
IBM WebSphere Application Server - Express for
Distributed Platforms, Version 8.0

Administering applications and their
environment

���

Note
Before using this information, be sure to read the general information under “Notices” on page 575.

Compilation date: July 14, 2011

© Copyright IBM Corporation 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

How to send your comments . ix

Changes to serve you more quickly . xi

Chapter 1. Overview and new features for administering applications and their environments . . 1

Chapter 2. How do I administer applications and their environments? 3

Chapter 3. Using the administrative clients . 5
Using the administrative console . 5

Administrative console . 5
Installing and uninstalling the administrative console 18
Starting and logging off the administrative console 19
Specifying console preferences . 21
Accessing help and product information from the administrative console 27
Changing the console session expiration . 49
Changing the class loader order of the console module deployed in Integrated Solutions Console 50

Getting started with wsadmin scripting . 51
What is new for scripted administration (wsadmin) 52
Overview and new features for scripting the application serving environment 53

Using administrative programs (JMX) . 54
Java Management Extensions (JMX) for WebSphere Application Server 55
Creating a custom Java administrative client program using WebSphere Application Server

administrative Java APIs . 57
Creating a Java Management Extensions client program using the Java Management Extensions

Remote application programming interface . 68
Extending the WebSphere Application Server administrative system with custom MBeans 72
Administrative programs for multiple Java Platform, Enterprise Edition application servers 85
Deploying and managing a custom Java administrative client program with multiple Java Platform,

Enterprise Edition application servers . 86
Java Management Extensions V1.0 to Java Management Extensions V1.2 migration 88
Java Management Extensions (JMX) interoperability 88

Using command-line tools . 89
manageprofiles command . 91
startServer command . 105
stopServer command . 108
serverStatus command . 109
cleanupNode command . 110
registerNode command . 111
deregisterNode command . 113
backupConfig command . 115
restoreConfig command . 117
versionInfo command . 119

Location of the command file . 119
Syntax for the versionInfo command . 119
Parameters . 120
Report description . 120
Sample versionInfo report . 121

genVersionReport command . 122
Location of the command file . 122
Syntax for the genVersionReport command . 122
Report description . 123
Sample genVersionReport report . 124

© Copyright IBM Corp. 2011 iii

historyInfo command . 124
Location of the command file . 125
Syntax for the historyInfo command . 125
Parameters . 125
Report description . 125
Sample historyInfo report . 126

genHistoryReport command . 127
Location of the command file . 127
Syntax for the genHistoryReport command . 127
Report description . 127
Sample historyInfo report . 128

managesdk command . 129
GenPluginCfg command . 134
EARExpander command . 136
revokeCertificate command . 137
requestCertificate command . 139
createCertRequest command . 141
queryCertificate command . 143
Example: Security and the command line tools . 145

Chapter 4. Using Ant to automate tasks . 147

Chapter 5. Starting and stopping quick reference 149

Chapter 6. Backing up and recovering the application serving environment 151

Chapter 7. Class loading . 153
Class loaders . 153
Configuring class loaders of a server . 158
Class loader collection . 159

Class loader ID . 159
Class loader order . 159
Class loader settings . 159

Configuring application class loaders . 160
Configuring web module class loaders . 162
Class loading: Resources for learning . 163

Chapter 8. Deploying and administering enterprise applications 165
Enterprise (Java EE) applications . 165

System applications . 166
Common deployment framework . 166

Installing enterprise application files . 167
Installable enterprise module versions . 168
Ways to install enterprise applications or modules 170

Installing enterprise application files with the console 172
Example: Installing an EAR file using the default bindings 179
Example: Installing a web services sample with the console 180
Preparing for application installation settings . 181
Preparing for application installation binding settings 182
Select installation options settings . 187
Manage modules settings . 197
Client module settings . 199
Client module property settings . 199
Provide options to compile JavaServer Pages settings 199
EJB JNDI names for beans . 201
Bind EJB business settings . 201

iv Administering applications and their environment

Map default data sources for modules containing 1.x entity beans 202
EJB references . 203
Resource references . 204
Virtual hosts settings . 207
Security role to user or group mapping . 208
JASPI authentication enablement for applications 209
User RunAs collection . 210
Ensure all unprotected 1.x methods have the correct level of protection 210
Bind listeners for message-driven beans settings 211
Map data sources for all 2.x CMP beans . 212
Map data sources for all 2.x CMP beans settings 214
Ensure all unprotected 2.x methods have the correct level of protection 216
Provide options to perform the EJB Deploy settings 217
Shared library reference and mapping settings . 220
Shared library relationship and mapping settings 221
JSP and JSF option settings . 222
Context root for web modules settings . 223
Initial parameters for servlets settings . 224
Environment entries for client modules settings . 225
Environment entries for EJB modules settings . 225
Environment entries for web modules settings . 226
Environment entries for application settings . 226
Resource environment references . 227
Message destination reference settings . 228
Select current backend ID settings . 229
Provide JNDI names for JCA objects settings . 229
Correct use of the system identity . 230
Requirements for setting data access isolation levels 230
Metadata for module settings . 233
Provide options to perform the web services deployment settings 234
Display module build ID settings . 235

Installing enterprise modules with JSR-88 . 236
Customizing modules using DConfigBeans . 237
Configuring enterprise application files . 238

Application bindings . 240
Enterprise application collection . 245
Configuring application startup . 248
Configuring binary location and use . 250
Configuring the use of class loaders by an application 256
Manage modules settings . 260
Mapping modules to servers . 262
Mapping virtual hosts for web modules . 263
Mapping properties for a custom login or trusted connection configuration 265

Viewing deployment descriptors . 266
Metadata for module settings . 268

Starting or stopping enterprise applications . 270
Disabling automatic starting of applications . 271
Target specific application status . 272

Updating enterprise application files . 273
Ways to update enterprise application files . 275
Updating enterprise applications with the console 277
Preparing for application update settings . 279
Hot deployment and dynamic reloading . 283

Resolving application configuration conflicts . 293
Exporting enterprise applications . 295
Exporting enterprise application files . 296

Contents v

Exporting DDL files . 297
Uninstalling enterprise applications using the console 298
Removing enterprise files . 298
Uninstalling enterprise application files by dragging them from a monitored directory 299
Deploying and administering applications: Resources for learning 301

Chapter 9. Managing applications through programming 303
Accessing the application management function . 304
Preparing an application for installation using programming 305
Installing an application through programming . 330
Application management . 333
Starting an application through programming . 334
Sharing sessions for application management . 335
Manipulating additional attributes for a deployed application 336
Editing applications . 337
Updating an application through programming . 339
Adding to, updating, or deleting part of an application through programming 341
Preparing a module and adding it to an existing application through programming 343
Preparing and updating a module through programming 345
Adding a file through programming . 348
Updating a file through programming . 350
Uninstalling an application through programming . 352
Deleting a module through programming . 354
Deleting a file through programming . 356

Chapter 10. Extending application management operations through programming 359

Chapter 11. Deploying and administering business-level applications 363
Business-level applications . 364

Assets . 366
Composition units . 367

Importing assets . 368
Upload asset settings . 370
Asset settings . 370

Managing assets . 374
Asset collection . 375
Updating assets . 375
Deleting assets . 379
Exporting assets . 380

Creating business-level applications . 380
Creating business-level applications with the console 381
Business-level application settings . 391
Composition unit settings . 393
Example: Creating a business-level application . 396

SCA application package deployment . 397
Creating SCA business-level applications . 399

Creating SCA business-level applications with the console 401
Composition unit settings . 409
JMS binding settings for SCA composites . 412
Provide HTTP endpoint URL information settings for SCA composites 416
SCA composite component settings . 417
SCA component reference settings . 418
SCA component service settings . 418
Service provider policy sets and bindings collection for SCA composites 419
References policy sets and bindings collection for SCA composites 421
SCA service provider settings . 423

vi Administering applications and their environment

SCA service client settings . 427
Example: Creating an SCA business-level application with the console 430

Starting business-level applications . 432
Stopping business-level applications . 433
Updating business-level applications . 433
Updating SCA composite artifacts . 435
Viewing SCA composite definitions . 436
Viewing SCA domain information . 437
Viewing and editing JMS bindings on references and services of SCA composites 438
Exporting WSDL and XSD documents . 439
Deleting business-level applications . 440

Chapter 12. Administering business-level applications using programming 443
Creating an empty business-level application using programming 445
Importing an asset using programming . 448
Listing assets using programming . 454
Viewing an asset using programming . 457
Editing an asset using programming . 461
Deleting an asset using programming . 465
Exporting an asset using programming . 469
Starting a business-level application using programming 473
Stopping a business-level application using programming 476
Checking the status of a business-level application using programming 480
Listing business-level applications using programming 483
Listing composition units using programming . 487
Listing control operations using programming . 491
Viewing a business-level application using programming 495
Viewing a composition unit using programming . 498
Adding a composition unit using programming . 502
Updating an asset using programming . 508
Editing a business-level application using programming 513
Editing a composition unit using programming . 516
Deleting a business-level application using programming 522
Deleting a composition unit using programming . 525

Chapter 13. Troubleshooting deployment . 531
Application deployment problems . 531
Application deployment troubleshooting tips . 537
Application startup errors . 537
Application startup problems . 542
Reducing annotation searches during application deployment 545
A client program does not work . 546
Web resource is not displayed . 547
Application uninstallation problems . 549

Chapter 14. Troubleshooting administration . 551
Administration and administrative console troubleshooting 551
Administrative console does not start even though installation completes 555
Administrative console - browser connection problems 556

When a single user that uses multiple instances of the Mozilla browser logs into the administrative
console, the first user ID that logs into the administrative console is the current user. 556

A user on Mozilla browser Version 1.4 selects a check box on a collection table, presses Enter,
and receives an error. . 557

A user on Mozilla browser Version 1.4 enters an invalid ID or password, presses Enter, and
receives an error message . 557

Web server plug-in troubleshooting tips . 557

Contents vii

Administrative problems with the wsadmin scripting tool 559
Tracing and logging facilities - troubleshooting tips . 565
Application Server start or restart problems . 566
Server hangs during shutdown if it creates a Java core dump (Red Hat Linux) 567
Command-line tool problems . 568

Appendix. Directory conventions . 571

Notices . 575

Trademarks and service marks . 577

Index . 579

viii Administering applications and their environment

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.

v To send comments on articles in the WebSphere Application Server Information Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail
form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

v To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax
them to 919-254-5250.

Be sure to include the document name and number, the WebSphere Application Server version you are
using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2011 ix

x Administering applications and their environment

Changes to serve you more quickly

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The
information center is the official delivery format for IBM WebSphere Application Server documentation. If
you use the PDF books primarily for convenient printing, it is now easier to print various parts of the
information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon
is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation
tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a
separate browser window as one HTML file. The HTML file includes each of the topics in the section,
with a table of contents at the top.

4. Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your
selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a
preferable limit. The feedback link is available at the end of most information center pages.

Under construction!

The Information Development Team for IBM WebSphere Application Server is changing its PDF book
delivery strategy to respond better to user needs. The intention is to deliver the content to you in PDF
format more frequently. During a temporary transition phase, you might experience broken links. During
the transition phase, expect the following link behavior:

v Links to Web addresses beginning with http:// work

v Links that refer to specific page numbers within the same PDF book work

v The remaining links will not work. You receive an error message when you click them

Thanks for your patience, in the short term, to facilitate the transition to more frequent PDF book updates.

© Copyright IBM Corp. 2011 xi

xii Administering applications and their environment

Chapter 1. Overview and new features for administering
applications and their environments

Use the links provided in this topic to learn about the administrative features.

What is new for administrators

 This topic provides an overview of new and changed features of system administration.

Introduction: System administration

 This topic describes the administration of the product and the applications that run on it.

See also Introduction: Environment and Introduction: Variables.

© IBM Corporation 2003, 2005 1

2 Administering applications and their environment

Chapter 2. How do I administer applications and their
environments?

Follow these shortcuts to get started quickly with popular tasks.

When you visit a task in the information center, look for the IBM Suggests feature at the bottom of the
page. Use it to find available tutorials, demonstrations, presentations, developerWorks® articles, IBM®

Redbooks®, support documents, and more.

Create WebSphere® profiles

Register a node with the administrative agent

Administer nodes using the administrative agent

Administer configurations

Administer application servers with the console

Configure application servers with scripting

Manage application servers with scripting

Administer generic servers

Administer custom services

Administer the UDDI registry

Use the console to administer communication with web servers (plug-ins)

Use scripting to administer communication with web servers (plug-ins)

Administer HTTP sessions with the console

Administer HTTP sessions with scripting

Provide access to naming and directory resources (JNDI) - Name server

Provide access to naming and directory resources (JNDI) - Bindings

Provide access to relational databases (JDBC resources) with the console

Provide access to relational databases (JDBC resources) with scripting

Choose a messaging provider.

Provide access to messaging resources (default messaging provider) with scripting

Install applications with the console

Install applications with scripting

Start and stop applications with the console

© Copyright IBM Corp. 2011 3

Start and stop applications with scripting

Update applications with the console

Update applications with scripting

Deploy and administer web services applications

Administer business-level applications using the administrative console

Administer business-level applications using programming

Set up business-level applications using scripting

Manage environment configurations with properties files using wsadmin scripting

Choose an administrative client

Use the administrative console

Using scripting (wsadmin)

Troubleshoot deployment

Troubleshoot administration

4 Administering applications and their environment

Chapter 3. Using the administrative clients

Using the administrative console
You can install, start, and access the administrative console. You can also specify console preferences
and access help.

About this task

The administrative console is a Web-based tool that you use to manage the product. The administrative
console supports a full range of product administrative activities.

Application servers and administrative agents can have their own administrative consoles. The steps in
this task apply to these consoles.

Procedure
1. Optionally install the administrative console through the wsadmin command.

2. Start the server for the appropriate administrative console.

Issue the startServer command for an application server or an administrative agent server. The
administrative console application starts automatically when you start the server to which the
administrative console belongs.

3. Access the administrative console.

4. Specify console preferences.

5. Access help.

Administrative console

Administrative console buttons
This page describes the button choices that are available on various pages of the administrative console,
depending on which product features you enable.

v

Select all items. Selects each resource that is listed on the administrative console panel, in
preparation for performing an action against the selected resources.

v

Deselect all items. Removes all the listed resources from each selection so that no action is
performed against any of the resources.

v

Show filter function. Produces a dialog box for specifying the resources to view in the table on
this administrative console page.

Hide filter function. Hides the dialog box for specifying the resources to view in the table on this
administrative console page.

When you produce the dialog box, select the column to filter and enter the filter criteria.
Column to filter

Select the column to filter from the drop-down list. When you apply the filter, only those items in
the selected column that meet the filter criteria are displayed.

 For example, select Names to enter criteria by which to filter application server names.
Filter criteria

Enter a string that must be found in the name of a collection entry to qualify the entry to display
in the collection table. The string can contain percent sign (%), asterisk (*), or question mark (?)
symbols as wildcard characters. For example, enter *App* to find any application server whose
name contains the string App.

© Copyright IBM Corp. 2011 5

Prefix each of the following characters () ̂ * % { } \ + $ with a backslash (\) so that the
regular expression engine performing the search correctly matches the search criteria. For
example, to search for all Java DataBase Connectivity (JDBC) providers containing (XA) in the
provider name, specify the following string:
*\(XA\)

v

Clear filter value. Clears your filter changes and restores the most recently saved values.
v Abort. Stops a transaction that is not yet in the prepared state. All operations that the transaction

completed are undone.
v Activate. Activates a group member.
v Add. Adds the selected or typed item to a list, or produces a dialog for adding an item to a list.
v Apply. Saves your changes to a page without exiting the page.
v Back. Displays the previous page or item in a sequence. The administrative console does not support

using the Back and Forward options of a browser, which can cause intermittent problems. Use Back or
Cancel on the administrative console panels instead.

v Browse. Opens a dialog that enables you to look for a file on your system.
v Cancel. Exits the current page or dialog, discarding unsaved changes. The administrative console does

not support using the Back and Forward options of a browser, which can cause intermittent problems.
Use Cancel on the administrative console panels instead.

v Change. In the context of security, you can search the user registry for a user ID for an application to
run under. In the context of container properties, you can change the data source that the container is
using.

v Clear. Clears your changes and restores the most recently saved values.
v Clear selections. Clears any selected cells in the tables on this tabbed page.
v Close. Exits the dialog.
v Collapse all. Collapses all the expanded items.
v Commit. Releases all locks that are held by a prepared transaction and forces the transaction to

commit.
v Copy. Creates copies of the selected application servers.
v Create. Saves your changes to all the tabbed pages in a dialog and exits the dialog.
v Create tables. Develops scheduler database tables.
v Deactivate. Deactivates a group member. The group member must be in the active state to be

deactivated. The deactivate option causes the group member to move to the idle state. The group policy
overrides which members are activated and deactivated for a group. The policy is enforced for every
member state change. If the deactivate option conflicts with the group policy, the policy resets who is
the active member of the group.

v Delete. Removes the selected instance.
v Details. Shows the details about a transaction.
v Disable.

Group or group members:
Disables a group or group member. When you disable a group or group member, the active
group or group member is first deactivated. If the deactivate option is successful, the group or
group member moves to the disable state. A disabled group or group member cannot be
activated.

Java Management Extensions (JMX) connectors:
Disables a connector.

v Disable Auto Start. Requires you to start the application manually.
v Discard. Discards your local changes instead of saving them to the master configuration.
v Done. Saves your changes to all the tabbed pages in a dialog and exits the dialog.
v Down. Moves through a list.
v Drop tables. Removes scheduler database tables.
v Dump. Activates a dump of a traced application server.
v Edit. Lets you edit the selected item in a list, or produce a dialog box for editing the item.
v Enable.

Group or group members:
Enables a group or a group member.

6 Administering applications and their environment

Java Management Extensions (JMX) connectors:
Enables a connector.

v Enable Auto Start. Starts an application automatically when the server on which the application resides
starts.

v Expand all. Expands all the collapsed items.
v Export. Accesses a page for exporting enterprise archive (EAR) files for an enterprise application.
v Export DDL. Accesses a page for exporting data definition language (DDL) files for an enterprise

application.
v Export Keys. Exports Lightweight Third-Party Authentication (LTPA) keys to other domains.
v Export route table. Exports the route table information for a selected cluster to a binary file in the

configuration.
v Filter. Produces a dialog box for specifying the resources to view in the tables on this tabbed page.
v Finish. Forces a transaction to finish, regardless of whether its outcome has been reported to all

participating applications.
v First. Displays the first record in a series of records.
v Generate keys. Generates new LTPA keys. When security is turned on for the first time with LTPA as

the authentication mechanism, LTPA keys are automatically generated with the password entered in the
panel. To generated new keys, use this option after the server is up with security turned on. Clicking this
option generates the keys and propagates them to all active servers (cell, node, and application
servers). The new keys can be used to encrypt and decrypt the LTPA tokens. Click Save on the console
taskbar to save the new keys and the password in the repository.

v Immediate stop. Stops the server, but bypasses the normal server quiesce process that supports
in-flight requests to complete before shutting down the entire server process. This shutdown mode is
faster than the normal server stop processing, but some application clients can receive exceptions.

v Import keys. Imports new LTPA keys from other domains. To support single sign-on (SSO) in
WebSphere Application Server across multiple WebSphere domains (cells), share LTPA keys and a
password among the domains. After exporting the keys from one of the cells into a file, click this option
to import the keys into all the active servers (cell, node, and application servers). The new keys can be
used to encrypt and decrypt the LTPA token. Click Save on the console taskbar to save the new keys
and the password in the repository.

v Install. Displays the Preparing for application installation page, which you use to deploy an application,
an enterprise bean, or a web component onto an application server.

v Install RAR. Opens a dialog that is used to install a Java 2 Platform, Enterprise Edition Connector
Architecture (JCA) connector and to create a resource adapter.

v Manage state. Displays a list of MBeans that corresponds to your previous selection of data source or
connection factory configurations. You can apply JCA lifecycle management operations to these MBeans
to control the runtime status of the corresponding resources.

v Manage transactions. Displays a list of active transactions running on a server. You can forcibly finish
any transaction that has stopped processing because a transactional resource is not available.

v Modify. Opens a dialog that is used to change a specification.
v Move. Moves the selected application servers to a different location in the administrative cell. When

prompted, specify the target location.
v Move down. Moves downward through a list.
v Move up. Moves upward through a list.
v New. Displays a page that you use to define a new instance. For example, clicking New on the

Application Servers page displays a page on which you can configure a new application server.
v Next. Displays the next page, frame, or item in a sequence.
v OK. Saves your changes to the local configuration and exits the page.
v Pause. In the context of JCA lifecycle management, stops all outbound communication that is

conducted through a resource on a specified server to a backend.
v Ping. Attempts to contact selected application servers.
v Previous. Displays the previous page, frame, or item in a sequence.
v Quit. Exits a dialog box and discards any unsaved changes.
v Reference shared libraries. Opens the collection of shared library references available for use by your

application or module. If no references are available, a message is displayed stating that there are no
references.

Chapter 3. Using the administrative clients 7

v Refresh. Refreshes the view of data for instances that are currently listed on this tabbed page.
v Remove. Deletes the selected item.
v Remove file. Removes the specified file from the selected application or module.
v Reset. Clears your changes on the tab or page and restores the most recently saved values.
v Restart. Stops the selected objects and starts them again.
v Resume. In the context of JCA lifecycle management, restarts the activity of a data source or a

connection factory that was paused by a previous JCA lifecycle management operation.
v Retrieve new. Retrieves a new record.
v Save. Saves the changes in your local configuration to the master configuration.
v Select. For resource analysis, lets you select a scope in which to monitor resources.
v Set. Saves your changes to settings in a dialog.
v Settings. Displays a dialog for editing servlet-related resource settings.
v Settings in use. Displays a dialog showing the settings in use.
v Start. In the context of application servers, starts selected application servers. In the context of data

collection, starts collecting data for the tables on this tabbed page.
v Stop. In the context of server components such as application servers, stops the selected server

components. In the context of a data collection, stops collecting data for the tables on a tabbed page.
v Terminate. Deletes the Application Server process or another process that cannot be stopped by the

Stop or Immediate Stop commands. Some application clients can receive exceptions. Always attempt
an immediate stop before using this option.

v Test connection. After you define and save a data source, you can select this option to ensure that the
parameters in the data source definition are correct. On the Collection panel, you can select multiple
data sources and test them simultaneously.

v Uninstall. Deletes a deployed application from the WebSphere Application Server configuration
repository. Also deletes application binary files from the file system.

v Update. For applications, replaces an application that is deployed on a server with an updated
application. As part of the updating, you might need to complete steps on the Preparing for application
installation and Update application pages.

v Update resource list. Updates the data on a table. Discovers and adds new instances to the table.
v Verify tables. Validates the mapping between the table names, scheduler resource, and data sources.
v View. Opens a dialog on a file.

Administrative console page features
This topic provides information about the basic elements of an administrative console page, such as the
various tabs.

Administrative console pages are arranged in a few basic patterns. Understanding their layout and
behavior can help you use them more easily.

Collection pages

Use collection pages to manage a collection of existing administrative objects. A collection page typically
contains one or more of the following elements:
Scope Scope is described in Administrative console scope settings.
Preferences

Preferences are described in Administrative console preference settings.
Table of existing objects

The table displays existing administrative objects of the type specified by the collection page. The
table columns summarize the values of the key settings for these objects. If no objects exist yet,
an empty table is displayed. Use the available options to create a new object.

Buttons for performing actions
The available actions are described on the Administrative console buttons help panel. In most
cases, you need to select one or more of the objects in the table, then click an action. The action
is applied to the selected objects.

Sort toggle buttons
The column headings in the table are followed by icons for sort ascending (^) and sort descending

8 Administering applications and their environment

(v). By default, items such as names are sorted in descending order (alphabetically). To enable
another sorting order, click the icons for the column that you want to sort.

 Detail pages

Use detail pages to configure specific administrative objects, such as an application server. A detail page
typically contains one or more of the following elements:
Configuration tabbed page

This tabbed page is for modifying the configuration of an administrative object. Each configuration
page has a set of general properties that is specific to the administrative object. Other sets of
properties display on the page, but vary depending on the administrative object.

Runtime tabbed page
This tabbed page displays the configuration that is currently in use for the administrative object.
The object is read-only in most cases. Some detail pages do not have runtime tabs.

 If you can edit runtime properties, these properties directly affect the current runtime environment,
but are not preserved when that environment is stopped.

Local Topology tabbed page
This tabbed page displays the topology that is currently in use for the administrative object. View
the topology by expanding and collapsing the different levels of the topology. Some detail pages
do not have local topology tabs.

Buttons for performing actions
Buttons to perform specific actions display on the configuration tabbed page and the Runtime
tabbed page. The displayed buttons vary based on the administrative object. The available buttons
are described on the Administrative console buttons help panel.

 Wizard pages

Use wizard pages to complete a configuration process comprised of several steps. Be aware that wizards
show or hide certain steps depending on the characteristics of the specific object that you are configuring.

Console layout
This topic describes the layout of the user interface for Integrated Solutions Console.

See Navigating the console for instructions on how to use the console controls.

Banner
Displays a common image across all Integrated Solutions Console installations. The banner
includes a greeting to the user who is logged in and links to log out of the console and to open
console help.

Navigation tree
Lists the tasks available in the console. Tasks are grouped into organizational nodes that represent
categories of tasks, for example, Servers, or Applications. The organizational nodes can be nested
in multiple levels.

 The tasks shown are only those for which the user has access. When you click a task in the
navigation, a page is displayed in the work area containing one or more modules for completing
the task. Use the View selection list at the top of the navigation area to modify the list of tasks
according to your preferences. You can organize the tasks as follows:

All tasks
This shows all tasks in the console. Tasks are grouped into organizational nodes, for
example, Guided activities, Servers, or Applications.

My tasks
This shows only the tasks that you have added to the view. This list is initially empty, but
provides a link to the My Tasks module. Use My Tasks to add and remove from the My
Tasks list in the navigation.

Chapter 3. Using the administrative clients 9

Product selection
Selecting a product name shows only the tasks for that particular product, for example,
WebSphere Application Server.

Work area
When you launch a page, the content of the page is displayed in the work area. If you have not
launched any pages, the Welcome page is displayed in the work area. A page contains one or
more console modules that are used to perform operations. Each console module has its own
navigation controls. Some pages include a control to close the page and return to the Welcome
page.

Console navigation
This topic describes how to navigate pages and tasks in the Integrated Solutions Console.

v Launching pages from the navigation tree

v Filtering tasks in the navigation

v Using the title bar controls

v Accessing help

v Using the console help controls

Before reading this section, read the terms and information in Console layout.

Launching pages from the navigation tree

The console navigation provides a hierarchical view of all of the tasks available in the console. A task is a
page in the work area consisting of one or more console modules. All of the modules on the page are
provided to start and complete the task. To open a task, simply click the task name in the navigation. The
task is opened in a new page in the work area.

The following table describes the controls for the console navigation tree and entries in the tree.

 Table 1. Console navigation tree control functions. The following table describes the controls for the console
navigation tree and entries in the tree.

Icon Function

Represents an organizational node in the navigation tree that contains pages or
other navigation nodes. Click the icon to expand the node.

Closes an organizational node.

Filtering tasks in the navigation

When you first access the console, all tasks to which you have access are displayed in the navigation.
Use the view menu at the top of the navigation to filter the list of tasks by product. Or, you can create a
customized list by selecting My tasks from the View menu. For instructions on creating and managing your
custom list of tasks, see My tasks.

Using the title bar controls

Each page contains one or more web applications or console modules. A console module enables you to
perform an operation, such as displaying a list or stopping a managed system. The title and the controls
for the module are displayed on the title bar. Depending on the functions supported by the module, the
following icons might be displayed on the title bar:

v The

icon is displayed if the module allows you to edit settings for the portlet. For example, a module
that retrieves performance data could permit you to specify the server to be analyzed. When you click
the icon, an edit screen is displayed. Click the

icon to return to the previous screen.

10 Administering applications and their environment

v The

icon allows you to return to the previous screen.

v The

icon is displayed if help is available for the module. When you click the icon, the help is
displayed in a separate browser window.

v The

icon allows you to minimize the module view. When you click the icon, only the title bar is visible

on the page. Click the

icon to return to the maximize state.

v The

icon allows you to maximize a module view. When you click the icon, the full portlet view is

visible on the page. Click the

icon to return to the minimize state.

In addition to the controls on the title bar, a module can include controls for other actions, such as a button
to submit input. Some modules have controls that launch other modules. If a module launches another
module, the newly launched module is displayed on a new page.

Accessing help

Help is available for the entire console or for a specific module in the console.

To access console help, perform the following steps:

1. Click Help on the console toolbar. The Help is displayed in a separate browser window.

2. In the help navigation tree, click the help set you want to view. For example, click Console help to
view topics that provide helpful information for new console users. Use the console help controls as
needed.

To access help for a module on a page, perform the following steps:

1. On the title bar for the module, click the

icon. That icon is displayed only if help is available for the
module. The help is displayed in a separate browser window.

2. Close the help window when you are finished viewing it.

Using the console help controls

 Table 2. Console help control functions. The following table describes the console help control functions.

Icon Function

Use these controls to navigate the list of pages you have viewed. Click

to

return to the previous help topic that was displayed. Click

to move forward in
the history list.

Click either of these icons to synchronize the navigation tree with the current topic.
The current topic will be highlighted in the navigation tree. This function is useful if
you followed links from one help topic to other topics and you want to determine
where the current topic is listed in the help navigation tree.

Permits you to add the current page to your browser favorites list or bookmarks.

Displays a window for printing the help topic that is displayed.

Maximizes the target view. This control is available for the Table of Contents view,
the Search Results view, and the topic display area.

Restores a maximized view to its normal size.

Changes the view to the Search Results view. To search all of the help topics, type
a word or words in the Search field. Enclose a phrase within double quotes. You
can use Boolean operators (such as OR) in the search string. To limit the scope of
the search, click Search scope. Click GO to start the search. A list of topics that
contain the target strings are displayed in the results frame.

Changes from the Search Results view to the Table of Contents view.

Chapter 3. Using the administrative clients 11

Administrative console browser support
Several web browsers are supported for use with Integrated Solutions Console.

The following web browsers are supported for use with Integrated Solutions Console:

v Firefox Versions 2.0, 3.0, 3.5, and 3.6

v Firefox Version 1.5, for AIX V6.1 only

v Microsoft Internet Explorer Versions 7.0 and 8.0

Note: Using the browser's back button with the console can produce unexpected results and is not
supported. Use the controls and links provided in the console to navigate between pages and
applications.

Console accessibility
There are many accessibility features built into Integrated Solutions Console.

v Accessibility features

v Navigating the console by using the keyboard

v Navigating help by using the keyboard

Accessibility features

The Integrated Solutions Console has the following accessibility features:

v The following features are for vision-impaired users:

– Can be operated by using only the keyboard

– Communicates all information independent of color

–

Supports interfaces commonly used by screen readers and screen magnifiers

– Supports the attachment of alternate output devices

– Provides help information in an accessible format

v The following features are for users who have mobility impairments or limited use of their hands:

– Allows the user to request more time to complete timed responses

– Can be operated by using only the keyboard

– Supports the attachment of alternative input and output devices

v The following features are for the deaf and hard of hearing users:

– Supports alternatives to audio information

– Supports adjustable volume control

v The console does not flash the screen at rates that could induce epileptic seizures.

The help system for Integrated Solutions Console has the following accessibility features:

v Uses the accessibility support enabled by the browser that is used to display the help

v Enables navigation by using the keyboard

Navigating the console by using the keyboard

To move through the controls on a particular page, use the Tab key.

To click a link or control on a page using the keyboard, navigate to the link or control and press Enter.

To change the navigation view using the keyboard, follow these steps.

1. Navigate to the View selection list using the Tab key.

12 Administering applications and their environment

2. Use the up and down arrows to change the value of the selection list.

3. Press Enter. The tasks displayed in the navigation are changed according to your selection.

Navigating help by using the keyboard

Use the following key combinations to navigate the help system by keyboard:

v To bring the Topic pane (the right hand side) into focus, press Alt+K, and then press Tab.

v In the Topic pane, to go to the next link, press Tab. To go to the previous link, press Shift+Tab.

v To go directly to the Search Results view in the left hand side, press Alt+R, and then press Enter or Up
arrow to enter the view.

v To go directly to the Navigation (Table of Contents) view in the left hand side, press Alt+C, and then
press Enter or Up arrow to enter the view.

v To navigate your browser history, press Alt+Left arrow to go back. If you have navigated back to a
previously view page, you can use Alt+Right arrow to navigate forward again.

v To expand and collapse a node in the navigation tree, tab to the + or - image next to it to bring the
image into focus, and then press the Right or Left arrows.

v To go to the next frame in the help system, press F6. To go to the previous frame in the help system,
press Shift+F6.

v In the navigation, to move to the next topic node, press the Down arrow or Tab. To move to the
previous topic node, press the Up arrow or Shift+Tab.

v To go to the next link, button, or topic node from inside a view, press Tab.

v To scroll all the way up or down in a frame, press Home or End, respectively.

v To print the active pane, press Ctrl+P.

v To move to the search entry field, press Alt+S.

Welcome
Display products that are installed that use the Integrated Solutions Console for administrative tasks.

The Welcome page displays the products that are installed that use the Integrated Solutions Console for
administrative tasks. The page lists the product name and version number. If provided by the product, you
can click the product name to display a page that provides more information about the product.

My tasks
Create and edit a task view in the console navigation.

Use My tasks to create and edit a list of tasks to view in the console navigation. A task includes a page
that contains one or more web applications, or console modules, that are used to complete that task.
When you first access the console, all tasks to which you have access are displayed in the navigation. My
tasks is especially useful to customize the navigation to show only the tasks you use most often. After you
customize your tasks, My Tasks is initially displayed each time you log in to the console.

Follow these general steps to customize your task list in the navigation.

1. Select My tasks from the View selection list in the navigation. If you have never used My tasks before,
you must click Add tasks to open it.

2. Use the checkboxes to select and deselect tasks from the My tasks navigation.

3. To save your changes, click Apply.

4. To cancel your changes, click Reset.

After applying your selections, your customized task list is displayed in the navigation.

Use the following buttons to customize your task selections.

Chapter 3. Using the administrative clients 13

Apply Saves the current selections.

Reset Backtracks all changes to the selections that were set since the last time My tasks was applied.
This is useful if you need to cancel your changes.

Select All
Checks every task.

Deselect All
Unchecks every task.

Expand All
Expands each node in the display and reveals all subtasks in the navigation.

Collapse All
Collapses each node in the display so that only the top level nodes are displayed.

Console identity
Use Console Identity to define a string (keyword, name, or phrase) to be displayed in the console banner.
This string can be used to distinguish this console from other console instances.

To access this page, click System administration > Console Identity in the console navigation.

The console identity string is rendered differently in the banner and browser title bar.

v Console identity in the banner

The console identity string is displayed in the console banner after the greeting to the console user,
separated by a dash. For example, if the identity string is set to Jupiter and the user is logged in as
consoleadmin, the banner displays the following greeting.

On the login page, the console identity is displayed without the greeting.

v Console identity in the browser title bar

The console identity string is displayed in the title bar after the console brand name, separated by a
space. For example, if the identity string is set to Saturn, the title bar displays the following information.

Note: After saving these changes, the console identity settings are applied across the console. For an
administrative agent configuration, this means that the changes are applied to the administrative
agent and all of its registered application servers, regardless of where the changes were actually
saved.

Console identity:

Specifies whether a custom string is used to identify this console.

 none Select this option if a custom string should not be
displayed.

custom Select this option to display a custom string in the banner
and browser. When this option is selected, Custom
identity string is enabled.

Welcome consoleadmin - Jupiter

Integrated Solutions Console Saturn

14 Administering applications and their environment

Custom identity string:

Specifies the text string that you want to display in the banner and browser title bar.

Truncate string at (Characters):

Specifies how many characters of the string should be displayed. Input for this field must be an integer.
Minimum value is 4, maximum value is 99. When the string is truncated, 3 of the characters are used for
an ellipsis (...) to indicate that it has been truncated.

 Console identity preview:

Click Preview to see how the custom string will be displayed in the banner.

Console identity string
You can define a console identity string to be displayed in the console banner and in the browser's title
bar. This string can be fixed or you can use a variable that is resolved at run time with a Java system
property or environment variable.

The console identity string is rendered differently in the banner and browser title bar.

v Console identity in the banner

The console identity string is displayed in the console banner after the greeting to the console user,
separated by a dash. For example, if the identity string is set to Jupiter and the user is logged in as
consoleadmin, the banner displays the following greeting.

On the login page, the console identity is displayed without the greeting.

v Console identity in the browser title bar

The console identity string is displayed in the title bar after the console brand name, separated by a
space. For example, if the identity string is set to Saturn, the title bar displays the following information.

After installation, there are two ways provided to customize the identity string.

v Use Console Identity in the administrative console. To open, log in to the administrative console and
click System administration > Console Identity.

v Set the value for the string in an XML file, consoleProperties.xml, which is located in
app_server_root/profiles/profile_name/config/cell/cell_name/applications/isclite.ear/
deployments/isclite/isclite.war/WEB-INF. You should keep a backup copy of the most recent working
consoleProperties.xml before making changes to this file.

The keys that are used to set the console identity string to be displayed in the banner and title bar are
defined in an XML <console-property/> element. The required attributes id and value for this element
determine the key name and value pairs. The following initial settings are provided in
consoleProperties.xml.

(Some keys are split on multiple lines for printing purposes.)

Welcome consoleadmin - Jupiter

Integrated Solutions Console Saturn

Chapter 3. Using the administrative clients 15

Table 3. Console identity key values. The following table describes the console identity key values.

Key (id) Initial setting (value) Description

ISC.CONSOLE.ID ISC.CONSOLE.ID.CUSTOM Specifies the ID attribute of another
<console-property/> element that
contains the actual console identity
string

ISC.CONSOLE.ID.MAXLEN 27 Specifies the maximum length of the
resolved console identity string. The
string will be truncated to this length if
necessary.

ISC.CONSOLE.ID.CUSTOM empty string A custom string to be displayed in the
banner and title bar.

ISC.CONSOLE.ID.DEPLOYER.
unique_suffix

None Specifies a custom string that can be
selected using the Console Identity
application under System
Administration. By providing multiple
<console-property/> entries with the

ISC.CONSOLE.ID.DEPLOYER.
unique_suffix

id attribute, you can provide multiple
identity strings for console users to
select from. Each entry of this type
should have a distinct unique_suffix
from the other entries. If multiple
entries are provided with the same
unique_suffix, then only the first value
with this suffix is displayed in the
selection list for the console user.

Examples:

– In the following example, the deployer wants to create custom strings that indicate
different departments served by their respective host consoles. Console users will be
able to select which identity is displayed in each department's console interface. To
achieve this goal, the deployer provides the following custom keys in the installation
package. Out of the box, the blank value for ISC.CONSOLE.ID.CUSTOM is used.
<?xml version="1.0" encoding="UTF-8"?>
<consoleproperties:ibm-portal-consoleproperties xmlns:consoleproperties=
 "http://www.ibm.com/websphere/appserver/schemas/6.0/ibm-portal-consoleproperties.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://www.ibm.com/websphere/appserver/schemas/6.0/ibm-portal-consoleproperties.xsd
 ibm-portal-consoleproperties.xsd">
 <consoleproperties:console-property id="ISC.CONSOLE.ID"
 value="ISC.CONSOLE.ID.CUSTOM"/>
 <consoleproperties:console-property id="ISC.CONSOLE.ID.MAXLEN" value="27"/>
 <consoleproperties:console-property id="ISC.CONSOLE.ID.CUSTOM" value=""/>
 <consoleproperties:console-property
 id="ISC.CONSOLE.ID.DEPLOYER.sales" value="Sales & Marketing"/>
 <consoleproperties:console-property
 id="ISC.CONSOLE.ID.DEPLOYER.finance" value="Finance"/>
 <consoleproperties:console-property
 id="ISC.CONSOLE.ID.DEPLOYER.research" value="Research & Development"/>
 <consoleproperties:console-property
 id="ISC.CONSOLE.ID.DEPLOYER.dist" value="Distribution"/>
</consoleproperties:ibm-portal-consoleproperties>

16 Administering applications and their environment

– The administrator wants to append information about the host console to the banner and
title bar. This can be accomplished by updating the ISC.CONSOLE.ID.CUSTOM key to
include the PROCESSOR_ARCHITECTURE environment variable (which works on
Windows machines) along with the os.name Java system property. The other keys are
left unchanged.
<?xml version="1.0" encoding="UTF-8"?>
<consoleproperties:ibm-portal-consoleproperties
 xmlns:consoleproperties=
 "http://www.ibm.com/websphere/appserver/schemas/6.0/ibm-portal-consoleproperties.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://www.ibm.com/websphere/appserver/schemas/6.0/ibm-portal-consoleproperties.xsd
 ibm-portal-consoleproperties.xsd">
 <consoleproperties:console-property id="ISC.CONSOLE.ID"
 value="ISC.CONSOLE.ID.CUSTOM"/>
 <consoleproperties:console-property id="ISC.CONSOLE.ID.MAXLEN" value="27"/>
 <consoleproperties:console-property id="ISC.CONSOLE.ID.CUSTOM"
 value="Platform: %PROCESSOR_ARCHITECTURE% OS: %os.name%"/>
</consoleproperties:ibm-portal-consoleproperties>

Since the ISC.CONSOLE.ID.MAXLEN key indicates a maximum display of 27
characters, the resulting string, which is resolved at run time, is rendered in the banner
as follows for a Windows 2003 Server environment.

Note: After the console identity string is saved, the settings are applied across the console. For an
administrative agent configuration, this means that the changes are applied to the administrative
agent and all of its registered application servers, regardless of where the changes were actually
saved.

Administrative console: Resources for learning
Use the following links to find relevant supplemental information about the IBM WebSphere Application
Server administrative console. The information resides on IBM and non-IBM Internet sites, whose
sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere
Application Server product, but is useful all or in part for understanding the product. When possible, links
are provided to technical papers and IBM Redbooks that supplement the broad coverage of the release
documentation with in-depth examinations of particular product areas.

View links to additional information:

Administration
v IBM WebSphere Application Server Redbooks

This site contains a listing of all WebSphere Application Server Redbooks.
v IBM WebSphere developerWorks

This site is the home of technical information for developers working with WebSphere products. You can
download WebSphere software, take a fast path to developerWorks zones, such as VisualAge® Java or
WebSphere Application Server, learn about WebSphere products through a newcomers page, tutorials,
technology previews, training, and Redbooks, get answers to questions about WebSphere products, and
join the WebSphere community, where you can keep up with the latest developments and technical
papers.

v WebSphere Application Server Support page

Platform: x86 OS: Window...

Chapter 3. Using the administrative clients 17

http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere
http://www.software.ibm.com/wsdd/
http://www.ibm.com/software/webservers/appserv/support.html

Take advantage of the Web-based Support and Service resources from IBM to quickly find answers to
your technical questions. You can easily access this extensive Web-based support through the IBM
Software Support portal at web address http://www.ibm.com/software/support/ and search by product
category, or by product name. For example, if you are experiencing problems specific to WebSphere
Application Server, click WebSphere Application Server in the product list. The WebSphere Application
Server Support page appears.

Installing and uninstalling the administrative console
You can install the administrative console during profile creation or after you create a profile. You can
uninstall any administrative console that you install. To install an administrative console after profile
creation, or to uninstall the administrative console, use the wsadmin command. This topic discusses how
to use the wsadmin command to install and uninstall the administrative console.

Before you begin

If you install the administrative console through the wsadmin command, a profile that does not have an
administrative console installed must exist.

About this task

Run the deployConsole script on the wsadmin command whenever you want to uninstall the
administrative console, or whenever you want to install the administrative console to a profile that does not
have an administrative console installed.

You can run the script in either connected or disconnected mode.

Application servers and administrative agents can have their own administrative consoles. The steps in
this task apply to these consoles.

The usual security restrictions for the wsadmin command apply to this script. In connected mode, the user
must authenticate if security is enabled.

The deployConsole.py script is located in the

profile_root/bin directory.

The deployConsole.py script is located in the profile_root\bin directory.

Procedure
v To install the administrative console, issue the following command:

wsadmin.bat –f deployConsole.py install

wsadmin.sh –f deployConsole.py install

v To uninstall the administrative console, issue the following command:

wsadmin.bat –f deployConsole.py remove

wsadmin.sh –f deployConsole.py remove

Results

The administrative console is installed or uninstalled, depending on whether you specified the install or
remove option.

18 Administering applications and their environment

Starting and logging off the administrative console
This topic describes how to set up the administrative console environment, to access the administrative
console, and to log out of the administrative console.

Before you begin

To access the administrative console, you must first install WebSphere Application Server and the
administrative console.

About this task

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

You start the administrative console, access the console through a web browser, and then log into the
administrative console. After you finish working in the administrative console, save your work and log out.

Procedure
1. Start the desired administrative console by starting the server process that runs the console

application.

You can start an application server or an administrative agent server.

Check the SystemOut.log file of the server that runs the console application to verify that the console
application starts successfully. If the console application starts successfully, you see the WSVR0221I:
Application started: isclite message.

If you cannot start the administrative console because the console port conflicts with an application
that is already running on the machine, change the port number in the installation
root/profiles/profile name/config/cells/cell_name/nodes/node_name/serverindex.xml file and the
installation root/profiles/profile name/config/cells/cell_name/virtualhosts.xml files. Change
all the occurrences of the console port to a new port number. Alternatively, shut down the other
application that uses the conflicting port before starting the WebSphere Application Server product.

2. Access the administrative console.

a. Enable cookies in the web browser that you use to access the administrative console.

b. Enable JavaScript.

Enablement of JavaScript is required. You must enable JavaScript so that all the features of the
administrative console are available.

Important:

If the application server is on Windows Server 2008 and you are accessing
the console with Microsoft Internet Explorer V8.0, disable the enhanced security
configuration in the browser. Otherwise, the console does not work correctly. For
further information about enhanced security, read material on the Microsoft website.

c. In the same web browser, type http://your_fully_qualified_server_name:port_number/ibm/
console, where your_fully_qualified_server_name is the fully qualified host name for the machine
that contains the administrative server, and port_number is the administrative console port number.
When the administrative console is on the local machine, your_fully_qualified_server_name can
be localhost unless security is enabled. On Windows platforms, use the actual host name if
localhost is not recognized. If security is enabled, your request is redirected to
https://your_fully_qualified_server_name:port_number/ibm/console, where

Chapter 3. Using the administrative clients 19

your_fully_qualified_server_name is the fully qualified host name for the machine that contains the
administrative server, and port_number is the administrative console secure port number.

The administrative consoles for the application server and the administrative agent use 9060 as the
default port number for an unsecure administrative console and 9043 as the default port number for
a secure administrative console. Each new administrative console that you deploy during profile
creation is assigned a new unsecure port number, and, if you enable security during profile
creation, a new secure port number. Whichever unsecure administrative console you create first is
assigned port 9060, as long as the port is available. Likewise, whichever secure administrative
console you create first is assigned port 9043, as long as the port is available.

For a listing of supported web browsers, see WebSphere Application Server system requirements.

d. Wait for the administrative console to load into the browser.

A login page displays after the administrative console starts.

3. Log into the administrative console.

The administrative console can be for an application server or an administrative agent.

a. If you are logging into the administrative console for the administrative agent, and you have
registered at least one node with the administrative agent, select the node to administer, and click
Continue.

The node can be the administrative agent node or a node for one of the application servers
registered to the administrative agent. After you select a node, the login procedure is the same as
that for the other server types, and for administrative agents with no nodes registered.

b. Enter your user name or user ID.

The user ID lasts only for the duration of the session for which it is used to log in.

Changes made to server configurations are saved to the user ID. Server configurations also are
saved to the user ID if a session timeout occurs.

If you enter an ID that is already in use and in session, you are prompted to do one of the
following actions:

v Log out the other user with the same user ID. You can recover changes made during the other
user's session.

v Return to the login page and enter a different user ID.

c. If the console is secure, you must also enter a password for the user name. The console is secure
if someone has taken the following actions for the console:
v Specified security user IDs and passwords
v Enabled global security

See the Securing applications and their environment PDF for more information.

d. Click OK.

4. Log off the administrative console. Click System administration > Save changes to master
repository > Save to save work. Then click Logout to exit the console.

If you close the browser before saving your work, you can recover any unsaved changes the next time
that you log in under the same user ID.

Results

You have set up the administrative console environment, accessed the administrative console, and logged
out of the administrative console.

What to do next

Use the administrative console to manage the product.

Logging in
Enter your user ID and password to access the console.

20 Administering applications and their environment

To access the console, enter your User ID and Password and then click Log in. The password is
required only if security is enabled. In environments that use the administrative agent to administer
multiple application server nodes, select whether to log in to the administrative agent or one of its
registered profiles.

After you are logged in, be sure to use the Logout link in the console toolbar when you are finished using
the console and to prevent unauthorized access. If there is no activity during this login session for an
extended period of time, the session expires and you must login again to access the console. The
administrator can change the session timeout. The default is set to 30 minutes.

If the user ID that you provide is already logged in at a different location, you are prompted to choose
between logging out from the other location or returning to the login page. If you log out the user from the
other location, you might be prompted to recover unsaved changes made by that user.

If you have one or more different stand-alone servers running on the same machine and wish to
administer them concurrently from the same or a different machine then you must:

1. Ensure that each server uses a unique value for its admin console port.

2. Run a separate web browser process for each admin console that you wish to access concurrently.

Save changes to the master repository
Use this topic to update the master repository with your administrative console changes, to discard your
administrative console changes and continue working with the master repository, or to continue working
with your administrative console changes that are not saved to the master repository.

Until you save changes to the master repository, the administrative console uses a local workspace to
track your changes.

Total changed documents: Specifies the total number of documents that you changed for your session,
but that are not saved to the master repository. By clicking the +/- toggle key, you can see additional
information about the changed documents:

v Changed items

When you change your local configuration, each path and configuration file that you can apply the
update to in the master repository is displayed in the list.

v Status

The status can contain the following options:

– Added: If you save your changes to the master repository, a new configuration file is created on the
indicated path.

– Updated: If you save your changes to the master repository, an existing configuration file is updated
on the indicated path.

– Deleted: If you save your changes to the master repository, an existing configuration file is deleted
on the indicated path.

Synchronize changes with nodes: Specifies whether you want to force node synchronization at the
time that you save your changes to the master repository, rather than when node synchronization normally
occurs.

Save conflict: Specifies that another user changed some configuration information since you began
making changes. You can either click Save to overwrite the other user information, or Discard to discard
your changes and keep the changes that the other user made.

Specifying console preferences
Use this topic to customize how much data displays on an administrative console panel.

Chapter 3. Using the administrative clients 21

About this task

Throughout the administrative console are pages that have Preferences fields, Scope fields, and Filter
radio buttons. By selecting these fields and radio buttons you can customize how much data is shown.

For example, examine the Preferences field for the Administrative authorization groups page:

Procedure
1. Go to the navigation tree of the administrative console and click Security > Administrative

authorization groups.

2. Expand Preferences.

3. For the Maximum rows field, specify the maximum number of rows to display when the collection is
large. The default is 20. Rows that exceed the maximum number display on subsequent pages.

4. Select Retain filter criteria if you want to retain the last filter criteria that is entered in the filter
function. When you return to the Applications page, the page initially uses the retained filter criteria to
display the collection of applications in the table following the preferences. Otherwise, clear Retain
filter criteria and the last filter criteria is not retained.

5. Click Apply to apply your selections or click Reset to return to the default values. The default is not to
enable (not have a check mark beside) Retain filter criteria.

Results

Other pages have similar fields and radio buttons that you can use to specify console preferences. While
Preferences fields, Scope fields, and Filter buttons control how much data is shown in the console, the
Preferences option controls general behavior of the console. Click System Administration > Console
preferences to view the Preferences page.

Console preferences settings
Use the Console Preferences page to specify how you want features of the administrative console
workspace to behave.

To view this administrative console page, click System administration > Console preferences.

Turn on workspace automatic refresh:

Specifies whether you want the administrative console workspace to refresh automatically after the
administrative configuration changes.

 The default is for the workspace to refresh automatically. If you delete a WebSphere variable, for example,
the WebSphere variables page refreshes automatically and shows the updated list of WebSphere
variables in the WebSphere variables collection.

Specifying that the workspace not refresh automatically means that you must access a page again by
clicking the console navigation tree or links on collection pages to see the changes that are made to the
administrative configuration.

 Default true (selected)

No confirmation on workspace discard:

Specifies whether the confirmation dialog is displayed after a request is received to discard the workspace.
The default is to display confirmation dialogs.

 Default false (cleared)

22 Administering applications and their environment

Use default scope:

Specifies whether the default scope is the administrative console node.

 All scopes is the default unless you enable the Use default scope setting to make the administrative
console node the default. Whatever the default is the first time that you view a console panel that has
scope settings, that is the default for the panel on subsequent visits that you make to the panel. The
default for the panel does not change even if you modify the Use default scope setting.

 Default false (cleared)

Show the help portlet: Specifies whether the help portlet on the right of the console displays.

 Default true (selected)

Enable command assistance notifications: Specifies whether to send Java Management Extensions
(JMX) notifications that contain command assistance data from the administrative console. Enablement of
the notifications allows integration with product tools such as the Toolkit Jython editor for WebSphere
Application Server. Enablement of this option is recommended for non-production environments only.

 Default false (cleared)

Log command assistance commands: Specifies whether to log all the command assistance wsadmin
data to a file. This file is saved to ${LOG_ROOT}/server/commandAssistanceJythonCommands_user name.log:

v server is the server process where the console runs, such as server1 or adminagent.

v user name is the administrative console user name.

v When you manage a profile using an administrative agent, the command assistance log is put in the
location of the profile that the administrative agent is managing. The ${LOG_ROOT} variable defines the
profile location.

Occasionally clean out the file to manage its growth.

 Default false (cleared)

Bidirectional support options: Specifies bidirectional (Bidi) text preferences for the administrative
console.

 Default false (cleared)

Bidirectional support options
Use the Bidirectional support options page to specify bidirectional (Bidi) text preferences for the
administrative console.

Bidirectional support means that text is supported going in both directions for different types of alphabets.
WebSphere Application Server presents Bidi text using left-to-right (LTR) orientation in most languages.
However, when Bidi text is used as part of mixed Bidi and Latin text, for example, the preferred orientation
is right-to-left (RTL).

For text entry fields, this means that the cursor is placed at the right side and moves to the left as
characters are typed in an RTL alphabet, such as Hebrew or Arabic.

Bidi support helps to maintain visual structure in complex fields, such as file paths, emails, URLs and
Xpaths.

Chapter 3. Using the administrative clients 23

If you select Enable bidirectional support for all users under Global Preferences, any change made
affects all users. Note that if you select this option that Enable bidirectional support for this user under
Current® User Preferences is automatically selected also. However, if you only select Enable bidirectional
support for this user, any changes made only affect the user that is currently logged in.

To view this administrative console page, click Environment > Console preferences > Bidirectional
support options.

Enable bidirectional support for all users:

Select this choice to enable bidirectional support for all users.

 Default false

Default text direction for all users:

Select one of the options on this menu to indicate which direction the text should go for all users.

 The default text direction is left to right. This is the natural base text direction for most languages, including
European, Asian and Indic languages

If you select right to left, this is the natural base text direction for languages such as Arabic, Hebrew, Urdu
and Farsi.

If you select contextual, the base text direction is set according to the first strong character. This is an
appropriate choice when at the time of setting the base direction, the main language of the string is not yet
known.

 Default LTR

Enable bidirectional support for this user:

Select one of the options in this menu to indicate which direction the text should go for only the user
currently logged in.

 Default false

Text direction for this user: The default text direction is left to right. This is the natural base text
direction for most languages, including European, Asian and Indic languages

If you select right to left, this is the natural base text direction for languages such as Arabic, Hebrew, Urdu
and Farsi.

If you select contextual, the base text direction is set according to the first strong character. This is an
appropriate choice when at the time of setting the base direction, the main language of the string is not yet
known.

 Default LTR

Administrative console preference settings
Use the preference settings to specify how you want information to display on an administrative console
panel. The preference settings vary from one administrative console panel to another.

Maximum rows: Indicates the maximum number of rows to display per page when the collection is large.

24 Administering applications and their environment

Filter history: Indicates whether to use the same filter criteria to display this page the next time that you
visit.

Select the Retain filter criteria check box to retain the last filter criteria entered. When you return to the
page, retained filter criteria control the application collection that is displayed in the table.

Show resources in the scope hierarchy: Select the check box if you want to display the resources in
the hierarchy for a particular scope.

The hierarchy is:

v cell > node > server

v cell > cluster

For example, if you select a node scope, all node scope resources and all cell scope resources display for
the node.

This preference is available for resource factory panels only.

Show built-in resources: Select the check box if you want to display resources that are pre-defined to
support certain internal components of the product. For example, the product includes built-in
configurations of a Cloudscape JDBC provider and a data source to support the Universal Description,
Discovery and Integration Protocol (UDDI) registry for web services.

Show confirmation for stop command: Select the check box if you want a confirmation that the stop
command is successful.

Show confirmation for immediate stop command: Select the check box if you want a confirmation that
the immediate stop command is successful.

Display inherit policy set attachments confirmation: Select the check box if you want to enable the
inherit policy set attachments confirmation.

Show confirmation for terminate command: Select the check box if you want a confirmation that the
terminate command is successful.

Show resources at one authorizing group level only: Specifies the authorization group level used to
filter the resources in the table. Only those roles that apply to your ID can display in the table. Valid values
are All Roles, Administrator, Deployer (for application collection panels only), Operator, Configurator,
and Monitor. If All Roles is selected, then all the resources that you are authorized to view are displayed
in the table grouped by role. Otherwise, the resources for the role selected display in the table.

Hide system queues: Select the box to hide messaging engine system queue points.

Include cluster members in the collection: Select the check box if you want the collection to include
application servers that belong to a server cluster.

Show confirmation for update runtime command: Select the check box to enable the confirmation
panel for the update runtime command button.

Show items at the following authorization group level: Select from the list the authorization group
level that will be used to filter the items in the table.

Show all data source properties: By default, this panel does not list the custom properties that are
configurable by different administrative console pages. Select the check box to show all data source
custom properties, including properties required by the data source and configuration properties. Selecting
this option does not affect what is displayed on other panels.

Chapter 3. Using the administrative clients 25

Administrative console scope settings
Use this page to specify the level at which a resource is visible on the administrative console panel. By
changing the value for Scope, you see only the resources that are defined at that scope. The contents of
the collection table might change. For WebSphere Application Server (base) and WebSphere Application
Server, Express, a resource can be visible in the administrative console collection table at the cell, node,
or server scope.

For WebSphere Application Server (base) and WebSphere Application Server, Express, the console
displays a drop-down list of all the scopes available, which is three. To change the scope, select any item
from the drop-down list.

All scopes is the default unless you enable the Use default scope setting on the Console preferences
panel to make the administrative console node the default. Whatever the default is the first time that you
view a console panel that has scope settings, that is the default for the panel on subsequent visits that you
make to the panel. The default for the panel does not change even if you modify the Use default scope
setting.

You cannot select All scopes to create a new resource. You must select one of the available scopes from
the drop down list to create a new resource.

You always create resources at the current scope that is selected in the administrative console panel,
even though the resources might be visible at more than one scope.

Resources such as Java Database Connectivity (JDBC) providers, namespace bindings, or shared
libraries can be defined at multiple scopes. Resources that are defined at more specific scopes override
duplicate resources that are defined at more general scopes:

v The application scope has precedence over all the scopes.

v For WebSphere Application Server (base) and WebSphere Application Server, Express, the server
scope has precedence over the node and cell scopes.

v The node scope has precedence over the cell scope.

Despite the scope of a defined resource, the resource properties apply at an individual server level only.
For example, if you define the scope of a data source at the cell level, all the users in that cell can look up
and use that data source, which is unique within that cell. However, resource property settings are local to
each server in the cell. For example, if you define the maximum connections as 10, then each server in
that cell can have 10 connections.

The cell scope is the most general scope and does not override any other scope. The recommendation is
that you generally specify a more specific scope than the cell scope. When you define a resource at a
more specific scope, you provide greater isolation for the resource. When you define a resource at a more
general scope, you provide less isolation. Greater exposure to cross-application conflicts occur for a
resource that you define at a more general scope.
Cell Limits the visibility to all servers on the named cell. The resource factories within the cell scope

are:
v Defined for all servers within this cell
v For WebSphere Application Server (base) and WebSphere Application Server, Express,

overridden by any resource factories that are defined within application, server, and node
scopes that are in this cell and have the same Java Naming and Directory Interface (JNDI)
name

The resource providers that are required by the resource factories must be installed on every node
within the cell before applications can bind or use them.

Node Limits the visibility to all the servers on the named node. The node scope is the default scope for
most resource types. The resource factories that are defined within the node scope:
v Are available for servers on this node to use
v Override any resource factories that have the same JNDI name defined within the cell scope

26 Administering applications and their environment

The resource factories that are defined within the cell scope are available for servers on this node
to use, in addition to the resource factories that are defined within this node scope.

Server
Limits the visibility to the named server. The server scope is the most specific scope for defining
resources. The resource factories that are defined within the server scope:
v Are available for applications that are deployed on this server
v Override any resource factories that have the same JNDI name defined within the node and cell

scopes

The resource factories that are defined within the node and cell scopes are available for this
server to use, in addition to the resource factories that are defined within this server scope.

Application
Limits the visibility to the named application. Application scope resources can be viewed and
edited from the console, but not created. You can additionally use the Rational® Application
Developer or the wsadmin tool to view or edit the application scope resource configuration. The
resource factories that are defined within the application scope are available for this application to
use only. The application scope overrides all other scopes.

 You can view the application scope resources from the console by selecting Applications from
the console navigation, and then navigating to the appropriate application. The application scope
resources are unavailable from the Resources section of the console navigation.

 You can configure namespace bindings and shared libraries under cell, node, and server scopes only. For
WebSphere Application Server (base) and WebSphere Application Server, Express, you can configure
resources and the product variables under all four scopes.

Accessing help and product information from the administrative
console
This topic describes how to use administrative console help and how to link to product documentation from
the administrative console.

Before you begin

You must have a connection to the Internet to access information about WebSphere Application Server
from the Welcome page of the administrative console.

About this task

All of the helps panels that you can access from the administrative console, you can access from the
WebSphere Application Server Information Center. This topic describes how to access the help panels, the
information center, and other product documentation from the administrative console.

Procedure
v Click Welcome on the administrative console navigation tree. In the workspace to the right of the

navigation tree, click the link, which takes you to a page that has links to various documentation. The
documentation that is linked includes the WebSphere Application Server Information Center, the
WebSphere Application Server product information, and the WebSphere Application Server technical
information on developerWorks.

v Access help in the following ways:

– Click either of the following tabs of an online help page:

- Click the Help index tab and select from the list of help panels to view administrative console help
information.

- Click the Search tab, provide search terms, and then click Search. Under Results, select a help
panel that contains the search information.

Chapter 3. Using the administrative clients 27

– In the help portal that is on the right side of the administrative console panel, do one or all of the
following tasks:

- Click a field label or a list marker in the administrative console panel for the help to display under
Field help. Alternatively, place the cursor over the field label or the list marker for the
corresponding help to display at the cursor.

 Attention: When you place the cursor over the field label or list marker, the help might be
truncated in a Firefox browser. Click the field label or list marker so that the full help displays
under Field help.

- Click the link under Page help to access the help panel for the administrative console panel. The
help panel is the same help panel that displays when you click the ? icon.

- If Command assistance is listed, click the link under Command assistance to view wsadmin
scripting commands for the last action run for this console panel.

What to do next

You can continue to access help information from the administrative console. Alternatively, you can access
the help information from the WebSphere Application Server Information Center.

You can continue to access the WebSphere Application Server Information Center, the WebSphere
Application Server product information, and the WebSphere Application Server technical information on
developerWorks from the administrative console. Alternatively you can access the information from the
IBM website.

Accessing command assistance from the administrative console
Using command assistance, you can view wsadmin scripting commands in the Jython language for the
last action run in the administrative console. This topic discusses how to access command assistance from
the administrative console.

Before you begin

You must have WebSphere Application Server and the administrative console running to access command
assistance.

About this task

Use command assistance to see wsadmin scripting commands that correspond to actions in the
administrative console. Seeing these commands might help you develop the commands necessary to
administer WebSphere Application Server from the wsadmin utility.

If a command assistance link is listed in the help portlet, wsadmin commands exist for the last console
action that you completed, and command assistance is available for that action.

When command assistance is unavailable in the help portlet: Some console actions do not have
wsadmin commands directly associated with them. When the help portlet on the right side of the
administrative console panel does not have a command assistance link in it, no command assistance data
is available for the last console action.

Procedure
1. Click the link under Command assistance to view wsadmin scripting commands for the last action run

for this administrative console panel.

After the Command assistance window opens, it refreshes automatically when new command
assistance data is available.

Examples of actions include a click on a button or a click on a link in the navigation bar, a collection
panel, or a detail panel. The editing of forms is not a user action.

28 Administering applications and their environment

http://www.ibm.com/

The wsadmin scripting commands display in the Jython language in a secondary window that you can
view by clicking on the Command assistance link in the help portlet.

If you perform an administrative console action after you launch the Command assistance window,
whether or not the scripting commands display in the window depends on whether your browser
supports Javascript. If your browser supports Javascript, the Command assistance window
automatically refreshes the command list to reflect the most recent console action. If the browser does
not support Javascript, click the link again under Command assistance in the help portal to refresh
the command list.

2. To view the description of a specific wsadmin command, place your cursor over the command.

Hover text is displayed.

3. Optionally, log the command assistance data to a file by selecting the Log command assistance
commands setting on the Preferences page of the administrative console.

A timestamp and the breadcrumb trail of the panel that produced the command assistance data are
provided with the wsadmin data.

4. Optionally, allow command assistance to emit Java Management Extensions (JMX) notifications by
selecting the Enable command assistance notifications setting on the Preferences page of the
administrative console.

Enablement of the notifications allows integration with product tools such as the Rational Application
Developer Jython editor to assist you in writing scripts.

The notification type is websphere.command.assistance.jython.user_name where user_name is the
name of the administrative console user.

Results

You have viewed wsadmin scripting commands from the administrative console, optionally logged the
commands to a file, and optionally allowed command assistance to emit JMX notifications.

What to do next

You can continue your administration of the administrative console.

Administrative console actions with command assistance:

Using command assistance, you can view wsadmin scripting commands in the Jython language for the
last action that runs in the administrative console. This topic lists the administrative console actions that
have wsadmin commands available in the command assistance option of the Help portlet.

 The table lists the components and the actions in the administrative console that have command
assistance for a particular component. The administrative console can be an application server
administrative console or an administrative agent administrative console. Listed actions might apply to one
or both administrative consoles.

Chapter 3. Using the administrative clients 29

Table 4. Console component actions. The following table lists the components and the actions in the administrative
console that have command assistance for a particular component.

Component Action

Applications v List the applications.

v Install the application.

v Update the complete application.

v Start the application.

v Stop the application.

v Edit the deployment target mapping.

v List Structured Query Language in Java (SQLJ) profiles.

v Customize and bind SQLJ profiles.

v List IBM Optim™ pureQuery Runtime bind files (*).

v Bind IBM Optim pureQuery Runtime bind files (*).

v Uninstall the application.

(*) Command assistance in the administrative console produces wsadmin commands for
SQLJ. These commands work with IBM Optim pureQuery Runtime bind files. Command
assistance does not produce separate commands for the IBM Optim pureQuery Runtime
bind files. However, in the wsadmin environment separate commands exists for you to use
when working with IBM Optim pureQuery Runtime bind files.

Web servers v Create a web server.

v Delete a web server.

v Generate a plug-in configuration.

v Propagate the plug-in configuration.

v Propagate the key ring for the plug-in configuration.

v Start the web server.

v Stop the web server.

v Terminate the web server.

Channel framework v List the SSL repertoires.

v List the Transmission Control Protocol (TCP) endpoints.

v List the TCP thread pools.

v Delete a chain.

v Get the TCP endpoint.

v Create a TCP endpoint.

v Create a chain.

30 Administering applications and their environment

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component Action

Servers v Create an application server.

v Delete an application server.

v Modify an application server.

v List application servers.

v Remove application servers.

v Start an application server.

v Stop an application server.

v Create a custom property for an application server.

The action is supported for an application server, but not its template.

v Modify an existing custom property for an application server.

v List custom properties for an application server.

The action is supported for an application server, but not its template.

v Remove custom properties for an application server.

v Create a custom service for an application server.

The action is supported for an application server, but not its template.

v Modify an existing custom service for an application server.

v List custom services for an application server.

The action is supported for an application server, but not its template.

v Remove custom services for an application server.

v Modify application server components.

v Modify the Object Request Broker (ORB) service.

v Modify the ORB.thread.pool properties for an ORB service.

v Modify the thread pool detail for an ORB service.

Servers (continued) v Create a new class loader.

The action is supported for an application server, but not its template.

v Modify an existing class loader.

v List class loaders.

The action is supported for an application server, but not its template.

v Remove class loaders.

v Modify a process definition detail.

v Create a new environment entry for an application server.

The action is supported for an application server, but not its template.

v Modify an existing environment entry for an application server.

v List environment entries for an application server.

The action is supported for an application server, but not its template.

v Remove environment entries for an application server.

v Modify Java virtual machine (JVM) configuration properties.

v Modify JVM runtime properties.

Chapter 3. Using the administrative clients 31

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component Action

Servers (continued) v Modify process execution properties.

v Modify process logs configuration properties.

v Modify process logs runtime properties.

v Create a new port property for the application server.

v Modify an existing port property for the application server.

v List ports for the application server.

v Remove ports from the application server.

v Modify session management properties.

v Modify cookie properties.

v Modify distributed environment settings.

v Modify custom tuning parameters.

v Modify custom settings for custom tuning parameters.

v Modify database settings.

v Create a new thread pool.

The action is supported for an application server, but not its template.

v Modify an existing thread pool.

v List thread pools.

The action is supported for an application server, but not its template.

v Remove thread pools.

v Create an application server template.

v Delete an application server template.

v List the application server templates.

Servers (continued) v Create a generic server.

v Delete a generic server.

v Create a new environment entry for a generic server.

The action is supported for a generic server, but not its template.

v List environment entries for a generic server.

The action is supported for a generic server, but not its template.

v Modify the Enterprise JavaBeans (EJB) container settings.

v Modify the EJB cache settings.

v Modify the EJB timer service settings.

v Modify the application profiling service.

v Modify the internationalization service.

v Modify the compensation service.

v Modify the object pool service.

v Modify the startup beans service.

v Modify the ActivitySession service.

v Modify the work area service.

v Modify the core group service.

v Create a work area partition.

v Modify a work area partition.

v Delete a work area partition.

32 Administering applications and their environment

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component Action

Servers (continued) v Modify web container properties.

v Create a custom property.

The action is supported for a server, but not its template.

v Modify an existing custom property.

v List custom properties.

The action is supported for a server, but not its template.

v Remove custom properties.

v Create a new web container transport chain.

v Modify an existing web container transport chain.

v Remove web container transport chains.

v Create an external cache group.

v Edit an external cache group.

v Edit a denial of service protection.

v Modify the default Java persistence application programming interface (API) settings.

v View product information.

v View installed components.

v View installed extensions.

v Modify administrative services.

v Modify a repository service.

v Modify a generic server.

v Create a generic server endpoint.

v Modify a generic server endpoint.

v Remove a generic server endpoint.

Session Initiation
Protocol (SIP)
container

v Modify the Session Initiation Protocol (SIP) container.

v Modify the SIP stack.

v Modify SIP timers.

v Modify the SIP digest authentication.

v List SIP application routers.

v Modify a SIP application router.

Chapter 3. Using the administrative clients 33

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component Action

Environment v Create a name space binding for different types.

v Edit an EJB name space binding.

v Edit a name space binding of indirect lookup.

v Edit a name space binding of other context property.

v Edit a string name space binding.

v Create bootstrap properties.

v Edit bootstrap properties.

v Create a group of Universal Resource Identifier (URI) patterns.

v Edit a group of URI patterns.

v Create a shared library.

v Edit a shared library.

v Modify a shared library.

v List shared libraries.

v Remove shared libraries.

v Create a virtual host.

v Edit a virtual host.

v Modify a virtual host.

