for database select queries. If the database table design requires a join
operation to fulfill the statement, many databases issue exceptions because these databases do not
support table joins with SELECT FOR UPDATE statements. In those cases, WebSphere Application
Server does not implement a read-ahead hint. If the database does provide that support, Application
Server implements the read-ahead hints that you configure.

Database deadlocks caused by lock upgrades

To avoid databse deadlocks caused by lock upgrades, you can change the access intent policy for entity
beans from the default of wsPessimisticUpdate-WeakestLockAtLoad to wsPessimisticUpdate, or you can
use an optimistic locking approach.

When concurrently accessing data, ensure that the application is prepared for database locking that must
occur to secure the integrity of the data.

If an entity bean performs a findByPrimaryKey method, which by default obtains a Read lock in the
database, and the entity bean is updated within the same transaction, a lock upgrade to Exclusive.

If this scenario occurs concurrently on multiple threads, a deadlock can happen. This is because multiple
read locks can be obtained at the same time but one exclusive lock can only be obtained when the other
locks are dropped. Since all transactions are attempting the lock upgrade in this scenario, the one
exclusive lock cannot be obtained.

To avoid this problem, you can change the access intent policy for the entity bean from the default of
wsPessimisticUpdate-WeakestLockAtLoad method to wsPessimisticUpdate method. This change enables
the application to inform the product and the database that the transaction has updated the enterprise
bean. The Update lock is immediately obtained on the findByPrimaryKey method. This avoids the lock
upgrade when the update is performed at a later time.

The preferred technique to define access intent policies is to change the access intent for the entire entity
bean. You can change the access intent for the findByPrimaryKey method, but this was deprecated in
Version 6. You might want to change the access intent for an individual method if, for example, the entity
bean is involved in some transactions that are read only.

164 Overview

An alternative technique is to use an optimistic approach, where the findByPrimaryKey method does not
hold a read lock, so there is no lock upgrade. However, this requires that the application is coded for this
in order to handle rollbacks. Optimistic locking is intended for applications that do not expect database
contention on a regular basis.

To change the access intent policy for an entity bean, you can use the assembly tool to set the bean level,
as described in IAppIying access intent policies to beansl

Access intent assembly settings

Access intent policies contain data-access settings for use by the persistence manager. Default access
intent policies are configured on the entity bean.

These settings are applicable only for EJB 2.x and EJB 3.x-compliant entity beans that are packaged in
EJB 2.x and EJB 3.x-compliant modules. Connection sharing between beans with bean-managed
persistence and those with container-managed persistence is possible if they all use the same access
intent policy.

Name
Specifies a name for a mapping between an access intent policy and one or more methods.

Description
Contains text that describes the mapping.

Methods - name
Specifies the name of an enterprise bean method, or the asterisk character (*). The asterisk is used to
denote all of the methods of an enterprise bean's remote and home interfaces.

Methods - enterprise bean
Specifies which enterprise bean contains the methods indicated in the Name setting.

Methods - type
Used to distinguish between a method with the same signature that is defined in both the home and
remote interface. Use Unspecified if an access intent policy applies to all methods of the bean.

Data type String
Range Valid values are Home, Remote,Local, LocalHome or
Unspecified

Methods - parameters
Contains a list of fully qualified Java type names of the method parameters. This setting is used to identify
a single method among multiple methods with an overloaded method name.

Applied access intent
Specifies how the container must manage data access for persistence. Configurable both as a default
access intent for an entity and as part of a method-level access intent policy.

Data type String

Default wsPessimisticUpdate-WeakestLockAtLoad. With Oracle,
this is the same as wsPessimisticUpdate.

Range Valid settings are wsPessimisticUpdate,

wsPessimisticUpdate-NoCollision, wsPessimisticUpdate-
Exclusive, wsPessimisticUpdate-WeakestLockAtLoad,
wsPessimisticRead, wsOptimisticUpdate, or
wsOptimisticRead. Only wsPessimisticRead and
wsOptimisticRead are valid when class-level caching is
enabled in the EJB container.

Chapter 11. EJB applications 165

This product supports lazy collections. For each segment of a collection, iterating through the collection
(next()) does not trigger a remote method call to retrieve the next remote reference. Two policies
(wsPessimisticUpdate and wsPessimisticUpdate-Exclusive) are extremely lazy; the collection increment
size is set to 1 to avoid overlocking the application. The other policies have a collection increment size of
25.

If an entity is not configured with an access intent policy, the runtime environment typically uses
wsPessimisticUpdate-WeakestLockAtLoad by default. If, however, the Lifetime in cache property is set on
the bean, the default value of Applied access intent is wsOptimisticRead; updates are not permitted.

Additional information about valid settings follows:

Table 20. Access intents profiles. Here is additional information about valid settings:

Profile name Concurrency control Access type Transaction isolation

wsPessimisticRead (Note 1) pessimistic read For Oracle, read committed.
Otherwise, repeatable read

wsPessimisticUpdate (Note pessimistic update For Oracle, read committed.

2) Otherwise, repeatable read

wsPessimisticUpdate- pessimistic update serializable

Exclusive (Note 3)

wsPessimisticUpdate- pessimistic update read committed

NoCollision (Note 4)

wsPessimisticUpdate- pessimistic update Repeatable read

WeakestLockAtLoad (Note

5)

wsOptimisticRead optimistic read read committed

wsOptimisticUpdate (Note optimistic update read committed

6)

Notes®:

1. Read locks are held for the duration of the transaction.

2. The generated SELECT FOR UPDATE query grabs locks at the beginning of the transaction.

3. SELECT FOR UPDATE is generated; locks are held for the duration of the transaction.

4. Aplain SELECT query is generated. No locks are held, but updates are permitted. Use cautiously. This intent
enables execution without concurrency control.

5. Where supported by the backend, the generated SELECT query does not include FOR UPDATE; locks are
escalated by the persistent store at storage time if updates were made. Otherwise, the same as
wsPessimisticUpdate.

6. Generated overqualified-update query forces failure if CMP column values have changed since the beginning of
the transaction.

Be sure to review the rules for forming overqualified-update query predicates. Certain column types (for example,
BLOB) are ineligible for inclusion in the overqualified-update query predicate and might affect your design.

Java Persistence API (JPA) architecture

Data persistence is the ability to maintain data between application executions. Persistence is vital to
enterprise applications because of the required access to relational databases. Applications that are
developed for this environment must manage persistence themselves or use third-party solutions to handle
database updates and retrievals with persistence. The Java Persistence API (JPA) provides a mechanism
for managing persistence and object-relational mapping and functions for the EJB 3.0 and EJB 3.1
specifications.

166 Overview

The JPA specification defines the object-relational mapping internally, rather than relying on vendor-specific
mapping implementations. JPA is based on the Java programming model that applies to Java EE
environments, but JPA can function within a Java SE environment for testing application functions.

JPA represents a simplification of the persistence programming model. The JPA specification explicitly
defines the object-relational mapping, rather than relying on vendor-specific mapping implementations. JPA
standardizes the important task of object-relational mapping by using annotations or XML to map objects
into one or more tables of a database. To further simplify the persistence programming model:

» The EntityManager API can persist, update, retrieve, or remove objects from a database

» The EntityManager API and object-relational mapping metadata handle most of the database operations
without requiring you to write JDBC or SQL code to maintain persistence

» JPA provides a query language, extending the independent EJB querying language (also known as
JPQL), that you can use to retrieve objects without writing SQL queries specific to the database you are
working with.

JPA is designed to operate both inside and outside of a Java Enterprise Edition (Java EE) container. When
you run JPA inside a container, the applications can use the container to manage the persistence context.
If there is no container to manage JPA, the application must handle the persistence context management
itself. Applications that are designed for container-managed persistence do not require as much code
implementation to handle persistence, but these applications cannot be used outside of a container.
Applications that manage their own persistence can function in a container environment or a Java SE
environment.

Elements of a JPA Persistence Provider

Java EE containers that support the EJB 3.x programming model must support a JPA implementation, also
called a persistence provider. A JPA persistence provider uses the following elements to allow for easier
persistence management in an EJB 3.x environment:

* Persistence unit: Consists of the declarative metadata that describes the relationship of entity class
objects to a relational database. The EntityManagerFactory uses this data to create a persistence
context that can be accessed through the EntityManager.

« EntityManagerFactory: Used to create an EntityManager for database interactions. The application
server containers typically supply this function, but the EntityManagerFactory is required if you are using
JPA application-managed persistence. An instance of an EntityManagerFactory represents a Persistence
Context.

» Persistence context: Defines the set of active instances that the application is manipulating currently.
The persistence context can be created manually or through injection.

+ EntityManager: The resource manager that maintains the active collection of entity objects that are
being used by the application. The EntityManager handles the database interaction and metadata for
object-relational mappings. An instance of an EntityManager represents a Persistence Context. An
application in a container can obtain the EntityManager through injection into the application or by
looking it up in the Java component name-space. If the application manages its persistence, the
EntityManager is obtained from the EntityManagerFactory.

Chapter 11. EJB applications 167

Attention: Injection of the EntityManager is only supported for the following artifacts:
— EJB 3.x session beans

— EJB 3.x message-driven beans

— Servlets, Servlet Filters, and Listeners

— JSP tag handlers which implement interfaces javax.servlet. jsp.tagext.Tag and
javax.servlet.jsp.tagext.SimpleTag

— JavaServer Faces (JSF) managed beans
— the main class of the application client.

» Entity objects: a simple Java class that represents a row in a database table in its simplest form.
Entities objects can be concrete classes or abstract classes. They maintain states by using properties or
fields.

For more information about persistence, see the section on Java Persistence API Architecture and the
section on Persistence in the Apache OpendPA User Guide. For more information and examples on
specific elements of persistence, see the sections on the EntityManagerFactory, and the EntityManager in
the Apache OpenJPA User Guide.

JPA for WebSphere Application Server

Java Persistence API (JPA) 2.0 for WebSphere Application Server is built on the Apache OpenJPA 2.x
open source project.

Apache OpendJPA and JPA for WebSphere Application Server

Apache OpenJPA is a compliant implementation of the Oracle JPA specification. Using OpenJPA as a base
implementation, WebSphere Application Server employs extensions to provide additional features and
utilities for WebSphere Application Server customers. Because JPA for WebSphere Application Server is
built from OpendPA, all OpenJPA function, extensions, and configurations are unaffected by the
WebSphere Application Server extensions. You do not need to make changes to OpenJPA applications to
use these applications in WebSphere Application Server.

JPA for WebSphere Application Server provides more than compatibility with OpendPA. JPA for
WebSphere Application Server contains a set of tools for application development and deployment. Other
features of JPA for WebSphere Application Server include support for DB2 Optim pureQuery Runtime, DB2
optimizations, JPA Access Intent, enhanced tracing capabilities, command scripts, and translated message
files. The provider of JPA for WebSphere Application Server is
com.ibm.websphere.persistence.PersistenceProviderImpl.

Apache OpendPA supports the use of properties to configure the persistent environment. JPA for
WebSphere Application Server properties can be specified with either the openjpa or wsjpa prefix. You can
mix the openjpa and wsjpa prefixes as you wish for a common set of properties. Exceptions to the rule are
wsjpa specific configuration properties, which use the wsjpa prefix. When a JPA for WebSphere Application
Server-specific property is used with the openjpa prefix, a warning message is logged indicating that the
offending property is treated as a wsjpa property. The reverse does not hold true for the openjpa prefix. In
that case, the offending property is ignored.

wsjpaversion command

Use this command-line tool to find out information about the installed version of Java Persistence API
(JPA) for WebSphere Application Server.

Run the JPA commands (.bat on Windows or .sh on UNIX) from the <profile_root>/bin directory, to
make sure that you have the latest version of the commands for your release.

168 Overview

Syntax
The command syntax is as follows:

Usage

The version tool can be useful when debugging problems with JPA in applications and providing customer

support teams with the information about the current JPA environment.
The command is run from the <profile _root> directory.
Examples

Find the version information of your JPA installation example output:

[root@atlanta bin]# ./wsjpaversion.sh

WSJPA 2.1.0-SNAPSHOT

version id: WSJPA-2.1.0-SNAPSHOT-r1119:2233
WebSphere JPA svn revision: 1119:2233

OpenJPA 2.1.0-SNAPSHOT
version id: openjpa-2.1.0-SNAPSHOT-r422266:1069208
Apache svn revision: 422266:1069208

os.name: Linux
os.version: 2.6.18-238.1.1.e15
os.arch: x86

java.version: 1.6.0
java.vendor: IBM Corporation

java.class.path:
/root/tc/WASX/as/dev/JavaEE/j2ee. jar
/root/tc/WASX/as/plugins/com.ibm.ws.jpa.jar
/root/tc/WASX/as/plugins/com.ibm.ws.prereq.commons-collections.jar

/root/tc/WASX/as/profiles/AppSrvOl/bin
[root@atlanta bin]#

On Windows operating systems, the output looks like the following:

D:\Users\user\WASV8\IBM\WebSphere\AppServer\bin>wsjpaversion.bat

WSJPA 2.1.0-SNAPSHOT

version id: WSJPA-2.1.0-SNAPSHOT-r1119:2216

WebSphere JPA svn revision: 1119:2216

OpenJPA 2.1.0-SNAPSHOT

version id: openjpa-2.1.0-SNAPSHOT-r422266:1063829

Apache svn revision: 422266:1063829

os.name: Windows 7

os.version: 6.1

os.arch: amd64

java.version: 1.6.0

java.vendor: IBM Corporation

java.class.path:
D:\Users\user\WASV8\IBM\WebSphere\AppServer\dev\JavaEE\j2ee. jar
D:\Users\user\WASV8\IBM\WebSphere\AppServer\plugins\com.ibm.ws.jpa.jar
D:\Users\user\WASV8\1BM\WebSphere\AppServer\plugins\com.ibm.ws.prereq.

commons-collections.jar

C:\Program Files (x86)\IBM\Java60\jre\lib\ext\QTJava.zip

user.dir: D:\Users\user\WASV8\IBM\WebSphere\AppServer\bin
D:\Users\user\WASV8\IBM\WebSphere\AppServer\bin>

Chapter 11. EJB applications

169

Examples

Find the version information of your JPA installation example output:

C:\was70-GM>profiles\al002.07\bin\wsjpaversion.bat
WSJPA 2.0.0-SNAPSHOT

version id: WSJPA-2.0.0-SNAPSHOT-r1118:1843
revision: 1118:1843

OpenJPA 2.0.0-SNAPSHOT
version id: openjpa-2.0.0-SNAPSHOT-r422266:897308
Apache svn revision: 422266:897308

os.name: Windows XP
os.version: 5.1 build 2600 Service Pack 2
os.arch: x86

java.version: 1.6.0
java.vendor: IBM Corporation

java.class.path:
C:\was70-GM\feature_packs\jpa\dev\JavaEE\j2ee.jar
C:\was70-GM\feature_packs\jpa\plugins\com.ibm.ws.jpa.jar
C:\was70-GM\pTugins\com.ibm.ws.prereq.commons-collections.jar

user.dir: C:\was70-GM\plugins\com.ibm.ws.jpa.jar

wsjpa properties
The extension properties of Java Persistence APl (JPA) for WebSphere Application Server can be
specified with the openjpa or wsjpa prefix. This topic features the wsjpa properties.

wsjpa.Accessintent

Use this property to define a TaskName that in the persistence.xml file using the wsjpa.Accessintent
property name in a persistence unit. The property value is a list of TaskNames, entity types and access
intent definitions.

For more information and examples on how the wsjpa.Accessintent property is used, see the topic
Specifying TaskName in a JPA persistence unit.

wsjpa.jdbc.Schema
Specifies the schema name in a DB2 package collection when using multiple DB2 package collections.

For more information about using the wsjpa.jdbc.Schema property see the topic, Configuring pureQuery to
use multiple DB2 package collections.

wsjpa.jdbc.Collectionlid
Specifies the collection Id name in a DB2 package collection when using multiple DB2 package
collections.

For more information about using the wsjpa.jdbc.Collectionld property see the topics, Configuring
pureQuery to use multiple DB2 package collections and Configuring data source JDBC providers to use
pureQuery in a Java SE environment.

Transaction support in WebSphere Application Server

Support for transactions is provided by the transaction service within WebSphere Application Server. The
way that applications use transactions depends on the type of application component.

A transaction is unit of activity, within which multiple updates to resources can be made atomic (as an
indivisible unit of work) such that all or none of the updates are made permanent. For example, during the

170 Overview

processing of an SQL COMMIT statement, the database manager atomically commits multiple SQL
statements to a relational database. In this case, the transaction is contained entirely within the database
manager and can be thought of as a resource manager local transaction (RMLT). In some contexts, a
transaction is referred to as a logical unit of work (LUW). If a transaction involves multiple resource
managers, for example multiple database managers, an external transaction manager is required to
coordinate the individual resource managers. A transaction that spans multiple resource managers is
referred to as a global transaction. WebSphere Application Server is a transaction manager that can
coordinate global transactions, can be a participant in a received global transaction, and can also provide
an environment in which resource manager local transactions can run.

The way that applications use transactions depends on the type of application component, as follows:

* A session bean can use either container-managed transactions (where the bean delegates management
of transactions to the container) or bean-managed transactions (component-managed transactions
where the bean manages transactions itself).

» Entity beans use container-managed transactions.

» Web components (servlets) and application client components use component-managed transactions.

WebSphere Application Server is a transaction manager that supports the coordination of resource
managers through their XAResource interface, and participates in distributed global transactions with
transaction managers that support the [CORBA Object Transaction Service (OTS) protocol or [Web Service|
|[Atomic Transaction (WS-AtomicTransaction) protocoli WebSphere Application Server also participates in
transactions imported through|Java EE Connector 1.5 resource adapters| You can also configure
WebSphere applications to interact with databases, JMS queues, and JCA connectors through their local
transaction support, when you do not require distributed transaction coordination.

Resource managers that offer transaction support can be categorized into those that support two-phase
coordination (by offering an XAResource interface) and those that support only one-phase coordination (for
example through a LocalTransaction interface). The WebSphere Application Server transaction support
provides coordination, within a transaction, for any number of two-phase capable resource managers. It
also enables a single one-phase capable resource manager to be used within a transaction in the absence
of any other resource managers, although a WebSphere transaction is not necessary in this case.

Under normal circumstances, you cannot mix one-phase commit capable resources and two-phase commit
capable resources in the same global transaction, because one-phase commit resources cannot support
the prepare phase of two-phase commit. There are some special circumstances where it is possible to
include mixed-capability resources in the same global transaction:

* In scenarios where there is only a single one-phase commit resource provider that participates in the
transaction and where all the two-phase commit resource-providers that participate in the transaction
are used in a read-only fashion. In this case, the two-phase commit resources all vote read-only during
the prepare phase of two-phase commit. Because the one-phase commit resource provider is the only
provider to complete any updates, the one-phase commit resource does not have to be prepared.

* In scenarios where there is only a single one-phase commit resource provider that participates in the
transaction with one or more two-phase commit resource providers and where last participant support is
enabled. Last participant support enables the use of a single one-phase commit capable resource with
any number of two-phase commit capable resources in the same global transaction. For more
information about last participant support, see|Using one-phase and two-phase commit resources in the|
[same transaction}

The ActivitySession service provides an alternative unit-of-work (UOW) scope to that provided by global
transaction contexts. It is a distributed context that can be used to coordinate multiple one-phase resource
managers. The WebSphere EJB container and deployment tooling support ActivitySessions as an
extension to the Java EE programming model. Enterprise beans can be deployed with lifecycles that are
influenced by ActivitySession context, as an alternative to transaction context. An application can then
interact with a resource manager for the period of a client-scoped ActivitySession, rather than only the

Chapter 11. EJB applications 171

http://www.omg.org/cgi-bin/doc?formal/2003-09-02
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://java.sun.com/j2ee/connector/

duration of an EJB method, and have the resource manager local transaction outcome directed by the
ActivitySession. For more information about ActivitySessions, see |Using the ActivitySession servicel

Resource manager local transaction (RMLT)

A resource manager local transaction (RMLT) is a resource manager view of a local transaction; that is, it
represents a unit of recovery on a single connection that is managed by the resource manager.

Resource managers include:

« Enterprise Information Systems that are accessed through a resource adapter, as described in the
[EE Connector Architecture]

» Relational databases that are accessed through a JDBC datasource.

* JMS queue and topic destinations.

Resource managers offer specific interfaces to enable control of their RMLTs. Resource adapter
components of the Java EE connector architecture that include support for local transactions provide a
LocalTransaction interface. The LocalTransaction interface enables applications to request that the
resource adapter commits or rolls back RMLTs. JDBC datasources provide a Connection interface for the
same purpose.

The boundary at which all RMLTs must be complete is defined in WebSphere Application Server by a
transaction containment (LTC)|

Global transactions

If an application uses two or more resources, an external transaction manager is needed to coordinate the
updates to all the resource managers in a global transaction.

Global transaction support is available to web and enterprise bean components and, with some limitations,
to application client components. Enterprise bean components can be subdivided into two categories:
beans that use container-managed transactions (CMT) and beans that use bean-managed transactions
(BMT).

BMT enterprise beans, application client components, and web components can use the Java Transaction
API (JTA) UserTransaction interface to define the demarcation of a global transaction. To obtain the
UserTransaction interface, use a Java Naming and Directory Interface (JNDI) lookup of
java:comp/UserTransaction, or use the getUserTransaction method from the SessionContext object.

The UserTransaction interface is not available to CMT enterprise beans. If CMT enterprise beans attempt
to obtain this interface, an exception is thrown, in accordance with the Enterprise JavaBeans (EJB)
specification.

Ensure that programs that perform a JNDI lookup of the UserTransaction interface use an InitialContext
that resolves to a local implementation of the interface. Also ensure that such programs use a JNDI
location that is appropriate for the EJB version.

WebSphere Application Server Version 4 and later releases bind the UserTransaction interface at the JNDI
location that is specified in the EJB Version 1.1 specification. This location is java:comp/UserTransaction.

A web component or enterprise bean (CMT or BMT) can use additional interfaces that provide JTA
support. These interfaces provide the transaction identity and a mechanism to receive notification of
transaction completion. The interfaces include the TransactionSynchronizationRegistry interface, the
ExtendedJTATransaction interface, and the UOWSynchronizationRegistry interface.

172 Overview

http://java.sun.com/j2ee/connector/index.html
http://java.sun.com/j2ee/connector/index.html

Local transaction containment

A local transaction containment (LTC) is used to define the application server behavior in an unspecified
transaction context.

Unspecified transaction context is defined in the Enterprise JavaBeans specification, Version 2.0 and later.
For example, see the specification for this technology.

An LTC is a bounded unit-of-work scope, within which zero or more resource manager local transactions
(RMLT) can be accessed. The LTC defines the boundary at which all RMLTs must be complete; any
incomplete RMLTs are resolved, according to policy, by the container. By default, an LTC is local to a bean
instance; it is not shared across beans, even if those beans are managed by the same container. LTCs
are started by the container before dispatching a method on an enterprise application component, such as
an enterprise bean or servlet, whenever the dispatch occurs in the absence of a global transaction context.
LTCs are completed by the container depending on the application-configured LTC boundary; for example,
at the end of the method dispatch. There is no programmatic interface to the LTC support; LTCs are
managed exclusively by the container. The application deployer configures LTCs on individual application
components, either web application or EJB, by using transaction attributes in the application deployment
descriptor.

A local transaction containment (LTC) might be configured as part of an application component's
deployment descriptor to be shareable across multiple application components, including web application
components and enterprise beans that use container-managed transactions, so that those components
can share connections without using a global transaction. Sharing a single resource manager between
application components improves performance, increases scalability, and reduces lock contention for
resources.

LTCs can be shared across multiple components, including web application components and enterprise
beans that use container-managed transactions. This sharing is useful in situations such as frequent use
of web component include() calls, where a thread can have several connections blocked by LTCs in
different web modules. In this situation, the application might encounter code deadlocks under load, when
threads start to wait for themselves to free connections. To overcome this issue without using a global
transaction, specify that application components can share LTCs by setting the Shareable attribute in the
deployment descriptor of each component. You must use a deployment descriptor; you cannot specify this
attribute if annotation has been used.

When you set the Shareable attribute, the extended deployment descriptor XML file includes the following
line of code:

<local-transaction boundary="BEAN_METHOD" resolver="CONTAINER_AT_BOUNDARY"
unresolved-action="COMMIT" shareable="true"/>

To obtain the full benefits of a shared LTC, also ensure that the resource reference for each component
defaults to shareable connections.

In the following diagram, components 1, 2 and 3 are deployed with the Shareable attribute and component
4 is not. If components 2 and 3 both obtain connections to data source B, and their resource references
for data source B default to shareable connections, they share the connection, but component 4 does not.

Applications that use shareable LTCs cannot explicitly commit or roll back resource manager connections
that are used in a shareable LTC. Although, they can use connections that have an autoCommit capability.
This ensures correct encapsulation of connection usage by each component and protects one component
from having to make any assumptions about the behavior of other components that share the connection.

If an application starts any non-autocommit work in an LTC for which the Resolver attribute is set to
Application and the Shareable attribute is set to true, an exception occurs at run time. For example, on a

Chapter 11. EJB applications 173

JDBC connection, non-autocommit work is work that the application performs after using the
setAutoCommit(false) method to disable the autocommit option on the connection. Enterprise beans that
use bean managed transactions (BMT) cannot be assembled with the Shareable attribute set on the LTC
configuration.