Environment
(continued)

v List virtual hosts.

v Remove virtual hosts.

v Create a host alias for a virtual host.

v Edit a host alias for a virtual host.

v Modify host aliases for a virtual host.

v List host aliases for a virtual host.

v Remove host aliases for a virtual host.

v Create a multi-purpose internet mail extensions (MIME) type.

v Edit a MIME type.

v Modify a MIME type.

v List MIME types.

v Remove MIME types.

v Create a WebSphere variable.

v Edit a WebSphere variable.

v Modify a WebSphere variable.

v List WebSphere variables.

v Remove WebSphere variables.

34 Administering applications and their environment

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component Action

Resources v Create a Java Database Connector (JDBC) provider.

v List the JDBC providers.

v Modify a JDBC provider.

v Delete a JDBC provider.

v List the resource adapters.

v Install a resource adapter.

v Copy a resource adapter.

v Upgrade a resource adapter.

v Modify a resource adapter.

v Delete a resource adapter.

v Modify the advanced resource adapter properties of a resource adapter.

v Create a custom property.

v Modify a custom property.

v Delete a custom property.

v List the data sources.

v Create a data source.

v Modify a data source.

v Remove a data source.

v Modify the connection pool properties of a data source.

v Modify the advanced connection pool properties of a data source.

v Modify the Websphere Application Server data source properties of a data source.

Resources (continued) v List the WebSphere Application Server Version 4 data sources.

v Create a WebSphere Application Server Version 4 data source.

v Modify a WebSphere Application Server Version 4 data source.

v Delete a Websphere Application Server Version 4 data source.

v Modify the connection pool properties of a Websphere Application Server Version 4 data
source.

v List the Java 2 Connector (J2C) connection factories.

v Create a J2C connection factory.

v Modify a J2C connection factory.

v Delete a J2C connection factory.

v Modify the connection pool properties of a J2C connection factory.

v Modify the advanced connection pool properties of a J2C connection factory.

v Modify the advanced connection factory properties.

v List the J2C activation specifications.

v Create a J2C activation specification.

v Modify a J2C activation specification.

v Delete a J2C activation specification.

v List the J2C administered objects.

v Create a J2C administered object.

v Modify a J2C administered object.

v Delete a J2C administered object.

Chapter 3. Using the administrative clients 35

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component Action

Resources (continued) v List the schedulers.

v Create a scheduler.

v Modify a scheduler.

v Delete a scheduler.

v Create the tables of a scheduler.

v Verify the tables of a scheduler.

v Drop the tables of a scheduler.

v List the object pool managers.

v Create an object pool manager.

v Modify an object pool manager.

v Delete an object pool manager.

v Create a custom object pool.

v Modify a custom object pool.

v Delete a custom object pool.

v List the work managers.

v Create a work manager.

v Modify a work manager.

v Delete a work manager.

v List the timer managers.

v Create a timer manager.

v Modify a timer manager.

v Delete a timer manager.

v Create a mail provider.

v Modify a mail provider.

v Create a mail session.

v Edit a mail session.

v Create a protocol provider.

v Modify a protocol provider.

Resources (continued) v Create a referenceable.

v Modify a referenceable.

v Create resource environment entries.

v Edit resource environment entries.

v Create a resource environment provider.

v Edit a resource environment provider.

v Create a URL.

v Modify a URL.

v Create a URL provider.

v Modify a URL provider.

v Modify an object cache instance.

v Modify a servlet cache instance.

36 Administering applications and their environment

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component Action

Transaction services v List the manual transactions.

v List the retry transactions.

v List the heuristic transactions.

v List the imported prepared transactions.

v Set the total transaction lifetime timeout.

v Set the asynchronous response timeout.

v Enable file locking.

v Enable transaction coordination authorization.

v Set the client inactivity timeout.

v Set the maximum transaction timeout.

Security v Enable security.

v Validate Lightweight Directory Access Protocol (LDAP) connections.

v List SSL configurations.

v Get the SSL configuration.

v Create an SSL configuration.

v Modify the SSL configuration.

v Delete an SSL configuration.

v List the SSL ciphers.

v List the SSL configuration groups.

v Create an SSL configuration group.

v Delete an SSL configuration group.

v Modify an SSL configuration group.

v Get the inherited SSL configuration.

v List dynamic outbound endpoint SSL configurations.

v Create a dynamic outbound endpoint SSL configuration.

v Delete a dynamic outbound endpoint SSL configuration.

v List the key sets.

v Generate a key for a key set.

v Create a key set.

v Delete a key set.

v List the key set groups.

v Create a key set group.

v Delete a key set group.

v Generate keys for the key set group.

Chapter 3. Using the administrative clients 37

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component Action

Security (continued) v List the keystores.

v Create a keystore.

v Modify a keystore.

v Delete a keystore.

v Change the keystore password.

v Exchange signers.

v List the key managers.

v Create a key manager.

v Delete a key manager.

v List the key file aliases.

v Create the key reference.

v List the trust managers.

v Create a trust manager.

v Delete a trust manager.

v List the certificate authority clients.

v Create a certificate authority client.

v Modify a certificate authority client.

v Delete a certificate authority client.

v List the personal certificates.

v Get the attributes of a personal certificate.

v Get a certificate chain.

v Receive a personal certificate.

v Create a self-signed certificate.

v Create a chained certificate.

v Create a certificate authority signed certificate.

38 Administering applications and their environment

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component Action

Security (continued) v Renew a personal certificate.

v Revoke a personal certificate.

v Replace a personal certificate.

v Extract a personal certificate.

v Import a personal certificate.

v Export a personal certificate.

v Delete a personal certificate.

v Add a signer certificate.

v Extract a signer certificate.

v Retrieve signer information from a port.

v Retrieve a signer certificate from a port.

v Get the properties of a signer certificate.

v Delete a signer certificate.

v List the signer certificates.

v Create a certificate request.

v Get a certificate request.

v List the certificate requests.

v Delete a certificate request.

v Extract a certificate request.

v Query a certificate request.

v List the notifiers.

v Create a notifier.

v Delete a notifier.

v Start the certificate expiration monitor.

v Validate the administrative name.

v Add a base entry to the realm.

v Modify the base entry details.

v Configure a new LDAP repository.

v Modify an existing LDAP repository configuration.

v Delete an existing LDAP repository configuration.

Chapter 3. Using the administrative clients 39

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component Action

Security (continued) v View performance data for the LDAP repository under an LDAP configuration.

v Modify the LDAP performance data.

v View the LDAP entity types under the LDAP configuration.

v Modify the existing LDAP entity types.

v View the group attribute definition under the LDAP configuration.

v Modify the group attribute definition under the LDAP configuration.

v View the member attributes under the LDAP group attribute definitions.

v Configure the member attribute details under the LDAP group attribute definitions.

v Delete an existing member attribute detail.

v View the dynamic member attributes under the LDAP group attribute definitions.

v Configure the dynamic member attributes under the LDAP group attribute definitions.

v Delete an existing dynamic member attribute detail.

v View the list of repositories to manage.

v Configure the federated repositories to use a built-in repository.

v Remove the built-in repository from the federated repository configuration.

v View the federated repository property extension.

v Configure the federated repository property extension.

v View the federated repository entry mapping repository.

v Configure the federated repository entry mapping repository.

v View the federated repository supported entity types list.

v View the details of a supported entity type.

v Modify an existing supported entity type.

v View the authentication mechanism and expiration policy for the federated repository user
identity.

v Get an audit policy.

v Modify an audit policy.

v List the audit event type filters.

v Get an audit event type filter.

v Create an audit event type filter.

v Modify an audit event type filter.

40 Administering applications and their environment

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component Action

Security (continued) v Delete an audit event type filter.

v List the audit service providers.

v Get an audit service provider.

v Create an audit service provider.

v Modify an audit service provider.

v Delete an audit service provider.

v List the audit factories.

v Get an audit factory.

v Create an audit factory.

v Modify an audit factory.

v Delete an audit factory.

v List the audit encryption keystores.

v Get an audit encryption keystore.

v Create an audit encryption keystore.

v Modify an audit encryption keystore.

v Delete an audit encryption keystore.

v Get an audit encryption configuration.

v Create an audit encryption configuration.

v Modify an audit encryption configuration.

v Delete an audit encryption configuration.

v Get an audit signing configuration.

v Create an audit signing configuration.

v Modify an audit signing configuration.

v Delete an audit signing configuration.

v List the audit notification monitors.

v Create an audit notification monitor.

v Modify an audit notification monitor,

v List the audit notifications.

v Create an audit notification

v Modify an audit notification.

v Delete an audit notification.

Chapter 3. Using the administrative clients 41

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component Action

Security (continued) v List the active security settings.

v Set the active administrative security settings.

v List the active Rivest Shamir Adleman (RSA) token authorization settings.

v Set the active Rivest Shamir Adleman (RSA) token authorization settings.

v List all authorization groups.

v Create a new authorization group.

v Delete an authorization group.

v Edit an authorization group.

v Get user realm information.

v Configure a local OS user realm.

v Configure an LDAP user realm.

v Configure a custom user realm.

v Unconfigure the user realm.

v List trusted realms.

v Add trusted realms.

v Remove trusted realms.

v Unconfigure the trusted realm.

v Get external authorization provider information.

v Set external authorization provider information.

v Unconfigure external authorization provider.

v List trust association interceptors.

v Create a trust association interceptor.

v Modify a trust association interceptor.

v Delete a trust association interceptor.

v Unconfigure the trust association.

v Get Common Secure Interoperability (CSI) inbound information.

v Set CSI inbound information.

v Unconfigure CSI inbound information.

v Get CSI outbound information.

v Set CSI outbound information.

v Unconfigure CSI outbound information.

42 Administering applications and their environment

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component Action

Security (continued) v List Java Authentication and Authorization Service (JAAS) login configurations.

v Create JAAS login configurations.

v Modify JAAS login configurations.

v Delete JAAS login configurations.

v Unconfigure JAAS login information.

v Configure a JAAS login module.

v Delete a JAAS login module.

v List JAAS authorization data entries.

v Create a JAAS authorization data entry.

v Modify the JAAS authorization data entry.

v Delete a JAAS authorization data entry.

v Get Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) information.

v Configure SPNEGO information.

v List SPNEGO filters.

v Create a SPNEGO filter.

v Modify the SPNEGO filter.

v Delete a SPNEGO filter.

v Create a Kerberos authentication mechanism.

v Modify the Kerberos authentication mechanism.

v List security domains.

v Create a security domain.

v Copy the security domain.

v Modify the security domain.

v Delete the security domain.

v Set active security settings.

v Unset active security settings.

v Set the Lightweight Third-Party Authentication (LTPA) timeout.

v Configure programmatic session cookies.

Chapter 3. Using the administrative clients 43

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component Action

Service integration v Create a bus.

v Delete a bus.

v Add a bus member.

v Delete a bus member.

v List the bus members.

v Delete the messaging engine.

v Create a queue.

v Create a topic space.

v Create an alias destination.

v Delete an alias destination.

v Create an MQ queue type destination.

v Create a foreign destination.

v Mediate a destination.

v Unmediate a destination.

v Delete a destination.

v Create a mediation.

v Delete a mediation.

v Modify a mediation.

v Delete a foreign bus.

v Create a Java Message Service (JMS) activation specification.

v Modify a JMS activation specification.

v Create a JMS connection factory.

v Modify a JMS connection factory.

v Create a JMS queue connection factory.

v Modify a JMS queue connection factory.

v Create a JMS topic connection factory.

v Modify a JMS topic connection factory.

44 Administering applications and their environment

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component Action

Service integration
(continued)

v Create a JMS queue.

v Modify a JMS queue.

v Create a JMS topic.

v Modify a JMS topic.

v Create a JMS provider.

v Create a WebSphere MQ server.

v Modify a WebSphere MQ server.

v Modify a WebSphere MQ server bus member.

v Add a permitted transport.

v Add a user to a bus connector role.

v Add a group to a bus connector role.

v Add an inbound port to an inbound service.

v Add an outbound port to an outbound service.

v Connect an endpoint listener to a service integration bus.

v Create an endpoint listener.

v Create an inbound service.

v Create an outbound service.

v Delete an endpoint listener.

v Delete an inbound service.

v Delete an outbound service.

v Disconnect an endpoint listener from a service integration bus.

v Publish an inbound service to a Universal Description, Discovery, and Integration (UDDI)
registry.

v Refresh the Web Services Description Language (WSDL) definition for an inbound service.

v Refresh the WSDL definition for an outbound service.

v Remove an inbound port.

v Remove an outbound port.

v Set the default outbound port for an outbound service.

v Remove an inbound service from a UDDI registry.

v Create a WS-Notification (WSN) service.

Chapter 3. Using the administrative clients 45

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component Action

Service integration
(continued)

v Modify a bus.

v Modify a foreign bus connection.

v List foreign bus connections.

v List bus messaging engines.

v List messaging engines on a particular server.

v List bus mediations.

v Modify a messaging engine.

v Create a service integration bus (SIB) link on a messaging engine.

v Modify a foreign bus connection (an indirect link).

v Modify a foreign bus connection (a SIB link).

v List bus destinations.

v List queue points (point-to-point messaging) for a destination.

v List queue mediation points for a destination.

v List topic mediation points for a destination.

v Create a new context property.

v Edit a bus.

v Create a replication domain.

v Edit a replication domain.

System administration v Edit the file synchronization service.

v Edit the file transfer service.

v Modify a cell.

v Modify the deployment manager.

v Modify a node.

v Modify a node agent.

v Modify a Java Management Extensions (JMX) connector.

v Modify extension MBean providers.

v Modify node groups.

Web services v List the service clients in a cell.

v List the service clients in an application.

v List the service providers in a cell.

v List the service providers in an application.

v Start the service provider listener.

v Stop the service provider listener.

46 Administering applications and their environment

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component Action

Web services policy
sets

v List the policy sets in the system.

v Get the attributes for a policy set.

v Set the attributes of a specified policy set.

v Create a new policy set.

v Copy a policy set to create a new policy set.

v Delete a policy set.

v Update the attributes of a policy set.

v Export a policy set from an archive for use in a client environment or a server.

v Get the policy set attachments for a given resource.

v List the policy set attachments for services providers.

v List the policy set attachments for services clients in an application.

v Create a new policy set attachment for a resource.

v Delete a policy set attachment from a resource.

v List the applications to which a given policy set is attached.

v Delete all attachments for a policy set.

v Transfer all attachments from one policy set to another.

Web services policies Attention: Before you use the generated wsadmin command for policies, see the
documentation for the PolicySetManagement command group for the AdminTask object.

v Create a policy.

v Add a policy to a policy set.

v Delete a policy from a policy set.

v List the names of existing policies.

v Get the attributes for a policy.

v Update the configuration of a policy.

v Get the value for a named policy attribute.

v Set the value for a named policy attribute.

Web services bindings v Get the binding configuration for a specified policy for a policy set attachment.

v Set the binding for a policy set attachment.

v Set and update the binding configuration for a specified policy for a policy set attachment.

Web services trust
service

v List the local names of all the configured token providers.

v Query the trust service for the local name of the default token provider.

v Update configuration data for a token provider.

v Delete custom properties from a token provider configuration.

v Assign a token that is issued when requesting access to a specific end point.

v List the assigned endpoints for a token provider.

v Query the trust service for the token provider assigned to a specified endpoint.

v Unassign an endpoint from its token provider.

v Refresh trust service.

v Query the trust service for a list of assigned endpoints.

Chapter 3. Using the administrative clients 47

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component Action

Web Services Security
distributed cache

v Get the Web Services Security distributed cache configuration.

v Get the Web Services Security distributed cache configuration custom properties.

v Get the defined cell level data sources.

v Set the Web Services Security distributed cache configuration.

v Set the Web Services Security distributed cache configuration custom properties.

Business-level
applications

v List the assets.

v Add an asset to the repository.

v Export an asset.

v Delete an asset .

v List the business-level applications.

v Create a new business-level application.

v Add an asset to a business-level application.

v Delete a business-level application.

v Edit a business-level application.

v Start a business-level application.

v Stop a business-level application.

v Edit a composition unit.

Performance
Monitoring
Infrastructure (PMI)
and Request metrics

v List the PMI configuration.

v Modify the PMI configuration.

v Modify the PMI parameters at run time.

v Edit the request metrics filter.

v Edit the request metrics.

v Create a request metrics filter value.

v Edit a request metrics filter value.

v Delete the request metrics filter.

Performance advisors v Re-initialize the Runtime Performance Advisor tool.

v Set the Runtime Performance Advisor tool attributes.

Portlets and portlet
containers

v View the portlet deployment descriptor.

v Modify portlet container settings.

v Create a custom property.

v Modify an existing custom property.

v List custom properties.

v Remove custom properties.

v Enable PMI for portlets.

v Enable request metrics for portlets.

Replication Domains v List data replication domain members.

48 Administering applications and their environment

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component Action

Users and groups v Add a new user.

v Modify an existing user.

v List users.

v Remove users.

v Add a new group.

v Modify an existing group.

v List groups.

v Remove groups.

v List registry users.

v List registry groups.

Changing the console session expiration
Run this JACL script to set how long Integrated Solutions Console can be used until the login session
expires.

About this task

The following JACL script serves as an example of how to set the duration that an Integrated Solutions
Console can be used until the login session expires. Other scripting types, such as JYTHON, could be
used.

Procedure
1. Copy the following script into a file.

set dep [$AdminConfig getid /Deployment:isclite/]
set appDep [$AdminConfig list ApplicationDeployment $dep]
set sesMgmt [$AdminConfig list SessionManager $appDep]

check if existing sesMgmt there or not, if not then create a new one, if exist then modify it
if {$sesMgmt == ""} {
 # get applicationConfig to create new SessionManager
 set appConfig [$AdminConfig list ApplicationConfig $appDep]
 if {$appConfig == ""} {
 # create a new one
 set appConfig [$AdminConfig create ApplicationConfig $appDep {}]
 # then create a new SessionManager using new Application Config just created
 set sesMgmt [$AdminConfig create SessionManager $appConfig {}]
 } else {
 # create new SessionManager using the existing ApplicationConfig
 set sesMgmt [$AdminConfig create SessionManager $appConfig {}]

 }
}

get tuningParams config id
set tuningParams [$AdminConfig showAttribute $sesMgmt tuningParams]
if {$tuningParams == ""} {
 # create a new tuningParams
 $AdminConfig create TuningParams $sesMgmt {{invalidationTimeout <timeout value>}}

} else {
 #modify the existing one
 $AdminConfig modify $tuningParams {{invalidationTimeout <timeout value>}}

Chapter 3. Using the administrative clients 49

}

saving the configuration changes
$AdminConfig save

2. Change the <timeout value> on the two lines of this sample to the new session expiration value. This
number specifies the number of minutes the console preserves the session during inactivity.

3. Save the file to any directory using, for example, the filename timeout.jacl.

4. Start the wsadmin scripting client from the <WAS-install>/profiles/<profile_name>/bin directory.

5. Issue the following command.
wsadmin -f <path to jacl file>/timeout.jacl

Changing the class loader order of the console module deployed in
Integrated Solutions Console
Run this JACL script to change the class loader order of the console module deployed in the Integrated
Solutions Console.

About this task

The following JACL script serves as an example of how to change the class loader order of the console
module deployed in the Integrated Solutions Console. Other scripting types, such as JYTHON, could be
used.

Procedure
1. Copy the following script into a file.

set app [$AdminConfig getid /Deployment:isclite/]
set webModules [$AdminConfig list WebModuleDeployment $app]

foreach webModule $webModules {
 set uri [$AdminConfig showAttribute $webModule uri]
 if {$uri == "<WAR_NAME>"} {
 #modify the classloader for <WAR_NAME>
 set cl [$AdminConfig list Classloader $webModule]
 # check if the classloader exist
 if {$cl == ""} {
 # create a new one with the appropriate mode
 $AdminConfig create Classloader $webModule {{mode <MODE>}}
 } else {
 # modify the existing one
 $AdminConfig modify $cl {{mode <MODE>}}
 }
 }
}

save the configuration change
$AdminConfig save

2. Change the <WAR_NAME> on the two lines of this sample to the name of the console module file
deployed in the Integrated Solutions Console which class loader order you want to change.

3. Change the <MODE> on the two lines of this sample to PARENT_LAST or PARENT_FIRST as
required.

4. Save the file to any directory using, for example, the file name classloaderorder.jacl.

5. Start the wsadmin scripting client from the <WAS-install>/profiles/<profile_name>/bin directory.

6. Issue the following command.
wsadmin -f <path to jacl file>/classloader.jacl

50 Administering applications and their environment

Getting started with wsadmin scripting
Scripting is a non-graphical alternative that you can use to configure and manage WebSphere Application
Server.

About this task

The WebSphere Application Server wsadmin tool provides the ability to run scripts. The wsadmin tool
supports a full range of product administrative activities.

The following figure illustrates the major components involved in a wsadmin scripting solution:

Figure 1: A WebSphere Application Server scripting solution

The wsadmin tool supports two scripting languages: Jacl and Jython. Five objects are available when you
use scripts:

v AdminControl: Use to run operational commands.

v AdminConfig: Use to run configurational commands to create or modify WebSphere Application Server
configurational elements.

v AdminApp: Use to administer applications.

v AdminTask: Use to run administrative commands.

v Help: Use to obtain general help.

The scripts use these objects to communicate with MBeans that run in WebSphere Application Server
processes. MBeans are Java objects that represent Java Management Extensions (JMX) resources. JMX
is an optional package addition to Java 2 Platform Standard Edition (J2SE). JMX is a technology that
provides a simple and standard way to manage Java objects.

Important: Some wsadmin scripts, including the AdminApp install, AdminApp update, and some
AdminTask commands, require that the user ID under which the server is running must have
read permission to the files that are created by the user that is running wsadmin scripting. For
example, if the application server is running under user1, but you are running wsadmin
scripting under user2, you might encounter exceptions involving a temporary directory. When
user2 runs wsadmin scripting to deploy an application, a temporary directory for the enterprise
application archive (EAR) file is created. However, when the application server attempts to
read and unzip the EAR file as user1, the process fails. It is not recommended that you set
the umask value of the user that is running wsadmin scripting to 022 or 023 to work around
this issue. This approach makes all of the files that are created by the user readable by other
users. To resolve this issue, consider the following approaches based on your administrative
policies:

v Run wsadmin scripting with the same user ID as the user that runs the deployment
manager or application server. A root user can switch the user ID to complete these actions.

v Set the group ID of the user that is running the deployment manager or application server
to be the same group ID as the user that is running wsadmin scripting. Also, set the umask

Chapter 3. Using the administrative clients 51

value of the user that is running the wsadmin scripting to be at least a umask 027 value so
that files that are created by the wsadmin scripting can be read by members of the group.

v Run wsadmin scripting from a different machine. This approach forces files to be
transferred and bypasses the file copy permission issue.

To perform a task using scripting, you must first perform the following steps:

Procedure
1. Choose a scripting language. The wsadmin tool only supports Jacl and Jython scripting languages.

Jacl is the language specified by default. If you want to use the Jython scripting language, use the
-lang option or specify it in the wsadmin.properties file.

2. Start the wsadmin scripting client interactively, as an individual command, in a script, or in a profile.

What to do next

Before you perform any task using scripting, make sure that you are familiar with the following concepts:

v Java Management Extensions (JMX)

v WebSphere Application Server configuration model

v wsadmin tool

v Jacl syntax or Jython syntax

v Scripting objects

Optionally, you can customize your scripting environment. For more information, see Administrative
properties for using wsadmin scripting.

After you become familiar with the scripting concepts, choose a scripting language, and start the scripting
client, you are ready to perform tasks using scripting.

What is new for scripted administration (wsadmin)
This topic highlights what is new or changed for users who are going to customize, administer, monitor,
and tune production server environments using the wsadmin tool.

The Deprecated, stabilized, and removed features topic describes features that are being replaced or
removed in this or future releases.

Improved administrative scripting features

 Enhancements to AdminTask command support for
managing configurations using properties files

Version 7 introduced system configuration using properties
files. Using commands in the
PropertiesBasedConfiguration group, you can copy
configuration properties from one environment to another,
troubleshoot configuration issues, and apply one set of
configuration properties across multiple profiles, nodes,
cells, servers, or applications.

Enhancements to configuration using properties files for
Version 8.0 include the following:

v Support for web services endpoint URL fragment
properties files

For more information, see Using properties files to
manage system configuration and
PropertiesBasedConfiguration command group for the
AdminTask object using wsadmin scripting.

52 Administering applications and their environment

AdminSDKCmds command group for the AdminTask
object

Use the commands and parameters in the
AdminSDKCmds group for the AdminTask object to
perform the following actions:
v List software development kits that are not used by a

node.
v Get or set the default SDK for a node.
v Get or set an SDK for a server.

For more information, see AdminSDKCmds command
group for the AdminTask object.

getAvailableSDKsOnNode and getSDKPropertiesOnNode
commands in the ManagedObjectMetadata command
group for the AdminTask object

Use the getAvailableSDKsOnNode and
getSDKPropertiesOnNode commands and parameters in
the ManagedObjectMetadata group for the AdminTask
object to perform the following actions:

v List software development kits that are installed with the
product and available for use by a node.

v List software development kit (SDK) properties.

For more information, see ManagedObjectMetadata
command group for the AdminTask object.

listServices command for information about web service
references

Use the listServices command to learn about service
references. You can use the serviceRef property with the
queryProps parameter with the listServices command to
query all service references or a specific service
reference. This parameter is only applicable for service
clients. If you specify an asterisk (*) as a wildcard as the
name of the service reference, all of the service
references for the matching service client are returned.
You can also query a specific service reference name by
specifying the name of the service reference that you
want. To return detailed service reference information for
endpoints and operations, specify the expandResource
property.

For more information, see Querying web services using
wsadmin scripting.

Security cookies set as HTTPOnly resist cross-site
scripting attacks

Use the HttpOnly browser attribute to prevent client side
applications (such as Java scripts) from accessing cookies
to prevent some cross-site scripting vulnerabilities. The
attribute specifies that LTPA and WASReqURL cookies
include the HTTPOnly field.

For more information, see Single sign-on settings.

Overview and new features for scripting the application serving
environment
Use the links provided in this topic to learn about the administrative features.

“What is new for scripted administration (wsadmin)” on page 52

 This topic provides an overview of new and changed features for administrative scripting and the
wsadmin tool.

Introduction: Administrative scripting (wsadmin)

 This topic provides an introduction to administrative scripting and the wsadmin tool.

Chapter 3. Using the administrative clients 53

Using administrative programs (JMX)
This topic describes how to use Java application programming interfaces (APIs) to administer WebSphere
Application Server and to manage your applications.

Before you begin

You can administer WebSphere Application Server and your applications through tools that come with the
product or through programming with the Java APIs.

The wsadmin scripting tool, the administrative console, and the administrative command-line tools come
with the product. These administrative tools provide most of the functions that you need to manage the
product and the applications that run in WebSphere Application Server. You can use the command-line
tools from automation scripts to control the servers. Scripts that are written for the wsadmin scripting tool
offer a wide range of possible custom solutions that you can develop quickly.

Investigate these tools with the Java APIs to determine the best ways to administer WebSphere
Application Server and your applications. For information on the Java APIs, view the application
programming interfaces documentation.

v No action required for WAS JMX APIs: Each Java virtual machine (JVM) in WebSphere Application
Server includes an embedded implementation of Java Management Extensions (JMX). In Application
Server, Version 5, the JVMs contain an implementation of the JMX 1.0 specification. In Application
Server, Version 6.0 and later, the JVMs contain an implementation of the JMX 1.2 specification. The
JMX 1.0 implementation used in Version 5 is the TMX4J package that IBM Tivoli® products supply. The
JMX 1.2 specification used in Version 6.0 and later is the open source mx4j package. The JMX
implementation change across the releases does not affect the behavior of the JMX MBeans in the
Application Server. No Application Server administrative application programming interfaces (APIs) are
altered due to the change from the JMX V1.0 specification to the JMX V1.2 specification.

v Action might be required for custom MBeans: The JMX V1.2 specification is compatible with the
earlier JMX V1.0 specification. However, you might need to migrate custom MBeans that are supplied
by products other than the Application Server from Version 5 to Version 6.0 and later. The primary
concern for these custom MBeans is related to the values that are used in key properties of the JMX
ObjectName class for the MBean. The open source mx4j implementation more stringently enforces
property validation according to the JMX 1.2 specification. Test the custom MBeans that you deployed in
Version 5 in Version 6.0 and later, to ensure compatibility. Full details of the JMX V1.2 specification
changes from the JMX V1.0 specification are available in the JMX 1.2 specification.

About this task

WebSphere Application Server supports access to the administrative functions through a set of Java
classes and methods. You can write a Java program that performs any of the administrative features of the
WebSphere Application Server administrative tools. You can also extend the basic WebSphere Application
Server administrative system to include your own managed resources.

You can prepare, install, uninstall, edit, and update applications through programming. Preparing an
application for installation involves collecting various types of WebSphere Application Server-specific
binding information to resolve references that are defined in the application deployment descriptors. This
information can also be modified after installation by editing a deployed application. Updating consists of
adding, removing or replacing a single file or a single module in an installed application, or supplying a
partial application that manipulates an arbitrary set of files and modules in the deployed application.
Updating the entire application uninstalls the old application and installs the new one. Uninstalling an
application removes it entirely from the WebSphere Application Server configuration.

Perform any or all of the following tasks to manage WebSphere Application Server and your Java
Platform, Enterprise Edition (Java EE) applications through programming.

54 Administering applications and their environment

Procedure
v Create a JMX remote client program by using the JMX remote API (JSR 160)..

This topic describes how to develop a JMX remote program that uses the JMX remote API (JSR 160) to
access the WebSphere Application Server administrative system.

v Create a custom Java administrative client program using the Java administrative APIs.

This topic describes how to develop a Java program that uses the WebSphere Application Server
administrative APIs to access the administrative system of WebSphere Application Server.

v Extend the WebSphere Application Server administrative system with custom MBeans.

This topic describes how to extend the WebSphere Application Server administration system by
supplying and registering new JMX MBeans in one of the Application Server processes. In this case,
you can use the administrative classes and methods to add newly managed objects to the
administrative system.

v Deploy and manage a custom Java administrative client program for use with multiple Java Platform,
Enterprise Edition application servers.

This topic describes how to connect to a Java EE server, and how to manage multiple vendor servers.

Results

Depending on which tasks you complete, you have created your own administrative program, extended the
WebSphere Application Server administrative console, connected and managed vendor servers, or
managed your applications through programming.

What to do next

You can continue to administer WebSphere Application Server and your applications through programming
or in combination with the tools that come with the WebSphere Application Server.

Java Management Extensions (JMX) for WebSphere Application Server
This topic gives an overview of Java Management Extensions (JMX) in general and how this standard
applies to WebSphere Application Server.

Java Management Extensions overview

Java Management Extensions (JMX) is the Java standard for managing application resources. The
management architecture that is defined by JMX is divided into three levels:

v The bottom level is management instrumentation. Each manageable resource is described by an
interface that specifies the attributes it has, the operations it supports, and the notifications it sends.
This resource is a managed bean (MBean).

v The middle level is the management agent. Each managed process contains a JMX agent that includes
an MBean server, which provides a registry and access point for MBeans. Management clients must
use the MBean server to access the registered MBeans.

v The top level of the architecture is defined by JMX Remote application programming interface (API)
(JSR 160). JSR 160 uses Remote Method Invocation over Internet Inter-ORB Protocol (RMI-IIOP), but
is not interoperable with the RMI connector. The RMI, SOAP/HTTP, and SOAP/HTTPS connectors were
created before the JSR160 specification and are supported. The Inter-Process Communications (IPC)
connector is also supported.

The top level of the architecture is the distributed services level, and its role is to facilitate remote
access to JMX agents. This task is accomplished through connectors, which provide a
protocol-independent, location-transparent, client-side interface to the MBean server (for example, a
Remote Method Invocation (RMI) connector), or protocol adapters, which provide protocol-specific,
server-side access to the MBean server (for example, an HTTP adapter).

Chapter 3. Using the administrative clients 55

Java Management Extensions in WebSphere Application Server

Java Management Extensions (JMX) is at the core of Application Server administration capabilities. The
application server contains a JMX agent. All of the system components are defined as MBeans. The JMX
agent in Application Server supports the following connectors: JSR160RMI, Remote Method
Invocation/Internet Inter-ORB Protocol (RMI/IIOP), Simple Object Access Protocol/Hypertext Transfer
Protocol (SOAP/HTTP), Simple Object Access Protocol/Hypertext Transfer Protocol Secure
(SOAP/HTTPS), and Inter-Process Communications (IPC), which provides remote access to the server
resources. All of the administration tools included with Application Server use these JMX facilities to
accomplish their functions.

In a stand-alone Application Server installation, servers exist and are administered individually. An
administrative client connects directly to the Application Server in this environment.

Application Server provides an AdminService class that reflects the standard JMX MBeanServer interface,
and wraps the MBeanServer interface so that it takes part in implementing this distributed management
functionality.

56 Administering applications and their environment

Creating a custom Java administrative client program using
WebSphere Application Server administrative Java APIs
This section describes how to develop a Java program for accessing the WebSphere Application Server
administrative system by using the product administrative application programming interfaces (APIs).

Before you begin

This task assumes a basic familiarity with Java Management Extensions (JMX) API programming. For
information on the Java APIs, view the application programming interfaces documentation.

About this task

When you develop and run administrative clients that use various JMX connectors and that have security
enabled, use the following guidelines. When you follow these guidelines, you guarantee the behavior
among different implementations of JMX connectors. Any programming model that strays from these
guidelines is unsupported.

1. Create and use a single administrative client before you create and use another administrative client.

2. Create and use an administrative client on the same thread.

3. Use one of the following ways to specify a user ID and password to create a new administrative client:

v Specify a default user ID and password in the property file.

v Specify a user ID and password other than the default. Once you create an administrative client with
a nondefault user ID and password, specify the nondefault user ID and password when you create
subsequent administrative clients.

Chapter 3. Using the administrative clients 57

Procedure
1. Develop an administrative client program.

2. Build and run the administrative client program.

The steps required to build and run your program depends on the kind of application environment your
code runs.

Refer to the Using application clients topic in the Developing and deploying applications PDF for
details on how to build and run your administrative client program.

Developing an administrative client program
This topic describes how to develop an administrative client program that utilizes WebSphere Application
Server administrative application programming interfaces (APIs) and Java Management Extensions (JMX).

About this task

Product administrative APIs provide control of the operational aspects of your distributed system as well as
the ability to update your configuration. For information about the AdminClient interface, view the
application programming interfaces documentation.

This topic also demonstrates examples of MBean operations. For information on MBean programming, see
MBean Java API documentation.

This example shows how to get and use a NodeAgent MBean, which is not available for your product.
However, the description of how to get and put the NodeAgent MBean is similar to what you would do for
other MBeans that are available for your product.

Procedure
1. Create an AdminClient instance.

An administrative client program needs to invoke methods on the AdminService object that is running
in the application server in the base installation. The AdminClient class provides a proxy to the remote
AdminService object through one of the supported Java Management Extensions (JMX) connectors.

v The following example shows how to create an AdminClient instance for the Simple Object Access
Protocol (SOAP) connector:
Properties connectProps = new Properties();
connectProps.setProperty(
AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);

connectProps.setProperty(AdminClient.CONNECTOR_HOST, "localhost");
connectProps.setProperty(AdminClient.CONNECTOR_PORT, "8879");
connectProps.setProperty(AdminClient.USERNAME, "test2");
connectProps.setProperty(AdminClient.PASSWORD, "user24test");
AdminClient adminClient = null;
try
{
 adminClient = AdminClientFactory.createAdminClient(connectProps);
}
catch (ConnectorException e)
{
 System.out.println("Exception creating admin client: " + e);
}

a. Set up a Properties object.

The example sets up a Properties object with the properties that are required to get to your
server. In this case, you use the SOAP connector to reach the server; for the connector type,
use the value: AdminClient.CONNECTOR_TYPE_SOAP.

b. For simplicity, run the client program on the same machine as the server; use localhost for the
host name.

To access a remote host instead of a local host, use a network resolvable name for that host.

58 Administering applications and their environment

c. Set the port number on which the server SOAP connector is listening.

In a single server installation, the default port number for the application server SOAP connector
is 8880.

d. After the connection properties are set, use the AdminClientFactory class and the Properties
object to create an AdminClient object that is connected to your chosen server.

Depending on factors such as your desired protocol and security environment, you might need
to set other properties. For example, if you enable security for your application client program,
include the javax.net.ssl.* properties. For more detailed information about the AdminClient
interface, the javax.net.ssl.* properties, and additional creation examples, refer to the
AdminClient interface in the application programming interfaces documentation.

v The following example shows how to create an AdminClient instance for the Remote Method
Invocation (RMI) connector. Some commands are split on multiple lines for printing purposes.
Properties connectProps = new Properties();
connectProps.setProperty(AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_RMI);
connectProps.setProperty(AdminClient.CONNECTOR_HOST, "localhost");
connectProps.setProperty(AdminClient.CONNECTOR_PORT, "2809");
connectProps.setProperty(AdminClient.USERNAME, "test2");
connectProps.setProperty(AdminClient.PASSWORD, "user24test");
System.setProperty("com.ibm.CORBA.ConfigURL",
 "file:C:/AA/cf010839.26/profiles/AppSrv02/properties/sas.client.props");
System.setProperty("com.ibm.SSL.ConfigURL",
 "file:C:/AA/cf010839.26/profiles/AppSrv02/properties/ssl.client.props");
AdminClient adminClient = null;
try
{
 adminClient = AdminClientFactory.createAdminClient(connectProps);
}
catch (ConnectorException e)
{
 System.out.println("Exception creating admin client: " + e);
}

Note: When you use the createAdminClient method within application code that runs on an
application server, such as within servlets and JavaServer Pages (JSP) files, you must set
the CACHE_DISABLED property to true. For example:
connectProps.setProperty(AdminClient.CACHE_DISABLED, "true");

a. Set up a Properties object.

The example sets up a Properties object with the properties that are required to get to your
server. In this case, you use the Remote Method Invocation connector to reach the server; for
the connector type, use the value: AdminClient.CONNECTOR_TYPE_RMI.

b. For simplicity, run the client program on the same machine as the server; use localhost for the
host name.

To access a remote host instead of a local host, use a network resolvable name for that host.

c. Set the port number on which the server RMI connector is listening.

In a single server installation, the default port number for the application server RMI connector is
2809. In a WebSphere Application Server, Network Deployment installation, the default port
number for the deployment manager RMI connector is 9809.

d. After the connection properties are set, use the AdminClientFactory class and the Properties
object to create an AdminClient object that is connected to your chosen server.

Depending on factors such as your desired protocol and security environment, you might need
to set other properties. For example, if you enable security for your application client program,
you need to set a system property to point to the ssl.client.props file and the sas.client.props file.
If you run on a local machine you can point to the actual location. If you run on a remote
machine, you can copy these properties files from the server machine and put them anywhere
you want, specifying the path to where you put the files.

Chapter 3. Using the administrative clients 59

You can specify a user name and password inside the sas.client.props file, When you do,
specify com.ibm.CORBA.loginSource=properties. If you want to set the user name and password
inside your client program, specify com.ibm.CORBA.loginSource=none in the sas.client.props file.

2. Find an MBean.

When you obtain an AdminClient instance, you can use it to access managed resources in the
administration servers and application servers. Each managed resource registers an MBean with the
AdminService through which you can access the resource. The MBean is represented by an
ObjectName instance that identifies the MBean. An ObjectName instance consists of a domain name
followed by an unordered set of one or more key properties. The syntax for the domain name follows:

[domainName]:property=value[,property=value]*

For WebSphere Application Server, the domain name is WebSphere and the key properties defined for
administration are as follows:

 Table 5. Key property descriptions. Key properties include types, name, cell, node, and process.

type The type of MBean. For example: Server, TraceService, Java virtual machine (JVM).

name The name identifier for the individual instance of the MBean.

cell The name of the cell that the MBean is running.

node The name of the node that the MBean is running.

process The name of the process that the MBean is running.

Some MBeans in WebSphere Application Server use additional key properties. An MBean without key
properties can be registered with the MBean server in a WebSphere Application Server process.
However, such an MBean cannot participate in the distributed enhancements that the product adds, for
example, request routing, distributed event notification, and so on.

If you know the complete set of key properties for an ObjectName instance, you can use it to find the
MBean it identifies. However, finding MBeans without having to know all of their key properties is
usually more practical and convenient. Use the wildcard character asterisk (*) for any key properties
that you do not need to match. The following table provides some examples of object names with
wildcard key properties that match single or multiple MBeans.

 Table 6. Examples object names with wildcard key properties. Include asterisks (*) to specify wildcard key
properties.

:type=Server, All MBeans of type Server

:node=Node1,type=Server, All MBeans of type Server on Node1

:type=JVM,process=server1,node=Node1, The JVM MBean in the server named server1 node Node1

:process=server1, All MBeans in all servers named server1

:process=server1,node=Node1, All MBeans in the server named server1 on Node1

You can locate an MBean by querying for it with object names that match key properties. The following
example shows how to find the MBean for the node agent of node, MyNode:
String nodeName = "MyNode";
String query = "WebSphere:type=NodeAgent,node=" + nodeName + ",*";
ObjectName queryName = new ObjectName(query);
ObjectName nodeAgent = null;
Set s = adminClient.queryNames(queryName, null);
if (!s.isEmpty())
 nodeAgent = (ObjectName)s.iterator().next();
else
 System.out.println("Node agent MBean was not found");

a. Build an ObjectName instance with a query string that specifies the key properties of type and
node.

60 Administering applications and their environment

By using a wildcard for the remaining key properties, this pattern matches the object names for all
MBeans of the type NodeAgent on the node MyNode. Because only one node agent per node
exists, this information is sufficient to identify the MBean that you want.

b. Give this ObjectName instance to the queryNames method of the AdminClient interface.

The AdminClient interface performs the remote call to the AdminService interface to obtain the set
of MBean object names that match the query. The null second parameter to this method is a query
expression (QueryExp) object that you can use as an additional query over the MBeans that match
the ObjectName pattern in the first parameter.

c. Use the set iterator to get the first and, in this case, only element.

The element is the MBean ObjectName instance of the node agent.

3. Use the MBean.

What a particular MBean can do depends on the management interface of that MBean. An MBean can
declare:

v Attributes that you can obtain or set

v Operations that you can invoke

v Notifications for which you can register listeners

For the MBeans provided by WebSphere Application Server, you can find information about the
interfaces they support in the MBean API documentation. The following example invokes one of the
operations available on the NodeAgent MBean that you located previously. The following example
starts the MyServer application server:
String opName = "launchProcess";
String signature[] = { "java.lang.String" };
String params[] = { "MyServer" };
try
{
 adminClient.invoke(nodeAgent, opName, params, signature);
}
catch (Exception e)
{
 System.out.println("Exception invoking launchProcess: " + e);
}

The AdminClient.invoke method is a generic means of invoking any operation on any MBean. The
parameters are:

v The object name of the target MBean, nodeAgent

v The name of the operation, opName

v An object array that contains the operation parameters, params

v A string array that contains the operation signature, signature

The launchProcess operation in the example has a single parameter which is a string that identifies the
server to start.

The invoke method returns an object instance, which the calling code can use to cast to the correct
return type for the invoked operation. The launchProcess operation is declared void so that you can
ignore the return value in this example.

4. Register for events.

In addition to managing resources, the JMX API also supports application monitoring for specific
administrative events. Certain events produce notifications, for example, when a server starts.
Administrative applications can register as listeners for these notifications. The WebSphere Application
Server provides a full implementation of the JMX notification model, and provides additional function so
you can receive notifications in a distributed environment. For a complete list of the notifications
emitted from product MBeans, refer to the com.ibm.websphere.management.NotificationConstants
class in the MBean API documentation.

The following example shows how an object can register for event notifications that are emitted from
an MBean using the ObjectName node agent:

Chapter 3. Using the administrative clients 61

adminClient.addNotificationListener(nodeAgent, this, null, null);

In this example, the first parameter is the ObjectName for the node agent MBean. The second
parameter identifies the listener object, which must implement the NotificationListener interface. In this
case, the calling object is the listener. The third parameter is a filter that you can use to indicate which
notifications you want to receive. When you leave this value as null, you receive all notifications from
this MBean. The final parameter is a handback object that you can use to set the JMX API to return to
you when it emits a notification.

Another enhanced feature that Application Server provides is the ability to register as a notification
listener of multiple MBeans with one call. This registration is done through the
addNotificationListenerExtended method of the AdminClient interface, an extension of the standard
JMX addNotificationListener method. This extension method even lets you register for MBeans that are
not currently active. This registration is important in situations where you want to monitor events from
resources that can be stopped and restarted during the lifetime of your administrative client program.

5. Handle the events.

Objects receive JMX event notifications through the handleNotification method, which is defined by the
NotificationListener interface and which any event receiver must implement. The following example is
an implementation of the handleNotification method that reports the notifications that it receives:
public void handleNotification(Notification n, Object handback)
{
 System.out.println("***");
 System.out.println("* Notification received at " + new Date().toString());
 System.out.println("* type = " + ntfyObj.getType());
 System.out.println("* message = " + ntfyObj.getMessage());
 System.out.println("* source = " + ntfyObj.getSource());
 System.out.println(
 "* seqNum = " + Long.toString(ntfyObj.getSequenceNumber()));
 System.out.println("* timeStamp = " + new Date(ntfyObj.getTimeStamp()));
 System.out.println("* userData = " + ntfyObj.getUserData());
 System.out.println("***");
}

Results

The administrative client can handle event notifications that are emitted from an MBean.

Note: If a client program registers a notification listener through an RMI or JSR160RMI connector and the
ORB thread does not stop running, and thus prevents the Java virtual machine from exiting, add a
System.exit() statement to the client program. The ORB starts a thread to handle notification
propagation to the client. This thread does not automatically exit with the client main thread unless
the main thread has a System.exit() statement. Place a System.exit() statement in a location in
the client program that enables the ORB thread and main thread to stop processing. For example,
place the System.exit() statement in a catch or finally clause of the client program main try
block.

Example: Administrative client program

This example shows how to connect to the node agent server, which is not available for your product.
However, you can connect to your server by changing the host and port values. Substitute your server for
the node agent server references. Since the NodeAgent MBean is not available for your product, substitute
the queryNames string to search for another MBean.

Copy the contents to a file named AdminClientExample.java. After changing the node name and server
name to the appropriate values for your configuration, you can compile and run it using the instructions
from Creating a custom Java administrative client program using WebSphere Application Server
administrative Java APIs

62 Administering applications and their environment

import java.util.Date;
import java.util.Properties;
import java.util.Set;

import javax.management.InstanceNotFoundException;
import javax.management.MalformedObjectNameException;
import javax.management.Notification;
import javax.management.NotificationListener;
import javax.management.ObjectName;

import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.websphere.management.exception.ConnectorException;

public class AdminClientExample implements NotificationListener
{

 private AdminClient adminClient;
 private ObjectName nodeAgent;
 private long ntfyCount = 0;

 public static void main(String[] args)
 {
 AdminClientExample ace = new AdminClientExample();

 // Create an AdminClient
 ace.createAdminClient();

 // Find a NodeAgent MBean
 ace.getNodeAgentMBean("ellington");

 // Invoke launchProcess
 ace.invokeLaunchProcess("server1");

 // Register for NodeAgent events
 ace.registerNotificationListener();

 // Run until interrupted
 ace.countNotifications();
 }

 private void createAdminClient()
 {
 // Set up a Properties object for the JMX connector attributes
 Properties connectProps = new Properties();
 connectProps.setProperty(
 AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);
 connectProps.setProperty(AdminClient.CONNECTOR_HOST, "localhost");
 connectProps.setProperty(AdminClient.CONNECTOR_PORT, "8879");

 // Get an AdminClient based on the connector properties
 try
 {
 adminClient = AdminClientFactory.createAdminClient(connectProps);
 }
 catch (ConnectorException e)
 {
 System.out.println("Exception creating admin client: " + e);
 System.exit(-1);
 }

 System.out.println("Connected to DeploymentManager");
 }

 private void getNodeAgentMBean(String nodeName)
 {

Chapter 3. Using the administrative clients 63

// Query for the ObjectName of the NodeAgent MBean on the given node
 try
 {
 String query = "WebSphere:type=NodeAgent,node=" + nodeName + ",*";
 ObjectName queryName = new ObjectName(query);
 Set s = adminClient.queryNames(queryName, null);
 if (!s.isEmpty())
 nodeAgent = (ObjectName)s.iterator().next();
 else
 {
 System.out.println("Node agent MBean was not found");
 System.exit(-1);
 }
 }
 catch (MalformedObjectNameException e)
 {
 System.out.println(e);
 System.exit(-1);
 }
 catch (ConnectorException e)
 {
 System.out.println(e);
 System.exit(-1);
 }

 System.out.println("Found NodeAgent MBean for node " + nodeName);
 }

 private void invokeLaunchProcess(String serverName)
 {
 // Use the launchProcess operation on the NodeAgent MBean to start
 // the given server
 String opName = "launchProcess";
 String signature[] = { "java.lang.String" };
 String params[] = { serverName };
 boolean launched = false;
 try
 {
 Boolean b = (Boolean)adminClient.invoke(

nodeAgent, opName, params, signature);
 launched = b.booleanValue();
 if (launched)
 System.out.println(serverName + " was launched");
 else
 System.out.println(serverName + " was not launched");

 }
 catch (Exception e)
 {
 System.out.println("Exception invoking launchProcess: " + e);
 }
 }

 private void registerNotificationListener()
 {
 // Register this object as a listener for notifications from the
 // NodeAgent MBean. Don’t use a filter and don’t use a handback
 // object.
 try
 {
 adminClient.addNotificationListener(nodeAgent, this, null, null);
 System.out.println("Registered for event notifications");
 }
 catch (InstanceNotFoundException e)
 {
 System.out.println(e);

64 Administering applications and their environment

e.printStackTrace();
 }
 catch (ConnectorException e)
 {
 System.out.println(e);
 e.printStackTrace();
 }
 }

 public void handleNotification(Notification ntfyObj, Object handback)
 {
 // Each notification that the NodeAgent MBean generates will result in
 // this method being called
 ntfyCount++;
 System.out.println("***");
 System.out.println("* Notification received at " + new Date().toString());
 System.out.println("* type = " + ntfyObj.getType());
 System.out.println("* message = " + ntfyObj.getMessage());
 System.out.println("* source = " + ntfyObj.getSource());
 System.out.println(
 "* seqNum = " + Long.toString(ntfyObj.getSequenceNumber()));
 System.out.println("* timeStamp = " + new Date(ntfyObj.getTimeStamp()));
 System.out.println("* userData = " + ntfyObj.getUserData());
 System.out.println("***");

 }

 private void countNotifications()
 {
 // Run until killed
 try
 {
 while (true)
 {
 Thread.currentThread().sleep(60000);
 System.out.println(ntfyCount + " notification have been received");
 }
 }
 catch (InterruptedException e)
 {
 }
 }

}

Example: Administrative client program:

This example is a complete administrative client program.

 This example shows how to connect to the node agent server, which is not available for your product.
However, you can connect to your server by changing the host and port values. Substitute your server for
the node agent server references. Since the NodeAgent MBean is not available for your product, substitute
the queryNames string to search for another MBean.

Copy the contents to a file named AdminClientExample.java. After changing the node name and server
name to the appropriate values for your configuration, you can compile and run it using the instructions
from Creating a custom Java administrative client program using WebSphere Application Server
administrative Java APIs
import java.util.Date;
import java.util.Properties;
import java.util.Set;

import javax.management.InstanceNotFoundException;
import javax.management.MalformedObjectNameException;

Chapter 3. Using the administrative clients 65

import javax.management.Notification;
import javax.management.NotificationListener;
import javax.management.ObjectName;

import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.websphere.management.exception.ConnectorException;

public class AdminClientExample implements NotificationListener
{

 private AdminClient adminClient;
 private ObjectName nodeAgent;
 private long ntfyCount = 0;

 public static void main(String[] args)
 {
 AdminClientExample ace = new AdminClientExample();

 // Create an AdminClient
 ace.createAdminClient();

 // Find a NodeAgent MBean
 ace.getNodeAgentMBean("ellington");

 // Invoke launchProcess
 ace.invokeLaunchProcess("server1");

 // Register for NodeAgent events
 ace.registerNotificationListener();

 // Run until interrupted
 ace.countNotifications();
 }

 private void createAdminClient()
 {
 // Set up a Properties object for the JMX connector attributes
 Properties connectProps = new Properties();
 connectProps.setProperty(
 AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);
 connectProps.setProperty(AdminClient.CONNECTOR_HOST, "localhost");
 connectProps.setProperty(AdminClient.CONNECTOR_PORT, "8879");

 // Get an AdminClient based on the connector properties
 try
 {
 adminClient = AdminClientFactory.createAdminClient(connectProps);
 }
 catch (ConnectorException e)
 {
 System.out.println("Exception creating admin client: " + e);
 System.exit(-1);
 }

 System.out.println("Connected to DeploymentManager");
 }

 private void getNodeAgentMBean(String nodeName)
 {
 // Query for the ObjectName of the NodeAgent MBean on the given node
 try
 {
 String query = "WebSphere:type=NodeAgent,node=" + nodeName + ",*";
 ObjectName queryName = new ObjectName(query);
 Set s = adminClient.queryNames(queryName, null);

66 Administering applications and their environment

if (!s.isEmpty())
 nodeAgent = (ObjectName)s.iterator().next();
 else
 {
 System.out.println("Node agent MBean was not found");
 System.exit(-1);
 }
 }
 catch (MalformedObjectNameException e)
 {
 System.out.println(e);
 System.exit(-1);
 }
 catch (ConnectorException e)
 {
 System.out.println(e);
 System.exit(-1);
 }

 System.out.println("Found NodeAgent MBean for node " + nodeName);
 }

 private void invokeLaunchProcess(String serverName)
 {
 // Use the launchProcess operation on the NodeAgent MBean to start
 // the given server
 String opName = "launchProcess";
 String signature[] = { "java.lang.String" };
 String params[] = { serverName };
 boolean launched = false;
 try
 {
 Boolean b = (Boolean)adminClient.invoke(

nodeAgent, opName, params, signature);
 launched = b.booleanValue();
 if (launched)
 System.out.println(serverName + " was launched");
 else
 System.out.println(serverName + " was not launched");

 }
 catch (Exception e)
 {
 System.out.println("Exception invoking launchProcess: " + e);
 }
 }

 private void registerNotificationListener()
 {
 // Register this object as a listener for notifications from the
 // NodeAgent MBean. Don’t use a filter and don’t use a handback
 // object.
 try
 {
 adminClient.addNotificationListener(nodeAgent, this, null, null);
 System.out.println("Registered for event notifications");
 }
 catch (InstanceNotFoundException e)
 {
 System.out.println(e);
 }
 catch (ConnectorException e)
 {
 System.out.println(e);
 }
 }

Chapter 3. Using the administrative clients 67

public void handleNotification(Notification ntfyObj, Object handback)
 {
 // Each notification that the NodeAgent MBean generates will result in
 // this method being called
 ntfyCount++;
 System.out.println("***");
 System.out.println("* Notification received at " + new Date().toString());
 System.out.println("* type = " + ntfyObj.getType());
 System.out.println("* message = " + ntfyObj.getMessage());
 System.out.println("* source = " + ntfyObj.getSource());
 System.out.println(
 "* seqNum = " + Long.toString(ntfyObj.getSequenceNumber()));
 System.out.println("* timeStamp = " + new Date(ntfyObj.getTimeStamp()));
 System.out.println("* userData = " + ntfyObj.getUserData());
 System.out.println("***");

 }

 private void countNotifications()
 {
 // Run until killed
 try
 {
 while (true)
 {
 Thread.currentThread().sleep(60000);
 System.out.println(ntfyCount + " notification have been received");
 }
 }
 catch (InterruptedException e)
 {
 }
 }

}

Creating a Java Management Extensions client program using the
Java Management Extensions Remote application programming
interface
This topic describes how to develop and build a Java Management Extensions (JMX) client program that
is compliant with JMX Remote application programming interface (JSR 160). After you have a working
JMX client program, you can use it to manage WebSphere Application Server or non-WebSphere
Application Server systems.

Before you begin

This task assumes a basic familiarity with JSR 160 and JMX application programming interface (API)
programming. For information on JSR 160, see http://www.jcp.org/en/jsr/detail?id=160. For information on
the Java APIs, view the application programming interfaces documentation.

About this task

When you develop and run JMX clients that use various JMX connectors and that have security enabled,
use the following guidelines. When you follow these guidelines, you guarantee the behavior among
different implementations of JMX connectors. Any programming model that strays from these guidelines is
unsupported.

1. Create and use a single JMX client before you create and use another JMX client.

2. Create and use a JMX client on the same thread.

3. Use one of the following ways to specify a user ID and password to create a new JMX client:

68 Administering applications and their environment

http://www.jcp.org/en/jsr/detail?id=160

v Specify a default user ID and password in the property file.
v Specify a user ID and password other than the default. After you create a JMX client with a

nondefault user ID and password, specify the nondefault user ID and password when you create
subsequent JMX clients.

Procedure
1. Develop a JMX client program.

2. Build and run the JMX client program.

The steps that are required to build and run your program depend on the kind of application
environment that your code runs. Refer to the Using application clients topic in the Developing and
deploying applications PDF for details on how to build and run your JMX client program.

Results

You have developed, built, and run a JMX client program that is JSR 160 compliant.

Developing a Java Management Extensions client program using Java
Management Extensions Remote application programming interface
This topic describes how to develop a Java Management Extensions (JMX) connector specification and
JMX Remote application programming interface (API) (JSR 160). The program can communicate by
Remote Method Invocation over Internet Inter-ORB Protocol (RMI-IIOP)

Before you begin

This topic assumes a basic understanding of JSR 160, JMX APIs, and managed beans (MBeans). For
more information on JSR 160, see the JSR 160: Java Management Extensions (JMX) Remote API at
http://www.jcp.org/en/jsr/detail?id=160. For more information on the JMX APIs and on MBeans, view the
application programming interfaces documentation.

About this task

You can administer your WebSphere Application Server environment through the administrative console,
the wsadmin utility, or Java Management Extensions (JMX) programming. Complete this task to develop a
JMX remote client program using the JMX remote API so that you can administer your environment
through JMX programming.

Procedure
1. Specify the JMX connector address for the server through the JMXServiceURL class.

The value of the JMX service URL is:
service:jmx:rmi://" + host + ":" + port + "/jndi/JMXConnector"

For example, if the target server host is sales.xyz.com and the listening port is 1234, the JMX service
URL is:
service:jmx:rmi://sales.xyz.com:1234/jndi/JMXConnector

You can find the value for port in the Ports table of the console server settings page or in the
serverindex.xml file that includes the target server. If the URL does not specify a value for host, the
product uses the default value of localhost. If the URL does not specify a value for port, the product
uses the default value of 2809.

When connecting to an administrative agent, add the administrative agent JMX connector port number
to the end of the URL. For example, if the administrative agent JMX connector host is sales.xyz.com
and the port is 6789, then use the following URL:
service:jmx:rmi://sales.xyz.com:6789/jndi/JMXConnector6789

2. Set the Java Naming and Directory Interface (JNDI) provider URL property to use the administrative
name service for the product.

Chapter 3. Using the administrative clients 69

The JNDI provider URL property is javax.naming.Context.PROVIDER_URL. The administrative name
service is WsnAdminNameService.

3. If the client uses security, set the -Dcom.ibm.CORBA.ConfigURL and -Dcom.ibm.SSL.ConfigURL
system properties in the client Java virtual machine (JVM).

Without the -Dcom.ibm.CORBA.ConfigURL and -Dcom.ibm.SSL.ConfigURL system properties set to
valid system properties files, the client does not work properly when security is enabled. The
recommended way to run the JMX connector client is as an administrative thin client.
v

-Dcom.ibm.CORBA.ConfigURL=file:app_client_root/properties/sas.client.props

v

-Dcom.ibm.SSL.ConfigURL=file:app_client_root/properties/ssl.client.props

Typically, you can copy the properties files from an installation profile directory, preferably from the
target server profile directory.

4. Specify the user ID and password for the server, if security is enabled.

5. Establish the JMX connection.

6. Get the MBean server connection instance.

Example

Use the following thin client code example to create and use the JMX client.

Some statements are split on multiple lines for printing purposes.
import java.io.File;
import java.util.Date;
import java.util.Set;
import java.util.Hashtable;

import javax.management.Notification;
import javax.management.NotificationListener;
import javax.management.ObjectName;
import javax.management.MBeanServerConnection;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;

public class JMXRemoteClientApp implements NotificationListener {

 private MBeanServerConnection mbsc = null;
 private ObjectName nodeAgent;
 private ObjectName jvm;
 private long ntfyCount = 0;
 private static String userid = null;
 private static String pwd = null;

 public static void main(String[] args)
 {
 try {

 JMXRemoteClientApp client = new JMXRemoteClientApp();

 String host=args[0];
 String port=args[1];
 String nodeName =args[2];
 userid =args[3];
 pwd = args[4];

 client.connect(host,port);

 // Find a node agent MBean
 client.getNodeAgentMBean(nodeName);

 // Invoke the launch process.
 client.invokeLaunchProcess("server1");

 // Register for node agent events
 client.registerNotificationListener();

 // Run until interrupted.
 client.countNotifications();

 } catch (Exception e) {
 e.printStackTrace();
 }
 }

70 Administering applications and their environment

private void connect(String host,String port) throws Exception
 {
 String jndiPath="/WsnAdminNameService#JMXConnector";

 JMXServiceURL url =
 new JMXServiceURL("service:jmx:iiop://"+host+"/jndi/corbaname:iiop:"+host+":"+port+jndiPath);

 Hashtable h = new Hashtable();

 //Specify the user ID and password for the server if security is enabled on server.

 System.out.println("Userid is " + userid);
 System.out.println("Password is " + pwd);
 if ((userid.length() != 0) && (pwd.length() != 0)) {
 System.out.println("adding userid and password to credentials...");
 String[] credentials = new String[] {userid , pwd };
 h.put("jmx.remote.credentials", credentials);
 } else {
 System.out.println("No credentials provided.");
 }

 //Establish the JMX connection.

 JMXConnector jmxc = JMXConnectorFactory.connect(url, h);

 //Get the MBean server connection instance.

 mbsc = jmxc.getMBeanServerConnection();

 System.out.println("Connected to DeploymentManager");
 }

 private void getNodeAgentMBean(String nodeName)
 {
 // Query for the object name of the node agent MBean on the given node
 try {
 String query = "WebSphere:type=NodeAgent,node=" + nodeName + ",*";
 ObjectName queryName = new ObjectName(query);
 Set s = mbsc.queryNames(queryName, null);
 if (!s.isEmpty()) {
 nodeAgent = (ObjectName)s.iterator().next();
 System.out.println("NodeAgent mbean found "+ nodeAgent.toString());
 } else {
 System.out.println("Node agent MBean was not found");
 System.exit(-1);
 }
 } catch (Exception e) {
 System.out.println(e);
 System.exit(-1);
 }
 }

 private void invokeLaunchProcess(String serverName)
 {
 // Use the launch process on the node agent MBean to start
 // the given server.
 String opName = "launchProcess";
 String signature[] = { "java.lang.String"};
 String params[] = { serverName};
 boolean launched = false;
 try {
 Boolean b = (Boolean)mbsc.invoke(nodeAgent, opName, params, signature);
 launched = b.booleanValue();
 if (launched)
 System.out.println(serverName + " was launched");
 else
 System.out.println(serverName + " was not launched");

 } catch (Exception e) {
 System.out.println("Exception invoking launchProcess: " + e);
 }
 }

 private void registerNotificationListener()
 {
 // Register this object as a listener for notifications from the
 // node agent MBean. Do not use a filter and do not use a handback
 // object.
 try {
 mbsc.addNotificationListener(nodeAgent, this, null, null);
 System.out.println("Registered for event notifications");
 } catch (Exception e) {
 System.out.println(e);
 }
 }

Chapter 3. Using the administrative clients 71

public void handleNotification(Notification ntfyObj, Object handback)
 {
 // Each notification that the node agent MBean generates results in
 // a call to this method.
 ntfyCount++;
 System.out.println("***");
 System.out.println("* Notification received at " + new Date().toString());
 System.out.println("* type = " + ntfyObj.getType());
 System.out.println("* message = " + ntfyObj.getMessage());
 System.out.println("* source = " + ntfyObj.getSource());
 System.out.println(
 "* seqNum = " + Long.toString(ntfyObj.getSequenceNumber()));
 System.out.println("* timeStamp = " + new Date(ntfyObj.getTimeStamp()));
 System.out.println("* userData = " + ntfyObj.getUserData());
 System.out.println("***");

 }

 private void countNotifications()
 {
 // Run until stopped.
 try {
 while (true) {
 Thread.currentThread().sleep(60000);
 System.out.println(ntfyCount + " notification have been received");
 }
 } catch (InterruptedException e) {
 }
 }

}

Extending the WebSphere Application Server administrative system
with custom MBeans
You can extend the WebSphere Application Server administration system by supplying and registering new
Java Management Extensions (JMX) MBeans (see JMX 1.x Specification for details) in one of the
WebSphere processes.

About this task

JMX MBeans represent the management interface for a particular piece of logic. All of the managed
resources within the standard product infrastructure are represented as JMX MBeans. There are a variety
of ways in which you can create your own MBeans and register them with the JMX MBeanServer running
in any WebSphere process. For more information, see MBean Java application programming interface
(API) documentation.

Procedure
1. Create custom JMX MBeans.

You have some alternatives to select from, when creating MBeans to extend the product administrative
system. You can use any existing JMX MBean from another application. You can register any MBean
that you tested in a JMX MBean server outside of the WebSphere Application Server environment in a
product process, including standard MBeans, dynamic MBeans, open MBeans, and model MBeans.

In addition to any existing JMX MBeans, and ones that were written and tested outside of the product
environment, you can use the special distributed extensions provided by WebSphere and create a
WebSphere ExtensionMBean provider. This alternative provides better integration with all of the
distributed functions of the product administrative system. An ExtensionMBean provider implies that
you supply an XML file that contains an MBean Descriptor based on the DTD shipped with the
product. This descriptor tells the WebSphere system all of the attributes, operations, and notifications
that your MBean supports. With this information, the WebSphere system can route remote requests to
your MBean and register remote Listeners to receive your MBean event notifications.

All of the internal WebSphere MBeans follow the Model MBean pattern. Pure Java classes supply the
real logic for management functions, and the WebSphere MBeanFactory class reads the description of
these functions from the XML MBean Descriptor and creates an instance of a ModelMBean that
matches the descriptor. This ModelMBean instance is bound to your Java classes and registered with

72 Administering applications and their environment

the MBeanServer running in the same process as your classes. Your Java code now becomes callable
from any WebSphere Application Server administrative client through the ModelMBean created and
registered to represent it.

2. Optionally define an explicit MBean security policy.

If you do not define an MBean security policy, the product uses the default security policy.

3. Register the new MBeans. There are various ways to register your MBean.

You can register your MBean with the WebSphere Application Server administrative service.

You can register your MBean with the MBeanServer in a WebSphere Application Server process. The
following list describes the available options in order of preference:
v Go through the MBeanFactory class. If you want the greatest possible integration with the

WebSphere Application Server system, then use the MBeanFactory class to manage the life cycle of
your MBean through the activateMBean and deactivateMBean methods of the MBeanFactory class.
Use these methods, by supplying a subclass of the RuntimeCollaborator abstract superclass and an
XML MBean descriptor file. Using this approach, you supply a pure Java class that implements the
management interface defined in the MBean descriptor. The MBeanFactory class creates the actual
ModelMBean and registers it with the product administrative system on your behalf.

This option is recommended for registering model MBeans.
v Use the JMXManageable and CustomService interface. You can make the process of integrating

with WebSphere administration even easier by implementing a CustomService interface that also
implements the JMXManageable interface. Using this approach, you can avoid supplying the
RuntimeCollaborator. When your CustomService interface is initialized, the WebSphere
MBeanFactory class reads your XML MBean descriptor file and creates, binds, and registers an
MBean to your CustomService interface automatically. After the shutdown method of your
CustomService is called, the product system automatically deactivates your MBean.

v Go through the AdminService interface. You can call the registerMBean() method on the
AdminService interface and the invocation is delegated to the underlying MBeanServer for the
process, after appropriate security checks. You can obtain a reference to the AdminService using
the getAdminService() method of the AdminServiceFactory class.

This option is recommended for registering standard, dynamic, and open MBeans. Implement the
UserCollaborator class to use the MBeans and to provide a consistent level of support for them
across distributed and z/OS® platforms.

v Get MBeanServer instances directly. You can get a direct reference to the JMX MBeanServer
instance running in any product process, by calling the getMBeanServer() method of the
MBeanFactory class. You get a reference to the MBeanFactory class by calling the
getMBeanFactory() method of the AdminService interface.

When a custom MBean is registered directly with the MBean server, the MBean object name is
enhanced with the cell, node and process name keys by default. This registration allows the MBean
to participate in the distributed features of the administrative system. You can turn off the default
behavior by setting the com.ibm.websphere.mbeans.disableRouting custom property.

See the Installing your application serving environment PDF for more information on the
com.ibm.websphere.mbeans.disableRouting custom property.

Results

Regardless of the approach used to create and register your MBean, you must set up proper Java 2
security permissions for your new MBean code. The WebSphere AdminService and MBeanServer are
tightly protected using Java 2 security permissions and if you do not explicitly grant your code base
permissions, security exceptions are thrown when you attempt to invoke methods of these classes. If you
are supplying your MBean as part of your application, you can set the permissions in the was.policy file
that you supply as part of your application metadata. If you are using a CustomService interface or other
code that is not delivered as an application, you can edit the library.policy file in the node configuration,
or even the server.policy file in the properties directory for a specific installation.

Chapter 3. Using the administrative clients 73

Best practices for standard, dynamic, and open MBeans
This topic discusses recommended guidelines for standard, dynamic, and open MBeans.

The underlying interface for the WebSphere Application Server administrative service is AdminService.
Remote access occurs through the AdminControl scripting object.

The product provides a special runtime collaborator that you use with standard, dynamic or open custom
MBeans to register the custom MBeans with the WebSphere Application Server administrative service. The
standard, dynamic, and open MBeans display in the administrative service as model MBeans. The
administrative service uses the capabilities available to MBeans that are registered with the administrative
service.

The MBean registration and capabilities are as follows:

 Table 7. MBean registration and capabilities. Examine the registration and capabilities for an MBean type.

MBean type Registered with: Capabilities

Model, and optionally
standard, dynamic, or
open

WebSphere Application
Server administrative
service

Local access is through the WebSphere Application Server
administrative service or the MBean server. Remote access is
through the WebSphere Application Server administrative
service, and WebSphere Application Server security.

Standard, dynamic, or
open

MBean server Local access is through the WebSphere Application Server
administrative service or the MBean server on the distributed
platform. Remote access is through the WebSphere Application
Server administrative service, the Java Management
Extensions (JMX) Remote application programming interface
(API) (JSR 160) client code, and WebSphere Application
Server security.

Creating and registering standard, dynamic, and open custom MBeans
You can create standard, dynamic, and open custom MBeans and register them with the product
administrative service.

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming,
see MBean Java application programming interface (API) documentation.

Do not define new classes as parameters for your MBeans. The classes might not be available in all
processes. If you must define a new class, ensure that the class is available on all processes, including
the deployment manager, the node agents, and the application servers. If the class is not available for a
process, the ClassNotFoundException exception occurs for the new class when you attempt to access it.

About this task

Perform the following tasks to create and register a standard, dynamic, or open custom MBean.

Procedure
1. Create your particular MBean class or classes.

2. Write an MBean descriptor in the XML language for your MBean.

3. Register your MBean by inserting code that uses the WebSphere Application Server runtime
com.ibm.websphere.management.UserMBeanCollaborator collaborator class into your application code.

4. Package the class files for your MBean interface and implementation, the descriptor XML file, and your
application Java archive (JAR) file.

74 Administering applications and their environment

Results

After you successfully complete the steps, you have a standard, dynamic, or open custom MBean that is
registered and activated with the product administrative service.