A local transaction containment cannot exist concurrently with a global transaction. If application

component dispatch occurs in the absence of a global transaction, the container always establishes an

LTC for enterprise application components at J2EE 1.3 or later. The only exceptions to this are the

following items:

» Application component dispatch occurs without container interposition, for example, for a stateless
session bean create method or a servlet-initiated thread.

* J2EE 1.2 web components.

* J2EE 1.2 bean-managed transaction (BMT) enterprise beans.

A local transaction containment can be scoped to an ActivitySession context that exists longer than the
enterprise bean method in which it is started, as described in the topic about ActivitySessions and
transaction contexts.

Local transaction containment

IBM WebSphere Application Server supports local transaction containment (LTC), which you can configure
using local transaction extended deployment descriptors. LTC support provides certain advantages to
application programmers. Use the scenarios provided, and the list of points to consider, to help you decide
the best way to configure transaction support for local transactions.

The following sections describe the advantages that LTC support provides, and how to set the local
transaction extended deployment descriptors in each situation.
You can develop an enterprise bean or servilet that accesses one or more databases that are
independent and require no coordination.
If an enterprise bean does not have to use global transactions, it is often more efficient to deploy
the bean with the deployment descriptor for the container transaction type set to NotSupported
instead of Required.

With the extended local transaction support of the application server, applications can perform the
same business logic in an unspecific transaction context as they can in a global transaction. An
enterprise bean, for example, runs in an unspecified transaction context if it is deployed with a
container transaction type of NotSupported or Never.

The extended local transaction support provides a container-managed, implicit local transaction
boundary, within which the container commits application updates and cleans up their connections.
You can design applications with more independence from deployment concerns. This makes
using a container transaction type of Supports much simpler, for example, when the business logic
might be called either with or without a global transaction context.

An application can follow a get-use-close pattern of connection usage, regardless of whether the
application runs in a transaction. The application can depend on the close action behaving in the
same way in all situations, that is, the close action does not cause a rollback to occur on the
connection if there is no global transaction.

There are many scenarios where ACID coordination of multiple resource managers is not needed.
In such scenarios, running business logic in a Transaction policy of NotSupported performs better
than in a policy of Required. This benefit is applied through setting the deployment descriptor, in
the Local Transactions section, of the Resolver attribute to ContainerAtBoundary. With this setting,
application interactions with resource providers, such as databases, are managed within implicit
resource manager local transactions (RMLT) that the container both starts and ends. The
container commits RMLTs at the containment boundary that is specified by the Boundary attribute
in the Local Transactions section; for example, at the end of a method. If the application returns
control to the container by an exception, the container rolls back any RMLTs that it has started.

This usage applies to both servlets and enterprise beans.

174 Overview

You can use local transactions in a managed environment that guarantees cleanup.
Applications that want to control RMLTs, by starting and ending them explicitly, can use the default
setting of Application for the Resolver extended deployment descriptor in the Local Transactions
section. In this situation, the container ensures connection cleanup at the boundary of the local
transaction context.

Java platform for enterprise applications specifications that describe application use of local
transactions do so in the manner provided by the default settings of Application for the Resolver
extended deployment descriptor, and Rollback for the Unresolved action extended deployment
descriptor, in the Local Transactions section. When the Unresolved action extended deployment
descriptor in the Local Transactions section is set to Commit, the container commits any RMLTs
that the application starts but that do not complete when the local transaction containment ends
(for example, when the method ends). This usage applies to both servlets and enterprise beans.
You can extend the duration of a local transaction beyond the duration of an EJB component
method.
The Enterprise JavaBeans (EJB) specifications restrict the use of RMLTs to single EJB methods.
This restriction is because the specifications have no scoping device, beyond a container-imposed
method boundary, to which an RMLT can be extended. You can use the Boundary extended
deployment setting in the Local Transactions section to give the following advantages:
+ Significantly extend the use cases of RMLTs.
* Make conversational interactions with one-phase resource managers possible through
ActivitySession support.

You can use an ActivitySession to provide a distributed context with a boundary that is longer than
a single method. You can extend the use of RMLTs over the longer ActivitySession boundary,
which a client can control. The ActivitySession boundary reduces the need to use distributed
transactions where ACID operations on multiple resources are not needed. This benefit is applied
through the Boundary extended deployment setting, in the Local transactions section, of
ActivitySession. Such extended RMLTs can remain under the control of the application, or be
managed by the container, depending on the setting of the Resolver deployment descriptor in the
Local Transactions section.

You can coordinate multiple one-phase resource managers.
For resource managers that do not support XA transaction coordination, a client can use
ActivitySession-bounded local transaction contexts. Such contexts give a client the same ability to
control the completion direction of the resource updates by the resource managers as the client
has for transactional resource managers. A client can start an ActivitySession and call its entity
beans in that context. Those beans can perform their RMLTs within the scope of that
ActivitySession and return without completing the RMLTs. The client can later complete the
ActivitySession in a commit or rollback direction and cause the container to drive the
ActivitySession-bounded RMLTs in that coordinated direction.

You can use shareable LTCs to reduce the number of connections you require.
Application components can share LTCs. If components obtain connections to the same resource
manager, they can share that connection if they run under the same global transaction or
shareable LTC. To configure two components to run under the same shareable LTC, set the
Shareable attribute of the Local Transactions section in the deployment descriptor of each
component. Make sure that the resource reference in the deployment descriptor for each
component uses the default value of Shareable for the res-sharing-scope element, if this element
is specified. A shareable LTC can reduce the numbers of RMLTs an application uses. For example,
an application that makes frequent use of web module include calls can share resource manager
connections between those web modules, exploiting either shareable LTCs, or a global
transaction, reducing lock contention for resources.

Examples of local transaction support configurations
The following list gives scenarios that use local transactions, and points to consider when deciding the

best way to configure the transaction support for an application.

Chapter 11. EJB applications 175

* You want to start and end global transactions explicitly in the application (bean-managed transaction
session beans and servlets only).

For a session bean, set the Transaction type to Bean (to use bean-managed transactions) in the
deployment descriptor of the component. You do not have to do this for servlets.
* You want to access only one XA or non-XA resource in a method.

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver
attribute to ContainerAtBoundary. In the Container Transactions section, set the container transaction
type to Supports.

* You want to access several XA resources atomically across one or more bean methods.

In the deployment descriptor of the component, in the Container Transactions section, set the container
transaction type to Required, RequiresNew, or Mandatory.

* You want to access several non-XA resources in a method without needing to manage your own local
transactions.

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver
attribute to ContainerAtBoundary. In the Container Transactions section, set the container transaction
type to NotSupported.

* You want to access several non-XA resources in a method and want to manage them independently.

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver
attribute to Application and set the Unresolved action attribute to Rollback. In the Container Transactions
section, set the container transaction type to NotSupported.

* You want to access one or more non-XA resources across multiple EJB method calls without needing to
manage your own local transactions.

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver
attribute to ContainerAtBoundary and set the Boundary attribute to ActivitySession. In the Bean Cache
section, set the Activate at attribute to ActivitySession. In the Container Transactions section, set the
container transaction type to NotSupported and set the ActivitySession kind attribute to Required,
RequiresNew, or Mandatory.

* You want to access several non-XA resources across multiple EJB method calls and want to manage
them independently.

In the deployment descriptor of the component, in the Local Transactions section, set the Resolver
attribute to Application and set the Boundary attribute to ActivitySession. In the Bean Cache section, set
the Activate at attribute to ActivitySession. In the Container Transactions section, set the container
transaction type to NotSupported and set the ActivitySession kind attribute to Required, RequiresNew,
or Mandatory.

Local and global transactions

Applications use resources, such as Java Database Connectivity (JDBC) data sources or connection
factories, that are configured through the Resources view of the administrative console. How these
resources participate in a global transaction depends on the underlying transaction support of the resource
provider.

For example, most JDBC providers can provide either XA or non-XA versions of a data source. A non-XA
data source can support only resource manager local transactions (RMLT), but an XA data source can
support two-phase commit coordination, as well as local transactions.

If an application uses two or more resource providers that support only RMLTs, atomicity cannot be
assured because of the one-phase nature of these resources. To ensure atomic behavior, the application
must use resources that support XA coordination and must access those resources in a global transaction.

If an application uses only one RMLT, atomic behavior can be guaranteed by the resource manager, which
can be accessed in a local transaction containment (LTC) context.

An application can also access a single resource manager in a global transaction context, even if that
resource manager does not support the XA coordination. An application can do this because the

176 Overview

application server performs an “only resource optimization” and interacts with the resource manager in a
RMLT. In a global transaction context, any attempt to use more than one resource provider that supports
only RMLTs causes the global transaction to be rolled back.

At any moment, an instance of an enterprise bean can have work outstanding in either a global transaction
context or a local transaction containment context, but not both. An instance of an enterprise bean can
change from running in one type of context to the other (in either direction), if all outstanding work in the
original context is complete. Any violation of this principle causes an exception to be thrown when the
enterprise bean tries to start the new context.

Client support for transactions
Application clients can, within certain limits, support the use of transactions.

Application clients running in an enterprise application client container can explicitly demarcate transaction
boundaries, as described in the topic about using component-managed transactions. Application clients
cannot perform, directly in the client container, transactional work in the context of any global transaction
that they start, because the client container is not a recoverable process.

Application clients can make requests to remote objects, such as enterprise beans, in the context of a
client-initiated transaction. Any transactional work performed in a remote, recoverable, server process is
coordinated as part of the client-initiated transaction. The transaction coordinator is created on the first
server process to which the client-initiated transaction is propagated.

A client can begin a transaction, then, for example, access a JDBC data source directly in the client
process. In such cases, any work performed through the JDBC provider is not coordinated as part of the
global transaction. Instead, the work runs under a resource manager local transaction. The client container
process is non-recoverable and contains no transaction coordinator with which a resource manager can be
enlisted.

A client can begin a transaction, then call a remote application component such as an enterprise bean. In
such cases, the client-initiated transaction context is implicitly propagated to the remote application server,
where a transaction coordinator is created. Any resource managers accessed on the recoverable
application server (or any other application server hosting application components invoked by the client)
are enlisted in the global transaction.

Client application components must be aware that locally-accessed resource managers are not
coordinated by client-initiated transactions. Client applications acknowledge this through a deployment
option that enables access to the UserTransaction interface in the client container. By default, access to
the UserTransaction interface in the client container is not enabled. To enable UserTransaction
demarcation for an application client component, set the “Allow JTA Demarcation” extension property in the
client deployment descriptor. For information about editing the client deployment descriptor, refer to the
Rational Application Developer information.

Commit priority for transactional resources

You can specify the order in which transactional resources are processed during two-phase commit
processing.

If you control the order in which transactional resources are processed during two-phase commit
processing, there are two main benefits:

* One-phase commit optimization occurs more often.
» Potential problems caused by transaction isolation are resolved.

To control the order in which transactional resources are processed during two-phase commit processing,
you specify the commit priority of a resource by setting the commit priority attribute on a resource

Chapter 11. EJB applications 177

reference. The larger the commit priority, the earlier the resource is processed. For example, if a resource
has a commit priority of 10, it is processed before a resource with a commit priority of 1. The commit
priority value is of type int and can be between -2147483648 and 2147483647.

If you do not specify a commit priority value, a default value of zero is assigned to the resource and is
used when ordering resources at run time. If two or more resources are configured with the same priority,
including the default priority, they are processed in an unspecified order with respect to each other.

You can specify the commit priority attribute on a resource reference by using Rational Application
Developer tools. For detailed information, see the Rational Application Developer information center. The
application component must have a deployment descriptor; you cannot specify this attribute if annotation
has been used.

One-phase commit optimization

In a transaction with a two-phase commit, if every resource except the last one enlisted in the transaction
votes read-only, indicating that those resources are not interested in the outcome of the transaction, a
one-phase commit can occur. This means that the transaction service does not have to store resource and
transaction information that it would need to roll back a two-phase commit, and therefore performance is
improved.

You can control the order in which transactional resources are processed during two-phase commit, so
you can process the resources that are most likely to vote read-only first. Therefore, you increase the
chance that a one-phase commit might occur.

Typically, for a given transactional resource, you know the work that is performed at run time, so if you can
control the order in which the resources in a transaction are processed, you can increase the likelihood of
a one-phase commit optimization occurring.

Transaction isolation

When resources are involved in a global transaction, updates that are made as part of a transaction are
not visible outside the transaction until the transaction commits, that is, those resources are isolated. This
isolation can cause problems with other application components that act on the updates after they are
committed. For example, further processing can fail, or can fail intermittently, because updates are order
and time dependent. This problem does not occur with service integration bus messaging work in
WebSphere Application Server, but can be a problem for other messaging providers, for example
WebSphere MQ.

If you specify the order in which transactional resources are committed, problems caused by isolation are
resolved for all transactional systems, not just messaging providers and service integration bus in
particular.

The following example describes how problems might occur when you cannot specify the order in which
transactional resources are committed. An application updates a row in a database table, then sends a
JMS message that triggers additional processing of the row. Both of these actions are performed in the
same global transaction, so they are isolated until their respective resources are committed. If the update
to the row is committed before the message is sent, the processing that is triggered by the message can
access the updated row and process it. If the action to send the message is committed first, this action
might trigger the additional processing of the row before the database has committed the update to the
row. In this situation, the updated row is still isolated and is not visible, so the additional processing of the
row fails.

This problem can be more complicated because it is ordering and timing dependent. If the database is
committed first, the problem does not occur. If the action to send the message is committed first, the
problem might occur, but it depends whether the database work is committed before the message triggers

178 Overview

the further processing of the row. Therefore, the problem can be intermittent, so it is harder to identify its
cause.

Restrictions with earlier versions of WebSphere Application Server

If you specify the commit priority of a resource, that is, specify any value other than the default value O,
the commit priority is added to the partner log in a recoverable unit section. This section in the log file is
recognized in WebSphere Application Server Version 7.0 or later, but not in earlier versions of the
application server.

Therefore, if an application uses the commit priority attribute, you cannot install that application into a
mixed-version cluster where one or more servers in the cluster are at versions of WebSphere Application
Server that are earlier than Version 7.0.

Also, if an application that uses the commit priority attribute is installed in a cluster, you cannot
subsequently add a server to that cluster if the server is at a version of WebSphere Application Server that
is earlier than Version 7.0.

For general information about different versions of the product, see the topic “Overview of migration,
coexistence, and interoperability”.

Transactional high availability

The high availability of the transaction service enables any server in a cluster to recover the transactional
work for any other server in the same cluster. This facility forms part of the overall WebSphere Application
Server high availability (HA) strategy.

As a vital part of providing recovery for transactions, the transaction service logs information about active
transactional work in the transaction recovery log. The transaction recovery log stores the information in a
persistent form, which means that any transactional work in progress at the time of a server failure can be
resolved when the server is restarted. This activity is known as transaction recovery processing. In
addition to completing outstanding transactions, this processing also ensures that any locks held in the
associated resource managers are released.

Peer recovery processing

The standard recovery process that is performed when an application server restarts is for the server to
retrieve and process the logged transaction information, recover transactional work and complete indoubt
transactions. Completion of the transactional work (and hence the release of any database locks held by
the transactions) takes place after the server successfully restarts and processes its transaction logs. If the
server is slow to recover or requires manual intervention, the transactional work cannot be completed and
access to associated databases is disrupted.

To minimize such disruption to transactional work and the associated databases, WebSphere Application
Server provides a high availability strategy known as transaction peer recovery.

Peer recovery is provided within a server cluster. A peer server (another cluster member) can process the
recovery logs of a failed server while the peer continues to manage its own transactional workload. You do
not have to wait for the failed server to restart, or start a new application server specifically to recover the
failed server.

Chapter 11. EJB applications 179

Before peer recovery \> During peer recovery
Application server i/ Application server
sarver 1 / sarver 1
{ T,
\ Recovery S
\ process for e—me Lag
Mormal Mormal sarvers servaers
runtime runtime ——
activity /" activity Recovary _f_—__:_-:%
process for |1 Log
sarverd serverd |
7 \ ~ —
.-o-'—__*_ e .a--__"_ o —
e S—
Log Log
sarver] sarver]
S— e ——

Figure 18. Peer recovery

The peer recovery process is the logical equivalent to restarting the failed server, but does not constitute a
complete restart of the failed server within the peer server. The peer recovery process provides an
opportunity to complete outstanding work; it cannot start new work beyond recovery processing. No
forward processing is possible for the failed server.

Peer recovery moves the high availability requirements away from individual servers and onto the server
cluster. After such failures, the management system of the cluster dispatches new work onto the remaining
servers; the only difference is the potential drop in overall system throughput. If a server fails, all that is
required is to complete work that was active on the failed server and redirect requests to an alternate
server.

By default, peer recovery is disabled until you enable failover of transaction log recovery in the cluster
configuration, and restart the cluster members. After you enable transaction log recovery, WebSphere
Application Server supports two styles for the initiation of transaction peer recovery: automated and
manual. You determine which style is more appropriate, based on your deployment, and specify that style
by configuring the appropriate high availability policy. This high availability policy is referred to elsewhere in
these topics as the policy for the transaction service.

Automated peer recovery
This style is the default for peer recovery initiation. If an application server fails, WebSphere
Application Server automatically selects a server to undertake peer recovery processing on its
behalf, and passes recovery back to the failed server when it restarts. To use this model, enable
transaction log recovery and configure the recovery log location for each cluster member.

Manual peer recovery
You must explicitly configure this style of peer recovery. If an application server fails, you use the
administrative console to select a server to perform recovery processing on its behalf.

In a HA environment, you must configure the compensation logs as well as the transaction logs. For each
server in the cluster, use the compensation service settings to configure a unique compensation log
location, and ensure that all cluster members can access those compensation logs.

Peer recovery example

The following diagrams illustrate the peer recovery process that takes place if a single server fails. Figure

2 shows three stable servers running in a WebSphere Application Server cluster. The workload is balanced
between these servers, which results in locks held by the back-end database on behalf of each server.

180 Overview

Server

cluster /_;r _TE__‘

Figure 19. Server cluster up and running, just before server failure

i 4 ™
sarverl saner2 sorvard
-*-

v

Figure 3 shows the state of the system after server 1 fails without clearing locks from the database.
Servers 2 and 3 can run their existing transactions to completion and release existing locks in the
back-end database, but further access might be impaired because of the locks still held on behalf of server
1. In practice, some level of access by servers 2 and 3 is still possible, assuming appropriately configured
lock granularity, but for this example assume that servers 2 and 3 attempt to access locked records and
become blocked.

Server
cluster

&)
TR

serverz servers

A

*

Figure 20. Server 1 fails. Servers 2 and 3 become blocked as a result

Figure 4 shows a peer recovery process for server 1 running inside server 3. The transaction service

v

portion of the recovery process retrieves the information that is stored by server 1, and uses that

information to complete any indoubt transactions. In this figure, the peer recovery process is partially
complete as some locks are still held by the database on behalf of server 1.

Chapter 11. EJB applications

181

Server E_'

cluster _;
Ba
B Y

sarver? sarverd
[Reacovery
— process
& (sarvaerl)
v

Figure 21. Peer recovery process started in server 3

Figure 5 shows the state of the server cluster when the peer recovery process is complete. The system is
in a stable state with just two servers, between which the workload is balanced. Server 1 can be restarted,
and will have no recovery processing of its own to perform.

Server _
cluster = I_‘:‘“
2
I ~

serer2 Servard

.

+
\

Figure 22. Server cluster stable again with just two servers: server 2 and server 3

Deployment for transactional high availability

Before you use the high availability (HA) function, you must consider deployment issues such as your file
system type, or where you plan to store the transaction recovery logs. In particular, your file system type
can have important consequences for your recovery configuration.

Common configuration

Transaction peer recovery requires a common configuration of the resource providers between the
participating server members to undertake peer recovery between servers. Therefore, peer recovery
processing can only take place between members of the same server cluster. Although a cluster can
contain servers that are at different versions of WebSphere Application Server, peer recovery can only be
performed between servers in the cluster that are at Version 6 or later.

Physical storage
For application servers to perform transaction peer recovery for each other, they must be able to access
the transaction recovery logs of all the other members in the cluster. Ensure that the log files are stored on

a medium that is accessible by all members of the cluster, and that each cluster member has a unique log
file location on this medium. This medium, and access to it, for example through a local area network

182 Overview

(LAN), must support the file-based force operation that is used by the recovery log service to force data to
disk. After the force operation is complete, information must be persistently stored on physical disk media.

In a HA environment, application servers must also be able to access the compensation logs. Ensure that
the compensation log files are stored on a medium that is accessible by all members of the cluster, and
that each cluster member has a unique log file location on this medium.

For example, you can store the logs on another IBM i server by using the NetClient file system (QNTC),
which provides access to data on a remote system by using the Server Message Block (SMB) protocol.

Server 1 Server 2

-
_,-o-"'ff
-_"_-—-E"__H

fF—

Flle Server | pue Server (SMB-based)

—

for recovery
logs |

e

ot T
" T
= -
e 2 <
.
Server 3 Sarver 4

Figure 23. Recovery logs on SMB-based file server are available to all servers

In addition, configure the mechanism by which the remote log files are accessed, to exploit any fault
tolerance in the underlying file system. For example, by using the Network File System (NFS) and hard
mounting the remote directory containing the log files by using the -0 hard option of the NFS mount
command, the NFS client will try a failed operation repeatedly until the NFS server becomes available
again.

Two types of potential server failure exist: software failure and hardware failure. Software failures generally
do not affect other application servers directly. Even servers on the same physical hardware can undertake
peer recovery processing. If a hardware failure occurs, all the servers that are deployed on the failed
hardware become unavailable. Servers on other hardware are required to handle peer recovery
processing. Any HA configuration requires that servers are deployed across multiple and discrete hardware
systems.

File system
The file system type is an important deployment consideration as it is the main factor in deciding whether

to use automated or manual peer recovery. For more information, see ['How to choose between automated
land manual transaction peer recovery” on page 128

How to choose between automated and manual transaction peer recovery:

Chapter 11. EJB applications 183

Your type of file system is the dominant factor in deciding which kind of transaction peer recovery to use.
Different file systems have different behaviors, and the file locking behavior in particular is important when
choosing between automated and manual peer recovery.

WebSphere Application Server high availability (HA) support uses a heartbeat mechanism to determine
whether servers are still running. Servers are considered failed if they stop responding to heartbeat
requests. Some scenarios, such as system overloading and network partitioning (explained elsewhere in
this topic), can cause servers to stop responding to heartbeats, even though the servers are still running.
WebSphere Application Server uses file locking technology to prevent such events from causing
concurrent access to transaction recovery logs, because access to a recovery log by more than one server
can lead to loss of data integrity.

However, not all file systems provide the necessary file locking semantics, specifically that file locks are
released when a server fails. For example, Network File System Version 4 (NFSv4) provides this release
behavior, whereas Network File System Version 3 (NFSv3) does not.

NFSv4 releases locks held on behalf of a host in case that host fails. Peer recovery can occur
automatically without restarting the failed hardware. Therefore, this version of NFS is better suited for use
with automated peer recovery.

NFSv3 holds file locks on behalf of a failed host until that host can restart. In this context, the host is the
physical machine running the application server that requested the lock and it is the restart of the host, not
the application server, that eventually triggers the locks to release.

To illustrate file locking on NFSv3, consider the behavior when a cluster member fails:
1. Server H is running on host H and holds an exclusive file lock for its own recovery log files.
2. Server P is running on host P and holds an exclusive file lock for its own recovery log files.

3. Host H fails, taking server H with it. The NFS lock manager on the file server holds the locks that are
granted to server H on its behalf.

4. A peer recovery event is triggered in server P for server H by WebSphere Application Server.

5. Server P attempts to gain an exclusive file lock for this peer recovery log, but is unable to do so as it
is held on behalf of server H. The peer recovery process is blocked.

6. At an unspecified time, host H is restarted. The locks held on its behalf are released.

7. The peer recovery process in server P is unblocked and granted the exclusive file locks that are
needed to undertake peer recovery.

8. Peer recovery takes place in server P for server H.
9. Server H is restarted.
10. If peer recovery is still in progress in server P, the recovery is halted.

11. Server P releases the exclusive lock on the recovery logs and returns ownership of the recovery logs
back to server H.

12. Server H obtains the exclusive lock and can now undertake standard transaction logging.

Because of this behavior, on NFSv3 you must disable file locking to use automated peer recovery.
Disabling file locking can lead to concurrent access to recovery logs so it is vital that you protect your
system from system overloading and network partitioning first. Alternatively, you can configure manual peer
recovery, where you prevent concurrent access by manually triggering peer recovery processing only for
servers that have failed.

System overloading
System overloading occurs when a machine becomes very heavily loaded such that response
times are extremely poor and requests begin to time out. Several potential causes exist for such
overloading, including:

* The server is underpowered and cannot handle the workload.

184 Overview

» The server received a temporary surge of requests.

 Insufficient physical memory is available. As a result, the operating system is too busy paging to
give the application server the required CPU time.

Network partitioning
Network partitioning occurs when a communications failure in a network results in two smaller
networks that are independent and cannot contact each other.

Normal running
Hearbeat operations
time out
Y
/_-'
i
e
Hearbeat operations e
unable to cross X
partition boundry H—
g
% MNetwork partition1 / '_ Metwork partition2 ./

During normal running, two servers on the network exchange heartbeats. During system overloading,
heartbeat operations time out, giving the appearance of a server failure. After network partitioning, each
server is in a separate network and heartbeats cannot pass between them, also giving the appearance of

a server failure.)))
Figure 24. Heartbeats in a system running normally, compared to heartbeats after the apparent server failures of

system overloading and network partitioning

High availability policies for the transaction service

WebSphere Application Server provides integrated high availability (HA) support in which system
subcomponents, such as the transaction service, are made highly available. An HA policy provides the
logic that governs the manner in which each WebSphere Application Server HA component behaves within
the overall HA framework. For the transaction service, the transaction HA policy provides the logic to
determine which servers own a recovery log at any time.