Example

The following example shows how to create and register a standard MBean with the administrative
service:
SnoopMBean.java:

/**
 * Use the SnoopMBean MBean, which has a standard mbean interface.
 */
public interface SnoopMBean {
 public String getIdentification();
 public void snoopy(String parm1);
}

SnoopMBeanImpl.java:

/**
 * SnoopMBeanImpl - SnoopMBean implementation
 */
public class SnoopMBeanImpl implements SnoopMBean {
 public String getIdentification() {
 System.out.println(">>> getIdentification() called...");
 return "snoopy!";
 }

 public void snoopy(String parm1) {
 System.out.println(">>> snoopy(" + parm1 + ") called...");
 }
}

Define the following MBean descriptor for your MBean in an .xml file. The getIdentification method is set to
run with the unicall option and the snoopy method is set to use the multicall option. These options are
used only for z/OS platform applications. The WebSphere Application Server for z/OS options are not
applicable to the distributed platforms, but they do not need to be removed. The options are ignored on
the distributed platforms. . Some statements are split on multiple lines for printing purposes.

gotcha: If you are running in a multiple JVM environment you must include the type property in the
MBean descriptor.

SnoopMBean.xml:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE MBean SYSTEM "MbeanDescriptor.dtd">
<MBean type="SnoopMBean"
 version="5.0"
 platform="dynamicproxy"
 description="Sample SnoopMBean to be initialized inside an EJB.">

 <attribute name="identification" getMethod="getIdentification"
type="java.lang.String" proxyInvokeType="unicall"/>

 <operation name="snoopy" role="operation" type="void" targetObjectType="objectReference"
 impact="ACTION" proxyInvokeType="multicall">
 <signature>

Chapter 3. Using the administrative clients 75

<parameter name="parm1" description="test parameter" type="java.lang.String"/>
 </signature>
 </operation>
</MBean>

Assume that your MBean is used in an enterprise bean. Register your MBean in the enterprise bean
ejbCreate method and unregister it in the ejbRemove method.
//The method MBeanFactory.activateMBean() requires four parameters:
//String type: The type value that you put in this MBean’s descriptor. For this example
//the string type is SnoopMBean.
//RuntimeCollaborator co: The UserMBeanCollaborator user MBean collaborator instance
//that you create
//String id: Unique name that you pick
//String descriptor: The full path to the MBean descriptor file

import com.ibm.websphere.management.UserMBeanCollaborator;
//Import other classes here.
.
.
.
static private ObjectName snoopyON = null;
static private Object lockObj = "this is a lock";
.
.
.
/**
 * ejbCreate method: Register your Mbean.
 */
public void ejbCreate() throws javax.ejb.CreateException {
 synchronized (lockObj) {
 System.out.println(">>> SnoopMBean activating for --|" + this + "|--");
 if (snoopyON != null) {
 return;
 }
 try {
 System.out.println(">>> SnoopMBean activating...");
 MBeanFactory mbfactory = AdminServiceFactory.getMBeanFactory();
 RuntimeCollaborator snoop = new UserMBeanCollaborator(new SnoopMBeanImpl());
 snoopyON = mbfactory.activateMBean("SnoopMBean", snoop, "snoopMBeanId",
"SnoopMBean.xml");
 System.out.println(">>> SnoopMBean activation COMPLETED! --|" + snoopyON + "|--");
 } catch (Exception e) {
 System.out.println(">>> SnoopMBean activation FAILED:");
 e.printStackTrace();
 }
 }
}
.
.
.
/**
 * ejbRemove method: Unregister your MBean.
 */
public void ejbRemove() {
 synchronized (lockObj) {
 System.out.println(">>> SnoopMBean Deactivating for --|" + this + "|--");
 if (snoopyON == null) {
 return;
 }
 try {
 System.out.println(">>> SnoopMBean Deactivating ==|" + snoopyON + "|== for --|"
+ this + "|--");
 MBeanFactory mbfactory = AdminServiceFactory.getMBeanFactory();
 mbfactory.deactivateMBean(snoopyON);
 System.out.println(">>> SnoopMBean Deactivation COMPLETED!");

76 Administering applications and their environment

} catch (Exception e) {
 System.out.println(">>> SnoopMBean Deactivation FAILED:");
 e.printStackTrace();
 }
 }
}

What to do next

Compile the MBean Java files and package the resulting class files with the descriptor .xml file, into the
enterprise bean JAR file.

Setting Java 2 security permissions
You must configure Java 2 security permissions to use Java Management Extension and WebSphere
Application Server administrative methods.

Before you begin

When you enable Java 2 security, you must grant Java 2 security permissions to application-specific code
for Java Management Extensions (JMX) and WebSphere Application Server administrative privileges. With
these permissions, your application code can call WebSphere Application Server administrative methods
and JMX methods.

About this task

If you are using Java 2 security then you need to verify that your extensions and application server can
access the required resources. The following steps show how to configure access for JMX and the
application server administrative methods.

Procedure
v Use the following permission to invoke all the JMX class methods and interface methods:

permission javax.management.MBeanPermission "*", "*";

Consult the application programming interfaces documentation for specific actions under the
MBeanPermission class.

v Use the following permission for WebSphere Application Server administrative application programming
interfaces (APIs):
permission com.ibm.websphere.security.WebSphereRuntimePermission "AdminPermission";

Administrative security
Access to the Java Management Extension (JMX) administrative subsystem requires role-based access
control when administrative security is enabled.

. A client, which can be a user or an administrative client program, can access an MBean method only if at
least one of the required roles is granted to the client. WebSphere Application Server uses the declarative
security approach to specify the security policy on the JMX MBean. This approach has the advantage of
not requiring MBean developers to add security code. Moreover, WebSphere Application Server provides a
default security policy for an MBean so in most case MBean developers do not need to specify a security
policy at all. With WebSphere Application Server, you can define explicit security policy for your MBeans if
the default security policy does not meet your specific security requirements.

Default MBean security policy
This topic discusses the default managed bean (MBean) security policy. In most cases, MBean developers
do not need to specify a security policy.

Three types of MBeans exist for the default MBean security policy:

Chapter 3. Using the administrative clients 77

v A configuration type MBean

v A runtime type MBean

v A deployer type MBean

An optional attribute in the MBean descriptor XML file defines the type of MBean.

The ConfigRepository MBean is an example of one of a few configuration types. In the
configRepository.xml descriptor file, the configureMBean = "true" attribute indicates that the MBean is a
configuration type.
<MBean type="ConfigRepository"
 version="5.0"
 platform="common"
 description="Management interface for the configuration repository."
 configureMBean="true">

The EJBModule MBean is an example of deployer type MBeans. In the EJBModule.xml descriptor file, the
deployerMBean="true" attribute indicates that the MBean is a deployer type.
<MBean type="EJBModule" j2eeType="EJBModule"
 version="5.0"
 platform="dynamicproxy"
 resourceIdentifierKey="Application"
 resourceType="Application"
 deployerMBean="true"
 description="Management interface for the EJBModule component.">

WebSphere Application Server extended role-based access control supports role inheritance. Five
administrative roles of administrator, configurator, operator, deployer, and monitor exist. The monitor role is
the least privileged administrative role. Users that are granted the monitor role can view the WebSphere
Application Server configuration and the runtime status, but cannot make any changes. The other
administrative roles each have their own unique set of privileges as well as the same privileges as the
monitor role.

The configurator role has permission to modify WebSphere Application Server configuration data. The
operator role has permission to change the runtime state, such as the start and stop of administrative
resources. A configurator role cannot change the runtime status and conversely an operator role cannot
change the WebSphere Application Server configuration. The administrator role includes configurator and
operator role, but has more permissions than the union of configurator role and operator role. The
administrator role can additionally change the administrative security configuration. A simple picture shows
the administrative role inheritance relationship. The deployer role is a combination of the configurator and
operator roles for application management. The deployer role has both configurator and operator
permission for applications. A diagram shows the administrative role inheritance relationship.

78 Administering applications and their environment

Each MBean method or operation is assigned an impact attribute with a value of either INFO or ACTION.
Here are some examples:

v A get method has an impact value of INFO and a write method has an impact value of ACTION.

v In the ConfigRepository MBean, the extract method does not change the configuration data and has an
impact value of INFO, while the modify method has an impact value of ACTION.

v In the Java virtual machine (JVM) MBean, which is an operator type of MBean, the
ggetCurrentTimeInMillis method has an impact value of ACTION.

A configuration MBean method that has an impact value of INFO requires the monitor role. A configuration
MBean method that has an impact value of ACTION requires the configurator role. A deployer MBean
method that has an impact value of INFO requires the monitor role. A deployer MBean method that has an
impact value of ACTION requires the deployer role. Because all administrative roles are monitor roles, any
administrative role can access configuration MBean methods and deployer MBean methods that have an
impact value of INFO. The administrator role is a configurator role and has access to the configuration
MBean methods that have an impact value of ACTION.

The default security policy for the configuration MBean is summarized in the following table:

 Table 8. Configuration MBean method impact values and security roles. An X indicates that the MBean method
requires the role by default.

Method impact Monitor role Operator role Configurator role Deployer role
Administrator
role

INFO X X X X X

ACTION X X

The default security policy for the operation MBean is summarized in the following table:

Chapter 3. Using the administrative clients 79

Table 9. Operation MBean method impact values and security roles. An X indicates that the MBean method requires
the role by default.

Method impact Monitor role Operator role Configurator role Deployer role
Administrator
role

INFO X X X X X

ACTION X X

The default security policy for the deployer MBean is summarized in the following table:

 Table 10. Deployer MBean method impact values and security roles. An X indicates that the MBean method
requires the role by default.

Method impact Monitor role Operator role Configurator role Deployer role
Administrator
role

INFO X X X X X

ACTION X X X

If an MBean has both the configureMBean attribute and the deployerMBean attribute set to true, the
required role for all actions is either configurator or monitor. No such MBean is presently defined in the
system.

Defining an explicit MBean security policy
You can explicitly define an MBean security policy for a particular MBean. Use this example to define an
MBean security policy.

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming,
see MBean Java application programming interface (API) documentation.

About this task

Perform the following tasks to define an explicit security policy.

Procedure
1. Assume that you have an MBean defined by the MBean sample.xml descriptor file.

2. Specify the explicit security policy for that MBean in the sampleSecurity.xml file. The naming
convention is that you must append "Security" to the MBean descriptor file name as the name of the
MBean security descriptor file.

3. Place the security policy descriptor file at the same directory where the MBean security descriptor file
is so that the MBean loader can find it. This directory is the typical location for the security policy
descriptor file. If no MBean security descriptor file is present, the default MBean security policy is used.

4. Specify the MBean name of sample in the resource element resource-name field of the
sampleSecurity.xml file so that the MBean policy loader can associate the MBean security policy with
the MBean. The MBean security descriptor definition is very similar to the security policy that is defined
by the Java 2 Platform, Enterprise Edition (J2EE) deployment descriptor.

Results

You now have an explicitly defined MBean security policy that you can run with an MBean.

80 Administering applications and their environment

Example

The following example describes the MBean security descriptor file format for the sampleSecurity.xml file.

Line 2 specifies that an MBean security descriptor schema is defined by the
RolePermissionDescriptor.dtd file, which is a document type definition (DTD) in WebSphere Application
Server.

As shown on line 3, each MBean descriptor file contains a single role-permission element. The
administrative security role hierarchy is defined in the security-role elements between line 9 and line 37.
The administrative security role has an inheritance relationship.

As defined on line 14 through 21, the operator security role implies the monitor security role, which means
that a user with the operator role has all the permissions of the monitor role. As defined between line 30
and line 38, an administrator security role implies both the configurator and operator security role. Every
MBean security descriptor file typically has the same role relationship definition so that you can cut and
paste this section to your MBean security descriptor file.

One or more method-permission elements are defined after the security-role element. Each
method-permission element defines the required roles for one or more methods. Specify method
parameters to avoid method name collision in case multiple methods have the same name.
1. <?xml version="1.0" encoding="UTF-8"?>
2. <!DOCTYPE role-permission SYSTEM "RolePermissionDescriptor.dtd" >
3. <role-permission>
4. <resource>
5. <resource-name>sample</resource-name>
6. <class-name>com.ibm.ws.security.descriptor.sample</class-name>
7. <description>This is a sample for testing role permission descriptor.</description>
8. </resource>
9. <security-role>
10. <role>
11. <role-name>monitor</role-name>
12. </role>
13. </security-role>
14. <security-role>
15. <role>
16. <role-name>operator</role-name>
17. <imply>
18. <role-name>monitor</role-name>
19. </imply>
20. </role>
21. </security-role>
22. <security-role>
23. <role>
24. <role-name>configurator</role-name>
25. <imply>
26. <role-name>monitor</role-name>
27. </imply>
28. /role>
29. </security-role>
30. <security-role>
31. <role>
32. <role-name>administrator</role-name>
33. <imply>
34. <role-name>operator</role-name>
35. <role-name>configurator</role-name>
36. </imply>
37. </role>
38. </security-role>
39. <method-permission>
40. <description>Sample method permission table</description>
41. <role-name>operator</role-name>
42. <method>

Chapter 3. Using the administrative clients 81

43. <description>Sample operation</description>
44. <resource-name>sample</resource-name>
45. <method-name>stop</method-name>
46. </method>
47. </method-permission>
48. <method-permission>
49. <description>Sample method permission table</description>
50. <role-name>operator</role-name>
51. <method>
52. <description>Sample operation</description>
53. <resource-name>sample</resource-name>
54. <method-name>start</method-name>
55. <method-params>
56. <method-param>java.lang.String</method-param>
57. <method-param>java.lang.String</method-param>
58. </method-params>
59. </method>
60. </method-permission>
61. <method-permission>
62. <description>Sample method permission table</description>
63. <role-name>operator</role-name>
64. <method>
65. <description>Sample operation</description>
66. <resource-name>sample</resource-name>
67. <method-name>monitor</method-name>
68. <method-params>
69. </method-params>
70. </method>
71. </method-permission>
72. <method-permission>
73. <description>Sample method permission table</description>
74. <role-name>configurator</role-name>
75. <method>
76. <description>Sample operation</description>
77. <resource-name>sample</resource-name>
78. <method-name>setValue</method-name>
79. <method-params>
80. <method-param>java.lang.Boolean</method-param>
81. </method-params>
82. </method>
83. </method-permission>
84. <method-permission>
85. <description>Sample method permission table</description>
86. <role-name>monitor</role-name>
87. <method>
88. <description>Sample operation</description>
89. <resource-name>sample</resource-name>
90. <method-name>getValue</method-name>
91. </method>
92. </method-permission>
93. </role-permission>

Specifying fine-grained MBean security in the MBean descriptor
To implement fine-grained administrative security, your code must identify the resource instance that the
managed bean (MBean) represents and assign the user the required role for that instance of the resource.
This topic discusses what to do to identify the resource and assign the required role. This topic also
discusses how to make an MBean method run under a different user identity so that the method can
access other resource instances. Lastly, this topic discusses how to check if an MBean method has
access to a resource instance by using programmatic interfaces.

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming,
see MBean Java application programming interface (API) documentation.

82 Administering applications and their environment

About this task

Perform the following task to ensure that an MBean or MBean method is protected. Identify the resource
instance that the MBean or MBean method represents and assign required roles to access the MBean.
Perform this task during the development of the MBean.

Procedure
1. Determine the resource instance that the MBean represents and the required roles to invoke the

MBean methods.

Every MBean method has a default MBean security policy. When the MBean method uses the default
security policy, the resource instance that the MBean represents is assumed to be the server in which
the MBean runs. If an MBean or MBean method represents a resource instance other than the server
on which it runs, perform the following steps:

a. Identify the resource instance that the MBean represents.

v If an MBean, such as the Server MBean, accesses and modifies the server in which the MBean
runs, do not specify a security policy to verify that the user invoking the MBean is granted
access to the server because the default security policy is in force. In most cases, you use an
MBean to access and modify the server.

v If an MBean that runs inside a server can access and modify resources that do not directly
belong to the server, check if the user invoking the MBean is granted access to the instance of
the resource before allowing the MBean method to run.

In most cases, identify the resource instance by identifying the key-value pair in the object name
of the MBean that represents the resource instance. The resourceIndentifierKey attribute defines
the key.

For example, you can use the EJBModule MBean to access an Enterprise JavaBeans (EJB)
module within an application that runs inside the server. In this case, the object name of the
EJBModule MBean contains a key-value pair. The key is Application. The value represents the
resource instance that the EJBModule MBean tries to access. The user that invokes this MBean
method is verified to make sure that access is granted to this instance of the application before
allowing the MBean method to run.

The following example shows how to describe the fine-grained administrative security for the
EJBModule type of MBean in the MBean descriptor:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE MBean SYSTEM "MbeanDescriptor.dtd">
<MBean type="EJBModule" j2eeType="EJBModule"
 version="5.0"
 platform="dynamicproxy"
 resourceIdentifierKey="Application"
 resourceType="Application"
 deployerMBean="true"
 description="Management interface for the EJBModule component.">

v If you can determine the resource that the MBean accesses before the MBean is invoked, but
you cannot use the MBean object name to determine the resource instance that the MBean
accesses, use parameters that are passed to the MBean instead.

Identify the MBean method parameter name with a parameter value that represents the resource
instance. Mark the corresponding parameter metadata in the MBean descriptor as the resource
identifier. To mark a parameter as the resource identifier, add the resourceType attribute. The
attribute specifies the type resource that the parameter value contains. When the resourceType
attribute is present for any MBean method parameter, the parameter value determines the
resource instance that the MBean method represents.

For example, one instance of the ApplicationManager MBean runs in each server. The same
MBean can be used to start and stop all the applications in the server. The start and stop
methods of this MBean each take the application name as a parameter. They use the parameter
to determine the instance of the application that this MBean method tries to access.

Chapter 3. Using the administrative clients 83

The following example shows how to describe the fine-grained administrative security for this
type of MBean in the MBean descriptor:
<operation
 description="Start Application"
 impact="ACTION" name="startApplication" role="operation"
 targetObjectType="objectReference" type="void" proxyInvokeType="spray">
 <signature>
 <parameter description="Application Name" resourceType="Application"
 name="applicationName" type="java.lang.String"/>
 </signature>
</operation>

v If the resource that an MBean accesses cannot be determined until the MBean is invoked, check
if the user invoking the MBean is granted access to the instance of the resource by using
application programming interfaces (APIs).

Mark the MBean or MBean method as excluded from access checking in the MBean descriptor
by using the excludeAccessCheck attribute. When an MBean is marked as excluded from
access checking, all its methods are also excluded from access checking.

For example, the ConfigService MBean that runs in the deployment manager is used to
configure all the resources within a cell. Exclude this MBean from access checking before
invoking the MBean methods. Check that the ConfigService MBean is granted access to the
configuration resource when the MBean attempts to access the resource.

The following example shows how to describe the fine-grained administrative security for the
ConfigServices type of MBean in the MBean descriptor:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE MBean SYSTEM "MbeanDescriptor.dtd">
<MBean
 version="5.0"
 platform="proxy"
 collaboratorClass="com.ibm.ws390.management.proxy.ConfigServiceManager"
 description="Config Service component provides service of
configuration related tasks on top of configuration repository service."
 type="ConfigService"
 excludeAccessCheck="true"
 configureMBean="true">

Some statements are split on multiple lines for printing purposes.

The following example shows how to invoke the MBean method logic to perform authorization
checking programmatically:
// Get administration authorizer.
AdminAuthorizer aa = AdminAuthorizerFactory.getAdminAuthorizer();
// Set the role that is required for this operation.
String role = com.ibm.ws.security.util.Constants.CONFIG_ROLE;
// Set the resource name.
// cells/cellName is optional.
String resource = "/nodes/"+ nodeName + /servers/" + serverName;
// Check access
if (aa != null && !aa.checkAccess(resource, role))
 // Disallow access.
 else
 // Allow access.

b. Assign required roles for the MBean and MBean methods.

The required roles are automatically assigned, based on the type of MBean and the impact of the
MBean method, as described in the topic on the default MBean security policy.

2. Specify delegation mode.

In some cases, after performing the initial access check, the MBean method might need to run under a
different user identity so that it can access other resource instances. For example the syncNode
operation in the CellSync MBean grants the user the operator role to the instance of the node being
synchronized. The syncNode operation tries to access resources under the cell scope. The user might

84 Administering applications and their environment

not have access to open files under the cell directory. The MBean must run as System after the initial
access check so that the operation completes without any access denied problems.

Set the runAs attribute to System to specify delegation mode for an MBean or MBean method. When
you set the runAs attribute for an MBean, the value applies to all MBean methods for that MBean.

The following example shows how to describe fine-grained administrative security for the CellSync type
of MBean in the MBean descriptor.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE MBean SYSTEM "MbeanDescriptor.dtd">
<MBean type="CellSync"
 version="5.0.1"
 platform="common"
 runAs="System"
 description="Management interface for the configuration synchronization logic
performed at the central deployment manager for the cell.">
<operation
 description="Initiate a synchronization request for a given node" impact="ACTION"
 name="syncNode" role="operation" targetObjectType="objectReference" type="ja
va.lang.Boolean">
<signature>
<parameter resourceType="Node"
 description="The name of the node"
 name="nodeName" type="java.lang.String"/>
</signature>
</operation>

Results

You have determined the type of resource a given MBean method is accessing and performed the
necessary access check so that the product can allow access to the resource.

Administrative programs for multiple Java Platform, Enterprise Edition
application servers
You can develop an administrative client to manage multiple vendor application servers through existing
MBean support in the WebSphere Application Server.

Existence of MBeans for stopped components

best-practices: The WebSphere Application Server completely implements the Java Platform, Enterprise
Edition (Java EE) Management specification. However, some differences in details
between the Java EE specification and the WebSphere Application Server implementation
are important for you to understand when you access WebSphere Application Server
components. These differences are important to you when you access application
MBeans because you can use either the WebSphere Application Server programming
model or the Java EE programming model.

In the WebSphere Application Server programming model, if an MBean exists, you can assume that it is
running. If an MBean does not exist, you can assume that it is stopped. Transient states between the
started state and the stopped state are the same as the stopped state, which means that no MBean
exists.

In the Java EE programming model, the MBean always exists regardless of the state of the component.

You can determine the state of a component by querying the state attribute. However, the state attribute
only exists for MBeans that are state manageable, meaning that they implement the StateManageable
interface. State manageable MBeans have start(), startRecursive(), and stop() operations whether these
MBeans are Java EE MBeans or WebSphere Application Server MBeans. Additionally, the WebSphere
Application Server defines the stateful interface. The stateful interface means that the component has a

Chapter 3. Using the administrative clients 85

state and emits the Java EE.state.notifications method, but that the component cannot directly manage the
state. For example, a web module cannot stop itself. However, the application that contains the web
module can stop it.

Not all MBeans that have a state are state-manageable. Servlets, Java EE modules and enterprise beans,
for example, are all stateful, but are not state manageable. The Java EE server is not state-manageable
because no start() operation is available on a server.

The J2EEApplication MBean is an example of a state manageable MBean. When the WebSphere
Application Server starts, each application activates a J2EEApplication MBean for itself. A J2EEApplication
MBean has a Java EE type of J2EEApplication (for example, ObjectName *:*,j2eeType=J2EEApplication).
If the application starts, it also activates an Application MBean with a type of Application (for example,
:,type=Application). When the application changes state, the Application MBean is activated or
deactivated. However, the J2EEApplication MBean is always activated. You can retrieve the application
state changes by getting the state attribute.

The modules attribute on the J2EEApplication component returns an array of object names, one for every
module in the application. The Application Server activates an MBean for each of these modules only after
the Application Server starts the application. The managed enterprise bean isRegistered(ObjectName)
method returns false if the application, and therefore the module, is not running.

All of the attributes that are defined in the Java EE management specification return valid values when the
managed object stops. Other attributes and operations, for example those that are specifically defined for
the Application Server, use the com.ibm.websphere.management.exception.ObjectNotRunningException
exception if they are accessed when the object is stopped.

If you install the application while the server runs, the application installs the J2EEApplication MBean when
the installation completes. Conversely, when the application uninstalls the J2EEApplication MBean, the
application deactivates the MBean.

Mapping type properties

You can determine which MBeans have a j2eeType property and a WebSphere Application Server type
property in their ObjectName property sets by going to the additional application programming interfaces
documentation. Select the MBean interfaces subtopic, and then specific MBeans in the list. Look for type=
and j2eeType=. You can use the type property to query for any MBeans. MBeans derived from the Java
EE specification have an additional j2eeType property as part of their ObjectName property sets. You can
also use the j2eeType property to query for MBeans.

Optional WebSphere Application Server interfaces

The EventProvider, StateManageable, and StatisticsProvider interfaces are optional interfaces that the
Java EE Management specification defines. Which of the interfaces the product implements varies from
MBean to MBean. Go to the additional application programming interfaces documentation to see which
interfaces the product implements for a particular MBean. Select the MBean interfaces subtopic, and then
a specific MBean in the list. Find All Parent MBeans. The interfaces that are implemented for the MBean
follow All Parent MBeans. For example, the J2EEDomain MBean does not implement any of the
interfaces, while the JVM MBean implements the StatisticsProvider interface.

Deploying and managing a custom Java administrative client program
with multiple Java Platform, Enterprise Edition application servers
This section describes how to connect to a Java Platform, Enterprise Edition (Java EE) server, and how to
manage multiple vendor servers.

86 Administering applications and their environment

Before you begin

The product completely implements the Java EE Management specification, also known as JSR-77 (Java
Specification Requests 77). However, some differences in details between the Java EE specification and
the WebSphere Application Server implementation are important for you to understand when you develop
a Java administrative client program to manage multiple vendor servers. For information, see the Java
Platform, Enterprise Edition (Java EE) Management Specification and the MBean Java application
programming interface (API) documentation.

About this task

When your administrative client program accesses WebSphere Application Servers exclusively, you can
use the Java APIs and WebSphere Application Server-defined MBeans to manage them. If your program
needs to access both WebSphere Application Servers and other Java EE servers, use the API defined in
the Java EE Management specification.

Procedure
1. Connect to a Java EE server.

Connect to a server by looking up the Management enterprise bean from the Java Naming and
Directory Interface (JNDI). The Management enterprise bean supplies a remote interface to the MBean
server that runs in the application server. The Management enterprise bean works almost exactly like
the WebSphere Application Server administrative client, except that it does not provide WebSphere
Application Server specific functionality. The following example shows how to look up the Management
enterprise bean.
import javax.management.j2ee.ManagementHome;
import javax.management.j2ee.Management;

Properties props = new Properties();

props.setProperty(Context.PROVIDER_URL, "iiop://myhost:2809");
Context ic = new InitialContext(props);
Object obj = ic.lookup("ejb/mgmt/MEJB");
ManagementHome mejbHome = (ManagementHome)
 PortableRemoteObject.narrow(obj, ManagementHome.class);
Management mejb = mejbHome.create();

The example gets an initial context to an application server by passing the host and port of the
Remote Method Invocation (RMI) connector. You must explicitly code the RMI port, in this case 2809.
The lookup method looks up the ejb/mgmt/MEJB path, which is the location of the Management
enterprise bean home. The example then creates the mejb stateless session bean, which you use in
the next step.

2. Manage multiple vendor application servers.

After you create the mejb stateless session bean, you can use it to manage your application servers.
Components from the application servers appear as MBeans, which the specification defines. These
MBeans all have the j2eeType property. This property is one of a set of types that the specification
defines. All of these types have a set of exposed attributes.

Use the following example to guide you in managing multiple vendor application servers. The example
uses the Java virtual machine (JVM) MBean to determine what the current heap size is for the
application server.
ObjectName jvmQuery = new ObjectName("*:j2eeType=JVM,*");
Set s = mejb.queryNames(jvmQuery, null);
ObjectName jvmMBean = (ObjectName) s.iterator().next();
boolean hasStats = ((Boolean) mejb.getAttribute(jvmMBean,
 "statisticsProvider")).booleanValue();
if (hasStats) {
 JVMStats stats = (JVMStats) mejb.getAttribute(jvmMBean,
 "stats");

Chapter 3. Using the administrative clients 87

http://java.sun.com
http://java.sun.com

String[] statisticNames = stats.getStatisticNames();
 if (Arrays.asList(statisticNames).contains("heapSize")) {
 System.out.println("Heap size: " + stats.getHeapSize());
 }
}

The queryNames() method first queries the JVM MBean. The getAttribute method gets the
statisticsProvider attribute and determine if this MBean provides statistics. If the MBean does, the
example accesses the stats attribute, and then invokes the getHeapSize() method to get the heap size.

Results

The strength of this example is that the example can run on any vendor application server. It demonstrates
that an MBean can optionally implement defined interfaces, in this case the StatisticsProvider interface. If
an MBean implements the StatisticsProvider interface, you can see if an application server supports a
particular statistic, in this case the heap size. The specification defines the heap size, although this value
is optional. If the application server supports the heap size, you can display the heap size for the JVM.

Java Management Extensions V1.0 to Java Management Extensions
V1.2 migration
You might need to migrate custom MBeans that are supplied by products other than the Application Server
from Version 5 to Version 6.0 and later for full compatibility.

Each Java virtual machine (JVM) in WebSphere Application Server includes an embedded implementation
of Java Management Extensions (JMX). In Application Server, Version 5, the JVMs contain an
implementation of the JMX 1.0 specification. In Application Server, Version 6.0 and later, the JVMs contain
an implementation of the JMX 1.2 specification. The JMX 1.0 implementation used in Version 5 is the
TMX4J package that IBM Tivoli products supply. The JMX 1.2 specification used in Version 6.0 and later is
the open source mx4j package. The JMX implementation change across the releases does not affect the
behavior of the JMX MBeans in the Application Server. No Application Server administrative application
programming interfaces (APIs) are altered due to the change from the JMX V1.0 specification to the JMX
V1.2 specification.

The JMX V1.2 specification is compatible with the earlier JMX V1.0 specification. However, you might
need to migrate custom MBeans that are supplied by products other than the application server from
Version 5 to Version 6.0 and later. The primary concern for these custom MBeans is related to the values
that are used in key properties of the JMX ObjectName class for the MBean. The open source mx4j
implementation more stringently enforces property validation according to the JMX 1.2 specification. Test
the custom MBeans that you deployed in Version 5 in Version 6.0 and later, to ensure compatibility. Full
details of the JMX V1.2 specification changes from the JMX V1.0 specification are available in the JMX 1.2
specification.

Java Management Extensions (JMX) interoperability
Starting with Version 6.0, WebSphere Application Server implements Java Management Extensions (JMX)
Version 1.2.

Differences between Version 6.0.x, and Version 6.1 and later

The product supports communication with earlier levels of the server through the SOAP connector. The
earlier levels of the server cannot be more than two releases earlier. Version 6 and later servers can
communicate with each other through an RMI connector, with one restriction. The
javax.management.MBeanInfo class and its subclasses do not interoperate between Version 6.1.02 and
version 6.0.2. You will receive a java.lang.IllegalArgumentException exception when attempting to send
any instance of these classes between a Version 6.1 and Version 6.0.2. This restriction affects clients that
perform the following operations.

v A wsadmin scripting client that tries to perform the following operations, for example in Jacl,:

88 Administering applications and their environment

$Help attributes MBeanObjectName
$Help operations MBeanObjectName
$Help notifications MBeanObjectName

v Any Java client that tries to call:
com.ibm.websphere.management.AdminClient.getMBeanInfo(ObjectName name);
com.ibm.websphere.management.AdminService.getMBeanInfo(ObjectName name);
javax.management.MBeanServer.getMBeanInfo(ObjectName name);

A serialization format mismatch exists between the JMX implementation in Version 6.1 and later and
Version 6.0.x releases. When a Version 6.0.x wsadmin script or a Version 6.0.x administrative client tries
to retrieve the ModelMBeanInfo interface of a Version 6.1 and later MBean, the expected field names are
not found in the deserialized object because of the case difference between the versions. For example, the
following wsadmin function does not work when a Version 6.0.x wsadmin script connects to a Version 6.1
and later server:
$Help attributes MBeanObjectName
$Help operations MBeanObjectName
$Help all MBeanObjectName

where MBeanObjectName is a string representation of a Version 6.1 and later MBean Object.

To avoid this problem, set the jmx.serial.form Java virtual machine (JVM) custom property on the JVM
custom properties page in the administrative console. Create the custom property by specifying the name
value-pair on the Version 6.1 and later Application Server that you are connecting to from a Version 6.0.x
client. The field names are forced to lower case to be compatible with what the Version 6.0.x client
expects. The lower case field names contradict the JMX specification and compromise interoperability with
future versions. Therefore, the recommendation is that you set this property only when it is absolutely
needed in a mixed version environment.

 Property name jmx.serial.form
Data type string
Value 1.2.0 or 1.2.1

To access the JVM custom properties page, click:

Servers > Server Types > WebSphere application servers > server1. Then, under Server
Infrastructure, click Java and process management > Process Definition > Java virtual machine >
Custom properties.

Using command-line tools
The product provides many tools that you can call from a command line.

About this task

There are several command-line tools that you can use to start, stop, and monitor application server
processes and nodes. These tools only work on local servers and nodes. They cannot operate on a
remote server or node. To administer a remote server, you can use the wsadmin scripting program
connected to the deployment manager for the cell in which the target server or node is configured.

The following information is common for each command:

v Unless otherwise specified, all of the application server commands are located in the
app_server_root/bin directory.

v Parameter values that specify a server name, a node name or a cell name are case sensitive. For
example, if you want to start the application server MyServer for the profile test, invoke startServer
MyServer -profileName test. If you specify myserver for the server name, the startServer script fails.

Running command line tools on the Microsoft Windows Vista or later Microsoft operating system:
On the Windows Vista, Windows Server 2008, and Windows 7

Chapter 3. Using the administrative clients 89

operating systems, you can install WebSphere Application Server as either Administrator or
non-Administrator. When it is installed as Administrator, certain operations (such as those involving
Windows Services) require Administrator privileges. To ensure that WebSphere Application Server
command-line tools have sufficient privileges, run them with elevated administrator authority on systems
that have the Windows User Account Control (UAC) Run all administrators in Admin Approval Mode
policy enabled. When you run these command-line tools from a Command Prompt, run them from a
Command Prompt window that is launched by performing the following actions:

v Right-click a Command Prompt shortcut.

v Click Run As Administrator.

When you open the Command Prompt window as Administrator, an operating-system dialog appears
that asks you if you want to continue. Click Continue to proceed.

Examples of these tools are the startServer command, stopServer command, firststeps command, and the
Profile Management Tool. If you are using a Windows Server Core installation of Windows Server 2008,
any WebSphere Application Server commands that require a graphical interface are not supported since a
Windows Server Core system does not have a graphical user interface. Therefore, commands such as
launchpad.exe or ifgui.bat are not supported on that type of Windows Server 2008 installation.

Use the following general steps to run a command:

Procedure
1. Open a system command prompt.

2. Determine whether to run the script from the profile or application server root directory.

Most command-line tools function relative to a particular profile. To determine if a command requires
the -profileName parameter, refer to the documentation for that specific command. If you run a
command from the app_server_root/bin directory and do not specify the -profileName parameter, the
default profile for the product sets profile-specific variables. To specify a different profile, use one of the
following options:

v Navigate to the app_server_root/bin directory and run the following command, specifying the profile
of interest as the value for the profileName parameter:
startServer server1 -profileName AppServerProfile

v When a profile is created, the application server creates a proxy script in the profile_root/bin
directory for each script in the app_server_root/bin directory that is applicable to the type of profile
created. When a proxy script is invoked, the profile-specific variables for the script are set based on
the profile from which the script is invoked. To run the command for a specific profile, navigate to
the profile_root/bin directory for the profile of interest to run the command.

3. Run the command of interest.

Results

The command runs the requested function and displays the results on the screen.

Refer to the command log file for additional information. When you use the -trace option for the command,
the additional trace data is captured in the command log file. The directory location for the log files is
under the default system log root directory, except for commands related to a specific server instance, in
which case the log directory for that server is used. You can override the default location for the command
log file using the -logfile option for the command.

What to do next

For more information about using profiles, including how to obtain a list of profiles, see the information
about the manageprofiles command topic.

90 Administering applications and their environment

manageprofiles command
Use the manageprofiles command to create, delete, augment, back up, and restore profiles, which define
runtime environments. Using profiles instead of multiple product installations saves disk space and
simplifies updating the product because a single set of core product files is maintained.

The manageprofiles command and its graphical user interface, the Profile Management Tool, are the only
ways to create runtime environments.

The command file is located in the app_server_root/bin directory. The command file is a script named
manageprofiles.

Remember: If you use this command with the managed profile template, application servers are not
created. However, ports are still used if you are federating a node.

Syntax

The manageprofiles command is used to perform the following tasks:

v create a profile (-create)

v delete a profile (-delete)

v augment a profile (-augment)

v unaugment a profile (-unaugment)

v unaugment all profiles that have been augmented with a specific augmentation template
(-unaugmentAll)

v delete all profiles (-deleteAll)

v list all profiles (-listProfiles)

v list augments for a profile (-listAugments)

v get a profile name (-getName)

v get a profile path (-getPath)

v validate a profile registry (-validateRegistry)

v validate and update a profile registry (-validateAndUpdateRegistry)

v get the default profile name (-getDefaultName)

v set the default profile name (-setDefaultName)

v back up a profile (-backupProfile)

v restore a profile (-restoreProfile)

v perform manageprofiles command tasks that are contained in a response file (-response)

For detailed help including the required parameters for each of the tasks accomplished with the
manageprofiles command, use the -help parameter. The following example uses the help parameter with
the manageprofiles -augment command on Windows operating systems:
app_server_root\bin\manageprofiles.bat -augment -help

The output from the help command will specify which parameters are required and which are optional.

Depending on the operation that you want to perform with themanageprofiles command, you need to
provide one or more of the following parameters. The command-line tool validates that the required
parameters are provided and the values entered for those parameters are valid. Be sure to type the name
of the parameters with the correct upper and lower case as the command-line tool does not validate the
case of the parameter name. Incorrect results can occur when the parameter case is not typed correctly.

v -profileName profile_name

v -profilePath profile_root

Chapter 3. Using the administrative clients 91

v -templatePath template_path

v -nodeName node_name

v -cellName cell_name

v -hostName host_name

v -serverName server_name

v -adminUserName adminUser_ID

v -adminPassword adminPassword

v -backupFile backupFile_name

v -debug

v -enableAdminSecurity true | false

v -federateLater true | false

v -importPersonalCertKS keystore_path

v -importPersonalCertKSType keystore_type

v -importPersonalCertKSPassword keystore_password

v -importPersonalCertKSAlias keystore_alias

v -importSigningCertKS keystore_path

v -importSigningCertKSType keystore_type

v -importSigningCertKSPassword keystore_password

v -importSigningCertKSAlias keystore_alias

v -isDefault

v -isDeveloperServer

v -applyPerfTuningSetting standard | production | development

v -keyStorePassword keystore_password

v -listAugments

v -omitAction feature1 feature2... featureN

v -personalCertDN distinguished_name

v -personalCertValidityPeriod validity_period

v -response response_file

v -serverType ADMIN_AGENT

v -signingCertDN distinguished_name

v -signingCertValidityPeriod validity_period

v -startingPort starting_port | -portsFile file_path | -defaultPorts

v -unaugmentAll

v -unaugmentDependents true | false

v -validatePorts

v -webServerCheck true | false

v -webServerHostnamewebserver_host_name

v -webServerInstallPath webserver_installpath_name

v -webServerName webserver_name

v -webServerOS webserver_operating_system

v -webServerPluginPath webserver_plugin_path

v -webServerPort webserver_port

v -webServerType webserver_type

v

-enableService true | false

v

-serviceUserName service_user_ID

92 Administering applications and their environment

v

-winserviceCheck true | false

v

-winserviceAccountType specifieduser | localsystem

v

-winservicePassword winservice_password

v

-winserviceStartupType manual | automatic | disabled

v

-winserviceUserName winservice_user_ID

The following example uses the manageprofiles -create command on operating systems such as AIX® or
Linux:
app_server_root/bin/manageprofiles.sh -create
 -profileName profile_name
 -profilePath profile_root
 -templatePath template_path

Parameters

The following options are available for the manageprofiles command:

-adminUserName adminUser_ID
Specify the user ID that is used for administrative security.

-adminPassword adminPassword
Specify the password for the administrative security user ID specified with the -adminUserName
parameter.

-augment
Use the augment parameter to make changes to an existing profile with an augmentation template.
The augment parameter causes the manageprofiles command to update or augment the profile
identified in the -profileName parameter using the template in the -templatePath parameter. The
augmentation templates that you can use are determined by which IBM products and versions are
installed in your environment.

Important: The templates that are included with the WebSphere Application Server - Express product
can only be used to create profiles and not to augment existing profiles because only
create templates are shipped with the product.

Also, do not manually modify the files that are located in the install_dir/
profileTemplates directory. For example, if you are changing the ports during profile
creation, use the -startingPort or -portsFile arguments on the manageprofiles command
instead of modifying the file in the profile template directory.

Specify the fully qualified file path for -templatePath. For example:
 manageprofiles(.bat)(.sh) -augment -profileName profile_name -templatePath template_path

You can specify a relative path for the -templatePath parameter if the profile templates are relative to
the app_server_root/profileTemplates directory. Otherwise, specify the fully qualified template path.
For example:

 manageprofiles -augment -profileName profile_name -templatePath template_path

See also the -unaugment parameter.

-backupProfile
Performs a file system backup of a profile folder and the profile metadata from the profile registry file.
Any servers using the profile that you want to back up must first be stopped prior to invoking the
manageprofiles command with the -backupProfile option. The -backupProfile parameter must be
used with the -backupFile and -profileName parameters, for example:

manageprofiles(.bat)(.sh) -backupProfile -profileName profile_name -backupFile backupFile_name

When you back up a profile using the -backupProfile option, you must first stop the server and the
running processes for the profile that you want to back up.

Chapter 3. Using the administrative clients 93

-backupFile backupFile_name
Backs up the profile registry file to the specified file. You must provide a fully qualified file path for the
backupFile_name.

-cellName cell_name
Specifies the cell name of the profile. Use a unique cell name for each profile.

 This is an optional parameter. If you omit the parameter, a default cell name is assigned.

The default value for this parameter is based on a combination of the short host name, the constant
cell, and a trailing number:

v Application server profile: Not any

v Custom profile: Not any

v Management profile with the deployment manager server: shortHostNameCellCellNumber

v Management profile with the job manager server: shortHostNameJobMgrCellCellNumber

v Management profile with the administrative agent server: shortHostNameAACellCellNumber

v Cell profile, application server portion: shortHostNameCellCellNumber

v Cell profile, deployment manager portion: shortHostNameCellCellNumber

v Secure proxy profile: Not any

where CellNumber is a sequential number starting at 01.

The value for this parameter must not contain spaces or any invalid characters that are not valid such
as the following: *, ?, ", <, >, ,, /, \, |, and so on.

-create
Creates the profile.

 Specify manageprofiles -create -templatePath fully_qualified_file_path_to_template -help for specific
information about creating a profile. Available templates include:

v management - Management. Use in conjunction with the -serverType parameter to indicate the type
of management profile.

v default - Application server

-debug
Turns on the debug function of the Ant utility, which the manageprofiles command uses.

-personalCertValidityPeriod validity_period
An optional parameter that specifies the amount of time in years that the default personal certificate is
valid. If you do not specify this parameter with the -personalCertDN parameter, the default personal
certificate is valid for one year.

-defaultPorts
Assigns the default or base port values to the profile.

 Do not use this parameter when using the -startingPort or -portsFile parameter.

During profile creation, the manageprofiles command uses an automatically generated set of
recommended ports if you do not specify the -startingPort parameter, the -defaultPorts parameter
or the -portsFile parameter. The recommended port values can be different than the default port
values based on the availability of the default ports.

Remember: Do not use this parameter if you are using the managed profile template.

-delete
Deletes the profile.

 Deleting a profile does not delete the profile directory. For example, suppose that you create a profile
in the /usr/WebSphere/AppServer/profiles/managedProfile directory. The directory remains after you
delete the profile.

94 Administering applications and their environment

You can delete or leave the directory. However, the profile_root/logs directory contains information
about uninstalling the profile. For example, you might retain the _nodeuninst.log file to determine the
cause of any problem during the uninstall procedure.

If you delete a profile that has augmenting templates registered to it in the profile registry, then
unaugment actions are performed automatically.

gotcha: If you are deleting an old node that has been migrated, shut down the new migrated
deployment manager before deleting the old node. This will ensure that the new migrated
node is not accidentally removed from the new migrated cell.

-deleteAll
Deletes all registered profiles.

 Deleting a profile does not delete the profile directory. For example, suppose that you create a profile
in the /usr/WebSphere/AppServer/profiles/managedProfile directory. The directory remains after you
delete the profile.

You can delete or leave the directory. However, the profile_root/logs directory contains information
about uninstalling the profile. For example, you might retain the _nodeuninst.log file to determine the
cause of any problem during the uninstall procedure.

If you delete a profile that has augmenting templates registered to it in the profile registry, then
unaugment actions are performed automatically.

-enableAdminSecurity true | false
Enables administrative security. Valid values include true or false. The default value is false.

 When enableAdminSecurity is set to true, you must also specify the parameters -adminUserName and
-adminPassword along with the values for these parameters.
You cannot use the -enableAdminSecurity parameter to enable administrative security for a custom
profile. For security to be enabled for a custom profile, the custom profile must be federated into a
deployment manager. Administrative security enabled for the deployment manager is required to
enable security for the federated custom profile.

-enableService true | false

Enables the creation of a Linux service. Valid values include true or false. The default value for this
parameter is false.

 When the manageprofiles command is run with the -enableService option set to true , the Linux
service is created with the profile when the command is run by the root user. When a non-root user
runs the manageprofiles command, the profile is created, but the Linux service is not. The Linux
service is not created because the non-root user does not have sufficient permission to set up the
service. An INSTCONPARTIALSUCCESS result is displayed at the end of the profile creation and the profile
creation log app_server_root/logs/manageprofiles_create_profilename.log contains a message
indicating the current user does not have sufficient permission to set up the Linux service.

-federateLater true | false
Indicates if the managed profile will be federated during profile creation or if you will federate it later
using the addNode command. If the dmgrHost, dmgrPort, dmgrAdminUserName and dmgrAdminPassword
parameters do not have values, the default value for this parameter is true. Valid values include true
or false.

-getDefaultName
Returns the name of the default profile.

-getName
Gets the name for a profile registered at a given -profilePath parameter.

-getPath
Gets the file system location for a profile of a given name. Requires the –profileName parameter.

Chapter 3. Using the administrative clients 95

-help
Displays command syntax.

-hostName host_name
Specifies the host name where you are creating the profile. This should match the host name that you
specified during installation of the initial product. The default value for this parameter is the long form
of the domain name system. The value for this parameter must be a valid IPv6 host name and must
not contain spaces or any characters that are not valid such as the following: *, ?, ", <, >, ,, /, \, |, and
so on.

-ignoreStack
An optional parameter that is used with the -templatePath parameter to unaugment a particular profile
that has been augmented. See the -unaugment parameter.

-importPersonalCertKS keystore_path
Specifies the path to the keystore file that you use to import a personal certificate when you create the
profile. The personal certificate is the default personal certificate of the server.

Note: When you import a personal certificate as the default personal certificate, import the root
certificate that signed the personal certificate. Otherwise, the manageprofiles command adds
the public key of the personal certificate to the trust.p12 file and creates a root signing
certificate.

The -importPersonalCertKS parameter is mutually exclusive with the -personalCertDN parameter. If
you do not specifically create or import a personal certificate, one is created by default.

 When you specify any of the parameters that begin with -importPersonal, you must specify them all.

-importPersonalCertKSType keystore_type
Specifies the type of the keystore file that you specify on the -importPersonalCertKS parameter.
Values might be JCEKS, CMSKS, PKCS12, PKCS11, and JKS. However, this list can change based on the
provider in the java.security file.

 When you specify any of the parameters that begin with -importPersonal, you must specify them all.

-importPersonalCertKSPassword keystore_password
Specifies the password of the keystore file that you specify on the -importPersonalCertKS parameter.

 When you specify any of the parameters that begin with -importPersonal, you must specify them all.

-importPersonalCertKSAlias keystore_alias
Specifies the alias of the certificate that is in the keystore file that you specify on the
-importPersonalCertKS parameter. The certificate is added to the server default keystore file and is
used as the server default personal certificate.

 When you specify any of the parameters that begin with -importPersonal, you must specify them all.

-importSigningCertKS keystore_path
Specifies the path to the keystore file that you use to import a root certificate when you create the
profile. The root certificate is the certificate that you use as the server default root certificate. The
-importSigningCertKS parameter is mutually exclusive with the -signingCertDN parameter. If you do
not specifically create or import a root signing certificate, one is created by default.

 When you specify any of the parameters that begin with -importSigning, you must specify them all.

-importSigningCertKSType keystore_path
Specifies the type of the keystore file that you specify on the -importSigningCertKS parameter. Valid
values might be JCEKS, CMSKS, PKCS12, PKCS11, and JKS. However, this list can change based on the
provider in the java.security file.

 When you specify any of the parameters that begin with -importSigning, you must specify them all.

-importSigningCertKSPassword keystore_password
Specifies the password of the keystore file that you specify on the -importSigningCertKS parameter.

96 Administering applications and their environment

When you specify any of the parameters that begin with -importSigning, you must specify them all.

-importSigningCertKSAlias keystore_alias
Specifies the alias of the certificate that is in the keystore file that you specify on the
-importSigningCertKS parameter. The certificate is added to the server default root keystore and is
used as the server default root certificate.

 When you specify any of the parameters that begin with -importSigning, you must specify them all.

-isDefault
Specifies that the profile identified by the accompanying -profileName parameter is to be the default
profile once it is registered. When issuing commands that address the default profile, it is not
necessary to use the -profileName attribute of the command.

-isDeveloperServer
Specifies that the server is intended for development purposes only. This parameter is useful when
creating profiles to test applications on a non-production server before deploying the applications on
their production application servers.

 This parameter is valid only for the default profile template.

If you specify both the -isDeveloperServer and -applyPerfTuningSetting parameters, depending on
the option selected for -applyPerfTuningSetting, -applyPerfTuningSetting might override
-isDeveloperServer.

-applyPerfTuningSetting option
Specifies the performance-tuning setting that most closely matches the type of environment in which
the application server will run.

 This parameter is only valid for the default profile template.

standard
The standard settings are the standard out-of-the-box default configuration settings that are
optimized for general-purpose usage.

production
The production performance settings are optimized for a production environment where
application changes are rare and optimal runtime performance is important.

development
The development settings are optimized for a development environment where frequent
application updates are performed and system resources are at a minimum.

Important: Do not use the development settings for production servers.

If you specify both the -isDeveloperServer and -applyPerfTuningSetting parameters, depending on
the option selected for -applyPerfTuningSetting, -applyPerfTuningSetting might override
-isDeveloperServer.

-keyStorePassword keystore_password
Specifies the password to use on all keystore files created during profile creation. Keystore files are
created for the default personal certificate and the root signing certificate.

-listAugments
Lists the registered augments on a profile that is in the profile registry. You must specify the
-profileName parameter with the -listAugments parameter.

-nodeName node_name
Specifies the node name for the node that is created with the new profile. Use a unique value on the
machine. Each profile that shares the same set of product binaries must have a unique node name.

 The default value for this parameter is based on the short host name, profile type, and a trailing
number:

v Application server profile: shortHostNameNodeNodeNumber

Chapter 3. Using the administrative clients 97

v Custom profile: shortHostNameNodeNodeNumber

v Management profile with the deployment manager server: shortHostNameCellManagerNodeNumber

v Management profile with the job manager server: shortHostNameJobMgrNodeNumber

v Management profile with the administrative agent server: shortHostNameAANodeNodeNumber

v Cell profile, application server portion: shortHostNameNodeNodeNumber

v Cell profile, deployment manager portion: shortHostNameCellManagerNodeNumber

v Secure proxy profile: shortHostNameNodeNodeNumber

where NodeNumber is a sequential number starting at 01.

The value for this parameter must not contain spaces or any characters that are not valid such as the
following: *, ?, ", <, >, ,, /, \, |, and so on.

-omitAction feature1 feature2... featureN
An optional parameter that excludes profile features.

 Each profile template comes predefined with certain optional features. The following optional features
can be used with the -omitAction parameter for the following profile templates:

v default - Application server

– deployAdminConsole

– defaultAppDeployAndConfig

-personalCertDN distinguished_name
Specifies the distinguished name of the personal certificate that you are creating when you create the
profile. Specify the distinguished name in quotes. This default personal certificate is located in the
server keystore file. The -importPersonalCertKSType parameter is mutually exclusive with the
-personalCertDN parameter. See the -personalCertValidityPeriod parameter and the
-keyStorePassword parameter.

-portsFile file_path
An optional parameter that specifies the path to a file that defines port settings for the new profile.

 Do not use this parameter when using the -startingPort or -defaultPorts parameter.

During profile creation, the manageprofiles command uses an automatically generated set of
recommended ports if you do not specify the -startingPort parameter, the -defaultPorts parameter
or the -portsFile parameter. The recommended port values can be different than the default port
values based on the availability of the default ports.

-profileName profile_name
Specifies the name of the profile. Use a unique value when creating a profile. Each profile that shares
the same set of product binaries must have a unique name. The default profile name is based on the
profile type and a trailing number, for example:

<profile_type><profile_number>

where

v <profile_type> is a value such as AppSrv, Dmgr, AdminAgent, JobMgr, or Custom

v <profile_number> is a sequential number that creates a unique profile name

The value for this parameter must not contain spaces or characters that are not valid such as any of
the following: *, ?, ", <, >,,, /, \, |, and so on.

The profile name that you choose must not be in use.

-profilePath profile_root
Specifies the fully qualified path to the profile, which is referred to as the profile_root.

If the fully qualified path contains spaces, enclose the value in quotation marks.

98 Administering applications and their environment

The default value is based on the app_server_root directory, the profiles subdirectory, and the name of
the profile.

For example, the default is:
WS_WSPROFILE_DEFAULT_PROFILE_HOME/profileName

The WS_WSPROFILE_DEFAULT_PROFILE_HOME element is defined in the wasprofile.properties
file in the app_server_root/properties directory.

The value for this parameter must be a valid path for the target system and must not be currently in
use.

You must have permissions to write to the directory.

-response reponse_file
Accesses all API functions from the command line using the manageprofiles command.

 The command line interface can be driven by a response file that contains the input arguments for a
given command in the properties file in key and value format. Use the following example response file
to run a create operation:

create
profileName=testResponseFileCreate
profilePath=profile_root
templatePath=app_server_root/profileTemplates/default
nodeName=myNodeName
cellName=myCellName
hostName=myHostName
omitAction=myOptionalAction1,myOptionalAction2

The path statement in the Windows operating system can use either forward slashes (/) or

back slashes (\). If the path statement uses back slashes, then the response file requires double back
slashes for the response file to correctly understand the path. Here is an example of a response file
for a create operation that uses the double back slashes:

create
templatePath=C:\\WebSphere\\AppServer\\profileTemplates\\default

The best practice is to use forward slashes in order to reduce the chance of errors when switching
between platforms.

To determine which input arguments are required for the various types of profile templates and action,
use the manageprofiles command with the -help parameter.

-restoreProfile
Restores a profile backup. Must be used with the -backupFile parameter, for example:

manageprofiles(.bat)(.sh) -restoreProfile -backupFile file_name

To restore a profile, perform the following steps:

1. Stop the server and the running processes for the profile that you want to restore.

2. Manually delete the directory for the profile from the file system.

3. Run the -validateAndUpdateRegistry option of the manageprofiles command.

4. Restore the profile by using the -restoreProfile option of the manageprofiles command.

-serverName server_name
Specifies the name of the server. Specify this parameter only for the default and secureproxy
templates. If you do not specify this parameter when using the default or secureproxy templates, the
default server name is server1 for the default profile, and proxy1 for the secure proxy profile.

-serverType ADMIN_AGENT
Specifies the type of management profile. Specify ADMIN_AGENT for an administrative agent server. This
parameter is required when you create a management profile.

-serviceUserName service_user_ID

Specify the user ID that is used during the creation of the Linux service so that the Linux service runs
from this user ID. The Linux service runs whenever the user ID is logged on.

Chapter 3. Using the administrative clients 99

-setDefaultName
Sets the default profile to one of the existing profiles. Must be used with the -profileName parameter,
for example:

manageprofiles(.bat)(.sh) -setDefaultName -profileName profile_name

-signingCertDN distinguished_name
Specifies the distinguished name of the root signing certificate that you create when you create the
profile. Specify the distinguished name in quotes. This default personal certificate is located in the
server keystore file. The -importSigningCertKS parameter is mutually exclusive with the
-signingCertDN parameter. If you do not specifically create or import a root signing certificate, one is
created by default. See the -signingCertValidityPeriod parameter and the -keyStorePassword.

-signingCertValidityPeriod validity_period
An optional parameter that specifies the amount of time in years that the root signing certificate is
valid. If you do not specify this parameter with the -signingCertDN parameter, the root signing
certificate is valid for 15 years.

-startingPort startingPort
Specifies the starting port number for generating and assigning all ports for the profile.

 Port values are assigned sequentially from the -startingPort value, omitting those ports that are
already in use. The system recognizes and resolves ports that are currently in use and determines the
port assignments to avoid port conflicts.

Do not use this parameter with the -defaultPorts or -portsFile parameters.

During profile creation, the manageprofiles command uses an automatically generated set of
recommended ports if you do not specify the -startingPort parameter, the -defaultPorts parameter
or the -portsFile parameter. The recommended port values can be different than the default port
values based on the availability of the default ports.

Attention: Do not use this parameter if you are using the managed profile template.

-templatePath template_path
Specifies the directory path to the template files in the installation root directory. Within the
profileTemplates directory are various directories that correspond to different profile types and that
vary with the type of product installed. The profile directories are the paths that you indicate while
using the -templatePath option. You can specify profile templates that lie outside the installation root,
if you happen to have any.

 You can specify a relative path for the -templatePath parameter if the profile templates are relative to
theapp_server_root/profileTemplates directory. Otherwise, specify the fully qualified template path. F

-unaugment
Augmentation is the ability to change an existing profile with an augmentation template. To unaugment
a profile that has been augmented, you must specify the -unaugment parameter and the -profileName
parameter. If a series of manageprofiles augmentations were performed, and you specify only these
two parameters to unaugment a profile, the unaugment action undoes the last augment action first.

 To unaugment a particular profile that has been augmented, additionally specify the -ignoreStack
parameter with the -templatePath parameter. Normally, you would not unaugment a particular profile
because you must ensure that you are not violating profile template dependencies.

When using the -templatePath parameter, specify the fully qualified file path for the parameter.

See also the augment parameter.

-unaugmentAll
Unaugments all profiles that have been augmented with a specific augmentation template. The
-templatePath parameter is required with the -unaugmentAll parameter.

 When using the -templatePath parameter, specify the fully qualified file path for the parameter.

100 Administering applications and their environment

Optionally, specify the -unaugmentDependents parameter with the -unaugmentAll parameter to
unaugment all profiles that are prerequisites of the profiles that are being unaugmented.

Note: If you use this parameter when you have no profiles augmented with the profile templates, an
error might be delivered.

See also the augment parameter.

-unaugmentDependents true | false
If set to true, the parameter unaugments all the augmented profiles that are prerequisites to the
profiles being unaugmented with the -unaugmentAll parameter. The default value for this parameter is
false.

 Optionally specify the -unaugmentDependents parameter with the -unaugmentAll parameter.

-validateAndUpdateRegistry
Checks all of the profiles that are listed in the profile registry to see if the profiles are present on the
file system. Removes any missing profiles from the registry. Returns a list of the missing profiles that
were deleted from the registry.

-validateRegistry
Checks all of the profiles that are listed in the profile registry to see if the profiles are present on the
file system. Returns a list of missing profiles.

-validatePorts
Specifies the ports that should be validated to ensure they are not reserved or in use. This parameter
helps you to identify ports that are not being used. If a port is determined to be in use, the profile
creation stops and an error message displays. You can use this parameter at any time on the create
command line. It is recommended to use this parameter with the –portsFile parameter.

-webServerCheck true | false
Indicates if you want to set up web server definitions. Valid values include true or false. The default
value for this parameter is false.

-webServerHostname webserver_host_name
The host name of the server. The default value for this parameter is the long host name of the local
machine.

-webServerInstallPath webserver_installpath_name
The installation path of the web server, local or remote. The default value for this parameter is
dependent on the operating system of the local machine and the value of the webServerType
parameter. For example:

webServerType=IHS: webServerInstallPath defaulted to “C:\Program Files\IBM\HTTPServer”
webServerType=IIS: webServerInstallPath defaulted to “C:\”
webServerType=SUNJAVASYSTEM: webServerInstallPath defaulted to “C:\”
webServerType=DOMINO: webServerInstallPath defaulted to “”
webServerType=APACHE: webServerInstallPath defaulted to “”
webServerType=HTTPSERVER_ZOS: webServerInstallPath defaulted to “n/a”

webServerType=IHS: webServerInstallPath defaulted to “/opt/IBM/HTTPServer”
webServerType=IIS: webServerInstallPath defaulted to “n\a”
webServerType=SUNJAVASYSTEM: webServerInstallPath defaulted to “/opt/sun/webserver”
webServerType=DOMINO: webServerInstallPath defaulted to “”
webServerType=APACHE: webServerInstallPath defaulted to “”
webServerType=HTTPSERVER_ZOS: webServerInstallPath defaulted to “n/a”

webServerType=IHS: webServerInstallPath defaulted to “/usr/IBM/HTTPServer”
webServerType=IIS: webServerInstallPath defaulted to “n\a”
webServerType=SUNJAVASYSTEM: webServerInstallPath defaulted to “/opt/sun/webserver”
webServerType=DOMINO: webServerInstallPath defaulted to “?”
webServerType=APACHE: webServerInstallPath defaulted to “?”
webServerType=HTTPSERVER_ZOS: webServerInstallPath defaulted to “n/a”

Chapter 3. Using the administrative clients 101

webServerType=IHS: webServerInstallPath defaulted to “/opt/IBM/HTTPServer”
webServerType=IIS: webServerInstallPath defaulted to “n\a”
webServerType=SUNJAVASYSTEM: webServerInstallPath defaulted to “/opt/sun/webserver”
webServerType=DOMINO: webServerInstallPath defaulted to “”
webServerType=APACHE: webServerInstallPath defaulted to “”
webServerType=HTTPSERVER_ZOS: webServerInstallPath defaulted to “n/a”

-webServerName webserver_name
The name of the web server. The default value for this parameter is webserver1.

-webServerOS webserver_operating_system
The operating system from where the web server resides. Valid values include: windows, linux, solaris,
aix, hpux, os390, and os400. Use this parameter with the webServerType parameter.

-webServerPluginPath webserver_pluginpath
The path to the plug-ins that the web server uses. The default value for this parameter is
WAS_HOME/plugins.

-webServerPort webserver_port
Indicates the port from where the web server will be accessed. The default value for this parameter is
80.

-webServerType webserver_type
The type of the web server. Valid values include: IHS, SUNJAVASYSTEM, IIS, DOMINO, APACHE,
and HTTPSERVER_ZOS. Use this parameter with the webServerOS parameter.

-winserviceAccountType specifieduser | localsystem

The type of the owner account of the Windows service created for the profile. Valid values include
specifieduser or localsystem. The localsystem value runs the Windows service under the local account
of the user who creates the profile. The default value for this parameter is localsystem.

 If the value is specifieduser, the winservicePassword parameter is required. The winserviceUserName
parameter defaults to the environment username value if not specified.

-winserviceCheck true | false

The value can be either true or false. Specify true to create a Windows service for the server process
that is created within the profile. Specify false to not create the Windows service. The default value
for this parameter is false.

Important: With a custom profile, you cannot create a Windows service with this parameter. Instead,
use the WASService command to create the service separately.

-winservicePassword winservice_password

Specify the password for the specified user or the local account that is to own the Windows service.

-winserviceStartupType manual | automatic | disabled
Possible startup_type values are:

v manual

v automatic

v disabled

See the WASService command topic in the Setting up the application serving environment PDF for
more information about Windows services.

The default value for this parameter is automatic.

-winserviceUserName winservice_user_ID
Specify your user ID so that the Windows operating system can verify you as an ID that is capable of
creating a Windows service. Your user ID must belong to the administrator group and have the
following advanced user rights:

v Exist as part of the operating system

v Log on as a service

102 Administering applications and their environment

The default value for this parameter is the current user name. The value for this parameter must not
contain spaces or characters that are not valid such as the following: *, ?, ", <, >, ,, /, \, |, and so on.
The user that you specify must have the proper permissions to create a Windows service. You must
specify the correct password for the user name that you choose.

Usage scenario

The following examples demonstrate correct syntax. Issue the command in any of the following examples
on one line. Each example shows the command on more than one line to increase clarity.

v Creating an application server profile

Create an application server profile named Default01 with the following command.

The command also creates a Windows service for the application server, personal and root
signing certificates for the profile, and a keystore password for the two certificates.

app_server_root\bin manageprofiles.bat -create
 -profileName Default01
 -profilePath profile_root
 -templatePath app_server_root\profileTemplates\default
 -nodeName Default01Node
 -cellName Default01Cell
 -hostName myhost.mycity.mycompany.com
 -isDefault
 -winserviceCheck true
 -winserviceAccountType specifieduser
 -winserviceUserName my_user_id
 -winservicePassword my_password
 -winserviceStartupType manual
 -startingPort 21000
 -personalCertDN "cn=testa, ou=Rochester, o=IBM, c=US"
 -signingCertDN "cn=testc, ou=Rochester, o=IBM, c=US"
 -keyStorePassword ap3n9krw

app_server_root/bin/manageprofiles.sh -create
 -profileName Default01
 -profilePath profile_root
 -templatePath app_server_root/profileTemplates/default
 -nodeName Default01Node
 -cellName Default01Cell
 -hostName myhost.mycity.mycompany.com
 -isDefault
 -startingPort 21000
 -personalCertDN "cn=testa, ou=Rochester, o=IBM, c=US"
 -signingCertDN "cn=testc, ou=Rochester, o=IBM, c=US"
 -keyStorePassword ap3n9krw

Logs

The manageprofiles command creates a log for every profile that it creates.

v The logs are in the app_server_root/logs/manageprofiles directory. The files are named in this pattern:
profile_name_create.log.

v The command also creates a log for every profile that it deletes. The logs are in the
app_server_root/logs/manageprofiles directory. The files are named in this pattern:
profile_name_delete.log.

Example: Incrementing default port numbers from a starting point

The manageprofiles command can assign port numbers based on a starting port value. You can provide
the starting port value from the command line, using the -startingPort parameter. The command assigns
port numbers sequentially from the starting port number value. However, if a port value in the sequence
conflicts with an existing port assignment, the next available port value is used

The order of port assignments is arbitrary. Predicting assignments is not possible.

For example, ports created with -startingPort 20002 would appear similar to the following example:

Assigned ports for an application server profile

Chapter 3. Using the administrative clients 103

WC_defaulthost=20002
WC_adminhost=20003
WC_defaulthost_secure=20004
WC_adminhost_secure=20005
BOOTSTRAP_ADDRESS=20006
SOAP_CONNECTOR_ADDRESS=20007
IPC_CONNECTOR_ADDRESS=20008
SAS_SSL_SERVERAUTH_LISTENER_ADDRESS=20009
CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS=20010
CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS=20011
ORB_LISTENER_ADDRESS=20012
CELL_DISCOVERY_ADDRESS=20013
NODE_MULTICAST_DISCOVERY_ADDRESS=20014
NODE_IPV6_MULTICAST_DISCOVERY_ADDRESS=20015
NODE_DISCOVERY_ADDRESS=20016
DCS_UNICAST_ADDRESS=20017
SIB_ENDPOINT_ADDRESS=20018
SIB_ENDPOINT_SECURE_ADDRESS=20019
SIB_MQ_ENDPOINT_ADDRESS=20020
SIB_MQ_ENDPOINT_SECURE_ADDRESS=20021
SIP_DEFAULTHOST=20022
SIP_DEFAULTHOST_SECURE=20023

The following example uses the startingPort parameter of the manageprofiles command and creates ports
from an initial value of 20002, with the content shown in the previous example:

manageprofiles.bat -create
 -profileName shasti
 -profilePath G:\shasti\WebSphere
 -templatePath G:\shasti\WebSphere\profileTemplates\default
 -nodeName W2K03
 -cellName W2K03_Cell01
 -hostName planetnt
 -startingPort 20002

app_server_root/bin/manageprofiles.sh -create
 -profileName shasti
 -profilePath app_server_root/profiles/shasti
 -templatePath app_server_root/profileTemplates/default
 -nodeName W2K03
 -cellName W2K03_Cell01
 -hostName planetnt
 -startingPort 20002

Example: Using predefined port numbers

The manageprofiles command recommends initial port values when you do not explicitly set port values.
You can use predefined port values instead.

The manageprofiles command recommends port values when the options of -defaultPorts,
-startingPort, or -portsFile are not specified.

 Table 11. File locations of default port values.

This table lists the file locations of default port values by type of profile.
Profile File path

Application server app_server_root/profileTemplates/default/actions/portsUpdate/
portdef.props

Management profile for an administrative agent server app_server_root/profileTemplates/management/actions/portsUpdate/
adminagent.portdef.props

To customize the port values in the portdef.props file before creating your profile, perform the following
steps. The following example creates the default profile. For other types of profiles, you must substitute the
file path with the file path of the profile that you want to create.

1. Copy the app_server_root/profileTemplates/default/actions/portsUpdate/portdef.props file from
the default profile template path and place a copy of the file in an arbitrary temporary directory such
as:

v

c:\temp\ports

104 Administering applications and their environment

v

/temp/ports

2. In the new file, modify the port settings to specify your port values.

3. Create your profile with the manageprofiles command. Use the modified port values. Specify the
location of your modified portdef.props file on the -portsFile parameter. Specify the -validatePorts
parameter to ensure that ports are not reserved or in use. Use the following example as a guide:

manageprofiles.bat
 -create
 -profileName Wow_Profile
 -profilePath profile_root
 -templatePath app_server_root\profileTemplates\default
 -nodeName Wow_node
 -cellName Wow_cell
 -hostName lorriemb
 -portsFile C:\temp\ports\portdef.props
 -validatePorts

manageprofiles.sh
 -create
 -profileName Wow_Profile
 -profilePath profile_root
 -templatePath app_server_root\profileTemplates\default
 -nodeName Wow_node
 -cellName Wow_cell
 -hostName lorriemb
 -portsFile \temp\ports\portdef.props
 -validatePorts

Suppose that the portdef.props file has the following values:
WC_defaulthost=39080
WC_adminhost=39060
WC_defaulthost_secure=39443
WC_adminhost_secure=39043
BOOTSTRAP_ADDRESS=32809
SOAP_CONNECTOR_ADDRESS=38880
IPC_CONNECTOR_ADDRESS=39633
SAS_SSL_SERVERAUTH_LISTENER_ADDRESS=39401
CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS=39403
CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS=39402
ORB_LISTENER_ADDRESS=39100
DCS_UNICAST_ADDRESS=39353
SIB_ENDPOINT_ADDRESS=37276
SIB_ENDPOINT_SECURE_ADDRESS=37286
SIB_MQ_ENDPOINT_ADDRESS=35558
SIB_MQ_ENDPOINT_SECURE_ADDRESS=35578
SIP_DEFAULTHOST=35060
SIP_DEFAULTHOST_SECURE=35061

After running the manageprofiles command to create your profile with the user defined port values, a
success or fail result displays.

The manageprofiles command creates a copy of the current portdefs.props file in the
profile_root\properties directory.

Use only one of the three port values parameters, -startingPort, -defaultPorts, or -portsFile with the
manageprofiles command. The three parameters are mutually exclusive.

startServer command
The startServer command reads the configuration file for the specified server process and starts that
server process.

The server process can be an application server or an administrative agent.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,

Chapter 3. Using the administrative clients 105

SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

If you are running the product on a Microsoft Windows operating system, and you have the

server running as a Windows operating system service, the startServer command will start the server and
the associated Windows service.