Typically, transaction policies assign ownership of a recovery log to the server that originally created it (the
home server) and that server can then use the recovery log for both recovery and normal transactional
activity. In the event that the home server is unavailable or fails, ownership can pass to a peer server to
undertake recovery processing.

Chapter 11. EJB applications 185

Conceptually, a policy can be thought of as consisting of two key components, a policy type and a policy
configuration.

Policy type

The policy type determines whether peer recovery initiation is manual or automated. The policy essentially
provides the logic for determining updated recovery log ownership in the event of a server failure. The
following WebSphere Application Server policy types are used for transaction peer recovery (other HA
policy types exist, but are not used by the transaction service):

Static Ownership of the recovery log is defined in the WebSphere Application Server configuration. At run
time, the static policy assigns ownership accordingly. Any changes to ownership require a change
to the static configuration and therefore this policy type is used for manually initiated peer
recovery.

One-of-N
Ownership of the recovery log is determined dynamically by the WebSphere Application Server HA
framework and assigned to exactly one of the N cluster members. This policy type is used for
automated peer recovery.

Transaction compensation and business activity support

A business activity is a collection of tasks that are linked together so that they have an agreed outcome.
Unlike atomic transactions, activities such as sending an email can be difficult or impossible to roll back
atomically, and therefore require a compensation process in the event of an error. The WebSphere
Application Server business activity support provides this compensation ability through business activity
scopes.

When to use business activity support

Use the business activity support when you have an application that requires compensation. An application
requires compensation if its operations cannot be atomically rolled back. Typically, this scenario is because
of one of the following reasons:

* The application uses multiple non-extended-architecture (XA) resources.

* The application uses more than one atomic transaction, for example, enterprise beans that have
Requires new as the setting for the Transaction field in the container transaction deployment
descriptor.

* The application does not run under a global transaction.

The following diagram shows a simple web service application that uses the business activity support. The
Retailer, Warehouse and Manufacturing services are running in non-WebSphere Application
Serverenvironments. The Retailer service calls the Supplier service, running on WebSphere Application
Server, which delegates tasks to the Warehouse and Manufacturing services. The implementation of the
Supplier service contains a stateless session bean, which calls other stateless session beans that are
associated with the Warehouse and Manufacturing services, and that undertake work that can be
compensated. These other session beans each have a compensation handler; a piece of logic that is
associated with an application component at run time, and performs compensation activity such as
resending an email.

Application design

Business activity contexts are propagated with application messages, and can therefore be distributed
between application components that are not co-located in the same server. Unlike atomic transaction
contexts, business activity contexts are propagated on both synchronous (blocking) call-response
messages and asynchronous one-way messages. An application component that runs under a business

186 Overview

activity scope is responsible for ensuring that any asynchronous work it initiates is complete before the
component's own processing is complete. An application that initiates asynchronous work by using a
fire-and-forget message pattern must not use business activity scopes, because such applications have no
means of detecting whether this asynchronous processing has completed.

Only enterprise beans that have container-managed transactions can use the business activity functions.
Enterprise beans that exploit business activity scopes can offer web service interfaces, but can also offer
standard enterprise bean local or remote Java interfaces. Business activity context is propagated in web
service messages by using a standard, interoperable Web Services Business Activity (WS-BA)
CoordinationContext element. WebSphere Application Server can also propagate business activity context
on RMI calls to enterprise beans when Web services are not being used, but this form of the context is not
interoperable with non-WebSphere Application Server environments. You might want to use this
homogeneous scenario if you require compensation for an application that is internal to your business. If
you want to use business activity compensation in a heterogeneous environment, expose your application
components as web services.

Business activity contexts can be propagated across firewalls and outside the WebSphere Application
Server domain. The topology that you use to achieve this propagation can affect the high availability and
affinity behavior of the business activity transaction.

Application development and deployment

WebSphere Application Server provides a programming model for creating business activity scopes, and
for associating compensation handlers with those business activity scopes. WebSphere Application Server
also provides an application programming interface to specify compensation data, and check or alter the
status of a business activity. To use the business activity support you must set certain application
deployment descriptors appropriately, provide a compensation handler class if required, and enable
business activity support on any servers that run the application.

Note: Applications can exploit the business activity support only if you deploy them to a WebSphere
Application Server at Version 6.1 or later. Applications cannot use the business activity support if
you deploy them to a cluster that includes WebSphere Application ServerVersion 6.0.x servers.

Business activity scopes

The scope of a business activity is that of a main WebSphere Application Server unit of work: a global
transaction, an activity session, or local transaction containment (LTC). A business activity scope is not a
new unit of work (UOW); it is an attribute of an existing main UOW. Therefore, a one-to-one relationship
exists between a business activity scope and a UOW.

In a WS-BA deployment, the UOW must be container-managed:

» The UOW can be a container-managed transaction (CMT) enterprise bean that creates a global
transaction.

* The UOW can be a local transaction containment (LTC) where the container is responsible for initiating
and ending resource manager local transactions (RMLTs). That is, in the transactional deployment
descriptor attributes, the Local Transaction attribute Resolver must be set to ContainerAtBoundary. To
use WS-BA, you must not set the Resolver attribute to Application.

Any main UOW can have a business activity scope associated with it. If a component running under a
UOW that is associated with a business activity scope calls another component, that request propagates
the business activity scope; any work done by the new component is associated with the same business
activity scope as the calling component. The called component can create a new UOW, for example if an
enterprise bean has a Transaction setting of Requires new, or runs under the same UOW as the calling
component. If a new UOW is started then a new business activity scope is created and associated with
the new UOW. The newly created business activity scope is a child of the business activity scope

Chapter 11. EJB applications 187

associated with the calling UOW. In the following diagram, EJB1a running under UOW1 calls two
components: EJB1b that also runs under UOW1, and EJB2 that creates a new UOW, UOW2. The
enterprise bean EJB1b, calls another enterprise bean, EJB3, which creates another new UOW, UOWS3.
Because each new UOW is created by a calling component whose UOW already has an association with
business activity scope BAScope1, the newly created UOWSs are associated with new inner business
activity scopes, BAScope2 and BAScope3.

Inner business activity scopes must complete before the outer business activity scope completes. Inner
business activity scopes, for example BAScope2, have an association with the outer business activity
scope, in this case BAScope1. Each business activity scope is directed to close if its associated UOW
completes successfully, or to compensate if its associated UOW fails. If BAScope2 completes successfully,
any active compensation handlers that are owned by BAScope2 are moved to BAScope1, and are
directed in the same way as the completion direction of BAScope1: either compensate or close. If
BAScope? fails, the active compensation handlers are compensated automatically, and nothing is moved
to the outer BAScope1. When an inner business activity scope fails, as a result of its associated UOW
failing, an application server exception is thrown to the to calling application component, running in the
outer UOW.

For example, if the inner UOW fails it might throw a TransactionRolledBackException exception. If the
calling application can handle the exception, for example by trying the called component again or by
calling another component, then the calling UOW, and its associated business activity scope, can complete
successfully even though the inner business activity scope failed. If the application design requires the
calling UOW to fail, and for its associated business activity scope to be compensated, then the calling
application component must cause its UOW to fail, for example by allowing any system exception from the
UOW that failed to be handled by its container.

When the outer business activity scope completes, its success or failure determines the completion
direction (close or compensate) of any active compensation handlers that are owned by the outer business
activity scope, including those promoted by the successful completion of inner business activity scopes. If
the outer business activity scope completes successfully, it drives all active compensation handlers to
close. If the outer business activity scope fails, it drives all active compensation handlers to compensate.

This compensation behavior is summarized in the following table.

Table 21. Compensation behavior for a single business activity scope. The table lists the possible combinations of
success and failure for the inner and outer business activity scopes, and the compensation behavior associated with
each combination.

Inner Outer
business business
activity scope | activity scope | Compensation behavior

Succeeds Succeeds Any compensation handlers that are owned by the inner business activity scope wait for the
outer UOW to complete. When the outer UOW succeeds, the outer business activity scope
drives all compensation handlers to close.

Fails Succeeds Any active compensation handlers that are owned by the inner business activity scope are
compensated. An exception is thrown to the outer UOW; if this exception is caught, when the
outer UOW succeeds, the outer business activity scope drives all remaining active compensation
handlers to close.

Fails Fails Any active compensation handlers that are owned by the inner business activity scope are
compensated. An exception is thrown to the outer UOW; if this exception is not caught, the outer
business activity scope fails. When the outer business activity scope fails, either because of the
unhandled exception or for some other reason, all remaining active compensation handlers are
compensated.

Succeeds Fails Any compensation handlers that are owned by the inner business activity scope wait for the
outer UOW to complete. When the outer UOW fails, the outer business activity scope drives all
compensation handlers to compensate.

188 Overview

When a UOW with an associated business activity scope completes, the business activity scope always
completes in the same direction as the UOW that it is associated with. The only way that you can
influence the direction of the business activity scope is to influence the UOW that it is associated with,
which you can do by using the setCompensateOnly method of the business activity API.

A compensation handler that is registered within a transactional UOW might initially be inactive, depending
on the method invoked from the business activity API. Inactive handlers in this situation become active
when the UOW in which that handler is declared completes successfully. A compensation handler that is
registered outside a transactional UOW always becomes active immediately. For more information, see the
topic about the business activity API.

Each business activity scope in the diagram represents a business activity. For example, the outer
business activity running under BAScope1 can be a holiday booking scenario, with BAScope2 being a
flight booking activity and BAScope3 a hotel booking. If either the flight or hotel bookings fail, the overall
holiday booking by default also fails. Alternatively if, for example, the flight booking fails, you might want
your application to try booking a flight by using another component that represents a different airline. If the
overall holiday booking fails, the application can use compensation handlers to cancel any flights or hotels
that are already successfully booked.

Use of business activity scopes by application components

Application components do not use business activity scopes by default. You use the WebSphere
Application Server assembly tools to specify the use of a business activity scope and to identify any
compensation handler class for the component:

Default configuration
If a business activity context is present on a request received by a component with no business
activity scope configuration, the context is stored by the container but never used during the
method scope of the target component. A new business activity scope is not created. If the target
component invokes another component, the stored business activity context is propagated and can
be used by other compensating components.

Run enterprise bean methods under a business activity scope
Any business activity context present on the incoming request is received by the container and
made available to the target component. If a new UOW is created for the target method, for
example because the enterprise bean method has a Transaction setting of Requires new, the
received business activity scope becomes an outer business activity scope to a newly created
business activity. If the UOW is propagated from the calling component and used by the method,
then the received business activity scope is used by the method. If a business activity scope does
not exist on the invocation, a new business activity scope is created and used by the method.

To create a business activity scope when an enterprise bean is invoked, you must configure the enterprise
bean to run enterprise bean methods under a business activity scope. You must also configure the
deployment descriptors for the method being invoked, to specify the creation of a new UOW upon
invocation. For details, see the topic about creating an application that uses the WS-BA support.

JTA support

Java Transaction API (JTA) support provides application programming interfaces (APIs) in addition to the
UserTransaction interface that is defined in the JTA 1.1 specification.

These interfaces include the TransactionSynchronizationRegistry interface, which is defined in the JTA 1.1
specification, and the following API extensions:

» SynchronizationCallback interface

« ExtendedJTATransaction interface

» UOWSynchronizationRegistry interface

+ UOWManager interface

Chapter 11. EJB applications 189

The APlIs provide the following functions:
» Access to global and local transaction identifiers associated with the thread.

The global identifier is based on the transaction identifier in the CosTransactions::PropagationContext:
object and the local identifier identifies the transaction uniquely in the local Java virtual machine (JVM).

» A transaction synchronization callback that any enterprise application component can use to register an
interest in transaction completion.

Advanced applications can use this callback to flush updates before transaction completion and clear up
state after transaction completion. Java EE (and related) specifications position this function typically as
the domain of the enterprise application containers.

Components such as persistence managers, resource adapters, enterprise beans, and web application
components can register with a JTA transaction.

The following information is an overview of the interfaces that the JTA support provides. For more detailed
information, see the generated APl documentation.

SynchronizationCallback interface

An object implementing this interface is enlisted once through the ExtendedJTATransaction interface, and
receives notification of transaction completion.

Although an object implementing this interface can run on a Java platform for enterprise applications
server, there is no specific enterprise application component active when this object is called. So, the
object has limited direct access to any enterprise application resources. Specifically, the object has no
access to the java: namespace or to any container-mediated resource. Such an object can cache a
reference to an enterprise application component (for example, a stateless session bean) that it delegates
to. The object would then have all the usual access to enterprise application resources. For example, you
might use the object to acquire a Java Database Connectivity (JDBC) connection and flush updates to a
database during the beforeCompletion method.

ExtendedJTATransaction interface

This interface is a WebSphere programming model extension to the Java EE JTA support. An object
implementing this interface is bound, by enterprise application containers in WebSphere Application Server
that support this interface, at java:comp/websphere/ExtendedJTATransaction. Access to this object, when
called from an Enterprise JavaBeans (EJB) container, is not restricted to component-managed
transactions.

An application uses a Java Naming and Directory Interface (JNDI) lookup of java:comp/websphere/
ExtendedJTATransaction to get an ExtendedJTATransaction object, which the application uses as shown in
the following example:

ExtendedJTATransaction exJTA = (ExtendedJTATransaction)ctx.lookup("
Jjava:comp/websphere/ExtendedJTATransaction");
SynchronizationCallback sync = new SynchronizationCallback();
exJTA.registerSynchronizationCallback(sync);

The ExtendedJTATransaction object supports the registration of one or more application-provided
SynchronizationCallback objects. Depending on how the callback is registered, each registered callback is
called at one of the following points:

» At the end of every transaction that runs on the application server, whether the transaction is started
locally or imported

* At the end of the transaction for which the callback was registered

Note: In this release, the registerSynchronizationCallbackForCurrentTran method is deprecated. Use the
registerinterposedSynchronization method of the TransactionSynchronizationRegistry interface
instead.

190 Overview

TransactionSynchronizationRegistry interface

This interface is defined in the JTA 1.1 specification. System-level application components, such as
persistence managers, resource adapters, enterprise beans, and web application components, can use
this interface to register with a JTA transaction. Then, for example, the component can flush a cache when
a transaction completes.

To obtain the TransactionSynchronizationRegistry interface, use a JNDI lookup of java:comp/
TransactionSynchronizationRegistry.

Note: Use the registerinterposedSynchronization method to register a synchronization instance, rather
than the registerSynchronizationCallbackForCurrentTran method of the ExtendedJTATransaction
interface, which is deprecated in this release.

UOWSynchronizationRegistry interface

This interface provides the same functions as the TransactionSynchronizationRegistry interface, but
applies to all types of units of work (UOWSs) that WebSphere Application Server supports:

» JTA transactions

* local transaction containments (LTCs)

» ActivitySession contexts

System-level application server components such as persistence managers, resource adapters, enterprise
beans, and web application components can use this interface to register with a JTA transaction. The
component can do the following:

» Register synchronization objects with special ordering semantics.
» Associate resource objects with the UOW.

* Get the context of the current UOW.

* Get the current UOW status.

* Mark the current UOW for rollback.

To obtain the UOWSynchronizationRegistry interface, use a JNDI lookup of java:comp/websphere/
UOWSynchronizationRegistry. This interface is available only in a server environment.

The following example registers an interposed synchronization with the current UOW:

// Retrieve an instance of the UOWSynchronizationRegistry interface from JNDI.

final InitialContext initialContext = new InitialContext();

final UOWSynchronizationRegistry uowSyncRegistry =
(UOWSynchronizationRegistry)initialContext.lookup("java:comp/websphere/UOWSynchronizationRegistry");

// Instantiate a class that implements the javax.transaction.Synchronization interface
final Synchronization sync = new SynchronizationImpl();

// Register the Synchronization object with the current UOW.
uowSynchronizationRegistry.registerInterposedSynchronization(sync);

UOWManager interface

The UOWManager interface is equivalent to the JTA TransactionManager interface, which defines the
methods that allow an application server to manage transaction boundaries. Applications can use the
UOWManager interface to manipulate UOW contexts in the product. The UOWManager interface applies
to all types of UOWSs that WebSphere Application Server supports; that is, JTA transactions, local
transaction containments (LTCs), and ActivitySession contexts. Application code can run in a particular
type of UOW without needing to use an appropriately configured enterprise bean. Typically, the logic that
is performed in the scope of the UOW is encapsulated in an anonymous inner class. System-level
application server components such as persistence managers, resource adapters, enterprise beans, and
web application components can use this interface.

Chapter 11. EJB applications 191

WebSphere Application Server does not provide a TransactionManager interface in the API or the system
programming interface (SPI). The UOWManager interface provides equivalent functions, but WebSphere
Application Server maintains control and integrity of the UOW contexts.

To obtain the UOWManager interface in a container-managed environment, use a JNDI lookup of
java:comp/websphere/UOWManager. To obtain the UOWManager interface outside a container-managed
environment, use the UOWManagerFactory class. This interface is available only in a server environment.

You can use the UOWManager interface to migrate a web application to use web components rather than
enterprise beans, but maintain control over the UOWSs. For example, a web application currently uses the
UserTransaction interface to begin a global transaction, makes a call to a method on a session enterprise
bean that is configured as not supported to undertake some non-transactional work, and then completes
the global transaction. You can move the logic that is encapsulated in the session EJB method to the run
method of a UOWAction implementation. Then, you replace the code in the web component that calls the
session enterprise bean with a call to the runUnderUOW method of a UOWManager interface to request
that this logic is run in a local transaction. In this way, you maintain the same level of control over the
UOWs as you had with the original application.

The following example performs some transactional work in the scope of a new global transaction. The
transactional work is performed in an anonymous inner-class that implements the run method of the
UOWAction interface. Any checked exceptions that the run method creates do not affect the outcome of
the transaction.

// Retrieve an instance of the UOWManager interface from JNDI.

final InitialContext initialContext = new InitialContext();
final UOWManager uowManager = (UOWManager)initialContext.lookup("java:comp/websphere/UOWManager");

try

// Invoke the runUnderUOW method, indicating that the logic should be run in a global

// transaction, and that any existing global transaction should not be joined, that is,

// the work must be performed in the scope of a new global transaction.

uowManager. runUnderUOW (UOWSynchronizationRegistry.UOW_TYPE_GLOBAL TRANSACTION, false, new UOWAction()
{

public void run() throws Exception

// Perform transactional work here.
1

1s

}

catch (UOWActionException uowae)

// Transactional work resulted in a checked exception being thrown.

}
catch (UOWException uowe)
// The completion of the UOW failed unexpectedly. Use the getCause method of the

// UOWException to retrieve the cause of the failure.

}

192 Overview

Chapter 12. Mail, URLs, and other Java EE resources

This page provides a starting point for finding information about resources that are used by applications
that are deployed on a Java Enterprise Edition (Java EE)-compliant application server. They include:

» JavaMail support for applications to send Internet mail
* URLs, for describing logical locations
* Resource environment entries, for mapping logical names to physical names

» Java DataBase Connectivity (JDBC) resources and other technology for data access (discussed
elsewhere)

» Java Message Service (JMS) resources and other messaging system support (discussed elsewhere)

Mail service providers and mail sessions

A mail service provider is a driver that supports mail interaction with mail servers that use a particular mail
protocol. The application server includes service providers, which are also known as protocol providers, for
mail protocols.

A mail provider encapsulates a collection of protocol providers. For example, the application server has a
built-in mail provider that encompasses the most common protocol providers. These protocol providers are
installed as the default and suffice for most applications. If you have a particular application that requires
custom protocol providers, follow the steps that are outlined in the chapter on mail sessions in the
JavaMail API Design Specification to install your own protocol providers.

Mail sessions are represented by the javax.mail.Session class. A mail session object authenticates users
and controls access to messaging systems.

To create mail applications that are platform independent, use a resource factory reference to create a
mail session. A resource factory is an object that provides access to resources in the deployed
environment of a program. Resource factories use the naming conventions that are defined by the Java
Naming and Directory Interface (JNDI).

Note: Ensure that every mail session is defined under a parent mail provider. Select a mail provider first
and then create your new mail session.

Mail: Resources for learning

Use the following links to find relevant supplemental information about the JavaMail API. The information
resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the
information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere
Application Server product, but is useful all or in part for understanding the product. When possible, links
are provided to technical papers and Redbooks that supplement the broad coverage of the release
documentation with in-depth examinations of particular product areas.

Programming model and decisions
+ [JavaMail documentation|

Programming specifications
+ [JavaMail 1.3 API documentation|(Sun Java specifications)

© Copyright IBM Corp. 2011 193

http://java.sun.com/products/javamail/index.html
http://java.sun.com/products/javamail/javadocs/index.html

JavaMail support for Internet Protocol 6.0
WebSphere Application Server and its JavaMail component support Internet Protocol Version 6.0 (IPv6).

Support for IPv6, includes the following:
* Both can run on a pure IPv4 network, a pure IPv6 network, or a mixed IPv4 and IPv6 network.

* On either the pure IPv6 network or the mixed network, the JavaMail component works with mail servers,
such as the SMTP mail transfer agent, and the IMAP and POP3 mail stores,

» that are also IPv6 compatible. Additionally, a JavaMail component that is run on the mixed IPv4 and
IPv6 network can communicate with mail servers using IPv4.

Use of brackets with IPv6 addresses

When you configure a mail session, you can specify the mail server hosts (also known as mail transport
and mail store hosts) with domain-qualified host names or numerical IP addresses. Using host names is
generally the preferred method. If you use IP addresses, however, consider enclosing IPv6 addresses in
square brackets to prevent parsing inaccuracies. See the following example:

[fe80::202:57ff:fec4:2334]

The JavaMail API requires a combination of many host names or IP addresses with a port number, using
the host:port number syntax . This extra colon can cause the port number to be read as part of an IPv6
address. Using brackets prevents your JavaMail implementation from processing the extra characters
erroneously.

URLSs

A Uniform Resource Locator (URL) is an identifier that points to an electronically accessible resource, such
as a directory file on a machine in a network, or a document stored in a database.

URLs appear in the format scheme:scheme_information.

You can represent a scheme as HTTP, FTP, file, or another term that identifies the type of resource and
the mechanism by which you can access the resource.

In a web browser location or address box, a URL for a file available using HyperText Transfer Protocol
(HTTP) starts with http:. An example is http://www.ibm.com. Files available using File Transfer Protocol
(FTP) start with ftp:. Files available locally start with file:.

The scheme_information commonly identifies the Internet machine making a resource available, the path
to that resource, and the resource name. The scheme_information for HTTP, FTP and file generally starts
with two slashes (//), then provides the Internet address separated from the resource path name with one
slash (/). For example,

http://www.ibm.com/software/webservers/appserv/library.html.

For HTTP and FTP, the path name ends in a slash when the URL points to a directory. In such cases, the
server generally returns the default index for the directory.

URLs: Resources for learning

Use the following links to find relevant supplemental information about URLs. The information resides on
IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere
Application Server product, but is useful all or in part for understanding the product. When possible, links

194 Overview

are provided to technical papers and Redbooks that supplement the broad coverage of the release
documentation with in-depth examinations of particular product areas.

Programming specifications

W3C Architecture - Naming and Addressing: URIs, URLS|

URL API documentation|

Chapter 12. Mail, URLs, and other Java EE resources

195

http://www.w3.org/addressing/
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html

196 Overview

Chapter 13. Managed beans
This page provides a starting point for finding information about Managed beans.

Managed beans are container-managed objects with minimal requirements, otherwise known as Plain Old
Java Objects (POJO). They support a small set of basic services, such as resource injection, life cycle
callbacks, and interceptors. Other, more advanced, aspects are introduced in companion specifications, to
keep the basic model as simple and as universally useful as possible.

Managed beans offer a lightweight component model aligned with the rest of the Java Platform Enterprise
Edition (Java EE). By supporting the common resource injection and life cycle services, Managed beans fit
into the Java EE programming model. At the same time, the lightweight nature of Managed beans makes
them a natural starting point to encapsulate application functionality, with the knowledge that they can be
formed into more powerful components. In this sense, Managed beans can be seen as a Java EE
platform-enhanced version of the JavaBeans component model found on the Java Platform Standard
Edition (Java SE).

Managed beans

The Managed Beans specification (JSR -316) is used to define managed beans for the Java Platform
Enterprise Edition (EE) and is a part of the Java EE 6 platform.

Managed beans are container-managed objects with minimal supported services, such as resource
injection, life cycle callbacks and interceptors, and have the following characteristics:

* A managed bean does not have its own component-scoped java:comp namespace. Therefore, its
resources can be defined in java:app and java:module only.

* Managed beans are local beans only and cannot be defined in java:global.

* Managed bean methods run in the same thread as the calling thread. For example, the method does
not start its own thread.

* Managed bean methods use the same context as the calling thread.
» Managed beans are defined with the javax.annotation.ManagedBean annotation.

* A managed bean can have an optional name and is bound into java:module and java:app only if a
name is present; for example:

@GManagedBean ("myCart")
public class Cart { ... }

» A reference to a managed bean can be obtained through resource injection, or lookup in java:module or
java:app, when a name is specified.

Managed beans support the PostConstruct and PreDestroy life cycle callbacks.

© Copyright IBM Corp. 2011 197

198 Overview

Chapter 14. Messaging resources

This page provides a starting point for finding information about the use of asynchronous messaging
resources for enterprise applications with WebSphere Application Server.

WebSphere Application Server supports asynchronous messaging based on the Java Message Service
(JMS) and the Java EE Connector Architecture (JCA) specifications, which provide a common way for
Java programs (clients and Java EE applications) to create, send, receive, and read asynchronous
requests, as messages.

JMS support enables applications to exchange messages asynchronously with other JMS clients by using
JMS destinations (queues or topics). Some messaging providers also allow WebSphere Application Server
applications to use JMS support to exchange messages asynchronously with non-JMS applications; for
example, WebSphere Application Server applications often need to exchange messages with traditional
WebSphere MQ applications. Applications can explicitly poll for messages from JMS destinations, or they
can use message-driven beans to automatically retrieve messages from JMS destinations without explicitly
polling for messages.

WebSphere Application Server supports the following messaging providers:

* The WebSphere Application Server default messaging provider (which uses service integration as the
provider).

* The WebSphere MQ messaging provider (which uses your WebSphere MQ system as the provider).

» Third-party messaging providers that implement either a JCA Version 1.5 resource adapter or the ASF
component of the JMS Version 1.0.2 specification.

Styles of messaging in applications

Applications can use point-to-point and publish/subscribe messaging. These styles of messaging can be
used in the following ways: one-way; request and response; one-way and forward.

Applications can use the following styles of asynchronous messaging:

Point-to-point
Point-to-point applications typically use queues to pass messages between each other. An
application sends a message to another application by identifying, implicitly or explicitly, a
destination queue. The underlying messaging and queuing system receives the message from the
sending application and routes the message to its destination queue. The receiving application can
then retrieve the message from the queue.

Publish/subscribe
In publish/subscribe messaging, there are two types of application: publisher and subscriber.

A publisher supplies information in the form of messages. When a publisher publishes a message,
it specifies a topic, which identifies the subject of the information inside the message.

A subscriber is a consumer of the information that is published. A subscriber specifies the topics it
is interested in by sending subscription requests to a publish/subscribe broker. The broker receives
published messages from publishers and subscription requests from subscribers, and it routes
published messages to subscribers. A subscriber receives messages on only those topics to which
it has subscribed.

Both styles of messaging can be used in the same application.
Applications can use asynchronous messaging in the following ways:
One-way

An application sends a message, and does not want a response. A message like this can be
referred to as a datagram.

© Copyright IBM Corp. 2011 199

One-way and forward
An application sends a request to another application, which sends a message to yet another
application.

Request and response
An application sends a request to another application and expects to receive a response in return.

A typical JMS messaging pattern involves a requesting application sending a message to a JMS
queue for processing by a messaging service (for example, a message-driven bean). When the
requesting application sends the request message, the message identifies another JMS queue to
which the service should send a reply message. After sending the request message, the
requesting application either waits for the reply message to arrive, or it reconnects later to retrieve
the reply message.

These messaging techniques can be combined to produce a variety of asynchronous messaging
scenarios.

For details of how WebSphere applications can use JMS and message-driven beans for asynchronous
messaging, see the following topics:

+ [Chapter 17, “JMS interfaces - explicit polling for messages,” on page 323

+ [“Message-driven beans - automatic message retrieval” on page 150

For more information about these messaging techniques and the Java Message Service (JMS), see |Sun's|
Java Message Service (JMS) specification documentation (http://developer.java.sun.com/developer/|
technicalArticles/Networking/messaging/)|

For more information about message-driven bean and inbound messaging support, see [Sun's Enterprise]
JavaBeans specification (http:/java.sun.com/products/ejb/docs.htmi)l

For information about JCA inbound messaging processing, see [Sun's J2EE Connector Architecture]
lspecification (http:/java.sun.com/j2ee/connector/download.html)

Types of messaging providers

You can configure any of three main types of Java Message Service (JMS) providers in WebSphere
Application Server: The WebSphere Application Server default messaging provider (which uses service
integration as the provider), the WebSphere MQ messaging provider (which uses your WebSphere MQ
system as the provider) and third-party messaging providers (which use another company's product as the
provider).

Overview

WebSphere Application Server supports JMS messaging through the following providers:
* [“Default messaging provider” on page 201

+ [‘WebSphere MQ messaging provider” on page 201

“Third-party messaging provider” on page 202|

Your applications can use messaging resources from any of these JMS providers. The choice of provider
is most often dictated by requirements to use or integrate with an existing messaging system. For
example, you might already have a messaging infrastructure based on WebSphere MQ. In this case, you
can either connect directly by using the WebSphere MQ messaging provider, or configure a service
integration bus with links to a WebSphere MQ network and then access the bus through the default
messaging provider.

You can have more than one type of messaging provider configured in WebSphere Application Server:
» All types of provider can be configured within one cell.

200 Overview

http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/
http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/
http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html

» Different applications can use the same, or different, providers.
* One application can access multiple providers.

Note: The|Version 5 default messaging provider|is deprecated. For backwards compatibility with earlier
releases, WebSphere Application Server continues to support this default messaging provider. Your
applications that still use these resources can communicate with Version 5 nodes in mixed cells at
later versions.

Default messaging provider

If you mainly want to use messaging between applications in WebSphere Application Server, perhaps with
some interaction with a WebSphere MQ system, the default messaging provider is a logical choice. This
provider uses service integration functions and is part of the WebSphere Application Server runtime
environment.

To use the default messaging provider, your applications connect to a service integration bus. You can
assign JMS queues (for point-to-point messaging) or JMS topics (for publish/subscribe messaging) as
destinations on the service integration bus.

The default messaging provider is characterized as follows:

* A service integration bus comprises messaging engines that run in WebSphere Application Server
processes and dynamically connect to one another by using dynamic discovery. A messaging
application connects to the bus through a messaging engine.

» Messaging engines use WebSphere Application Server clustering to provide high availability and
scalability, and they use the same management framework as the rest of WebSphere Application
Server.

» Bus client applications can run from within WebSphere Application Server (JMS), or run as stand-alone
Java clients (using the J2SE Client for JMS) or run as non-Java clients (XMS).

There are two ways in which you can connect to a WebSphere MQ system through the default messaging
provider:

» Connect a bus to a WebSphere MQ network, by using a WebSphere MQ link. The WebSphere MQ

network appears to the service integration bus as a foreign bus, and the service integration bus appears
to WebSphere MQ as another queue manager.

» Connect directly to WebSphere MQ queues located on WebSphere MQ queue managers or (for
WebSphere MQ for z/OS) queue-sharing groups, by using a WebSphere MQ server bus member. Each
WebSphere MQ queue is made available at a queue-type destination on the bus.

For more information about these two approaches, see |‘Interoperation with WebSphere MQ: Comparison|
[of key features” on page 237

To configure and manage messaging with the default messaging provider, see the information on
|managing messaging with the default messaging providerl

WebSphere MQ messaging provider

Through the WebSphere MQ messaging provider in WebSphere Application Server, Java Message Service
(JMS) messaging applications can use your WebSphere MQ system as an external provider of JMS
messaging resources.

You can use WebSphere Application Server to configure WebSphere MQ resources for applications (for
example queue connection factories) and to manage messages and subscriptions associated with JMS
destinations. You administer security through WebSphere MQ.

WebSphere MQ is characterized as follows:

Chapter 14. Messaging resources 201

* Messaging is handled by a network of queue managers, each running in its own set of processes and
having its own administration.

* Features such as shared queues (on WebSphere MQ for z/OS) and WebSphere MQ clustering simplify
administration and provide dynamic discovery.

* Many IBM and partner products support WebSphere MQ with (for example) monitoring and control, high
availability and clustering.

* WebSphere MQ clients can run within WebSphere Application Server (JMS), or almost any other
messaging environment by using a variety of APIs.

For more information about the WebSphere MQ messaging provider, see [‘Interoperation using the|
|WebSphere MQ messaging provider’ on page 242.| To configure and manage messaging with this
provider, see [Managing messaging with the WebSphere MQ messaging provider|

Third-party messaging provider

You can configure any third-party messaging provider that supports the JMS Version 1.1 specification. You
might want to do this, for example, if you have existing investments.

To administer a third-party messaging provider, you use either the resource adaptor (for a Java EE
Connector Architecture (JCA) 1.5-compliant messaging provider) or the client (for a non-JCA messaging
provider) that is supplied by the third party. You use the WebSphere Application Server administrative
console to administer the activation specifications, connection factories and destinations that are within
WebSphere Application Server, but you cannot use the administrative console to administer the JMS
provider itself, or any of its resources that are outside of WebSphere Application Server.

To use message-driven beans, third-party messaging providers must either provide an inbound JCA
1.5-compliant resource adapter, or (for non-JCA messaging providers) include Application Server Facility
(ASF), an optional feature that is part of the JMS Version 1.1 specification.

To work with a third-party provider, see [Managing messaging with a third-party JCA 1.5-complian{
[messaging provider or [Managing messaging with a third-party non-JCA messaging provider|

Default messaging

Use these topics to learn about using the default messaging provider to support the use of the Java
Message Service (JMS) by enterprise applications deployed on WebSphere Application Server.

The default messaging provider is installed and runs as part of WebSphere Application Server.

The default messaging provider supports JMS 1.1 domain-independent interfaces (sometimes referred to
as “unified” or “common” interfaces). This enables applications to use the same common interfaces for
both point-to-point and publish/subscribe messaging. This also enables both point-to-point and
publish/subscribe messaging within the same transaction. With JMS 1.1, this approach is recommended
for new applications. The domain-specific interfaces are supported for backwards compatibility as
described in section 1.5 of the JMS 1.1 specification.

The default messaging provider is based on service integration technologies. You can use the WebSphere
Application Server administrative console to configure JMS resources:

» A JCA activation specification to enable a message-driven bean to communicate with the default
messaging provider.

* A JMS connection factory to connect to a service integration bus

* A JMS queue or topic assigned to a bus destination on the bus. Such JMS queues and topics are
available, over a long period of time, to all applications with access to the bus destination.

202 Overview

For more information about using the default messaging provider to support JMS messaging, see the
following topics:

« [‘JCA activation specifications and service integration’|

« [*JMS connection factories and service integration’]

* |“JMS queue resources and service integration” on page 204|

» ['JMS topic resources and service integration” on page 205|

« [“Client access to JMS resources” on page 207|

* [‘The createQueue or createTopic method and the default messaging provider” on page 209|
|“How JMS applications connect to a messaging engine on a bus” on page 211|

JCA activation specifications and service integration

A Java EE Connector Architecture (JCA) 1.5 activation specification enables a message-driven bean to
communicate with the default messaging provider.

You create a JMS activation specification if you want to use a message-driven bean to communicate with
the default messaging provider through Java EE Connector Architecture (JCA) 1.5. JCA provides Java
connectivity between application servers such as WebSphere Application Server, and enterprise
information systems. It provides a standardized way of integrating JMS providers with Java EE application
servers, and provides a framework for exchanging data with enterprise systems, where data is transferred
in the form of messages.

One or more message-driven beans can share a single JMS activation specification.

All the activation specification configuration properties apart from Name, JNDI name, Destination JNDI
name, and Authentication alias are overridden by appropriately named activation-configuration properties
in the deployment descriptor of an associated EJB 2.1 or later message-driven bean. For an EJB 2.0
message-driven bean, the Destination type, Subscription durability, Acknowledge mode and Message
selector properties are overridden by the corresponding elements in the deployment descriptor. For either
type of bean the Destination JNDI name property can be overridden by a value specified in the
message-driven bean bindings.

JMS connection factories and service integration
A JMS connection factory is used to create connections to JMS resources on a service integration bus.

A “domain-independent” JMS connection factory supports the JMS 1.1 domain-independent interfaces
(sometimes referred to as the “unified” or “common” interfaces). This enables applications to use the
same, common, interfaces for both point-to-point and publish/subscribe messaging. This also enables both
point-to-point and publish/subscribe messaging within the same transaction.

Due to the interface inheritance defined by the JMS specification, a JMS 1.1 application can use a JMS
1.0.2b, domain-specific, connection factory. However, a JMS 1.0.2b application cannot use a JMS 1.1
domain-independent connection factory.

You should use the connection factory type that matches the JMS level and domain pattern in which an
application is developed. For example, use a domain-independent JMS connection factory for a JMS
application developed to use JMS 1.1 domain-independent interfaces, and use a JMS queue connection
factory for a JMS application developed to use domain-specific queue interfaces.

Applications running in a server that is a member of a bus can locate a messaging engine in that bus.

Client applications running outside of an application server - for example, running in a client container or
outside the WebSphere Application Server environment - cannot locate directly a suitable messaging

Chapter 14. Messaging resources 203

engine to connect to in the target bus. Similarly, an application running on a server in one cell to connect
to a target bus in another cell cannot locate directly a suitable messaging engine to connect to in the
target bus.

In these scenarios, the clients (or servers in another bus) must complete a bootstrap process through a
bootstrap server that is a member of the target bus. A bootstrap server is an application server running the
SIB Service, but does not have to be running any messaging engines. The bootstrap server selects a
messaging engine that is running in an application server that supports the required target transport chain.
For the bootstrap process to be possible, you must configure one or more provider end points in the
connection factory used by the client.

JMS queue resources and service integration

JMS queue resources (queues and queue connection factories) are provided by the default messaging
provider for JMS point-to-point messaging and supported by a service integration bus.

The following figure shows a bus with two members, a server and cluster. The two members each have a
JMS queue. An application sends messages to one JMS queue and retrieves messages from the other
JMS queue. There are queue destinations on a service integration bus and the JMS connection factories.
These objects are described in detail below.

Application
Produce“/ 'Yonsumer
JMS
connection facto JMS destinations
ry Q1 (queues) Q2 iQt Temporary
7 .0 Queue
JMS queue Connections
connection factory :
Q1 Q1 Q2|| - Qty-
Destinations D1 D1 D2 D3
Server1 Server2 Server3
Cluster1
Bus

Figure 25. JMS point-to-point messaging and the default messaging provider

JMS queue
The term “JMS queue” is used to refer to the JMS destination (an instance of javax.jms.Queue)
that applications interact with, and that an administrator configures as a JMS resource of the
default messaging provider.

An administrator can define a JMS queue, an administrative object that encapsulates the name of
a queue destination on a service integration bus. Applications can obtain the JMS queue by
looking its name up in the JNDI namespace.

204 Overview

Applications that uses JMS point-to-point messaging act as producers or consumers of messages
with JMS queues, and have no need to know about the service integration resources that support
JMS queues.

Queue
The term “queue” is used as an abbreviation for “queue destination”, and refers to a service
integration bus destination configured for point-to-point messaging.

The administrator assigns the queue to only one member (an application server or server cluster)
of the bus. The messaging engine in the bus member hosts the message point for the queue,
known as a queue point. The queue point is the location where messages for the queue are
stored and processed on the bus.

If the bus member has more than one messaging engine, the queue is partitioned across the
messaging engines. Each messaging engine hosts a separate queue point for the queue.

JMS connection factory
A “JMS connection factory” creates connections to a messaging engine through which it can
access messages on queue points anywhere on the bus.

With JMS 1.1, you are recommended to use domain-independent JMS connection factories for
new applications. Domain-specific queue connection factories are supported for backwards
compatibility for JMS applications developed to use domain-specific queue interfaces, as described
in section 1.5 of the JMS 1.1 specification.

Temporary JMS queues
In addition to using JMS queues that are created as administrative objects, an application can also
create its own temporary JMS queues, which exist at runtime only for the duration of a connection.
Only that connection can create MessageConsumers for the temporary JMS queue; for example,
for use as the JMSReplyTo queue for service requests.

For more information about creating temporary JMS destinations, see section 4.43 of the JMS 1.1
specification.

For a temporary JMS queue, the service integration bus creates a temporary destination, which
the administrator can list and browse but usually does not have to act on.

JMS topic resources and service integration

JMS topic resources (topics, topic spaces, connection factories, durable subscriptions) are provided by the
default messaging provider for JMS publish/subscribe messaging, and supported by a service integration
bus.

JMS publish/subscribe messaging and the default messaging provider is shown in the following figure:

Chapter 14. Messaging resources 205

connection factory Topic1 JMS destinations Topic2
(topics)
JMS topic Connections

connection factory

Application

Produci/ vYonsumer
JMS

Topic1 Topic1 Topic1
Topic2 Topic2 Topic2
Destinations D1 D1 D2
Server1 Server2 Server3
Cluster1
Bus

Figure 26. JMS publish/subscribe messaging and the default messaging provider

JMS topic

The term “JMS topic” is used to refer to the JMS destination (an instance of javax.jms.Topic) that
applications interact with, and that an administrator configures as a JMS resource of the default
messaging provider.

An application that uses JMS publish/subscribe messaging acts as a producer or consumer of
messages with JMS topics, and has no need to know about other service integration resources
that support the JMS topic.

An administrator can define a JMS topic, an administrative object that encapsulates the name of a
topic and a topic space on a service integration bus. Applications can obtain the JMS topic by
looking its name up in the JNDI namespace.

JMS applications can publish messages to, and subscribe to messages from, JMS topics.
Subscribing applications can usually receive messages published to a topic only when the
subscriber is connected to the server.

The default messaging provider also supports the use of durable subscriptions to topics, which
enable the subscriber to receive messages that were published when the subscriber was
disconnected. For more information about durable subscriptions, see section 6.11.1 of the JMS 1.1
specification.

Topic space

Topic

A topic space (a hierarchical collection of topics) is a virtual location on a service integration bus
where messages are stored and processed for publish/subscribe messaging.

Unlike configuring queues, the administrator does not have to assign the topic space to a bus
member. A topic space has a publication point defined automatically for each messaging engine in
the bus. Messages for the topic space are stored and processed on all its publication points.

The term “topic” refers to a discriminator within a topic space.

When subscribing to topics, applications can specify wildcard characters to select a range of
topics.

206 Overview

JMS connection factory
A “JMS connection factory” creates connections to a messaging engine that provides a publication
point for the topic space.

With JMS 1.1, you are recommended to use domain-independent JMS connection factories for
new applications. Domain-specific topic connection factories are supported for backwards
compatibility for JMS applications developed to use domain-specific topic interfaces, as described
in section 1.5 of the JMS 1.1 specification.

Temporary JMS topics
In addition to using JMS topics that are created as administrative objects, an application can also
create its own temporary JMS topics, which exist at runtime only for the duration of a connection.
Only that connection can create MessageConsumers for the temporary JMS topic.

For more information about creating temporary JMS destinations, see section 4.43 of the JMS 1.1
specification.

For a temporary JMS topic, the service integration bus creates a temporary topic space, which the
administrator can list and browse but usually does not have to act on. A temporary topic space is
deleted automatically when the connection is closed.

Durable subscriptions
A durable subscription on a JMS topic enables a subscriber to receive a copy of all messages
published to that topic, even messages published during periods of time when the subscriber is
not connected to the server. Therefore, subscriber applications can operate disconnected from the
server for long periods of time, and then reconnect to the server and process messages that were
published during their absence. If an application creates a durable subscription, it is added to the
list that administrators can display and act on by using the administrative console.

Client access to JMS resources

How WebSphere Application Server Version 5.1 application clients can access Java Message Service
(JMS) resources provided by the default messaging provider.

Both Java EE application clients and thin application clients can access JMS resources provided by the
default messaging provider:

* A Java EE application client supports the client container that provides easy access to services. The
Java EE application client has the advantage of performing a simple Java Naming and Directory
Interface (JNDI) namespace lookup to access the required service or resource.

* An application that uses a WebSphere Application Server thin client can use JNDI to obtain a
connection factory from WebSphere Application Server, but the JNDI initial context must be set up by
the application because no container exists for doing this for the application. Although the application
can use the JMS API to explicitly create connection factories, it can still do JNDI lookups.

In addition to both types of current WebSphere Application Server application clients, WebSphere
Application Server Version 5.1 Java EE application clients can use their existing Version 5.1-style JMS
resources to access service integration bus destinations for the default messaging provider. The link
between Java EE application clients developed for WebSphere Application Server Version 5.1, and later
versions of the application server, is defined by a WebSphere MQ client link object. One or more
WebSphere Application Server Version 5.1 clients can use the same WebSphere MQ client link.

As for other types of resources, a Java EE application client can use resource environment references and
resource references to use logical names to lookup JMS resources.

 If you configure your Java EE application client to use resource environment references (to resources
bound into the server JNDI namespace), you use the administrative console to define the resources.

Chapter 14. Messaging resources 207

 If you configure your Java EE application client to use resource references (to local resources), you use

the Application Client Resource Configuration Tool (ACRCT) to define the resources. For more

information about ACRCT, see [Starting the Application Client Resource Configuration Tool and opening

an EAR file
Client JNDI
H O namespace
Client JNDI V6 _ _
namespace O JMS connection
H Local JMS factories and
V5 O resources destingtions Local JMS
O JMS connection JNDI resources
factories and E’ lookups
destinations
v
v
V5 V6 J2EE
V5 _‘JZE_E Embedded . application
application Messaging client
client K Client
, , Client container
Client container
Server JNDI
namespace
<—> Message flows V6 O
O JMS connection
factories and E’
l / destingtions
WebSphere Messaging Bus
MQ client link engine destination
V6 application server

Figure 27. Message flows between WebSphere Application Server Version 5.1 Java EE application clients and a
Version 6 or later application server

Here is an example of how a WebSphere Application Server thin application running in a J2SE
environment can perform a JNDI lookup:
import javax.naming.*;
Properties env = new Properties();

env.put(Context.PROVIDER URL,"iiop://9.20.241.23:2809");
env.put(Context.INITIAL_CONTEXT_FACTORY,"com.ibm.websphere.naming.WsnInitialContextFactory");

InitialContext jndi = new InitialContext(env);

TopicConnectionFactory topicConnectionFactory = (TopicConnectionFactory)jndi.lookup("tcfIBM");

The Context.PROVIDER_URL must be set to point to a WebSphere Application Server and the port server
BOOTSTRAP_ADDRESS.

208 Overview

The createQueue or createTopic method and the default messaging
provider

You can use the Session.createQueue(String) method or Session.createTopic(String) method instead of
using JNDI lookup to create a JMS Queue or JMS Topic with the default messaging provider.

Applications can use the InitialContext.lookup() method to retrieve administered objects. An alternative, but
less manageable, approach to obtaining administratively defined JMS destination objects by JNDI lookup
is to use the Session.createQueue(String) method or Session.createTopic(String) method. For example,

Queue g = mySession.createQueue("Ql");
creates a JMS Queue instance that can be used to reference the existing destination Q1.

With the default messaging provider, the existing destination exists as a queue or topic space on the bus
to which the session is connected.

createQueue

The Session.createQueue(String) method is used to create a JMS Queue object representing an existing
destination. This provides an alternative, but less manageable, approach to obtaining
administratively-defined JMS Queue objects by JNDI lookup.

Simple form
In its simplest form, the parameter to the createQueue method is the name of an existing
destination on the bus to which the session is connected. For example, if there exists a queue
named Q1 then the following method creates a JMS Queue instance that can be used to
reference that destination:

Queue q = mySession.createQueue("Ql");

URI form
For more complex situations, applications can use a URI-based format. The URI format allows an
arbitrary number of name value pairs to be supplied to set various properties of the Queue object.

The queue URI is identified by the prefix queue://, followed by the name of the destination. The
simple form for Q1 above can be expressed with the following URI:

Queue q = mySession.createQueue("queue://Q1");

Name value pairs are introduced by a question mark ?. For example, an application might connect
a session to one bus then use the following format to create a JMS Queue instance for Q2 on a
different bus, called otherBus:

Queue g = mySession.createQueue("queue://Q2?busName=otherBus");

Multiple name value pairs are separated by an ampersand character &, for example:
Queue g = mySession.createQueue("queue://Q27busName=otherBus&deliveryMode=
Application&readAhead=AsConnection&priority=6");

Properties

busName, deliveryMode, priority, readAhead, and timeToLive. See the generated API
information for a description of these properties.

createTopic

The Session.createTopic(String) method is used to create a JMS Topic object representing an existing
destination. (Note that for topics it is the topic space rather than the topic that exists.) This provides an
alternative, but less manageable, approach to obtaining administratively-defined JMS Topic objects by
JNDI lookup.

Simple form
In its simplest form, the parameter to the createTopic method is the name of a topic in the default

Chapter 14. Messaging resources 209

topic space on the bus to which the session is connected. For example, if the default topic space
exists, then a JMS Topic instance that can be used to reference the cats topic on the default topic
space:

Topic t = mySession.createTopic("cats");

To specify a non-default topic space, the special syntax of the form topicSpace:topic can be
used. For example:

Topic t = mySession.createTopic("kennelTopicSpace:dogs");

URI form
For more complex situations a URI based format can be used. The topic URI is identified by the
prefix topic:// followed by the name of the topic. The examples above can be expressed as the
following URIs:

Topic t = mySession.createTopic("topic://cats");

Topic t = mySession.createTopic("topic://dogs?topicSpace=kennelTopicSpace");

As for queues, multiple name value pairs are separated by an ampersand &.

Properties
busName, deliveryMode, priority, readAhead, timeToLive, and topicSpace. See the generated
API information for a description of these properties.

Support for MA88 URIs

WebSphere Application Server Version 5.1 applications can use createQueue and createTopic methods to
create JMS Queue and Topic objects with the Version 5 embedded messaging provider (the Version 5.1
JMS messaging provider). To assist you in migrating these applications, the default messaging provider
(the service integration bus) supports a large subset of valid MA88-specific string parameters to the
createQueue and createTopic methods.

Default queue manager
An MA88 URI for a queue includes the name of the queue manager; for example:

queue://qm/queue

To specify the default queue manager, the queue manager name is left out; for example:
queue:///queue (note the three forward slash characters, ///). Because the interpretation of the
default queue manager is logically consistent with the concept of a queue on the current bus, the
bus tolerates the presence of three forward slash characters after the queue: prefix. This allows
MA88 queue URIs with a default queue manager to be used by the bus without change.