You do not have to use a user name and password with the startServer command because this command
launches a server process but does not invoke an MBean method.

gotcha: You can use the administrative console to change the Java virtual machine Classpath setting or
the environment entries settings for a server. However, before making these changes you should
understand the following consequences of making these changes:

v If you change the value of the Java virtual machine Classpath setting, then this new value
overrides the value of the Classpath parameter in the launch command that is set, by default,
in the script that is generated when the you issue the startServer -script command.

v If you add a new environment entry on the Environment entries page or change the setting of
an existing entry, then the new and changed values appear as parameters in the script that is
generated when you issue the startServer -script command.

v If one of the environment entries you add is called PATH, then the value specified for this entry
overrides the value specified for the PATH variable that, by default, is set to WAS_PATH in the
setUpCmdLine file. If the value of the PATH variable is overridden, the following message is
sent to the file where your error messages are logged:

WSVR0009E: Error occured during startup. com.ibm.ws.exception.RuntimeError:
java.lang.NoClassDefFoundError: com/ibm/ws/process/Win32ProcessGlue

For more information about where to run this command, see the Using command line tool topic.

Syntax

The command syntax is one of the following:
startServer server_name [options]

where server_name is the name of the application server that you want to start.

This argument is required.
startServer <adminagent_name>

whereadminagent_name is the name of the administrative agent that you want to start.

Parameters

The following options are available for the startServer command:

-? Prints a usage statement.

-help
Prints a usage statement.

-J <java_option>
Specifies options to pass through to the Java interpreter.

-logfile <fileName>
Specifies the location of the log file to which trace information is written. By default, the log file is
named startServer.log and is created in your logs directory.

106 Administering applications and their environment

-nowait
Tells the startServer command not to wait for successful initialization of the launched server process.

-profileName
Defines the profile of the server process in a multi-profile installation. The -profileName option is not
required for running in a single profile environment. The default for this option is the default profile.

-quiet
Suppresses the progress information that the startServer command prints in normal mode.

-replacelog
Replaces the log file instead of appending to the current log.

-recovery
Specifies that the server will start in recovery mode, perform a transactional recovery, and shut down.
The server will not accept any new transactions while it is in recovery mode. When you start the
server again, resources that were unavailable due to questionable transactions will be available.

 Use this option if a server fails and you do not want to accept new transactions during the recovery
process.

transition: If you are migrating from a previous version of the product, make sure that the ENV
parameter included on the JCL procedure statement for the controller includes either the
REC=N or the REC=Y element. If the ENV parameter does not include either the REC=N
or the REC=Y element, the server will not restart in recovery mode even if you specify the
-recovery option.

//BBO6ACR PROC ENV=,PARMS=’ ’,REC=N,Z=BBO6ACRZ

-statusport <portNumber>
An optional parameter that allows an administrator to set the port number for server status callback.
The tool opens this port and waits for status callback from the server indicating that the server has
started. If the parameter is not set, an unused port is automatically allocated.

-script [<script fileName>] -background
Generates a launch script with the startServer command instead of launching the server process
directly. The launch script name is an optional argument. If you do not supply the launch script name,
the default script file name is start_server based on the server name that is passed as the first
argument to the startServer command. The -background parameter is an optional parameter that
specifies that the generated script will run in the background when you run it.

-trace
Generates trace information to the log file for debugging purposes.

-timeout <seconds>
Specifies the waiting time before server initialization times out and returns an error.

Usage scenario

The following examples demonstrate correct syntax. The information within the parentheses is a
description of the output that is created if you issue the preceding command.
startServer server1

startServer server1 -script (produces the start_server1.sh or .bat files)

startServer server1 -trace (produces the startserver.log file)

startServer adminagent

startServer.sh server1 -trace -username MyUserName -password MyUserPassword
 -profileName MyProfileName (starts the server1 server using the
 MyProfileName profile. The server runs under the user name MyUserName,
 and produces trace files under the profile_root/logs directory)

Chapter 3. Using the administrative clients 107

stopServer command
The stopServer command reads the configuration file for the specified server process. This command
sends a Java management extensions (JMX) command to the server telling it to shut down.

The server process can be an application server or an administrative agent server.

By default, the stopServer command does not return control to the command line until the server
completes the shutdown process. There is a -nowait option to return immediately, and other options to
control the behavior of the stopServer command. For more information about where to run this command,
see the Using command-line tools topic.

If you are running the product on a Microsoft Windows operating system, and you have the server running
as a Windows operating system service, the stopServer command stops the Windows service that is
responsible for starting the server.

If security is enabled, you must use a user name and

password with the stopServer command because the command invokes an MBean method on the server.

The user name and password parameters are not required with the stopServer command. The

parameters are automatically passed into the script that the Windows operating system service uses to
shutdown the system.

gotcha: If message ADMC0074E: Connection will be closed due to unrecoverable error is displayed in
the system log file, a client might have attempted to send a user name, and password to another
server on which security is disabled. You can ignore this message because the client
automatically changes its security setting to match the security setting for the server with which
the client is trying to communicate. The connection is eventually successfully completed.
However, security is now disabled for both the administrative client and the receiving server.

Syntax

The command syntax is one of the following:
stopServer <server_name> [options]

whereserver_name is the name of the configuration directory of the application server or the DMZ Secure
Proxy Server for IBM WebSphere Application Server that you want to stop.

This argument is required.
stopServer <adminagent_name>

whereadminagent_name is the name of the administrative agent that you want to stop.

Parameters

The following options are available for the stopServer command:

-nowait
Tells the stopServer command not to wait for successful shutdown of the server process.

-quiet
Suppresses the progress information that the stopServer command prints in normal mode.

-logfile <fileName>
Specifies the location of the log file to which trace information is written. By default, the log file is
named stopServer.log and is created in the logs directory.

108 Administering applications and their environment

-profileName
Defines the profile of the server process in a multi-profile installation. The -profileName option is not
required for running in a single profile environment. The default for this option is the default profile.

-replacelog
Replaces the log file instead of appending to the current log.

-trace
Generates trace information into a file for debugging purposes. The trace output is written to the
stopServer.log file which is located in the profile_root/logs/server directory.

-timeout <seconds>
Specifies the time to wait for server shutdown before timing out and returning an error.

-statusport <portNumber>
An optional parameter that allows an administrator to set the port number for server status callback.
The tool opens this port and waits for status callback from the server just before the server has
stopped. If the parameter is not set, an unused port is automatically allocated.

-port <portNumber>
Specifies the server JMX port to use explicitly, so that you can avoid reading the configuration files to
obtain the information.

-username <name>
Specifies the user name for authentication if security is enabled in the server. Acts the same as the
-user option.

-user <name>
Specifies the user name for authentication if security is enabled in the server. Acts the same as the
-username option.

-password <password>
Specifies the password for authentication if security is enabled in the server.

gotcha: If you are running in a secure environment but have not provided a user ID and password,
you receive the following error message:
ADMN0022E: Access denied for the stop operation on Server MBean due
to insufficient or empty credentials.

To solve this problem, provide the user ID and password information.

-help
Prints a usage statement.

-? Prints a usage statement.

Usage scenario

The following examples demonstrate correct syntax:
stopServer server1

stopServer server1 -nowait

stopServer server1 -trace (produces the stopserver.log file)

stopServer adminagent

serverStatus command
Use the serverStatus command to obtain the status of one or all of the servers configured on a node.

For more information about where to run this command, see the Using command line tools topic.

Chapter 3. Using the administrative clients 109

Syntax

The command syntax is as follows:
serverStatus <server>|-all [options]

The first argument is required. The argument is either the name of the server for which status is desired,
or the -all keyword which requests status for all servers defined on the node.

Parameters

The following options are available for the serverStatus command:

-quiet
Suppresses the progress information that the serverStatus command prints in normal mode.

-logfile <fileName>
Specifies the location of the log file to which trace information is written. By default, the log file is
named serverStatus.log and is created in your logs directory.

-profileName
Defines the profile of the Application Server process in a multi-profile installation. The -profileName
option is not required for running in a single profile environment. The default for this option is the
default profile.

-replacelog
Replaces the log file instead of appending to the current log.

-trace
Generates trace information into a file for debugging purposes.

-username <name>
Specifies the user name for authentication if security is enabled. Acts the same as the -user option.

-user <name>
Specifies the user name for authentication if security is enabled. Acts the same as the -username
option.

-password <password>
Specifies the password for authentication if security is enabled.

-help
Prints a usage statement.

-? Prints a usage statement.

Usage scenario

The following examples demonstrate correct syntax:
serverStatus server1

serverStatus -all (returns status for all defined servers)

serverStatus -trace (produces the serverStatus.log file)

cleanupNode command
The cleanupNode command cleans up a node configuration from the cell repository.

Only use this command to clean up a node if you have a node defined in the cell configuration, but the
node no longer exists. For more information about where to run this command, see the Using command
tools article.

110 Administering applications and their environment

Syntax

The command syntax is as follows:
cleanupNode <node name> [deploymgr host] [deploymgr port] [options]

where the first argument is required.

Parameters

The following options are available for the cleanupNode command:

-quiet
Suppresses the progress information that the cleanupNode command prints in normal mode.

-trace
Generates trace information into a log file for debugging purposes.

-profileName
Specifies the deployment manager profile to run the command against. This parameter must be
specified if the default profile is not a deployment manager profile.

Usage scenario

The following examples demonstrate correct syntax:
cleanupNode myNode -profileName dmgr

cleanupNode myNode -trace -profileName mydmgr

registerNode command
Use the registerNode command to register a stand-alone node with an administrative agent so that the
administrative agent can manage the node.

Run the registerNode command from the bin directory of the administrative agent server to register a node
with the administrative agent. When you run the command, the stand-alone node is converted into a node
that the administrative agent manages.

The administrative agent and the node being registered must be on the same computer.

gotcha: Registered nodes must have the same products as the administrative agent, and the products
must be at the same version levels on the registered node and the administrative agent. This
requirement is enforced because the administrative agent must have a matching environment in
order to handle all of the administrative capabilities of the registered node. A node is not allowed
to register with an administrative agent unless that node has an identical set of products and
versions.

When you run the registerNode command, the command stops all running application servers on the node.
You can optionally stop application servers on the node that you are registering before running the
registerNode command.

transition: If you were previously running on Version 7.0.0.11 or earlier, and have an administrative agent
with a managed node that has mismatched products or versions, when you when you migrate
to Version 8.0, that administrative agent will not be able to start the subsystem for any
mismatched nodes. You must update these nodes to have the same products and versions as
the administrative agents, restart the servers on the node and then restart the administrative
agent, before the administrative agent can resume managing these registered nodes

Chapter 3. Using the administrative clients 111

If the administrative console or the management Enterprise JavaBeans (EJB) applications of the
application server being registered are enabled, the node registration process disables them.

Syntax

The registerNode command syntax is as follows:
registerNode [options]

Parameters

The following options are available for the registerNode command:

-conntype<JSR160RMI|IPC|RMI|SOAP>
The optional connector type used to connect to the administrative agent to initiate node registration.
The default is SOAP.

Note: You should eventually switch from the RMI connector to the JSR160RMI connector because
support for the RMI connector is deprecated.

-host host_name
An optional parameter that specifies the host name of the administrative agent.

-name managed_node_name
An optional parameter that specifies the name of the managed node after the node is registered with
the administrative agent.

-nodepassword node_password
An optional parameter that specifies the password of the node that you are registering. Specify this
parameter if security is on at the node and the password is different from the administrative agent
password. Use this parameter with the -nodeusername parameter. The -nodeusername and
-nodepassword parameters are used to stop all servers on the node.

-nodeusername node_user_name
An optional parameter that specifies the user name of the node that you are registering. Specify this
parameter if security is on at the node and the user name is different from the administrative agent
user name. Use this parameter with the -nodepassword parameter. The -nodeusername and
-nodepassword parameters are used to stop all servers on the node.

-openConnectors connectors
An optional parameter that specifies a list of connectors separated by commas of connectors that the
administrative agent will open. By default, all connectors are opened.

-port port_number
An optional parameter that specifies the port number of the administrative agent connector port.

 The default port number is 8878 for the default SOAP port of the administrative agent. SOAP is the
default Java Management Extensions (JMX) connector type for the command. If you have multiple
product installations or multiple profiles, the SOAP port might be different from 8878. Examine the
administrative agent SystemOut.log file to see the current ports in use.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are
using HPEL, you can access all of your log and trace information using the LogViewer
command-line tool from your server profile bin directory. See the information about using HPEL
to troubleshoot applications for more information on using HPEL.

112 Administering applications and their environment

-profilePath profile_path
A required parameter that specifies the path to the profile of the application server node to be
registered.

-trace
An optional parameter that provides tracing output for the registerNode command.

-portsFile ports_file
An optional parameter that specifies the path to a file that defines port settings for the newly registered
node.

 During node registration, the registerNode command uses an automatically generated set of
recommended ports if you do not specify the -portsFile parameter. The recommended port values can
be different than the default port values based on the availability of the default ports.

The format of the ports_file file that you specify is the same as the portdef.props file, except that only
the following ports are used: SOAP_CONNECTOR_ADDRESS, RMI_CONNECTOR_ADDRESS,
JSR160RMI_CONNECTOR_ADDRESS, and IPC_CONNECTOR_ADDRESS.

-profileName profile_name
An optional parameter that specifies the profile name of the administrative agent.

-username username
An optional parameter that specifies the user ID to log on to the administrative agent.

-password password
An optional parameter that specifies the password to log on to the administrative agent.

-help
An optional parameter that prints a usage statement.

-? An optional parameter that prints a usage statement.

Usage scenarios

The following examples demonstrate correct syntax. Commands are split on multiple lines for printing
purposes.

registerNode.sh -conntype SOAP -port 8878
 -profilePath app_server_root/profiles/AppSrv01

registerNode.bat -conntype SOAP -port 8878
 -profilePath app_server_root\profiles\AppSrv01

deregisterNode command
Use the deregisterNode command to unregister a node from an administrative agent so that you can use
the node stand-alone or register the node with another administrative agent.

Run the deregisterNode command from the bin directory of the administrative agent. The node must have
been previously registered with the administrative agent. When you unregister a node, the node
configuration is retained, but is marked as not registered with the administrative agent.

When you run the deregisterNode command, the command stops all running application servers on the
node. You can optionally stop application servers on the node that you are unregistering prior to running
the deregisterNode command.

Chapter 3. Using the administrative clients 113

If the node that you unregister had the administrative console or management Enterprise JavaBeans (EJB)
applications installed prior to registering the node, they are re-enabled.

Syntax

The deregisterNode command syntax is as follows:
deregisterNode [options]

Parameters

The following options are available for the deregisterNode command:

-conntype<JSR160RMI|IPC|RMI|SOAP>
The optional connector type used to connect to the administrative agent to initiate node deregistration.
The default is SOAP.

Note: You should eventually switch from the RMI connector to the JSR160RMI connector because
support for the RMI connector is deprecated.

-host host_name
An optional parameter that specifies the host name of the administrative agent.

-nodepassword node_password
An optional parameter that specifies the password of the node that you are unregistering. Specify this
parameter if security is on at the node and the password is different than the administrative agent
password. Use this parameter with the -nodeusername parameter. The -nodeusername and
-nodepassword parameters are used to stop all servers on the node.

-nodeusername node_user_name
An optional parameter that specifies the use name of the node that you are unregistering. Specify this
parameter if security is on at the node and the user name is different than the administrative agent
user name. Use this parameter with the -nodepassword parameter. The -nodeusername and
-nodepassword parameters are used to stop all servers on the node.

-port port_number
An optional parameter that specifies the port number of the administrative agent connector port.

 The default port number is 8878 for the default SOAP port of the administrative agent. SOAP is the
default Java Management Extensions (JMX) connector type for the command. If you have multiple
product installations or multiple profiles, the SOAP port might be different than 8878. Examine the
administrative agent SystemOut.log file to see the current ports in use.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are
using HPEL, you can access all of your log and trace information using the LogViewer
command-line tool from your server profile bin directory. See the information about using HPEL
to troubleshoot applications for more information on using HPEL.

-profilePath profile_path
A required parameter that specifies the path to the profile of the base node to be unregistered.

-trace
An optional parameter that provides tracing output for the deregisterNode command.

-profileName profile_name
An optional parameter that specifies the profile name of the administrative agent.

114 Administering applications and their environment

-username username
An optional parameter that specifies the user ID of the node to be unregistered.

-password password
An optional parameter that specifies the password of the node to be unregistered.

-help
An optional parameter that prints a usage statement.

-? An optional parameter that prints a usage statement.

Usage scenarios

The following examples demonstrate correct syntax. Commands are split on multiple lines for printing
purposes.

deregisterNode.sh -conntype SOAP -port 8878
 -profilePath app_server_root/profiles/AppSrv01

deregisterNode.bat -conntype SOAP -port 8878
 -profilePath app_server_root\profiles\AppSrv01

backupConfig command
The backupConfig command is a simple utility to back up the configuration of your node to a file.

By default, all servers on the node stop before the backup is made so that partially synchronized
information is not saved. For more information about where to run this command, see Using command line
tools. If you do not have root authority, you must specify a path for the backup file in a location where you
have write permission. The backup file will be in zip format and a .zip extension is recommended.

In a UNIX or Linux environment, the backupConfig command does not save file permissions or ownership
information. The restoreConfig command uses the current umask and effective user ID (EUID) to set the
permissions and ownership when restoring a file. If it is required that the restored files have the original
permissions and ownership, use the tar command (available on all UNIX or Linux systems) to back up and
restore the configuration.

Note: This command uses the user ID and password information in the profile_root/properties/
ipc.client.props file. To avoid user ID and password prompts when you use this command, add
the user ID and password information to the ipc.client.props file.

Location

Issue the command from the profile_root/bin directory.

Syntax

The command syntax is as follows:

backupConfig.sh backup_file [options]

backupConfig.bat backup_file [options]

Chapter 3. Using the administrative clients 115

where backup_file specifies the file to which the backup is written. If you do not specify one, a unique
name is generated.

Parameters

The following options are available for the backupConfig command:

-nostop
Tells the backupConfig command not to stop the servers before backing up the configuration

-quiet
Suppresses the progress information that the backupConfig command prints in normal mode

-logfile file_name
Specifies the location of the log file to which trace information is written

 By default, the log file is named backupConfig.log and is created in the logs directory.

-profileName profile_name
Defines the profile of the application server process in a multi-profile installation

 The -profileName option is not required for running in a single-profile environment. The default for this
option is the default profile.

-replacelog
Replaces the log file instead of appending to the current log

-trace
Generates trace information into the log file for debugging purposes

-username user_name
Specifies the user name for authentication if security is enabled in the server; acts the same as the
-user option

-user user_name
Specifies the user name for authentication if security is enabled in the server; acts the same as the
-username option

-password password
Specifies the password for authentication if security is enabled in the server

-help
Prints a usage statement

-? Prints a usage statement

Usage

The following example creates a new file that includes the current date:

backupConfig.sh WebSphereConfig_2005-04-22.zip

backupConfig.bat WebSphereConfig_2005-04-22.zip

The following example creates a file called myBackup.zip and does not stop any servers before beginning
the backup process:

backupConfig.sh myBackup.zip -nostop

116 Administering applications and their environment

backupConfig.bat myBackup.zip -nostop

restoreConfig command
Use the restoreConfig command to restore the configuration of your node after backing up the
configuration using the backupConfig command.

The restoreConfig command is a simple utility to restore the configuration of your node after backing up
the configuration using the backupConfig command. By default, all servers on the node stop before the
configuration restores so that a node synchronization does not occur during the restoration. If the
configuration directory already exists, it is renamed before the restoration occurs. For more information
about where to run this command, see Using command line tools.

If you directly make changes to the application files in the app_server_root/installedApps directory, a
process known as "hot deployment", but do not make the same changes to the application files in the
app_server_root/config directory, the changes might be overwritten if you use the restoreConfig
command.

The backupConfig command does not save file permissions or ownership information. The

restoreConfig command uses the current umask and effective user ID (EUID) to set the permissions and
ownership when restoring a file. If it is required that the restored files have the original permissions and
ownership, use the tar command (available on all UNIX or Linux systems) to back up and restore the
configuration.

If you are using a logical directory for app_server_root/config, the restoreConfig command will

not work.

Location

Issue the command from the profile_root/bin directory.

Syntax

The command syntax is as follows:

restoreConfig.sh backup_file [options]

restoreConfig.bat backup_file [options]

where backup_file specifies the file to be restored. If you do not specify one, the command will not run.

Parameters

The following options are available for the restoreConfig command:

-help
Prints a usage statement

-location directory_name
Specifies the directory where the backup file is restored

 The location defaults to the app_server_root/config directory.

Chapter 3. Using the administrative clients 117

-logfile file_name
Specifies the location of the log file to which trace information is written

 By default, the log file is named restoreConfig.log and is created in your logs directory.

-nostop
Tells the restoreConfig command not to stop the servers before restoring the configuration

-password password
Specifies the password for authentication if security is enabled in the server

-profileName profile_name
Defines the profile of the Application Server process in a multiple-profile installation

 The -profileName option is not required for running in a single profile environment. The default for this
option is the default profile.

-quiet
Suppresses the progress information that the restoreConfig command prints in normal mode

-replacelog
Replaces the log file instead of appending to the current log

-trace
Generates trace information into the log file for debugging purposes

-username user_name
Specifies the user name for authentication if security is enabled in the server; acts the same as the
-user option

-user user_name
Specifies the user name for authentication if security is enabled in the server; acts the same as the
-username option

-? Prints a usage statement

Usage

You can use the restoreConfig command to recover an application server if it fails. Perform the following
steps:

1. Locate the automatic migration backup in the app_server_root/temp directory.

For example:
MigrationBackup.Thu-Aug-28-10.15045-2006.zip

2. Restore the configuration with the restoreConfig command.

For example:

restoreConfig.sh app_server_root\temp\MigrationBackup.Thu-Aug-28-10.15045-2006.zip

restoreConfig.bat app_server_root/temp/MigrationBackup.Thu-Aug-28-10.15045-2006.zip

The following example demonstrates correct syntax:

restoreConfig.sh WebSphereConfig_2006-04-22.zip

restoreConfig.bat WebSphereConfig_2006-04-22.zip

118 Administering applications and their environment

The following example restores the given file to the /tmp directory and does not stop any servers before
beginning the restoration:

restoreConfig.sh WebSphereConfig_2006-04-22.zip -location /tmp -nostop

restoreConfig.bat WebSphereConfig_2006-04-22.zip -location /tmp -nostop

Be aware that if you restore the configuration to a directory that is different from the directory that was
backed up when you performed the backupConfig command, you might need to manually update some of
the paths in the configuration directory.

versionInfo command
The versionInfo command generates a report that includes a list of installed fix packs and interim fixes.

Product version information

The versionInfo tool displays important data about the product and its installed fix packs and interim fixes,
such as the build version and build date. This tool is particularly useful when working with support
personnel to determine the cause of any problem.

Product version reports

The following report-generation scripts display installed product information:

v versionInfo script

Lets you use parameters to create a version report.

v genVersionReport script

Generates the versionReport.html report file in the current working directory, which is usually the
app_server_root/bin directory.

Location of the command file

app_server_root/bin/versionInfo.sh

app_server_root\bin\versionInfo.bat

Syntax for the versionInfo command
The command syntax is:

versionInfo.sh [-format text | html]
 [-file file_name]
 [-long]
 [-fixpacks]
 [-fixpackDetail]
 [-ifixes]
 [-ifixDetail]
 [-maintenancePackages (deprecated)]
 [-maintenancePackageDetail (deprecated)]
 [-components] (deprecated and performs no action)
 [-componentDetail] (deprecated and performs no action)

versionInfo [-help | /help | -? | /? | -usage]

versionInfo [-format text | html]
 [-file file_name]
 [-long]

Chapter 3. Using the administrative clients 119

[-fixpacks]
 [-fixpackDetail]
 [-ifixes]
 [-ifixDetail]
 [-maintenancePackages (deprecated)]
 [-maintenancePackageDetail (deprecated)]
 [-components] (deprecated and performs no action)
 [-componentDetail] (deprecated and performs no action)

versionInfo [-help | /help | -? | /? | -usage]

Issue the command from the bin directory of app_server_root.

Parameters
-? or /?

Displays command syntax.

-components
This parameter is deprecated and performs no action.

-componentDetail
This parameter is deprecated and performs no action.

-file file_name
Specifies the output file name. The report goes to standard output (stdout) by default.

-fixpacks
Adds a list of applied fixpacks to the report.

-fixpackDetail
Adds details about applied fixpacks to the report.

-format text | html
Selects the format of the report. The default is "text".

-help or /help
Displays command syntax.

-ifixes
Adds a list of applied ifixes to the report.

-ifixDetail
Adds details about applied ifixes to the report.

-long
Creates the long version of the report.

-maintenancePackageDetail
This option is deprecated, and it performs an action that is equivalent to -fixpackDetail plus -ifixDetail.

-maintenancePackages
This option is deprecated, and it performs an action that is equivalent to -fixpacks plus -ifixes.

-usage
Displays command syntax.

Report description
The versionInfo command reports the following information:

Installation information
Displays the following general information about the current installation:

v Report date and time - The date and time that the report was generated. The timestamp is formatted
according to the current locale.

120 Administering applications and their environment

v Product Directory - The file path to the installation root directory defined by the WAS_HOME
environment variable.

v Version Directory - The file path of the version directory of the current IBM WebSphere Application
Server - Express installation.

v DTD Directory - The file path of the DTD directory of the current IBM WebSphere Application Server -
Express installation.

v Log Directory - The file path of the log directory of the current IBM WebSphere Application Server -
Express installation. The fix pack and interim fix log files are in the log directory.

Product list information
Displays a list of installed WebSphere products:

v Product ID - The product ID of the installed product.

v Status - The status of the product, either installed or uninstalled.

Installed product information
This information and the other information topic descriptions are hierarchal for each installed product,
installed fix packs and interim fixes, and included APARs.

This section of the report displays the following information:

v Name - The name of the installed product.

v Version - The current version of the product. Installing or uninstalling fix packs or refresh packs modifies
this version.

v ID - The product ID of the product installed, such as BASE, BASETRIAL, ND, EXPRESS,
EXPRESSTRIAL, embeddedEXPRESS, IHS, XD, PLG, or CLIENT.

v Build Level - The build level of the installed product.

v Build Date - The build date of the installed product.

v Architecture - The architecture of the installed product.

v Installed Features - The features installed on the product.

Installed fix pack information: Displays the general fix pack information:

v Product ID - The ID of the product that this fix pack is for.

v Version - The version of this fix pack.

v Installation Manager Offering ID - The ID of offering or product installed using Installation Manager.

v Build Level - The build level of this fix pack.

v Build Date - The build date of this fix pack.

Installed interim fix information: Displays the general interim fix information:

v Interim Fix ID - The ID of this interim fix.

v Product ID - The ID of the product that this interim fix is for.

v Applicable Level - The level of the fix pack on which this interim fix is built.

v Installation Manager Offering ID - The ID of offering or product installed using Installation Manager.

v Build Level - The build level of this interim fix.

v Build Date - The build date of this interim fix.

Included APARs information: Displays the list of APARs fixed by this fix pack or interim fix.

Sample versionInfo report
When the WebSphere Application Server Network Deployment product has no interim fixes or fix packs
applied, the versionInfo script outputs information similar to the following:

Chapter 3. Using the administrative clients 121

--
IBM WebSphere Product Installation Status Report
--

Report at date and time April 7, 2010 12:19:43 PM EDT

Installation
--
Product Directory G:\IBM\WebSphere\AppServer_v8_nd
Version Directory G:\IBM\WebSphere\AppServer_v8_nd\properties\version
DTD Directory G:\IBM\WebSphere\AppServer_v8_nd\properties\version\dtd
Log Directory C:\Documents and Settings\All Users\Application Data\IBM\Installation Manager\logs

Product List
--
ND installed

Installed Product
--
Name IBM WebSphere Application Server - ND
Version 8.0.0.0
ID ND
Build Level 8.0.0.20091024_0330
Build Date 2009-10-24 03:30:00-0400
Architecture Intel (32 bit)
Installed Features Non-English language packages for the application server runtime environment
 Sample applications

--
End Installation Status Report
--

genVersionReport command
The genVersionReport command uses the versionInfo command to generate the versionReport.html
report file in the current working directory, which is usually the bin directory. The report includes a list of
installed fix packs and interim fixes.

Product version information

The versionInfo tool displays important data about the product, such as the build version and build date.
This tool is particularly useful when working with support personnel to determine the cause of any
problem.

Product version reports

The following report-generation scripts display installed product information:

v “versionInfo command” on page 119

Use the versionInfo command to specify your own report parameters when creating a customized
version report.

v genVersionReport command

Use the genVersionReport command to generate the versionReport.html report file in the current
working directory, which is usually the bin directory. The report includes the list of fix packs and interim
fixes.

Location of the command file

app_server_root/bin/genVersionReport.sh

app_server_root\bin\genVersionReport.bat

Syntax for the genVersionReport command
The command syntax is:

genVersionReport.sh

122 Administering applications and their environment

genVersionReport.bat

Issue the command from the bin directory of the app_server_root directory.

Report description
The versionInfo command reports the following information:

Installation information
Displays the following general information about the current installation:

v Report date and time - The date and time that the report was generated. The timestamp is formatted
according to the current locale.

v Product Directory - The file path to the installation root directory defined by the WAS_HOME
environment variable.

v Version Directory - The file path of the version directory of the current IBM WebSphere Application
Server - Express installation.

v DTD Directory - The file path of the DTD directory of the current IBM WebSphere Application Server -
Express installation.

v Log Directory - The file path of the log directory of the current IBM WebSphere Application Server -
Express installation. The fix pack and interim fix log files are in the directory.

Product list information
Displays a list of installed WebSphere products:

v Product ID - The product ID of the installed product.

v Status - The status of the product, either installed or uninstalled.

Installed product information
This information and the other information topic descriptions are hierarchal for each installed product,
installed fix packs and interim fixes, and included APARs.

This section of the report displays the following information:

v Name - The name of the installed product.

v Version - The current version of the product. Installing or uninstalling fix packs or refresh packs modifies
this version.

v ID - The product ID of the product installed, such as BASE, BASETRIAL, ND, EXPRESS,
EXPRESSTRIAL, embeddedEXPRESS, IHS, XD, PLG, or CLIENT.

v Build Level - The build level of the installed product.

v Build Date - The build date of the installed product.

v Architecture - The architecture of the installed product.

v Installed Features - The features installed on the product.

Installed fix pack information: Displays the general fix pack information:

v Product ID - The ID of the product that this fix pack is for.

v Version - The version of this fix pack.

v Installation Manager Offering ID - The ID of offering or product installed using Installation Manager.

v Build Level - The build level of this fix pack.

v Build Date - The build date of this fix pack.

Installed interim fix information: Displays the general interim fix information:

v Interim Fix ID - The ID of this interim fix.

v Product ID - The ID of the product that this interim fix is for.

Chapter 3. Using the administrative clients 123

v Applicable Level - The level of the fix pack on which this interim fix is built.

v Installation Manager Offering ID - The ID of offering or product installed using Installation Manager.

v Build Level - The build level of this interim fix.

v Build Date - The build date of this interim fix.

Included APARs information: Displays the list of APARs fixed by this fix pack or interim fix.

Sample genVersionReport report
When the WebSphere Application Server Network Deployment product has no interim fixes or fix packs
applied, the genVersionReport script creates the following information in the versionReport.html report
file.

On a Windows system, the report might resemble the following example:
--
IBM WebSphere Product Installation Status Report
--

Report at date and time April 7, 2010 12:19:43 PM EDT

Installation
--
Product Directory G:\IBM\WebSphere\AppServer_v8_nd
Version Directory G:\IBM\WebSphere\AppServer_v8_nd\properties\version
DTD Directory G:\IBM\WebSphere\AppServer_v8_nd\properties\version\dtd
Log Directory C:\Documents and Settings\All Users\Application Data\IBM\Installation Manager\logs

Product List
--
ND installed

Installed Product
--
Name IBM WebSphere Application Server - ND
Version 8.0.0.0
ID ND
Build Level 8.0.0.20091024_0330
Build Date 2009-10-24 03:30:00-0400
Architecture Intel (32 bit)
Installed Features Non-English language packages for the application server runtime environment
 Sample applications

--
End Installation Status Report
--

historyInfo command
The historyInfo command generates a report that includes a history of installed or uninstalled fix packs and
interim fixes.

Product history information

The historyInfo tool displays important data about the product, such as the build version and build date.
History information for installation and removal of fix packs and interim fixes also displays in the report.
This tool is particularly useful when working with support personnel to determine the cause of any
problem.

Product history reports

The following report-generation scripts display installed product information:

v historyInfo script

Lets you use parameters to create a history report.

v genHistoryReport script

Generates the historyReport.html report file in the current working directory, which is usually the bin
directory.

124 Administering applications and their environment

Location of the command file

app_server_root/bin/historyInfo.sh

app_server_root\bin\historyInfo.bat

Syntax for the historyInfo command
The command syntax is:

historyInfo.sh [-format text | html]
 [-file file_name]
 [-offeringID ID_of_Installation_Manager_offering
 | -maintenancePackageID ID_of_Installation_Manager_offering (-maintenancePackageID is deprecated)]
 [-component component_name] (deprecated and performs no action)

historyInfo [-help | /help | -? | /? | -usage]

historyInfo [-format text | html]
 [-file file_name]
 [-offeringID ID_of_Installation_Manager_offering
 | -maintenancePackageID ID_of_Installation_Manager_offering (-maintenancePackageID is deprecated)]
 [-component component_name] (deprecated and performs no action)

historyInfo [-help | -? | /help | /? | -usage]

Issue the command from the bin directory of the app_server_root directory.

Parameters
-? or /?

Displays command syntax.

-component component_name
This parameter is deprecated and performs no action.

-file file_name
Specifies the output file name. The report goes to standard output (stdout) by default.

-format text | html
Selects the format of the report. The default is "text".

-help or /help
Displays command syntax.

-maintenancePackageID ID_of_Installation_Manager_offering
This option is deprecated and equivalent to using -offeringID.

-offeringID ID_of_Installation_Manager_offering
Specifies the ID of the Installation Manager offering. When it is specified, the product history report
displays events for only the named offering. When it is not specified, the report displays events for all
offerings.

-usage
Displays command syntax.

Report description
The historyInfo command reports the following information:

Installation information
Displays the following general information about the current installation:

v Report date and time - The date and time that the report was generated. The timestamp is formatted
according to the current locale.

Chapter 3. Using the administrative clients 125

v Product Directory - The file path to the installation root directory of the product.

v Version Directory - The file path of the version directory of the current product installation.

v DTD Directory - The file path of the DTD directory of the current installation.

v Log Directory - The file path of the log directory of the current installation. The fix pack and interim fix
log files are in the directory.

Installation event information
Displays the list of installed fix packs and interim fixes as well as the following related information:

v Installation Manager Offering ID or Fix ID - The ID of the offering or product installed using Installation
Manager.

v Action - The action taken.

v Version - Either the version of the interim fix or the version of the product after the action was
performed.

v Log File Name - The file path of the log file generated during the event.

v Timestamp - The time when the action occurred. The time is stated in relation to GMT.

v Result - The result of the action. The result is either success, partial success, or failure.

v Installed Features - The features installed on the product.

Sample historyInfo report
The historyInfo script outputs the information similar to the following:
--
IBM WebSphere Product History Report
--

Report at date and time April 7, 2010 3:07:36 PM EDT

Installation
--
Product Directory G:\IBM\WebSphere\AppServer_v8_nd
Version Directory G:\IBM\WebSphere\AppServer_v8_nd\properties\version
DTD Directory G:\IBM\WebSphere\AppServer_v8_nd\properties\version\dtd
Log Directory C:\Documents and Settings\All Users\Application Data\IBM\Installation Manager\logs

Installation Event
--
Install Manager Offering ID com.ibm.websphere.ND.v80
Action install
Version 8.0.0.0
Log File Name C:\Documents and Settings\All Users\Application Data\IBM\Installation Manager\logs\20091026_1527.xml
Timestamp 2009-10-26 17:35:27-0400
Result success
Installed Features Sample applications

Installation Event
--
Install Manager Offering ID com.ibm.websphere.ND.v80
Action install
Version 8.0.0.0
Log File Name C:\Documents and Settings\All Users\Application Data\IBM\Installation Manager\logs\20091027_1347.xml
Timestamp 2009-10-27 13:48:03-0400
Result success
Installed Features Sample applications
 Non-English language packages for the application server runtime environment

Installation Event
--
Install Manager Offering ID com.ibm.websphere.ND.v80
Action update
Version 8.0.0.7
Log File Name C:\Documents and Settings\All Users\Application Data\IBM\Installation Manager\logs\20091027_1347.xml
Timestamp 2009-10-27 13:53:48-0400
Result success
Installed Features Non-English language packages for the application server runtime environment
 Sample applications

Installation Event
--
Fix ID com.ibm.websphere.ND.v80.FP8007.fix.1
Action install
Version 8.0.0.7
Log File Name C:\Documents and Settings\All Users\Application Data\IBM\Installation Manager\logs\20091027_1347.xml
Timestamp 2009-10-27 15:09:43-0400
Result success

126 Administering applications and their environment

Installation Event
--
Install Manager Offering ID com.ibm.websphere.ND.v80
Action uninstall
Version 8.0.0.7
Log File Name C:\Documents and Settings\All Users\Application Data\IBM\Installation Manager\logs\20091027_1347.xml
Timestamp 2009-10-27 16:01:52-0400
Result success
Installed Features Non-English language packages for the application server runtime environment

--
End History Report
--

genHistoryReport command
The genHistoryReport command generates the historyReport.html report file in the current working
directory, which is usually the bin directory. The report includes a list of installed or uninstalled fix packs
and interim fixes. The genHistoryReport script invokes the historyInfo script specifying the correct
parameters to place the information generated into an HTML file in the current directory.

Product history information

The historyInfo tool displays historical data about the product and the installation and removal of fix packs
and interim fixes for the product. This tool is particularly useful when working with support personnel to
determine the cause of any problem.

Product history reports

The following report-generation scripts display installed product information:

v “historyInfo command” on page 124

Lets you use parameters to create a history report.

v genHistoryReport script

Generates the historyReport.html report file in the current working directory, which is usually the bin
directory. The report includes a list of fix packs and interim fixes.

Location of the command file

app_server_root/bin/genHistoryReport.sh

app_server_root\bin\genHistoryReport.bat

Syntax for the genHistoryReport command
The command syntax is:

genHistoryReport.sh

genHistoryReport.bat

Issue the command from the bin directory of the app_server_root directory.

Report description
The historyInfo command generates the report. The genHistoryReport command calls the historyInfo
command with a set of report parameters that reports the following information:

Installation information
Installation information displays the following general information about the current installation:

Chapter 3. Using the administrative clients 127

v Report date and time - The date and time that the report was generated. The timestamp is formatted
according to the current locale.

v Product Directory - The file path to the installation root directory of the product.

v Version Directory - The file path of the version directory of the current product installation.

v DTD Directory - The file path of the DTD directory of the current installation.

v Log Directory - The file path of the log directory of the current installation. The fix pack and interim fix
log files are in the directory.

Installation event information
Installation event information displays the list of installed fix packs and interim fixes as well as the following
related information:

v Installation Manager Offering ID or Fix ID - The ID of the offering or product installed using Installation
Manager.

v Action - The action taken.

v Version - Either the version of the interim fix or the version of the product after the action was
performed.

v Log File Name - The file path of the log file generated during the event.

v Timestamp - The time when the action occurred. The time is stated in relation to GMT.

v Result - The result of the action. The result is either success, partial success, or failure.

v Installed Features - The features installed on the product.

Sample historyInfo report
The genHistoryReport script creates the following information in the historyReport.html report file:
--
IBM WebSphere Product History Report
--

Report at date and time April 7, 2010 3:07:36 PM EDT

Installation
--
Product Directory G:\IBM\WebSphere\AppServer_v8_nd
Version Directory G:\IBM\WebSphere\AppServer_v8_nd\properties\version
DTD Directory G:\IBM\WebSphere\AppServer_v8_nd\properties\version\dtd
Log Directory C:\Documents and Settings\All Users\Application Data\IBM\Installation Manager\logs

Installation Event
--
Install Manager Offering ID com.ibm.websphere.ND.v80
Action install
Version 8.0.0.0
Log File Name C:\Documents and Settings\All Users\Application Data\IBM\Installation Manager\logs\20091026_1527.xml
Timestamp 2009-10-26 17:35:27-0400
Result success
Installed Features Sample applications

Installation Event
--
Install Manager Offering ID com.ibm.websphere.ND.v80
Action install
Version 8.0.0.0
Log File Name C:\Documents and Settings\All Users\Application Data\IBM\Installation Manager\logs\20091027_1347.xml
Timestamp 2009-10-27 13:48:03-0400
Result success
Installed Features Sample applications
 Non-English language packages for the application server runtime environment

Installation Event
--
Install Manager Offering ID com.ibm.websphere.ND.v80
Action update
Version 8.0.0.7
Log File Name C:\Documents and Settings\All Users\Application Data\IBM\Installation Manager\logs\20091027_1347.xml
Timestamp 2009-10-27 13:53:48-0400
Result success
Installed Features Non-English language packages for the application server runtime environment
 Sample applications

Installation Event
--
Fix ID com.ibm.websphere.ND.v80.FP8007.fix.1

128 Administering applications and their environment

Action install
Version 8.0.0.7
Log File Name C:\Documents and Settings\All Users\Application Data\IBM\Installation Manager\logs\20091027_1347.xml
Timestamp 2009-10-27 15:09:43-0400
Result success

Installation Event
--
Install Manager Offering ID com.ibm.websphere.ND.v80
Action uninstall
Version 8.0.0.7
Log File Name C:\Documents and Settings\All Users\Application Data\IBM\Installation Manager\logs\20091027_1347.xml
Timestamp 2009-10-27 16:01:52-0400
Result success
Installed Features Non-English language packages for the application server runtime environment

--
End History Report
--

managesdk command
The managesdk command provides the names of software development kits that are used by the product.

Note: Use the managesdk command to:

v List the software development kit (SDK) names that are available to a product installation.

v List the SDK names that a specified profile is currently configured to use.

v For each profile in a product installation, list the SDK names that the profile is currently
configured to use.

v Enable a profile to use a specified SDK name.

v Enable all profiles in an installation to use a specified SDK name.

v Get the SDK name that is used to configure new profiles.

v Change the default SDK name that profiles use.

v Get the SDK name that is used by scripts called from a product bin directory.

v Change the SDK name that scripts in a product bin directory use by default. The SDK name is
used when no existing profile name is specified and the default profile name is not applicable.

The command file is located in the app_server_root/bin directory, app_client_root/bin directory, and
plugins_root/bin directory.

 Attention: If the managesdk command is used to change the SDK for a profile from a 31-bit (z/OS) or
32-bit (IBM i) SDK to a 64-bit SDK, and you are using third-party resource adapters, consider the following
information to avoid potential problems. This information does not apply to any of the built-in resource
adapters shipped with the WebSphere Application Server product, including the IBM WebSphere
Relational Resource Adapter, the IBM WebSphere MQ Resource Adapter, or the IBM SIB JMS Resource
Adapter as they have been fully tested to work with all IBM SDKs. Because resource adapters can use
non-Java libraries containing platform-specific native code, it is possible that changing the SDK from 31-bit
(z/OS) or 32-bit (IBM i) to 64-bit, or from 64-bit to 31-bit or 32-bit, might result in the resource adapter not
functioning properly. If a third-party resource adapter is installed, either stand-alone or embedded in an
enterprise application, on a server for which you intend to change the SDK, verify with the supplier of that
resource adapter that any native libraries it uses are compatible with the selected SDK.

Syntax

Use the following command syntax with the managesdk command:

managesdk -task [-parameter] [value]

The command-line tool validates that the requested task contains the required parameters and values.
Parameters are not case-sensitive. However, values are case-sensitive. You must type values with the
correct capitalization because the command-line tool does not validate the capitalization of the parameter

Chapter 3. Using the administrative clients 129

values. Incorrect results can occur when the parameter value is not typed correctly.

Parameters

The following -task options are available for the managesdk command:

-help
Displays detailed information about the parameters or values of each managesdk task. The following
example uses the help parameter with the managesdk command:

app_server_root/bin/managesdk.sh -help

app_server_root\bin\managesdk.bat -help

The output from the help option describes the required and optional parameters.

-listAvailable [-verbose]
Displays a list of all SDK names available to the product installation. When the -verbose option is also
specified, a list of properties for each SDK name also is displayed. The following example uses the
-listAvailable -verbose parameters with the managesdk command:

app_server_root/bin/managesdk.sh -listAvailable -verbose

app_server_root\bin\managesdk.bat -listAvailable -verbose

The output is a list of all SDK names that the product installation can use, along with a list of the
properties associated with each SDK name.

-listEnabledProfile [-profileName profile_name] [-verbose]
Displays a list of all SDK names that a specified profile, and its node and servers, is currently
configured to use. When the -verbose option is also specified, a list of properties for each SDK name
also is displayed. The following example uses the -listEnabledProfile -profileName and -verbose
parameters with the managesdk command:

app_server_root/bin/managesdk.sh -listEnabledProfile -profileName AppSrv02 -verbose

app_server_root\bin\managesdk.bat -listEnabledProfile -profileName AppSrv02 -verbose

The output is a list of all SDK names that the specified profile can use, along with a list of the
properties associated with each SDK name.

-listEnabledProfileAll [-verbose]
Displays a list of all profiles in an installation and the SDK names that each profile, and its node and
servers, is currently configured to use. When the -verbose option is also specified, a list of properties
for each SDK name also is displayed. The following example uses the -listEnabledProfileAll and
-verbose parameters with the managesdk command:

app_server_root/bin/managesdk.sh -listEnabledProfileAll -verbose

app_server_root\bin\managesdk.bat -listEnabledProfileAll -verbose

130 Administering applications and their environment

The output is a list of all profiles in a product installation with all SDK names that each profile can use,
along with a list of the properties associated with each SDK name.

-enableProfile [-profileName profile_name] [-sdkname sdkName] [-enableServers] [-user user_name]
[-password password_value]

Enables a profile to use a specified SDK name. The -profileName parameter specifies the profile and
the -sdkname parameter specifies the SDK name. The command enables the profile and the
node-level default SDK of the profile to use the specified SDK name. Unless the -enableServers option
is used, the command does not change server-level SDK settings. If the -enableServers option is
used, all server-level SDK settings are cleared, enabling all servers to use the node-level default SDK.

 The following conditions apply when the managesdk command is run:

v If the profile is a federated node or a deployment manager node, the deployment manager must be
running when the managesdk command attempts to update the profile. When enabling the SDK for
a node, run the managesdk command from the /bin directory of the product installation to which
the node belongs or from the /bin directory of the profile that contains the node you want to
update.

v A connection to the deployment manager must exist using a supported connector protocol in the
following order of preference:
1. SOAP
2. Inter-Process Communications (IPC)
3. Remote Method Invocation (RMI)

If the SOAP protocol is enabled, the managesdk command uses the SOAP protocol. If the SOAP
protocol is not enabled but the IPC protocol is enabled, the command uses the IPC protocol. If
neither the SOAP nor the IPC protocol are enabled, then the command uses the RMI protocol.

v You must provide the administrative user name and password with the managesdk command for
each profile that contains a federated node or deployment manager node in a cell with security
enabled. If you do not specify the -user and -password parameters, the managesdk command might
fail or stop processing. The topic on configuring security with scripting provides connector protocol
specific instructions on how to save user name and password values.

v When enabling the SDK for a deployment manager, only the deployment manager server is
enabled. None of the managed nodes of the deployment manager are enabled to use the specific
SDK.

The following example uses -enableProfile, -profileName, -sdkname, and -enableServers with the
managesdk command:

app_server_root\bin\managesdk.bat -enableProfile -profileName AppSrv02 -sdkname 1.6_32 -enableServers

The output is a message that indicates whether the specified profile was successfully updated and is
now enabled to use the specified SDK, or whether problems were encountered that prevented the
profile from being successfully updated.

-enableProfileAll [-sdkname sdkName] [-enableServers] [-user user_name] [-password
password_value]

Enables all profiles in an installation to use a specified SDK name. The -sdkname parameter specifies
the SDK name. The command enables all profiles and the node-level default SDK of each profile to
use the specified SDK name. Unless the -enableServers option is used, the command does not
change server-level SDK settings. If the -enableServers option is used, all server-level SDK settings
are cleared, enabling all servers to use the node-level default SDK.

 The following conditions apply when the managesdk command is run:

v If the profile is a federated node or a deployment manager node, the deployment manager must be
running when the managesdk command attempts to update the profile. When enabling the SDK for
a node, run the managesdk command from the /bin directory of the product installation to which
the node belongs or from the /bin directory of the profile that contains the node you want to
update.

Chapter 3. Using the administrative clients 131

v A connection to the deployment manager must exist using a supported connector protocol in the
following order of preference:
1. SOAP
2. Inter-Process Communications (IPC)
3. Remote Method Invocation (RMI)

If the SOAP protocol is enabled, the managesdk command uses the SOAP protocol. If the SOAP
protocol is not enabled but the IPC protocol is enabled, the command uses the IPC protocol. If
neither the SOAP nor the IPC protocol are enabled, then the command uses the RMI protocol.

v You must provide the administrative user name and password with the managesdk command for
each profile that contains a federated node or deployment manager node in a cell with security
enabled. If you do not specify the -user and -password parameters, the managesdk command might
fail or stop processing. The topic on configuring security with scripting provides connector protocol
specific instructions on how to save user name and password values.

Note: Do not use the -enableProfileAll option unless automatic prompting is disabled for SOAP,
IPC, and RMI connections to the deployment managers of cells that have any federated
node or deployment manager with security enabled. Automatic prompting causes the
managesdk command to fail or stop processing.

v When enabling the SDK for a deployment manager, only the deployment manager server is
enabled. None of the managed nodes of the deployment manager are enabled to use the specific
SDK.

The following example uses -enableProfileAll, -sdkname, and -enableServers with the managesdk
command:

app_server_root/bin/managesdk.sh -enableProfileAll -sdkname 1.6_32 -enableServers

app_server_root\bin\managesdk.bat -enableProfileAll -sdkname 1.6_32 -enableServers

The output is a message for each profile that indicates whether the profile was successfully updated
and is now enabled to use the specified SDK, or whether problems were encountered that prevented
the profile from being successfully updated.

-getNewProfileDefault [-verbose]
Displays the SDK name that is currently configured for all profiles that are created with the
manageprofiles command. When the -verbose option is also specified, properties information for the
single SDK name also is displayed.

 The following example uses the -getNewProfileDefault -verbose parameters with the managesdk
command:

app_server_root/bin/managesdk.sh -getNewProfileDefault -verbose

app_server_root\bin\managesdk.bat -getNewProfileDefault -verbose

After the command runs, the new profile default SDK name is displayed.

-setNewProfileDefault [-sdkname sdkName]
Changes the SDK name that is currently configured for all profiles that are created with the
manageprofiles command. The -sdkname parameter specifies the default SDK name to use. The
sdkName value must be an SDK name that is enabled for the product installation.

 The following example uses the -setNewProfileDefault -sdkname parameters with the managesdk
command:

132 Administering applications and their environment

app_server_root/bin/managesdk.sh -setNewProfileDefault -sdkname 1.6_32

app_server_root\bin\managesdk.bat -setNewProfileDefault -sdkname 1.6_32

After the command runs, the new profile default SDK name is displayed.

-getCommandDefault [-verbose]
Displays the SDK name that script commands in the app_server_root/bin, app_client_root/bin, or
plugins_root/bin directory are enabled to use when no existing profile name is specified or when the
default profile name is used. When the -verbose option is also specified, properties information for the
single SDK name also is displayed.

 The following example uses the -getCommandDefault -verbose parameters with the managesdk
command:

app_server_root/bin/managesdk.sh -getCommandDefault -verbose

app_server_root\bin\managesdk.bat -getCommandDefault -verbose

-setCommandDefault [-sdkname sdkName]
Changes the SDK name that script commands in the app_server_root/bin, app_client_root/bin, or
plugins_root/bin directory are enabled to use when no existing profile name is specified or when the
default profile name is used. The -sdkname parameter specifies the SDK name to use for commands.
The sdkName value must be an SDK name that is enabled for the product installation.

 The following example uses the -getCommandDefault -sdkname parameters with the managesdk
command:

app_server_root/bin/managesdk.sh -setCommandDefault -sdkname 1.6_32

app_server_root\bin\managesdk.bat -setCommandDefault -sdkname 1.6_32

The following special parameter options are available with task parameters of the managesdk command:

-debug
Use this option with any -task parameter to enable additional debugging information in the command
output.

-quiet
Use this option with any -task parameter to suppress most messages in the command output.

-sdkname
Use this option with a -set task parameter to specify an SDK name that is enabled for the product
installation; for example:

 v

-sdkname 1.6_32

-verbose
Use this option with any -list or -get task parameter to provide additional information, such as SDK
properties in the command output.

Usage scenario

The following examples demonstrate correct syntax when you run the managesdk command:

managesdk -listAvailable -verbose

Chapter 3. Using the administrative clients 133

managesdk -listEnabledProfile -profileName AppSrv02 -verbose

managesdk -listEnabledProfileAll -verbose

managesdk -enableProfile -profileName AppSrv02 -sdkname 1.6_32 -enableServers

managesdk -enableProfileAll -sdkname 1.6_32 -enableServers

managesdk -getNewProfileDefault -verbose

managesdk -setNewProfileDefault -sdkname 1.6_32

managesdk -getCommandDefault -verbose

managesdk -setCommandDefault -sdkname 1.6_32

GenPluginCfg command
The GenPluginCfg command is used to regenerate the WebSphere web server plug-in configuration file,
plugin-cfg.xml.

For more information about where to run this command, see the Using command tools article.

 CAUTION:
Regenerating the plug-in configuration can overwrite manual configuration changes that you might
want to preserve. Before performing this task, understand its implications as described in the
Communicating with web servers topic in the Setting up the application serving environment PDF.

Note: You must delete the plugin-cfg.xml file in the profile_root/config/cells directory before you use
this command. Otherwise, configuration changes do not persist to the plugin-cfg.xml file.

Note: You can update the global plugin-cfg.xml file using the administrative console or running the
GenPluginCfg command for all of the clusters in a cell. However, you must delete the
config/cells/plugin-cfg.xml file before you update the global plugin-cfg.xml file. If you do not
delete the config/cells/plugin-cfg.xml file, only the new properties and their values are added to
the global plugin-cfg.xml file. Any updates to existing plug-in property values are not added to the
global plugin-cfg.xml file.

Syntax

To regenerate the plug-in configuration perform one of the following:

v Click on Servers > Server Types > Web servers in the administrative console, select a web server
and then click Generate Plug-in.

v Issue the following command:
app_server_root/bin/GenPluginCfg.sh|bat

Both methods for regenerating the plug-in configuration create a plugin-cfg.xml file in ASCII format,
which is the proper format for execution in a distributed environment.

You can use the -profileName option to define the profile of the application server process in a
multi-profile installation. The -profileName option is not required for running in a single profile environment.
The default for this option is the default profile.

When the GenPluginCfg command is issued with the option -webserver.name webservrName, wsadmin
generates a plug-in configuration file for the web server. The settings in the generated configuration file are
based on the list of applications that are deployed on the web server. When this command is issued
without the option -webserver.name webservrName, the plug-in configuration file is generated based on
topology.

134 Administering applications and their environment

Parameters

The following options are available for the GenPluginCfg command:

-config.root configroot_dir
Defaults to CONFIG_ROOT. The setupCmdLine command is invoked to get this environment
variable.

-profileName
Defines the profile of the Application Server process in a multi-profile installation. The -profileName
option is not required for running in a single profile environment. The default for this option is the
default profile.

-cell.name cell
Defaults to WAS_CELL. The setupCmdLine command is invoked to get this environment variable.

-node.name node
Defaults to WAS_NODE. The setupCmdLine command is invoked to get this environment variable.

-webserver.name webserver1
Required for creating plug-in configuration file for a given Web server.

-propagate yes/no
Applicable only when the webserver.name option is specified and the web server is local. Otherwise,
you must manually copy the plugin-cfg.xml file from app_server_root/profiles/profile_name/
config\cells\cell_name\nodes\node_name\servers\web_server_name to plugins_root/config/
web_server_name in the remote web server plugins directory. The default value is no.

-propagateKeyring yes/no
Applicable only when the option webserver.name is specified and the web server is local. Defaults to
no.

-cluster.name cluster1,cluster2 | ALL
Optional list of clusters. Ignored when the option webserver.name is specified.

-server.name server1,server2
Optional list of servers. Required for single server plug-in generation. Ignored when the option
webserver.name is specified.

-output.file.name file_name
Defaults to the configroot_dir/plugin-cfg.xml file. Ignored when the option webserver.name is specified.

-destination.root root
Installation root of the machine configuration is used on. Ignored when the option webserver.name is
specified.

-destination.operating.system windows/unix
Operating system of the machine configuration is used on. Ignored when the option webserver.name is
specified.

-force yes
Creates a new configuration instead of attempting to merge with an exiting configuration when
command is issued for a cell-wide file generation.

-debug yes/no
Defaults to no.

-help
Prints a usage statement.

-? Prints a usage statement.

Chapter 3. Using the administrative clients 135

Usage scenario

To generate a plug-in configuration for all of the clusters in a cell:
GenPluginCfg -cell.name NetworkDeploymentCell

To generate a plug-in configuration for a single server:
GenPluginCfg -cell.name BaseApplicationServerCell -node.name appServerNode -server.name appServerName

To generate a plug-in configuration file for a web server:
GenPluginCfg -cell.name BaseApplicationServerCell -node.name webserverNode -webserver.name webserverName

EARExpander command
Use the EARExpander command to expand an enterprise archive file (EAR) into a directory to run the
application in that EAR file.

You can collapse a directory containing application files into a single EAR file. You can type EARExpander
with no arguments to learn more about its options. For more information about where to run this
command, see the topic on using command tools.

Restriction: Do not include a pound sign (#) in the name of files that are packaged within an application
archive. Due to internal processing, the application server fails to correctly deploy the
application when a pound sign is included in a file name within the application archive. When
this failure occurs, an exception might occur when the application is being processed. Also,
parts of the application might be missing after the application is deployed. To address this
issue, rename any file names within the application archive so that they do not contain a
pound sign.

Syntax

The command syntax is as follows:
EarExpander -ear earName -operationDir dirName -operation
<expand | collapse> [-expansionFlags <all|war>]

Parameters

The following options are available for the EARExpander command:

-ear
Specifies the name of the input EAR file for the expand operation or the name of the output EAR file
for the collapse operation.

-operationDir
Specifies the directory where the EAR file is expanded or specifies the directory from where files are
collapsed.

-operation <expand | collapse>
The expand value expands an EAR file into a directory structure required by the WebSphere
Application Server run time. The collapse value creates an EAR file from an expanded directory
structure.

-expansionFlags <all | war>
(Optional) The all value expands all files from all of the modules. The war value only expands the files
from Web archive file (WAR) modules.

Usage scenario

The following examples demonstrate correct syntax:

136 Administering applications and their environment

EARExpander -ear C:\WebSphere\AppServer\installableApps\DefaultApplication.ear
-operationDir C:\MyApps -operation expand -expansionFlags war

EARExpander -ear C:\backup\DefaultApplication.ear
-operationDir C:\MyAppsDefaultApplication.ear -operation collapse

EARExpander.sh -ear /WebSphere/AppServer/installableApps/DefaultApplication.ear
-operationDir /MyApps -operation expand -expansionFlags war

EARExpander.sh -ear /backup/DefaultApplication.ear
-operationDir /MyAppsDefaultApplication.ear -operation collapse

Return codes

The EARExpander command has the following return codes.

 Table 12. Return codes and their descriptions. The return code indicates the success of the operation.

Return code Description

-1 A syntax error exists.

0 The command ran successfully.

1 An error occurred.

2 An exception occurred.

revokeCertificate command
The revokeCertificate command uses an implementation class that is passed to communicate with a
certificate authority (CA) server to revoke a certificate. Processing this command sends a revocation
request to the CA server to mark this certificate as revoked.

Location

Issue the command from the profile_root/bin directory.

Syntax

The command syntax is as follows:

(The command is split on multiple lines for printing purposes.)

revokeCertificate.sh -host<caHost> -port<caPort> -username<caUserName> -password<caPassword>
-revocationPassword<revocationPassword> -keystoreAlias<keystoreAlias> -alias<certificateAlias>
 -pkiImplClass<customCAClient>[options]

revokeCertificate.bat -host<caHost> -port<caPort> -username<caUserName> -password<caPassword>
-revocationPassword<revocationPassword> -keystoreAlias<keystoreAlias> -alias<certificateAlias>
-pkiImplClass<customCAClient>[options]

Required Parameters

The following required parameter are used with the revokeCertifcate command:

-host caHost
Specifies the target certificate authority host to which the request is sent.

-port caPort
Specifies the target port to connect to.

Chapter 3. Using the administrative clients 137

-username caUserName
Specifies the user name used to gain access to the certificate authority.

-password caPassword
Specifies the password used to authenticate with the certificate authority.

-revocationPassword revocationPassword
Specifies the password that is to be set on the certificate returned by the certificate authority. The
revocation password is sent to the certificate authority during each request and is associated with
each certificate that is issued. To later revoke a certificate, the same revocation password must be
sent during a revokeCertificate request.

keyStoreAliaskeyStoreAlias
Specifies the name of the keystore that is located in the ssl.client.props file for the profile to which the
CA signed certificate is added. This file is usually the ClientDefaultKeyStore file for either a managed
or unmanaged environment.

-alias certificateAlias
Specifies The alias of the certificate request to be revoked. The certificate is stored in the keystore
specified on the request.

-pkiImplClass custom CA Client
A class that implements the WSPKIClient interface. The implementation class handles all the
communication to the CA server. This can be a custom class or a class provided with the product.

Optional Parameters

The following options are available for the revokeCertificate command:

-revocationReasonUsage revocation reason
The reason for revoking the certificate. The default value is “unspecified”.

-customAttrs customAttr1=value;customAttr2=value;...
A semi-colon separated list of custom name=value pairs to be passed in to the custom implementation
class. This parameter provides a way to pass custom information to the implementation class. The
‘attr’ and ‘value’ pairs are converted to a hash map and passed to the implementation class.

-logfile filename
Overrides the default trace file. By default, the trace appears in the profiles/profile_name/log/
caClient.log. file.

-trace
When specified, -trace enables tracing of the trace specification necessary to debug this component.
By default, the trace appears in the profiles/profile_name/log/caClient.log file.

-replaceLog
An option to cause the existing trace file to be replaced when the command is executed. -quit

-quiet
An option to suppress most messages from printing out on the console.

-help
The option to print a usage statement

-? The option to print a usage statement

Usage

The following example performs a revokeCertificate:

138 Administering applications and their environment

revokeCertificate.sh -host localhost -port 1077
-username pkiuser -password webspherepki -alias cert1 -keyStoreAlias ClientDefau
ltKeyStore -revocationPassword webspherepki
CWPKI0403I: Trace is being logged to the following location:
 C:\opt\WebSphere\AppClient\logs\caClient.log
CWPKI0461I: Revoking a CA signed certificate.
CWPKI0462I: CA Signed Certificate Revoked [Issued By: O=IBM, C=US, Issued To:
 CN=mycn, O=ibm, C=us, Not Before: Thu Feb 22 09:07:53 CST 2007, Not
 After: Sat Feb 16 10:09:19 CST 2008] for reason: unspecified

C:\opt\WebSphere\AppClient\bin>revokeCertificate.bat -host localhost -port 1077
-username pkiuser -password webspherepki -alias cert1 -keyStoreAlias ClientDefau
ltKeyStore -revocationPassword webspherepki
CWPKI0403I: Trace is being logged to the following location:
 C:\opt\WebSphere\AppClient\logs\caClient.log
CWPKI0461I: Revoking a CA signed certificate.
CWPKI0462I: CA Signed Certificate Revoked [Issued By: O=IBM, C=US, Issued To:
 CN=mycn, O=ibm, C=us, Not Before: Thu Feb 22 09:07:53 CST 2007, Not
 After: Sat Feb 16 10:09:19 CST 2008] for reason: unspecified

requestCertificate command
The requestCertificate command uses an implementation class that is passed in to communicate with a
certificate authority (CA) server to request a CA signed certificate. The command then adds the certificate
to a supplied keystore.

The requestCertificate command can use a predefined certificate request that was created with the
createCertRequest command or it creates the certificate request itself. Depending on the CA server that
the command is targeted for, a completed signed request can be returned; or the CA server could accept
the request and require that a call be make at a later time to get the certificate with the queryCertificate
command.

Location

Issue the command from the profile_root/bin directory.

Syntax

The command syntax is as follows:

(The following command is split on multiple lines for printing purposes.)

requestCertificate.sh -host<caHost> -port<caPort> -username<caUserName> -password<caPassword>
-revocationPassword<revocationPassword> -keystoreAlias<keystoreAlias>
-pkiImplClass<customCAClient>[options]

requestCertificate.bat -host<caHost> -port<caPort> -username<caUserName> -password<caPassword>
-revocationPassword<revocationPassword> -keystoreAlias<keystoreAlias>
-pkiImplClass<customCAClient>[options]

Required Parameters

The following required parameter are used with the requestCertifcate command:

-host caHost
Specifies the target certificate authority host to which the request will be sent.

Chapter 3. Using the administrative clients 139

-port caPort
Specifies the target port on which to connect.

-username caUserName
The user name used to gain access to the certificate authority.

-password caPassword
The password used to authenticate with the certificate authority.

-revocationPassword revocationPassword
The password that is to be set on the certificate returned by the certificate authority. The revocation
password is sent to the certificate authority during each request and is associated with each certificate
that is issued. To later revoke a certificate, the same revocation password must be sent during a
revokeCertificate request.

keyStoreAliaskeyStoreAlias
The name of the keystore that is located in the ssl.client.props file for the profile to which the CA
signed certificate is added. This will typically be the ClientDefaultKeyStore file for either a managed or
unmanaged environment.

-pkiImplClass custom CA client
A class that implements the WSPKIClient interface. The implementation class handles all the
communication to the CA server. This could be a custom class or a class provided with the product.

Optional Parameters

The following options are available for the requestCertificate command:

-certReqPath certificate request file
A path to an existing PKCS10 certificate request saved in a BASE64 encoded file. If no request is
specified a PKCS10 certificate request will be created automatically. In that case it is required to
specify a “subjectDN” and “alias” option. By default the request will be created in the same location as
the keyStore specified in the request. This will typically be in the /profile_name/etc/ directory for either
a managed or unmanaged environment.

-subjectDN subjectDN
The distinguished name to be used for the PKCS10 certificate request. The distinguished name must
contain the CN field. This option is only required if you do not specify the –certReqPath option, or if
the –certReqPath option points to a file that does not exist.

-alias certificateAlias
The alias used to store the PKCS10 certificate request certificate in the keyStore specified on the
request. Note that the CA signed certificate is stored under the same alias and will replace the cert
request certificate when received. This option is only required if you do not specify the –certReqPath
option, or if the –certReqPath option points to a file that does not exist.

-keySize key size
The size of the key. This option is only used valid if creating a PKCS10 certificate request in-band.
Default size is 1024. Valid values include 512, 1024, and 2048

-keyUsage
A semi-colon separated list of extended key usage strings. This option is only valid if creating a
PKCS10 certificate request in-band.

-extKeyUsage extKeyUse1;extKeyUse2;...
A semi-colon separated list of extended key usage strings. This option is only valid if creating a
PKCS10 certificate request in-band.

-customAttrs customAttr1=value;customAttr2=value;...
A semi-colon separated list of custom name=value pairs to be passed in to the custom implementation
class. This provides a way to pass custom information to the implementation class. The ‘attr’ and
‘value’ pairs will be converted to a hash map and passed along to the implementation class.

140 Administering applications and their environment

-retryInterval retry interval
The time period in seconds between retires of queries to the CA for a CA signed certificate.

-retryLimit retry limit
The total number of times to retry a query request to the CA.

-logfile filename
Overrides the default trace file. By default, the trace appears in the profiles/profile_name/log/
caClient.log. file.

-trace
When specified, this enables tracing of the trace specification necessary to debug this component. By
default, the trace will appear in the profiles/profile_name/log/caClient.log file.

-replaceLog
Causes the existing trace file to be replaced when the command is executed. -quit

-quiet
Suppresses most messages from printing out on the console.

-help
Prints a usage statement

-? Prints a usage statement

Usage

The following example performs a requestCertificate:

requestCertificate.sh -host localhost -port 1077
 -username pkiuser -password webspherepki -revocationPassword webspherepki -keyS
toreAlias ClientDefaultKeyStore -certReqPath C:\opt\WebS
phere\AppClient\etc\certReq26924.req -trace
CWPKI0403I: Trace is being logged to the following location:
 C:\opt\WebSphere\AppClient\logs\caClient.log
CWPKI0455I: Requesting a CA signed certificate.
CWPKI0456I: CA Signed Certificate Received [Issued By: O=IBM, C=US, Issued To:
 CN=mycn, O=ibm, C=us, Not Before: Thu Feb 22 09:07:53 CST 2007, Not
 After: Sat Feb 16 10:09:19 CST 2008]

C:\opt\WebSphere\AppClient\bin>requestCertificate.bat -host localhost -port 1077
 -username pkiuser -password webspherepki -revocationPassword webspherepki -keyS
toreAlias ClientDefaultKeyStore -certReqPath C:\opt\WebS
phere\AppClient\etc\certReq26924.req -trace
CWPKI0403I: Trace is being logged to the following location:
 C:\opt\WebSphere\AppClient\logs\caClient.log
CWPKI0455I: Requesting a CA signed certificate.
CWPKI0456I: CA Signed Certificate Received [Issued By: O=IBM, C=US, Issued To:
 CN=mycn, O=ibm, C=us, Not Before: Thu Feb 22 09:07:53 CST 2007, Not
 After: Sat Feb 16 10:09:19 CST 2008]

createCertRequest command
The createCertRequest command creates a PKCS10 certificate request and stores it in a client keystore
so that it can be used to send to a certificate authority (CA) server using the requestCertificate command
line utility.

Location

Issue the command from the profile_root/bin directory.

Chapter 3. Using the administrative clients 141

Syntax

The command syntax is as follows:

createCertRequest.sh -keyStoreAlias<keystoreAlias> -subjectDN<subjectDN> -alias<certificateAlias> [options]

createCertRequest.bat -keyStoreAlias<keystoreAlias> -subjectDN<subjectDN> -alias<certificateAlias> [options]

Required Parameters

The following required parameter are used with the createCertRequest command:

-keyStoreAlias keyStoreAlias
Specifies the name of the keystore that is located in the ssl.client.props file for the profile to which the
CA signed certificate is added. This is the name of the ClientDefaultKeyStore file for either a managed
or unmanaged environment.

-subjectDN subjectDN
Specifies the distinguished name (DN) to be used for the PKCS10 certificate request. The DN must
contain the CN, O and C fields at a minimum.

-alias certificateAlias
Specifies the alias used to store the PKCS10 certificate request certificate in the keystore specified on
the request.

Note: the CA signed certificate is stored under the same alias and replaces the cert request certificate
when received.

Optional Parameters

The following options are available for the createCertRequest command:

-keySize key size
An option that specifies the size of the key. This option is only used valid if creating a PKCS10
certificate request in-band. Valid values include 512, 1024 2048, 4096 and 8192. Thd default size is
2048.

-certValidity valid days
The time period of certificate validity. Time period is measured from current date. This option is only
valid if creating a PKCS10 certificate request in-band. Default value is 365 days.

-subjectAltNames altName1;altName2;...
A semi-colon separated list of subject alternate names. This option is only used if creating a PKCS10
certificate request in-band.

-keyUsage keyUse1;keyUse2;...
A semi-colon separated list of key usage strings. This option is only valid if creating a PKCS10
certificate request in-band.

-extKeyUsage extKeyUse1;extKeyUse2;...
A semi-colon separated list of extended key usage strings. This option is only valid if creating a
PKCS10 certificate request in-band.

-logfile filename
The logfile that overrides the default trace file. By default, the trace appears in the
profiles/profile_name/log/caClient.log. file.

142 Administering applications and their environment

-trace
When specified, -trace enables tracing of the trace specification necessary to debug this component.
By default, the trace will appear in the profiles/profile_name/log/caClient.log file.

-replaceLog
An option to cause the existing trace file to be replaced when the command is executed.

-quiet
An option to suppress most messages from printing out on the console.

-help
The option to print a usage statement

-? The option to print a usage statement

Usage

The following example creates a PKCS10 certificate request for a client that can be used to send to a CA :

createCertRequest.sh -keyStoreAlias ClientDefaultKeyStore -subjectDN CN=mycn,o=ibm,c=us -alias cert1
CWPKI0403I: Trace is being logged to the following location:
 C:\opt\WebSphere\AppClient\logs\caClient.log
CWPKI0422I: Generating a PKCS10 certificate request
CWPKI0421I: A PKCS10 certificate was successfully created. The request
 is stored in file:
 C:\opt\WebSphere\AppClient\etc\certReq26924.req

C:\opt\WebSphere\AppClient\bin>createCertRequest.bat -keyStoreAlias ClientDefaultKeyStore
-subjectDN CN=mycn,o=ibm,c=us -alias cert1
CWPKI0403I: Trace is being logged to the following location:
 C:\opt\WebSphere\AppClient\logs\caClient.log
CWPKI0422I: Generating a PKCS10 certificate request
CWPKI0421I: A PKCS10 certificate was successfully created. The request
 is stored in file:
 C:\opt\WebSphere\AppClient\etc\certReq26924.req

queryCertificate command
The queryCertificate command uses an implementation class that is passed to communicate with a
certificate authority (CA) server and query a certificate.

The queryCertificate command checks to see if the certificate is complete. If the certificate is complete,
then the CA certificate is stored in the client keystore. If the certificate is not complete, the certificate
request remains in the keystore and the queryCertificate command can be called at some later time to
determine if the certificate is complete.

Location

Issue the command from the profile_root/bin directory.

Syntax

The command syntax is as follows:

(The command is split on multiple lines for printing purposes.)

queryCertificate.sh -host<caHost> -port<caPort> -username<caUserName> -password<caPassword>
-alias<certificateAlias> -keystoreAlias<keystoreAlias>
-pkiImplClass<customCAClient>[options]

Chapter 3. Using the administrative clients 143

queryCertificate.bat -host<caHost> -port<caPort> -username<caUserName> -password<caPassword>
-alias<certificateAlias> -keystoreAlias<keystoreAlias>
-pkiImplClass<customCAClient> [options]

Required Parameters

The following required parameter are used with the queryCertifcate command:

-host caHost
Specifies the target certificate authority host to which the request is sent.

-port caPort
Specifies the target port to connect to.

-username caUserName
Specifies the user name used to gain access to the certificate authority.

-password caPassword
Specifies the password used to authenticate with the certificate authority.

-alias certificateAlias
Specifies The alias of the certificate to be queried.

keyStoreAliaskeyStoreAlias
Specifies the name of the keystore that is located in the ssl.client.props file for the profile to which the
CA signed certificate is added. This name is the ClientDefaultKeyStore file for either a managed or
unmanaged environment.

-pkiImplClass custom CA client
A class that implements the WSPKIClient interface. The implementation class handles all the
communication to the CA server. This can be a custom class or a class provided with the product.

Optional Parameters

The following options are available for the queryCertificate command:

-customAttrs customAttr1=value;customAttr2=value;...
A semi-colon separated list of custom name=value pairs to be passed in to the custom implementation
class. This parameter provides a way to pass custom information to the implementation class. The
‘attr’ and ‘value’ pairs arel be converted to a hash map and passed along to the implementation class.

-retryInterval retry interval
The time period in seconds between retries of queries to the CA server for a CA signed certificate.

-retryLimit retry limit
The total number of times to retry a query request to the CA server.

-logfile filename
The logfile that overrides the default trace file. By default, the trace appears in the
profiles/profile_name/log/caClient.log. file.

-trace
When specified, -trace enables tracing of the trace specification necessary to debug this component.
By default, the trace appears in the profiles/profile_name/log/caClient.log file.

-replaceLog
An option to cause the existing trace file to be replaced when the command is executed.

-quiet
An option to suppress most messages from printing out on the console.

-help
The option to print a usage statement

144 Administering applications and their environment

Usage

The following example performs a queryCertificate:

queryCertificate.sh -host localhost -port 1077 -
username pkiuser -password webspherepki -alias C:\opt\WebSphere\AppClient\
etc\certReq26924.req -keyStoreAlias ClientDefaultKeyStore
CWPKI0403I: Trace is being logged to the following location:
 C:\opt\WebSphere\AppClient\logs\caClient.log
CWPKI0418E: The following error occurred while querying the CA for a signed
 certificate: CWPKI0463I: Action "query" not supported by this
 implementation.

C:\opt\WebSphere\AppClient\bin>queryCertificate.bat -host localhost -port 1077 -
username pkiuser -password webspherepki -alias C:\opt\WebSphere\AppClient\
etc\certReq26924.req -keyStoreAlias ClientDefaultKeyStore
CWPKI0403I: Trace is being logged to the following location:
 C:\opt\WebSphere\AppClient\logs\caClient.log
CWPKI0418E: The following error occurred while querying the CA for a signed
 certificate: CWPKI0463I: Action "query" not supported by this
 implementation.

Example: Security and the command line tools
If you want to enable WebSphere Application Server security, you need to provide the command line tools
with authentication information.

Without authentication information, the command line tools receive an AccessDenied exception when you
attempt to use them with security enabled. There are multiple ways to provide authentication data:
v Most command line tools support a -username and -password option for providing basic authentication

data. Specify the user ID and password for an administrative user. For example, you can use a member
of the administrative console users with operator or administrator privileges, or the administrative user
ID configured in the user registry. The following example demonstrates the stopNode command, which
specifies command line parameters:
stopNode -username adminuser -password adminpw

v You can place the authentication data in a properties file that the command line tools read. The default
file for this data is the sas.client.props file in the properties directory for the current profile.

Chapter 3. Using the administrative clients 145

146 Administering applications and their environment

Chapter 4. Using Ant to automate tasks

To support using Apache Ant with Java Platform, Enterprise Edition (Java EE) applications running on the
application server, the product provides a copy of the Ant tool and a set of Ant tasks that extend the
capabilities of Ant to include product-specific functions. Ant has become a very popular tool among Java
programmers.

About this task

Apache Ant is a Java-based build tool. In theory, it is similar to Make, but Ant is different. Instead of a
model in which it is extended with shell-based commands, Ant is extended using Java classes. Instead of
writing shell commands, XML-based configuration files are used. These files reference a target tree in
which various tasks are run. Each task is run by an object that implements a particular Task interface.

gotcha:

v Calling the WebSphere_Ant (WsAnt) scripts outside of the ws_ant launcher is not supported or
recommended.

v When you invoke the Ant tool, do not pass empty strings in place of command arguments in
ant script. The script will not work in the wsadmin environment. The <arg value> cannot be an
empty string, such as shown in the following example:
<?xml version="1.0" encoding="UTF-8"?>
<project name="proj" default="main">
 <taskdef name="wsadmin" classname="com.ibm.websphere.ant.tasks.WsAdmin"/>
 <target name="main">
 <wsadmin,conntype="NONE" lang="jython" failonerror="true" script="&(basedir)/script.ph">
 <arg value="blah" />
 <arg value="" />
 </wsadmin>
 <!-- manaeapp action="blah" variation-number="0" -->
 </target>
</project>

By combining the following tasks with those provided by Ant, you can create build scripts that compile,
package, install, and test your application on the application server:

v Install and uninstall applications

v Start and stop servers in a base configuration

v Run administrative scripts or commands

v Run the Enterprise JavaBeans (EJB) deployment tool for EJB 1.x or 2.x modules

v Run the JavaServer Pages (JSP) file precompilation tool

For more detailed information about Ant, refer to the Apache organization website.

Procedure
v To run Ant and have it automatically see the WebSphere classes, use the ws_ant command.

The ws_ant command is provided with the Apache Ant tool.

See the app_server_root/bin/ws_ant.bat|sh file for the Apache Ant tool.

v Use Ant tasks for deployment and server operation.

The Apache Ant tasks for the product reside in the Java package: com.ibm.websphere.ant.tasks. The
API documentation for this package contains detailed information about all of the Ant tasks that are
provided and how to use them.

See com.ibm.websphere.ant.tasks API documentation in the Reference section of the information
center.

v Use Ant tasks for building application code.

© Copyright IBM Corp. 2011 147

http://ant.apache.org/index.html

Refer to the Rational Application Developer documentation.

v Use the Apache Struts framework to create an extensible development environment for your application,
based on published standards and proven design patterns.

Apache struts is a framework that is supported by the open source community.

IBM WebSphere Application Server provides the Apache Struts JAR file in the install_root/
optionalLibraries/Apache/Struts/1.1 directory of your product installation. If using Struts in your
application or Application Server, you need to configure a shared library that points to the Struts library
JAR file.

The Struts framework provides the invisible underpinnings every professional web application needs to
survive. The core of Struts is a flexible control layer based on standard technologies such as Java
Servlets, JavaBeans, ResourceBundles, and Extensible Markup Language (XML).

Note: Shipment of Apache Struts 1.1, 1.2.4, and 1.2.7 as optional libraries within WebSphere
Application Server is deprecated in Version 7.0.

Struts encourages application architectures based on the Model 2 approach, a variation of the classic
Model-View-Controller (MVC) design paradigm. Struts provides its own Controller component and
integrates with other technologies to provide the Model and the View. For the Model, Struts can interact
with any standard data access technology, including Enterprise Java Beans (EJB) components, and
JDBC. For the View, Struts works well with JavaServer Pages (JSP) files, XSLT, or other presentation
systems.

148 Administering applications and their environment

Chapter 5. Starting and stopping quick reference

Start and stop servers in your application serving environment, referring to this quick guide to the
administrative clients and several other tools that are provided with this product.

Procedure
v Use commands to start and stop servers.

 Table 13. Commands to start and stop servers. Run a start or stop command that is appropriate for the target
server.

Quick reference: Issuing commands to start and stop servers

These examples are for starting and stopping the default profile on a server. Otherwise, you might need to specify
-profileName profile_name when invoking the command.

Application server

Run the following command. See “startServer command” on page 105 for details and variations

startServer server

where server is the application server that you want to start.

Stopping the servers

Use the same command as to start, except substitute stop for start. For example, to stop an application server, issue
the command:

stopServer server

v Use administrative clients and tools.

 Table 14. Opening the administrative console. Point a Web browser at the console.

Quick reference: Opening the administrative console

To open the console using the default port, enter this web address in your web browser:

http://your_fully_qualified_server_name:9060/ibm/console

Depending on your configuration, your web address might differ. Other factors can affect your ability to access the
console. See “Starting and logging off the administrative console” on page 19 for details, as needed.

– To launch a scripting client, see Starting the wsadmin scripting client using wsadmin scripting.

– To learn about all available administrative clients, see Using the administrative clients.

– For performance monitoring, see Monitoring performance with Tivoli Performance Viewer .

See the administrator commands that are listed in the Reference section of the information center.

v Use troubleshooting tools.

See Working with troubleshooting tools.

© Copyright IBM Corp. 2011 149

150 Administering applications and their environment

Chapter 6. Backing up and recovering the application serving
environment

The product uses many operating system and application resources that you should consider adding to
your backup and recovery procedures.

About this task

WebSphere Application Server resources can be saved while the product environment is active. When
backing up database data, you may have to shut down some or all services if a snapshot cannot be
obtained. This would occur if there are requests which obtain locks or have open transactions against the
database being saved. In a distributed environment, you may need to consider how to get a consistent
backup across several systems. If the data on systems is not closely related to data on other systems, you
may be able to backup each system in isolation. If you need a snapshot across systems simultaneously,
you may need to stop activity on all systems while the snapshot is taken.

How often you back up resources depends largely on when or how often you expect them to change.

Procedure
v Back up your product environment configuration.

This category covers the resources that define your WebSphere Application Server operating
environment. Once you have done initial setup, this information should change very infrequently. You
might backup this information only when you change these settings, and not include these resources in
regularly scheduled backups.

– Administrative configuration files

– HTTP configuration (see the documentation for your web server)

v Back up your applications.

This category covers the applications you run using the product. You should back these up the same
way you back up other applications on your system. You could backup these resources every time you
add or change an application, or include these resources in a regularly scheduled backup.

– Application deployment configuration files

v Back up your application data.

This category covers the data stores used by your WebSphere Application Server applications. Unless
your applications serve only static information, these resources are usually quite dynamic. You should
back these up the same way you back up other business data on your system. These resources are
suited for inclusion in a regularly scheduled backup.

– Servlet session data

What to do next

If your applications are using other resources or services that are external to the product, remember to
include those in your backup plan as well.

© Copyright IBM Corp. 2011 151

152 Administering applications and their environment

Chapter 7. Class loading

Class loaders are part of the Java virtual machine (JVM) code and are responsible for finding and loading
class files. Class loaders enable applications that are deployed on servers to access repositories of
available classes and resources. Application developers and deployers must consider the location of class
and resource files, and the class loaders used to access those files, to make the files available to
deployed applications. Class loaders affect the packaging of applications and the runtime behavior of
packaged applications of deployed applications.

Before you begin

This topic describes how to configure class loaders for application files or modules that are installed on an
application server.

To better understand class loaders in WebSphere Application Server, read “Class loaders.” The topic
“Class loading: Resources for learning” on page 163 refers to additional sources.

About this task

Configure class loaders for application files or modules that are installed on an application server using the
administrative console. You configure class loaders to ensure that deployed application files and modules
can access the classes and resources that they need to run successfully.

Procedure
1. If an installed application module uses a resource, create a resource provider that specifies the

directory name of the resource drivers.

Do not specify the resource Java archive (JAR) file names. All JAR files in the specified directory are
added into the class path of the WebSphere Application Server extensions class loader. If a resource
driver requires a native library (.dll or .so file), specify the name of the directory that contains the
library in the native path of the resource configuration.

2. Specify class-loader values for an application server.

3. Specify class-loader values for an installed enterprise application.

4. Specify the class-loader mode for an installed web module.

5. If your deployed application uses shared library files, associate the shared library files with your
application. Use a library reference to associate a shared library file with your application.

a. If you have not done so already, define shared libraries for library files that your applications need.

b. Define a library reference for each shared library that your application uses.

What to do next

After configuring class loaders, ensure that your application performs as desired. To diagnose and fix
problems with class loaders, refer to Troubleshooting class loaders.

Class loaders
Class loaders find and load class files. Class loaders enable applications that are deployed on servers to
access repositories of available classes and resources. Application developers and deployers must
consider the location of class and resource files, and the class loaders used to access those files, to make
the files available to deployed applications.

This topic provides the following information about class loaders in WebSphere Application Server:
v “Class loaders used and the order of use” on page 154
v “Class-loader isolation policies” on page 155

© IBM Corporation 2002 153

v “Class-loader modes” on page 157

Class loaders used and the order of use

The product runtime environment uses the following class loaders to find and load new classes for an
application in the following order:

1. The bootstrap, extensions, and CLASSPATH class loaders created by the Java virtual machine

The bootstrap class loader uses the boot class path (typically classes in jre/lib) to find and load
classes. The extensions class loader uses the system property java.ext.dirs (typically jre/lib/ext) to
find and load classes. The CLASSPATH class loader uses the CLASSPATH environment variable to
find and load classes.

The CLASSPATH class loader loads the Java Platform, Enterprise Edition (Java EE) application
programming interfaces (APIs) provided by the WebSphere Application Server product in the j2ee.jar
file. Because this class loader loads the Java EE APIs, you can add libraries that depend on the Java
EE APIs to the class path system property to extend a server class path. However, a preferred method
of extending a server class path is to add a shared library.

2. A WebSphere extensions class loader

The WebSphere extensions class loader loads the WebSphere Application Server classes that are
required at run time. The extensions class loader uses a ws.ext.dirs system property to determine the
path that is used to load classes. Each directory in the ws.ext.dirs class path and every Java archive
(JAR) file or compressed file in these directories is added to the class path used by this class loader.

The WebSphere extensions class loader also loads resource provider classes into a server if an
application module installed on the server refers to a resource that is associated with the provider and
if the provider specifies the directory name of the resource drivers.

3. One or more application module class loaders that load elements of enterprise applications running in
the server

The application elements can be web modules, enterprise bean (EJB) modules, resource adapter
archives (RAR files), and dependency JAR files. Application class loaders follow Java EE class-loading
rules to load classes and JAR files from an enterprise application. The product enables you to
associate shared libraries with an application.

4. Zero or more web module class loaders

By default, web module class loaders load the contents of the WEB-INF/classes and WEB-INF/lib
directories. Web module class loaders are children of application class loaders. You can specify that an
application class loader load the contents of a web module rather than the web module class loader.

154 Administering applications and their environment

Each class loader is a child of the previous class loader. That is, the application module class loaders are
children of the WebSphere extensions class loader, which is a child of the CLASSPATH Java class loader.
Whenever a class needs to be loaded, the class loader usually delegates the request to its parent class
loader. If none of the parent class loaders can find the class, the original class loader attempts to load the
class. Requests can only go to a parent class loader; they cannot go to a child class loader. If the
WebSphere extensions class loader is requested to find a class in a Java EE module, it cannot go to the
application module class loader to find that class and a ClassNotFoundException error occurs. After a
class is loaded by a class loader, any new classes that it tries to load reuse the same class loader or go
up the precedence list until the class is found.

Class-loader isolation policies

The number and function of the application module class loaders depend on the class-loader policies that
are specified in the server configuration. Class loaders provide multiple options for isolating applications
and modules to enable different application packaging schemes to run on an application server.

Two class-loader policies control the isolation of applications and modules:

 Table 15. Class-loader policy descriptions. Available policies include Application and WAR.

Class-loader policy Description

Application Application class loaders load EJB modules, dependency JAR files, embedded resource
adapters, and application-scoped shared libraries. Depending on the application
class-loader policy, an application class loader can be shared by multiple applications
(Single) or unique for each application (Multiple). The application class-loader policy
controls the isolation of applications that are running in the system. When set to Single,
applications are not isolated. When set to Multiple, applications are isolated from each
other.

WAR By default, web module class loaders load the contents of the WEB-INF/classes and
WEB-INF/lib directories. The application class loader is the parent of the web module class
loader. You can change the default behavior by changing the web application archive
(WAR) class-loader policy of the application.

The WAR class-loader policy controls the isolation of web modules. If this policy is set to
Application, then the Web module contents also are loaded by the application class loader
(in addition to the EJB files, RAR files, dependency JAR files, and shared libraries). If the
policy is set to Module, then each web module receives its own class loader whose parent
is the application class loader.
Tip: The console and the underlying deployment.xml file use different names for WAR
class-loader policy values. In the console, the WAR class-loader policy values are
Application or Module. However, in the underlying deployment.xml file where the policy is
set, the WAR class-loader policy values are Single instead of Application, or Multiple
instead of Module. Application is the same as Single, and Module is the same as
Multiple.

Restriction: WebSphere Application Server class loaders never load application client modules.

For each application server in the system, you can set the application class-loader policy to Single or
Multiple. When the application class-loader policy is set to Single, then a single application class loader
loads all EJB modules, dependency JAR files, and shared libraries in the system. When the application
class-loader policy is set to Multiple, then each application receives its own class loader that is used for
loading the EJB modules, dependency JAR files, and shared libraries for that application.

An application class loader loads classes from web modules if the application's WAR class-loader policy is
set to Application. If the application's WAR class-loader policy is set to Module, then each WAR module
receives its own class loader.

Chapter 7. Class loading 155

The following example shows that when the application class-loader policy is set to Single, a single
application class loader loads all of the EJB modules, dependency JAR files, and shared libraries of all
applications on the server. The single application class loader can also load web modules if an application
has its WAR class-loader policy set to Application. Applications that have a WAR class-loader policy set
to Module use a separate class loader for web modules.
Server’s application class-loader policy: Single
Application’s WAR class-loader policy: Module

Application 1
 Module: EJB1.jar
 Module: WAR1.war
 MANIFEST Class-Path: Dependency1.jar
 WAR Classloader Policy = Module
Application 2
 Module: EJB2.jar
 MANIFEST Class-Path: Dependency2.jar
 Module: WAR2.war
 WAR Classloader Policy = Application

The following example shows that when the application class-loader policy of an application server is set
to Multiple, each application on the server has its own class loader. An application class loader also loads
its web modules if the application WAR class-loader policy is set to Application. If the policy is set to
Module, then a web module uses its own class loader.
Server’s application class-loader policy: Multiple
Application’s WAR class-loader policy: Module

Application 1
 Module: EJB1.jar
 Module: WAR1.war
 MANIFEST Class-Path: Dependency1.jar
 WAR Classloader Policy = Module
Application 2

156 Administering applications and their environment

Module: EJB2.jar
 MANIFEST Class-Path: Dependency2.jar
 Module: WAR2.war
 WAR Classloader Policy = Application

Class-loader modes

The class-loader delegation mode, also known as the class loader order, determines whether a class
loader delegates the loading of classes to the parent class loader. The following values for class-loader
mode are supported:

 Table 16. Class-loader mode descriptions. Available modes include Parent first and Parent last.

Class-loader mode Description

Parent first

Also known as Classes
loaded with parent
class loader first.

The Parent first class-loader mode causes the class loader to delegate the loading of
classes to its parent class loader before attempting to load the class from its local class
path. This value is the default for the class-loader policy and for standard JVM class
loaders.

Parent last

Also known as Classes
loaded with local
class loader first or
Application first.

The Parent last class-loader mode causes the class loader to attempt to load classes
from its local class path before delegating the class loading to its parent. Using this policy,
an application class loader can override and provide its own version of a class that exists in
the parent class loader.

The following settings determine the mode of a class loader:

v If the application class-loader policy of an application server is Single, the server-level mode value
defines the mode for an application class loader.

v If the application class-loader policy of an application server is Multiple, the application-level mode
value defines the mode for an application class loader.

Chapter 7. Class loading 157

v If the WAR class-loader policy of an application is Module, the module-level mode value defines the
mode for a WAR class loader.

Configuring class loaders of a server
You can configure the application class loaders for an application server. Class loaders enable applications
that are deployed on the application server to access repositories of available classes and resources.

Before you begin

This topic assumes that an administrator created an application server on a WebSphere Application Server
product.

About this task

Configure the class loaders of an application server to set class-loader policy and mode values which
affect all applications that are deployed on the server. Use the administrative console to configure the
class loaders.

Procedure
1. Click Servers > Server Types > WebSphere application servers > server_name to access an

application server settings page.

2. Specify the application class-loader policy for the application server.

The application class-loader policy controls the isolation of applications that run in the system (on the
server). An application class loader groups enterprise bean (EJB) modules, shared libraries, resource
adapter archives (RAR files), and dependency Java archive (JAR) files associated to an application.
Dependency JAR files are JAR files that contain code which can be used by both enterprise beans
and servlets. The application class-loader policy controls whether an application class loader can be
shared by multiple applications or is unique for each application.

Use the application server settings page to specify the application class-loader policy for the server:

 Option Description

Single Applications are not isolated from each other. Uses a
single application class loader to load all of the EJB
modules, shared libraries, and dependency JAR files in
the system.

Multiple Applications are isolated from each other. Gives each
application its own class loader to load the EJB modules,
shared libraries, and dependency JAR files of that
application.

3. Specify the application class-loader mode for the application server.

The application class loading mode specifies the class-loader mode when the application class-loader
policy is Single.

On the application server settings page, select either of the following values:

 Option Description

Classes loaded with parent class loader first Causes the class loader to delegate the loading of
classes to its parent class loader before attempting to
load the class from its local class path. Classes loaded
with parent class loader first is the default value for
class loading mode.

This value is also known as parent first.

158 Administering applications and their environment

Option Description

Classes loaded with local class loader first (parent
last)

Causes the class loader to attempt to load classes from
its local class path before delegating the class loading to
its parent. Using this policy, an application class loader
can override and provide its own version of a class that
exists in the parent class loader.

4. Specify the class-loader mode for the class loader.

a. On the application server settings page, click Java and Process Management > Class loader to
access the Class loader page.

b. On the Class loader page, click New to access the settings page for a class loader.

c. On the class loader settings page, specify the class loader order.

The Classes loaded with parent class loader first value causes the class loader to delegate
the loading of classes to its parent class loader before attempting to load the class from its local
class path.

The Classes loaded with local class loader first (parent last) value causes the class loader
to attempt to load classes from its local class path before delegating the class loading to its parent.

d. Click OK.

An identifier is assigned to a class-loader instance. The instance is added to the collection of class
loaders shown on the Class loader page.

What to do next

Save the changes to the administrative configuration.

Class loader collection
Use this page to manage class-loader instances on an application server. A class loader determines
whether an application class loader or a parent class loader finds and loads Java class files for an
application.

To view this administrative console page, click Servers > Server types > WebSphere application
servers > server_name. Under Server Infrastructure, expand Java and Process Management then
click Class loader.

Class loader ID
Specifies a string that is unique to the server identifying the class-loader instance. The product assigns the
identifier.

Class loader order
Specifies whether the class loader searches in the parent class loader or in the application class loader
first to load a class. The standard for development kit class loaders and WebSphere Application Server
class loaders is Classes loaded with parent class loader first (Parent first). By specifying Classes
loaded with local class loader first (Parent last), your application can override classes contained in
the parent class loader, but this action can potentially result in ClassCastException or LinkageErrors if you
have mixed use of overridden classes and non-overridden classes.

Class loader settings
Use this page to configure a class loader for applications that reside on an application server.

Chapter 7. Class loading 159

To view this administrative console page, click Servers > Server types > WebSphere application
servers > server_name. Under Server Infrastructure, expand Java and Process Management then
click Class loader. Click on a Class_loader_ID.

Class loader ID
Specifies a string that is unique to the server identifying the class-loader instance. The product assigns the
identifier.

 Data type String

Class loader order
Specifies whether the class loader searches in the parent class loader or in the application class loader
first to load a class. The standard for development kit class loaders and WebSphere Application Server
class loaders is Classes loaded with parent class loader first. By specifying Classes loaded with
local class loader first (parent last), your application can override classes contained in the parent
class loader, but this action can potentially result in ClassCastException or LinkageErrors if you have
mixed use of overridden classes and non-overridden classes.

The options are Classes loaded with parent class loader first and Classes loaded with local class
loader first (parent last). The default is to search in the parent class loader before searching in the
application class loader to load a class.

For your application to use the default configuration of Jakarta Commons Logging in this product, set this
application class loader order to Classes loaded with parent class loader first. For your application to
override the default configuration of Jakarta Commons Logging, your application must provide the
configuration in a form supported by Jakarta Commons Logging and this class loader order must be set to
Classes loaded with local class loader first (parent last). Also, to override the default
configuration, set the class loader order for each web module in your application so that the correct logger
factory loads.

 Data type String
Default Parent first

Configuring application class loaders
You can set values that control the class-loading behavior of an installed enterprise application. Class
loaders enable an application to access repositories of available classes and resources.

Before you begin

This topic assumes that you installed an application on an application server.

About this task

Configure the class loaders of an enterprise application to set class-loader policy and mode values for this
application.

An application class loader groups enterprise bean (EJB) modules, shared libraries, resource adapter
archive (RAR) files, and dependency Java archive (JAR) files associated to an application. Dependency
JAR files are JAR files that contain code which can be used by both enterprise beans and servlets.

An application class loader is the parent of a web application archive (WAR) class loader. By default, a
web module has its own WAR class loader to load the contents of the web module. The WAR class-loader
policy value of an application class loader determines whether the WAR class loader or the application
class loader is used to load the contents of the Web module.

160 Administering applications and their environment

Use the administrative console to configure the class loaders.

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Procedure
1. Click Applications > Application Types > WebSphere enterprise applications > application_name

> Class loading and update detection to access the settings page for an application class loader.

2. Specify whether to reload application classes when the application or its files are updated.

By default, class reloading is not enabled. Select Override class reloading settings for web and
EJB modules to choose to reload application classes. You might specify different values for EJB
modules and for web modules such as servlets and JavaServer Pages (JSP) files.

3. Specify the number of seconds to scan the application's file system for updated files.

The value specified for Polling interval for updated files takes effect only if class reloading is
enabled. The default is the value of the reloading interval attribute in the IBM extension
(META-INF/ibm-application-ext.xmi) file of the enterprise application (EAR file). You might specify
different values for EJB modules and for web modules such as servlets and JSP files.

To enable reloading, specify an integer value that is greater than zero (for example, 1 to 2147483647).

To disable reloading, specify zero (0).

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending
on whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later
application or module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi
where * is the type of extension or binding file such as app, application, ejb-jar, or web. The
following conditions apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If
.xmi files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE
5 files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

4. Specify the class loader order for the application.

The application class loader order specifies whether the class loader searches in the parent class
loader or in the application class loader first to load a class. The default is to search in the parent class
loader before searching in the application class loader to load a class.

Select either of the following values for Classes loader order:

 Option Description

Classes loaded with parent class loader first Causes the class loader to search in the parent class
loader first to load a class. This value is the standard for
Development Kit class loaders and WebSphere
Application Server class loaders.

Chapter 7. Class loading 161

Option Description

Classes loaded with local class loader first (parent
last)

Causes the class loader to search in the application class
loader first to load a class. By specifying Classes loaded
with local class loader first (parent last), your
application can override classes contained in the parent
class loader.
Note: Specifying the Classes loaded with local class
loader first (parent last) value might result in
LinkageErrors or ClassCastException messages if you
have mixed use of overridden classes and non-overridden
classes.

5. Specify whether to use a single or multiple class loaders to load web application archives (WAR files)
of your application.

By default, web modules have their own WAR class loader to load the contents of the WEB-INF/classes
and WEB-INF/lib directories. The default WAR class loader value is Class loader for each WAR file
in application, which uses a separate class loader to load each WAR file. Setting the value to Single
class loader for application causes the application class loader to load the web module contents
as well as the EJB modules, shared libraries, RAR files, and dependency JAR files associated to the
application. The application class loader is the parent of the WAR class loader.

Select either of the following values for WAR class loader policy:

 Option Description

Class loader for each WAR file in application Uses a different class loader for each WAR file.

Single class loader for application Uses a single class loader to load all of the WAR files in
your application.

6. Click OK.

What to do next

Save the changes to the administrative configuration.

Configuring web module class loaders
You can set values that control the class-loading behavior of an installed web module.

Before you begin

This topic assumes that you installed a web module on an application server.

About this task

Configure the class loader order value of an installed web module. By default, a web module has its own
web application archive (WAR) class loader to load the contents of the web module, which are in the
WEB-INF/classes and WEB-INF/lib directories.

An application class loader is the parent of a WAR class loader. The WAR class-loader policy value of an
application class loader determines whether the WAR class loader or the application class loader is used
to load the contents of the web module.

The default WAR class loader policy value is Class loader for each WAR file in application. If the
policy is set to Class loader for each WAR file in application, then each web module receives its own
class loader whose parent is the application class loader. If the policy is set to Single class loader for
application, then the application class loader loads the web module contents as well as the enterprise

162 Administering applications and their environment

bean (EJB) modules, shared libraries, resource adapter archive (RAR) files, and dependency Java archive
(JAR) files associated to an application. Thus, the configuration of the parent application class loader
affects the WAR class loader. You can set the policy on the Class loading and update detection page of an
administrative console.

Use the administrative console to configure the application and WAR class loaders.

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Procedure
1. If you have not done so already, configure the application class loader.

Settings such as Override class reloading settings for web and EJB modules, Polling interval for
updated files and WAR class loader policy can affect web module class loading.

If WAR class loader policy is set to Class loader for each WAR file in application, then the web
module receives its own class loader and the WAR class-loader policy of the web module defines the
mode for a WAR class loader. If the policy is set to Single class loader for application, then the
application class loader loads the web module contents.

2. Specify the class loader order for the installed web module.

The web module class-loader mode specifies whether the class loader searches in the parent
application class loader or in the WAR class loader first to load a class. The default is to search in the
parent application class loader before searching in the WAR class loader to load a class.

Select either of the following values for Class loader order:

 Option Description

Classes loaded with parent class loader first This option causes the class loader to prefer classes that
are provided by the product over the classes that exist
within the web module. This approach is standard for
Development Kit class loaders and WebSphere
Application Server class loaders.

Classes loaded with local class loader first This option causes the class loader to prefer classes that
exist in the web module over the classes that are
provided by the product. If the same class exists in both
the product and the web module, the class from the web
module is loaded.

Attention: If you specify the Classes loaded with
local class loader first value, you might receive
LinkageErrors or ClassCastException messages if you
have mixed use of overridden classes and non-overridden
classes.

3. Click OK.

What to do next

Save the changes to the administrative configuration.

Class loading: Resources for learning
Additional information and guidance on class loading is available on various Internet sites.

Chapter 7. Class loading 163

Use the following links to find relevant supplemental information about class loaders. The information
resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the
information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere
Application Server product, but is useful all or in part for understanding the product. When possible, links
are provided to technical papers and Redbooks that supplement the broad coverage of the release
documentation with in-depth examinations of particular product areas.

View links to additional information about:
v “Programming model and decisions”
v “Programming instructions and examples”
v “Programming specifications”

Programming model and decisions
v Demystifying class loading problems, Part 1: An introduction to class loading and debugging tools -

Learn how class loading works and how your JVM can help you sort out class loading problems
(developerWorks, November 2005), http://www.ibm.com/developerworks/java/library/j-dclp1/
?S_TACT=106AH10W&S_CMP=NC

v Demystifying class loading problems, Part 2: Basic class loading exceptions - An in-depth look at some
simple class loading quirks and conundrums (developerWorks, December 2005), http://www.ibm.com/
developerworks/java/library/j-dclp2.html?S_TACT=105AGX10&S_CMP=NC

v Demystifying class loading problems, Part 3: Tackling more unusual class loading problems -
Understand class loading and quash subtle exceptions (developerWorks, December 2005),
http://www.ibm.com/developerworks/java/library/j-dclp3/?S_TACT=105AGX10&S_CMP=NC

v J2EE Class Loading Demystified (developerWorks, August 2002), http://www.ibm.com/developerworks/
websphere/library/techarticles/0112_deboer/deboer.html

v Java programming dynamics, Part 1: Classes and class loading - A look at classes and what goes on
as they're loaded by a JVM (developerWorks, April 2003), http://www.ibm.com/developerworks/java/
library/j-dyn0429/

Programming instructions and examples
v WebSphere Application Server V6.1: System Management Configuration Handbook, SG24-7304-00,

http://www.redbooks.ibm.com/abstracts/SG247304.html?Open

v IBM WebSphere Developer Technical Journal: Co-hosting multiple versions of J2EE applications,
http://www.ibm.com/developerworks/websphere/techjournal/0405_poddar/0405_poddar.html

Programming specifications
v Specifications and API documentation

164 Administering applications and their environment

Chapter 8. Deploying and administering enterprise
applications

Deploying an enterprise application file consists of installing an application file on a server configured to
hold installable Java Platform, Enterprise Edition (Java EE) modules.

Before you begin

Before installing an enterprise application or other installable module on an application server, you must
develop the module, assemble the module, and configure the target server . Before choosing a
deployment target for the module, ensure that the target version is compatible with your module.

About this task

During installation, you can configure the module enough to enable it to run on the server. After
installation, you can configure the module further, start or stop the application, and otherwise manage its
activity.

The topics in this section describe how to deploy and administer applications or modules using the
administrative console. You can also use scripting or administrative programs (JMX).

Procedure
v Install Java EE application files on an application server.

v Edit the administrative configuration for an application.

v Optional: View the deployment descriptor for an application or module.

v Start and stop enterprise applications.

v Export enterprise applications.

v Export a file in a Java EE application or module.

v Export DDL files.

v Update a Java EE application or module.

v Uninstall enterprise applications using the console.

v Uninstall enterprise applications by removing them from a monitored directory.

v Remove a file from a Java EE application or module.

What to do next

After making changes to administrative configurations of your applications in the administrative console,
ensure that you save the changes.

Enterprise (Java EE) applications
Enterprise applications (or Java EE applications) are applications that conform to the Java Platform,
Enterprise Edition (Java EE) specification. Prior to Java EE 5, the specification name was Java 2 Platform,
Enterprise Edition (J2EE). The term Java EE includes Java EE 5 and J2EE specifications.

Enterprise applications can consist of the following:
v Zero or more EJB modules (packaged in JAR files)
v Zero or more web modules (packaged in WAR files)
v Zero or more connector modules (packaged in RAR files)
v Zero or more Session Initiation Protocol (SIP) modules (packaged in SAR files)
v Zero or more application client modules

© Copyright IBM Corp. 2011 165

v Additional JAR files containing dependent classes or other components required by the application
v Any combination of the above

A Java EE application is represented by, and packaged in, an enterprise archive (EAR) file.

System applications
A system application is a Java Platform, Enterprise Edition (Java EE) enterprise application that is central
to a WebSphere Application Server product.

Examples of system applications include isclite, managementEJB and filetransfer.

Because a system application is an important part of a WebSphere Application Server product, a system
application is deployed when the product is installed and is updated only through a product fix or upgrade.
For some system applications, such as filetransfer, users cannot change the metadata for the system
application, unless the metadata assigns users and groups for security purposes. For these applications,
non-security related metadata such as its Java EE bindings or extensions must be updated through a
product fix or upgrade.

System applications are not shown in the list of installed applications on the console Enterprise
Applications page, or through wsadmin and Java application programming interfaces, to prevent users
from accidentally stopping, updating or removing the system applications.

Note that Java EE Samples are not system applications even though they are provided as part of a
WebSphere Application Server product. Similarly, applications that support changes to their metadata are
not system applications.

Common deployment framework
The common deployment framework enables you to implement plug-ins that add steps to default Java
Platform, Enterprise Edition (Java EE) application management operations such as install, uninstall, edit
and update.

Using the framework, you can implement management operations on specific types of deployable
contents. For example, the deployable contents might include EAR, WAR, JAR or other Java EE modules
and the management operations might include install and uninstall. Each operation is divided into a
number of steps. For example, the install operation has steps for EJBDeploy and JavaServer Pages (JSP)
compilation, among others. Using the common deployment framework, you can add steps to the default
logic for Java EE operations.

The product supports framework plug-ins that extend deployment of EAR files. An EAR file has operations
such as createEarWrapper, installApplication, uninstallApplication and editApplication. Using a framework
plug-in, you can add steps to default install operations that support, for example, creating additional
configuration artifacts in a configuration session, modifying an input EAR file using code generation, or
additional validating of input parameters.

To extend application management operations using the framework, a plug-in must do the following:

v Implement each step.

A step runs logic that performs an operation. A step can access the deployment context and the
deployable object. The deployment context provides information such as the operation name, the
configuration session identifier, the temporary location for creating temporary files, operations
parameters, and the like. A step is added by the extension provider.

v Implement an extension provider that adds each implemented step.

An extension provider is a class that provides steps for an operation on a given type, the EAR file type.

v Register the plug-in with a WebSphere Application Server server.

166 Administering applications and their environment

The plug-in is implemented as an Eclipse plug-in and is placed in app_server_root/plugins directory.
Add the extension point for the extension provider in the META-INF/plugin.xml file within the plug-in JAR
file.

For an example of these steps, refer to Extending application management operations through
programming.

Installing enterprise application files
As part of deploying an application, you install application files on a server configured to hold installable
modules.

Before you begin

Before you can install your Java Platform, Enterprise Edition (Java EE) application files on an application
server, you must assemble modules as needed.

Also, before you install the files, configure the target application server. As part of configuring the server,
determine whether your application files can be installed to your deployment targets.

About this task

You can install the following enterprise modules on a server:
v Enterprise archive (EAR)
v Enterprise bean (EJB)
v Web archive (WAR)
v Session Initiation Protocol (SIP) module (SAR)
v Resource adapter (connector or RAR)
v Application client modules

Application client files can be installed in a WebSphere Application Server configuration but cannot be run
on a server.

Complete the following steps to install your files.

Procedure
1. Determine which method to use to install your application files. The product provides several ways to

install modules.

2. Install the application files using

v Administrative console

v Drag and drop to a monitored directory

v wsadmin scripts

v Java administrative programs that use Java Management Extensions (JMX) application
programming interfaces (APIs)

v Java programs that define a Java EE DeploymentManager object in accordance with Java EE
Application Deployment specification (JSR-88)

3. Start the deployed application files using
v Administrative console
v wsadmin startApplication
v Java programs that use ApplicationManager or AppManagement MBeans
v Java programs that define a Java EE DeploymentManager object in accordance with Java EE

Application Deployment specification (JSR-88)

Chapter 8. Deploying and administering enterprise applications 167

What to do next

Save the changes to your administrative configuration.

Next, test the application. For example, point a web browser at the URL for a deployed application.
Typically, the URL is http://hostname:9060/web_module_name, where hostname is your valid web server
and 9060 is the default port number. Examine the performance of the application. If the application does
not perform as desired, edit the application configuration, then save and test it again.

If your application contains many classes with annotations and takes a long time to deploy, you can
reduce annotation searches to speed up deployment. See the topic on reducing annotation searches
during application deployment.

Installable enterprise module versions
The contents of a Java Platform, Enterprise Edition (Java EE) module affect whether you can install the
module on a deployment target. A deployment target is a server on a WebSphere Application Server
product.

Installable application modules

Select only appropriate deployment targets for a module. You must install an application, enterprise bean
(EJB) module, Session Initiation Protocol (SIP) archive (SAR), web module, or client module on a Version
8.x target under any of the following conditions:
v The module supports Java Platform, Enterprise Edition (Java EE) 6
v The module calls an 8.x runtime application programming interface (API).
v The module uses an 8.x product feature.

For example, because support for deployment of application client modules using the administrative
console or wsadmin AdminApp commands was added in Version 8.0, you must install a client module
using the console or an AdminApp command only to a Version 8.x target.

If a module supports Java 2 Platform, Enterprise Edition (J2EE) 1.4, then you can install the module on a
Version 6.x, 7.x or 8.x deployment target. Modules that call a 6.1.x API or use a 6.1.x feature can be
installed on a 6.1.x, 7.x or 8.x deployment target. Modules that call a 6.0.x API or use a 6.0.x feature can
be installed on a 6.0.x, 6.1.x, 7.x or 8.x deployment target. Modules that require 6.1.x feature pack
functionality can be installed on a 7.x or 8.x deployment target or on a 6.1.x deployment target that has
been enabled with that feature pack. Modules that require 7.x feature pack functionality can be installed on
a 8.x deployment target or on a 7.x deployment target that has been enabled with that feature pack.

Selecting options such as Precompile JavaServer Pages files, Use binary configuration, Deploy web
services or Deploy enterprise beans during application installation indicates that the application uses
6.1.x product features. You cannot deploy such applications on a 6.0.x deployment target. You must
deploy such applications on a 6.1.x, 7.x or 8.x deployment target.

Note: You must package container-managed persistence (CMP) or bean-managed persistence (BMP)
entity beans in an EJB 2.1 or earlier module. You cannot install an EJB 3.0 or EJB 3.1 module that
contains CMP or BMP entity beans. Installation fails when a CMP or BMP entity bean is packaged
in an EJB 3.0 or EJB 3.1 module. You can install EJB 2.1 or earlier modules on a 6.x, 7.x or 8.x
deployment target.

Installable RAR files

You can install a stand-alone resource adapter (connector) module, or RAR file, developed for a Version
6.0.x product to a 6.x, 7.x or 8.x deployment target. If the module calls a 6.1.x API, then you must install
the module on a 6.1.x, 7.x or 8.x deployment target. You must install a module that calls a 7.x API on a 7.x
or 8.x deployment target. You must install a module that calls a 8.x API on a 8.x deployment target.

168 Administering applications and their environment

Deployment targets

Table 1 lists the compatible deployment target versions for various modules. "6.x, 7.x or 8.x" for
Deployment target versions indicates that you can deploy the module to a WebSphere Application
Server Version 6, 7, or 8 server.

 Table 17. Compatible deployment target versions for 6.x, 7.x and 8.x modules. Deploy modules to compatible
deployment target versions.

Module type Module Java
support

Module calls 6.x, 7.x
or 8.x runtime APIs
or uses 6.x, 7.x or
8.x features?

Client versions that
can install module

Deployment target
versions

Application, EJB, or
web

J2EE 1.3 No 6.x, 7.x or 8.x 6.x, 7.x or 8.x

Application, EJB, or
web

J2EE 1.3 Yes 6.x, 7.x or 8.x for 6.x
APIs or features

7.x or 8.x for 7.x APIs
or features

8.x for 8.x APIs or
features

6.x, 7.x or 8.x

You must install
modules that call
6.1.x runtime APIs or
use 6.1.x features on
a 6.1.x, 7.x or 8.x
deployment target.
You can install
modules that call
6.0.x runtime APIs or
use 6.0.x features on
any 6.x, 7.x or 8.x
deployment target.

Application, EJB,
SAR, or web

J2EE 1.4 Yes or No 6.x, 7.x or 8.x 6.x, 7.x or 8.x

Application, EJB,
SAR, or web

Java EE 5 Yes or No 7.x or 8.x 7.x or 8.x

Application, EJB,
SAR, or web

Java EE 6 Yes or No 8.x 8.x

Client Any Java EE version Yes or No 8.x 8.x

Resource adapter JCA 1.0 No 6.x, 7.x or 8.x 6.x, 7.x or 8.x

Resource adapter JCA 1.0 Yes 6.x, 7.x or 8.x 6.x, 7.x or 8.x

You must install
modules that call
6.1.x runtime APIs on
a 6.1.x, 7.x or 8.x
deployment target.
You can install
modules that call
6.0.x runtime APIs on
any 6.x, 7.x or 8.x
deployment target.

Chapter 8. Deploying and administering enterprise applications 169

Table 17. Compatible deployment target versions for 6.x, 7.x and 8.x modules (continued). Deploy modules to
compatible deployment target versions.

Resource adapter JCA 1.5 Yes or No 6.x, 7.x or 8.x 6.x, 7.x or 8.x

You must install
modules that call
6.1.x runtime APIs on
a 6.1.x, 7.x or 8.x
deployment target.
You can install
modules that call
6.0.x runtime APIs on
any 6.x, 7.x or 8.x
deployment target.

Resource adapter JCA 1.6 Yes or No JCA 1.6 resource
adapters can only be
installed on 8.x.
Resource adapter
archive annotations
are not supported on
previous WebSphere
Application Server
releases.

JCA 1.6 resource
adapters can only be
installed on 8.x.
Resource adapter
archive annotations
are not supported on
previous WebSphere
Application Server
releases.

Ways to install enterprise applications or modules
The product provides several ways to install Java Platform, Enterprise Edition (Java EE) application files.

Installable files include enterprise archive (EAR), enterprise bean (EJB), web application archive (WAR),
Session Initiation Protocol (SIP) archive (SAR), resource adapter (connector or RAR), and application
client modules. They can be installed on a server. Application client files can be installed in a WebSphere
Application Server configuration but cannot be run on a server.

 Table 18. Ways to install application files. Deploy an application or module using the administrative console,
wsadmin, programming, or deployment tools.
Option Method Modules Comments Starting after install

Administrative
console install
wizard

See topics on
installing enterprise
application files with
the console.

Click Applications > New
application > New
Enterprise Application in the
console navigation tree and
follow instructions in the
wizard.

Files for all of the
following modules:
v EAR
v EJB
v WAR
v SAR
v RAR
v Application client

Provides one of the easier ways to
install application files.

For applications that do not require
changes to the default bindings,
after you specify the application
file, expand Choose to generate
default bindings and mappings,
select Generate default bindings,
click the Summary step, and then
click Finish.

Click Start on the Enterprise
applications page accessed by
clicking Applications >
Application Types >
WebSphere enterprise
applications in the console
navigation tree.

170 Administering applications and their environment

Table 18. Ways to install application files (continued). Deploy an application or module using the administrative
console, wsadmin, programming, or deployment tools.
Option Method Modules Comments Starting after install

Monitored directory Add an EAR file or module to
a dragDropDeployableApps
subdirectory of an application
server profile.

For base (stand-alone)
application servers, the
monitored directory is the
dragDropDeployableApps
/servers/server_name
directory of the application
server profile.

Files for all of the
following modules:
v EAR
v EJB
v WAR
v SAR

Use this option for drag
and drop deployment of
Java EE 5.0 and later
modules.

Provides one of the easier ways to
install applications.

You cannot specify bindings during
deployment. For applications that
require changes to the bindings,
install the application using the
administrative console install
wizard, application properties files,
or wsadmin scripts.

Monitored directory deployment
differs from rapid deployment tools
in several ways:

v Monitored directory deployment
supports deployment to base and
network deployment environments.
Rapid deployment tools support
deployment only to the base
environment.

v Monitored directory deployment
does not start a new daemon.
Rapid deployment tools start a
separate process.

v Monitored directory deployment
supports deployment of Java EE 5
and later modules. Rapid
deployment tools support assembly
of J2EE 1.3 and 1.4 modules, and
deployment of all Java EE module
versions.

v Monitored directory deployment
supports use of a properties file to
specify deployment options. Rapid
deployment tools does not support
use of a properties file.

After application or module
installation or update, the
product starts the application or
module automatically.

Application
properties files

Create a properties file that
specifies to install or update
application files. Then, run the
wsadmin
applyConfigProperties
command in any of the
following ways:
v In a script
v At a command prompt
v By adding the properties

file to a
dragDropDeployableApps
/deploymentProperties
monitored directory

Files for all of the
following modules:
v EAR
v EJB
v WAR
v SAR

For information on deploying
applications using properties files,
see the following topics:

v Using application properties files
to install, update, and delete
enterprise application files

v Installing enterprise application
files by adding properties files to
a monitored directory

After application or module
installation or update, the
product starts the application or
module automatically.

wsadmin scripts Invoke AdminApp object
install commands in a script
or at a command prompt.

Files for all of the
following modules:
v EAR
v EJB
v WAR
v SAR
v RAR
v Application client

"Getting started with scripting" in
the Using the administrative clients
PDF provides an overview of
wsadmin.

v Invoke the AdminApp
startApplication command.

v Invoke the startApplication
method on an
ApplicationManager MBean
using AdminControl.

Java application
programming
interfaces

Install programs by
completing the steps in
Installing an application
through programming.

All EAR files Use Java Management Extensions
(JMX) MBeans to install the
application. For an overview of
Java MBean programming, see
Managing applications through
programming.

Start the application by calling
the startApplication method on
a proxy.

Chapter 8. Deploying and administering enterprise applications 171

Table 18. Ways to install application files (continued). Deploy an application or module using the administrative
console, wsadmin, programming, or deployment tools.
Option Method Modules Comments Starting after install

Rapid deployment
tools

Refer to topics
under Rapid
deployment of
J2EE applications.

Briefly, do the following:

1. Update your J2EE
application files.

2. Set up the rapid
deployment environment.

3. Create a free-form project.

4. Launch a rapid deployment
session.

5. Drop your updated
application files into the
free-form project.

J2EE modules at the
J2EE 1.3 or 1.4
specification levels,
including EAR files and
the following
stand-alone modules:
v EJB
v WAR
v SAR
v RAR
v Application client

The rapid deployment
tools do not support the
J2EE 1.2 or Java EE
5.0 and later
specification levels. Use
this option for drag and
drop deployment of
J2EE 1.3 or 1.4
modules. Unlike the
monitored directory
option, the rapid
deployment tools do not
support drag and drop
deployment of Java EE
5.0 and later modules.

Rapid deployment tools offer the
following advantages:

v You do not need to assemble
your J2EE application files prior to
deployment.

v You do not need to use other
installation tools mentioned in this
table to deploy the files.

For a list of ways in which the
rapid deployment tools differ from
monitored directory deployment,
see the monitored directory
description in this table.

Use any of the options in this
table to start the application.
Clicking Start on the Enterprise
applications page is the easiest
option.

Java programs Code programs that use Java
EE DeploymentManager
(JSR-88) methods.
Note: Application installation
using JSR-88 has been
deprecated in WebSphere
Application Server Version
8.0. Use another way listed in
this table to deploy
applications or modules.

All Java EE modules,
including EAR files and
the following
stand-alone modules:
v EJB
v WAR
v SAR
v RAR
v Application client

v Uses Java EE Application
Deployment Specification (JSR-88).

v Can customize modules using
DConfigBeans.

Call the Java EE
DeploymentManager (JSR-88)
start method in a program to
start the deployed modules
when the module's running
environment initializes.

Installing enterprise application files with the console
Installing Java Platform, Enterprise Edition (Java EE) application files consists of placing assembled
enterprise application, Web, enterprise bean (EJB), or other installable modules on a server or cluster
configured to hold the files. Installed files that start and run properly are considered deployed.

Before you begin

Before installing enterprise application files, ensure that you are installing your application files onto a
compatible deployment target. If the deployment target is not compatible, select a different target.

Optionally, determine whether the application that you are installing uses library files that other deployed
applications also use. You can define a shared library for each of these shared files. Using shared libraries
reduces the number of library file copies on your workstation or server.

About this task

To install new enterprise application files to a WebSphere Application Server configuration, you can use
the following options:
v Administrative console
v wsadmin scripts
v Monitored directory deployment
v Application properties files

172 Administering applications and their environment

v Java MBean programs
v Java programs that call Java EE DeploymentManager (JSR-88) methods

This topic describes how to use the administrative console to install an application, EJB component,
Session Initiation Protocol (SIP) archive (SAR), or web module.

Note: After you start completing steps in the application installation wizard, click Cancel to exit if you
decide not to install the application. Do not simply move to another administrative console page
without first clicking Cancel on an application installation page.

Procedure
1. Click Applications > New application > New Enterprise Application in the console navigation tree.

2. On the first Preparing for application installation page:

a. Specify the full path name of the source enterprise application file (.ear file otherwise known as an
EAR file).

The EAR file that you are installing can be either on the client machine (the machine that runs the
Web browser) or on the server machine (the machine to which the client is connected). If you
specify an EAR file on the client machine, then the administrative console uploads the EAR file to
the machine on which the console is running and proceeds with application installation.

You can also specify a stand-alone web archive (WAR), SAR, or Java archive (JAR) file for
installation.

Note:

If you attempt to install an application from a remote file system and the Java
virtual machine (JVM) is registered as a Microsoft Windows service, the administrative
console does not show a mapped network drive. In this scenario, the Windows service runs
as a new log on session whose security identifier (SID) is different from the user session.
Thus, the service cannot manipulate the mapped network drive, which is established by the
login user. To install the application from a remote file system, you must use the
WASService command to unregister the JVM from the Windows service. For more
information, see the documentation about the WASService command.

b. Click Next.

3. On the second Preparing for application installation page:

a. Select whether to view all installation options.
Fast Path - Prompt only when additional information is required

Displays the module mapping step as well as any steps that require you to specify needed
information to install the application successfully.

Detailed - Show all installation options and parameters
Displays all installation options.

b. Select whether to generate default bindings.

Select Generate default bindings to have the product supply default values for incomplete Java
Naming and Directory (JNDI) and other application bindings. The product does not change existing
bindings.

You do not need to specify JNDI values for EJB bean, local home, remote home, or business
interfaces of EJB 3.x modules. The product assigns container default values during run time.
Similarly, for any EJB reference within an EJB 3.x or a Web 2.4 or later module, you do not need
to specify JNDI values because the product resolves the targets automatically during run time.
Even when you select Generate default bindings, the product does not generate default values
for those JNDI values but it does generate default values for other bindings such as virtual host.

You can customize default values used in generating default bindings. “Preparing for application
installation binding settings” on page 182 describes available customization and provides sample
bindings.

Chapter 8. Deploying and administering enterprise applications 173

c. Click Next. If security warnings are displayed, click Continue. The Install New Application pages
are displayed. If you chose to generate default bindings, you can proceed to the Summary step.
“Example: Installing an EAR file using the default bindings” on page 179 provides sample steps.

4. Specify values for installation options as needed.

You can click on a step number to move directly to that page instead of clicking Next. The contents of
the application or module that you are installing determines which pages are available.

 Table 19. Wizard page descriptions. The table describes each wizard page.

Page Description

Select installation options On the Select installation options page, provide values for the settings specific
to the product. Default values are used if you do not specify a value.

Map modules to servers On the Map modules to servers page, specify deployment targets where you
want to install the modules contained in your application. Modules can be installed
on the same deployment target or dispersed among several deployment targets.
Each module must be mapped to a target server.

On single-server products, a deployment target can be an application server or
web server.

Provide options to compile
JSPs

If the Precompile JavaServer Pages files setting is enabled on the Select
installation options page and your application uses JavaServer Pages (JSP)
files, then you can specify JSP compiler options on the Provide options to
compile JSPs page.

Provide JNDI names for beans On the Provide JNDI names for beans page, specify a JNDI name for each
enterprise bean in every EJB 2.1 and earlier module. You must specify a JNDI
name for every enterprise bean defined in the application. For example, for the
EJB module MyBean.jar, specify MyBean.

As to EJB 3.x modules, you can specify JNDI names, local home JNDI names,
remote home JNDI names, or no JNDI names. If you do not specify a value, the
product provides a default value.

Bind EJB business On the Bind EJB business page, you can specify business interface JNDI names
for EJB 3.x modules. If you specified a JNDI name for a bean on the Provide
JNDI names for beans page, do not specify a business interface JNDI name on
this page for the same bean. If you do not specify the JNDI name for a bean, you
can optionally specify a business interface JNDI name. When you do not specify a
business interface JNDI name, the product provides a container default. For a
no-interface view, the business interface value is an empty string ("").

Map default data sources for
modules containing 1.x entity
beans

If your application uses EJB modules that contain Container Managed Persistence
(CMP) beans that are based on the EJB 1.x specification, for Map default data
sources for modules containing 1.x entity beans, specify a JNDI name for the
default data source for the EJB modules. The default data source for the EJB
modules is optional if data sources are specified for individual CMP beans.

Map EJB references to beans On the Map EJB references to beans page, if your application defines EJB
references, you can specify JNDI names for enterprise beans that represent the
logical names specified in EJB references.

If the EJB reference is from an EJB 3.x, or Web 2.4 or later module, the JNDI
name is optional. For earlier modules, each EJB reference defined in the
application must be bound to an EJB file.

If Allow EJB reference targets to resolve automatically is enabled, the JNDI
name is optional for all modules. The product provides a container default value or
automatically resolves the EJB reference for incomplete bindings.

174 Administering applications and their environment

Table 19. Wizard page descriptions (continued). The table describes each wizard page.

Page Description

Map resource references to
resources

If your application defines resource references, for Map resource references to
resources, specify JNDI names for the resources that represent the logical names
defined in resource references. You can optionally specify login configuration
name and authentication properties for the resource. After specifying
authentication properties, click OK to save the values and return to the mapping
step. You can optionally specify extended data source properties to enable a data
source that uses heterogeneous pooling to connect to a DB2® database. Each
resource reference defined in the application must be bound to a resource defined
in your WebSphere Application Server configuration before clicking Finish on the
Summary page.

Map virtual hosts for web
modules

If your application uses web modules, for Map virtual hosts for web modules,
select a virtual host from the list to map to a web module defined in the
application. The port number specified in the virtual host definition is used in the
URL that is used to access artifacts such as servlets and JSP files in the web
module. Each web module must have a virtual host to which it maps. Not
specifying all needed virtual hosts will result in a validation error displaying after
you click Finish on the Summary page.

Map security roles to users or
groups

If the application has security roles defined in its deployment descriptor then, for
Map security roles to users or groups, specify users and groups that are
mapped to each of the security roles. Select Role to select all the roles or select
individual roles. For each role, you can specify whether predefined users such as
Everyone or All authenticated users are mapped to it. To select specific users
or groups from the user registry:
1. Select a role and click Lookup users or Lookup groups.
2. On the Lookup users or groups page displayed, enter search criteria to extract

a list of users or groups from the user registry.
3. Select individual users or groups from the results displayed.
4. Click OK to map the selected users or groups to the role selected on the Map

security roles to users or groups page.

Map RunAs roles to users If the application has Run As roles defined in its deployment descriptor, for Map
RunAs roles to users, specify the Run As user name and password for every
Run As role. Run As roles are used by enterprise beans that must run as a
particular role while interacting with another enterprise bean. Select Role to select
all the roles or select individual roles. After selecting a role, enter values for the
user name, password, and verify password and click Apply.

Ensure all unprotected 1.x
methods have the correct level
of protection

If your application contains EJB 1.x CMP beans that do not have method
permissions defined for some of the EJB methods, for Ensure all unprotected
1.x methods have the correct level of protection, specify if you want to leave
such methods unprotected or assign protection with deny all access.

Bind listeners for
message-driven beans

If your application contains message driven enterprise beans, for Bind listeners
for message-driven beans, provide a listener port name or an activation
specification JNDI name for every message driven bean.

Map default data sources for
modules containing 2.x entity
beans

If your application uses EJB modules that contain CMP beans that are based on
the EJB 2.x specification, for Map default data sources for modules containing
2.x entity beans, specify a JNDI name for the default data source and the type of
resource authorization to be used for the default data source for the EJB modules.
You can optionally specify a login configuration name and authentication
properties for the data source. When creating authentication properties, you must
click OK to save the values and return to the mapping step. You can optionally
specify extended data source properties to enable a data source that uses
heterogeneous pooling to connect to a DB2 database. The default data source for
EJB modules is optional if data sources are specified for individual CMP beans.

Chapter 8. Deploying and administering enterprise applications 175

Table 19. Wizard page descriptions (continued). The table describes each wizard page.

Page Description

Map data sources for all 2.x
CMP beans

If your application has CMP beans that are based on the EJB 2.x specification, on
the Map data sources for all 2.x CMP beans page, for each of the 2.x CMP
beans specify a JNDI name and the type of resource authorization for data
sources to be used.

You can optionally specify a login configuration name and authentication
properties for the data source. When creating authentication properties, you must
click OK to save the values and return to the mapping step. The data source
attribute is optional for individual CMP beans if a default data source is specified
for the EJB module that contains CMP beans. If a default data source for the EJB
module and a data source for individual CMP beans are not specified, then a
validation error is displayed after you click Finish and installation is canceled.

Ensure all unprotected 2.x
methods have the correct level
of protection

If your application contains EJB 2.x CMP beans that do not have method
permissions defined in the deployment descriptors for some of the EJB methods,
on the Ensure all unprotected 2.x methods have the correct level of
protection page, specify whether you want to assign a specific role to the
unprotected methods, add the methods to the exclude list, or mark them as
deselected. Methods added to the exclude list are marked as uncallable. For
methods marked deselected no authorization check is performed before their
invocation.

Provide options to perform the
EJB Deploy

If the Deploy enterprise beans setting is enabled on the Select installation
options page, then you can specify options for the EJB deployment tool on the
Provide options to perform the EJB Deploy page. On this page, you can
specify extra class paths, RMIC options, database types, and database schema
names to be used while running the EJB deployment tool.

You can specify the EJB deployment tool options on this page when installing or
updating an application that contains EJB modules. The EJB deployment tool runs
during installation of EJB 1.x or 2.x modules. The EJB deployment tool does not
run during installation of EJB 3.x modules.

Map shared libraries On the Shared library references and Shared library mapping pages, specify
shared library files for your application or web modules to use. A defined shared
library must exist to associate your application or module to the library file.

Map shared library
relationships

On the Map shared library relationships page, specify relationship identifiers
and composition unit names for shared libraries that modules in your enterprise
application reference.

When installing your enterprise application, the product creates a composition unit
for each shared library relationship in the business-level application that you
specified for Business-level application name on the Select installation
options page.

Provide JSP reloading options
for web modules

If your application uses web modules, for Provide JSP reloading options for
web modules, configure the class reloading of JavaServer Pages (JSP) files.

Map context roots for web
modules

If your application uses web modules that are defined in the application XML
deployment descriptor, for Map context roots for web modules, specify a
context root for each web module in the application.

The product does not include web modules from annotations on this page.

Initialize parameters for
servlets

If your application uses web modules that support Servlet 2.5, for Initialize
parameters for servlets, specify or override initial parameters that are passed to
the init method of web module servlet filters.

This page shows servlets from the module XML deployment descriptor. Servlet
deployment information from annotations is not available on this page.

176 Administering applications and their environment

Table 19. Wizard page descriptions (continued). The table describes each wizard page.

Page Description

Map environment entries for
EJB modules

If your application uses EJB modules, for Map environment entries for EJB
modules, configure the environment entries of EJB modules such as entity,
session, or message driven beans.

Map environment entries for
client modules

If you are deploying one or more application client modules, for Map environment
entries for client modules, configure the environment entries of client modules
that are deployed as JAR files. To view the Map environment entries for client
modules page, select the Deploy client modules option on the Select installation
options page.

Map environment entries for
web modules

If your application uses web modules that support Servlet 2.5, for Map
environment entries for web modules, configure the environment entries of web
modules such as servlets and JSP files.

Map environment entries for
application level

If your application defines one or more environment entries, for Map environment
entries for application level, configure the environment entries of applications
that are deployed as EAR files.

Map resource environment
entry references to resources

If your application contains resource environment references, for Map resource
environment entry references to resources, specify JNDI names of resources
that map to the logical names defined in resource environment references. If each
resource environment reference does not have a resource associated with it, after
you click Finish a validation error is displayed.

Correct use of system identity If your application defines Run-As Identity as System Identity, for Correct use of
system identity, you can optionally change it to Run-As role and specify a user
name and password for the Run As role specified. Selecting System Identity
implies that the invocation is done using the WebSphere Application Server
security server ID and should be used with caution as this ID has more privileges.

Correct isolation levels for all
resource references

If your application has resource references that map to resources that have an
Oracle database doing backend processing, for Correct isolation levels for all
resource references, specify or correct the isolation level to be used for such
resources when used by the application. Oracle databases support
ReadCommitted and Serializable isolation levels only.

Map JASPI Provider On the Map JASPI Provider page, if your application has web modules, you can
specify values to override the JASPI settings from the global or domain security
configuration. By default, an application inherits the JASPI settings defined in the
WebSphere Application Server global or domain security configuration, and web
modules inherit the application setting.

Bind message destination
references to administered
objects

If your application uses message driven beans, for Bind message destination
references to administered objects, specify the JNDI name of the J2C
administered object to bind the message destination reference to the message
driven beans.

If the message destination reference is from an EJB 3.0 or later module, then the
JNDI name is optional and the run time provides a container default value.

Attention: If multiple message destination references link to the same message
destination, only one JNDI name is collected. When a message destination
reference links to the same message destination as a message driven bean and
the destination JNDI name has been collected already, the destination JNDI name
for the message destination reference is not collected.

Provide JNDI names for JCA
objects

If your application contains an embedded .rar file, for Provide JNDI names for
JCA objects, specify the name and JNDI name of each JCA connection factory,
administered object and activation specification.

Chapter 8. Deploying and administering enterprise applications 177

Table 19. Wizard page descriptions (continued). The table describes each wizard page.

Page Description

Bind J2C activationspecs to
destination JNDI names

If your application contains an embedded .rar file, its activationSpec property has
the value Destination, and its introspected type is javax.jms.Destination, for
Bind J2C activationspecs to destination JNDI names, specify the jndiName
value for each activation bound to it.

Select current backend ID If your application has EJB modules for which deployment code has been
generated for multiple backend databases using an assembly tool, for Select
current backend ID, specify the backend ID representing the backend database
to be used when the EJB module runs.

For information about backend databases, see topics on the EJB deployment tool.

This step is not shown if the Deploy enterprise beans setting is enabled on the
Select installation options page and if a database type other than None is
specified on the Provide options to perform the EJB Deploy page.

Metadata for modules If your application has EJB 3.x or Web 2.5 modules, you can lock deployment
descriptors for one or more of the EJB 3.x or Web 2.5 modules. If you set the
metadata-complete attribute to true and lock deployment descriptors, the product
writes the complete module deployment descriptor, including deployment
information from annotations, to XML format.

Provide options to perform the
web services deployment

If the Deploy web services setting is enabled on the Select installation options
page and your application uses web services, then you can specify wsdeploy
command options on the Provide options to perform the web services
deployment page. For information about this page, refer to descriptions of the
wsdeploy -cp and -jardir options.

Display module build ID If the MANIFEST.MF file of a module in an enterprise application specifies a build
identifer, this page shows the build identifier of the module.

5. On the Summary page, verify the cell, node, and server onto which the application modules will install:

a. Beside Cell/Node/Server, click Click here.

b. Verify the settings.

c. Return to the Summary page.

d. Click Finish.

Results

Several messages are displayed, indicating whether your application file is installing successfully.

If Validate input off/warn/fail on the Select installation options page is set to warn, the default, several
validation warnings might be displayed. If the setting is fail, the validation warnings might cause errors.

If you receive an OutOfMemory error and the source application file does not install, your system might not
have enough memory or your application might have too many modules in it to install successfully onto the
server. If lack of system memory is not the cause of the error, package your application again so the .ear
file has fewer modules.

If lack of system memory and the number of modules are not the cause of the error, check the options you
specified on the Java virtual machine page of the application server running the administrative console.
You might increase the maximum heap size. Then, try installing the application file again.

What to do next

After the application file installs successfully, do the following:

1. Save the changes to your configuration.

178 Administering applications and their environment

For example, click the Save link in the application installation messages.

The application is registered with the administrative configuration and application files are copied to the
target directory, which is app_server_root/installedApps/cell_name by default or the directory that you
designate.

For a single-server product, application files are copied to the destination directory when the changes
are saved.

If you clicked the Save link in the application installation messages, the Preparing for the application
installation page displays again. Click Applications > Application Types > WebSphere enterprise
applications to exit the page and to see your application in the list of installed applications.

2. Start the application.

3. Test the application. For example, point a web browser at the URL for the deployed application and
examine the performance of the application. If necessary, edit the application configuration.

Example: Installing an EAR file using the default bindings
If application bindings were not specified for all enterprise beans or resources in an enterprise application
during application development or assembly, you can select to generate default bindings. After application
installation, you can modify the bindings as needed using the administrative console.

Before you begin

This topic assumes that the application can run on a web server.

About this task

This topic describes how to install a simple .ear file using the default bindings. You can follow the steps to
install any application, including applications provided from the Samples information center.

Procedure
1. Click Applications > New Application > New Enterprise Application in the console navigation tree.

2. On the first Preparing for application install page, specify the full path name of the EAR file.

a. For Path to the new application, specify the full path name of the .ear file. For this example, the
base file name is my_appl.ear and the file resides on a server at C:/sample_apps.

b. Click Next.

3. On the second Preparing for application install page, choose to generate default bindings.

a. Expand Choose to generate default bindings and mappings.

b. Select Generate default bindings.

Using the default bindings causes any incomplete bindings in the application to be filled in with
default values. The product does not change existing bindings. By choosing this option, you can
skip many of the steps of the application installation wizard and go directly to the Summary step.

c. Click Next.

4. If application security warnings are displayed, read the warnings and click Continue.

5. On the Install New Application page, click the step number for Map modules to servers, and verify
the cell, node, and server onto which the application files will install.

a. From the Clusters and servers list, select the server onto which the application files will install.

b. Select all of the application modules.

c. Click Next.

On the Map modules to servers page, you can map modules to other servers such as web servers. If
you want a web server to serve the application, use the Ctrl key to select an application server or
cluster and the web server together in order to have the plug-in configuration file plugin-cfg.xml for
that web server generated based on the applications which are routed through it.

Chapter 8. Deploying and administering enterprise applications 179

6. On the Install New Application page, click the step number beside Summary, the last step.

7. On the Summary page, click Finish.

What to do next

Examine the application installation progress messages. If the application installs successfully, save your
administrative configuration. You can now see the name of your application in the list of deployed
applications on the Enterprise applications page accessed by clicking Applications > Application Types
> WebSphere enterprise applications in the console navigation tree.

If the application does not install successfully, read the messages to identify why the installation failed.
Correct problems with the application as needed and try installing the application again.

If the application has a web module, try opening a browser on the application.

1. Point a web browser at the URL for the deployed application.

The URL typically has the format http://host_name:9060/web_module_name, where host_name is your
valid web server and 9060 is the default port number.

2. Examine the performance of the application.

If the application does not perform as desired, edit the application configuration, then save and test it
again.

Example: Installing a web services sample with the console
The product provides a web services sample application that you can install on an application server.

Before you begin

Download and extract the JaxWSServicesSample sample application. Ensure that your product installation
has a Version 7.x or later application server onto which you can install the Web Services Sample.

About this task

The JaxWSServicesSamples.ear enterprise application and supporting Java archives (JAR) files are located
in the installableApps directory within the JaxWSServicesSamples sample application.