Non-default queue manager
If an MA88 queue URI specifies a non-default queue manager, as in queue://gm/queue, then this
has an ambiguous interpretation in the bus. To highlight the potential problem and ensure that the
destination is given consideration during the porting process, such a URI generates a
JMSEXxception if passed to the createQueue() method.

MAS88 properties
As with the bus URIs, MA88 URIs can contain a number of name value pairs specifying
destination properties. Many of the MA88 specific properties have no direct equivalent in the bus
and are ignored silently. However, the following MA88 properties are mapped to bus equivalents:

MA88 name Service integration bus name Notes
expiry timeToLive
persistence deliveryMode 1 = NonPersistent
2 = Persistent
Anything else = Application

210 Overview

Topic wildcard translation

A topic used for consuming messages can include wild cards. The wild card syntax used in MA88 differs
from the XPath syntax used in the bus, so if an MA88 URI contains wild cards the bus attempts to convert
them to XPath equivalents. The conversion performed depends on the presence of the brokerVersion
property in the MA88 URI. The WebSphere Application Server Version 5.1 default messaging provider
required any URI specifying a topic wild card to include brokerVersion=1 in the name value pairs. The bus
therefore uses brokerVersion=1 as the trigger to undertake MQSI to XPath wild card conversion.

Case sensitivity
All parts of the string parameter for createQueue and createTopic are case sensitive.
Multiple instances of same property

If a URI contains multiple occurrences of a given property with conflicting values, it is not specified which
value is used.

Conflicting MA88 and bus properties

If a URI contains both a property and the MA88 equivalent of that property with conflicting values, it is not
specified which value is used.

Unknown properties

Any name value pairs for which the property name is not recognized are ignored without any error
reporting.

Escaping special characters

The following characters have special significance in the createQueue and createTopic string parameters:

: (colon)
This is used as a separator between the topic space and the topic in short form topic strings

? (question mark)
This is used to indicate the start of the name value pairs.

& (ampersand)
This is used to separate multiple name value pairs.

If you want to use any of these characters in a URI, you must prefix it with a backward slash \. The \
character can also be escaped by doubling it; \\. Note that the \ character is treated as a special
character by the Java language, and so must be doubled when placed in character string constants; for
example:

createTopic("myTop\\:ic") creates a topic with the name "myTop:ic"
createTopic("topic://my\\?Topi\\\\c") creates a topic with the name "my?Topi\c"
createQueue("queue://ql?busName=sil1y\\&bus") creates a queue with bus name "silly&bus"

How JMS applications connect to a messaging engine on a bus

There are several factors that affect how JMS applications connect to a service integration bus, so that
they can use resources provided by the bus.

To connect to a service integration bus, an application actually connects to a messaging engine on the
bus.

Chapter 14. Messaging resources 211

By default, the environment automatically connects applications to an available messaging engine on the

bus. However you can specify extra configuration details to influence the connection process; for example
to identify special bootstrap servers, or to limit connection to a subgroup of available messaging engines,

or to improve availability or performance, or to ensure sequential processing of messages received.

Applications running in an application server: Default configuration

Applications that are running in an application server are directed by the WebSphere Application Server
environment to an available messaging engine.

If the messaging engine is found in the same server, a connection is created that provides the application
with the fastest available connection to a messaging engine. Otherwise, if a messaging engine is found in
another process - on the same or a different host - a remote connection is made. If no suitable messaging
engine is found the application fails to connect to the bus.

hostA ‘ L hostB
— -_— -— -— L -— -_— -_— -_— -_— -_— _— -_— -— _— -

bus1

/ \
I serveri server2

|
' Remor l

Application emote N

| ppY connect "1 ME1—|_|_ I
|]
N e e e e e e e e e e e ————
/ bus2 \

In-process connect
1

server3

1
1
1
Application
X i ME2

N\ 7/

Figure 28. Default connection to a messaging engine - Applications running in an application server

The figure shows two applications running in application servers. Application X on server3 has connected
to the messaging engine running in the same server. Application Y on serveri has connected to a
messaging engine that is running in the same bus but on a different server and host, because server1
does not have a suitable messaging engine.

Applications running outside an application server

Client applications running outside an application server (for example, running in a client container or
outside the WebSphere Application Server environment) cannot locate a suitable messaging engine
themselves and must complete a bootstrap process through a bootstrap server. A bootstrap server is an
application server that is running the SIBService service, but is not necessarily running any messaging
engines. The bootstrap server selects a messaging engine that is running in an application server that
supports the required target transport chain.

212 Overview

hostA ‘ L hostB
— -_— -— -— L -— -_— -_— -_— -_— -_— _— -_— -— _— \

/ bus1

serveri server2

(bootstrap server) / ME1 —|_|—
A /
N e D e e e e e — e e e e e
| T

1. Bootstrap 2. Connect

—_— e == ==

client container

A 4

Application
X

Figure 29. Connection to a messaging engine - Applications running outside an application server

This figure shows a client application running outside an application server. To connect to a messaging
engine, the application connects first to a bootstrap server. The bootstrap server selects a messaging
engine then tells the client application to connect to that messaging engine.

A bootstrap server uses a specific port and bootstrap transport chain, which with the host name form the
endpoint address of the bootstrap server.

The properties of a JMS connection factory used by a client application control the selection of a suitable
messaging engine and how the client connects to the selected messaging engine. By default, a connection
factory expects to use a bootstrap server that has an endpoint address of
localhost:7276:BootstrapBasicMessaging. That is: the client application expects to use a bootstrap server
that is on the same host as the client, and that uses port 7276 and the predefined bootstrap transport
chain called BootstrapBasicMessaging.

Note: For the IBM i platform, you must (at least) change the default endpoint address from
localhost:7276:BootstrapBasicMessaging to your.server.name:7276:BootstrapBasicMessaging.

When you create an application server, it is automatically assigned a unique non-secure bootstrap port,
SIB_ENDPOINT_ADDRESS, and a secure bootstrap port, SIB_ENDPOINT_SECURE_ADDRESS. If you
want to use an application server as a bootstrap server, and the server has been assigned a non-secure
port other than 7276, or you want to use the secure port, then you must specify the endpoint address of
the server on the Provider endpoints property of the connection factory.

The endpoint addresses for bootstrap servers must be specified in every connection factory that is used by
applications outside of an application server. To avoid having to specify a long list of bootstrap servers,
you can provide a few highly-available servers as dedicated bootstrap servers. Then you only have to
specify a short list of bootstrap servers on each connection factory.

Chapter 14. Messaging resources 213

The messaging engine selection process

The selection process is used to choose a messaging engine that an application should connect to so that
it can use the resources of a service integration bus. The information that controls the selection process is
configured in one of the following places:

» For JMS client applications, this information is configured on the connection factory.

» For message-driven bean (MDB) applications, this information is configured on the activation
specification.

» For other types of application, this information is configured programmatically by the application.

Although a connection can be made to any available messaging engine, the connection process applies a
few simple rules to find the most suitable messaging engine. For an application running in an application
server, the process is as follows:

1. If a messaging engine is running in the required bus within the same application server, then a
connection is made from the application to the messaging engine. If there is no suitable messaging
engine, the next rule is checked.

2. If a messaging engine is running on the same host as the application, then the application makes a
remote connection to the selected messaging engine. If there is no suitable messaging engine, the
next rule is checked.

3. If a messaging engine is running anywhere in the bus, then the application makes a remote connection
to the selected messaging engine. If there is no suitable messaging engine, the connection attempt
does not succeed.

For an application running outside an application server, connection requests are workload balanced
across all the available messaging engines in the bus.

In both cases (that is, an application running in an application server and an application running outside an
application server) you can restrict the range of messaging engines available for connection, to a subgroup
of those available in the service integration bus. You do this by configuring the following connection
properties of the connection factory or activation specification:

Target The name of a target that identifies a group of messaging engines. Specify the type of target using
the Target type property.

Before the connection proximity search is performed to select a suitable messaging engine, the set
of messaging engines that are members of the specified target group are selected. The connection
proximity search is then restricted to these messaging engines. If a target group is not specified
(the default), then all messaging engines in the bus are considered during the connection proximity
search.

For example, if the Target type property is set to Bus member name, the Target property specifies
the name of the bus member from which suitable messaging engines can be chosen.

Target type
The type of target named in the Target property.

Bus member name
The name of a bus member. This option retrieves the active messaging engines that are
hosted by the named bus member (an application server or server cluster).

Custom messaging engine group hame
The name of a custom group of messaging engines (that form a self-declaring cluster).
This option retrieves the active messaging engines that have registered with the named
custom group.

Messaging engine name
The name of a messaging engine. This option retrieves the available endpoints that can
be used to reach the named messaging engine.

214 Overview

Target significance
This property defines whether the connection proximity search is restricted to only the messaging
engines in the target group.

Preferred
It is preferred that a messaging engine is selected from the target group. A messaging
engine in the target group is selected if one is available. If a messaging engine is not
available in the target group, a messaging engine outside the target group is selected if
available in the same service integration bus.

Required
It is required that a messaging engine is selected from the target group. A messaging
engine in the target group is selected if one is available. If a messaging engine is not
available in the target group, the connection process fails.

Target inbound transport chain

The name of the messaging engine inbound transport chain that the application should target
when connecting to a messaging engine in a separate process to the application.

These transport chains specify the communication protocols that can be used to communicate with
the application server to which the client application is connected. If a messaging engine in
another process is chosen, a connection can be made only if the messaging engine is in a server
that runs the specified inbound transport chain.

The following predefined messaging engine inbound transport chains are provided:

InboundBasicMessaging
JFAP over TCP/IP

InboundSecureMessaging
JFAP over SSL over TCP/IP

Connection proximity
For an application running in an application server, this property defines the proximity of
messaging engines relative to the application server. For an application running outside an
application server, this property defines the proximity of messaging engines relative to the
bootstrap server.

Bus Connections can be made to messaging engines in the same bus.

A suitable messaging engine in the same server is selected ahead of a suitable
messaging engine in the same host, and in turn ahead of a suitable messaging engine in
another host.

Cluster
Connections can be made to messaging engines in the same server cluster. If the
application is not running in a clustered server, or the bootstrap server is not in a cluster,
then there are no suitable messaging engines.

A suitable messaging engine in the same server is selected ahead of a suitable
messaging engine in the same host, and in turn ahead of a suitable messaging engine in
another host.

Host Connections can be made to messaging engines in the same host. A suitable messaging
engine in the same server is selected ahead of a suitable messaging engine in the same
host.

Server
Connections can be made to messaging engines in the same application server.

For MDB applications connecting to a cluster bus member, you can also enable either of the following
additional configurations:

Chapter 14. Messaging resources 215

» All servers in the cluster can receive messages from the MDB application, to make full use of the
processing power in the cluster.

» Just one server at a time can receive messages from the MDB application, to ensure sequential
processing of the messages.

For more information, see [‘How a message-driven bean connects in a cluster.”]

To create or modify a JMS connection factory, see the following topics:

+ |Configuring the messaging engine selection process for JMS applications}
+ |./ae/tin0001_.dital

» |createSIBJMSConnectionFactory command}
[modifySIBJMSConnectionFactory command}

To create or modify an activation specification, see the following topics:
../ae/tin0025 _.dital

« [../ae/rjn_jmsas_create.dita]

+ |../ae/rin_jmsas_modify.dita]

How a message-driven bean connects in a cluster

When an enterprise bean (EJB) application is deployed to an application server cluster, the application can
run on any of the servers in the cluster to provide high availability and scalability of the application. When
the EJB application is a message-driven bean (MDB), it can run on any of the servers in the cluster (for
high availability) and can be invoked concurrently in multiple application servers in the cluster (for
scalability). This behavior depends on the location of the MDB with respect to any service integration bus
members, and on the configuration of the MDB itself.

Note: For ease of management, connect the MDB directly to messaging engines in the bus member that
owns the bus queue or subscription that the MDB is servicing, rather than connecting through
intermediate messaging engines. For optimum messaging performance, deploy the MDB to the
same application server or cluster as the bus member.

By default, when an MDB application is deployed to an application server cluster that is also a service
integration bus cluster bus member, the MDB application connects to one or more messaging engines on
servers within the cluster. The default connection behavior, and the extra connection control that you can
apply to any JMS application including message-driven beans, are described in[‘How JMS applicationg
[connect to a messaging engine on a bus” on page 211.|However, if you use the configuration options
described in that topic, the message-driven bean is only driven on those servers in the cluster that host a
started messaging engine.

For MDB applications connecting to a cluster bus member, you can also enable either of the following
additional configurations:

» All servers in the cluster can receive messages from the MDB application, to make full use of the
processing power in the cluster.

» Just one server at a time can receive messages from the MDB application, to ensure sequential
processing of the messages.

These configurations are described in more detail in the following sections:
* MDB connection behavior: Within a single cluster bus member

— [The message-driven bean is driven only on those servers in the cluster bus member that host 4
started messaging engine]

— |All servers in a cluster bus member can receive messages from a message-driven bean|
» MDB connection behavior: Between a cluster and a separate bus member

216 Overview

— |All servers in a cluster can receive messages from messaging engines in a cluster bus member|
Just one server in a cluster can receive messages from a messaging engine in a cluster bus|

membe[|

The diagrams in these sections follow this key:

Figure 30. Topic diagram key

Active messaging engine (started)

Shadow/failover messaging engine (joined)

Active MDB instance in server1 (eligible to consume messages)

Inactive MDB instance (not eligible to consume messages)

MDB connection behavior: Within a single cluster bus member

The message-driven bean is driven only on those servers in the cluster bus member that host a

started messaging engine

/ Cluster bus member

Figure 31. MDB is driven by servers in the cluster bus member that hosts a started messaging engine (setup 1)

This is the default option. If the message-driven bean is deployed to a cluster bus member then
only the MDB endpoints in servers that have a messaging engine started locally are eligible to be
driven by available messages.

In figure 2, a cluster bus member contains three servers. server1 and server2 each contain an

active and failover messaging engine. The MDB endpoints running in each of these two servers
connect to their respective local messaging engines. server3 does not host a started messaging
engine, but it is hosting two failover messaging engines. It does not have an active MDB endpoint
and is not eligible to consume messages.

o

serveri
MDB1
A 4
ME1
| ME2 |
| S —

N

\

server2 server3 |

MDB1 I

|

|

' R I I I I

v MET [v MET [|
| NP B | Lo e e e |

—— | [|
I

ME2 | ME2 i |
[I

!

Chapter 14. Messaging resources

217

This configuration also provides high availability of the MDB application, and the messages on the
bus destination, if the messaging engines can fail over between servers in the cluster.

In figure 3, the cluster bus member is shown as in the previous figure. The messaging engine in
server1 has failed over to server2. Consequently, server2 now contains two active messaging
engines and the MDB endpoint running in server2 now connects to both of the local messaging
engines. The third server is not hosting a started messaging engine, does not have an active MDB
endpoint and is not eligible to consume messages.

o

/ Cluster bus member

serveri server2 server3

MDBH1

I
I
I
I
I A 4
I
I
I
|

—-— e - o - o . - .

Figure 32. MDB is driven by servers in the cluster bus member that hosts a started messaging engine (setup 2)

This configuration is enabled unless you select the Always activate MDBs in all servers option on
the activation specification.

All servers in a cluster bus member can receive messages from a message-driven bean

You can set the MDB endpoints in all the cluster servers as eligible to be driven by messages,
regardless of whether there is a local started messaging engine. Any MDB endpoint in a server
that does not have a started messaging engine connects directly to one of the messaging engines
in one of the other servers in the cluster. This approach ensures that all the available resources of
the cluster can be used to process the messages that are sent to the destinations.

In figure 4, a cluster bus member contains three servers. Two servers contain active messaging
engines. The MDB endpoints in each of these two servers connect to their respective local
messaging engines. The third server, that is not hosting a started messaging engine, is workload
balanced across the available messaging engines in the cluster. The MDB endpoint in the third
server is connected to a messaging engine running in one of the other two servers.

218 Overview

/ Cluster bus member

o

serveri server2 server3

MDB1 MDB1 MDB1

-~ s - - - - - - -t

Figure 33. Servers in a cluster bus member receive messages from a message-driven bean

To choose this configuration you select the Always activate MDBs in all servers option on the
activation specification.

Note: This configuration achieves the same effect, in terms of which MDB endpoints are driven,
as the following configuration (also described in this topic): |All servers in a cluster can|
[receive messages from messaging engines in a cluster bus member]|

MDB connection behavior: Between a cluster and a separate bus member

All servers in a cluster can receive messages from messaging engines in a cluster bus member

If you deploy the MDB application to a cluster that is not a bus member, the MDB attempts to
connect to the bus from every application server in the cluster, following the connection rules
described in[‘How JMS applications connect to a messaging engine on a bus” on page 211/ This
usually results in all of the MDB endpoints in the cluster being driven concurrently by messages
from an active messaging engine in the bus member. This approach ensures that all the available
resources of the cluster can be used to process messages sent to destinations in the cluster bus
member.

In figure 5, a cluster contains three servers, each with a MDB endpoint. A cluster bus member
contains two servers, and one hosts an active messaging engine. Each of the cluster's three MDB
endpoints connect to the active messaging engine in the cluster bus member.

Note: Under this configuration connections might not be made to all messaging engines, so there
could be a messaging engine that has no connection, and this could result in marooned
messages. This situation is less likely to occur if the activation specification used by the
MDB is set to server scope.

Chapter 14. Messaging resources 219

/ Cluster

o

serveri server2 server3

MDB1 MDBH1 MDB1

-~ e - - - - - - =t

i S N [E
o) e |- - - — —— -
! Cluster bus|membper S
I serveri server2 I
| |
| |
| |
| vy Lo |
| MEl | [: MEl] [: I
| D !
| |
I |
\ /

Figure 34. All servers in cluster receive messages from messaging engines in a cluster bus member

Note: This configuration achieves the same effect, in terms of which MDB endpoints are driven,
as the following configuration (also described in this topic): [All servers in a cluster bus|
[member can receive messages from a message-driven bean|

Just one server in a cluster can receive messages from a messaging engine in a cluster bus
member

To achieve sequential processing of the messages on the destination by a single server at a time,
configure the system so that only a single MDB endpoint is driven by messages at any one time.

In this pattern the other MDB endpoints and messaging engine are effectively in standby ready to
take over processing of messages if server1 stops.

In figure 6, a cluster contains three servers, each with a MDB endpoint. A cluster bus member also
contains two servers, one of which has an active messaging engine. Only one of the three MDB
endpoints in the cluster is connected to the active messaging engine running in the cluster bus

220 Overview

member.

o

! Cluster \
I serveri server2 server3 |
[MDB1 I
' |
' |
' |
' |
' |
' |
')
N e o o e e e e e e e D -
o o - — - - — — — —
! Cluster bus|member h
I serveri server2 I
| |
| |
| |
| I |
| MEL | [: MEr | [: I
| D !
| |
I |
\ /

Figure 35. One server receiving messages from messaging engine in a cluster bus member

To choose this configuration you configure the activation specification so that the MDB endpoints
in all the non-bus cluster servers are eligible to be driven by messages from a messaging engine
in the cluster bus member, and set the receive exclusive option on the destination in the cluster
bus member. When one of the MDB endpoints connects to the messaging engine, the engine
stops all other available MDB endpoints from connecting and continues to process messages
through the same MDB endpoint.

To achieve sequential processing of messages by an MDB further configuration might be required.
For more information about ensuring sequential processing of the messages on a destination, see
[‘Message ordering” on page 439

Chapter 14. Messaging resources 221

Why and when to pass the JMS message payload by reference

When large object messages or bytes messages are sent, the cost in memory and processor use of
serializing, deserializing, and copying the message payload can be significant. If you enable the pass
message payload by reference properties on a connection factory or activation specification, you tell the
default messaging provider to override the JMS 1.1 specification and potentially reduce or bypass this data

copying.
Background

The JMS 1.1 specification states that object messages are passed by value. This means that a JMS
provider such as the default messaging provider in WebSphere Application Server has to take a copy of
the object in ObjectMessage at the time the object is set into the message payload, in case the client
application modifies the object after setting it. In practice this means serializing it, as there is no other
entirely safe way to take a copy. The specification also states that when a consumer application gets the
data from the message, the JMS provider must create and return a copy of that data.

If you enable the “pass message payload by reference” properties, you might get memory and
performance improvements for JMS messaging.

CAUTION:

» The parts of the JMS specification that are bypassed by these properties are defined to ensure
message data integrity.

« Any of your JMS applications that use these properties must strictly follow the rules that are
described in detail below, or you risk losing data integrity.

* You should read and understand this entire topic before enabling these properties.

To pass the message payload by reference, you set the following properties on connection factories and
activation specifications:

producerDoesNotModifyPayloadAfterSet (for connection factories) or
forwarderDoesNotModifyPayloadAfterSet (for activation specifications)
When this property is enabled, object or bytes messages produced by the connection factory or
forwarded through the activation specification are not copied when set into the message and are
only serialized when absolutely necessary. Applications sending such messages must not modify
the data after it has been set into the message.

consumerDoesNotModifyPayloadAfterGet
When this property is enabled, object messages received through the connection factory or
activation specification are only serialized when absolutely necessary. The data obtained from
those messages must not be modified by applications.

Potential benefits of passing the message payload by reference

The following table shows the conditions under which you might get performance benefits by enabling the
“pass message payload by reference” properties. This table makes the following assumptions:

* Your JMS applications conform to the rules described in the next section of this topic.

* Your message producer and consumer applications run in the same JVM (server), along with the
messaging engine that hosts the destination used by these applications.

Note:

 If your applications run in different servers, or on the z/OS platform (where WebSphere
Application Server runs in multiple JVMs), then object messages are serialized and no
performance benefits are gained for these messages. Bytes message benefits might still be
gained.

222 Overview

* There are many internal runtime conditions that can cause your messages to be serialized, so
even if your configuration meets all the conditions described in this topic you might gain little or
no performance benefit from enabling the “pass message payload by reference” properties.

Table 22. How configuration and runtime factors determine what data is copied, when it is copied, and the potential
performance benefit.. The first column lists the degree of potential performance benefits. The second column
includes the configuration and runtime events of the potential benefits. The third column provides information such as
what data is copied and when the data is copied based on the configuration and runtime events of the potential
benefits.

Degree of potential performance benefit | Configuration and runtime events When the data is copied

No potential benefit The “pass message payload by reference” | Object message data is copied as soon as
properties are not enabled (default it is set into the message and when it is
behavior). retrieved from the message.

Bytes message data is copied as soon as
it is set into the message and when it is
retrieved from the message.

Some potential benefit The “pass message payload by reference” | Object message data is only copied when
properties are enabled, and either or both | necessary.
of the following conditions are true:

- The send or receive message is Bytes message data is only copied when

transacted. necessary.
» The consumer is not available when the
message is produced.
Maximum potential benefit The “pass message payload by reference” | Object message data might never be
properties are enabled, and both of the copied.

following conditions are true:
Bytes message data is only copied when
necessary.

* Neither the send nor the receive
message is transacted.

» The consumer is waiting for the
message when it is produced (for
example if the consumer is a
message-driven bean).

Rules that your JMS applications must obey

The parts of the JMS specification that are bypassed by the “pass message payload by reference”
properties are defined to ensure message data integrity. If your JMS applications obey the rules given in
the following table, then you can safely enable the “pass message payload by reference” properties on the
connection factories and activation specifications that the applications use.

If you enable the “pass message payload by reference” properties for JMS applications that do not follow
these rules, then the applications might receive exceptions or, more importantly, the integrity of the
message data might be compromised.

Table 23. Rules that your JMS applications must obey, by application type. The first column lists the JMS application
types. The second column provides the rules that the JMS application must follow.

Application type Rules

JMS producer application A JMS producer application that sends object messages must
not alter the object after it is set into the payload of the
message.

A JMS producer application that sends bytes messages:

* must write data into the message with a single call to
writeBytes (byte[]).

» must not alter the byte array after it is written into the
message.

Chapter 14. Messaging resources 223

Table 23. Rules that your JMS applications must obey, by application type (continued). The first column lists the
JMS application types. The second column provides the rules that the JMS application must follow.

Application type Rules

JMS consumer application A JMS consumer application that receives object messages must
not alter the payload it gets from the message.

JMS forwarder application A JMS forwarder application that replaces the payload of the
Note: A JMS forwarder application receives a message (through | received message with a new payload:

a connection factory, or if it is a message-driven bean through an |, (for object messages) must not alter the object after it is set
activation specification), then sends the message object on to into the payload of the message.

another destination.
» (for bytes messages):

— must write data into the message with a single call to
writeBytes(byte[]).

— must not alter the byte array after it is written into the
message.

Ensuring that your object messages can be serialized

Under normal JMS messaging conditions (that is, when the “pass message payload by reference”
properties are not enabled), the data in an object message is serialized as soon as the object is passed to
the messaging system, for example on set or send. If the message payload cannot be serialized, then an
exception message is immediately returned to the client application.

When the “pass message payload by reference” properties are enabled, the message payload is accepted
from the client application without attempting to serialize it. If the system later discovers that the data
cannot be serialized, the system can no longer inform the client application that sent the message - and
because the data is not serializable, the system cannot persist or transmit the complete message. The
message and its properties are stored, but the user data inside the message (the payload) cannot be
stored and is discarded. If there are serialization problems when the system tries to convert an object
message into a data graph for a mediation, the message payload is discarded and the mediation receives
a message with the data value set to null.