This topic describes how to install and start the JaxWSServicesSamples.ear enterprise application using an
administrative console.

Procedure
1. Click Applications > New Application > New Enterprise Application in the console navigation tree.

2. On the first Preparing for the application installation page, specify to install JaxWSServicesSamples.ear.

a. Click Local file system or Remote file system and specify the full path name of the
JaxWSServicesSamples.ear file.
.../installableApps/JaxWSServicesSamples.ear

b. Click Next.

3. On the second Preparing for the application installation page, select the fast path option.

a. Select Fast Path - Prompt only when additional information is required.

b. Click Next.

4. Click Next on each page until you reach the Summary page.

Do not go directly from Step 1 to the Summary page. You must click Next on each page that has
mandatory settings to enter values for those settings. Simply click Next to enter the default values. You
optionally can change the values to suit your environment.

180 Administering applications and their environment

5. On the Summary page, verify the cell, node, and server onto which the application modules will install,
and then click Finish.

6. Examine the application installation progress messages.

If the application installs successfully, the message Application JaxWSServicesSamples installed
successfully is displayed. Click Save. After the configuration changes are saved, you can see the
name of the application in the list of deployed applications on the Enterprise applications page
accessed by clicking Applications > Application Types > WebSphere enterprise applications in the
console navigation tree.

If the application does not install successfully, read the messages to identify why the installation failed.
Correct problems with the server or application and try installing the application again.

Results

The JaxWSServicesSamples application is in the list of deployed applications on the Enterprise
applications page.

What to do next

After the application installs successfully, do the following:

1. Start the application.

On the Enterprise applications page, select the check boxes beside JaxWSServicesSamples, and
then click Start.

2. Test the application. Point your web browser at:

http://localhost:9080/wssamplesei/demo

If the localhost address does not load, substitute the host name (IP address) of the computer for
localhost; for example, http://9.22.33.44:9080/wssamplesei/demo.

If you have another WebSphere Application Server installation on your machine, the server port
number is likely not 9080. See the Ports table in the administrative console to find the WC_defaulthost
server port number. Click Servers > Server Types > WebSphere application servers > server1 >
Ports. The Port descriptions table lists the important ports.

 Table 20. Port descriptions. Use the WC_defaulthost port in the URL to test the sample.

Port name Description

WC_adminhost Port used to open an unsecure administrative console in the URL
http://host_name:administrative_port/ibm/console

WC_adminhost_secure Port used to open a secure administrative console in the URL
http://host_name:administrative_port/ibm/console

WC_defaulthost Port used to test running applications in the URL http://host_name:server_port/
servlet_name

WC_defaulthost_secure Port used to securely test running applications in the URL http://
host_name:server_port/servlet_name

Preparing for application installation settings
Use this page to specify an application or module to install.

To view this administrative console page, click Applications > New application > New Enterprise
Application.

This page is the first Preparing for the application installation page. On this page, specify an application or
module to install. You can install an enterprise application archive (EAR file), enterprise bean (EJB)
module (JAR file), Session Initiation Protocol (SIP) module (SAR file), or web module (WAR file).

Chapter 8. Deploying and administering enterprise applications 181

The second Preparing for the application installation page has more installation options, such as to
generate default bindings for incomplete existing bindings in your application or module.

Path to the new application
Specifies the fully qualified path to the enterprise application file.

The file can be an .ear, .jar, .sar, or .war file.

During application installation, the product typically uploads application files from a client workstation
running the browser to the server running the administrative console, and then deploys the application files
on the server. In such cases, use the web browser running the administrative console to select EAR,
WAR, SAR, or JAR modules to upload to the server.

Use Local file system when the browser and application files are on the same computer.

Use Remote file system in the following situations:

v The application file resides on any node in the current cell context. Only .ear, .jar, .sar, or .war files
are shown during the browsing.

v The application file resides on the file system of any of the nodes in a cell.

v The application file already resides on the computer running the application server. For example, the
field value might be profile_root/installableApps/test.ear.

After the product transfers the application file, the Remote file system value shows the path of the
temporary location on the server.

Preparing for application installation binding settings
Use this page to select whether to view all installation options and to change the existing bindings for you
application or module during installation. You can choose to generate default bindings for any incomplete
bindings in the application or module or to assign specific bindings during installation.

This page is the second Preparing for the application installation page.

To view this administrative console page, click Applications > New application > New Enterprise
Application, specify the path for the application or module to install, and then click Next.

The console page might not display all of the binding options listed in this topic. The contents of the
application or module that you are installing determines which options are displayed on the console page.
Also, the Specify bindings to use option displays only when updating an installed application.

How do you want to install the application?
Specifies whether to show only installation options that require you to supply information or to show all
installation options.

 Table 21. Installation option descriptions. You can select a Fast Path or select to see all installation options and
parameters.

Option Description

Fast Path - Prompt only
when additional information
is required

Displays only those options that require your attention, based on the contents of
your application or module. Use the fast path to install your application more easily
because you do not need to examine all available installation options.

Detailed - Show all
installation options and
parameters

Displays all available installation options.

182 Administering applications and their environment

Specify bindings to use
Specifies whether to merge bindings when you update applications or to use new or existing bindings.

This setting is shown only when you update an installed application, and not when you install a new
application.

 Table 22. Binding option descriptions. You can use merged, new, or existing bindings.

Option Description

Merge new and existing
bindings

The binding information from the updated application or modules is preferred over
the corresponding binding information from the installed version. If any element of
the binding is missing in the updated version, the corresponding element from the
installed version is used. If both the installed and the updated application or module
does not have a binding value, the default value is used. The product assigns a
default value only if you select the Generate default bindings option.

Use new bindings The binding information in the updated application or module is used. The binding
information from the updated version of the application or module is preferred over
the corresponding binding information in the installed version. The binding
information from the installed version of the application or module is ignored.

Use existing bindings The binding information from the installed version of the application or module is
preferred over the corresponding binding information from the updated version. If
any element of the binding information does not exist in the installed version, the
element from the updated version is used. That is, bindings from the updated
version of the application or module are ignored if a binding exists in the installed
version. Otherwise, the new bindings are honored and not ignored.

Generate default bindings
Specifies whether to generate default bindings and mappings. To view this setting, expand Choose to
generate default bindings and mappings. If you select Generate default bindings, then the product
completes any incomplete bindings in the application with default values. The product does not change
existing bindings.

After you select Generate default bindings, you can advance directly to the Summary step and install the
application if none of the steps have a red asterisk (*). A red asterisk denotes that the step has incomplete
data and requires a valid value. On the Summary page, verify the cell, node, and server on which the
application is installed.

transition: You do not need to specify Java Naming and Directory Interface (JNDI) values for EJB bean,
local home, remote home, or business interfaces of EJB 3.0 or later modules. The product
assigns container default values during run time. Similarly, for any EJB reference within an
EJB 3.0, EJB 3.1, Web 2.4, or Web 2.5 module, you do not need to specify JNDI values
because the product resolves the targets automatically during run time. Even when you select
Generate default bindings, the product does not generate default values for those JNDI
values but it does generate default values for other bindings such as virtual host.

If you select Generate default bindings, the product generates bindings as follows:
v Enterprise bean (EJB) JNDI names are generated in the form prefix/ejb-name. The default prefix is

ejb, but can be overridden. The ejb-name is as specified in the deployment descriptors <ejb-name> tag
or in its corresponding annotation for EJB 3.0 or later modules. The product does not generate default
values for enterprise beans in an EJB 3.0 or later module because the run time provides container
default values.

v EJB references are bound if an <ejb-link> is found. Otherwise, if a unique enterprise bean is found
with a matching home (or local home) interface as the referenced bean, the reference is resolved
automatically. The product does not generate default values for EJB reference in an EJB 3.0, EJB 3.1,
Web 2.4, or Web 2.5 module because the run time provides container default values or automatically
resolves the target references.

Chapter 8. Deploying and administering enterprise applications 183

v Resource reference bindings are derived from the <res-ref-name> tag or its corresponding annotation
for Java Platform, Enterprise Edition (Java EE) 5 or 6 modules. This action assumes that the
java:comp/env name is the same as the resource global JNDI name.

v Connection factory bindings for EJB 2.0 and EJB 2.1 JAR files are generated based on the JNDI name
and authorization information provided. This action results in default connection factory settings for each
EJB 2.0 and EJB 2.1 JAR file in the application being installed. No bean-level connection factory
bindings are generated.

v Data source bindings for EJB 1.1 JAR files are generated based on the JNDI name, data source user
name and password options. This action results in default data source settings for each JAR file. No
bean-level data source bindings are generated.

v For EJB 2.0 or later message-driven beans deployed as Java EE Connector Architecture (JCA)
1.5-compliant resources, the JNDI names corresponding to activationSpec instances are generated in
the form eis/MDB_ejb-name. Message destination references are bound if a <message-destination-
link> is found, then the JNDI name is set to ejs/message-destination-linkName. Otherwise, the JNDI
name is set to eis/message-destination-refName.

v For EJB 2.0 or later message-driven beans deployed against listener ports, the listener ports are
derived from the message-driven bean <ejb-name> tag with the string Port appended.

v For .war files, the virtual host is set as default_host unless otherwise specified.

The default strategy suffices for most applications or at least for most bindings in most applications.
However, if you experience errors, complete the following actions:
v Control the global JNDI names of one or more EJB files.
v Control data source bindings for container-managed persistence (CMP) beans. That is, you have

multiple data sources and need more than one global data source.
v Map resource references to global resource JNDI names that are different from the java:comp/env

name.

In such cases, you can change the behavior with an XML document, which is a custom strategy. Use the
Specific bindings file setting to specify a custom strategy and see the setting description in this help file
for examples.

Override existing bindings
Specifies whether generated bindings are to replace existing bindings.

The default is to not override existing bindings. Select Override existing bindings to have generated
bindings replace existing bindings.

Specific bindings file
Specifies a bindings file that overrides the default binding.

Change the behavior of the default binding with an XML document, which is a custom strategy. Custom
strategies extend the default strategy so you only need to customize those areas where the default
strategy is insufficient. Thus, you only need to describe how you want to change the bindings generated
by the default strategy; you do not have to define bindings for the entire application.

Use the following examples to override various aspects of the default bindings generator:

Controlling an EJB JNDI name
<?xml version="1.0"?>
<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<dfltbndngs>
 <module-bindings>
 <ejb-jar-binding>
 <jar-name>helloEjb.jar</jar-name>
 <ejb-bindings>
 <ejb-binding>
 <ejb-name>HelloEjb</ejb-name>
 <jndi-name>com/acme/ejb/HelloHome</jndi-name>
 </ejb-binding>
 </ejb-bindings>
 </ejb-jar-binding>
 </module-bindings>
</dfltbndngs>

184 Administering applications and their environment

Remember: Ensure that the setting for <ejb-name> matches the ejb-name entry in the EJB JAR
deployment descriptor. Here the setting is <ejb-name>HelloEjb</ejb-name>.

Setting the connection factory binding for an EJB JAR file
<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<dfltbndngs>
 <module-bindings>
 <ejb-jar-binding>
 <jar-name>yourEjb20.jar</jar-name>
 <connection-factory>
 <jndi-name>eis/jdbc/YourData_CMP</jndi-name>
 <res-auth>Container</res-auth>
 </connection-factory>
 </ejb-jar-binding>
 </module-bindings>
</dfltbndngs>

Setting the connection factory binding for an EJB file
<?xml version="1.0">
<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<dfltbndngs>
 <module-bindings>
 <ejb-jar-binding>
 <jar-name>yourEjb20.jar</jar-name>
 <ejb-bindings>
 <ejb-binding>
 <ejb-name>YourCmp20</ejb-name>
 <connection-factory>
 <jndi-name>eis/jdbc/YourData_CMP</jndi-name>
 <res-auth>PerConnFact</res-auth>
 </connection-factory>
 </ejb-binding>
 </ejb-bindings>
 </ejb-jar-binding>
 </module-bindings>
</dfltbndngs>

Restriction: Ensure that the setting for <ejb-name> matches the ejb-name tag in the deployment
descriptor. Here the setting is <ejb-name>YourCmp20</ejb-name>.

Setting the message destination reference JNDI for a specific enterprise bean

This example shows an XML extract in a custom strategy file for setting message-destination-refs for a
specific enterprise bean.
<?xml version="1.0">
 <!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
 <dfltbndngs>
 <module-bindings>
 <ejb-jar-binding>
 <jar-name>yourEjb21.jar</jar-name>
 <ejb-bindings>
 <ejb-binding>
 <ejb-name>YourSession21</ejb-name>
 <message-destination-ref-bindings>
 <message-destination-ref-binding>
 <message-destination-ref-name>jdbc/MyDataSrc</message-destination-ref-name>
 <jndi-name>eis/somAO</jndi-name>
 </message-destination-ref-binding>
 </message-destination-ref-bindings>
 </ejb-binding>
 </ejb-bindings>
 </ejb-jar-binding>
 </module-bindings>
 </dfltbndngs>

Restriction: Ensure that the setting for <ejb-name> matches the ejb-name tag in the deployment
descriptor. Here the setting is <ejb-name>YourSession21</ejb-name>. Also ensure that the
setting for <message-destination-ref-name> matches the message-destination-ref-name tag
in the deployment descriptor. Here the setting is <message-destination-ref-name>jdbc/
MyDataSrc</message-destination-ref-name>.

Overriding a resource reference binding from a WAR, EJB JAR file, or Java EE client JAR file

Chapter 8. Deploying and administering enterprise applications 185

This example shows code for overriding a resource reference binding from a WAR file. Use similar code to
override a resource reference binding from an enterprise bean (EJB) JAR file or a Java EE client JAR file.
<?xml version="1.0"?>
<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<dfltbndngs>
 <module-bindings>
 <war-binding>
 <jar-name>hello.war</jar-name>
 <resource-ref-bindings>
 <resource-ref-binding>
 <resource-ref-name>jdbc/MyDataSrc</resource-ref-name>
 <jndi-name>war/override/dataSource</jndi-name>
 </resource-ref-binding>
 </resource-ref-bindings>
 </war-binding>
 </module-bindings>
</dfltbndngs>

Restriction: Ensure that the setting for <resource-ref-name> matches the resource-ref tag in the
deployment descriptor. In the previous example, the setting is <resource-ref-name>jdbc/
MyDataSrc</resource-ref-name>.

Overriding the JNDI name for a message-driven bean deployed as a JCA 1.5-compliant resource

This example shows an XML extract in a custom strategy file for overriding the Java Message Service
(JMS) activationSpec JNDI name for an EJB 2.0 or later message-driven bean deployed as a JCA
1.5-compliant resource.
<?xml version="1.0"?>
 <!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
 <dfltbndngs>
 <module-bindings>
 <ejb-jar-binding>
 <jar-name>YourEjbJar.jar</jar-name>
 <ejb-bindings>
 <ejb-binding>
 <ejb-name>YourMDB</ejb-name>
 <activationspec-jndi-name>activationSpecJNDI</activationspec-jndi-name>
 </ejb-binding>
 </ejb-bindings>
 </ejb-jar-binding>
 </module-bindings>
 </dfltbndngs>

Overriding the JMS listener port name for an EJB 2.0, 2.1, or 3.0 message-driven bean

This example shows an XML extract in a custom strategy file for overriding the JMS listener port name for
an EJB 2.0 or later message-driven bean deployed against a listener port.
<?xml version="1.0"?>
<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<dfltbndngs>
 <module-bindings>
 <ejb-jar-binding>
 <jar-name>YourEjbJar.jar</jar-name>
 <ejb-bindings>
 <ejb-binding>
 <ejb-name>YourMDB</ejb-name>
 <listener-port>yourMdbListPort</listener-port>
 </ejb-binding>
 </ejb-bindings>
 </ejb-jar-binding>
 </module-bindings>
</dfltbndngs>

Overriding an EJB reference binding from an EJB JAR, WAR file, or EJB file

This example shows code for overriding an EJB reference binding from an EJB JAR file. Use similar code
to override an EJB reference binding from a WAR file or an EJB file.
<?xml version="1.0"?>
<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<dfltbndngs>
 <module-bindings>
 <ejb-jar-binding>
 <jar-name>YourEjbJar.jar</jar-name>
 <ejb-ref-bindings>

186 Administering applications and their environment

<ejb-ref-binding>
 <ejb-ref-name>YourEjb</ejb-ref-name>
 <jndi-name>YourEjb/JNDI</jndi-name>
 </ejb-ref-binding>
 </ejb-ref-bindings>
 </ejb-jar-binding>
 </module-bindings>
</dfltbndngs>

Specify unique prefix for beans
Specifies a string that the product applies to the beginning of generated enterprise bean JNDI names. The
prefix must be unique within the cell or node.

The default is to not specify a unique prefix for beans.

Default bindings for EJB 1.1 CMP beans
Specifies the default data source JNDI name and other bindings for container-managed persistence (CMP)
1.1 beans.

The default is to not use default bindings for EJB 1.1 CMP beans.

If you select Default bindings for EJB 1.1 CMP beans, specify the JNDI name for the default data
source to be used with the CMP 1.1 beans. Also specify the user name and password for this default data
source.

Default connection factory bindings
Specifies the default connection factory JNDI name.

The default is to not use default connection factory bindings. Select Default connection factory bindings
to specify bindings for connection factories.

If you select Default connection factory bindings, specify the JNDI name for the default connection
factory to be used. Also specify whether the resource authorization is for the application or container-wide.

Use default virtual host name for web and SIP modules
Specifies the virtual host for the web module (WAR file) or Session Initiation Protocol (SIP) module (SAR
file).

The default is to not use default virtual host name for web or SIP modules. If you select Use default
virtual host name for web and SIP modules, specify a default host name.

Select installation options settings
Use this page to specify options for the installation of a Java Platform, Enterprise Edition (Java EE)
application onto a WebSphere Application Server deployment target. Default values for the options are
used if you do not specify a value. After application installation, you can specify values for many of these
options from an enterprise application settings page.

To view this administrative console page, click Applications > New application > New Enterprise
Application and then specify values as needed for your application on the Preparing for application
installation pages.

The Select installation options page is the same for the application installation and update wizards.

Precompile JavaServer Pages files
Specify whether to precompile JavaServer Pages (JSP) files as a part of installation. The default is not to
precompile JSP files.

For this option, install only onto a Version 8 deployment target.

Chapter 8. Deploying and administering enterprise applications 187

If you select Precompile JavaServer Pages files and try installing your application onto an earlier
deployment target such as Version 7, the installation is rejected. You can deploy applications to only those
deployment targets that have same version as the product. If applications are targeted to servers that have
an earlier version than the product, then you cannot deploy to those targets.

 Data type Boolean
Default false

Directory to install application
Specifies the directory to which the enterprise archive (EAR) file will be installed.

By default, the EAR file is installed in the profile_root/installedApps/cell_name/application_name.ear
directory.

Setting options include the following:

v Do not specify a value and leave the field empty.

The default value is ${APP_INSTALL_ROOT}/cell_name, where the ${APP_INSTALL_ROOT} variable is
profile_root/installedApps. A directory having the EAR file name of the application being installed is
appended to ${APP_INSTALL_ROOT}/cell_name. Thus, if you do not specify a directory, the EAR file is
installed in the profile_root/installedApps/cell_name/application_name.ear directory.

v Specify a directory.

If you specify a directory for Directory to install application, the application is installed in
specified_path/application_name.ear directory. A directory having the EAR file name of the application
being installed is appended to the path that you specify for Directory to install application. For
example, if you are installing Clock.ear and specify C:/myapps on Windows computers, the application
is installed in the myapps/Clock.ear directory. The ${APP_INSTALL_ROOT} variable is set to the
specified path.

v Specify ${APP_INSTALL_ROOT}/${CELL} for the initial installation of the application.

If you intend to export the application from one cell and later install the exported application on a
different cell, specify the ${CELL} variable for the initial installation of the application. For example,
specify ${APP_INSTALL_ROOT}/${CELL} for this setting. Exporting the application creates an enhanced
EAR file that has the application and its deployment configuration. The deployment configuration retains
the cell name of the initial installation in the destination directory unless you specify the ${CELL}
variable. Specifying the ${CELL} variable ensures that the destination directory has the current cell
name, and not the original cell name.

Important: If an installation directory is not specified when an application is installed on a single-server
configuration, the application is installed in ${APP_INSTALL_ROOT}/cell_name. When the
server is made a part of a multiple-server configuration (using the addNode utility), the cell
name of the new configuration becomes the cell name of the deployment manager node. If
the -includeapps option is used for the addNode utility, then the applications that are
installed prior to the addNode operation still use the installation directory
${APP_INSTALL_ROOT}/cell_name. However, an application that is installed after the server is
added to the network configuration uses the default installation directory
${APP_INSTALL_ROOT}/network_cell_name. To move the application to the
${APP_INSTALL_ROOT}/network_cell_name location upon running the addNode operation,
explicitly specify the installation directory as ${APP_INSTALL_ROOT}/${CELL} during
installation. In such a case, the application files can always be found under
${APP_INSTALL_ROOT}/current_cell_name.

v If the application has been exported and you are installing the exported EAR file in a different cell or
location, specify ${APP_INSTALL_ROOT}/cell_name/application_name.ear if you did not specify
${APP_INSTALL_ROOT}/${CELL} for the initial installation.

188 Administering applications and their environment

The exported EAR file is an enhanced EAR file that has the application and its deployment
configuration. The deployment configuration retains the value for Directory to install application that
was used for the previous installation of the application. Unless you specify a different value for
Directory to install application for this installation, the enhanced EAR file will be installed to the same
directory as for the previous installation.

If you did not specify the ${CELL} variable during the initial installation, the deployment configuration
uses the cell name of the initial installation in the destination directory. If you are installing on a different
cell, specify ${APP_INSTALL_ROOT}/cell_name/application_name.ear, where cell_name is the name of
the cell to which you want to install the enhanced EAR file. If you do not designate the current cell
name, cell_name will be the original cell name even though you are installing the enhanced EAR file on
a cell that has a different name.

v Specify an absolute path or a use pathmap variable.

You can specify an absolute path or use a pathmap variable such as ${MY_APPS}. You can use a
pathmap variable in any installation.

This Directory to install application field is the same as the Location (full path) setting on an
Application binaries page.

 Data type String
Units Full path name

Distribute application
Specifies whether the product expands application binaries in the installation location during installation
and deletes application binaries during uninstallation. The default is to enable application distribution.
Application binaries for installed applications are expanded to the directory specified.

On single-server products, the binaries are deleted when you uninstall and save changes to the
configuration.

On multiple-server products, the binaries are deleted when you uninstall and save changes to the
configuration and synchronize changes.

If you disable this option, then you must ensure that the application binaries are expanded appropriately in
the destination directories of all nodes where the application runs.

Note: If you disable this option and you do not copy and expand the application binaries to the nodes, a
later saving of the configuration or manual synchronization does not move the application binaries
to the nodes for you.

This Distribute application field is the same as the Enable binary distribution, expansion and cleanup
post uninstallation setting on an Application binaries page.

 Data type Boolean
Default true

Use binary configuration
Specifies whether the application server uses the binding, extensions, and deployment descriptors located
with the application deployment document, the deployment.xml file (default), or those located in the
enterprise archive (EAR) file. Select this setting for applications installed on Version 6.0 or later
deployment targets only.

The default (false) is to use the binding, extensions, and deployment descriptors located in
deployment.xml. To use the binding, extensions, and deployment descriptors located in the EAR file,
enable this setting (true).

Chapter 8. Deploying and administering enterprise applications 189

This Use binary configuration field is the same as the Use configuration information in binary setting
on an Application binaries page.

 Data type Boolean
Default false

Deploy enterprise beans
Specifies whether the EJBDeploy tool runs during application installation.

The tool generates code needed to run Enterprise JavaBeans (EJB) files. You must enable this setting in
the following situations:
v The EAR file was assembled using an assembly tool such as Rational Application Developer and the

EJBDeploy tool was not run during assembly.
v The EAR file was not assembled using an assembly tool such as Rational Application Developer.
v The EAR file was assembled using versions of the Application Assembly Tool (AAT) previous to Version

5.0.

If an EJB module is packaged in a web archive (WAR), you do not need to enable this setting.

The EJB deployment tool runs during installation of EJB 1.x or 2.x modules. The EJB deployment tool
does not run during installation of EJB 3.x modules.

For this option, install only onto a Version 8 deployment target.

If you select Deploy enterprise beans and try installing your application onto an earlier deployment target
such as Version 7, the installation is rejected. You can deploy applications to only those targets that have
same WebSphere version as the product. If applications are targeted to servers that have an earlier
version than the product, then you cannot deploy to those targets.

Also, if you select Deploy enterprise beans and specify a database type on the Provide options to
perform the EJB Deploy page, previously defined backend IDs for all of the EJB modules are overwritten
by the chosen database type. To enable backend IDs for individual EJB modules, set the database type to
"" (null) on the Provide options to perform the EJB Deploy page.

Enabling this setting might cause the installation program to run for several minutes.

 Data type Boolean
Default true (false for EJB 3.0 modules)

Application name
Specifies a logical name for the application. An application name must be unique within a cell and cannot
contain an unsupported character.

An application name cannot begin with a period (.), cannot contain leading or trailing spaces, and cannot
contain any of the following characters:

 Table 23. Characters that you cannot use in a name. The product does not support these characters in a name.

Unsupported characters

/ forward slash $ dollar sign ' single quote mark

\ backslash = equal sign " double quote mark

* asterisk % percent sign | vertical bar

, comma + plus sign < left angle bracket

: colon @ at sign > right angle bracket

190 Administering applications and their environment

Table 23. Characters that you cannot use in a name (continued). The product does not support these characters in
a name.

Unsupported characters

; semi-colon # hash mark & ampersand (and sign)

? question mark]]> No specific name exists for this character combination

This Application name field is the same as the Name setting on an Enterprise application settings page.

 Data type String

Create MBeans for resources
Specifies whether to create MBeans for resources such as servlets or JSP files within an application when
the application starts. The default is to create MBeans.

This field is the same as the Create MBeans for resources setting on a Startup behavior page.

 Data type Boolean
Default true

Override class reloading settings for web and EJB modules
Specifies whether the product run time detects changes to application classes when the application is
running. If this setting is enabled and if application classes are changed, then the application is stopped
and restarted to reload updated classes.

The default is not to enable class reloading.

This field is the same as the Override class reloading settings for web and EJB modules setting on a
Class loading and update detection page.

 Data type Boolean
Default false

Reload interval in seconds
Specifies the number of seconds to scan the application's file system for updated files. The default is the
value of the reloading interval attribute in the IBM extension (META-INF/ibm-application-ext.xmi) file of
the EAR file.

The reloading interval attribute takes effect only if class reloading is enabled.

To enable reloading, specify a value greater than zero (for example, 1 to 2147483647). To disable
reloading, specify zero (0). The range is from 0 to 2147483647.

This Reload interval in seconds field is the same as the Polling interval for updated files setting on a
Class loading and update detection page.

 Data type Integer
Units Seconds
Default 3

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or

Chapter 8. Deploying and administering enterprise applications 191

module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

Deploy web services
Specifies whether the web services deploy tool wsdeploy runs during application installation.

The tool generates code needed to run applications using web services. The default is not to run the
wsdeploy tool. You must enable this setting if the EAR file contains modules using Web services and has
not previously had the wsdeploy tool run on it, either from the Deploy menu choice of an assembly tool or
from a command line.

For this option, install only onto a Version 6.1 or later deployment target.

If you select Deploy web services and try installing your application onto an earlier deployment target
such as Version 6.0, the installation is rejected. You can deploy applications to only those targets that have
same version as the product. If applications are targeted to servers that have an earlier version than the
product, then you cannot deploy to those targets.

 Data type Boolean
Default false

Validate input off/warn/fail
Specifies whether the product examines the application references specified during application installation
or updating and, if validation is enabled, warns you of incorrect references or fails the operation.

An application typically refers to resources using data sources for container managed persistence (CMP)
beans or using resource references or resource environment references defined in deployment descriptors.
The validation checks whether the resource referred to by the application is defined in the scope of the
deployment target of that application.

Select off for no resource validation, warn for warning messages about incorrect resource references, or
fail to stop operations that fail as a result of incorrect resource references.

This Validate input off/warn/fail field is the same as the Application reference validation setting on an
Enterprise application settings page.

 Data type String
Default warn

Process embedded configuration
Specifies whether the embedded configuration should be processed. An embedded configuration consists
of files such as resource.xml and variables.xml. When selected or true, the embedded configuration is

192 Administering applications and their environment

loaded to the application scope from the .ear file. If the .ear file does not contain an embedded
configuration, the default is false. If the .ear file contains an embedded configuration, the default is true.

This setting affects installation of enhanced EAR files. An enhanced EAR file results when you export an
installed application.

When false, an enhanced EAR file is installed like any other application and the product ignores its
embedded configuration.

If you exported the application from a cell other than the current cell and did not specify the $(CELL)
variable for Directory to install application when first installing the application, deselect this setting
(false) to expand the enhanced EAR file in the profile_root/installedApps/current_cell_name directory.
Otherwise, if this setting is selected (true), the enhanced EAR file is expanded in the
profile_root/installedApps/original_cell_name directory, where original_cell_name is the cell on which
the application was first installed. If you specified the $(CELL) variable for Directory to install application
when you first installed the application, installation expands the enhanced EAR file in the
profile_root/installedApps/current_cell_name directory.

 Data type Boolean
Default false (deselected)

File permission
Specifies access permissions for application binaries for installed applications that are expanded to the
directory specified.

The Distribute application option must be enabled to specify file permissions.

You can specify file permissions in the text field. You can also set some of the commonly used file
permissions by selecting them from the multiple-selection list. List selections overwrite file permissions set
in the text field.

You can set one or more of the following file permission strings in the list. Selecting multiple options
combines the file permission strings.

 Table 24. File permission string sets for list options. Select a list option or specify a file permission string in the text
field.

Multiple-selection list option File permission string set

Allow all files to be read but not written to .*=755

Allow executables to execute .*\.dll=755#.*\.so=755#.*\.a=755#.*\.sl=755

Allow HTML and image files to be read by
everyone

.*\.htm=755#.*\.html=755#.*\.gif=755#.*\.jpg=755

Instead of using the multiple-selection list to specify file permissions, you can specify a file permission
string in the text field. File permissions use a string that has the following format:
file_name_pattern=permission#file_name_pattern=permission

where file_name_pattern is a regular expression file name filter (for example, .*\\.jsp for all JSP files),
permission provides the file access control lists (ACLs), and # is the separator between multiple entries of
file_name_pattern and permission. If # is a character in a file_name_pattern string, use \# instead.

If multiple file name patterns and file permissions in the string match a uniform resource identifier (URI)
within the application, then the product uses the most stringent applicable file permission for the file. For
example, if the file permission string is .*\\.jsp=775#a.*\\.jsp=754, then the abc.jsp file has file
permission 754.

Chapter 8. Deploying and administering enterprise applications 193

best-practices: Using regular expressions for file matching pattern compares an entire string URI against
the specified file permission pattern. You must provide more precise matching patterns
using regular expressions as defined by Java programming API. For example, suppose
the following directory and file URIs are processed during a file permission operation:

 Table 25. Example URIs for file permission operations. Results are shown following this table.

1 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war

2 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/MyJsp.jsp

3 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/META-INF/
MANIFEST.MF

4 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/WEB-INF/classes/
MyClass.class

5 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/mydir/
MyClass2.class

6 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/META-INF

The file pattern matching results are:
v MyWarModule.war does not match any of the URIs
v .*MyWarModule.war.* matches all URIs
v .*MyWarModule.war$ matches only URI 1
v .*\\.jsp=755 matches only URI 2
v .*META-INF.* matches URIs 3 and 6
v .*MyWarModule.war/.*/.*\.class matches URIs 4 and 5

If you specify a directory name pattern for File permissions, then the directory permission is set based on
the value specified. Otherwise, the File permissions value set on the directory is the same as its parent.
For example, suppose you have the following file and directory structure:
/opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/MyJsp.jsp

and you specify the following file pattern string:
.*MyApp.ear$=755#.*\.jsp=644

The file pattern matching results are:
v Directory MyApp.ear is set to 755
v Directory MyWarModule.war is set to 755
v Directory MyWarModule.war is set to 755

best-practices: Regardless of the operation system, always use a forward slash (/) as a file path
separator in file patterns.

You cannot unset read permission on a file on Windows operating systems. With POSIX style

permission bits, the bit for denoting readable on a file is 4, writable is 2, and executable is 1. Thus,
permission of a file on a Windows operating system is either 5 or 7. Also, in POSIX style there are user,
group and world permissions. You can only set the user permission for a file on Windows operating
systems. The group and world permission bits are ignored.

Access permissions specified here are at the application level. You can also specify access permissions
for application binaries in the node-level configuration. The node-level file permissions specify the
maximum (most lenient) permissions that can be given to application binaries. Access permissions
specified here at application level can only be the same as or more restrictive than those specified at the
node level.

This setting is the same as the File permissions field on the Application binaries page.

194 Administering applications and their environment

Data type String

Application build identifier
Specifies an uneditable string that identifies the build version of the application.

This Application build identifier field is the same as the Application build level field on the Application
binaries page.

 Data type String

Business-level application name
Specifies whether the product creates a new business-level application with the enterprise application that
you are installing or makes the enterprise application a composition unit of an existing business-level
application.

The default is to create a new business-level application with a setting value of
WebSphere:blaname=Anyasset,blaedition=BASE. When you select to create a new business-level
application from the drop-down list, the product creates a business-level application that has the same
name as your enterprise application. If a business-level application with the name of your enterprise
application exists already, the product does not create a new business-level application; it adds your
enterprise application as a composition unit to that existing business-level application.

If you need to use the Shared library relationship and mapping settings page to specify dependency
relationships on existing shared libraries in the business-level application, select the business-level
application name from the drop-down list. No shared libraries are shown in the page if you choose to
create a new business-level application and a business-level application with the default name exists
already.

To add your enterprise application to an existing business-level application, select an existing
business-level application from the drop-down list. The product makes your enterprise application a
composition unit of the existing business-level application.

 Data type String
Default Create a new business-level application that has the same name as the

enterprise application that you are installing.

WebSphere:blaname=Anyasset,blaedition=BASE

Asynchronous request dispatch type
Specifies whether web modules can dispatch requests concurrently on separate threads and, if so,
whether the server or client dispatches the requests. Concurrent dispatching can improve servlet response
time.

If operations are dependant on each other, do not enable asynchronous request dispatching. Select
Disabled. Concurrent dispatching might result in errors when operations are dependant.

Select Server side to enable the server to dispatch requests concurrently. Select Client side to enable
the client to dispatch requests concurrently.

 Data type String
Default Disabled

Chapter 8. Deploying and administering enterprise applications 195

Allow EJB reference targets to resolve automatically
Specifies whether the product assigns default JNDI values for or automatically resolves incomplete EJB
reference targets.

Select this option to enable EJB reference targets to resolve automatically if the references are from EJB
2.1 or earlier modules or from Web 2.3 or earlier modules. If you enable this option, the runtime container
provides a default value or automatically resolves the EJB reference for any EJB reference that does not
have a binding.

If you selected Generate default bindings on the Preparing for application installation page, then you do
not need to select this option. The product generates default values.

If you select Allow EJB reference targets to resolve automatically, all modules in the application must
share one deployment target. If you select this option and all of the application modules do not share a
common server, after you click Finish on the Summary page, the product displays a warning message
and does not install the application. You must deselect this setting before you click Finish to install the
application.

 Data type Boolean
Default false

Deploy client modules
Specifies whether to deploy client modules.

Select this option (set to true) if the file to deploy has one or more client modules and you want to
configure environment entries for the client modules. Also select this option to configure resources such as
EJB references, resource references, resource environment references, or message destination
references. Selecting this option enables you to view the Map environment entries for client modules page.
If you are deploying the client modules to a federated node of a deployment manager (Federated) or to an
application server (Server Deployed), select this option and set Client deployment mode to the
appropriate value for the deployment target, Federated or Server Deployed.

If you select this option, install the client modules only onto a Version 8.0 deployment target.

 Data type Boolean
Default false

Client deployment mode
Specifies whether to deploy client modules to an isolated deployment target (Isolated), a federated node
of a deployment manager (Federated), or an application server (Server Deployed).

The choice of client deployment mode affects how java: lookups are handled. All Java URL name spaces
(global, application, module, and component) are local in isolated client processes. The name spaces
reside on a server in federated and server deployed client processes. The server chosen as a target for a
client module determines where those name spaces are created. All java: lookups for federated or server
deployed client modules are directed to the target server. The client module does not actually run in the
target server. Multiple instances of the same client module will all share the component name space in the
Federated and Server Deployed modes. Choosing the Federated mode is simply a declaration of intent
to launch the client module using Java Network Launching Protocol (JNLP), but the Java Naming and
Directory Interface (JNDI) mechanics of federated and server deployed modes are the same.

 Data type String
Default Isolated

196 Administering applications and their environment

Validate schema
Specifies whether to validate the deployment descriptors against published Java EE deployment descriptor
schemas. When this option is selected, the product analyzes each deployment descriptor to determine the
Java EE specification version for the deployment descriptor, selects the appropriate schema, and then
checks the deployment descriptor against the Java EE deployment descriptor schema. Validation errors
result in error messages.

A Java EE deployment descriptor schema is also known as a DTD.

If you select this option, install your application or module only onto a Version 8.0 deployment target.

 Data type Boolean
Default false

Manage modules settings
Use this page to specify deployment targets where you want to install the modules that are contained in
your application. Modules can be installed on the same deployment target or dispersed among several
deployment targets.

On single-server products, a deployment target can be an application server or web server.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Manage modules. This page is the similar to the Map
modules to servers page on the application installation and update wizards.

On this page, each Module must map to one or more targets, identified under Server. To change a
mapping:

1. In the list of mappings, select each module that you want mapped to the same target or targets.

2. From the Clusters and servers list, select one or more targets. Select only appropriate deployment
targets for a module. You cannot install modules that use WebSphere Application Server Version 8.x
features on a Version 7.x or 6.x target server. Similarly, you cannot install modules that use Version 7.x
features on a Version 6.x target server.

Use the Ctrl key to select multiple targets. For example, to have a web server serve your application,
press the Ctrl key and then select an application server and the web server together. The product
generates the plug-in configuration file, plugin-cfg.xml, for that web server based on the applications
which are routed through it.

3. Click Apply.

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

If you accessed this Manage modules page from a console enterprise application page for an already
installed application, you can also use this page to view and manage modules in your application.

To view the values specified for a module configuration, click the module name in the list. The displayed
module settings page shows the values specified. On the settings page, you can change existing
configuration values and link to additional console pages that assist you in configuring the module.

To manage a module, select the module name in the list and click a button:

Chapter 8. Deploying and administering enterprise applications 197

Button Resulting action

Remove Removes the selected module from the deployed application. The module is deleted
from the application in the configuration repository and also from all of the nodes
where the application is installed and running or expected to run.

Update Opens a wizard that helps you update modules in an application. If a module has the
same URI as a module already existing in the application, the new module replaces
the existing module. If the new module does not exist in the application, it is added to
the deployed application.

Remove File Deletes a file from a module of a deployed application.

Export File Accesses the Export a file from an application page, which you use to export a file of
an enterprise application or module to a location of your choice.

If the browser does not prompt for a location to store the file, click File > Save as and
specify a location to save the file that is shown in the browser.

Clusters and servers
Lists the names of available deployment targets. This list is the same for every application that is installed
in the cell.

From this list, select only appropriate deployment targets for a module. You must install an application,
enterprise bean (EJB) module, Session Initiation Protocol (SIP) archive (SAR), web module, or client
module on a Version 8.x target under any of the following conditions:
v The module supports Java Platform, Enterprise Edition (Java EE) 6.
v The module calls an 8.x runtime application programming interface (API).
v The module uses an 8.x product feature.

You must install an application, EJB, SAR, or web module on a Version 8.x or 7.x target under any of the
following conditions:
v The module supports Java EE 5.
v The module calls a 7.x runtime API.
v The module uses a 7.x product feature.

If a module supports J2EE 1.4, then you must install the module on a Version 6.x, 7.x or 8.x deployment
target. Modules that call a 6.1.x API or use a 6.1.x feature can be installed on a 6.1.x, 7.x or 8.x
deployment target. Modules that require 6.1.x feature pack functionality can be installed on a 6.1.x
deployment target that has been enabled with that feature pack or on a 7.x or 8.x deployment target.

You can install an application or module developed for a Version 5.x product on any deployment target.

Module
Specifies the name of a module in the installed (or deployed) application.

URI
Specifies the location of the module relative to the root of the application (EAR file).

Module type
Specifies the type of module, for example, a web module or EJB module.

This setting is shown on the Manage modules page accessed from a console enterprise application page.

Server
Specifies the name of each deployment target to which the module currently is mapped.

To change the deployment targets for a module, select one or more targets from the Clusters and
servers list and click Apply. The new mapping replaces the previous mapping.

198 Administering applications and their environment

Client module settings
Use this page to configure a deployed client module.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Manage modules > client_module_name. This page is
viewable only if the selected application contains a client module and the client deployment mode is a
value other than isolated.

URI
Specifies the location of the client module relative to the root of the application.

Alternate deployment descriptor
Specifies the alternate deployment descriptor for the module as defined in the application deployment
descriptor according to the Java Platform, Enterprise Edition (Java EE) specification.

Client module property settings
Use this page to configure the deployment mode of a deployed client module.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Client module deployment mode. This page is viewable
only if the selected application contains a client module.

Client module deployment mode
Specifies whether to deploy client modules to an isolated deployment target (Isolated) or an application
server (Server Deployed).

 Data type String
Default Isolated

Provide options to compile JavaServer Pages settings
Use this page to specify options to be used by the JavaServer Pages (JSP) compiler.

This administrative console page is a step in the application installation and update wizards. To view this
page, you must select Precompile JavaServer Pages files on the Select installations options page.
Thus, to view this page, click Applications > New Application > New Enterprise Application >
application_path > Next > Detailed - Show me all installation options and parameters > Next > Next
or Continue > Precompile JavaServer Pages files > Next > Step: Provide options to compile JSPs.

You can specify the JSP compiler options on this page only when installing or updating an application that
contains web modules. After the application is installed, you must edit the JSP engine configuration
parameters of a web module WEB-INF/ibm-web-ext.xmi file to change its JSP compiler options.

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

Chapter 8. Deploying and administering enterprise applications 199

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

Web module
Specifies the name of a module within the application.

URI
Specifies the location of the module relative to the root of the application (EAR file).

JSP class path
Specifies a temporary class path for the JSP compiler to use when compiling JSP files during application
installation. This class path is not saved when the application installation is complete and is not used when
the application is running. This class path is used only to identify resources outside of the application
which are necessary for JSP compilation and which will be identified by other means (such as shared
libraries) after the application is installed. In network deployment configurations, this class path is specific
to the deployment manager machine.

To specify that multiple web modules use the same class path:
1. In the list of web modules, select the Select check box beside each web module that you want to use

a particular class path.
2. Expand Apply Multiple Mappings.
3. Specify the desired class path.
4. Click Apply.

Use full package names
Specifies whether the JSP engine generates and loads JSP classes using full package names.

When full package names are used, precompiled JSP class files can be configured as servlets in the
web.xml file, without having to use the jsp-file attribute. When full package names are not used, all JSP
classes are generated in the same package, which has the benefit of smaller file-system paths.

When the options useFullPackageNames and disableJspRuntimeCompilation are both true, a single class
loader is used to load all JSP classes, even if the JSP files are not configured as servlets in the web.xml
file.

This option is the same as the useFullPackageNames JSP engine parameter.

JDK source level
Specifies the source level at which the Java compiler compiles JSP Java sources. Valid values are 13, 14,
and 15. The default value is 13 for pre-Java EE 5 web modules, which specifies source level 1.3 and 15 for
Java EE 5 and later web modules.

Disable JSP runtime compilation
Specifies whether a JSP file should never be translated or compiled at run time, even when a .class file
does not exist.

When this option is set to true, the JSP engine does not translate and compile JSP files at run time; the
JSP engine loads only precompiled class files. JSP source files do not need to be present in order to load
class files. You can install an application without JSP source, but the application must have precompiled
class files.

For a single web application class loader to load all JSP classes, this compiler option and the Use full
package names option both must be set to true.

This option is the same as the disableJspRuntimeCompilation JSP engine parameter.

200 Administering applications and their environment

EJB JNDI names for beans
Use this page to view and modify the Java Naming and Directory Interface (JNDI) names of
non-message-driven enterprise beans in your application or module.

If your application uses Enterprise JavaBeans (EJB) 2.1 and earlier modules, on the Provide JNDI names
for beans panel, specify a JNDI name for each enterprise bean in every EJB 2.1 and earlier module. You
must specify a JNDI name for every EJB 2.1 and earlier enterprise bean defined in the application. For
example, for the EJB module MyBean.jar, specify MyBean.

The JNDI name for an EJB module can be used for both EJB 3.x modules and pre-EJB 3.0 modules. For
a pre-EJB 3.0 module, you need to provide a JNDI name for the bean. For an EJB 3.x module, you have
three options

v Provide no JNDI names at all

v Select the radio button to provide a JNDI name for the bean, or

v Select the radio button to provide local or remote home JNDI names.

If no JNDI name is provided, the run time provides a default value. If JNDI name for the bean is provided,
you cannot provide any JNDI name for business interface in the Provide JNDI names for business
interfaces panel.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application > EJB JNDI names.

 Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Module
Specifies the name of the Enterprise JavaBeans module used by your application.

Bean
Specifies the name of an enterprise bean that is contained by the module.

URI
The Uniform Resource Identifier (URI) specifies the location of the module archive relative to the root of
the application EAR.

Target Resource JNDI name
Specifies the Java Naming and Directory Interface (JNDI) name of the enterprise bean.

This is a data entry field. To modify the JNDI name bound to this bean, type the new name in this field,
then select OK.

 Data type String

Bind EJB business settings
Use this administrative console page to specify Java Naming and Directory (JNDI) name bindings for each
enterprise bean with a business interface in an EJB module. Each enterprise bean with a business
interface in an EJB module must be bound to a JNDI name. For any business interface that does not
provide a JNDI name, or if its bean does not provide a JNDI name, a default binding name is provided. If
its bean provides a JNDI name, the default JNDI name for the business interface is provided on top of its
bean JNDI name by appending the package-qualified class name of the interface.

Chapter 8. Deploying and administering enterprise applications 201

If you specify the JNDI name for a bean in the Provide JNDI names for beans page, do not specify any
business interface JNDI name in this page for the same bean. If you do not specify the JNDI name for a
bean in the Provide JNDI names for beans page, you can optionally specify a business interface JNDI
name. If you do not specify a business interface JNDI name, the run time provides a container default.

To view this page in the administrative console, click Applications > Application Types > WebSphere
enterprise applications > application_name > Bind EJB business.

 Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Module
Specifies the EJB module that contains the enterprise beans that bind to the JNDI name.

Bean
Specifies the enterprise bean that binds to the JNDI name.

URI
The Uniform Resource Identifier (URI) specifies the location of the module archive relative to the root of
the application EAR.

Business Interface
Specifies the enterprise bean business interface in an EJB module.

For a no-interface view, the business interface value is an empty string ("").

JNDI Name
Specifies the JNDI name associated with the enterprise bean business interface in an EJB module.

Map default data sources for modules containing 1.x entity beans
Use this page to set the default data source mapping for EJB modules that contain 1.x container-managed
persistence (CMP) beans. Unless you configure individual data sources for your 1.x CMP beans, this
default mapping applies to all beans within the module.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Map default data sources for modules containing 1.x
entity beans.

Guidelines for using this administrative console page:

v The page displays a table that depicts the EJB modules in your application that contain 1.x CMP beans.

v Each table row corresponds to a module. A row shows the JNDI name of the data source mapping
target of the EJB module only if you bound them together during application assembly. For every data
source that is displayed, you see the corresponding security configuration.

v To set your default data source mappings:

1. Select a row. Be aware that if you check multiple rows on this page, the data source mapping target
that you select in step 2 applies to all of those EJB modules.

2. Click Browse to select a data source from the new page that is displayed, the Available Resources
page. The Available Resources page shows all data sources that are available mapping targets for
your EJB modules.

3. Click Apply. The console displays the 1.x entity bean data sources page again. In the rows that you
previously selected, you now see the JNDI name of the new resource mapping target.

202 Administering applications and their environment

4. Before you click OK to save your new configuration, set the security parameters for the data source.
Use the following steps.

v To specify security settings for the default data source:

1. Select a row. Be aware that if you check multiple rows on this page, the security settings that you
select later apply to all of those data sources.

2. Type in a user name and password that comprise the authentication alias for signing on to the data
source. If these entries are not listed in the application Java Platform, Enterprise Edition (Java EE)
Connector (J2C) authentication data list, you must input them into the list after saving your settings
on this page. Read the information center topic on managing Java EE Connector Architecture
authentication data entries for more information.

3. Click Apply that immediately follows the user name and password input fields.

v Repeat all of the previous steps as necessary.

v Click OK to save your work.

Select
Select the check boxes of the rows that you want to edit.

EJB Module
The name of the module that contains the 1.x enterprise beans.

URI
Specifies location of the module relative to the root of the application EAR file.

JNDI name
The Java Naming and Directory Interface (JNDI) name of the default data source for the EJB module.

 Data type String

User name
The user name and password that comprise the authentication alias for securing the data source.

EJB references
Use this page to view and modify the Enterprise JavaBeans (EJB) references to the enterprise beans.
References are logical names used to locate external resources for enterprise applications. References
are defined in the application's deployment descriptor file. At deployment, the references are bound to the
physical location (global Java Naming and Directory Interface (JNDI) name) of the resource in the target
operational environment.

If your application defines EJB references, for Map EJB references to beans, specify JNDI names for
enterprise beans that represent the logical names that are specified in EJB references. Each EJB
reference defined in the application must be bound to an EJB file before clicking Finish in the Summary
panel.

If the EJB reference is from an EJB 3.x, Web 2.4, Web 2.5, or Client 5.0 module, the JNDI name is
optional. If the Allow EJB reference targets to resolved automatically option is enabled, the JNDI name
is optional for all modules. The runtime provides a container default or automatically resolves the EJB
reference if a binding is not provided.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > EJB references.

Values are displayed for Lookup name and EJB Link if they are configured in the application. Only one of
these values is allowed. If both are set, the value must be overridden by a target resource JNDI name.

Chapter 8. Deploying and administering enterprise applications 203

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Module
Specifies the name of the Enterprise JavaBeans module used by your application.

Bean
Specifies the name of an enterprise bean that is contained by the module.

URI
Specifies location of the module relative to the root of the application EAR file.

Resource Reference
Specifies the name of the EJB reference that is used in the enterprise bean, if applicable, and declared in
the deployment descriptor of the application module.

Class
Specifies the name of a Java class associated with this enterprise bean.

Target Resource JNDI Name
Specifies the JNDI name of the enterprise bean.

This is a data entry field. To modify the JNDI name bound to this bean, type the new name in this field,
then select OK.

 Data type String

Resource references
Use this page to designate how the resource references of application modules map to the actual
resources that are configured for the application.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Resource references.

You can also view this page during the Map resource references to resources step when you install an
application.

v If your application uses any of the following resource types, you can set or reset their mapping
configurations:

– Default messaging JMS queues destinations

– Default messaging JMS topic destinations

– Data source

– Generic JMS connection factory

– Mail session

– J2C connection factory

– JMS queue connection factory for the JMS provider of WebSphere MQ

– JMS queue destination for WebSphere MQ

– JMS topic connection factory for WebSphere MQ

– JMS topic destination for WebSphere MQ

– Unified JMS connection factory for WebSphere MQ

204 Administering applications and their environment

– URL configuration

v The page is composed of sections that correspond to each applicable resource type. Each section
heading is the class name for the resource. If your application contains only one applicable resource
type, you see only one section.

v Each section contains a table. Each table row depicts a resource reference within a specific module of
your application.

v The rows contain the JNDI names of resource mapping targets for your references only if you bound
them together during application assembly. You can modify those bindings on this administrative
console page.

v To set your mappings:

1. Select a row. If you want to apply the same mapping to multiple rows, complete the steps in the
section, Set multiple JNDI names.

2. Click Browse to view a new page listing of all resources that are available mapping targets for your
application references.

3. Select a resource and click Apply. The console displays the Resource references page again. The
JNDI name of the selected resource mapping displays in the Target Resource JNDI Name field.

4. Repeat the previous steps as necessary.

5. If you are editing the resource references of an existing enterprise application, click OK. You now
return to the general configuration page for your enterprise application. If you are installing the
application and have completed the Map resource references to resources step, continue to the
next step.

v For data sources and connection factories: Sections for these resource types contain an additional
set of steps for modifying your security settings. Use the last column in the displayed table to view the
authorization type for each resource configuration per application module. You can modify the
corresponding authentication method only if the authorization type is container. Container-managed
authorization indicates that the product performs signon to the resource rather than the enterprise bean
code. The reconfiguring process differs slightly for each authentication method option:

– When you want to assign no authentication method to a resource:

1. Determine which resource configurations to designate with no authentication method.

2. Select the appropriate table rows.

3. Click Modify Resource Authentication Method and select None from the authentication
method options that are displayed above the table.

4. Click Apply.

– When you want to assign the WebSphere Application Server DefaultPrincipalMapping login
configuration to a resource:

1. You must apply this option to each resource individually if you want to designate different
authentication data aliases. See the topic, J2EE connector security, for more information about
the default mapping configuration.

2. Select the appropriate table rows.

3. Click Modify Resource Authentication Method and select Use default method from the list of
authentication method options that are displayed above the table.

4. Select an authentication data entry or alias from the list.

5. Click Apply.

– When you want to assign a trusted context to a resource:

1. You must have a data source that is running at least DB2 Version 9.1 for z/OS, and the data
source must have trusted context enabled.

2. You must have a data source server that is running at least DB2 Version 9.1 for z/OS, and the
data source must have trusted context enabled.

3. Select the appropriate table rows that have trusted context enabled.

Chapter 8. Deploying and administering enterprise applications 205

4. Click Modify Resource Authentication Method and select Use trusted connections from the
authentication method options that are displayed above the table.

5. Select an authentication alias from the list that matches an alias that is already defined in the
DB2 data source. If you do not have an alias defined that is suitable, you must define a new
alias.

6. Click Apply.

7. To edit the properties of the custom login configuration, click Mapping Properties in the table
cell.

– When you want to assign a custom Java Authentication and Authorization Service (JAAS) login
configuration to a resource:

1. See the topic, J2EE connector security, for more information about custom JAAS login
configurations.

2. Select the appropriate table row.

3. Click Modify Resource Authentication Method and select Use custom login configuration
from the authentication method options that are displayed above the table.

4. Select an application login configuration from the list.

5. Click Apply.

6. To edit the properties of the custom login configuration, click Mapping Properties in the table
cell.

Set multiple JNDI names
Use this option to set the same JNDI name on multiple resources with one operation.

Click Set multiple JNDI names to display a menu of JNDI names. If you make a selection from this list, it
is applied to the Target Resource JNDI Name field of all the selected rows of the table.

Modify Resource Authentication Method
Use this panel to toggle the display of a panel above the table rows.

This use of this panel is described in the For data sources and connection factories section.

Extended Properties
Use this panel to set additional properties on the selected resource.

Select a single table row and click Extended Properties to set additional properties on the selected
resource. For more details on using this function, see the documentation on extending DB2 data source
definitions at the application level.

Select
Select the check boxes of the rows that you want to edit.

Module
The name of a module in the application.

Bean
The name of an enterprise bean that is contained by the module.

URI
Specifies location of the module relative to the root of the application EAR file.

Resource Reference
The name of a resource reference that is used in the enterprise bean, if applicable, and is declared in the
deployment descriptor of the application module.

206 Administering applications and their environment

Target Resource JNDI name
The Java Naming and Directory Interface (JNDI) name of the resource that is the mapping target of the
resource reference.

 Data type String

Login configuration
This column applies to data sources and connection factories only and refers to the authorization type and
the authentication method for securing the resource.

Virtual hosts settings
Use this page to specify virtual hosts for web modules contained in your application. Web modules can be
installed on the same virtual host or dispersed among several virtual hosts.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Virtual hosts. This page is the same as the Map virtual
hosts for web modules page on the application installation and update wizards.

On this page, each web module must map to a previously defined virtual host, identified under Virtual
host. You can see information on previously defined virtual hosts by clicking Environment > Virtual hosts
in the administrative console. Virtual hosts enable you to associate a unique port with a module or
application. The aliases of a virtual host identify the port numbers defined for that virtual host. A port
number specified in a virtual host alias is used in the URL that is used to access artifacts such as servlets
and JavaServer Pages (JSP) files in a web module. For example, the alias myhost:8080 is the
host_name:port_number portion of the URL http://myhost:8080/servlet/snoop.

The default virtual host setting usually is default_host, which provides several port numbers through its
aliases:
80 An internal, insecure port used when no port number is specified
9080 An internal port
9443 An external, secure port

 Unless you want to isolate your web module from other modules or resources on the same node (physical
machine), default_host is a suitable virtual host for your web module.

In addition to default_host, the product provides admin_host, which is the virtual host for the
administrative console system application. admin_host is on port 9060. Its secure port is 9043. Do not
select admin_host unless the web module relates to system administration.

To change a mapping:

1. In the list of mappings, select the Select check box beside each web module that you want mapped to
a particular virtual host.

2. From the Virtual host drop-down list, select the desired virtual host. If you selected more than one
virtual host in step 1:
a. Expand Apply Multiple Mappings.
b. Select the desired virtual host from the Virtual Host drop-down list.
c. Click Apply.

3. Click OK.

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Chapter 8. Deploying and administering enterprise applications 207

Web module
Specifies the name of a web module in the application that you are installing or that you are viewing after
installation.

Virtual host
Specifies the name of the virtual host to which the Web module is currently mapped.

Expanding the drop-down list displays a list of previously defined virtual hosts. To change a mapping,
select a different virtual host from the list.

Do not specify the same virtual host for different web modules that have the same context root and are
deployed on targets belonging to the same node even if the web modules are contained in different
applications. Specifying the same virtual host causes a validation error.

Security role to user or group mapping
Use this page to specify the users and groups that are mapped to the security roles that are used with the
enterprise application.

To view this administrative console page, click Applications > Application types > WebSphere
enterprise applications >application_name. Under Detail Properties, click Security role to user/group
mapping.

 Table 26. User and group mapping. User and group mapping.

Button Resulting action

Map Users Lists the users that are mapped to the specified role within this application.

If trusted realms are configured, a drop-down list of realms to search is displayed. Users
from the non-default realm are displayed as user@realm

Map Groups Lists the groups that are mapped to this specified role within this application.

If trusted realms are configured, a drop-down list of realms to search is displayed. Users
from the non-default realm are displayed as user@realm

Map Special Subjects This choice appears if multiple realms are being used. It enables you to map any of the
following Special Subjects to a selected role:

v All authenticated in application realm: All authenticated users that are in the
applications realm, which specifies whether to map all of the authenticated users to a
specified role. When you map all authenticated users to a specified role, all of the valid
users in the current registry who have been authenticated can access resources that
are protected by this role.

This selection also applies to all authenticated users regardless of the realm.

v Everyone: map everyone to the selected role. When you map everyone to a role,
anyone can access the resources that are protected by this role and, essentially, there
is no security.

v None: Do not map anyone to the selected role

Attention:

v If the secured realm cannot be reached, the left list is replaced with 3 text fields (that
is, name, realm, and uid). You can add the user when the secured realm is not
available.

It is not possible to map two subjects to the same role in this release of WebSphere
Application Server.

208 Administering applications and their environment

Role
Lists the specific capabilities to a user. Role privileges give users and groups permission to run as
specified.

For example, you might map the user Joe to the administrator role, which enables user Joe to perform all
of the tasks associated with the administrator role.

The authorization policy is only enforced when global security is enabled.

Mapped users
Lists the users that are mapped to the specified role within this application.

Special subjects
Lists which special subjects are mapped to the security role when an application uses multiple realms.

Mapped groups
Lists the groups that are mapped to this specified role within this application.

JASPI authentication enablement for applications
Use this page to enable or disable Java Authentication SPI (JASPI) authentication for an application or
web module, and to specify the name of a JASPI authentication provider to be used for authenticating
messages for the application or web module.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications. Select an application, and under Detail Properties, select JASPI provider.

Select JASPI provider
Select to indicate the web modules in the application that you wish to specify or to override the default
JASPI authentication settings for.

Select one of the JASPI provider names to choose a provider to use to perform authentication of web
requests for the selected Web module or the application.

To specify how JASPI authentication is performed for the selected web module or the application, choose
one of the following:

Do not use JASPI
Select to disable JASPI authentication for the selected web module or for the application.

Inherit JASPI provider
Select to inherit the JASPI authentication settings from default values in the cell or domain security
configuration, as appropriate.

 When Inherit JASPI provider is selected for a web module, JASPI authentication settings for the
selected module are the settings that are specified for the application.

When Inherit JASPI provider is selected for the application, JASPI authentication settings are the
settings that are specified in the appropriate cell or domain security configuration.

Provider name
When a specific provider name is selected, that provider is used to perform authentication of web
requests for the selected application or web module.

If JASPI authentication is enabled, and a specific provider name is not specified, then the default provider
name is used. For more information, read about configuring a new JASPI authentication provider using the
administrative console.

Chapter 8. Deploying and administering enterprise applications 209

If JASPI authentication is disabled, or if no default provider is selected, JASPI authentication is not
performed. Web authentication is then performed according to another authentication mechanism as
selected in the cell or domain security configuration.

User RunAs collection
Use this page to map a specified user identity and password to a RunAs role. This panel enables you to
specify application-specific privileges for individual users to run specific tasks using another user identity.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Detail properties, click User runAs roles.

The enterprise beans that you install contain predefined RunAs roles. RunAs roles are used by enterprise
beans that need to run as a particular role for recognition while interacting with another enterprise bean.

Username
Specifies a user name for the RunAs role user.

This user already maps to the role specified in the Mapping users and groups to roles panel. You can map
the user to its appropriate role by either mapping the user to that role directly or mapping a group that
contains the user to that role. After you specify the user name and password for the user and select a
RunAs role, click Apply.

 Data type: String

Password
Specifies the password for the RunAs user.

 Data type: String

Role
Maps specific capabilities to a user.

The authorization policy is only enforced when global security is enabled.

Ensure all unprotected 1.x methods have the correct level of
protection
Use this page to verify that the unprotected Enterprise JavaBeans (EJB) Version 1.x methods have the
correct level of protection before you map users to roles.

This administrative console panel is displayed during the application deployment process. To access the
administrative console panel, click Application > New application > New Enterprise Application . The
panel is displayed as Ensure all unprotected 1.x methods have the correct level of protection in the
application deployment steps. On this administrative console panel, you can specify whether users can
access specific EJB modules.

EJB module
Specifies the EJB module name.

URI
Specifies the Uniform Resource Identifier (URI) that is used to locate the Java archive (JAR) file for the
EJB module.

210 Administering applications and their environment

Deny all access
Select this option to protect this EJB module by making it inaccessible to users regardless of their access
permissions.

 Default: Cleared

Bind listeners for message-driven beans settings
Use this page to specify bindings for message-driven beans in your application or module.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Message Driven Bean listener bindings. This page is
the same as the Bind listeners for message-driven beans page on the application installation and
update wizards.

Each message-driven bean must be bound to a listener port name or to an activation specification Java
Naming and Directory Interface (JNDI) name.

Provide a listener port name if your application uses any of the following Java Message Service (JMS)
providers:
v V5 default messaging provider
v WebSphere MQ messaging provider
v Generic messaging provider

Provide an activation specification JNDI name if your application's resources are configured using the
default messaging provider or any generic J2C resource adapter that supports inbound messaging.

Not providing valid listener port names or activation specification JNDI names results in the following
errors:

v If neither a listener port name or an activation specification JNDI name is specified for a message
driven bean, then a validation error is displayed after you click Finish on the Summary page.

v If multiple message driven beans are linked to the same destination, specify the same destination JNDI
name for each message driven bean. If you specify different destination JNDI names, a validation error
is displayed and all JNDI specifications after the first one are ignored.

To apply binding changes to multiple mappings:

1. In the list of mappings, select the Select check box beside each EJB module that you want mapped to
a particular binding.

2. Expand Apply Multiple Mappings.

3. Complete one of the following steps:

v Specify a listener port name.

v Select a target resource JNDI name for an activation specification. Optionally specify the following
parameters:
Destination JNDI name

For resource adapters that support JMS, specify javax.jms.Destinations so the resource
adapter can service messages from the JMS destination. A destination JNDI name set as
part of application deployment take precedence over properties set on an activation
specification administrative object.

ActivationSpec authentication alias
Specify an authentication alias that is used to access the user name and password that are
set on the configured J2C activation specification. Authentication alias properties set as part
of application deployment take precedence over properties set on an activation specification
administrative object.

4. Click Apply.

Chapter 8. Deploying and administering enterprise applications 211

5. Click OK or Next.

Module
Specifies the name of the module that contains the enterprise bean.

Bean
Specifies name of an enterprise bean in the application.

URI
Specifies the location of the module relative to the root of the application EAR file.

Messaging Type
Specifies the type of message-driven bean.

Listener Bindings
Specifies a listener port name or an activation specification JNDI name for the message-driven bean.
When a message-driven enterprise bean is bound to an activation specification JNDI name you can also
specify the destination JNDI name and the authentication alias.

Bindings specify JNDI names for the referenceable and referenced artifacts in an application. An example
JNDI name for a listener port to be used by a Store application might be StoreMdbListener. The binding
definition is stored in IBM bindings files such as ibm-ejb-jar-bnd.xmi.

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

Map data sources for all 2.x CMP beans
Use this page to set the default data source mapping for EJB modules that contain 2.x container-managed
persistence (CMP) beans. Unless you configure individual data sources for your 2.x CMP beans, this
default mapping applies to all beans within the module.

To view this administrative console panel, click Applications > Application Types > Websphere
enterprise applications > application_name > Map data sources for all 2.x CMP beans .

This panel displays a table that depicts the EJB modules in your application that contain 2.x CMP beans.
Each table row corresponds to a module. A row shows the JNDI name of the data source mapping target
of the EJB module only if you bound them together during application assembly. For every data source
that is displayed, you see the corresponding security configuration.

212 Administering applications and their environment

Set Multiple JNDI Names
Specifies the JNDI name to bind to one or more modules. Select one or more modules, click Set Multiple
JNDI Names, and select the JNDI name for the resource to which you would like to bind the module.

Set Authorization Type
Specifies the authorization type that you to use for the modules. Select one or more modules, click Set
Authorization Type, and select the authorization type.

You can choose:

v Per application - indicates that the enterprise bean code performs signon.

v Container - indicates that the application server performs signon to the data source.

Modify Resource Authentication Method
Specifies the resource authentication method for the modules that you have configured with
container-managed authorization. Select one or more modules, click Modify Resource Authentication
Method, and select the authentication method.

You can choose between the following authentication methods:

v None:

1. Determine which data source configurations to designate with no authentication method.

2. Select the appropriate table rows.

3. Select None from the list of authentication method options that precede the table.

4. Click Apply.

v Use default method (many-to-one mapping):

1. Determine which data source configurations to designate with the WebSphere Application Server
DefaultPrincipalMapping login configuration. Apply this option to each data source individually if you
want to designate different authentication data aliases. See the information center topic on J2EE
Connector security for more information on the default mapping configuration.

2. Select the appropriate table rows.

3. Select Use default method (many-to-one mapping) from the list of authentication method options
that precede the table.

4. Select an authentication data entry or alias from the list.

5. Click Apply.

v Use Kerberos authentication: Specifies to use the Kerberos authentication method.

1. Ensure that you have configured the Kerberos authentication mechanism in the application server.

2. Select the appropriate table row.

3. Select Use Kerberos authentication from the list of authentication method options that precede the
table.

4. Select an application login configuration from the list.

5. Click Apply.

6. To edit the properties of the custom login configuration, click Mapping Properties in the table cell.

The application server will attempt to verify that you are connecting to the correct type of database
when you select this option.

v Use trusted connections (one-to-one mapping):

1. Determine which data source configurations to designate with a custom Java Authentication and
Authorization Service (JAAS) login configuration. See the information center topic on J2EE
Connector security for more information on custom JAAS login configurations.

2. Select the appropriate table row.

3. Ensure that the database to which the modules will connect is configured for trusted connections.

Chapter 8. Deploying and administering enterprise applications 213

4. Select Use trusted connections (one-to-one mapping) from the list of authentication method
options that precede the table.

5. Select an application login configuration from the list.

6. Click Apply.

The application server will attempt to verify that you are connecting to the correct type of database
when you select this option.

v Custom login configuration:

1. Determine which data source configurations to designate with a custom Java Authentication and
Authorization Service (JAAS) login configuration. See the information center topic on J2EE
Connector security for more information on custom JAAS login configurations.

2. Select the appropriate table row.

3. Select Use custom login configuration from the list of authentication method options that precede
the table.

4. Select an application login configuration from the list.

5. Click Apply.

6. To edit the properties of the custom login configuration, click Mapping Properties in the table cell.

Select
Select the check boxes of the rows you want to edit.

EJB Module
Specifies the name of the module that contains the 2.x enterprise beans.

URI
Specifies location of the module relative to the root of the application EAR file.

JNDI name
Specifies the Java Naming and Directory Interface (JNDI) name of the default data source for the EJB
module.

 Data type String

Resource authorization
Specifies the authorization type and the authentication method for securing the data source.

Extended Datasource Properties
When selected, you will be directed to a panel on which you can specify extended properties that the
module can use for the DB2 data source.

The application server will attempt to verify that you are connecting to the correct type of database when
you select this option.

Map data sources for all 2.x CMP beans settings
Use this page to map container-managed persistence (CMP) 2.x beans of an application to data sources
that are available to the application.

To view this administrative console page, click Applications > Application Types > Websphere
enterprise applications > application_name > Map data sources for all 2.x CMP beans.

Each table row corresponds to a CMP bean within a specific EJB module. A row shows the JNDI name of
the data source mapping target of the bean only if you bound them together during application assembly.
For every data source that is displayed, you see the corresponding security configuration.

214 Administering applications and their environment

Set Multiple JNDI names
Specify the Java Naming and Directory Interface (JNDI) name for multiple EJB modules. Select one or
more EJB modules from the table, and select a JNDI name from this list to configure the EJB modules
with that JNDI name.

 Data type Drop-down list

Set Authorization Type
Specify the authorization type for securing the data source. Select one or more EJB modules from the
table to set the authorization type.

Select either Container or Application from the displayed list. Container-managed authorization indicates
that WebSphere Application Server performs signon to the data source. Application-managed authorization
indicates that the enterprise bean code performs signon.

Modify Resource Authentication Method
Specify the authorization type and the authentication method for securing the data source. Select one or
more EJB modules from the table to modify the resource authentication method.

You can choose between the following authentication methods:

v None:

1. Determine which data source configurations to designate with no authentication method.

2. Select the appropriate table rows.

3. Select None from the list of authentication method options that precede the table.

4. Click Apply.

v Use default method (many-to-one mapping):

1. Determine which data source configurations to designate with the WebSphere Application Server
DefaultPrincipalMapping login configuration. Apply this option to each data source individually if you
want to designate different authentication data aliases. See the information center topic on J2EE
Connector security for more information on the default mapping configuration.

2. Select the appropriate table rows.

3. Select Use default method (many-to-one mapping) from the list of authentication method options
that precede the table.

4. Select an authentication data entry or alias from the list.

5. Click Apply.

v Use Kerberos authentication: Specifies to use the Kerberos authentication method.

1. Ensure that you have configured the Kerberos authentication mechanism in the application server.

2. Select the appropriate table row.

3. Select Use Kerberos authentication from the list of authentication method options that precede the
table.

4. Select an application login configuration from the list.

5. Click Apply.

6. To edit the properties of the custom login configuration, click Mapping Properties in the table cell.

The application server will attempt to verify that you are connecting to the correct type of database
when you select this option.

v Use trusted connections (one-to-one mapping):

1. Determine which data source configurations to designate with a custom Java Authentication and
Authorization Service (JAAS) login configuration. See the information center topic on J2EE
Connector security for more information on custom JAAS login configurations.