If your data cannot be serialized, then it is lost. Therefore you should first test your configuration without
enabling the “pass message payload by reference” properties, to check that all data sent into the system is
serializable.

When the system discovers that an object message cannot be serialized, it writes the following error
message (JMS_IBM_ExceptionMessage) to the SystemOut.1og file, where “{0}" is replaced by the class
name of the failing object:

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

CWSIKO0200E: An object of class “{0}” has been set into the message payload but it cannot be

serialized.

Explanation: An object message sent with the producerDoesNotModifyPayloadAfterSet flag
enabled on its connection factory was sent with a payload that was not serializable by the system.
This message data has been lost.

Action: Disable the producerDoesNotModifyPayloadAfterSet on the connection factory. Without
the flag enabled, the JMS application that sets the object into the message will receive any
serialization exception immediately.

224 Overview

The following exception properties are used to indicate that a data object cannot be serialized and has
been discarded. JMS applications can find out what has happened from the JMS_IBM Exception properties.
Mediations can find out what has happened from the JMS_IBM Exception and SI_Exception properties.

JMS_IBM_ExceptionReason
SIRCConstants.SIRC0200_OBJECT_FAILED_TO_SERIALIZE

JMS_IBM_ExceptionTimestamp
The time at which the object failed to serialize, in System.currentTimeMillis() form.

JMS_IBM_ExceptionMessage
Message CWSIKO200E, as previously described.

S|_ExceptionReason
SIRC0200_OBJECT_FAILED_TO_SERIALIZE

SI_ExceptionTimestamp
The time at which the object failed to serialize, in System.currentTimeMillis() form.

SI_Exceptioninserts
A string array containing one entry. The entry contains the class name of the object.

Note: The most likely explanation as to why your data objects cannot be serialized is that you have
written your own writeObject() or writeExternal() methods and have not fully tested every option
(for example NulTPointer exceptions, or ArrayIndexOutOfBounds exceptions).

Pass message payload by reference: Potential benefits for each processing step:

For each processing step taken by your JMS messaging application, check this table to see when and why
there is a potential performance benefit in enabling the “pass message payload by reference” properties
on the associated connection factory or activation specification.

When large object messages or bytes messages are sent, the cost in memory and processor use of
serializing, deserializing, and copying the message payload can be significant. If you enable the pass
message payload by reference properties on a connection factory or activation specification, you tell the
default messaging provider to override the JMS 1.1 specification and potentially reduce or bypass this data

copying.

CAUTION:

The parts of the JMS Specification that are bypassed by these properties are defined to ensure
message data integrity. Any of your JMS applications that use these properties must strictly follow
the rules that are described in the topic Why and when to pass the JMS message payload by
reference, or you risk losing data integrity.

To pass the message payload by reference, you set the following properties on connection factories and
activation specifications:

producerDoesNotModifyPayloadAfterSet (for connection factories) or
forwarderDoesNotModifyPayloadAfterSet (for activation specifications)
When this property is enabled, object or bytes messages produced by the connection factory or
forwarded through the activation specification are not copied when set into the message and are
only serialized when absolutely necessary. Applications sending such messages must not modify
the data after it has been set into the message.

consumerDoesNotModifyPayloadAfterGet
When this property is enabled, object messages received through the connection factory or
activation specification are only serialized when absolutely necessary. The data obtained from
those messages must not be modified by applications.

Chapter 14. Messaging resources 225

Table 24. Potential performance benefits for each processing step taken by your producer, consumer or forwarder

application.

The first column of the table lists the processing steps for the objects and bytes messages. The second

column indicates if there is a possibility for performance improvement. The third column provides a brief explanation

about the processes and the properties.

Is there potential for

integration bus destination.

performance
Processing step improvement? Explanation
Object messages with producer and consumer
applications
An object message is sent to a consumer Yes Under certain conditions, the payload object is
application in the same JVM. The passed by reference to the consumer application.
producerDoesNotModifyPayloadAfterSet and
consumerDoesNotModifyPayloadAfterGet If the message is not persistent or transacted, and
properties are both enabled. the consumer application is immediately available,
the payload object might never be serialized.
An object message is produced with the No No benefit is gained because the consumer
producerDoesNotModifyPayloadAfterSet property application does not have the
enabled, then received by a consumer application consumerDoesNotModifyPayloadAfterGet property
for which the enabled.
consumerDoesNotModifyPayloadAfterGet property
is not enabled.
An object message is sent to a single consumer No No benefit is gained because the single consumer
application in a different JVM. The application is in another JVM.
producerDoesNotModifyPayloadAfterSet and
consumerDoesNotModifyPayloadAfterGet
properties are both enabled.
An object message is received by multiple Yes All consumer applications with the
consumer applications (a topic) that all have the consumerDoesNotModifyPayloadAfterGet property
consumerDoesNotModifyPayloadAfterGet property enabled might receive a reference to the same
enabled and are all running in the same JVM. object, though this is not guaranteed.
Object messages with forwarder applications
An object message is forwarded and the forwarder | Yes There is a potential performance benefit in the
application accesses the payload of the message. following cases:
The consumerDoesNotMod|fyngIoadAfterGet and « The producer of the forwarded message has the
producgr/forwarderDoesNotModlfyPaonadAfterSet producerDoesNotModifyPayloadAfterSet
properties are enabled. property enabled and is in the same JVM as the
forwarder application.

» The consumer of the forwarded message has
the consumerDoesNotModifyPayloadAfterGet
property enabled and is in the same JVM as the
forwarder application.

An object message is forwarded and the forwarder | Yes There is a potential performance benefit if the

application accesses the payload of the message. consumer of the forwarded message has the

Only the producer/ consumerDoesNotModifyPayloadAfterGet property

forwarderDoesNotModifyPayloadAfterSet property enabled and is in the same JVM as the forwarder

is enabled. application.

An object message is forwarded and the forwarder | No If the payload of the object message is not

application does not access the payload of the accessed by the forwarder application then the

message. producer/forwarderDoesNotModifyPayloadAfterSet
and consumerDoesNotModifyPayloadAfterGet
properties have no effect for the forwarder
application. Benefits gained from the original
producer application and ultimate consumer
application are maintained.

Object messages with mediations

An object message is sent to a mediated service No If the object message is sent to a mediated

destination then no performance benefit is gained
by enabling the
producerDoesNotModifyPayloadAfterSet property.

Bytes messages with consumer applications

226 Overview

Table 24. Potential performance benefits for each processing step taken by your producer, consumer or forwarder
application (continued). The first column of the table lists the processing steps for the objects and bytes messages.
The second column indicates if there is a possibility for performance improvement. The third column provides a brief
explanation about the processes and the properties.

Is there potential for

performance
Processing step improvement? Explanation
A bytes message is sent to any consumer Yes The part of the JMS specification that mandates
application. The copying the data on setting into the message is
producerDoesNotModifyPayloadAfterSet property is bypassed, saving a copy of the bytes data.
enabled.
A bytes message is received with the No The JMS API does not allow bytes data to be
consumerDoesNotModifyPayloadAfterGet property passed by reference back to consumer code
enabled. (BytesMessage.readBytes methods).
A bytes message is received by multiple No The JMS API does not allow bytes data to be
consumers (a topic) that all have the passed by reference back to consumer code
consumerDoesNotModifyPayloadAfterGet property (BytesMessage.readBytes methods).
enabled.
Bytes messages with forwarder applications
A bytes message is forwarded. No There is no benefit gained from enabling any of the

“pass message payload by reference” properties.

Pass message payload by reference: Example code for producer and consumer applications:

Code your JMS applications so that you can safely pass message payloads by reference for asynchronous
messaging between producer and consumer applications within a single server.

When large object messages or bytes messages are sent, the cost in memory and processor use of
serializing, deserializing, and copying the message payload can be significant. If the producer and
consumer applications are in the same JVM and you enable the pass message payload by reference
properties on the associated connection factories and activation specifications, message payloads can be
passed by reference from producer application to consumer application. This can reduce or bypass the
data copying and improve performance and memory use.

In the following figure, messages pass from a JMS producer application, through a producer connection
factory, to a queue on a messaging engine. They are then taken off the queue and passed through a
consumer connection factory or activation specification, to a JMS consumer application.

CAUTION:

The parts of the JMS Specification that are bypassed by these properties are defined to ensure
message data integrity. Any of your JMS applications that use these properties must strictly follow
the rules that are described below, or you risk losing data integrity.

Chapter 14. Messaging resources 227

JMS producer JMS consumer

application application
Producer Consumer
CF CF or AS
CF = Connection factory \ /
AS = Activation specification \MEV

ME = Messaging engine

Lt

Figure 36. Producing and consuming messages

If you enable the producerDoesNotModifyPayloadAfterSet property for the producer connection factory,
your producer application must guarantee not to modify the payload object after it has been set into object
or bytes messages. To help you achieve this, here is some example code that you can adapt for use in
your application:

DataObject data = new DataObject();
data.setXXX("xxx");

data.setYYY(yyy);

ObjectMessage message = session.createObjectMessage();
message.setObject (data);

data = null;

producer.send(message) ;

For bytes messages, your producer application must also guarantee to write only a single full byte array
into the message. To help you achieve this, here is some example code that you can adapt for use in your
application:

byte [] data = myByteData;

BytesMessage message = session.createBytesMessage();

message.writeBytes(data);

data = null;

producer.send(message) ;

If you enable the consumerDoesNotModifyPayloadAfterGet property for the consumer connection
factory or activation specification, your consumer application must guarantee not to modify the payload it
gets from the object message (consumption of bytes messages is not affected by the
consumerDoesNotModifyPayloadAfterGet property). To help you achieve this, here is some example
code that you can adapt for use in your application:

public void onMessage (Message message)

{
ObjectMessage oMessage = (ObjectMessage) message;
DataObject data = oMessage.getObject();
System.out.print(data.getXXX());
System.out.print(data.getYYY());

}

Pass message payload by reference: Usage scenarios and example code for forwarding
applications:

A JMS forwarder application receives a message (through a connection factory, or if it is a message-driven
bean through an activation specification), then sends the message object on to another destination.

228 Overview

Explore the different usage scenarios, then code your JMS forwarding applications so that you can safely
pass message payloads by reference when forwarding messages from one queue to another within a
single server.

When large object messages or bytes messages are sent, the cost in memory and processor use of
serializing, deserializing, and copying the message payload can be significant. If you enable the pass
message payload by reference properties on a connection factory or activation specification, you tell the
default messaging provider to override the JMS 1.1 specification and potentially reduce or bypass this data

copying.

In the following figure, messages pass from queuel on a messaging engine, through a consumer
activation specification or connection factory, to a JMS forwarding application. They are then forwarded
through a producer connection factory to queue2 on the same messaging engine.

CAUTION:

The parts of the JMS Specification that are bypassed by these properties are defined to ensure
message data integrity. Any of your JMS applications that use these properties must strictly follow
the rules that are described below, or you risk losing data integrity.

CF = Connection factory JMS forwarding
AS = Activation specification application

ME = Messaging engine

Consumer Producer
CFor AS CF
/ ME \

Figure 37. Forwarding messages

To understand the usage scenarios and associated example code given in this topic, you must note these
important characteristics of a JMS forwarding application:

» A forwarding application does not replace the message object. This is useful if your application is just
logging or otherwise recording (for example, printing out) the message before forwarding it, and also
means that the forwarded message retains some useful message properties such as the
JMSCorrelationID, JMSReplyTo and JMSType properties.

» A forwarding application can modify or replace the message payload. If it replaces the payload, it sets
the new payload in the message object and changes the payload reference to point to the new
message payload.

» For a forwarding application, the forwarded message is “created” and configured by the consumer
connection factory or activation specification. The producer connection factory is used solely to route the
forwarded message and has no effect upon the contents of the forwarded message.

The following table describes the four forwarding application usage scenarios that affect how you set the
“pass message payload by reference” properties. Note that, because the producer connection factory has
no effect upon the contents of the forwarded message, you set both the consumer properties and the
producer/forwarder properties on the consumer connection factory or activation specification.

Chapter 14. Messaging resources 229

Table 25. Effect of the ‘pass message payload by reference” property settings on the forwarding application usage
scenarios. The first column of the table lists the four forwarding application usage scenarios. The second column
indicates the consumer property setting for the scenarios. The third column indicates the connection or the activation
specification property setting for the scenarios.

producerDoesNotModify
PayloadAfterSet
consumerDoesNotModify (for connection factories) or
Forwarding application usage scenario PayloadAfterGet
forwarderDoesNotModify
property setting PayloadAfterSet

(for activation specifications)
property setting

Scenario 1: The application receives a message,
looks at the payload but does not modify it, and
forwards the message on without modifying or
replacing the payload.

Enabled Not required, but can be enabled

Scenario 2: The application receives a message,

looks at the payload but does not modify it, replaces
the payload in the message with a new payload and Enabled Enabled
forwards the message on without modifying the
payload after the call to set it into the message.

Scenario 3: The application receives a message,
looks at and modifies the payload, then sets the
modified payload or some other data back into the
message and forwards the message on without further
modifying the payload after the call to set it into the
message.

NOT enabled Enabled

Scenario 4: The application receives a message,
looks at and modifies the payload, then sets the
modified payload or some other data back into the NOT enabled NOT enabled
message, then further modifies the payload after the
call to set it into the message.

For scenarios 1, 2 and 3 you can enable one or more of the “pass message payload by reference”
properties, provided that your forwarding application can guarantee to behave as described in the

scenario. To help you achieve this, here is some example code that you can adapt for use in your
applications.

Forwarding application: scenario 1

The application receives a message, looks at the payload but does not modify it, and forwards the
message on without modifying or replacing the payload.

public void onMessage (Message message)

{
ObjectMessage oMessage = (ObjectMessage) message;
DataObject data = oMessage.getObject();
System.out.print(data.getXXxX());
System.out.print(data.getYYY());

// get a session to forward on the received message

producer.send(message) ;
session.close();

230 Overview

Forwarding application: scenario 2

The application receives a message, looks at the payload but does not modify it, replaces the payload in
the message with a new payload and forwards the message on without modifying the payload after the
call to set it into the message.

public void onMessage (Message message)

{
ObjectMessage oMessage = (ObjectMessage) message;
DataObject data = oMessage.getObject();
System.out.print(data.getXXX());
System.out.print(data.getYYY());

// get a session to forward on the received message
message.setObject (newData);

producer.send(message) ;
session.close();

}

For bytes messages, your application must also guarantee to write only a single full byte array into the
message.

byte [] data = myByteData;

BytesMessage message = session.createBytesMessage();

message.writeBytes(data);

data = null;

producer.send(message) ;

Forwarding application: scenario 3

The application receives a message, looks at and modifies the payload, then sets the modified payload or
some other data back into the message and forwards the message on without further modifying the
payload after the call to set it into the message.

public void onMessage (Message message)

{
ObjectMessage oMessage = (ObjectMessage) message;
DataObject data = oMessage.getObject();
System.out.print(data.getXXX());
System.out.print(data.getYYY());

// get a session to forward on the received message

data.setXXX(xxx);
data.setYYY(yyy);
message.setObject (data);

producer.send(message) ;
session.close();

}

For bytes messages, your application must also guarantee to write only a single full byte array into the
message.

byte [] data = myByteData;

BytesMessage message = session.createBytesMessage();

message.writeBytes(data);

data = null;

producer.send(message) ;

Chapter 14. Messaging resources 231

232 Overview

Chapter 15. Interoperation with WebSphere MQ

You can enable JMS interaction with a WebSphere MQ network by using the WebSphere MQ messaging
provider. Service integration can also provide interoperation through a WebSphere MQ link or a
WebSphere MQ server. Each type of connectivity is designed for different situations, and provides different
advantages.

+ For a comparison of the different ways of interoperating, see ['Interoperation with WebSphere MQ:|
Comparison of architectures” on page 234 and [‘Interoperation with WebSphere MQ: Comparison of key|
features” on page 237

« If you are not familiar with WebSphere MQ concepts, see [Interoperation with WebSphere MQ: Key]
[WebSphere MQ concepts” on page 240.|

» To understand about using WebSphere MQ as an external JMS messaging provider, see [‘Interoperation
|using the WebSphere MQ messaging provider” on page 242.|

* To understand how best to develop your applications for interoperating with a WebSphere MQ network,
see ['How messages are passed between service integration and a WebSphere MQ network” on page}

fse]

« To uhderstand the WebSphere MQ link solution, see |“Interoperation using a WebSphere MQ link” on|
page 273,

» To understand the WebSphere MQ server solution, see [‘Interoperation using a WebSphere MQ server

on page 296.

For more information about WebSphere MQ, see the WebSphere MQ library}

When a WebSphere Application Server process or an application client process starts, and while this
process is running, an amount of processing is performed to allow it to support WebSphere MQ-related
functionality such as the WebSphere MQ messaging provider. By default this processing is performed
regardless of whether any WebSphere MQ-related functionality is ever used. If you do not need to take
advantage of any WebSphere MQ functionality, it is possible to disable all WebSphere MQ functionality in
an application server or client process to give increased performance. For more information, see
[WebSphere MQ functionality in WebSphere Application Server

Comparison of WebSphere Application Server and WebSphere MQ
messaging

If you are not already an established user of either WebSphere Application Server or WebSphere MQ, and
you are considering whether the service integration platform or WebSphere MQ better meets your
messaging needs, use this table to compare the main features of the two platforms.

Table 26. Comparison of service integration and WebSphere MQ main features. The first column of this table lists
the main features of service integration (the default messaging provider for WebSphere Application Server), and the
second column lists the features of WebSphere MQ).

Service integration (the default messaging provider for

WebSphere Application Server) WebSphere MQ

Closely integrated with WebSphere Application Server, and Can connect to almost any platform, and supports a
combines well with the Java Platform, Enterprise Edition (Java | heterogeneous environment

EE)

Supports multiple languages through XMS clients, and multiple | Supports multiple languages and multiple platforms
platforms

Limited tooling support, other than what is provided in Has many Independent Software Vendor (ISV) tools
WebSphere Application Server

Provides strong performance for both persistent and Supports JMS and non-JMS messaging interfaces, and provides
non-persistent messages for JMS strong performance for non-JMS applications

© Copyright IBM Corp. 2011 233

http://www.ibm.com/software/integration/wmq/library/index.html

Table 26. Comparison of service integration and WebSphere MQ main features (continued). The first column of this
table lists the main features of service integration (the default messaging provider for WebSphere Application Server),
and the second column lists the features of WebSphere MQ).

Service integration (the default messaging provider for
WebSphere Application Server) WebSphere MQ

Designed for a maximum message size of about 40 megabytes | Supports large message sizes up to about 100 megabytes
on a 32-bit operating system (subject to heap usage)

Underpins WebSphere Enterprise Service Bus and WebSphere | Underpins WebSphere MQ and WebSphere MQ File Transfer

Process Server Edition

Included in a single administrative model for WebSphere Can integrate existing infrastructure and applications (for
Application Server, WebSphere Enterprise Service Bus, and example, CICS)

WebSphere Process Server

Clustering is integrated with WebSphere Application Server WebSphere MQ clustering provides selective parallelism of
clustering for high availability and scalability clustered queues

Note: If your existing or planned messaging environment involves both WebSphere MQ and WebSphere
Application Server systems, the messaging platform that you choose for a given task does not
necessarily determine which JMS messaging provider you should use. For more information, see
|Choosing messaging providers for a mixed environmentl

Interoperation with WebSphere MQ: Comparison of architectures

The three different ways that you can send messages between WebSphere Application Server and a
WebSphere MQ network are compared at a high level, showing the relative advantages and
disadvantages of each approach.

WebSphere MQ as an external messaging provider

The WebSphere MQ messaging provider does not use service integration. It provides JMS messaging
access to WebSphere MQ from WebSphere Application Server.The WebSphere MQ messaging provider
makes point-to-point messaging and publish/subscribe messaging available to WebSphere Application
Server applications using the existing capabilities in the WebSphere MQ environment. WebSphere
Application Server applications can interact with WebSphere MQ queues and topics to send, receive,
publish, and subscribe to messages in the same way as any JMS application in the WebSphere MQ
environment.

Using WebSphere MQ as an external messaging provider requires more WebSphere MQ administration,
less WebSphere Application Server administration.

Table 27. Advantages and disadvantages of WebSphere MQ as an external messaging provider. The first column of
this table shows the advantages of using WebSphere MQ as an external messaging provider, and the second column
shows the disadvantages of using WebSphere MQ as an external messaging provider.

Advantages Disadvantages
» You do not have to configure a service integration bus or Interaction between WebSphere Application Server and
messaging engines. WebSphere MQ is not seamless.

» You can connect directly to WebSphere MQ queue managers. |+ You cannot use service integration mediations for modifying

+ You manage a single JMS messaging provider rather than messages, for routing, or for logging.

two.

* You can connect to queue managers in client mode or
bindings mode.

* You can use point-to-point messaging and publish/subscribe
messaging.

234 Overview

A WebSphere MQ network as a foreign bus (using WebSphere MQ links)

A WebSphere MQ link provides a server to server channel connection between a service integration bus
and a WebSphere MQ queue manager or queue-sharing group, which acts as the gateway to the
WebSphere MQ network.When you use a WebSphere MQ link, the messaging bus is seen by the
WebSphere MQ network as a virtual queue manager, and the WebSphere MQ network is seen by service
integration as a foreign bus. A WebSphere MQ link enables WebSphere Application Server applications to
send point-to-point messages to WebSphere MQ queues (defined as destinations in the service integration
bus), and allows WebSphere MQ applications to send point-to-point messages to destinations in the
service integration bus (defined as remote queues in WebSphere MQ). You can also set up a
publish/subscribe bridge so that WebSphere Application Server applications can subscribe to messages
published by WebSphere MQ applications, and WebSphere MQ applications can subscribe to messages
published by WebSphere Application Server applications. The link ensures that messages are converted
between the formats used by WebSphere Application Server and those used by WebSphere MQ.

Using a WebSphere MQ network as a foreign bus (using WebSphere MQ links) requires more WebSphere
Application Server administration, less WebSphere MQ administration.

Table 28. Advantages and disadvantages of a WebSphere MQ network as a foreign bus (using WebSphere MQ
links). The first column of this table shows the advantages of using a WebSphere MQ network as a foreign bus
(using WebSphere MQ links), and the second column shows the disadvantages of using a WebSphere MQ network
as a foreign bus (using WebSphere MQ links).

Advantages Disadvantages

* A WebSphere MQ client facility is not required on the gateway You must configure a service integration bus and messaging
WebSphere MQ queue manager. engines.

» Each end of the link appears in natural form to the other;
WebSphere MQ appears to service integration to be a .
(foreign) bus, service integration appears to WebSphere MQ
to be a (virtual) queue manager.

You cannot connect to queue managers in bindings mode.

Optimum load balancing is less easy to achieve because
messages have to be “pushed” from either end of the link.

* You cannot use service integration mediations for modifying

» Better performance over the link is possible when compared messages, routing, or logging.

with WebSphere MQ servers or direct connection to
WebSphere MQ as an external JMS messaging provider.

* A managed connection from one node to another is created,
but not from every application server in the cell.

* You do not have to define individual WebSphere MQ queues
to the service integration bus.

» Good security support is provided. For example, you can
control which users are allowed to put messages onto queues.

» WebSphere Application Server and WebSphere MQ can exist
on separate hosts.

 Interaction between WebSphere Application Server and
WebSphere MQ is seamless.

* You can configure a publish/subscribe bridge, through which
WebSphere Application Server applications can subscribe to
messages published by WebSphere MQ applications, and
WebSphere MQ applications can subscribe to messages
published by WebSphere Application Server applications.

A WebSphere MQ server (a queue manager or queue-sharing group) as a bus
member

A WebSphere MQ server provides a direct client connection between a service integration bus and queues
on a WebSphere MQ queue manager or (for WebSphere MQ for z/OS) queue-sharing group. For
interoperation with WebSphere Application Server Version 7 or later, the version of WebSphere MQ must
be WebSphere MQ for z/OS Version 6 or later, or WebSphere MQ (distributed platforms) Version 7 or
later. A WebSphere MQ server supports the high availability and optimum load-balancing characteristics
provided by a WebSphere MQ for z/OS network. A WebSphere MQ server defines the connection and

Chapter 15. Interoperation with WebSphere MQ 235

quality of service properties used for the connection, and also ensures that messages are converted
between the formats used by WebSphere Application Server and those used by WebSphere MQ. A
WebSphere MQ server only represents queues for point-to-point messaging; it does not represent topics

for publish/subscribe messaging.

Using a WebSphere MQ server (a queue manager or queue-sharing group) as a bus member requires
more WebSphere Application Server administration, less WebSphere MQ administration.

Table 29. Advantages and disadvantages of a WebSphere MQ server (a queue manager or queue-sharing group) as
a bus member. The first column of this table shows the advantages of using a WebSphere MQ server (a queue
manager or queue-sharing group) as a bus member, and the second column shows the disadvantages of using a
WebSphere MQ server (a queue manager or queue-sharing group) as a bus member.

Advantages

Disadvantages

» WebSphere Application Server and WebSphere MQ can exist
on separate hosts.

» Each end of the connection appears in natural form to the
other; WebSphere MQ queue manager appears to service
integration to be a foreign bus, service integration appears to
WebSphere MQ to be a client.

» Close integration of applications is possible; service
integration applications are able to consume messages
directly from the WebSphere MQ network.

* You can connect to queue managers in client mode or
bindings mode.

» You can use mediations for modifying messages, routing, or
logging.
» Good security support is provided. For example, you can

* You can get messages from WebSphere MQ queues (GET).

 Interaction between WebSphere Application Server and
WebSphere MQ is seamless.

* Queues on the WebSphere MQ network are automatically
discovered.

control which users are allowed to put messages onto queues.

* You must configure a service integration bus and messaging
engines.

* The queue managers and queue-sharing groups must be
accessible from all the messaging engines in the bus.

* You cannot use the WebSphere MQ server for
publish/subscribe messaging with WebSphere MQ.

» WebSphere MQ for z/OS Version 6 or later, or WebSphere
MQ (distributed platforms) Version 7 or later, is a prerequisite.

 If you are using different nodes with WebSphere MQ for z/OS,
depending on the number of nodes and your version of
WebSphere MQ for z/OS, you might require the Client
Attachment feature (CAF) on z/OS.

* You must explicitly define all destinations.

236 Overview

Interoperation with WebSphere MQ: Comparison of key features

There are three different ways that you can send messages between WebSphere Application Server and a
WebSphere MQ network. This topic compares the key features of each of the three ways.

Table 30. Key features comparison between the three ways of interoperating with WebSphere MQ. The first column
of this table shows the key features of interoperating using the WebSphere MQ messaging provider with no bus, the
second column shows the key features of interoperating using the WebSphere MQ network as a foreign bus (using
WebSphere MQ links), and the third column shows the key features of interoperating using a WebSphere MQ server
(a queue manager or queue-sharing group) as a bus member.

WebSphere MQ messaging provider (no
bus)

A WebSphere MQ network as a foreign
bus (using WebSphere MQ links)

A WebSphere MQ server (a queue
manager or queue-sharing group) as a
bus member

JMS application

WebSphere MQ
provider

WebSphere MQ

WMQ queue WMQ topic

JMS application

default messaging
provider

JMS application

default messaging
provider

service integration

service integration

service integration

service integration

bus bus
MaQ link (server to server (client
channel connection) connection)
v v
WebSphere MQ WebSphere MQ
(a foreign bus) (a bus member)
WMQ topic
not supported
v v v
WMQ queue WMQ topic WMQ queue

Connectivity

Uses the WebSphere MQ messaging
provider.

Uses the default messaging provider.

Uses the default messaging provider.

No use of service integration buses.

Uses a service integration bus.

Uses a service integration bus.

Chapter 15.

Interoperation with WebSphere MQ 237

Table 30. Key features comparison between the three ways of interoperating with WebSphere MQ (continued). The
first column of this table shows the key features of interoperating using the WebSphere MQ messaging provider with
no bus, the second column shows the key features of interoperating using the WebSphere MQ network as a foreign
bus (using WebSphere MQ links), and the third column shows the key features of interoperating using a WebSphere
MQ server (a queue manager or queue-sharing group) as a bus member.

WebSphere MQ messaging provider (no
bus)

A WebSphere MQ network as a foreign
bus (using WebSphere MQ links)

A WebSphere MQ server (a queue
manager or queue-sharing group) as a
bus member

WebSphere Application Server regards the
WebSphere MQ messaging provider as a
JMS messaging provider.

The WebSphere MQ messaging provider
is regarded by the WebSphere MQ
network as a WebSphere MQ client
attaching to the queue manager or
queue-sharing group.

Each end of the WebSphere MQ link
appears in a natural form to the other end,
so the WebSphere MQ network appears
to service integration as a foreign bus and
the service integration bus appears as a
virtual queue manager to the WebSphere
MQ network.

The WebSphere MQ server regards the
WebSphere MQ queue manager or
queue-sharing group as a bus member, or
a mechanism for queuing messages for
the service integration bus. A queue is
viewed as a bus destination.

The WebSphere MQ server is regarded by
the WebSphere MQ network as a
WebSphere MQ client attaching to the
queue manager or queue-sharing group.

Provides multiple connections between
WebSphere Application Server application
servers and WebSphere MQ queue
managers or queue-sharing groups.
Connections are established as and when
required to allow WebSphere Application
Server applications to access WebSphere
MQ queues.

Provides a single connection between a
service integration bus and a WebSphere
MQ network (comprising one or more
interconnected WebSphere MQ queue
managers or queue-sharing groups). This
single connection is used to transfer all
the messages that are exchanged
between the service integration network
and the WebSphere MQ network. The link
acts as a funnel, routing messages
through the gateway messaging engine or
queue manager. If you want to establish
multiple links from a service integration
network, you can define multiple foreign
buses to represent different queue
managers or queue-sharing groups on the
WebSphere MQ network.

Provides multiple connections between
messaging engines in a service integration
bus and WebSphere MQ queue managers
or queue-sharing groups. Connections are
established as and when required, to allow
WebSphere Application Server applications
to access WebSphere MQ queues. A
connection can be configured to use
properties of the message bus to which it
belongs, giving the potential for each
WebSphere MQ server to be bus-specific.

Connection between the WebSphere
Application Server and the WebSphere
MQ network can use a TCP/IP
communication link or, if the WebSphere
Application Server is running on the same
image as the WebSphere MQ queue
manager, it can use a direct call interface
(this is called bindings mode). The
channel for the connection is a
bidirectional MQI channel.

Connection between the service
integration bus network and the
WebSphere MQ network uses a TCP/IP
communication link. The sender and
receiver channels for the connection are
message channels.

Connection between the service integration
bus network and the WebSphere MQ
network can use a TCP/IP communication
link or, if the WebSphere Application
Server application server is running on the
same image as the WebSphere MQ queue
manager, it can use a direct call interface
(this is called bindings mode). The channel
for the connection is a bidirectional MQl
channel.

For WebSphere MQ for z/OS, messages
can be stored on shared queues. If a
queue manager fails, messages can still
be retrieved from a different queue
manager (so no single point of failure
exists).

If the communication link fails temporarily,
messages are stored by WebSphere MQ
or the service integration bus and are
delivered when the communication link
recovers.

For WebSphere MQ for z/OS, messages
can be stored on shared queues. If a
queue manager fails, messages can still
be retrieved from a different queue
manager (so no single point of failure
exists).

Applications

Does not integrate the service integration
bus with the WebSphere MQ network.
Service integration bus mediations running
in WebSphere Application Server cannot
process messages from a WebSphere MQ
queue, and WebSphere MQ applications
cannot use WebSphere MQ servers to put
messages to, or get messages from,
service integration bus queue-type
destinations.

Integrates the service integration bus with
the WebSphere MQ network through a
gateway queue manager. Traffic can be
indirect, routed to a mapped queue.

Allows closer integration; messaging
applications can directly produce
messages to, and consume messages
from WebSphere MQ queues.

238 Overview

Table 30. Key features comparison between the three ways of interoperating with WebSphere MQ (continued). The
first column of this table shows the key features of interoperating using the WebSphere MQ messaging provider with
no bus, the second column shows the key features of interoperating using the WebSphere MQ network as a foreign
bus (using WebSphere MQ links), and the third column shows the key features of interoperating using a WebSphere
MQ server (a queue manager or queue-sharing group) as a bus member.

WebSphere MQ messaging provider (no
bus)

A WebSphere MQ network as a foreign
bus (using WebSphere MQ links)

A WebSphere MQ server (a queue
manager or queue-sharing group) as a
bus member

WebSphere Application Server
applications can send messages to
WebSphere MQ queues. Sent messages
are immediately added to the queue. If the
WebSphere MQ queue is unavailable,
applications cannot send messages.

WebSphere Application Server
applications can send messages to
WebSphere MQ queues. Sent messages
are stored by the service integration bus
for transmission to WebSphere MQ (this is
called store and forward messaging).
Applications can continue to send
messages if the WebSphere MQ queue is
unavailable.

WebSphere Application Server applications
can send messages to WebSphere MQ
queues. Sent messages are immediately
added to the queue. If the WebSphere
MQqueue is unavailable, applications
cannot send messages.

WebSphere Application Server
applications can receive messages from
WebSphere MQ queues. The applications
can use message consumers to receive
messages, and message-driven beans
can be configured to process messages
as soon as they arrive at the WebSphere
MQ queue.

WebSphere Application Server
applications cannot receive messages
from WebSphere MQ queues, because
the queues are destinations in a foreign
bus. For messages to pass from
WebSphere MQ to WebSphere Application
Server applications, WebSphere MQ
applications must send the messages to a
suitable destination in the service
integration bus used by the WebSphere
Application Server applications.

WebSphere Application Server applications
can receive messages from WebSphere
MQ queues. The applications can use
message consumers to receive messages,
and message-driven beans can be
configured to process messages as soon
as they arrive at the WebSphere MQ
queue. Also, service integration bus
mediations running in WebSphere
Application Server can process messages
as they arrive at a WebSphere MQ queue.

WebSphere Application Server
applications can publish messages to
WebSphere MQ topics and subscribe to
messages on WebSphere MQ topics in
the same way as applications in the
WebSphere MQ environment.

You can set up a publish/subscribe bridge
on the WebSphere MQ link, so that
WebSphere Application Server
applications and WebSphere MQ
applications can publish or subscribe to
selected topics that exist in both the
WebSphere MQ environment and the
WebSphere Application Server
environment.

A WebSphere MQ server provides
connections with queues for point-to-point
messaging. A topic for publish/subscribe
messaging cannot be associated with a
WebSphere MQ server.

Messages are stored on queues, not
messaging engines; one or many
WebSphere Application Server
applications can access the messages,
even when the applications are running on
different servers.

Messages are stored on messaging
engines.

Messages are stored on queues, not
messaging engines; one or many
WebSphere Application Server applications
can access the messages, even when the
applications are running on different
servers.

Messages are pulled from the queue by a
consuming application, and pushed by a
producing application.

Messages are pushed across the link,
regardless of whether a consumer is
ready.

Messages are pulled from the queue by a
WebSphere Application Server consumer,
and pushed by a WebSphere Application

Server producer.

Does not support mediations.

Does not support mediations.

Supports different mediation scenarios for
modifying message content, or routing,
and for logging.

Optimum load balancing is easier to
achieve because applications can pull
messages from the WebSphere MQ
network.

Messages are pushed to applications from
the WebSphere MQ network, but workload
balancing options are available in
WebSphere Application Server.

Optimum load balancing is easier to
achieve because applications can pull
messages from the WebSphere MQ
network.

Administration and security

Configured and managed by using the
administrative console.

Configured and managed by using the
administrative console.

Configured and managed by using the
administrative console. Automatically
discovers queues on the WebSphere MQ
network during configuration and
administration.

Chapter 15.

Interoperation with WebSphere MQ 239

Table 30. Key features comparison between the three ways of interoperating with WebSphere MQ (continued). The
first column of this table shows the key features of interoperating using the WebSphere MQ messaging provider with
no bus, the second column shows the key features of interoperating using the WebSphere MQ network as a foreign
bus (using WebSphere MQ links), and the third column shows the key features of interoperating using a WebSphere
MQ server (a queue manager or queue-sharing group) as a bus member.

WebSphere MQ messaging provider (no
bus)

A WebSphere MQ network as a foreign
bus (using WebSphere MQ links)

A WebSphere MQ server (a queue
manager or queue-sharing group) as a
bus member

Administration is carried out in WebSphere
MQ. In WebSphere Application Server you
need to define JMS artefacts such as
destinations, connection factories, listener
ports, and activation specifications.

Cooperative administrative domains for
WebSphere MQ and WebSphere
Application Server:

* Mutually agree definitions of channels,
foreign destinations and buses, to
reflect WebSphere MQ connectivity

» Both ends of the link must be started
* Administrators can stop or start a link

Independent administrative domains for

WebSphere MQ and WebSphere

Application Server:

» Separate authority

» Temporal decoupling of administrative
changes

You might have to define server
connection channels in WebSphere MQ.

You must define partner channel
definitions in WebSphere MQ.

You might have to define server
connection channels in WebSphere MQ.

Permission for WebSphere Application
Server applications and mediations to
send messages to, and receive messages
from, a particular WebSphere MQ is
controlled by WebSphere MQ
administration.

Permission for WebSphere Application
Server applications to send messages to a
particular WebSphere MQ queue is
controlled by service integration bus
administration.

Permission for WebSphere MQ
applications to send messages to service
integration destinations is controlled by
WebSphere MQ administration.

Permission for WebSphere Application
Server applications and mediations to send
messages to, and receive messages from,
a particular WebSphere MQ queue is
controlled by service integration bus
administration.

Permission for WebSphere Application
Server (which includes permission for its
applications and mediations) to access
WebSphere MQ queues is controlled by
WebSphere MQ administration.

Interoperation with WebSphere MQ: Key WebSphere MQ concepts

If you are not familiar with basic WebSphere MQ concepts, read about the objects in WebSphere MQ that
are important for interoperation with WebSphere Application Server.

Queues and topics

A queue is a data structure used to store messages. Application programs can use JMS or WebSphere

MQ API calls to put messages on WebSphere MQ queues. Other applications can get the messages from
the queues.

A topic is the subject of the information that is published in a publish/subscribe message. Instead of putting
a message on a specific queue, application programs can publish a message to a topic. Other applications
obtain the messages by subscribing to the topic to receive all the messages published to that topic.

When an application puts a message on a queue, only one copy of the message exists. Even if more than
one application can get messages from the queue, only one consumer can receive each message.
However, when an application publishes a message to a topic, any number of subscribers can receive a
copy of the message.

Queue managers and queue-sharing groups
Each WebSphere MQ queue is owned by a queue manager. The queue manager is responsible for
maintaining the queues it owns, and for placing all the messages it receives onto the appropriate queues.

Application programs connect to a queue manager when they want to put messages on queues. Queue
managers can also put messages on queues as part of their normal operation.

240 Overview

From WebSphere MQ Version 7, each topic in WebSphere MQ is also owned by a queue manager. The
gueue manager receives messages from publishers, and subscriptions from subscribers. The queue
manager is responsible for routing the published messages to the subscribers that have registered an
interest in the topic of the messages. In earlier versions of WebSphere MQ, publish/subscribe messaging
is handled by a publish/subscribe broker, not by queue managers.

In WebSphere MQ for z/OS, you can set up shared queues that can be accessed by several queue
managers in a sysplex. Messages that are put onto shared queues are stored in list structures in a
zSeries® Coupling Facility, and large messages have their message data held in a shared DB2 table.

The queue managers that can access the same set of shared queues form a group called a queue-sharing
group. Each member of the queue-sharing group connects to a DB2 system to access shared definitions
for WebSphere MQ objects, including queues and channels. Any queue manager in the group can retrieve
the messages held on a shared queue. An application that wants to access one of the shared queues can
therefore connect to any of the queue managers within the queue-sharing group, so the application does
not depend on the availability of a specific queue manager.

Local queues, remote queues, and clusters

In a WebSphere MQ network, intercommunication is achieved by sending messages from one queue
manager or (for WebSphere MQ for z/OS) queue-sharing group to another.

WebSphere MQ application programs can put messages onto a local queue, which is a queue on the
queue manager to which the application is connected. A queue manager has a definition for each queue
that it owns. A queue manager can also have definitions for the queues that other queue managers own.
From the perspective of the local queue manager to which the application is connected, these other
queues are remote queues, and the queue managers that own them are remote queue managers.

As well as putting messages onto a local queue, WebSphere MQ application programs connected to a
local queue manager can put messages targeted at remote queues. WebSphere MQ must then transmit
the messages to the remote queue managers that own the remote queues. When messages are destined
for a WebSphere MQ queue on a remote queue manager, the local queue manager holds them in a
transmission queue until it is ready to forward them to the remote queue manager. A transmission queue is
a special type of local queue on which messages are stored until they can be successfully transmitted and
stored at the remote queue manager.

WebSphere MQ queue managers can be connected to form a cluster, using any of the communications
protocols that are available on your WebSphere MQ platform. When you group queue managers in a
cluster, the queues are still hosted by the queue managers (so they are not shared queues). However, by
connecting into the cluster, queue managers can send a message to any other queue manager in the
cluster, and make some or all of the queues that they host available to every other queue manager in the
cluster as cluster queues. You do not have to set up explicit definitions on each queue manager for each
remote queue and for the connection to each remote queue manager. Each queue manager in the cluster
also uses a single cluster transmission queue to hold messages for any of the other queue managers, so
you do not have to set up a transmission queue for each remote queue manager.

From WebSphere MQ Version 7, you can also connect together WebSphere MQ queue managers that
own topics for publish/subscribe messaging. You can group queue managers that own topics into a
publish/subscribe cluster, with links between all members, or into a publish/subscribe hierarchy, with parent
and child relationships between the connected queue managers. Publications and subscriptions to topics
can be shared between all the queue managers in the cluster or hierarchy.

Message channels

WebSphere MQ messages, whether they are put onto queues or published to topics, are transmitted
between queue managers through message channels. A message channel is a one-way communication

Chapter 15. Interoperation with WebSphere MQ 241

link between two queue managers. It can carry messages destined for any number of queues or topics
that the remote queue manager hosts, or for any number of target queue managers.

You can define the following types of message channel in WebSphere MQ:
» Sender-receiver channel

* Requester-server channel

* Requester-sender channel

» Server-receiver channel

» Cluster-sender channels

» Cluster-receiver channels

For example, to define the type of message channel called a sender-receiver channel, you define a sender
channel at the sending end, which could be the local queue manager. Then you use the same name to
define a receiver channel at the receiver end, which could be the remote queue manager. A message
channel is unidirectional, so if you want messages to flow in both directions, you must define a second
message channel in the opposite direction between the queue managers.

For queue managers in a cluster, you do not have to define message channels between each pair of
gueue managers. Instead, you define two message channels to connect each queue manager into the
cluster: one cluster-receiver channel for receiving messages, and one cluster-sender channel by which the
queue manager introduces itself and learns about the cluster. The queue manager can then send a
message to any other queue manager in the cluster.

Do not confuse message channels with MQI channels. The MQI is the Message Queue Interface in
WebSphere MQ, which applications use to interact with queue managers. An MQI channel is a type of
connection that is used by a WebSphere MQ client application to connect to a queue manager that is
running on another system, and to issue MQI calls to the queue manager.

Interoperation using the WebSphere MQ messaging provider

Through the WebSphere MQ messaging provider in WebSphere Application Server, Java Message Service
(JMS) messaging applications can use your WebSphere MQ system as an external provider of JMS
messaging resources.

WebSphere MQ is characterized as follows:

* Messaging is handled by a network of queue managers, each running in its own set of processes and
having its own administration.

» Features such as shared queues (on WebSphere MQ for z/OS) and WebSphere MQ clustering simplify
administration and provide dynamic discovery.

* Many IBM and partner products support WebSphere MQ with (for example) monitoring and control, high
availability and clustering.

* WebSphere MQ clients can run within WebSphere Application Server (JMS), or almost any other
messaging environment by using a variety of APIs.

If your business uses WebSphere MQ, and you want to integrate WebSphere Application Server
messaging applications into a predominantly WebSphere MQ network, the WebSphere MQ messaging
provider is a logical choice. However, there can be benefits in using another provider. If you are not sure
which provider combination is best suited to your requirements, see |Choosing messaging providers for a|
Imixed environment]

The WebSphere MQ messaging provider supports JMS 1.1 domain-independent interfaces (sometimes
referred to as “unified” or “common” interfaces). This enables applications to use the same interfaces for
both point-to-point and publish/subscribe messaging, and also enables both point-to-point and

242 Overview

publish/subscribe messaging within the same transaction. With JMS 1.1, this approach is considered good
practice for new applications. The domain-specific interfaces are supported for backwards compatibility for
applications developed to use domain-specific queue interfaces, as described in section 1.5 of the JMS 1.1
specification.

The WebSphere MQ messaging provider also supports the Java EE Connector Architecture (JCA) 1.5
activation specification mechanism for message-driven beans (MDBs) across all platforms supported by
WebSphere Application Server.

You can use WebSphere Application Server to configure WebSphere MQ resources for applications (for
example queue connection factories) and to manage messages and subscriptions associated with JMS
destinations. You administer security through WebSphere MQ.

In a mixed-version WebSphere Application Server cell, you can administer WebSphere MQ resources on
nodes of all versions. However, some properties are not available on all versions. In this situation, only the
properties of that particular node are displayed in the administrative console.

Note: WebSphere Application Server Version 8.0 provides first class support for connecting to
multi-instance WebSphere MQ queue managers. You can provide host and port information in the
form of a connection name list, which a connection factory or activation specification uses to
connect to a multi-instance queue manager.

Note: Version 8.0 exposes WebSphere MQ queue or topic destination properties allowing you to specify:

* Whether an application processes the RFH version 2 header of a WebSphere MQ message as
part of the JMS message body.

* The format of the JMSReplyTo field.

* Whether an application can read or write the values of MQMD fields from JMS messages that
have been sent or received using the WebSphere MQ messaging provider.

* Which message context options are specified when sending messages to a destination.

Note: Version 8.0 exposes the following four WebSphere MQ connection properties that are used to
configure the WebSphere MQ resource adapter used by the WebSphere MQ messaging provider.
These properties affect the connection pool that is used by activation specifications:

* maxConnections

+ connectionConcurrency
* reconnectionRetryCount
* reconnectionRetrylnterval

For more information about using WebSphere MQ with WebSphere Application Server, see the white
papers and IBM Redbooks publications provided by WebSphere MQ; for example, through the WebSphere
MQ library web page.

Network topologies: Interoperating by using the WebSphere MQ
messaging provider

There are several network topologies, clustered and not clustered, that allow WebSphere Application
Server to interoperate with WebSphere MQ by using WebSphere MQ as an external JMS messaging
provider. For providing high availability, some topologies are more suitable than others.

For completeness, this topic describes a wide range of topologies, including clustered and highly available

topologies. Note that, for clustering and high availability, you need to use the network deployment or z/OS
version of the product.

Chapter 15. Interoperation with WebSphere MQ 243

Note: In this topic "application server" refers to an application server that is running on WebSphere
Application Server and "queue manager" refers to a queue manager that is running on WebSphere
MQ.

The WebSphere Application Server high availability framework eliminates single points of failure and
provides peer to peer failover for applications and processes running within WebSphere Application Server.
This framework also allows integration of WebSphere Application Server into an environment that uses
other high availability frameworks, such as High Availability Cluster Multi-Processing (HACMP™), in order
to manage non-WebSphere Application Server resources.

The following examples show the main network topologies for interoperating withWebSphere MQ using the
WebSphere MQ messaging provider. Each of the four examples describes two network topologies, with
varying locations for the application servers and queue managers.

* |“Interoperation when WebSphere Application Server application server is not clustered and WebSphere|
MQ queue manager is not clustered’

— The application server and the queue manager run on different hosts
— The application server and the queue manager run on the same host

+ [“Interoperation when WebSphere Application Server application servers are clustered but WebSphere]
MQ queue manager is not clustered” on page 245|

— The queue manager runs on a different host from any of the application servers
— The application servers run on several hosts, one of which hosts a queue manager

+ [“Interoperation when WebSphere Application Server application servers are clustered and WebSphere]
MQ queue managers are clustered” on page 248|

— The queue managers run on different hosts from the application servers
— The queue manager runs on the same hosts as the application servers

+ [“Connecting WebSphere Application Server application servers to WebSphere MQ for z/0S with|
queue-sharing groups” on page 252

— The application servers and the queue managers run in the same LPAR

— The application servers and the queue managers run in different LPARs

Interoperation when WebSphere Application Server application server is not
clustered and WebSphere MQ queue manager is not clustered

Application servers running on WebSphere Application Server and queue managers running on
WebSphere MQ can connect to each other when neither of them are clustered. However, this setup can
be vulnerable to failure.

Note: In this topic "application server" refers to an application server that is running on WebSphere
Application Server and "queue manager" refers to a queue manager that is running on WebSphere
MQ.

There are two topology options:
* The application server and the queue manager run on different hosts
» The application server and the queue manager run on the same host

The application server and the queue manager run on different hosts

The WebSphere MQ transport type for the connection is specified as "client". A "client" connection is used
when the application server and queue manager are running on different hosts. This is a TCP/IP network
connection that is used to communicate with the queue manager. A client connection is also known as
"socket attach".

244 Overview

The following figure shows an application server and a queue manager running on different hosts.

—Host 1——— —Host 2
Queue
Application client mode Manager
Server 1 |] [
TCP/IP

Figure 38. No clustering: client mode attachment to queue manager

This topology is vulnerable because inter-operation ceases if any of the following conditions occurs:
* The application server fails.

* The host on which the application server is running fails.

* The queue manager fails.

* The host on which the queue manager is running fails.

You can improve availability for this topology by using, for example, High Availability Cluster
Multi-Processing (HACMP) to restart the failed component automatically.

The application server and the queue manager run on the same host

The transport type for the connection is specified as "bindings". A "bindings" connection is used when the
application server and the queue manager are running on the same host. This is a cross-memory
connection that is used to communicate with a queue manager. A bindings connection is also known as
“call attach".

The following figure shows a application server and a queue manager running on the same host.

— Host 1
Queue
Application bindings mode Manager
Server 1] [

Figure 39. No clustering: bindings mode attachment to queue manager

The availability constraints for this topology are similar to the previous one. However, in some
configurations bindings mode is faster and more processor efficient than client mode because the amount
of processing is reduced.

Interoperation when WebSphere Application Server application servers are
clustered but WebSphere MQ queue manager is not clustered

Application servers running on WebSphere Application Server can be clustered together and connected to
queue managers running onWebSphere MQ that are not clustered. This setup provides enhanced failover
protection over non-clustered topologies.

Chapter 15. Interoperation with WebSphere MQ 245

Note: In this topic "application server" refers to an application server that is running on WebSphere
Application Server and "queue manager" refers to a queue manager that is running on WebSphere
MQ.