2. Select the appropriate table row.

Chapter 8. Deploying and administering enterprise applications 215

3. Ensure that the database to which the modules will connect is configured for trusted connections.

4. Select Use trusted connections (one-to-one mapping) from the list of authentication method
options that precede the table.

5. Select an application login configuration from the list.

6. Click Apply.

The application server will attempt to verify that you are connecting to the correct type of database
when you select this option.

v Custom login configuration:

1. Determine which data source configurations to designate with a custom Java Authentication and
Authorization Service (JAAS) login configuration. See the information center topic on J2EE
Connector security for more information on custom JAAS login configurations.

2. Select the appropriate table row.

3. Select Use custom login configuration from the list of authentication method options that precede
the table.

4. Select an application login configuration from the list.

5. Click Apply.

6. To edit the properties of the custom login configuration, click Mapping Properties in the table cell.

Select
Select the check boxes of the rows that you want to edit.

EJB
The name of an enterprise bean in the application.

EJB Module
The name of the module that contains the enterprise bean.

URI
Specifies location of the module relative to the root of the application EAR file.

Target resource JNDI name
Specifies the resource to which the CMP bean is bound.

Resource authorization
Specifies the current setting for the resource authorization type.

Modify this setting with Set authorization type.

Ensure all unprotected 2.x methods have the correct level of
protection
Use this page to verify that the unprotected Enterprise JavaBeans (EJB) Version 2.x methods have the
correct level of protection before you map users to roles.

This administrative console panel is displayed during the application deployment process. To access the
administrative console panel, click Applications > New application application_name. The panel is
displayed as Ensure all unprotected 2.x methods have the correct level of protection in the application
deployment steps. On this administrative console panel, you can specify whether users can access
specific EJB modules.

To use this administrative console page, select the Uncheck, Exclude, or Role option, the check box next
to the EJB module, and click Apply. If you select Role option, select the appropriate role for the EJB
module before you click Apply.

216 Administering applications and their environment

Uncheck
Select this option if you do not want the application server to verify the access permissions for the EJB
module. Everyone can access the EJB module.

 Default: Selected

Exclude
Select this option to protect this EJB module by making it inaccessible to users regardless of their access
permissions.

 Default: Deselected

Role
Specifies the EJB level of protection based on the security role.

The roles listed in this menu are obtained from the application scope. If the selected role is not in the
module, then it is added to the modules or Java archive (JAR) files.

 Default: Deselected

EJB module
Specifies the name of the module.

If a module name appears in this list, then the module contains unprotected EJB methods.

URI:

Specifies the Uniform Resource Identifier (URI) that is used to locate the Java archive (JAR) file for the
EJB module.

Protection type
Specifies the level of protection that is assigned to a particular module name.

After you select the Uncheck, Exclude, or Role option and click Apply, the selected protection option is
displayed in this column.

Provide options to perform the EJB Deploy settings
Use this page to specify options for the enterprise bean (EJB) deployment tool. The tool generates code
needed to run enterprise bean files. You can specify extra class paths, Remote Method Invocation
compiler (RMIC) options, database types, and database schema names to be used while running the EJB
deployment tool.

This administrative console page is a step in the application installation and update wizards. To view this
page, you must select Deploy enterprise beans on the Select installation options page. Thus, to view
this page, click Applications > New Application > New Enterprise Application > application_path >
Next > Detailed - Show all installation options and parameters > Next > Deploy enterprise beans >
Next > Step: Provide options to perform the EJB Deploy.

You can specify the EJB deployment tool options on this page when installing or updating an application
that contains EJB modules. The EJB deployment tool runs during installation of EJB 1.x or 2.x modules.
The EJB deployment tool does not run during installation of EJB 3.x modules.

Chapter 8. Deploying and administering enterprise applications 217

The options that you specify set parameter values for the ejbdeploy command. The tool, and thus the
ejbdeploy command, is run on the enterprise archive (EAR) file during installation after you click Finish on
the Summary page of the wizard.

Class path
Specifies the class path of one or more zipped or Java archive (JAR) files on which the JAR or EAR file
being installed depends.

To specify the class paths of multiple entries, the file names must be fully qualified, separated by a path
separator that the target server uses, and enclosed in double quotation marks.

On Windows operating systems, the path separator is a semicolon (;). For example:

path\myJar1.jar;path\myJar2.jar;path\myJar3.jar

On the other supported operating systems, the path

separator is a colon (:). For example:
path/myJar1.jar:path/myJar2.jar:path/myJar3.jar

Class path is the same as the ejbdeploy command parameter -cp class_path.

 Data type String
Default null

RMIC
Specifies whether the EJB deployment tool passes RMIC options to the Remote Method Invocation
compiler. Refer to RMI Tools documentation for information on the options.

Separate options by a space and enclose them in double quotation marks. For example:
"-nowarn -verbose"

The RMIC setting is the same as the ejbdeploy command parameter -rmic "options".

 Data type String
Default null

Database type
Specifies the name of the database vendor, which is used to determine database column types, mapping
information, Table.sql, and other information. Select a database type or the empty choice from the
drop-down list. The list contains the names of valid database vendors. Selecting the empty choice sets the
database type to "" (null).

If you specify a database type, previously defined backend IDs for all of the EJB modules are overwritten
by the chosen database type. To enable backend IDs for individual EJB modules, select the empty choice
to set the database type to null.

Note: The backend IDs SQL92 (1992 SQL Standard) and SQL99 (1999 SQL Standard) are deprecated.
Although the SQL92 and SQL99 backend IDs are available in the list on the Provide options to
perform the EJB Deploy page, they are deprecated.

Database type is the same as the ejbdeploy command parameter -dbvendor name.

 Data type String
Default DB2UDB_V82

218 Administering applications and their environment

Database schema
Specifies the name of the schema that you want to create.

The EJB deployment tool saves database information in the schema document in the JAR or EAR file,
which means that the options do not need to be specified again. It also means that when a JAR or EAR is
generated, the correct database must be defined at that point because it cannot be changed later.

If the name of the schema contains any spaces, the entire name must be enclosed in double quotes. For
example:
"my schema"

Database schema is the same as the ejbdeploy command parameter -dbschema "name".

 Data type String
Default null

Database access type
Specifies the database access type for a DB2 database that supports Structured Query Language for Java
(SQLJ). Use SQLJ to develop data access applications that connect to DB2 databases. SQLJ is a set of
programming extensions that support use of the Java programming language to embed statements that
provide SQL (Structured Query Language) database requests.

To view this setting, you must select a DB2 backend database that supports SQLJ from the Database
type drop-down list.

Available database access types include JDBC and SQLJ.

 Data type String
Default JDBC

SQLJ class path
Specifies the class path of the DB2 SQLJ tool sqlj.zip file. The product uses this class path to run the
DB2 SQLJ tool during application installation and generate SQLJ profiles (.ser files).

To view this setting, you must select a DB2 backend database that supports SQLJ from the Database
type drop-down list.

Specify the drive and directory where the sqlj.zip file resides. For example:

On Windows operating systems, specify c:\SQLJ\sqlj.zip.

On all other operating systems, specify /SQLJ/sqlj.zip.

When you reinstall an application EAR file, the product deletes any existing SQLJ profiles and creates new
profiles.

If you do not specify a class path, the product displays a warning about the missing class path. After you
specify a valid class path, you can continue using the wizard for the application installation.

You can customize or add bindings to the generated SQLJ profile after the product installs the application.
Use the administrative console SQLJ profiles and pureQuery bind files page accessed by clicking
Applications > Application Types > WebSphere enterprise applications > application_name > SQLJ
profiles and pureQuery bind files.

 Data type String

Chapter 8. Deploying and administering enterprise applications 219

Default null

JDK compliance level
Specifies the Java developer kit compiler compliance level as 1.4, 5.0, or 6.0 when you include application
source files for compilation.

The default is to use whatever developer kit version the ejbdeploy command is using. If your application is
using new functionality defined in Version 5.0 or 6.0 or you are including source files (which is not
recommended), then you must specify the Version 5.0 or 6.0 level.

JDK compliance level is the same as the ejbdeploy command parameter -complianceLevel "1.4" |
"5.0" | "6.0".

 Data type String
Default null (empty string)

Shared library reference and mapping settings
Use the Shared library references and Shared library mapping pages to associate defined shared libraries
with an application or web module. A shared library is an external Java archive (JAR) file that is used by
one or more applications. Using shared libraries enables multiple applications deployed on a server to use
a single library, rather than use multiple copies of the same library. After you associate shared libraries
with an application or module, the application or module class loader loads classes represented by the
shared libraries and makes those classes available to the application or module.

To view the Shared library references console page, click Applications > Application Types >
WebSphere enterprise applications > application_name > Shared library references. To view the
Shared library mapping page, click Reference shared libraries on the Shared library references page.
These pages are the same as the Map shared libraries and Map shared libraries to an entire application or
module pages in the application installation and update wizards.

On the Shared library references page, the first element listed is the application. The other elements are
modules in the application.

To associate shared libraries with your application or module:

1. Select an application or module.

2. Click Reference shared libraries.

3. On the Shared library mapping page, select one or more shared libraries that the application or
modules uses in the Available list, click >> to add them to the Selected list, and click OK.

A defined shared library for a file that your application or module uses must exist to associate your
application or module to the library.

If no shared libraries are defined and the application is installed already, on the Shared library mapping
page, click New and define a shared library.

You can otherwise define a shared library as follows:

1. Click Environment > Shared libraries.

2. Specify whether the shared library is visible at the cell, node or server level.

3. Click New.

4. On the settings page for the new shared library, specify a name and one or more class paths. If the
libraries are platform-specific files such as .dll, .so, or *SRVPGM objects, also specify a native library
path. Then, click Apply.

220 Administering applications and their environment

5. Save the administrative configuration.

Application
Specifies the name of the application that you are installing or that you selected on the Enterprise
applications page.

Module
Specifies the name of the module associated with the shared libraries.

URI
Specifies the location of the module relative to the root of the application EAR file.

Shared libraries
Specifies the name of the shared library files associated with the application or module.

Shared library relationship and mapping settings
Use the Shared library relationship and Shared library relationship mapping pages to specify relationship
identifiers and composition unit names for shared libraries that modules in your enterprise application
reference. When installing your enterprise application, the product creates a composition unit for each
shared library relationship in the business-level application that you specified on the Select installation
options page of the application installation wizard.

To view this console page in a wizard, click Applications > Install new application > New Enterprise
Application > application_path > Next > Detailed - Show all installation options and parameters >
Next > application_name > Step: Map shared library relationships.

After installation, click Applications > Application Types > WebSphere enterprise applications >
Shared library relationships.

To map library files used in a business-level application to an application or web module, use the Shared
library relationship mapping page:

1. Click Reference shared libraries.

2. Note the application or module in Map libraries to the application or module listed. You are
associating library files with that application or module.

3. From the Available list, select one or more libraries that the application or module uses.

4. Click >> to add them to the Selected list.

5. To remove an association, select one or more libraries in the Selected list and click <<.

6. Click OK.

Module
Specifies the name of the module associated with the shared libraries.

URI
Specifies the location of the module relative to the root of the application EAR file.

Relationship identifers
Specifies an identifier for a module shared library relationship. The product assigns an identifier to the
composition unit that it creates for the shared library relationship in the business-level application.

Composition unit names
Specifies a composition unit name for the shared library relationship. The product uses this value to name
the composition unit that it creates for the shared library relationship in the business-level application that
you specified on the Select installation options page of this wizard.

This setting is only in the application installation and update wizards.

Chapter 8. Deploying and administering enterprise applications 221

Match target
Specifies whether the product maps the composition unit for the shared library relationship to the same
deployment target as the business-level application.

Note: If you later change the deployment target of the business-level application or its modules, you must
manually update the shared library target to match the target of the application and modules. The
targets of shared library composition units are not automatically updated. Not updating the target of
the shared library composition unit might cause java.lang.ClassNotFoundException errors and
prevent the application or its modules from starting. To prevent these error conditions, also ensure
that shared libraries upon which other modules or applications depend have a lower starting weight
than dependent applications and modules.

JSP and JSF option settings
Use this panel to configure the class reloading of web modules such as JavaServer Pages (JSP) files and
to select a JSF implementation to use with this application.

To view this administrative console panel, click Applications > Application Types > WebSphere
enterprise applications > application_name > JSP and JSF options. This panel is the same as the
Provide JSP reloading options for web modules panel on the application installation and update
wizards.

The following note applies to the files with a .xmi extension in this topic:

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

Web module
Specifies the name of a web module in the installed or deployed application.

URI
Specifies the location of the module that is relative to the root of the application (EAR file).

JSP enable class reloading
Specifies whether to enable class reloading when JSP files are updated.

A web container reloads JSP files only when the IBM extension reloadEnabled in the jspAttributes of the
ibm-web-ext.xmi file is set to true.

Java Platform, Enterprise Edition 5 (Java EE 5) applications IBM extension files are in .xml file format. For
applications versions earlier than Java EE 5, they are in the .xmi file format.

222 Administering applications and their environment

JSP reload interval in seconds
Specifies the number of seconds to scan the application file system for updated JSP files. The default is
the value of the reloading interval attribute in the IBM extension (META-INF/ibm-web-ext.xmi) file of the
web module.

To enable reloading, specify a value greater than zero (for example, 1 to 2147483647). The default reload
interval is 5. To disable reloading, specify zero (0). The range is from 0 to 2147483647.

The reloading interval attribute takes effect only if class reloading is enabled.

Java EE 5 applications IBM extension files are in .xml file format. For applications versions earlier than
Java EE 5, they are in the .xmi file format.

Sun Reference Implementation 1.2
Select this option to use the Sun Reference Implementation 1.2 JSF implementation.

If you change the JSF implementation that you are using for your application, you must delete any
previously compiled JSP files. If you precompiled your application, you must recompile. If you did not
precompile, but have already requested JSP files from this application, you must delete the JSP files from
the temp directory of your profile.

You can set the JSF engine configuration parameter, com.ibm.ws.jsf.JSF_IMPL_CHECK, to true to
automatically mark the JSP files to recompile at application startup.

MyFaces 2.0
Select this option to use the MyFaces JSF implementation. This is the default JSF implementation.

If you change the JSF implementation that you are using for your application, you must delete any
previously compiled JSP files. If you precompiled your application, you must recompile. If you did not
precompile, but have already requested JSP files from this application, you must delete the JSP files from
the temp directory of your profile.

You can set the JSF engine configuration parameter, com.ibm.ws.jsf.JSF_IMPL_CHECK, to true to
automatically mark the JSP files to recompile at application startup.

In a mixed-version cell, a V7 node uses MyFaces 1.2 if the MyFaces selection is toggled, while a V8 node
uses MyFaces 2.0. For WebSphere Application Server versions before V7 (for example, V6.1 and earlier),
this toggle is ineffective because JSF implementation switching was not supported before V7.

Context root for web modules settings
Use this page to specify the context root for web modules during or after installation of an application onto
a WebSphere Application Server deployment target.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Context root for web modules. This page is the same
as the Context root for web modules page on the application installation and update wizards.

Web Module
Specifies the name of a web module in the application that you are installing or that you are viewing after
installation.

URI
Specifies the location of the module relative to the root of the application EAR file.

Context Root
Specifies the context root of the web application (WAR).

Chapter 8. Deploying and administering enterprise applications 223

A context root for each web module is defined in the application deployment descriptor during application
assembly. Use this field to assign a different context root to a web module. The context root is combined
with the defined servlet mapping (from the WAR file) to compose the full URL that users type to access
the servlet. For example, if the context root is /gettingstarted and the servlet mapping is MySession, then
the URL is http://host:port/gettingstarted/MySession.

Initial parameters for servlets settings
Use this page to specify initial parameters that are passed to the init method of web module servlet filters.
You can specify initial parameter values for servlets in web modules during or after installation of an
application onto a WebSphere Application Server deployment target. The <param-value> values specified
in <init-param> statements in the web.xml file of web modules are used by default.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Init parameters for servlets. This page is the same as
the Init parameters for servlets in each web module panel on the application installation and update
wizards.

Module
Specifies the name of a module in the application that you are installing or that you are viewing after
installation.

URI
Specifies the location of the module relative to the root of the application (EAR file).

Servlet
Specifies a unique name for the servlet within the application.

A servlet is a Java program that uses the Java Servlet Application Programming Interface (API). You must
package servlets in a Web archive (WAR) file or web module for deployment to an application server.
Servlets run on a Java-enabled web server and extend the capabilities of a web server, similar to the way
applets run on a browser and extend the capabilities of a browser.

Name
Specifies the name of the initial parameter passed to the init method of the web module servlet filter.

The following example servlet filter statement in a web.xml file specifies an initial parameter name of
attribute:
<init-param>
 <param-name>attribute</param-name>
 <param-value>tests.Filter.DoFilter_Filter.SERVLET_MAPPED</param-value>
</init-param>

Value
Specifies the value assigned to an initial parameter passed to the init method of the web module servlet
filter.

The following example servlet filter statement in a web.xml file specifies an initial parameter value of
tests.Filter.DoFilter_Filter.SERVLET_MAPPED for the init parameter attribute:
<init-param>
 <param-name>attribute</param-name>
 <param-value>tests.Filter.DoFilter_Filter.SERVLET_MAPPED</param-value>
</init-param>

Description
Specifies information on the initial parameter.

224 Administering applications and their environment

Environment entries for client modules settings
Use this page to configure the environment entries of application client modules that are deployed as Java
archive (JAR) files.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Environment entries for client modules.

This page is the same as the Map environment entries for client modules page on the application
installation and update wizards. To view the Map environment entries for client modules page in a wizard,
you must select the Deploy client modules option on the Select installation options page.

Client module
Specifies the name of a client module.

URI
Specifies the location of the client module relative to the root of the application.

Name
Specifies the name of the environment entry that you are editing or viewing. The environment entry is the
env-entry property in the client module.

Type
Specifies a data type for the environment entry defined by the env-entry property in the client module.

Description
Specifies information about the environment entry.

Value
Specifies an editable value for the environment entry. The value is defined by the env-entry property in
the client module.

The lookup name is displayed in the Value column if the lookup name is configured in the application
metadata. The lookup name is not editable. If you do not specify a value on this page, the lookup name is
used for the value.

Environment entries for EJB modules settings
Use this page to configure the environment entries of Enterprise JavaBeans (EJB) modules such as entity,
session, or message driven beans.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Environment entries for EJB modules. This page is the
same as the Map environment entries for EJB modules page on the application installation and update
wizards.

Module
Specifies the name of an EJB module.

URI
Specifies the location of the EJB module relative to the root of the application.

Bean
Specifies the name of an enterprise bean that is contained by the module.

Name
Specifies the name of the environment entry that you are editing or viewing. The environment entry is the
env-entry property in the EJB module.

Chapter 8. Deploying and administering enterprise applications 225

Type
Specifies a data type for the environment entry defined by the env-entry property in the EJB module.

Description
Specifies information on the environment entry.

Value
Specifies an editable value for the environment entry defined by the env-entry property in the EJB
module.

The lookup name is displayed in the Value column if the lookup name is configured in the application
metadata. The lookup name is not editable. If you do not specify a value on this page, the lookup name is
used for the value.

Environment entries for web modules settings
Use this page to configure the environment entries of Web modules such as servlets and JavaServer
Pages (JSP) files.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Environment entries for web modules. This page is the
same as the Environment entries for web modules page on the application installation and update wizards.

Module
Specifies the name of a web module.

URI
Specifies the location of the module relative to the root of the application (EAR file).

Name
Specifies the name of the environment entry that you are editing or viewing. The environment entry is the
env-entry property in the web module.

Type
Specifies a data type for the environment entry defined by the env-entry property in the web module.

Description
Specifies information on the environment entry.

Value
Specifies an editable value for the environment entry defined by the env-entry property in the web
module.

The lookup name is displayed in the Value column if the lookup name is configured in the application
metadata. The lookup name is not editable. If you do not specify a value on this page, the lookup name is
used for the value.

Environment entries for application settings
Use this page to configure the environment entries of applications that are deployed as enterprise archive
(EAR) files.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Environment entries for the application.

226 Administering applications and their environment

This page is the same as the Map environment entries for application level page on the application
installation and update wizards. To view this page, the application must define one or more environment
entries.

Name
Specifies the name of the environment entry that you are editing or viewing. The environment entry is the
env-entry property in the application.

Type
Specifies a data type for the environment entry defined by the env-entry property in the application.

Description
Specifies information about the environment entry.

Value
Specifies an editable value for the environment entry. The value is defined by the env-entry property in
the application.

The lookup name is displayed in the Value column if the lookup name is configured in the application
metadata. The lookup name is not editable. If you do not specify a value on this page, the lookup name is
used for the value.

Resource environment references
Use this page to designate how the resource environment references of application modules map to
remote resources, which are represented in the product as resource environment entries.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Resource environment references.

Each row of the table depicts a resource environment reference within a specific module of your
application. If you bound any references to resource environment entries during application assembly, you
see the JNDI names of those resource environment entries in the applicable rows.

To set the mapping relationships between your resource environment references and resource
environment entries:

1. Select a row. Be aware that if you check multiple rows on this page, the resource mapping target that
you select in step 2 applies to all of those references.

2. Click Browse to select a resource environment entry from the new page that is displayed, the
Available Resources page. The Available Resources page shows all resource environment entries that
are available mapping targets for your application references.

3. Click Apply. The console displays the Resource environment references page again. In the rows that
you previously selected, you now see the JNDI name of the new resource mapping target.

4. Repeat the previous steps as necessary.

5. Click OK. You now return to the general configuration page for your enterprise application.

Table column heading descriptions:

Select
Select the check boxes of the rows that you want to edit.

Module
The name of a module in the application.

EJB
The name of an enterprise bean that is accessed by the module.

Chapter 8. Deploying and administering enterprise applications 227

URI
Specifies location of the module relative to the root of the application EAR file.

Reference binding
The name of a resource environment reference that is declared in the deployment descriptor of the
application module. The reference corresponds to a resource that is bound as a resource environment
entry into the JNDI name space of the application server.

JNDI name
The Java Naming and Directory Interface (JNDI) name of the resource environment entry that is the
mapping target of the resource environment reference.

 Data type String

Message destination reference settings
If your application uses message-driven beans, use this page to specify the Java Naming and Directory
Interface (JNDI) name of the J2C administered object to bind the message destination reference to the
message-driven beans. You must map each message destination reference that is defined in your
application to an administered object.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Message destination references. This page is the same
as the Bind message destination references to administered objects page on the application
installation and update wizards.

If the message destination reference is from an EJB 3.0 or later module, then the JNDI name is optional
and the run time provides a container default value.

 Attention: If multiple message destination references link to the same message destination, only one
JNDI name is collected. When a message destination reference links to the same message destination as
a message-driven bean and the destination JNDI name has been collected already, the destination JNDI
name for the message destination reference is not collected.

To apply binding changes to multiple mappings:

1. In the list of mappings, select the Select check box beside each EJB module that you want mapped to
a particular binding.

2. Expand Apply Multiple Mappings.

3. Complete one of the following steps:

v Specify a message destination name.

v Select a target resource JNDI name for a message destination.

4. Click Apply.

5. Click OK or Next.

Module
Specifies the name of the module that contains the bean.

Bean
Specifies name of a bean in the application.

URI
Specifies the location of the module relative to the root of the enterprise archive (EAR) file.

228 Administering applications and their environment

Message destination object
Specifies the message destination object.

Type
Specifies the type of object.

Target Resource JNDI Name
Specifies the Java Naming and Directory Interface (JNDI) name of the bean.

This is a data entry field. To change the JNDI name bound to this bean, type the new name in this field.

Select current backend ID settings
Use this page to select a backend identifier for container-managed persistence (CMP) beans that contain
mappings for multiple backend databases.

This administrative console page is a step in the application installation and update wizards. To view this
administrative console page, click Applications > New Application > New Enterprise Application >
application_path > Next > Detailed - Show all installation options and parameters > Next > Next or
Continue > Step: Select current backend ID. This page is displayed in the wizards if Database type is
blank on the Provide options to perform the EJB Deploy page.

A backend can represent different database vendors, or simply alternative mappings and table qualifiers. If
a Java archive (JAR) file for an enterprise bean defines CMP beans that contain mappings for multiple
backend databases, you must select a current backend ID to be used when the module is installed on a
deployment target. The backend ID determines the persister classes that get loaded at deployment.

Module
Specifies the name of the module that contains the bean.

URI
Specifies the location of the module relative to the root of the application EAR file.

Current backend ID
Specifies the current backend ID to be used when the module is installed on a deployment target.

Provide JNDI names for JCA objects settings
Use this page to configure Java Naming and Directory Interface (JNDI) name values for J2C objects
(J2CConnectionFactory, J2CActivationSpec, and J2CAdminObject) in your application or modules. If your
application contains an embedded resource archive (RAR) file, specify the name and JNDI name of each
JCA connection factory, administered object, and activation specification.

This administrative console page is a step in the application installation and update wizards. To view this
administrative console page, click Applications > New Application > New Enterprise Application >
application_path > Next > Detailed - Show all installation options and parameters > Next > Next or
Continue > Step: Provide JNDI names for JCA objects.

Connector module
Specifies the name of a connector module of the RAR file.

URI
Specifies the location of the module that is relative to the root of the RAR file.

Object identifier
Specifies the name of the J2C object. The object can be a JCA connection factory, administered object, or
activation specification.

Chapter 8. Deploying and administering enterprise applications 229

Bindings
Specifies the name and Java Naming and Directory Interface (JNDI) name of the J2C object.

These are data entry fields. To change the name or JNDI name bound to this object, type the new names
in the fields.

Correct use of the system identity
Use this page to manage the system identity properties for the Enterprise JavaBeans (EJB) method in
your application.

This administrative console page is displayed during the application deployment process. To access the
administrative console , click Application > New application > New Enterprise Application. The is
displayed as Correct use of System Identity in the application deployment steps.

To use this page, complete the following steps:

1. Select an application that supports security and click Next.

2. Select Detailed - Show all installation options and parameters and click Next.

3. Select the Correct use of system identity step.

Bean
A component that implements a business task or business entity and resides in an EJB container. Entity
beans, session beans, and message-driven beans are all enterprise beans.

Module
In Java EE programming, a software unit that consists of one or more components of the same container
type and one deployment descriptor of that type. Examples include EJB, Web, and application client
modules.

URI
A Uniform Resource Identifier (URI) is a unique address that is used to identify content on the Web, such
as a page of text, a video or sound clip, a still or animated image, or a program.

Method signature
The combination of a name of a method along with the number and types of the parameters and their
order.

Role
Specifies the RunAs role that is used for this EJB method.

Username
Specifies the user name that is assigned to the RunAs role for this EJB method.

The user name is used in conjunction with the RunAs role that you select for the Role.

Requirements for setting data access isolation levels
This article discusses the criteria and effects of setting isolation levels for data access components that
comprise Enterprise JavaBeans (EJB) 2.x and later modules.

In an EJB 1.1 module, you can set the isolation level at the method level or bean level. This capability also
applies to container-managed persistence (CMP) 1.1 beans that you assemble into EJB 2.x modules.
WebSphere Application Server permits the deployment descriptor of a CMP bean to declare the version
level of 1.1, regardless of the overall module version.

230 Administering applications and their environment

However, the ability to set isolation level at the method or bean level does not apply to other enterprise
beans within an EJB 2.x module, including CMP 2.x beans. WebSphere Application Server Version 5.0
removed this capability from EJB 2.0 modules to deliver an architecture that ultimately provides more
efficient connection use.

Consequently, later versions of the product enforce the following restrictions on declaring isolation level for
CMP 2.x beans—as well as session beans, message-driven beans, and bean managed persistence (BMP)
beans that you assemble into EJB 2.x modules:

v You cannot specify isolation level on the EJB method level or bean level.

v If you configure a JDBC application, a bean-managed persistence (BMP) bean, or a servlet to
participate in global transactions, any connection that is shared cannot accept a user-specified isolation
level. WebSphere Application Server can only set a user-specified isolation level on a connection that is
not shared within a global transaction. Generally, you want to refrain from specifying isolation levels on
shareable connections.

The configuration for the isolation level is determined by the type of bean that is used by the component:

Isolation level on connections used by 2.x CMP beans
In a EJB 2.x module, when a CMP 2.x bean uses a new data source to access a backend
database, the isolation level is determined by the WebSphere Application Server run time, based
on the type of access intent assigned to the bean or the calling method. Other non-CMP
connection users can access this same data source and also use the access intent and
application profile support to manage their concurrency control.

Connections used by other 2.x enterprise beans and other non-CMP components
For all other JDBC connection instances (connections other than those used by CMP beans), you
can specify an isolation level on the data source resource reference. For shareable connections
that run in global transactions, this method is the only way to set the isolationLevel for
connections. Trying to directly set the isolation level through the setTransactionIsolation() method
on a shareable connection that runs in a global transaction is not allowed. To use a different
isolation level on connections, you must provide a different resource reference. Set these defaults
through your assembly tool.

 Each resource reference associates with one isolation level. When your application uses this
resource reference Java Naming and Directory Interface (JNDI) name to look up a data source,
every connection returned from this data source using this resource reference has the same
isolation level.

Components needing to use shareable connections with multiple isolation levels can create
multiple resource references, giving them different JNDI names, and have their code look up the
appropriate data source for the isolation level they need. In this way, you use separate
connections with the different isolation levels enabled on them.

It is possible to map these multiple resource references to the same configured data source. The
connections still come from the same underlying pool, however; the connection manager does not
allow sharing of connections requested by resource references with different isolation levels.
Consider the following scenario:

v A data source is bound to two resource references: jdbc/RRResRef and jdbc/RCResRef.

v RRResRef has the RepeatableRead isolation level defined. RCResRef has the ReadCommitted
isolation level defined.

If your application wants to update the tables or a BMP bean updates some attributes, it can use
the jdbc/RRResRef JNDI name to look up the data source instance. All connections returned from
the data source instance have a RepeatableRead isolation level. If the application wants to
perform a query for read only, then it is better to use the jdbc/RCResRef JNDI name to look up the
data source.

If you do not specify the isolation level:

Chapter 8. Deploying and administering enterprise applications 231

The product does not require you to set the isolation level on a data source resource reference for
a non-CMP application module. If you do not specify isolation level on the resource reference, or if
you specify TRANSACTION_NONE, the WebSphere Application Server run time uses a default
isolation level for the data source. Application Server uses a default setting based on the JDBC
driver.

For most drivers, WebSphere Application Server uses an isolation level default of
TRANSACTION_REPEATABLE_READ. For Oracle drivers, however, Application Server uses an
isolation level of TRANSACTION_READ_COMMITTED. Use the following table for quick
reference:

 Database: DB2 Oracle Sybase Informix® Apache Derby SQL Server

Default
isolation
level:

(for
connections
used by
non-CMP
entities)

RR RC RR RR RR RR

v Note: These same default isolation levels are used in cases of direct JNDI lookups of a data
source.

v RR = JDBC Repeatable read (TRANSACTION_REPEATABLE_READ)

v RC = JDBC Read committed (TRANSACTION_READ_COMMITTED)

To customize the default isolation level, you can use the webSphereDefaultIsolationLevel custom
property for the data source. In most cases you should define the isolation level in the deployment
descriptor when you package the EAR file, but in certain situations you might need to customize
the default isolation level. This property will have no effect if any of the above options are used,
and this custom property is provided for those situations in which there is no other means of
setting the isolation level.

Use the following values for webSphereDefaultIsolationLevel custom property:

 Possible values JDBC isolation level DB2 isolation level

8 TRANSACTION_SERIALIZABLE Repeatable Read (RR)

4 (default) TRANSACTION_REPEATABLE_READ Read Stability (RS)

2 TRANSACTION_READ_COMMITTED Cursor Stability (CS)

1 TRANSACTION_READ_UNCOMMITTED Uncommitted Read (UR)

To define this custom property for a data source:

1. Click Resources > JDBC provider > JDBC_provider.

2. Click Data sources in the Additional Properties section.

3. Click the name of the data source.

4. Click Custom properties.

5. Create the webSphereDefaultIsolationLevel custom property.

a. Click New.

b. Enter webSphereDefaultIsolationLevel for the name field.

c. Enter one of the possible values in the value field.

Application Server sets the isolation level by prioritizing the available settings. Application Server will set
the isolation level based on the values for the following, in this order:

232 Administering applications and their environment

1. Resource reference isolation level

2. Isolation level that is specified by the access intent policy

3. Custom property that configures an isolation level

4. Application Server's default setting.

Metadata for module settings
Use this page to instruct a Java Platform, Enterprise Edition (Java EE) enterprise bean (EJB) deployment
descriptor, web module deployment descriptor, or JCA resource adapter archive (RAR) module to ignore
annotations that specify deployment information.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Metadata for modules. This page is the same as the
Metadata for modules page on the application installation and update wizards.

If your application contains Java EE 5 or later modules, you can select to lock the deployment descriptor
of one or more of the modules on the Metadata for modules page. If you select a metadata-complete
attribute check box (set the metadata-complete attribute to true) and lock deployment descriptors, the
product writes the complete module deployment descriptor, including deployment information from
annotations, to XML format.

Annotations are a standard mechanism of adding metadata to Java classes. You can use metadata to
simplify development and deployment of Java EE 5 or later artifacts. Prior to the introduction of Java
language annotations, deployment descriptors were the standard mechanism used by Java EE
components. These deployment descriptors were mapped to XML format, which facilitated their
persistence. If you select to lock deployment descriptors, the product merges Java EE annotation-based
metadata with the XML-based existing deployment descriptor metadata and persists the result.

When applications contain a large number of Java classes, the deployment processing time for the
annotations can increase. To minimize the performance impact, you can use one of the following methods:

v Determine whether the module needs to use Java EE 5 or 6. If the module does not need to use Java
EE 5 or 6, the annotations within the Java classes are not scanned.

v Use the “metadata-complete attribute” on page 234 in the module descriptor if the module uses Java
EE 5 or later and it does not contain any annotations. This attribute disables the annotations processing
for the module, but Java EE 5 or later modules might still be placed in the descriptor file. If you are
migrating your application, but you are not adding annotations, consider using this attribute value.

v Restructure the application to place the utility Java archive (JAR) files into shared libraries if those JAR
files do not have annotation information. Consider this method if you cannot set the “metadata-complete
attribute” on page 234.

v Move the JAR files in the WEB-INF/lib directory to the root directory of the enterprise archive (EAR) file.
Nested archives, such as a JAR file that is within a web application archive (WAR) that is within an EAR
file, are very cumbersome to search through because of the multiple levels of compression.

Module
Specifies the name of a module in the installed (or deployed) application.

 Data type String

URI
Specifies the location of the module relative to the root of the EAR file.

 Data type String

Chapter 8. Deploying and administering enterprise applications 233

metadata-complete attribute
Specifies whether to write the complete module deployment descriptor, including deployment information
from annotations, to extensible markup language (XML) format.

By default, a metadata-complete attribute check box is not selected and the product does not write out
annotation data to a module deployment descriptor.

If your modules do not have a metadata-complete attribute or the metadata-complete attribute is set to
false, you can select a check box and instruct the product to write out annotation data to a module
deployment descriptor.

Note: If your Java EE 5 or later application uses annotations and a shared library, do not select
metadata-complete attribute. When your application uses annotations and a shared library, setting
the metadata-complete attribute to true causes the product to incorrectly represent an @EJB
annotation in the deployment descriptor as <ejb-ref> rather than <ejb-local-ref>. For web
modules, setting the metadata-complete attribute to true might cause InjectionException errors. If
you must select metadata-complete attribute (set the metadata-complete attribute to true), avoid
errors by not using a shared library, by placing the shared library in either the classes or lib
directory of the application server, or by fully specifying the metadata in the deployment descriptors.

After you select a check box, you cannot deselect (clear) the check box and the module is no longer
shown in the list of modules on this page. If you select all the check boxes, the link to this page is no
longer shown on the enterprise application settings page.

 Data type Boolean
Default false (deselected)

Provide options to perform the web services deployment settings
Use this page to specify options for web services deployment.

This administrative console page is a step in the application installation and update wizards.

To view this page, you must select Deploy web services on the Select installation options page.

To view this administrative console page, complete the following steps:

1. Click Applications > New application > application_path .

2. Select the option to Show all installation options and parameters .

3. Click Next to get to the Step: Select installation options page.

4. Select Deploy web service.

5. Click Next to get to the Step: Provide options to perform the web services deployment page.

You can specify the web services deployment options on this page only when installing or updating an
application that uses web services.

The wsdeploy command is supported by Java API for XML-based RPC (JAX-RPC) applications. The Java
API for XML-Based Web Services (JAX-WS) programming model that is implemented by the application
server does not support the wsdeploy command. If your web services application contains only JAX-WS
endpoints, you do not need to run the wsdeploy command, as this command is used to process only
JAX-RPC endpoints.

The options that you specify set parameter values for the wsdeploy command. The wsdeploy command
adds product-specific deployment classes to a web services-compatible enterprise archive (EAR) file or an
application client Java archive (JAR) file. These classes include:

234 Administering applications and their environment

v Stubs
v Serializers and deserializers
v Implementations of service interfaces

The wsdeploy command is run during installation after you click Finish on the Summary page of the
wizard.

Deploy web services option - Classpath
Specifies entries to add to the CLASSPATH when the generated classes are compiled.

To specify the class paths of multiple entries, you need to separate the entries with a semicolon on
Windows platforms and on Linux, Unix, and z/OS platforms, you need to use a colon to separate the
entries. This is the same separator that is used with the CLASSPATH environment variable.

This option is the same as the wsdeploy command parameter -cp class_path.

 Data type String
Default null

Deploy web services option - Extension Directories
Specifies a directory that contains zipped or Java archive (JAR) files. All zipped and JAR files in this
directory are added to the CLASSPATH used to compile the generated files.

This option is the same as the wsdeploy command parameter -jardir directory.

 Data type String
Default null

Display module build ID settings
Use this page to view the build identifier of a module in a Java Platform, Enterprise Edition (Java EE)
enterprise archive (EAR file). The build identifier for a module is shown if the MANIFEST.MF file of a module
or application specifies a build identifer.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Display module build IDs. This page is the same as the
Display module build IDs page on the application installation and update wizards.

Module
Specifies the name of a module in the installed (or deployed) application.

 Data type String

URI
Specifies the location of the module relative to the root of the application EAR file.

 Data type String

Build ID
Specifies the build identifier for a module if the MANIFEST.MF file specifies a build identifer.

You cannot modify the build ID on this page because this field is read-only.

 Data type String

Chapter 8. Deploying and administering enterprise applications 235

Installing enterprise modules with JSR-88
You can install Java Platform, Enterprise Edition (Java EE) modules on an application server provided by
a WebSphere Application Server product using the Java EE Application Deployment API specification
(JSR-88).

Before you begin

Note: Application installation using the Java EE Application Deployment API specification (JSR-88) has
been deprecated in WebSphere Application Server Version 8.0. Use another option to deploy
applications to a server. The closest option to using the Java EE Deployment API is using Java
Management Extensions (JMX) MBean programming. For information on deployment options, see
"Ways to install enterprise applications or modules."

JSR-88 defines standard application programming interfaces (APIs) to enable deployment of Java EE
applications and stand-alone modules to Java EE product platforms. The Java EE Application Deployment
specification Version 1.1 is available at http://java.sun.com/j2ee/tools/deployment/reference/docs/
index.html as part of the Java 2 Platform, Enterprise Edition (J2EE) 1.4 Application Server Developer
Release.

Read about JSR-88 and APIs used to manage applications at http://java.sun.com/j2ee/tools/
deployment/.

About this task

JSR-88 defines a contract between a tool provider and a platform that enables tools from multiple vendors
to configure, deploy and manage applications on any Java EE product platform. The tool provider typically
supplies software tools and an integrated development environment (IDE) for developing and assembly of
Java EE application modules. The Java EE platform provides application management functions that
deploy, undeploy, start, stop, and otherwise manage Java EE applications.

WebSphere Application Server is a Java EE specification-compliant platform that implements the JSR-88
APIs. Complete the following steps to deploy (install) Java EE modules on an application server provided
by the WebSphere Application Server platform.

Procedure
1. Code a Java program that can access the JSR-88 DeploymentManager class for the product.

a. Write code that finds the JAR manifest attribute J2EE-DeploymentFactory-Implementation-Class.

Under JSR-88, your code finds the DeploymentFactory using the JAR manifest attribute
J2EE-DeploymentFactory-Implementation-Class. The following product application management
JAR files contain this attribute and provide support.

 Table 27. JAR files that contain the manifest attribute. Enable your code to find the DeploymentFactory using the
JAR manifest attribute.

Environment JAR file containing the manifest attribute

Application server app_server_root/plugins/com.ibm.ws.admin.services.jar

Application client app_client_root/plugins/com.ibm.ws.j2ee.client.jar

Thin application client app_client_root/runtimes/com.ibm.ws.admin.client_8.0.0.jar

After your code finds the DeploymentFactory, the deployment tool can create an instance of the
WebSphere DeploymentFactory and register the instance with its DeploymentFactoryManager.

Example code for the application server environment follows. The example code requires that you
use the development kit shipped with the product or use the pluggable client for deployment of

236 Administering applications and their environment

stand-alone modules. See WebSphere Application Server detailed system requirements at
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921 for information on supported
development kits.

import javax.enterprise.deploy.shared.factories.DeploymentFactoryManager;
import javax.enterprise.deploy.spi.DeploymentManager;
import javax.enterprise.deploy.spi.factories.DeploymentFactory;
import java.util.jar.JarFile;
import java.util.jar.Manifest;

// Get the DeploymentFactory implementation class from the MANIFEST.MF file.
File jsr88Jar = new File(wasHome + "/plugins/com.ibm.ws.admin.services.jar");
JarFile jarFile = new JarFile(jsr88Jar);
Manifest manifest = jarFile.getManifest();
Attributes attributes = manifest.getMainAttributes();
String key = "J2EE-DeploymentFactory-Implementation-Class";
String className = attributes.getValue(key);
// Get an instance of the DeploymentFactoryManager
DeploymentFactoryManager dfm = DeploymentFactoryManager.getInstance();

// Create an instance of the WebSphere Application Server DeploymentFactory.
Class deploymentFactory = Class.forName(className);
DeploymentFactory deploymentFactoryInstance =
 (DeploymentFactory) deploymentFactory.newInstance();

// Register the DeploymentFactory instance with the DeploymentFactoryManager.
dfm.registerDeploymentFactory(deploymentFactoryInstance);

// Provide WebSphere Application Server URI, user ID, and password.
// For more information, see the step that follows.
wsDM = dfm.getDeploymentManager(
 "deployer:WebSphere:myserver:8880", null, null);

b. Write code that accesses the DeploymentManager instance for the product.

The product URI for deployment has the following format:
"deployer:WebSphere:host:port"

The example in the previous step, "deployer:WebSphere:myserver:8880", tries to connect to host
myserver at port 8880 using the SOAP connector, which is the default.

You can specify an Internet Protocol Version 6 (IPv6) address for the host element in the URI for
deployment. Enclose the IPv6 address in square brackets ([]); for example:

"deployer:WebSphere:[IPv6_address]:port"

Also, you can add an optional parameter, connectorType, to the URI for deployment. For example,
to use the RMI connector to access myserver, code the URI as follows:

"deployer:WebSphere:myserver:2809?connectorType=RMI"

2. Optional: Code a Java program that can customize or deploy Java EE applications or modules using
the JSR-88 support provided by the product.

3. Start the deployed Java EE applications or stand-alone Java EE modules using the JSR-88 API used
to start applications or modules.

What to do next

Test the deployed applications or modules. For example, point a web browser at the URL for a deployed
application and examine the performance of the application. If necessary, update the application.

Customizing modules using DConfigBeans
You can configure Java Platform, Enterprise Edition (Java EE) applications or stand-alone modules during
deployment using the DConfigBean class in the Java EE Application Deployment API specification
(JSR-88).

Before you begin

Note: Application installation using the Java EE Application Deployment API specification (JSR-88) has
been deprecated in WebSphere Application Server Version 8.0. Use another option to deploy
applications to a server. The closest option to using the Java EE Deployment API is using Java

Chapter 8. Deploying and administering enterprise applications 237

Management Extensions (JMX) MBean programming. For information on deployment options, see
"Ways to install enterprise applications or modules."

This topic assumes that you are deploying (installing) Java EE modules on an application server provided
by the product using the WebSphere Application Server support for JSR-88.

Read about the JSR-88 specification and using the DConfigBean class at http://java.sun.com/j2ee/tools/
deployment/.

About this task

The DConfigBean class in JSR-88 provides JavaBeans-based support for platform-specific configuration of
J2EE applications and modules during deployment. Your code can inspect DConfigBean instances to get
platform-specific configuration attributes. The DConfigBean instances provided by WebSphere Application
Server contain a single attribute which has an array of java.util.Map objects. The map entries contain
configuration attributes, for which your code can get and set values.

Procedure
1. Write code that installs Java EE modules on an application server using JSR-88.

2. Write code that accesses DConfigBeans generated by the product during JSR-88 deployment. You (or
a deployer) can then customize the accessed DConfigBeans instances.

The following pseudocode shows how a Java EE tool provider can get DConfigBean instance
attributes generated by the product during JSR-88 deployment and set values for the attributes.

import javax.enterprise.deploy.model.*;
import javax.enterprise.deploy.spi.*;
{
DeploymentConfiguration dConfig = ___; // Get from DeploymentManager
DDBeanRoot ddRoot = ___; // Provided by J2EE tool

// Obtain root bean.
DConfigBeanRoot dcRoot = dConfig.getDConfigBeanRoot(dr);

// Configure DConfigBean.
configureDCBean (dcRoot);
}

// Get children from DConfigBeanRoot and configure each child.
method configureDCBean (DConfigBean dcBean)
{
 // Get DConfigBean attributes for a given archive.
 BeanInfo bInfo = Introspector.getBeanInfo(dcBean.getClass());
 IndexedPropertyDescriptor ipDesc =
 (IndexedPropertyDescriptor)bInfo.getPropertyDescriptors()[0];

 // Get the 0th map.
 int index = 0;
 Map map = (Map)
 ipDesc.getIndexedReadMethod().invoke
 (dcBean, new Object[]{new Integer(index)});

 while (map != null)
 {
 // Iterate over the map and set values for attributes.

 // Set the map back into the DCBean.
 ipDesc.getIndexedWriteMethod().invoke
 (dcBean, new Object[]{new Integer(index), map});

 // Get the next entry in the indexed property
 map = (Map)
 ipDesc.getIndexedReadMethod().invoke
 (dcBean, new Object[]{new Integer(++index)});
 }
}

Configuring enterprise application files
You can change the configuration of a Java Platform, Enterprise Edition (Java EE) application or module
deployed on a server.

Before you begin

You can change the contents and deployment descriptors of an application or module before deployment,
such as in an assembly tool. However, it is assumed that the module is already deployed on a server.

238 Administering applications and their environment

http://java.sun.com/j2ee/tools/deployment/
http://java.sun.com/j2ee/tools/deployment/

About this task

Changing an application or module configuration consists of one or more of the following:
v Changing the settings of the application or module.
v Removing a file from an application or module.
v Updating the application or its modules.

This topic describes how to change the settings of an application or module using the administrative
console.

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Procedure
v View current settings of the application or module.

Click Applications > Application Types > WebSphere enterprise applications > application_name
to access the enterprise application settings page.

Many application or module settings are available on other console pages that you can access by
clicking links on the settings page for the enterprise application. For detailed information on the settings
and allowed values, examine the online help for the console pages. When you installed the application
or module, you specified most of the settings values.

v Map each module of your application to a target server.

Specify the application servers or web servers onto which to install modules of your application.

v Change how quickly your application starts compared to other applications or to the server.

v Configure the use of binary files.

v Change how your application or web modules use class loaders.

v Map a virtual host for each web module of your application.

v Change application bindings or other settings of the application or module.

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name > property_or_item_name. From the enterprise application settings page, you
can access console pages for further configuring of the application or module.

2. Change the values for settings as needed, and click OK.

v Optional: Configure the application so it does not start automatically when the server starts. By default,
an installed application starts when the server on which the application resides starts. You can configure
the target mapping for the application so the application does not start automatically when the server
starts. To start the application, you must then start it manually.

v If the installed application or module uses a resource adapter archive (RAR file), ensure that the
Classpath setting for the RAR file enables the RAR file to find the classes and resources that it needs.
Examine the Classpath setting on the console Resource adapter settings page.

Results

The application or module configuration is changed. The application or standalone web module is restarted
so the changes take effect.

If you updated module metadata while the application was running, restarting the application might not be
sufficient for the changes to take effect. For example, if you changed descriptors in running Java EE 6
applications that use annotations, you must reinstall the application. If you changed classes that introduce,

Chapter 8. Deploying and administering enterprise applications 239

remove, or alter class hierarchies within an application, and those changes impact annotated classes, you
also must reinstall the application.

What to do next

Save changes to your administrative configuration.

Application bindings
Before an application that is installed on an application server can start, all enterprise bean (EJB)
references and resource references defined in the application must be bound to the actual artifacts
(enterprise beans or resources) defined in the application server.

When defining bindings, you specify Java Naming and Directory Interface (JNDI) names for the
referenceable and referenced artifacts in an application. The jndiName values specified for artifacts must
be qualified lookup names. An example referenceable artifact is an EJB defined in an application. An
example referenced artifact is an EJB or a resource reference used by the application.

Binding definitions are stored in the ibm-xxx-bnd.xml or ibm-xxx-bnd.xmi files of an application. Version
7.0 or later binding definitions support files with the suffix of XML for EJB 3.x and Web 2.5 and later
modules. Modules earlier than Java EE 5 continue to use binding definition files with the suffix of XMI as
in previous versions of WebSphere Application Server. The xxx can be ejb-jar, web, application or
application-client.

This topic provides the following information about bindings:
v “Times when bindings can be defined”
v “Required bindings” on page 241
v “Application resource conflicts” on page 245

Times when bindings can be defined

You can define bindings at the following times:

v During application development

An application developer can create binding definitions in ibm-xxx-bnd.xml files for EJB 3.x and Web
2.5 and later modules and in ibm-xxx-bnd.xmi files for pre-Java EE 5 modules. The application
developer can create the files using a tool such as an IBM Rational developer tool or, for EJB 3.x or
Web 2.5 and later modules, using an XML editor or text editor. The developer then gives an enterprise
application (.ear file) complete with bindings to an application assembler or deployer. When assembling
the application, the assembler does not modify the bindings. Similarly, when installing the application
onto a server supported by WebSphere Application Server, the deployer does not modify or override the
bindings or generate default bindings unless changes to the bindings are necessary for successful
deployment of the application.

v During application assembly

An application assembler can define bindings in annotations or deployment descriptors of an
application. Java EE 5 or later modules contain annotations in the source code. To declare an
annotation, an application assembler precedes a keyword with an @ character ("at" sign). Bindings for
pre-Java EE 5 modules are specified in the WebSphere Bindings section of a deployment descriptor
editor. Modifying the deployment descriptors might change the binding definitions in the
ibm-xxx-bnd.xmi files created when developing an application. After defining the bindings, the
assembler gives the application to a deployer. When installing the application onto a server supported
by WebSphere Application Server, the deployer does not modify or override the bindings or generate
default bindings unless changes to the bindings are necessary to deploy the application.

v During application installation

240 Administering applications and their environment

An application deployer or server administrator can modify the bindings when installing the application
onto a server supported by WebSphere Application Server using the administrative console. New
binding definitions can be specified on the installation wizard pages.

Also, a deployer or administrator can select to generate default bindings during application installation.
Selecting Generate default bindings during application installation instructs the product to fill in
incomplete bindings in the application with default values. Existing bindings are not changed.

Restriction: You cannot define or override bindings during application installation for application clients.
You must define bindings for application client modules during assembly and store the
bindings in the ibm-application-client-bnd.xmi file.

v During configuration of an installed application

After an application is installed onto a server supported by WebSphere Application Server, an
application deployer or server administrator can modify the bindings by changing values in
administrative console pages such as those accessed from the settings page for the enterprise
application.

Required bindings

Before an application can be successfully deployed, bindings must be defined for references to the
following artifacts:

EJB JNDI names
For each EJB 2.1 or earlier enterprise bean (EJB), you must specify a JNDI name. The name is
used to bind an entry in the global JNDI name space for the EJB home object. An example JNDI
name for a Product EJB in a Store application might be store/ejb/Product. The binding definition
is stored in the META-INF/ibm-ejb-jar-bnd.xmi file.

 If a deployer chooses to generate default bindings when installing the application, the installation
wizard assigns EJB JNDI names having the form prefix/EJB_name to incomplete bindings. The
default prefix is ejb, but can be overridden. The EJB_name is as specified in the deployment
descriptor <ejb-name> tag.

During and after application installation, EJB JNDI names can be specified on the Provide JNDI
names for beans page. After installation, click Applications > Application Types > WebSphere
enterprise applications > application_name > EJB JNDI names in the administrative console.

You do not need to specify JNDI binding names for each of the EJB 3.x home or business
interfaces on your enterprise beans because the EJB container assigns default bindings.

Data sources for entity beans
Entity beans such as container-managed persistence (CMP) beans store persistent data in data
stores. With CMP beans, an EJB container manages the persistent state of the beans. You specify
which data store a bean uses by binding an EJB module or an individual enterprise bean to a data
source. Binding an EJB module to a data source causes all entity beans in that module to use the
same data source for persistence.

 An example JNDI name for a Store data source in a Store application might be store/jdbc/store.
For modules earlier than Java EE 5, the binding definition is stored in IBM binding files such as
ibm-ejb-jar-bnd.xmi. A deployer can also specify whether authentication is handled at the
container or application level.

WebSphere Application Server Version 8.0 supports CMP beans in EJB 2.x or 1.x modules.
Version 8.0 does not support CMP beans in EJB 3.0 modules.

If a deployer chooses to generate default bindings when installing the application, the installation
wizard generates the following for incomplete bindings:
v For EJB 2.x .jar files, connection factory bindings based on the JNDI name and authorization

information specified

Chapter 8. Deploying and administering enterprise applications 241

v For EJB 1.1 .jar files, data source bindings based on the JNDI name, data source user name
and password specified

The generated bindings provide default connection factory settings for each EJB 2.x .jar file and
default data source settings for each EJB 1.1 .jar file in the application being installed. No
bean-level connection factory bindings or data source bindings are generated unless they are
specified in the custom strategy rule supplied during default binding generation.

During and after application installation, you can map data sources to 2.x entity beans on the 2.x
CMP bean data sources page and on the 2.x entity bean data sources page. After installation,
click Applications > Application Types > WebSphere enterprise applications >
application_name in the administrative console, then select 2.x CMP bean data sources or 2.x
entity bean data sources. You can map data sources to 1.x entity beans on the Map data
sources for all 1.x CMP beans page and on the Provide default data source mapping for modules
containing 1.x entity beans page. After installation, access console pages like those for 2.x CMP
beans, except click links for 1.x CMP beans.

Backend ID for EJB modules
If an EJB .jar file that defines CMP beans contains mappings for multiple backend databases,
specify the appropriate backend ID that determines which persister classes are loaded at run time.

 Specify the backend ID during application installation. You cannot select a backend ID after the
application is installed onto a server.

To enable backend IDs for individual EJB modules:

1. During application installation, select Deploy enterprise beans on the Select installation
options page. Selecting Deploy enterprise beans enables you to access the Provide options
to perform the EJB Deploy page.

2. On the Provide options to perform the EJB Deploy page, set the database type to "" (null).

During application installation, if you select Deploy enterprise beans on the Select installation
options page and specify a database type for the EJB deployment tool on the Provide options to
perform the EJB Deploy page, previously defined backend IDs for all of the EJB modules are
overwritten by the chosen database type.

The default database type is DB2UDB_V81.

The EJB deployment tool does not run during installation of EJB 3.0 or later modules.

EJB references
An enterprise bean (EJB) reference is a logical name used to locate the home interface of an
enterprise bean. EJB references are specified during deployment. At run time, EJB references are
bound to the physical location (global JNDI name) of the enterprise beans in the target operational
environment. EJB references are made available in the java:comp/env/ejb Java naming
subcontext, or in another java: namespace if the reference name is a java:module, java:app, or
java:app URL. EJB references with URL names are bound into the corresponding namespace
according to the URL.

 The product assigns default JNDI values for or automatically resolves incomplete EJB 3.0
reference targets.

For each EJB 2.1 or earlier EJB reference, you must specify a JNDI name. An example JNDI
name for a Supplier EJB reference in a Store application might be store/ejb/Supplier. The
binding definition is stored in IBM binding files such as ibm-ejb-jar-bnd.xmi. When the referenced
EJB is also deployed in the same application server, you can specify a server-scoped JNDI name.
But if the referenced EJB is deployed on a different application server or if ejb-ref is defined in an
application client module, then you should specify the global cell-scoped JNDI name.

If a deployer chooses to generate default bindings when installing the application, the installation
wizard binds EJB references as follows: If an <ejb-link> is found, it is honored. If the ejb-name of

242 Administering applications and their environment

an EJB defined in the application matches the ejb-ref name, then that EJB is chosen. Otherwise,
if a unique EJB is found with a matching home (or local home) interface as the referenced bean,
the reference is resolved automatically.

During and after application installation, you can specify EJB reference JNDI names on the Map
EJB references to beans page. After installation, click Applications > Application Types >
WebSphere enterprise applications > application_name > EJB references in the
administrative console.

Note: To enable EJB reference targets to resolve automatically if the references are from EJB 2.1
or earlier modules or from Web 2.3 or earlier modules, select Generate default bindings
on the Preparing for application installation page or select Allow EJB reference targets to
resolve automatically on the Select installation options, Map EJB references to beans, or
EJB references console pages.

Resource references
A resource reference is a logical name used to locate an external resource for an application.
Resource references are specified during deployment. At run time, the references are bound to the
physical location (global JNDI name) of the resource in the target operational environment.
Resource references that do not use a URL for the JNDI name are made available as follows:

 Table 28. Resource reference subcontexts. JNDI java:comp/env names are used for resource reference
subcontexts.

Resource reference type Subcontext declared in

Java DataBase Connectivity (JDBC) data source java:comp/env/jdbc

JMS connection factory java:comp/env/jms

JavaMail connection factory java:comp/env/mail

Uniform Resource Locator (URL) connection factory java:comp/env/url

Applications alternatively can assign names to resource references that are java: URLs with
prefixes such as java:module, java:app, and java:global. The URLs map to namespaces other
than the component namespace, which contains java:comp/env name bindings. Resource
references with URL names are bound into the corresponding namespace according to the URL.

For each resource reference, you must specify a JNDI name. If a deployer chooses to generate
default bindings when installing the application, the installation wizard generates resource
reference bindings derived from the <res-ref-name> tag, assuming that the java:comp/env name is
the same as the resource global JNDI name.

During application installation, you can specify resource reference JNDI names on the Map
resource references to references page. Specify JNDI names for the resources that represent the
logical names defined in resource references. You can optionally specify login configuration name
and authentication properties for the resource. After specifying authentication properties, click OK
to save the values and return to the mapping step. Each resource reference defined in an
application must be bound to a resource defined in your WebSphere Application Server
configuration. After installation, click Applications > Application Types > WebSphere enterprise
applications > application_name > Resource references in the administrative console to
access the Resource references page.

Virtual host bindings for web modules
You must bind each web module to a specific virtual host. The binding informs a web server
plug-in that all requests that match the virtual host must be handled by the web application. An
example virtual host to be bound to a Store web application might be store_host. The binding
definition is stored in IBM binding files such as WEB-INF/ibm-web-bnd.xmi.

 If a deployer chooses to generate default bindings when installing the application, the installation
wizard sets the virtual host to default_host for each .war file.

Chapter 8. Deploying and administering enterprise applications 243

During and after application installation, you can map a virtual host to a web module defined in
your application. On the Map virtual hosts for web modules page, specify a virtual host. The port
number specified in the virtual host definition is used in the URL that is used to access artifacts
such as servlets and JavaServer Pages (JSP) files in the web module. For example, an external
URL for a web artifact such as a JSP file is http://host_name:virtual_host_port/context_root/
jsp_path. After installation, click Applications > Application Types > WebSphere enterprise
applications > application_name > Virtual hosts in the administrative console.

Message-driven beans
For each message-driven bean, you must specify a queue or topic to which the bean will listen. A
message-driven bean is invoked by a Java Messaging Service (JMS) listener when a message
arrives on the input queue that the listener is monitoring. A deployer specifies a listener port or
JNDI name of an activation specification as defined in a connector module (.rar file) under
WebSphere Bindings on the Beans page of an assembly tool EJB deployment descriptor editor.
An example JNDI name for a listener port to be used by a Store application might be
StoreMdbListener. The binding definition is stored in IBM bindings files such as
ibm-ejb-jar-bnd.xmi.

 If a deployer chooses to generate default bindings when installing the application, the installation
wizard assigns JNDI names to incomplete bindings.
v For EJB 2.0 or later message-driven beans deployed as JCA 1.5-compliant resources, the

installation wizard assigns JNDI names corresponding to activationSpec instances in the form
eis/MDB_ejb-name.

v For EJB 2.0 or later message-driven beans deployed against listener ports, the listener ports
are derived from the message-driven bean <ejb-name> tag with the string Port appended.

During application installation using the administrative console, you can specify a listener port
name or an activation specification JNDI name for every message-driven bean on the Bind
listeners for message-driven beans page. A listener port name must be provided when using the
JMS providers: Version 5 default messaging, WebSphere MQ, or generic. An activation
specification must be provided when the application's resources are configured using the default
messaging provider or any generic J2C resource adapter that supports inbound messaging. If
neither is specified, then a validation error is displayed after you click Finish on the Summary
page.

After application installation, you can specify JNDI names and configure message-driven beans on
console pages under Resources > JMS > JMS providers or under Resources > Resource
adapters.

Restriction: You can only bind message driven-beans that are defined in an EJB 3.0 or later
module to an activation specification.

Message destination references
A message destination reference is a logical name used to locate an enterprise bean in an EJB
module that acts as a message destination. Message destination references exist only in J2EE 1.4
and later artifacts such as--
v J2EE 1.4 application clients
v EJB 2.1 projects
v 2.4 web applications

If multiple message destination references are associated with a single message destination link,
then a single JNDI name for an enterprise bean that maps to the message destination link, and in
turn to all of the linked message destination references, is collected during deployment. At run
time, the message destination references are bound to the administered message destinations in
the target operational environment.

If a message destination reference and a message-driven bean are linked by the same message
destination, both the reference and the bean should have the same destination JNDI name. When

244 Administering applications and their environment

both have the same name, only the destination JNDI name for the message-driven bean is
collected and applied to the corresponding message destination reference.

If a deployer chooses to generate default bindings when installing the application, the installation
wizard assigns JNDI names to incomplete message destination references as follows: If a
message destination reference has a <message-destination-link>, then the JNDI name is set to
ejs/message-destination-linkName. Otherwise, the JNDI name is set to eis/message-
destination-refName.

Depending on the references in and artifacts used by your application, you might need to define bindings
for references and artifacts not listed in this topic.

Application resource conflicts

Before Version 8 of the product, application-defined resources such as references and environment entries
were bound into the component namespace relative to java:comp/env. In Version 8, an application
developer can assign a name to a resource that is a java: URL prefixed with java:module, java:app, or
java:global. Each of these URLs resolves to distinct namespaces, different from the component
namespace. A java:module namespace is shared among all components in a module, a java:app
namespace is shared among all modules in an application, and a java:global namespace is shared
among all applications in a cell. Because the namespaces are shared, different resources might be
assigned the same name, resulting in conflicts.

Conflicts at the module scope can occur only if two components in the module define resources with the
same name. Because of the small size of this scope, it is unlikely for a module to have true conflicts.
However, if multiple instances of the same resource definition exist, they must be configured the same. For
example, two EJB references to a particular EJB type which are both assigned the same java:module
name must both be configured with the same binding data. Otherwise, the two resources will conflict and
the application configuration action will fail.

Application-scoped resources are like module-scoped resources. The only difference is that the definitions
can originate from any module in the application. As with module-scoped resources, all application-scoped
resources that have the same name must be the same type of resource and must be configured with the
same binding data.

Global-scoped resources differ from application- and module-scoped resources in that conflicts can occur
among different applications. When a conflict occurs, conflicting applications cannot coexist if the
resources are not logically the same. If multiple occurrences of a global-scoped resource all identify
logically the same resource, they must all be configured with the same binding data in order to not be
detected by the product as conflicting. To edit a global-scoped resource for which occurrences for multiple
applications exist, all defining applications must be edited in the same session so as not to introduce a
conflict. Failure to do so will result in a failure when the session is saved.

Enterprise application collection
Use this page to view and manage enterprise applications.

This page lists installed enterprise applications. System applications, which are central to the product, are
not shown in the list because users cannot edit them. Examples of system applications include isclite,
managementEJB and filetransfer.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications.

Chapter 8. Deploying and administering enterprise applications 245

To view the values specified for an application's configuration, click the application name in the list. The
displayed application settings page shows the values specified. On the settings page, you can change
existing configuration values and link to additional console pages that assist you in configuring the
application.

To manage an installed enterprise application, enable the Select check box beside the application name in
the list and click a button:

 Table 29. Button descriptions. Use the buttons to manage enterprise applications.

Button Resulting action

Start Attempts to run the application. After the application starts up successfully, the state of the
application changes to Started if the application starts up on all deployment targets, else the
state changes to Partial Start.

Stop Attempts to stop the processing of the application. After the application stops successfully, the
state of the application changes to Stopped if the application stops on all deployment targets,
else the state changes to Partial Stop.

Install Opens a wizard that helps you deploy an application or a module such as a .jar, .war, .sar or
.rar file onto a server or a cluster.

Uninstall Deletes the application from the product configuration repository and deletes the application
binaries from the file system of all nodes where the application modules are installed after the
configuration is saved and synchronized with the nodes.

Update Opens a wizard that helps you update application files deployed on a server. You can update the
full application, a single module, a single file, or part of the application. If a new file or module
has the same relative path as a file or module already existing on the server, the new file or
module replaces the existing file or module. If the new file or module does not exist on the
server, it is added to the deployed application.

Remove File Deletes a file of the deployed application or module. Remove File deletes a file from the
configuration repository and from the file system of all nodes where the file is installed.

Export Accesses the Export Application EAR files page, which you use to export an enterprise
application to an EAR file at a location of your choice. Use the Export action to back up a
deployed application and to preserve its binding information.

Export DDL Accesses the Export Application DDL files page, which you use to export DDL files (Table.ddl)
in the EJB modules of an enterprise application to a location of your choice.

Export File Accesses the Export a file from an application page, which you use to export a file of an
enterprise application or module to a location of your choice.

If the browser does not prompt for a location to store the file, click File > Save as and specify a
location to save the file that is shown in the browser.

These buttons are not available when you access this page from an application server settings page.
When this page is accessed from an application server settings page, it is entitled the Installed
applications page.

When security is enabled, a separate application list is shown for each of your administrative roles.
Supported roles include monitor, configurator, operator, administrator, deployer, and administrative security
manager. For example, when you have the administrator role, the statement “You can administer the
following resources” is shown followed by a list of applications that you can administer.

Name
Specifies the name of the installed (or deployed) application. Application names must be unique within a
cell and cannot contain an unsupported character.

246 Administering applications and their environment

Application Status
Indicates whether the application deployed on the application server is started, stopped, or unknown.

 Table 30. Application status. The status indicates whether the application is running.

Started Application is running.

Partial Start Application is in the process of changing from a Stopped state to a Started
state. Application is starting to run but is not fully running yet. Or, it cannot fully
start because a server mapped to one or more application modules is stopped.

Stopped Application is not running.

Partial Stop Application is in the process of changing from a Started state to a Stopped

state. Application has not stopped running yet.

Unknown Status cannot be determined.

An application with an unknown status might, in fact, be running but have an
unknown status because the server running the administrative console cannot
communicate with the server running the application.

Pending Status is temporarily unknown pending an event that a user did not initiate,

such as pending an asynchronous call.

Not applicable Application does not provide information as to whether it is running.

The status of an application on a web server is always Unknown.

Startup order
Specifies the order in which applications are started when the server starts. The application with the lowest
startup order is started first.

This table column is available only when this page is accessed from an application server settings page;
thus when this page is entitled the Installed applications page.

Enterprise application settings
Use this page to configure an enterprise application.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name.

If you have a JAX-WS web service application installed, you also can click Services > Service providers
> service_name or Services > Service clients > service_name.

 Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Name:

Specifies a logical name for the application. An application name must be unique within a cell and cannot
contain an unsupported character.

 An application name cannot begin with a period (.), cannot contain leading or trailing spaces, and cannot
contain any of the following characters:

 Table 31. Characters that you cannot use in a name. The product does not support these characters in a name.

Unsupported characters

/ forward slash $ dollar sign ' single quote mark

Chapter 8. Deploying and administering enterprise applications 247

Table 31. Characters that you cannot use in a name (continued). The product does not support these characters in
a name.

Unsupported characters

\ backslash = equal sign " double quote mark

* asterisk % percent sign | vertical bar

, comma + plus sign < left angle bracket

: colon @ at sign > right angle bracket

; semi-colon # hash mark & ampersand (and sign)

? question mark]]> No specific name exists for this character combination

 Data type String

Application reference validation:

Specifies whether the product examines the application references specified during application installation
or updating and, if validation is enabled, warns you of incorrect references or fails the operation.

 An application typically refers to resources using data sources for container managed persistence (CMP)
beans or using resource references or resource environment references defined in deployment descriptors.
The validation checks whether the resource referred to by the application is defined in the scope of the
deployment target of that application.

The resource can be defined on the server, its node, cell or the cluster if the server belongs to a cluster.
Select Don't validate for no resource validation, Issue warnings for warning messages about incorrect
resource references, or Stop installation if validation fails to stop operations that fail as a result of
incorrect resource references.

This Application reference validation setting is the same as the Validate input off/warn/fail field on the
application installation and update wizards.

 Data type String
Default Issue warnings

Configuring application startup
You can configure the startup behavior of an application. The values set affect how quickly an application
starts and what occurs when an application starts.

Before you begin

This topic assumes that your application or module is already deployed on a server.

This topic also assumes that your application or module is configured to start automatically when the
server starts. By default, an installed application starts when the server on which the application resides
starts.

About this task

This topic describes how to change the settings of an application or module using the administrative
console.

248 Administering applications and their environment

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Procedure
1. Click Applications > Application Types > WebSphere enterprise applications > application_name

> Startup behavior in the console navigation tree.

The Startup behavior settings page is displayed.

2. Specify the startup order for the application.

If your application starts automatically when its server starts, the value for Startup order on the
Startup behavior settings page specifies the order in which applications are started when the server
starts. The application with the lowest startup order, or starting weight, is started first. For example,
specify 1 for Startup order for applications that you want started first, specify 2 for applications to be
started next, and so.

best-practices: For Session Initiation Protocol (SIP) applications, the <load-on-startup> tag in the
sip.xml file affects the order in which applications are started. The value that you set
for Startup order on the Startup behavior settings page determines the importance or
weight of an application within a composition of SIP applications. For example, for the
most important SIP application within a SIP application composition, specify 1 for
Startup order. For the next most important SIP application within the composition,
specify 2 for Startup order, and so on.

3. Specify whether the application must initialize fully before its server is considered started.

If your application starts automatically when its server starts, Launch application before server
completes startup specifies whether the application must initialize fully before its server is considered
started. Background applications can be initialized on an independent thread, thus allowing the server
startup to complete without waiting for the application. This setting applies only if the application is run
on a Version 6.0 or later application server.

4. Specify whether to create MBeans for resources such as servlets or JavaServer Pages (JSP) files
within an application when the application starts.

The default for Create MBeans for resources is to create MBeans.

Results

The application or module configuration is changed. The application or stand-alone web module is
restarted so the changes take effect.

What to do next

Save changes to your administrative configuration.

Startup behavior settings
Use this page to configure when an application starts compared to other applications and to the server,
and to configure whether MBeans for resources are created when an application starts.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Startup behavior.

Chapter 8. Deploying and administering enterprise applications 249

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Startup order:

Specifies the order in which applications are started when the server starts. The startup order is like a
starting weight. The application with the lowest starting weight is started first.