There are two topology options:
» The application servers run on several hosts, one of which hosts a queue manager
* The queue manager runs on a different host from any of the application servers

The queue manager runs on a different host from any of the application servers

In the following figure:

» Application server 1, 2 and 3 are clustered in a WebSphere Application Server cluster.
» Application servers 1 and 3 are running on Host 1

» Application server 2 is running on Host 2

* Queue manager is running on Host 3

» A'client" connection is used when the application server and queue manager are running on different
hosts. This is a TCP/IP network connection that is used to communicate with the queue manager. A
client connection is also known as "socket attach".

— Application servers 1, 2 and 3 are connected to queue manager in client mode.

WebSpheré Application
Server cluster

— Host 1
F——————=-- 1
| I
| I
|| Application |
: Server 1 |\
| |
: : — Host 3———
| |
I o I Queue
: Application : Manager
| Server 3 : 1 — —
|
| |
I T
I
|
I
I

Host 2——

'

Application
Server 2

Figure 40. WebSphere Application Server clustering: client mode attachment to queue manager

» If any clustered application server fails, or the host on which it is running fails, the remaining application
servers in the cluster can take over its workload.

 |If the queue manager fails, or the host on which it is running fails, interoperation ceases.

You can improve availability for this topology by using, for example, High Availability Cluster
Multi-Processing (HACMP) to restart the failed queue manager automatically.

246 Overview

The application servers run on several hosts, one of which hosts a queue manager

The following figure shows some application servers that are running on the same host as the queue
manager. Other application servers in the same WebSphere Application Server cluster run on a different
host.

In the following figure:

Application server 1, 2 and 3 are clustered in a WebSphere Application Server cluster.
Application servers 1 and 3 are running on Host 1.

Application server 2 is running on Host 2.

Queue manager is running on Host 1.

The transport type for the connection is specified as "bindings". A "bindings" connection is used when
the application server and the queue manager are running on the same host. This is a cross-memory
connection that is used to communicate with a queue manager. A bindings connection is also known as
“call attach".

— Application servers 1, and 3 are connected to queue manager in bindings mode.

A "client" connection is used when the application server and queue manager are running on different
hosts. This is a TCP/IP network connection that is used to communicate with the queue manager. A
client connection is also known as "socket attach".

— Application server 2 is connected to queue manager in client mode.

Note: For application servers that are running on the same host as a queue manager, the WebSphere

MQ transport type for the connection is specified as "bindings then client" mode, that is, if an
attempt at a bindings mode connection to the queue manager fails, a client mode connection is
made. For application servers that are not running on the same host as the queue manager, the
application server automatically uses client mode.

— Host 1
|_ ________ 1
I I
I I
I| Application :
I
| Server 1 i Queue
| : Manager
| | bindings _ _
I , Mmode
| |
| Application |!
: Server 3
I
I
1
1

WebSphere Application
Server cluster
|
— Host 2

client
mode

Application
Server 2

Figure 41. WebSphere Application Server clustering: bindings then client mode attachment to queue manager

Chapter 15. Interoperation with WebSphere MQ 247

» If one of the application servers fails, the remaining application servers in the cluster can take over its
workload.

» If host 2 fails, application server 2 will stop. Application servers 1 and 3 can take over its workload.
 |If the queue manager fails inter-operation ceases.

» If host 1 fails the queue manager, application server 1 and application server 3 will stop. Inter-operation
will cease.

Interoperation when WebSphere Application Server application servers are
clustered and WebSphere MQ queue managers are clustered

WebSphere MQ queue managers are usually clustered in order to distribute the message workload and
because, if one queue manager fails, the others can continue running.

Note: In this topic "application server" refers to an application server that is running on WebSphere
Application Server and "queue manager" refers to a queue manager that is running on WebSphere
MQ.

There are two topology options:
* The queue managers run on different hosts from the application servers
* The queue managers run on the same hosts as the application servers

The queue managers run on different hosts from the application servers

In the following figure:

» Application server 1, 2 and 3 are clustered in a WebSphere Application Server cluster.
» Application servers 1 and 3 are running on Host 1.

» Application server 2 is running on Host 2.

* Queue managers 1, 2 and 3 are part of the same WebSphere MQ cluster.

* Queue manager 1 is running on Host 3.

* Queue manager 2 is running on Host 4.

* Queue manager 3 is running on Host 5.

* Queue manager 3 is responsible for distributing messages between the cluster queues in a way that
achieves workload balancing.

* A ‘client" connection is used when the application server and queue manager are running on different
hosts. This is a TCP/IP network connection that is used to communicate with the queue manager. A
client connection is also known as "socket attach".

— Application servers 1 and 2 attach in client mode to queue manager 1.
— Application server 3 attaches in client mode to queue manager 2.

248 Overview

o — — — —

Application
Server 1

Application
Server 3

WebSphere Application
Server cluster

—:— Host 2

Application
Server 2

Queue
Manager 1

Queue

Manager 3

WebSphere MQ
cluster

Figure 42. WebSphere Application Server clustering: client mode attachment to queue managers

If application server 1 fails:

Application server 2 can take over its workload because they are both attached to queue manager

1.

If application server 2 fails:

Application server 1 can take over its workload because they are both attached to queue manager

1.

If application server 3 fails:

You must restart it as soon as possible for the following reasons:

Other application servers in the cluster can take over its external workload, but no other
application server can take over its WebSphere MQ workload, because no other application
server is attached to queue manager 2. The workload that was generated by application server

3 ceases.

Queue manager 3 continues to distribute work between queue manager 1 and queue manager
2, even though the workload arriving at queue manager 2 cannot be processed by application

server 1 or 2.

Note: If you choose not to restart, you can alleviate this situation by manually configuring Q1 on
queue manager 2 so that the ability to put messages to it is inhibited. This results in all
messages being sent to queue manager 1 where they are processed by the other

If queue manager 1 fails:

application servers.

You should restart it as soon as possible for the following reasons:
* Messages that are on queue manager 1 when it fails are not processed until you restart queue

manager 1.

* No new messages from WebSphere MQ applications are sent to queue manager 1, instead
new messages are sent to queue manager 2 and consumed by application server 3.

Chapter 15. Interoperation with WebSphere MQ 249

* Because application servers 1 and 2 are not attached to queue manager 2, they cannot take on
any of its workload.

» Because application servers 1, 2 and 3 are in the same WebSphere Application Server cluster,
their non-WebSphere MQ workload continues to be distributed between them all, even though
application servers 1 and 2 cannot use WebSphere MQ because queue manager 1 has failed.

Although this networking topology can provide availability and scalability, the relationship between
the workload on different queue managers and the application servers to which they are
connected is complex. You can contact your IBM representative to obtain expert advice.

The queue managers run on the same hosts as the application servers

In the following figure:

Application severs 1, 2 and 3 are part of the same WebSphere Application Server cluster.
Application servers 1 and 3 are running on Host 1.

Application server 2 is running on Host 2.

Queue managers 1, 2 and 3 are part of the same WebSphere MQ cluster.

Queue manager 1 is running on Host 1.

Queue manager 2 is running on Host 2.

Queue manager 3 is running on Host 3.

Queue manager 3 is responsible for distributing messages between the cluster queues in a way that
achieves workload balancing.

The transport type for the connection is specified as "bindings". A "bindings" connection is used when
the application server and the queue manager are running on the same host. This is a cross-memory
connection that is used to communicate with a queue manager. A bindings connection is also known as
“call attach".

— Application servers 1 and 3 attach to queue manager 1 in bindings mode.
— Application server 2 attaches to queue manager 2 in bindings mode.

250 Overview

| o |
[
[_ —
\| Application : [Host 3 :
I| Server1 | : Queue [
[[
| : | Manager 1 Queue :
: : T+ Manager 3 I
I I Q1 I
: Application |! :
I Server 3 I
[I
[[
| [

WebSphere Application

|

|

|

T

|

| WebSphere MQ
Server cluster :

I

1

|

|

|

cluster

I I
—— Host 2 [
I

: Queue |
M 2 |

: Application _anager_ I

I Server 2 I I

| | Q1 |

| | |

I I

Figure 43. WebSphere Application Server clustering: bindings mode attachment to queue managers

If application server 1 fails:
Application server 3 can take over its workload because they are both attached to queue manager
1.

If application server 3 fails:
Application server 1 can take over its workload because they are both attached to queue manager
1.

If application server 2 fails:
You must restart it as soon as possible for the following reasons:

» Because no other application server is attached to queue manager 2 no other application server
can take over its WebSphere MQ workload. The workload that was generated by application
server 2 ceases. Other application servers in the cluster can, however, take over its external
workload

* Queue manager 3 continues to distribute work between queue manager 1 and queue manager
2, even though the workload arriving at queue manager 2 cannot be taken on by application
server 2.

Note: If you choose not to restart, you can alleviate this situation by manually configuring Q1
on queue manager 2 so that the ability to put messages to it is inhibited. This results in
all messages being sent to queue manager 1 where they are processed by the other
application servers.

If queue manager 1 fails:
You must restart it as soon as possible for the following reasons:

* Messages that are on queue manager 1 when it fails are not processed until you restart queue
manager 1.

* Because application servers 1 and 3 are not attached to queue manager 2, they cannot take on
any of its workload.

Chapter 15. Interoperation with WebSphere MQ 251

* No new messages from WebSphere MQ applications are sent to queue manager 1, instead
new messages are sent to queue manager 2 and consumed by application server 2.

» Because application servers 1, 2 and 3 are in the same WebSphere Application Server cluster,
their non-WebSphere MQ workload continues to be distributed between them all, even though
application servers 1 and 3 cannot use WebSphere MQ because queue manager 1 has failed.

Although this networking topology can provide availability and scalability, the relationship between the
workload on different queue managers and the application servers with which they are connected is
complex. You can contact your IBM representative to obtain expert advice.

Connecting WebSphere Application Server application servers to WebSphere MQ
for z/0OS with queue-sharing groups

On z/OS systems, an application server can connect to a queue manager that is a member of a
WebSphere MQ for z/OS queue-sharing group. You can configure the connection so that it selects a
specific named queue manager, or you can configure it to accept any queue manager in the
queue-sharing group.

Note: In this topic "application server" refers to an application server that is running on WebSphere
Application Server and "queue manager" refers to a queue manager that is running on WebSphere
MQ.

If you configure a connection to select a specific named queue manager, your options for providing high
availability are like those for connecting to WebSphere MQ on other platforms. However, you can improve
availability if you configure the connection to accept any queue manager in the queue-sharing group. In
this situation, when the application server reconnects following a WebSphere MQ queue manager failure,
the application server can accept connection to a different queue manager that has not failed.

A connection that you configure to accept any queue manager must only be used to access shared
queues. A shared queue is a single queue that all queue managers in the queue-sharing group can
access. It does not matter which queue manager an application uses to access a shared queue. Even if
the same application instance uses different queue managers to access the same shared queue, this
always produces consistent results.

These examples show two topology options for connecting to WebSphere MQ for z/OS to benefit from
queue-sharing groups:

* The application servers and the queue managers run in the same logical partition (LPAR)
* The application servers and the queue managers run in different logical partitions (LPARS)

The application servers and the queue managers run in the same logical partition (LPAR)

In the following figure:

» Application servers 1 and 2 are part of a WebSphere Application Server cluster.
» Application server 1 is running in LPAR 1.

» Application sever 2 is running in LPAR 2.

* Queue managers 1 and 2 are members of a WebSphere MQ queue-sharing group that hosts a shared
queue, Q1. The shared queue is located in a coupling facility.

* Queue manager 1 is running in LPAR 1.
* Queue manager 2 is running in LPAR 2.

* A "bindings" connection is used when the application server and the queue manager are running on the
same host. This is a cross-memory connection is established to a queue manager running on the same
host. A bindings connection is also known as "call attach".

— Application server 1 and queue manager 1 are attached to each other in bindings mode.
— Application server 2 and queue manager 2 are attached to each other in bindings mode.

252 Overview

Queue

Manager 1 WebSphere MQ

Application queue-sharing

Server 1

Coupling

facility

WebSphere Application
Server cluster

Q1

—— LPAR2
: Queue
M 2
: Application anager
I Server 2 — _
|
|

Figure 44. WebSphere Application Server with bindings mode connection to WebSphere MQ for z/OS

This networking topology can benefit from "pull" workload balancing if several application instances,
including instances running in different LPARs, are processing messages from the same shared queue.

You can improve availability for this topology by using the z/OS Automatic Restart Manager (ARM) to
restart failed application servers or queue managers. If a queue manager in an LPAR fails, ARM can
restart an application server in a different LPAR, where the application server can connect to a running
gueue manager, instead of waiting for a restart of the queue manager that it was using previously. In the
example used here, ARM can restart WebSphere Application Server application server 1 in LPAR 2, where
it can connect to WebSphere MQ queue manager 2, instead of waiting for queue manager 1 to restart.

The application servers and the queue managers run in different logical partitions
(LPARSs)

In the following figure:

* Queue managers 1 and 2 are members of a WebSphere MQ queue-sharing group that hosts a shared
queue, Q1. The shared queue is located in a coupling facility. The two queue managers run in different
LPARs.

« A'client" connection is used when the application server and queue manager are running on different
hosts. This is a TCP/IP network connection that is used to communicate with the queue manager. A
client connection is also known as "socket attach".

— Multiple application servers have a client mode (TCP/IP) connection to the queue managers. All the
client mode connections are managed by the z/OS sysplex distributor, which selects either queue
manager 1 or queue manager 2 for each connection request.

Chapter 15. Interoperation with WebSphere MQ 253

Manager 1 WebSphere MQ
queue-sharing

Application | || Sysplex
Server distributor
f ——

Queue
Manager 2

Figure 45. WebSphere Application Server with client mode connection to WebSphere MQ for z/OS

As with the bindings mode connection example, this networking topology can benefit from "pull* workload
balancing if several application instances running in the same or different application servers are
processing messages from the same shared queue.

The use of the z/OS sysplex distributor improves availability for this networking topology. If one of the
queue managers fails, the z/OS sysplex distributor can connect applications running in the application
servers to the other queue manager, without waiting for the failed queue manager to restart. In the
example used here, if queue manager 1 fails, the z/OS sysplex distributor can select queue manager 2 for
every connection request, until queue manager 1 restarts.

Note: In this networking topology, WebSphere MQ for zZOS GROUP units of recovery must be enabled on
all the queue managers in the queue-sharing group. TCP/IP (client mode) connections that accept
any queue manager use GROUP units of recovery. GROUP units of recovery are not supported by
versions of WebSphere MQ for z/OS earlier than version 7.0.1. Bindings mode connections do not
require GROUP units of recovery.

WebSphere MQ messaging provider activation specifications

Activation specifications are used to configure inbound message delivery to message-driven beans (MDBs)
running inside WebSphere Application Server. They supersede message listener ports, which are now a
stabilized function.

Activation specifications and message-driven beans

Activation specifications are the standardized way to manage and configure the relationship between an
MDB running in WebSphere Application Server and a destination withinWebSphere MQ. They combine the
configuration of connectivity, the Java Message Service (JMS) destination and the runtime characteristics
of the MDB, within a single object.

Message-driven beans are a special class of Enterprise Java Bean (EJB). They enable Java Platform,
Enterprise Edition (JEE) applications to process messages asynchronously, with WebSphere Application
Server managing the transactionality and concurrency of the application.

The following figure shows how an activation specification can be used to link a WebSphere MQ queue
manager destination to an MDB running within WebSphere Application Server. The process of delivering a

254 Overview

message from a client to an MDB via an WebSphere MQ messaging provider activation specification
occurs in this way:

Messaging client WebSphere WebSphere application server
MQ queue
manager WebSphere MQ || EJB container
Send message messaging
l | provider activation -XnMessa
specification ge
—H_ (message)

M
Message WebSphere MQ
producer destination

Figure 46. WebSphere MQ messaging provider activation specification in action

businessMethod ()

* A messaging client, either running in a stand-alone process or within an application server environment,
sends a message using JMS (or any other messaging API, such as MQI) to a WebSphere MQ queue or
topic defined in a WebSphere MQ queue manager.

* A WebSphere MQ activation specification is configured to listen on that destination for messages. When
the new message is detected, it is removed from the destination (potentially under an XA transaction).

* The message is then passed to an MDB that has been configured to use the activation specification
through its onMessage method.

» The MDB uses the information in the message to perform the relevant business logic.
Activation specifications compared with listener ports

Versions of WebSphere Application Server earlier than Version 7.0, use listener ports to define the
association between a connection factory, a destination, and an MDB.

Activation specifications supersede the use of listener ports, which became a stabilized feature in
WebSphere Application Server Version 7.0 (for more information, see f‘StabiIized features” on page 1142[).
There are several advantages to using activation specifications over listener ports:

» Activation specifications are simple to configure, because they only require two objects: the activation
specification and a message destination. Listener ports require three objects: a connection factory, a
message destination, and the message listener port itself.

» Activation specifications are not limited to the server scope. They can be defined at any administrative
scope in WebSphere Application Server. Message listener ports must be configured at the server scope.
This means that each server in a node requires its own listener port. For example, if a node is made up
of three servers, three separate listener ports must be configured. Activation specifications can be
configured at the node scope, so in the example only one activation specification would be needed.

» Activation specifications are part of the Java Platform, Enterprise Edition Connector Architecture 1.5
standards specification (JCA 1.5). Listener port support in WebSphere Application Server makes use of
the application server facilities interfaces defined in the JMS specification, but is not part of any
specification itself.

It is still possible to use message listener ports to deliver messages to an MDB using the WebSphere MQ
messaging provider. There are certain scenarios in which the use of listener ports is still preferable to
using activation specifications. This usually is the case with configurations in which some of the servers
are running on versions of WebSphere Application Server earlier than WebSphere Application Server
Version 7.0. It is possible to configure both message listener ports (which make use of WebSphere MQ

Chapter 15. Interoperation with WebSphere MQ 255

messaging provider resources) and WebSphere MQ messaging provider activation specifications at the
same time. For more information, see ['Message-driven beans, activation specifications, and listener ports’]

on page 151,

To assist in migrating listener ports to activation specifications, the WebSphere Application Server
administrative console provides a Convert listener port to activation specification wizard on the
Message listener port collection panel. This allows you to convert existing listener ports into activation
specifications. However, this function only creates a new activation specification with the same
configuration used by the listener port. It does not modify application deployments to use the newly
created activation specification.

Enhanced features of the WebSphere MQ messaging provider

The WebSphere MQ messaging provider enables WebSphere Application Server applications and clients
to connect to and use WebSphere MQ resources in a JMS-compliant manner. This provider includes the
enhanced features described in this topic.

Overview

The WebSphere MQ messaging provider has enhanced administrative options supporting the following
functions:

+ [‘WebSphere MQ channel compression’|

[‘WebSphere MQ client channel definition table”|

[“Client channel exits” on page 257|

+ [“Transport-level encryption by using SSL” on page 257|

+ [“Automatic selection of the WebSphere MQ transport type” on page 257

WebSphere MQ channel compression

Data sent over the network between WebSphere Application Server and WebSphere MQ can be
compressed, reducing the amount of data that is transferred. Channel compression can be beneficial in
the following situations:

» If a cost is incurred that is proportional to the amount of data transferred over a network. For example,
nodes in a network might span a leased line for which a utilization charge is applied.

 If the rate at which messaging data can be transferred across a network is the limiting factor in the
performance of an application.

» If compressing the data might reduce the cost of its encryption and decryption.

To use WebSphere MQ channel compression, configure the message compression properties of an
existing connection factory or activation specification. For more information, see the appropriate step within
[Configuring JMS resources for the WebSphere MQ messaging providei

For more information, see the WebSphere MQ topic Channel compression in the WebSphere MQ
information center that is part of the|WebSphere MQ Iibrary|

WebSphere MQ client channel definition table

The client channel definition table reduces the effort required to configure a connection to a queue
manager. Your WebSphere MQ administrator can create a single table of all the WebSphere MQ channels
supported by queue managers in the enterprise, then in WebSphere Application Server you configure a
connection to a queue manager by identifying the client channel definition table and providing any
additional information not already contained within the table.

256 Overview

http://www.ibm.com/software/integration/wmq/library/

You can also use the client channel definition table to provide a basic failover capability, by specifying that
a connection is attempted against several queue managers listed in the table. Each suitable channel
definition is tried in turn until a queue manager connection is successfully established.

You can use the client channel definition table, with WebSphere MQ messaging provider activation
specifications and connection factories, to select the client channel definition to use when establishing a
connection to WebSphere MQ. The table can be configured to select from a number of queue managers,
depending on their availability.

When you use a client channel definition table, note the following restrictions:

 If your client channel definition table can select from more than one queue manager, you might not be
able to recover global transactions. Activation specifications and connection factories that specify a
client channel definition table must either do so without ambiguity as to the target queue manager, or
must avoid using the resources with applications that enlist in global transactions.

« If your client channel definition table contains channel definitions that reference native WebSphere MQ
channel exits, the use of these channel definitions is not supported in the WebSphere Application
Server environment.

For more information about client channel definition tables, see the developerWorks article

MQ V6 Java and JMS clients and the client channel definition table] and the WebSphere MQ topic
channel definition tablel

To use a client channel definition table, specify it when you create a new activation specification or
connection factory.

Client channel exits

Client channel exits are pieces of Java code that you develop, and that run in the application server at key
points during the life cycle of a WebSphere MQ channel. Your code can change the runtime characteristics
of the communications link between the WebSphere MQ messaging provider and the WebSphere MQ
gueue manager.

Note: Only client channel exits written in Java are supported for use within the WebSphere Application
Server environment.

For more information about client channel exits, see the WebSphere MQ topic [Channel exit programs| For
a list of the channel exits that work with the WebSphere MQ messaging provider, see the client connection
channel row of the table in the WebSphere MQ topic [What are channel exit programs?|

To use client channel exits, configure the client transport properties of an existing connection factory or
activation specification.

Transport-level encryption by using SSL

Transport-level encryption by using SSL is the supported way to configure SSL for JMS resources
associated with the WebSphere MQ messaging provider. The SSL configuration is associated with the
communication link for the connection factory or activation specification. You either define the SSL
information in the connection factory, or your WebSphere MQ administrator defines the SSL information in
an associated client channel definition table.

Automatic selection of the WebSphere MQ transport type

The WebSphere MQ messaging provider supports the following ways to connect to a WebSphere MQ
gueue manager:

Chapter 15. Interoperation with WebSphere MQ 257

http://www.ibm.com/developerworks/websphere/library/techarticles/0506_barrago/0506_barrago.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0506_barrago/0506_barrago.html
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzaf.doc/cs12100_.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzaf.doc/cs12100_.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzae.doc/ic17440_.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzae.doc/ic17450_.htm

Bindings mode (or call attach)
Bindings mode attachment is only possible if the queue manager is located on the same physical
machine as the WebSphere Application Server. Bindings mode attachment, where available,
typically offers better performance.

Client mode (or socket attach)
Client mode attachment can be used wherever the WebSphere MQ queue manager and
WebSphere Application Server can establish a network connection to one another.

Bindings mode, then client mode (automatic selection)
This method tries a bindings mode connection first and, if that fails, a client mode connection is
tried.

Every node in a WebSphere Application Server cluster shares identical configuration information. With
automatic selection of the WebSphere MQ transport type, all the servers in a cluster can be configured to
automatically select their transport. This has the effect that any clustered server that is co-located with a
queue manager establishes a bindings mode connection to the queue manager, whereas other servers in
the cluster establish client mode connection to the queue manager.

Strict message ordering with the WebSphere MQ messaging provider
and message-driven bean (MDB) applications

Message ordering is important to some asynchronous messaging applications; that is, it is important to
process messages in the same order that the producer sends them. If this type of message ordering is
important to your application, your design must take it into account.

For example, a messaging application that processes seat reservations might have producer components
and a consumer component. A producer component sends a message to the consumer component when
a customer reserves a seat. If the customer cancels the reservation then the producer (or possibly a
different producer) sends a second message. Typically, the consumer component must process the first
message (which reserves the seat) before it processes the second message (which cancels the
reservation).

Some applications use a synchronous (request-response) pattern where the producer waits for a response
to each message before it sends the next message. In this type of application, the consumer controls the
order in which it receives the messages and can ensure that this is the same order as the producer or
producers send them. Other applications use an asynchronous (fire and forget) pattern where the producer
sends messages without waiting for responses. Even for this type of application, order is usually
preserved; that is, a consumer can expect to receive messages in the same order as the producer or
producers send them, especially when there is a significant time between sending consecutive messages.
However your design must consider factors that can disrupt this order.

The order of messages is disrupted if your application sends messages with different priorities (higher
priority messages can overtake lower priority messages) or if your application explicitly receives a
message other than the first by specifying message selectors. Parallel processing and error or exception
processing can also affect message ordering.

The following topics explain how strict message ordering can be achieved when deploying message-driven
bean applications to the WebSphere MQ messaging provider for WebSphere Application Server when no
special facilities have been coded into the application to handle messages arriving out of order:

» For information about configuring strict message ordering using non-application server facilities (ASF)
listener ports, see r‘Strict message ordering using non-ASF listener ports” on page 259|

» For information about configuring strict message ordering using application server facilities (ASF)
listener ports and activation specifications with WebSphere MQ version 7.0 messaging provider, see
“Strict message ordering using activation specifications or ASF listener ports connected to WebSphere|
MQ Version 7.0” on page 260)|

258 Overview

» For information about configuring strict message ordering using application server facilities (ASF)
listener ports and activation specifications with WebSphere MQ version 6.0 messaging provider, see
“Strict message ordering using activation specifications or ASF listener ports connected to WebSphere]
MQ Version 6.0” on page 262

For WebSphere Application Server Version 7 and later, listener ports are stabilized. For more information,
re