Note: Be aware of the following limitations:

v The first application might not start completely before the application server tries to start the next
application in the startup order. This scenario might cause unexpected results if the second
application depends on the first application.

v For Session Initiation Protocol (SIP) applications, the <load-on-startup> tag in the sip.xml file
affects the order in which servlets within applications are started. The value that you set for
Startup order on this Startup behavior console page determines the importance or weight of an
application within a composition of SIP applications. For example, for the most important SIP
application within a SIP application composition, specify 1 for Startup order. For the next most
important SIP application within the composition, specify 2 for Startup order, and so on. For
more information, see the JSR 116 specification.

 Data type Integer
Default 1
Range 0 to 2147483647

Launch application before server completes startup:

Specifies whether the application must initialize fully before the server starts.

 The default setting of false indicates that server startup will not complete until the application starts.

A setting of true informs the product that the application might start on a background thread and thus
server startup might continue without waiting for the application to start. Thus, the application might not be
ready for use when the application server starts.

 Data type Boolean
Default false

Create MBeans for resources:

Specifies whether to create MBeans for various resources, such as servlets or JavaServer Pages (JSP)
files, within an application when the application starts. The default is to create MBeans.

 Data type Boolean
Default true

Configuring binary location and use
You can designate where binary files (binaries) used by your application reside, whether the product
distributes binaries for you automatically, and otherwise configure the use of binaries.

250 Administering applications and their environment

Before you begin

This topic assumes that your application or module is already deployed on a server.

About this task

This topic describes how to change the settings of an application or module using the administrative
console.

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Procedure
1. Click Applications > Application Types > WebSphere enterprise applications > application_name

> Application binaries in the console navigation tree.

The Application binaries page is displayed.

2. Specify the directory to hold the application binaries.

The default is ${APP_INSTALL_ROOT}/cell_name, where the ${APP_INSTALL_ROOT} variable is
profile_root/installedApps. For example:
C:/WebSphere/AppServer/profiles/profile_name/installedApps/cell_name

Refer to “Application binary settings” on page 252 for a detailed description of the Location (full path)
setting.

3. Specify the bindings, extensions, and deployment descriptors that an application server uses.

By default, an application server uses the bindings, extensions, and deployment descriptors located
with the application deployment document, the deployment.xml file.

To specify that the application server use the bindings, extensions, and deployment descriptors located
in the application archive (EAR) file, select Use configuration information in binary. Select this
setting for applications installed on 6.x or later deployment targets.

4. Specify whether the product distributes application binaries automatically to other nodes on the cell.

By default, Enable binary distribution, expansion and cleanup post uninstallation is selected and
binaries are distributed automatically.

If you disable this option, then you must ensure that the application binaries are expanded
appropriately in the destination directories of all nodes where the application runs.

Important: If you disable this option and you do not copy and expand the application binaries to the
nodes, a later saving of the configuration or manual synchronization does not move the
application binaries to the nodes for you.

5. Specify access permissions for binaries.

a. Ensure that the Enable binary distribution, expansion and cleanup post uninstallation option
is enabled. That option must be enabled to specify access permissions for binaries.

b. For File permissions, specify a string that defines access permissions for binaries that are
expanded in the named location.

You can specify file permissions in the text field. You can also set some of the commonly used file
permissions by selecting them from the multiple-selection list. List selections overwrite file
permissions set in the text field.

For details on File permissions, refer to “Application binary settings” on page 252.

6. Click OK.

Chapter 8. Deploying and administering enterprise applications 251

Results

The application or module configuration is changed. The application or stand-alone web module is
restarted so the changes take effect.

What to do next

Save changes to your administrative configuration.

Application binary settings
Use this page to configure the location and distribution of application binary files.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Application binaries.

 Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Location (full path):

Specifies the directory to which the enterprise application archive (EAR) file is installed. This Location
setting is the same as the Directory to install application field on the application installation and update
wizards.

 By default, an EAR file is installed in the profile_root/installedApps/cell_name/application_name.ear
directory.

Setting options include the following:

v Do not specify a value and leave the field empty.

The default value is ${APP_INSTALL_ROOT}/cell_name, where the ${APP_INSTALL_ROOT} variable is
profile_root/installedApps. A directory having the EAR file name of the application being installed is
appended to ${APP_INSTALL_ROOT}/cell_name. Thus, if you do not specify a directory, the EAR file is
installed in the profile_root/installedApps/cell_name/application_name.ear directory.

v Specify a directory.

If you specify a directory, the application is installed in specified_path/application_name.ear directory.
A directory having the EAR file name of the application being installed is appended to the path that you
specified for Directory to install application when installing the application. For example, if you
installed Clock.ear and specify C:/myapps on Windows machines, the application is installed in the
myapps/Clock.ear directory. The ${APP_INSTALL_ROOT} variable is set to the specified path.

v Specify ${APP_INSTALL_ROOT}/${CELL} for the initial installation of the application.

If you intend to export the application from one cell and later install the exported application on a
different cell, specify the ${CELL} variable for the initial installation of the application. For example,
specify ${APP_INSTALL_ROOT}/${CELL} for this setting. Exporting the application creates an enhanced
EAR file that has the application and its deployment configuration. The deployment configuration retains
the cell name of the initial installation in the destination directory unless you specify the ${CELL}
variable. Specifying the ${CELL} variable ensures that the destination directory has the current cell
name, and not the original cell name.

Important: If an installation directory is not specified when an application is installed on a single-server
configuration, the application is installed in ${APP_INSTALL_ROOT}/cell_name. When the
server is made a part of a multiple-server configuration (using the addNode utility), the cell
name of the new configuration becomes the cell name of the deployment manager node. If

252 Administering applications and their environment

the -includeapps option is used for the addNode utility, then the applications that are
installed prior to the addNode operation still use the installation directory
${APP_INSTALL_ROOT}/cell_name. However, an application that is installed after the server is
added to the network configuration uses the default installation directory
${APP_INSTALL_ROOT}/network_cell_name. To move the application to the
${APP_INSTALL_ROOT}/network_cell_name location upon running the addNode operation,
explicitly specify the installation directory as ${APP_INSTALL_ROOT}/${CELL} during
installation. In such a case, the application files can always be found under
${APP_INSTALL_ROOT}/current_cell_name.

v If the application has been exported and you want to install the exported EAR file in a different cell or
location, specify ${APP_INSTALL_ROOT}/cell_name/application_name.ear if you did not specify
${APP_INSTALL_ROOT}/${CELL} for the initial installation.

The exported EAR file is an enhanced EAR file that has the application and its deployment
configuration. The deployment configuration retains the value for Directory to install application that
was used for the previous installation of the application. Unless you specify a different value, the
enhanced EAR file will be installed to the same directory as for the previous installation.

If you did not specify the ${CELL} variable during the initial installation, the deployment configuration
uses the cell name of the initial installation in the destination directory. If you are installing on a different
cell, specify ${APP_INSTALL_ROOT}/cell_name/application_name.ear, where cell_name is the name of
the cell to which you want to install the enhanced EAR file. If you do not designate the current cell
name, cell_name will be the original cell name even though you are installing the enhanced EAR file on
a cell that has a different name.

v Specify an absolute path or a use pathmap variable.

You can specify an absolute path or use a pathmap variable such as ${MY_APPS}. You can use a
pathmap variable in any installation.

 Data type String
Units Full path name

Use configuration information in binary:

Specifies whether the application server uses the binding, extensions, and deployment descriptors located
with the application deployment document, the deployment.xml file (default), or those located in the EAR
file.

 The default (false) is to use the binding, extensions, and deployment descriptors located in
deployment.xml. To use the binding, extensions, and deployment descriptors located in the EAR file,
enable this setting (true).

This Use configuration information in binary setting is the same as the Use binary configuration field
on the application installation and update wizards. Select this setting for applications installed on 6.x or
later deployment targets only.

 Data type Boolean
Default false

Enable binary distribution, expansion and cleanup post uninstallation:

Specifies whether the product expands application binaries in the installation location during installation
and deletes application binaries during uninstallation. The default is to enable application distribution.
Application binaries for installed applications are expanded to the directory specified.

 On single-server installations, the binaries are deleted when you uninstall and save changes to the
configuration.

Chapter 8. Deploying and administering enterprise applications 253

If you disable this option, then you must ensure that the application binaries are expanded appropriately in
the destination directories of all nodes where the application runs.

Important: If you disable this option and you do not copy and expand the application binaries to the
nodes, a later saving of the configuration or manual synchronization does not move the
application binaries to the nodes for you.

This Enable binary distribution, expansion and cleanup post uninstallation setting is the same as the
Distribute application field on the application installation and update wizards.

 Data type Boolean
Default true

File permissions:

Specifies access permissions for application binaries for installed applications that are expanded to the
directory specified.

 The Enable binary distribution, expansion and cleanup post uninstallation option must be enabled to
specify file permissions.

You can specify file permissions in the text field. You can also set some of the commonly used file
permissions by selecting them from the multiple-selection list. List selections overwrite file permissions set
in the text field.

You can set one or more of the following file permission strings in the list. Selecting multiple options
combines the file permission strings.

 Table 32. File permission string sets for list options. Select a list option or specify a file permission string in the text
field.

Multiple-selection list option File permission string set

Allow all files to be read but not written to .*=755

Allow executables to execute .*\.dll=755#.*\.so=755#.*\.a=755#.*\.sl=755

Allow HTML and image files to be read by
everyone

.*\.htm=755#.*\.html=755#.*\.gif=755#.*\.jpg=755

Instead of using the multiple-selection list to specify file permissions, you can specify a file permission
string in the text field. File permissions use a string that has the following format:
file_name_pattern=permission#file_name_pattern=permission

where file_name_pattern is a regular expression file name filter (for example, .*\\.jsp for all JSP files),
permission provides the file access control lists (ACLs), and # is the separator between multiple entries of
file_name_pattern and permission. If # is a character in a file_name_pattern string, use \# instead.

If multiple file name patterns and file permissions in the string match a uniform resource identifier (URI)
within the application, then the product uses the most stringent applicable file permission for the file. For
example, if the file permission string is .*\\.jsp=775#a.*\\.jsp=754, then the abc.jsp file has file
permission 754.

best-practices: Using regular expressions for file matching pattern compares an entire string URI against
the specified file permission pattern. You must provide more precise matching patterns
using regular expressions as defined by Java programming API. For example, suppose
the following directory and file URIs are processed during a file permission operation:

254 Administering applications and their environment

Table 33. Example URIs for file permission operations. Results are shown following this table.

1 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war

2 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/MyJsp.jsp

3 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/META-INF/
MANIFEST.MF

4 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/WEB-INF/classes/
MyClass.class

5 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/mydir/
MyClass2.class

6 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/META-INF

The file pattern matching results are:
v MyWarModule.war does not match any of the URIs
v .*MyWarModule.war.* matches all URIs
v .*MyWarModule.war$ matches only URI 1
v .*\\.jsp=755 matches only URI 2
v .*META-INF.* matches URIs 3 and 6
v .*MyWarModule.war/.*/.*\.class matches URIs 4 and 5

If you specify a directory name pattern for File permissions, then the directory permission is set based on
the value specified. Otherwise, the File permissions value set on the directory is the same as its parent.
For example, suppose you have the following file and directory structure:
/opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/MyJsp.jsp

and you specify the following file pattern string:
.*MyApp.ear$=755#.*\.jsp=644

The file pattern matching results are:
v Directory MyApp.ear is set to 755
v Directory MyWarModule.war is set to 755
v Directory MyWarModule.war is set to 755

best-practices: Regardless of the operation system, always use a forward slash (/) as a file path
separator in file patterns.

You cannot unset read permission on a file on Windows platforms. With POSIX style

permission bits, the bit for denoting readable on a file is 4, writable is 2, and executable is 1. Thus,
permission of a file on a Windows platform is either 5 or 7. Also, in POSIX style there are user, group and
world permissions. You can only set the user permission for a file on Windows platforms. The group and
world permission bits are ignored.

Access permissions specified here are at the application level. You can also specify access permissions
for application binaries in the node level configuration. The node level file permissions specify the
maximum (most lenient) permissions that can be given to application binaries. Access permissions
specified here at application level can only be the same as or more restrictive than those specified at the
node level.

This setting is the same as the File permission field on the application installation and update wizards.

 Data type String

Application build level:

Chapter 8. Deploying and administering enterprise applications 255

Specifies an uneditable string that identifies the build version of the application.

 Data type String

Configuring the use of class loaders by an application
You can configure whether your application and web modules use their own class loaders to load classes
or use different class loaders, as well as configure the reloading of classes when application files are
updated. Class loaders enable an application to access repositories of available classes and resources.

Before you begin

This topic assumes that your application or module is already deployed on a server.

The following note applies to the xmi file references in this topic:

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

About this task

Class loaders affect whether your application and its modules find the resources that they need to run
effectively. You can select whether your application and web modules use their own class loaders to load
classes, or use a parent class loader.

An application class loader groups Enterprise JavaBeans (EJB) modules, shared libraries, resource
adapter archives (RAR files), and dependency Java archive (JAR) files associated to an application.
Dependency JAR files are JAR files that contain code which can be used by both enterprise beans and
servlets.

An application class loader is the parent of a web application archive (WAR) class loader. By default, a
web module has its own WAR class loader to load the contents of the web module. The WAR class-loader
policy value of an application class loader determines whether the WAR class loader or the application
class loader is used to load the contents of the Web module.

You can also select whether classes are reloaded when application files are updated. For EJB modules or
any non-web modules, enabling class reloading causes the application server run time to stop and start
the application to reload application classes. For web modules such as servlets and JavaServer Pages
(JSP) files, a web container reloads a web module only when the IBM extension reloadingEnabled in the
ibm-web-ext.xmi file is set to true.

256 Administering applications and their environment

To configure use of class loaders by your application and web modules, use the Class loading and update
detection page of the administrative console.

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Procedure
1. Click Applications > Application Types > WebSphere enterprise applications > application_name

> Class loading and update detection to access the Class loading and update detection page.

2. Specify whether to reload application classes when the application or its files are updated.

By default, class reloading is not enabled. Select Override class reloading settings for web and
EJB modules to choose to reload application classes. You might specify different values for EJB
modules and for web modules such as servlets and JSP files.

3. Specify the number of seconds to scan the application's file system for updated files.

The value specified for Polling interval for updated files takes effect only if class reloading is
enabled. The default is the value of the reloading interval attribute in the IBM extension
(META-INF/ibm-application-ext.xmi) file of the enterprise application (EAR file). You might specify
different values for EJB modules and for web modules such as servlets and JSP files.

To enable reloading, specify an integer value that is greater than zero (for example, 1 to 2147483647).

To disable reloading, specify zero (0).

4. Specify the class loader order for the application.

The application class loader order specifies whether the class loader searches in the parent class
loader or in the application class loader first to load a class. The default is to search in the parent class
loader before searching in the application class loader to load a class.

Select either of the following values for Class loader order:

 Option Description

Classes loaded with parent class loader first Causes the class loader to search in the parent class
loader first to load a class. This value is the standard for
Development Kit class loaders and WebSphere
Application Server class loaders.

Classes loaded with local class loader first (parent
last)

Causes the class loader to search in the application class
loader first to load a class. By specifying Classes loaded
with local class loader first (parent last), your
application can override classes contained in the parent
class loader.

Attention: Specifying the Classes loaded with local
class loader first (parent last) value might result in
LinkageErrors or ClassCastException messages if you
have mixed use of overridden classes and non-overridden
classes.

5. Specify whether to use a single or multiple class loaders to load web application archives (WAR files)
of your application.

By default, web modules have their own WAR class loader to load the contents of the WEB-INF/classes
and WEB-INF/lib directories. The default WAR class loader value is Class loader for each WAR file
in application, which uses a separate class loader to load each WAR file. Setting the value to Single
class loader for application causes the application class loader to load the web module contents
as well as the EJB modules, shared libraries, RAR files, and dependency JAR files associated to the
application. The application class loader is the parent of the WAR class loader.

Chapter 8. Deploying and administering enterprise applications 257

Select either of the following values for WAR class loader policy:

 Option Description

Class loader for each WAR file in application Uses a different class loader for each WAR file.

Single class loader for application Uses a single class loader to load all of the WAR files in
your application.

6. Click OK.

Results

The application or module configuration is changed. The application or stand-alone web module is
restarted so the changes take effect.

What to do next

Save changes to your administrative configuration.

Class loading and update detection settings
Use this page to configure use of class loaders by an application.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Class loading and update detection.

 Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

Override class reloading settings for web and EJB modules:

Specifies whether to enable class reloading when application files are updated.

 Select Override class reloading settings for web and EJB modules to set reloadEnabled to true in the
deployment.xml file for the application. If an application's class definition changes, the application server
run time stops and starts the application to reload application classes.

258 Administering applications and their environment

Reloading settings in the deployment.xml file override the reloading settings for all web and EJB modules
that can be defined in ibm-web-ext.xmi and META-INF/ibm-application-ext.xmi files.

For JavaServer Pages (JSP) files in a web module, a web container reloads JSP files only when the IBM
extension jspReloadingEnabled in the jspAttributes of the ibm-web-ext.xmi file is set to true. You can
enable JSP reloading during deployment on the JSP Reload Options page.

 Data type Boolean
Default false

Polling interval for updated files:

Specifies the number of seconds to scan the application's file system for updated files. The default is the
value of the reloading interval attribute in the IBM extension (META-INF/ibm-application-ext.xmi) file of
the EAR file.

 This Polling interval for updated files setting is the same as the Reload interval in seconds field on
the application installation and update wizards.

To enable reloading, specify a value greater than zero (for example, 1 to 2147483647). To disable
reloading, specify zero (0). The range is from 0 to 2147483647.

The reloading interval attribute takes effect only if class reloading is enabled.

 Data type Integer
Units Seconds
Default 3

Class loader order:

Specifies whether the class loader searches in the parent class loader or in the application class loader
first to load a class. The standard for development kit class loaders and WebSphere Application Server
class loaders is Classes loaded with parent class loader first. By specifying Classes loaded with
local class loader first (parent last), your application can override classes contained in the parent
class loader, but this action can potentially result in ClassCastException or LinkageErrors if you have
mixed use of overridden classes and non-overridden classes.

 The options are Classes loaded with parent class loader first and Classes loaded with local class
loader first (parent last). The default is to search in the parent class loader before searching in the
application class loader to load a class.

For your application to use the default configuration of Jakarta Commons Logging in WebSphere
Application Server, set this application class loader mode to Classes loaded with parent class loader
first. For your application to override the default configuration of Jakarta Commons Logging in
WebSphere Application Server, your application must provide the configuration in a form supported by
Jakarta Commons Logging and this class loader mode must be set to Classes loaded with local class
loader first (parent last). Also, to override the default configuration, set the class loader mode for
each web module in your application so that the correct logger factory loads.

 Data type String
Default Classes loaded with parent class loader first

WAR class loader policy:

Chapter 8. Deploying and administering enterprise applications 259

Specifies whether to use a single class loader to load all WAR files of the application or to use a different
class loader for each WAR file.

 The options are Class loader for each WAR file in application and Single class loader for
application. The default is to use a separate class loader to load each WAR file.

 Data type String
Default Class loader for each WAR file in application

Manage modules settings
Use this page to specify deployment targets where you want to install the modules that are contained in
your application. Modules can be installed on the same deployment target or dispersed among several
deployment targets.

On single-server products, a deployment target can be an application server or web server.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Manage modules. This page is the similar to the Map
modules to servers page on the application installation and update wizards.

On this page, each Module must map to one or more targets, identified under Server. To change a
mapping:

1. In the list of mappings, select each module that you want mapped to the same target or targets.

2. From the Clusters and servers list, select one or more targets. Select only appropriate deployment
targets for a module. You cannot install modules that use WebSphere Application Server Version 8.x
features on a Version 7.x or 6.x target server. Similarly, you cannot install modules that use Version 7.x
features on a Version 6.x target server.

Use the Ctrl key to select multiple targets. For example, to have a web server serve your application,
press the Ctrl key and then select an application server and the web server together. The product
generates the plug-in configuration file, plugin-cfg.xml, for that web server based on the applications
which are routed through it.

3. Click Apply.

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

If you accessed this Manage modules page from a console enterprise application page for an already
installed application, you can also use this page to view and manage modules in your application.

To view the values specified for a module configuration, click the module name in the list. The displayed
module settings page shows the values specified. On the settings page, you can change existing
configuration values and link to additional console pages that assist you in configuring the module.

To manage a module, select the module name in the list and click a button:

 Button Resulting action

Remove Removes the selected module from the deployed application. The module is deleted
from the application in the configuration repository and also from all of the nodes
where the application is installed and running or expected to run.

260 Administering applications and their environment

Button Resulting action

Update Opens a wizard that helps you update modules in an application. If a module has the
same URI as a module already existing in the application, the new module replaces
the existing module. If the new module does not exist in the application, it is added to
the deployed application.

Remove File Deletes a file from a module of a deployed application.

Export File Accesses the Export a file from an application page, which you use to export a file of
an enterprise application or module to a location of your choice.

If the browser does not prompt for a location to store the file, click File > Save as and
specify a location to save the file that is shown in the browser.

Clusters and servers
Lists the names of available deployment targets. This list is the same for every application that is installed
in the cell.

From this list, select only appropriate deployment targets for a module. You must install an application,
enterprise bean (EJB) module, Session Initiation Protocol (SIP) archive (SAR), web module, or client
module on a Version 8.x target under any of the following conditions:
v The module supports Java Platform, Enterprise Edition (Java EE) 6.
v The module calls an 8.x runtime application programming interface (API).
v The module uses an 8.x product feature.

You must install an application, EJB, SAR, or web module on a Version 8.x or 7.x target under any of the
following conditions:
v The module supports Java EE 5.
v The module calls a 7.x runtime API.
v The module uses a 7.x product feature.

If a module supports J2EE 1.4, then you must install the module on a Version 6.x, 7.x or 8.x deployment
target. Modules that call a 6.1.x API or use a 6.1.x feature can be installed on a 6.1.x, 7.x or 8.x
deployment target. Modules that require 6.1.x feature pack functionality can be installed on a 6.1.x
deployment target that has been enabled with that feature pack or on a 7.x or 8.x deployment target.

You can install an application or module developed for a Version 5.x product on any deployment target.

Module
Specifies the name of a module in the installed (or deployed) application.

URI
Specifies the location of the module relative to the root of the application (EAR file).

Module type
Specifies the type of module, for example, a web module or EJB module.

This setting is shown on the Manage modules page accessed from a console enterprise application page.

Server
Specifies the name of each deployment target to which the module currently is mapped.

To change the deployment targets for a module, select one or more targets from the Clusters and
servers list and click Apply. The new mapping replaces the previous mapping.

Chapter 8. Deploying and administering enterprise applications 261

Mapping modules to servers
Each module of a deployed application must be mapped to one or more target servers. The target server
can be an application server or web server.

Before you begin

You can map modules of an application or stand-alone Web module to one or more target servers during
or after application installation using the console. This topic assumes that the module is already installed
on a server and that you want to change the mappings.

Before you change a mapping, check the deployment targets. You must specify an appropriate deployment
target for a module. Modules that use Version 8.x features cannot be installed onto Version 7.x or 6.x
target servers. Similarly, modules that use Version 7.x features cannot be installed onto Version 6.x target
servers.

About this task

During application installation, different deployment targets might have been specified.

You use the Manage modules page of the administrative console to view and change mappings. This page
is displayed during application installation using the console and, after the application is installed, can be
accessed from the enterprise application settings page.

On the Manage modules page, specify target servers where you want to install the modules contained in
your application. Modules can be installed on the same application server or dispersed among several
application servers. Also, specify the web servers as targets that will serve as routers for requests to your
application. The plug-in configuration file, plugin-cfg.xml, for each web server is generated based on the
applications which are routed through it.

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Procedure
1. Click Applications > Application Types > WebSphere enterprise applications > application_name

> Manage modules in the console navigation tree.

The Manage modules panel is displayed.

2. Examine the list of mappings.

Ensure that each Module entry is mapped to one or more targets, identified under Server.

3. Change a mapping as needed.

a. Select each module that you want mapped to the same targets.

In the list of mappings, select check boxes for the modules.

b. From the Clusters and servers list, select one or more targets.

Select only appropriate deployment targets for a module. You cannot install modules that use
WebSphere Application Server Version 8.x features on a Version 7.x or 6.x target server.

Use the Ctrl key to select multiple targets. For example, to have a web server serve your
application, use the Ctrl key to select an application server and the Web server together to have
the plugin-cfg.xml plug-in configuration file for that web server generated based on the
applications that are routed through it.

c. Click Apply.

262 Administering applications and their environment

4. Repeat steps 2 and 3 until each module maps to the desired targets.

5. Click OK.

Results

The application or module configurations are changed. The application or stand-alone web module is
restarted so the changes take effect.

Example

To install an application that has modules which support Java Platform, Enterprise Edition (Java EE) 5 or 6
to two servers, do the following:

1. Click the Select All icon to select all of the modules in the application.

2. While pressing Ctrl, select two Version 8 application servers from the Clusters and servers list.

3. Click Apply.

4. Click OK.

What to do next

Save changes to your administrative configuration.

Mapping virtual hosts for web modules
A virtual host must be mapped to each web module of a deployed application. Web modules can be
installed on the same virtual host or dispersed among several virtual hosts.

Before you begin

You can map a virtual host to a web module during or after application installation using the console. This
topic assumes that the web module is already installed on a server and that you want to change the
mappings.

Before you change a mapping, check the virtual hosts definitions. You can install a web module on any
defined virtual host. To view information on previously defined virtual hosts, click Environment > Virtual
hosts in the administrative console. Virtual hosts enable you to associate a unique port with a module or
application. The aliases of a virtual host identify the port numbers defined for that virtual host. A port
number specified in a virtual host alias is used in the URL that is used to access artifacts such as servlets
and JavaServer Pages (JSP) files in a web module. For example, the alias myhost:8080 is the
host_name:port_number portion of the URL http://myhost:8080/servlet/snoop.

About this task

During application installation, a virtual host other than the one you want mapped to your web module
might have been specified.

The default virtual host setting usually is default_host, which provides several port numbers through its
aliases:
80 An internal, insecure port used when no port number is specified
9080 An internal port
9443 An external, secure port

Unless you want to isolate your web module from other modules or resources on the same node (physical
machine), default_host is a suitable virtual host for your web module.

Chapter 8. Deploying and administering enterprise applications 263

In addition to default_host, the product provides admin_host, which is the virtual host for the
administrative console system application. admin_host is on port 9060. Its secure port is 9043. Do not
select admin_host unless the web module relates to system administration.

Use the Virtual hosts page of the administrative console to view and change mappings. This page is
displayed during enterprise application installation using the console and, after the application is installed,
can be accessed from an enterprise application settings page.

On the Virtual hosts page, specify a virtual host for each web module. Web modules of an application can
be installed on the same virtual host or on different virtual hosts.

Procedure
1. Click Applications > Application Types > WebSphere enterprise applications > application_name

> Virtual hosts in the console navigation tree. The Virtual hosts page is displayed.

2. Examine the list of mappings. Ensure that each Web module entry has the desired virtual host
mapped to it, identified under Virtual host.

3. Change the mappings as needed.

a. Select each web module that you want mapped to a particular virtual host. In the list of mappings,
place a check mark in the Select check boxes beside the web modules.

b. From the Virtual host drop-down list, select the desired virtual host. If you selected more than one
virtual host in step 1:
1) Expand Apply Multiple Mappings.
2) Select the desired virtual host from the Virtual host drop-down list.
3) Click Apply.

4. Repeat steps 2 and 3 until a desired virtual host is mapped to each web module.

5. Click OK.

Results

The application or web module configurations are changed. The application or stand-alone web module is
restarted so the changes take effect.

What to do next

After mapping virtual hosts, do the following:

1. Regenerate the plug-in configuration file.
a. Click Servers > Server Types > Web servers.
b. Select the web server for which you want to generate a plug-in.
c. Click Generate Plug-in.

2. Save changes to your administrative configuration.

Virtual hosts settings
Use this page to specify virtual hosts for web modules contained in your application. Web modules can be
installed on the same virtual host or dispersed among several virtual hosts.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Virtual hosts. This page is the same as the Map virtual
hosts for web modules page on the application installation and update wizards.

On this page, each web module must map to a previously defined virtual host, identified under Virtual
host. You can see information on previously defined virtual hosts by clicking Environment > Virtual hosts
in the administrative console. Virtual hosts enable you to associate a unique port with a module or
application. The aliases of a virtual host identify the port numbers defined for that virtual host. A port
number specified in a virtual host alias is used in the URL that is used to access artifacts such as servlets

264 Administering applications and their environment

and JavaServer Pages (JSP) files in a web module. For example, the alias myhost:8080 is the
host_name:port_number portion of the URL http://myhost:8080/servlet/snoop.

The default virtual host setting usually is default_host, which provides several port numbers through its
aliases:
80 An internal, insecure port used when no port number is specified
9080 An internal port
9443 An external, secure port

 Unless you want to isolate your web module from other modules or resources on the same node (physical
machine), default_host is a suitable virtual host for your web module.

In addition to default_host, the product provides admin_host, which is the virtual host for the
administrative console system application. admin_host is on port 9060. Its secure port is 9043. Do not
select admin_host unless the web module relates to system administration.

To change a mapping:

1. In the list of mappings, select the Select check box beside each web module that you want mapped to
a particular virtual host.

2. From the Virtual host drop-down list, select the desired virtual host. If you selected more than one
virtual host in step 1:
a. Expand Apply Multiple Mappings.
b. Select the desired virtual host from the Virtual Host drop-down list.
c. Click Apply.

3. Click OK.

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Web module:

Specifies the name of a web module in the application that you are installing or that you are viewing after
installation.

Virtual host:

Specifies the name of the virtual host to which the Web module is currently mapped.

 Expanding the drop-down list displays a list of previously defined virtual hosts. To change a mapping,
select a different virtual host from the list.

Do not specify the same virtual host for different web modules that have the same context root and are
deployed on targets belonging to the same node even if the web modules are contained in different
applications. Specifying the same virtual host causes a validation error.

Mapping properties for a custom login or trusted connection
configuration
Use this page to view and manage the mapping properties for a custom login configuration or a trusted
connection configuration.

To access the administrative console panel, complete the following steps:

Chapter 8. Deploying and administering enterprise applications 265

1. Click Applications > Application types> WebSphere enterprise applications > application_name.

2. From Enterprise JavaBeans Properties, click Map data sources for all 2.x CMP beans.

3. For container authorization, modify the authorization type by selecting your Enterprise JavaBeans(EJB)
module and selecting Container from the Resource authorization menu.

4. Click Apply.

5. From Specify authentication method, select Use custom login configuration or Use trusted
connections and the name of the application login configuration.

6. Select the name of your EJB module.

7. Click Apply.

8. Click Mapping properties in the Resource authorization column. This property is not available until
after you click Apply in the previous step.

Name
Specifies the name for the mapping property.

Do not use the MAPPING_ALIAS property name because the name is reserved by the product.

Value
Specifies the value paired with the specified name.

Description
Specifies additional information about the name and value pair.

Viewing deployment descriptors
A deployment descriptor is an extensible markup language (XML) file that specifies configuration and
container options for an application or module.

Before you begin

This topic assumes that you have installed an application or module on a server and that you want to view
its deployment descriptor.

About this task

When you create a Java 2 Platform, Enterprise Edition (J2EE) application or module in an assembly tool,
the assembly tool creates deployment descriptor files for the application or module. Java Platform,
Enterprise Edition (Java EE) 5 or later applications and modules might use annotations instead of
deployment descriptors.

After an application or module is installed on a server, you can view its deployment descriptor in the
administrative console. You cannot view Java EE 5 or later annotations.

Unless an application supports Java EE 5 or later, an enterprise archive (EAR) file must contain an
application.xml file. The application.xml identifies each module of an application. A Java EE 5
application is not required to provide an application.xml file in the EAR file. When an application.xml
file does not exist, the product examines the Java archive (JAR) file contents to determine whether the
JAR file is an enterprise bean (EJB) module or an application client module. A JAR file should not contain
more than one deployment descriptor in it. When an ejb-jar.xml file is found in a JAR file, the product
considers it an EJB module. If an ejb-jar.xml file is not found and an application-client.xml is found,
the product considers the JAR file to be an application client module. If both ejb-jar.xml and
application-client.xml files exist in the JAR file, the product might consider a JAR file intended to be an
application client module to be an EJB module or a JAR file intended to be an EJB module to be an
application client module. A JAR file should not contain more than one kind of deployment descriptor.

266 Administering applications and their environment

Procedure
1. Access a deployment descriptor view.

Click the navigational option stated in Accessing a console view to view the deployment descriptor
for a given module:

 Table 34. Accessing View deployment descriptor pages in the console. Click links on the console navigation tree
and pages.

Module Deployment descriptor file Accessing a console view

Enterprise
application

application.xml Applications > Application Types > WebSphere enterprise
applications > application_name > View deployment
descriptor

Web application WEB-INF/web.xml Applications > Application Types > WebSphere enterprise
applications > application_name > Manage modules >
module_name > View deployment descriptor

WEB-INF/portlet.xml Applications > Application Types > WebSphere enterprise
applications > application_name > Manage modules >
module_name > View portlet deployment descriptor

Enterprise bean ejb-jar.xml Applications > Application Types > WebSphere enterprise
applications > application_name > Manage modules >
module_name > View deployment descriptor

Application client application-client.xml Applications > Application Types > WebSphere enterprise
applications > application_name > Manage modules >
module_name > View deployment descriptor

Web service webservices.xml Applications > Application Types > WebSphere enterprise
applications > application_name > Manage modules >
module_name >
v View web services client deployment descriptor

extension
v View web services server deployment descriptor
v View web services server deployment descriptor

extension

For information about the views, see the topic on viewing Web
services deployment descriptors in the administrative console.

Resource adapter
embedded in
enterprise
application

ra.xml Applications > Application Types > WebSphere enterprise
applications > application_name > Manage modules >
ra_module_name > View deployment descriptor

Stand-alone
Resource adapter

ra.xml Resources > Resource Adapters > Resource adapters >
module_name > View deployment descriptor

2. Click Expand All to view the deployment descriptor contents.

Results

The deployment descriptor for the application or module is displayed.

Example

The deployment descriptor for the product DefaultApplication follows:
<application id="Application_ID" >
 <display-name> DefaultApplication.ear</display-name>
 <description> This is the IBM WebSphere Application Server Default Application.</<description>
 <module id="WebModule_1" >
 <web>
 <web-uri> DefaultWebApplication.war</web-uri>
 <context-root> /</context-root>
 </web>

Chapter 8. Deploying and administering enterprise applications 267

</module>
 <module id="EjbModule_1" >
 <ejb> Increment.jar</ejb>
 </module>
 <security-role id="SecurityRole_1204342979281" >
 <description> All Authenticated users role.</description>
 <role-name> All Role</role-name>
 </security-role>
</application>

What to do next

After displaying a deployment descriptor on the console page, do the following:

1. Examine the deployment descriptor contents, including any configurations that it has for application
bindings, security roles, references to other resources, or Java Naming and Directory Interface (JNDI)
names.

For example, examine the JAR files of your Java EE 5 or later module to ensure that each JAR file
does not contain more than one kind of deployment descriptor. If a JAR file contains more than one
kind of deployment descriptor, proceed to the next step and remove the extraneous deployment
descriptor. Thus, if both ejb-jar.xml and application-client.xml files exist in a JAR file, remove the
deployment descriptor that your module does not need.

2. Change a deployment descriptor as needed.

You can edit a deployment descriptor file manually. However, it is preferable to edit a deployment
descriptor using the console or in an assembly tool deployment descriptor editor to ensure that the
deployment descriptor has valid properties and that its references contain appropriate values.

If your Java EE 5 or later module does not have a metadata-complete attribute or the metadata-complete
attribute is set to false, you can instruct the product to write the entire module deployment descriptor,
including deployment information from annotations, to XML format. On the Metadata for modules page,
select metadata-complete attribute.

Note: If your Java EE 5 or later application uses annotations and a shared library, do not select
metadata-complete attribute. When your application uses annotations and a shared library, setting
the metadata-complete attribute to true causes the product to incorrectly represent an @EJB
annotation in the deployment descriptor as <ejb-ref> rather than <ejb-local-ref>. For web
modules, setting the metadata-complete attribute to true might cause InjectionException errors. If
you must set the metadata-complete attribute to true, avoid errors by not using a shared library, by
placing the shared library in either the classes or lib directory of the application server, or by fully
specifying the metadata in the deployment descriptors.

Metadata for module settings
Use this page to instruct a Java Platform, Enterprise Edition (Java EE) enterprise bean (EJB) deployment
descriptor, web module deployment descriptor, or JCA resource adapter archive (RAR) module to ignore
annotations that specify deployment information.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Metadata for modules. This page is the same as the
Metadata for modules page on the application installation and update wizards.

If your application contains Java EE 5 or later modules, you can select to lock the deployment descriptor
of one or more of the modules on the Metadata for modules page. If you select a metadata-complete
attribute check box (set the metadata-complete attribute to true) and lock deployment descriptors, the
product writes the complete module deployment descriptor, including deployment information from
annotations, to XML format.

Annotations are a standard mechanism of adding metadata to Java classes. You can use metadata to
simplify development and deployment of Java EE 5 or later artifacts. Prior to the introduction of Java
language annotations, deployment descriptors were the standard mechanism used by Java EE

268 Administering applications and their environment

components. These deployment descriptors were mapped to XML format, which facilitated their
persistence. If you select to lock deployment descriptors, the product merges Java EE annotation-based
metadata with the XML-based existing deployment descriptor metadata and persists the result.

When applications contain a large number of Java classes, the deployment processing time for the
annotations can increase. To minimize the performance impact, you can use one of the following methods:

v Determine whether the module needs to use Java EE 5 or 6. If the module does not need to use Java
EE 5 or 6, the annotations within the Java classes are not scanned.

v Use the “metadata-complete attribute” on page 234 in the module descriptor if the module uses Java
EE 5 or later and it does not contain any annotations. This attribute disables the annotations processing
for the module, but Java EE 5 or later modules might still be placed in the descriptor file. If you are
migrating your application, but you are not adding annotations, consider using this attribute value.

v Restructure the application to place the utility Java archive (JAR) files into shared libraries if those JAR
files do not have annotation information. Consider this method if you cannot set the “metadata-complete
attribute” on page 234.

v Move the JAR files in the WEB-INF/lib directory to the root directory of the enterprise archive (EAR) file.
Nested archives, such as a JAR file that is within a web application archive (WAR) that is within an EAR
file, are very cumbersome to search through because of the multiple levels of compression.

Module
Specifies the name of a module in the installed (or deployed) application.

 Data type String

URI
Specifies the location of the module relative to the root of the EAR file.

 Data type String

metadata-complete attribute
Specifies whether to write the complete module deployment descriptor, including deployment information
from annotations, to extensible markup language (XML) format.

By default, a metadata-complete attribute check box is not selected and the product does not write out
annotation data to a module deployment descriptor.

If your modules do not have a metadata-complete attribute or the metadata-complete attribute is set to
false, you can select a check box and instruct the product to write out annotation data to a module
deployment descriptor.

Note: If your Java EE 5 or later application uses annotations and a shared library, do not select
metadata-complete attribute. When your application uses annotations and a shared library, setting
the metadata-complete attribute to true causes the product to incorrectly represent an @EJB
annotation in the deployment descriptor as <ejb-ref> rather than <ejb-local-ref>. For web
modules, setting the metadata-complete attribute to true might cause InjectionException errors. If
you must select metadata-complete attribute (set the metadata-complete attribute to true), avoid
errors by not using a shared library, by placing the shared library in either the classes or lib
directory of the application server, or by fully specifying the metadata in the deployment descriptors.

After you select a check box, you cannot deselect (clear) the check box and the module is no longer
shown in the list of modules on this page. If you select all the check boxes, the link to this page is no
longer shown on the enterprise application settings page.

 Data type Boolean

Chapter 8. Deploying and administering enterprise applications 269

Default false (deselected)

Starting or stopping enterprise applications
You can start an application that is not running (has a status of Stopped) or stop an application that is
running (has a status of Started).

Before you begin

This topic assumes that the Java Platform, Enterprise Edition (Java EE) application is installed on a
server. By default, the application starts automatically when the server starts.

About this task

You can start and stop applications manually using the following:
v Administrative console
v startApplication and stopApplication attributes of the AdminControl object with the wsadmin tool
v startApplication and stopApplication administrative jobs of the AdminTask.submitJob -jobType object with

the wsadmin tool
v Java programs that use ApplicationManager or AppManagement MBeans

This topic describes how to use the administrative console to start or stop an application.

Note: This topic applies to applications that do not contain Java Application Programming Interface (API)
for XML-Based Web Services (JAX-WS) service providers. To stop or start applications that contain
JAX-WS service providers, use the Service providers page accessed by clicking Services >
Service providers. To start a service provider application, select a service and click Start
Application. To stop a service provider application, select a service and click Stop Application.
Then, on the Stop application page, click OK to stop all modules in the application, including other
services such as enterprise beans and servlets.

Procedure
1. Go to the Enterprise applications page. Click Applications > Application Types > WebSphere

enterprise applications in the console navigation tree.

2. Select the check box for the application you want started or stopped.

3. Click a button:

 Option Description

Start Runs the application and changes the state of the application to Started. The status is
changed to partially started if not all servers on which the application is deployed
are running.

Stop Stops the processing of the application and changes the state of the application to
Stopped.

To restart a running application, select the application you want to restart, click Stop and then click
Start.

Results

The status of the application changes and a message stating that the application started or stopped
displays at the top the page.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance

270 Administering applications and their environment

Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

What to do next

You can configure an application so it does not start automatically when the server on which it resides
starts. You then start the application manually using options described in this topic.

If you want your application to start automatically when its server starts, you can adjust values that control
how quickly the application or its server starts:

1. Click Applications > Application Types > WebSphere enterprise applications > application_name
> Startup behavior.

2. Specify a different value for Startup order.

This setting specifies the order in which applications are started when the server starts. The default
value is 1 in a range from 0 to 2147483647. The application with the lowest starting weight is started
first.

3. Specify a different value for Launch application before server completes startup.

This setting specifies whether the application must initialize fully before its server starts. The default
value of false prevents the server from starting completely until the application starts. To reduce the
amount of time it takes to start the server, you can set the value to true and have the application start
on a background thread, thus allowing server startup to continue without waiting for the application.

4. Save the changes to the application configuration.

Disabling automatic starting of applications
You can enable and disable the automatic starting of an application. By default, an installed application
starts automatically when the server on which the application resides starts.

Before you begin

This topic assumes that the application is installed on an application server and that the application starts
automatically when the server starts.

This topic also assumes that you mapped the installed application to a server and that you have an
administrative role with an authority higher than monitor.

About this task

You might want an application to run only after you start it manually and not to run every time after the
server starts. The target mapping for an application controls whether an application starts automatically
when the server starts or requires you to start the application manually.

You must have an administrative role with an authority higher than monitor to change the automatic
starting setting.

Procedure
1. Go to the Target specific application status page for your application.

Click Applications > Application Types > WebSphere enterprise applications > application_name
> Target specific application status.

2. Select the target server on which the application resides.

3. Click Disable Auto Start.

Chapter 8. Deploying and administering enterprise applications 271

4. Save changes to the administrative configuration.

Results

The application does not start when its server starts. You must start the application manually.

What to do next

To enable automatic starting of the application, do the following:
1. On the Target specific application status page for the application, select the target on which the

application resides.
2. Click Enable Auto Start.
3. Save changes to the configuration.

Target specific application status
Use this page to view mappings of deployed applications or modules to servers.

Also use this page to enable or disable the automatic starting of an application when the server on which
the application resides starts.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Target specific application status.

When security is enabled, a separate application list is shown for each of your administrative roles.
Supported roles include monitor, configurator, operator, administrator, deployer, and administrative security
manager. For example, when you have the administrator role, the statement “You can administer the
following resources” is shown followed by a list of servers that you can administer.

Target
States the name of the target server to which the application or module maps. You specify the target on
the Manage modules page accessed from the settings for an application.

Node
Specifies the node name if the target is a server.

Version
Specifies the version level of the target. The target can be a Version 8.x, 7.x or 6.x deployment target.

A deployment target is a server with all members on a WebSphere Application Server product. For
example, an 8.x deployment target is a server with all members on a WebSphere Application Server
Version 8.0 or later product.

An application, enterprise bean (EJB) module, Session Initiation Protocol (SIP) archive (SAR), web
module, or client module must be installed on a Version 8.x target under any of the following conditions:
v The module supports Java Platform, Enterprise Edition (Java EE) 6.
v The module calls an 8.x runtime application programming interface (API).
v The module uses an 8.x product feature.

An application, EJB, SAR, or web module must be installed on a Version 8.x or 7.x target under any of the
following conditions:
v The module supports Java EE 5.
v The module calls a 7.x runtime API.
v The module uses a 7.x product feature.

If a module supports Java 2 Platform, Enterprise Edition (J2EE) 1.4, then you can install the module on a
Version 6.x or later deployment target. Modules that call a 6.1.x API or use a 6.1.x feature can be installed

272 Administering applications and their environment

on a 6.1.x, 7.x or 8.x deployment target. Modules that require 6.1.x feature pack functionality can be
installed on a 7.x or 8.x deployment target or on a 6.1.x deployment target that has been enabled with that
feature pack.

If JavaServer Pages (JSP) precompilation, EJB deployment (ejbdeploy), or Web Services deployment
(wsdeploy) are enabled, then you can deploy applications to only those targets that have same product
version as the deployment manager. If applications are targeted to servers that have an earlier version
than the deployment manager, then you cannot deploy to those targets. Thus, if JSP precompilation,
ejbdeploy, or wsdeploy are enabled, then you must deploy the application on a 6.1.x, 7.x or 8.x target.

You can install an application or module developed for a Version 5.x product on any deployment target.

Auto Start
Specifies whether the application modules installed on the target server are started (or enabled) when the
server starts. This setting specifies the initial state of application modules. A Yes value indicates that the
corresponding modules are enabled and thus are accessible when the server starts. A No value indicates
that the corresponding modules are not enabled and thus are not accessible when the server starts.

By default, Auto Start is enabled. Thus, by default an installed application starts automatically when the
server on which the application resides starts.

If you have an administrative role with an authority higher than monitor, you can enable and disable the
automatic starting of the application. To disable the automatic starting of the application, enable the Select
check box beside the target server and click Disable Auto Start. When automatic starting is disabled, the
application does not start when its server starts. To enable the automatic starting of the application, select
the target and click Enable Auto Start.

Application Status
Indicates whether the application deployed on the application server is started, stopped, or unknown.

 Table 35. Application status. Shows whether the application is running.

Started Application is running.

Partial Start Application is in the process of changing from a Stopped state to a Started
state. Application is starting to run but is not fully running yet. The application
might be in the Partial Start state because one of its application servers is not
started.

Stopped Application is not running.

Partial Stop Application is in the process of changing from a Started state to a Stopped

state. Application has not stopped running yet.

Unknown Status cannot be determined.

An application with an unknown status might, in fact, be running but have an
unknown status because the server running the administrative console cannot
communicate with the server running the application.

Pending Status is temporarily unknown pending an event that a user did not initiate, such

as pending an asynchronous call.

Not applicable Application does not provide information as to whether it is running.

The status of an application on a web server is always Unknown.

Updating enterprise application files
You can update Java Platform, Enterprise Edition (Java EE) application files deployed on a server.

Chapter 8. Deploying and administering enterprise applications 273

Before you begin

Update your Java EE application or modules and reassemble them using an assembly tool. Typical tasks
include adding or editing assembly properties, adding or importing modules into an application, and adding
enterprise beans, web components, and files.

Also, determine whether the updated files can be installed to your deployment targets. Version 8.0
supports Java EE 6 enterprise applications and modules.

If you are deploying Java EE 6 modules, ensure that the deployment target supports Version 8.0. You can
deploy Java EE 6 modules only to Version 8.0 and later servers. You cannot deploy Java EE 6 modules to
Version 7.x or 6.x deployment targets.

The administrative console Server collection pages show the versions for deployment targets.

About this task

Updating consists of adding a new file or module to an installed application, or replacing or removing an
installed application, file or module. After replacement of a full application, the old application is uninstalled.
After replacement of a module, file or partial application, the old installed module, file or partial application
is removed from the installed application.

Procedure
1. Determine which method to use to update your application files. The product provides several ways to

update modules.

2. Update the application files using

v Administrative console

v Drag and drop to a monitored directory

v wsadmin scripts

v Java application programming interfaces

v WebSphere rapid deployment of Java EE applications

In some situations, you can update applications or modules without restarting the application server
using hot deployment. Do not use hot deployment unless you are an experienced user and are
updating applications in a development or test environment.

3. If needed, restart the application manually so the changes take effect. Start the deployed application
files using
v Administrative console
v wsadmin startApplication
v Java programs that use ApplicationManager or AppManagement MBeans

When you update an application while it is running, the product automatically stops the application or
only its changed components, updates the application logic, and restarts the stopped application or its
components.

If you update module metadata while an application is running, restarting the application might not be
sufficient for the changes to take effect. For example, if you change descriptors in running Java EE 6
applications that use annotations, you must reinstall the application. If you change classes that
introduce, remove, or alter class hierarchies within an application, and those changes impact annotated
classes, you also must reinstall the application.

What to do next

Save the changes to your administrative configuration.

274 Administering applications and their environment

Next, test the application. For example, point a web browser at the URL for a deployed application
(typically http://hostname:9060/web_module_name, where hostname is your valid web server and 9060 is
the default port number) and examine the performance of the application. If the application does not
perform as desired, edit the application configuration, then save and test it again.

Ways to update enterprise application files
You can update Java Platform, Enterprise Edition (Java EE) application files deployed on a server in
several ways.

 Table 36. Ways to update application files. You can update application files using the console, wsadmin,
programming, or deployment tools

Option Method Comments Starting after update

Administrative
console update
wizard

See “Updating
enterprise
applications
with the
console” on
page 277.

To remove a
single file from
a Java EE
application or
module, see the
topic on
removing
enterprise files.

Briefly, do the following:

1. Go to the Enterprise applications
page. Click Applications >
Application Types > WebSphere
enterprise applications in the
console navigation tree.

2. Select the application to update
and click Update.

3. On the Preparing for application
update page, identify the application,
module or files to update and click
Next.

4. Complete steps in the update
wizard and click Finish.

On the Preparing for application
update page:

v Use Full application to update an
.ear file.

v Use Single module to update a
.war, .sar, enterprise bean .jar, or
connector .rar file.

v Use Single file to update a file
other than an .ear, .war, .sar, EJB
.jar, or .rar file.

v Use Partial application to update
or remove multiple files.

On the Enterprise
applications page,
select the updated
application and click
Start.

Monitored
directory

If you installed an application or
module by adding it to a monitored
directory, you can update it by
adding an application or module that
has the same file name to the
monitored directory.

Refer to the topic on installing
enterprise application files by adding
them to a monitored directory.

After application or
module installation,
the product starts it
automatically.

Application
properties files

Create a properties file that specifies
to update application files. Then, run
the wsadmin applyConfigProperties
command in any of the following
ways:
v In a script
v At a command prompt
v By adding the properties file to a

dragDropDeployableApps/
deploymentProperties monitored
directory

Refer to the topic on installing
enterprise application files by adding
properties files to a monitored
directory.

After application or
module installation,
the product starts it
automatically.

wsadmin scripts

See the topic
on updating
installed
applications
using the
wsadmin
scripting tool.

Use the update command or the
updateInteractive command in a
script or at a command prompt. For
more information on the update and
updateInteractive commands, see
the topic on commands for the
AdminApp object.

The Getting started with wsadmin
scripting topic provides an overview
of wsadmin.

Start the application
using the invoke
command and the
startApplication
attribute. For more
information about the
invoke command, see
the topic on
commands for the
AdminControl object.

Chapter 8. Deploying and administering enterprise applications 275

Table 36. Ways to update application files (continued). You can update application files using the console, wsadmin,
programming, or deployment tools

Option Method Comments Starting after update

Java application
programming
interfaces

See the topic
on using
administrative
programs
(JMX).

Update deployed applications by
completing the steps in the topic on
managing applications through
programming.

Update an application in the
following ways:

v Update the entire application

v Add to, replace or delete multiple
files in an application

v Add a module to an application

v Update a module in an application

v Delete a module in an application

v Add a file to an application

v Update a file in an application

v Delete a file in an application

v Invoke the
AdminApp
startApplication
command.

v Invoke the
startApplication
method on an
ApplicationManager
MBean using
AdminControl.

Rapid
deployment
tools

See topics
under Rapid
deployment of
J2EE
applications.

Briefly, do the following:

1. Update your J2EE application
files.

2. Set up the rapid deployment
environment.

3. Create a free-form project.

4. Launch a rapid deployment
session.

5. Drop your updated application files
into the free-form project.

Rapid deployment tools offer the
following advantages:

v You do not need to assemble your
J2EE application files prior to
deployment.

v You do not need to use other
installation tools mentioned in this
table to deploy the files.

Use any of the above
options to start the
application. Clicking
Start on the
Enterprise
applications page is
the easiest option.

Hot deployment
and dynamic
reloading

Briefly, do the following:

1. Update your application (.ear),
web module (.war), enterprise bean
.jar or HTTP plug-in configuration
file.

2. Follow instructions in Hot
deployment and dynamic reloading
to update your file.

If you are new to WebSphere
Application Server, use the
administrative console to update
applications. That option is easier.

Hot deployment and dynamic
reloading is more difficult to
complete. You must directly
manipulate the application or module
file on the server where the
application is deployed.

Use any of the above
options to start the
application. Clicking
Start on the
Enterprise
applications page is
the easiest option.

You can update .ear, enterprise bean .jar, web module .war, Session Initiation Protocol (SIP) archive
(.sar), connector .rar, application client .jar, and any other files used by an installed application.

If the application is updated while it is running, WebSphere Application Server automatically stops the
application, updates the application logic and restarts the application. If the application does not start
automatically, start it manually using one of the Starting options. For more information on the restarting of
updated applications, refer to "Fine-grained recycle behavior" in IBM WebSphere Developer Technical
Journal: System management for WebSphere Application Server V6 -- Part 5 Flexible options for updating
deployed applications.

276 Administering applications and their environment

If you update module metadata while an application is running, restarting the application might not be
sufficient for the changes to take effect. For example, if you change descriptors in running Java EE 6
applications that use annotations, you must reinstall the application. If you change classes that introduce,
remove, or alter class hierarchies within an application, and those changes impact annotated classes, you
also must reinstall the application.

Updating enterprise applications with the console
Updating enterprise applications consists of adding a new file or module to an installed Java Platform,
Enterprise Edition (Java EE) application, or replacing or removing an installed application, file or module.

Before you begin

Before you update the application files on a server, ensure that the files are assembled in deployable
modules.

Next, refer to “Ways to update enterprise application files” on page 275 and decide how to update your
application files. You can update enterprise applications or modules using the administrative console, the
wsadmin tool, or Java MBean programming. These ways provide similar updating capabilities.

Further, ensure that the updated files can be installed to your deployment targets.

About this task

This topic describes how to update deployed applications or modules using the administrative console.

Procedure
1. Back up the installed application or module.

a. Go to the Enterprise applications page of the administrative console.

Click Applications > Application Types > WebSphere enterprise applications in the console
navigation tree.

b. Export the application to an EAR file or export a file in the application.

Select the application you want to export and click Export or Export File. Exporting preserves the
binding information.

2. With the application selected on the Enterprise applications page, click Update. The Preparing for
application update page is displayed.

3. Under Specify the EAR, WAR, SAR or JAR module to upload and install:

a. Ensure that Application to be updated refers to the application to be updated.

b. Under Application update options, select the installed application, module, or file that you want to
update.

The online help Preparing for application update settings provides detailed information on the
options.

Note: You cannot add, remove, or modify a Java Application Programming Interface (API) for
XML-Based Web Services (JAX-WS) annotation using the Replace or add a single file or
Replace, add, or delete multiple files update options. These options change a single file
or a partial application. If you change a JAX-WS annotation using either of these options,
the product does not return an error. However, you might encounter problems deploying
annotated web services.

4. If you selected the Replace the entire application or Replace or add a single module option:

a. Click Next to display a wizard for updating application files.

b. Complete the steps in the update wizard.

Chapter 8. Deploying and administering enterprise applications 277

This update wizard, which is similar to the installation wizard, provides fields for specifying or
editing application binding information. Refer to information on installing applications using the
console and on the Preparing for application installation binding settings page for guidance.

Note that the installation steps have the merged binding information from the new version and the
old version. If the new version has bindings for application artifacts such as Enterprise JavaBeans
(EJB) Java Naming and Directory Interface (JNDI) names, EJB references or resource references,
then those bindings will be part of the merged binding information. If new bindings are not present,
then bindings are taken from the installed (old) version. If bindings are not present in the old
version and if the default binding generation option is enabled, then the default bindings will be part
of the merged binding information.

You can select whether to ignore bindings in the old version or ones in the new version.

5. Click Finish.

6. If you did not use the Manage modules page of the update wizard, after updating the application, map
the installed application or module to servers.

Use the page accessed from the Enterprise applications page.

a. Go to the Manage modules page. Click Applications > Application Types > WebSphere
enterprise applications > application_name > Manage modules.

b. Specify the application server where you want to install modules contained in your application and
click OK.

You can deploy Java 2 Platform, Enterprise Edition (J2EE) 1.4 modules to servers on Version 6 or
later nodes. You can deploy Java Platform, Enterprise Edition (Java EE) 5 modules to servers on
Version 7.x or later nodes. You can deploy Java EE 6 modules to servers on Version 8.x or later
nodes.

Results

After replacement of a full application, the product uninstalls the old application. After replacement of a
module, file or partial application, the product removes the old installed module, file or partial application
from the installed application.

What to do next

After the application file or module installs successfully, do the following:

1. Save the changes to your configuration.

When you update a full application in the single server (base) product, after you save the changes, the
old version of the application is uninstalled and the new version is installed into the configuration. The
application binaries for the old version are deleted from the destination directory and the new binaries
are copied to the directory.

2. If needed, restart the application manually so the changes take effect.

If the application is updated while it is running, the product automatically stops the application or only
its changed components, updates the application logic, and restarts the stopped application or its
components.

If you update module metadata while an application is running, restarting the application might not be
sufficient for the changes to take effect. For example, if you change descriptors in running Java EE 6
applications that use annotations, you must reinstall the application. If you change classes that
introduce, remove, or alter class hierarchies within an application, and those changes impact annotated
classes, you also must reinstall the application.

3. If the application you are updating is deployed on a server that has its application class loader policy
set to Single on the application server settings page, restart the server.

278 Administering applications and their environment

Preparing for application update settings
Use this page to update enterprise applications, modules or files already installed on a server.

To view this administrative console page, do the following:
1. Click Applications > Application Types > WebSphere enterprise applications.
2. Select the installed application or module that you want to update.
3. Click Update.

Clicking Update displays a page that helps you update application files deployed in the cell. You can
update the full application, a single module, a single file, or part of the application. If a new file or module
has the same relative path as a file or module already existing on the server, the new file or module
replaces the existing file or module. If the new file or module does not exist on the server, it is added to
the deployed application.

Application to be updated
Specifies the name of the installed (or deployed) application that you selected on the Enterprise
applications page.

Replace the entire application
Under Application update options, specifies to replace the application already installed on the server
with a new (updated) enterprise application .ear file.

After selecting this option, do the following:

1. Specify whether the .ear file is on a local or remote file system and the full path name of the
application. The path provides the location of the updated .ear file before installation.

Use Local file system if the browser and the updated files or modules are on the same machine,
whether or not the server is on that machine too. Local file system is available for all update options.

Use Remote file system if the application file resides on any node in the current cell context.

Also use the Remote file system option to specify an application file already residing on the machine
running the application server. For example, the field value might be app_server_install_root/
installableApps/test.ear. If you are installing a stand-alone WAR module, then specify the context
root as well.

Tip: During application installation, application files typically are uploaded from a client machine
running the browser to the server machine running the administrative console, where they are
deployed. In such cases, use the web browser running the administrative console to select
modules to upload to the server machine. In some cases, however, the application files reside on
the file system of any of the nodes in a cell. To have the application server install these files, use
the Remote file system option.

2. If you are installing a stand-alone web application (WAR) or a Session Initiation Protocol (SIP) module
(SAR), specify the context root of the WAR or SAR file.

The context root is combined with the defined servlet mapping (from the WAR file) to compose the full
URL that users type to access the servlet. For example, if the context root is /gettingstarted and the
servlet mapping is MySession, then the URL is http://host:port/gettingstarted/MySession.

3. Click Next to display a wizard for updating application files. The update wizard, which is similar to the
installation wizard, provides fields for specifying or editing application binding information. Complete the
steps in the update wizard as needed.

When the full application is updated, the old application is uninstalled and the new application is installed.
When the configuration changes are saved and subsequently synchronized, the application files are
expanded on the node where application will run. If the application is running on the node while it is
updated, then the application is stopped, application files are updated, and application is started.

Chapter 8. Deploying and administering enterprise applications 279

Replace or add a single module
Under Application update options, specifies to replace a module in or add a module to an installed
application.

The module can be a web module (.war file), enterprise bean module (EJB .jar file), SIP module (.sar
file), or resource adapter module (connector .rar file).

After selecting this option, specify whether the module is on a local or remote file system and the full path
name of the module. The path provides the location of the updated module before installation. For
information on Local file system and Remote file system, refer to the previous description of Replace
the entire application .

To replace a module, the specified relative path (module URI) must match the path of the module to be
updated in the installed application.

To add a new module to the installed application, the specified relative path must not match the path of a
module in the installed application. The value specifies the desired path for the new module.

If you are installing a stand-alone web or SIP module, specify a value for Context root. The context root
is combined with the defined servlet mapping (from the .war file) to compose the full URL that users type
to access the servlet. For example, if the context root is /gettingstarted and the servlet mapping is
MySession, then the URL is http://host:port/gettingstarted/MySession.

Next, specify whether to show only installation options that require you to supply information or to show all
installation options.

After specifying the required information on the module, click Next to display a wizard for updating
application files. The update wizard, which is similar to the installation wizard, provides fields for specifying
or editing module binding information. Complete the steps in the update wizard as needed.

After a single module is added or updated, when configuration changes are saved, the new or updated
module is stored in the deployed application in the product configuration repository. When these changes
are synchronized with the node, the module is added or updated to the node's file system. If the
application is running on the node when the module is added or updated, then one of the following occurs:
v For updates to a web module, the running web module is stopped, web module files are updated, and

then the web module is started.
v For module additions, the added module is started on the application servers where the application is

running after it is expanded on the node. An application restart is not necessary.
v If the class loader policy for the application is set to Single so that all modules share a class loader,

then the entire application is stopped and restarted for module level changes.
v If the security provider configured with the product does not support dynamic updates, then the entire

application is stopped and restarted for module level changes.
v For all other updates to a module, the entire application is stopped, the module files are updated, then

the entire application is started.

Replace or add a single file
Under Application update options, specifies to replace a file in or add a file to an installed application.

Use this option to update a file used by the application that is not an .ear, .war, .sar, .rar or, in some
instances, a .jar file. You can use this option to add or update .jar files that are not defined as modules
in the application. To update an .ear, file use the Replace the entire application option. To update a .war
file, .sar file, .rar file, or .jar file that is defined as a module in the application, use the Replace or add
a single module option.

280 Administering applications and their environment

After selecting this option, specify whether the file is on a local or remote file system and the full path
name of the file. The path provides the location of the updated file before installation. For information on
Local file system and Remote file system, refer to the description of Replace the entire application.

For the relative path (module URI) , specify a relative path to the file that starts from the root of the .ear
file. For example, if the file is located at com/company/greeting.class in module hello.jar, specify a
relative path of hello.jar.

To replace a file, the relative path must match the relative path of the file to be updated in the installed
application.

To add a new file to the installed application, the specified relative path must not match the relative path of
an already existing file in the installed application. The value specifies the desired path for the new file.

After you specify the file system and relative paths, click Next.

After a single file is added or updated, when configuration changes are saved, the new or updated file is
stored in the deployed application in the product configuration repository. When these changes are
synchronized with the node, the file is added or updated to the node's file system. If the application is
running on the node when the file is added or updated, then one of the following occurs:
v When files are added at application metadata scope (META-INF directory) or updated at any application

scope or in non-web modules, the entire application is stopped, the file is added or updated, and then
the entire application is restarted.

v When files are added at application non-metadata scope (outside of META-INF directory but not in any
module), the changes are saved in the file system without restarting the running application.

v When files are added or updated to web module metadata (META-INF or WEB-INF directory), the running
web module is stopped, the web module file is added or updated, and then the web module is started.

v For all other files in web modules, the file is added or updated on the node's file system without
stopping the application or any of its components.

Replace, add, or delete multiple files
Under Application update options, specifies to update multiple files of an installed application by
uploading a compressed file. Depending on the contents of the compressed file, a single use of this option
can replace files in, add new files to, and delete files from the installed application. Each entry in the
compressed file is treated as a single file and the path of the file from the root of the compressed file is
treated as the relative path of the file in the installed application.

After selecting this option, specify whether the compressed file is on a local or remote file system and the
full path name of the compressed file. You will likely use Local file system because you are uploading a
compressed file and remote browsing only works for .ear, .sar, .war or .jar files. Specify a valid
compressed file format such as .zip or .gzip. The path provides the location of the compressed file
before installation. This option unzips the compressed file into the installed application directory.

Use Local file system if the browser and the updated files or modules are on the same machine, whether
or not the server is on that machine too. Local file system is available for all update options.

To replace a file, a file in the compressed file must have the same relative path as the file to be updated in
the installed application.

To add a new file to the installed application, a file in the compressed file must have a different relative
path than the files in the installed application.

The relative path of a file in the installed application is formed by concatenation of the relative path of the
module (if the file is inside a module) and the relative path of the file from the root of the module
separated by /.

Chapter 8. Deploying and administering enterprise applications 281

To remove a file from the installed application, specify metadata in the compressed file using a file named
META-INF/ibm-partialapp-delete.props at any archive scope. The ibm-partialapp-delete.props file must
be an ASCII file that lists files to be deleted in that archive with one entry for each line. The entry can
contain a string pattern such as a regular expression that identifies multiple files. The file paths for the files
to be deleted must be relative to the archive path that has the META-INF/ibm-partialapp-delete.props file.

 Level of files to
delete Metadata .props file to include in compressed file

Application Include META-INF/ibm-partialapp-delete.props in the compressed file. In the metadata
.props file, list files to be deleted. File paths are relative to the location of the
META-INF/ibm-partialapp-delete.props file.

For example, to delete a file named utils/config.xmi from the root of the my.ear file,
include the line utils/config.xmi in the META-INF/ibm-partialapp-delete.props file.

Module Include module_uri/META-INF/ibm-partialapp-delete.props in the compressed file.

To delete one file from a module, include the file path relative to the module in the metadata
.props file. For example, to delete a/b/c.jsp from the my.jar module, include a/b/c.jsp in
my.jar/META-INF/ibm-partialapp-delete.props file in the compressed file.

To delete multiple files within a module, list the files to be deleted in the metadata .props file
with one entry on each line. For example, to delete all JavaServer Pages (.jsp files) from
the my.war file, include the line .*jsp in the my.war/META-INF/ibm-partialapp-delete.props
file. The line uses a regular expression, .*jsp, to identify all .jsp files in my.war.

You can use a single partial application file to add, delete and update multiple files.

After you specify a file system path, click Next.

After a partial application update, when configuration changes are saved, the new or updated application
file is stored in the deployed application in the WebSphere Application Server configuration repository.
When these changes are synchronized with the node, the files are added or updated to the node's file
system. Because the partial application option updates multiple files, the application components that are
restarted are determined using individual files in the partial application.

An example of entries in a partial application compressed file follows:
util.jar
META-INF/ibm-partialapp-delete.props
foo.jar/com/mycomp/xyz.class
xyz.war/welcome.jsp
xyz.war/WEB-INF/web.xml
webmod.war/META-INF/ibm-partialapp-delete.props

For this example, the META-INF/ibm-partialapp-delete.props file contains the .*.dat and tools/test.jar
files. The webmod.war/META-INF/ibm-partialapp-delete.props file contains the com/test/.*.jsp and
WEB-INF/test.xmi files.

The partial application update option does the following:
v Adds or replaces util.jar in the deployed application.
v Adds or replaces com/mycomp/xyz.class inside the foo.jar file of the deployed application.
v Deletes *.dat files from the application, but not from any modules.
v Deletes tools/test.jar from the application.
v Adds or replaces welcome.jsp inside the xyz.war module of the deployed application.
v Replaces WEB-INF/web.xml inside the xyz.war module of the deployed application.
v Deletes com/test/*.jsp from the webmod.war module.
v Deletes WEB-INF/test.xmi from the webmod.war module.

282 Administering applications and their environment

Escape regular expression metacharacters in the META-INF/ibm-partialapp-delete.props file. For
example, to delete inner classes for a class named Abc, use the regular expression Abc\$.* where $ is a
regular expression metacharacter that is escaped with a backslash (\).

A META-INF/ibm-partialapp-delete.props file might contain the following text:
.*.dat

webmod.war/META-INF/ibm-partialapp-delete.props:
com/test/.*.jsp
WEB-INF/test.xmi

Hot deployment and dynamic reloading
You can make various changes to applications and their modules without having to stop the server and
start it again. Making these types of changes is known as hot deployment and dynamic reloading.

Before you begin

The following note applies to the xmi file references in this topic:

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

Restriction:

The hot deployment and dynamic reloading function is not supported
when the product is running on these operating systems. The Java archive (JAR) files within
the associated Java Development Kit (JDK) are memory mapped. If these JAR files are
updated by the hot deployment and dynamic reloading functionality when they are being
used by the Java virtual machine (JVM), the files become inconsistent, which results in an
application server crash. When you make changes to an application on these operating
systems, do not use the hot deployment and dynamic reloading functionality. Instead, restart
the application to reflect the changes.

This topic assumes that your application files are deployed on a server and you want to upgrade the files.

See “Ways to update enterprise application files” on page 275 and determine whether hot deployment is
the appropriate way for you to update your application files. Other ways are easier and hot deployment is
appropriate only for experienced users.

Do not use hot deployment if you intend to export your application, generate a plug-in based on the
application configuration, or perform other application management in the future. Changes that you make
to your application files using hot deployment are not recognized by administrative console or wsadmin
application management functions. Those functions recognize only the application files that administrative

Chapter 8. Deploying and administering enterprise applications 283

programs such as the console or wsadmin present during application installation, update or other
management functions. The application management functions do not recognize files changed by hot
deployment.

About this task

Hot deployment is the process of adding new components (such as WAR files, EJB Jar files, enterprise
Java beans, servlets, and JSP files) to a running server without having to stop the application server
process and start it again.

Dynamic reloading is the ability to change an existing component without needing to restart the server in
order for the change to take effect. Dynamic reloading involves:
v Changes to the implementation of a component of an application, such as changing the implementation

of a servlet
v Changes to the settings of the application, such as changing the deployment descriptor for a web

module

As opposed to the changes made to a deployed application described in “Updating enterprise application
files” on page 273, changes made using hot deployment or dynamic reloading do not use the
administrative console or a wsadmin scripting command. You must directly manipulate the application files
on the server where the application is deployed.

If the application you are updating is deployed on a server that has its application class loader policy set to
Single, you might not be able to dynamically reload your application. At minimum, you must restart the
server after updating your application.

Procedure
1. Locate your expanded application files.

The application files are in the directory you specified when installing the application or, if you did not
specify a custom target directory, are in the default target directory, app_server_root/installedApps/
cell_name. Your EAR file, ${APP_INSTALL_ROOT}/cell_name/application_name.ear, points to the target
directory. The variables.xml file for the node defines ${APP_INSTALL_ROOT}.

It is important to locate the expanded application files because, as part of installing applications, a
WebSphere Application Server unjars portions of the EAR file onto the file system of the computer that
will run the application. These expanded files are what the server looks at when running your
application. If you cannot locate the expanded application files, look at the binariesURL attribute in the
deployment.xml file for your application. The attribute designates the location the run time uses to find
the application files.

For the remainder of this information on hot deployment and dynamic reloading, application_root
represents the root directory of the expanded application files.

2. Locate application metadata files. The metadata files include the deployment descriptors (web.xml,
application.xml, ejb-jar.xml, and the like), the bindings files (ibm-web-bnd.xmi, ibm-app-bnd.xmi,
and the like), and the extensions files (ibm-web-ext.xmi, ibm-app-ext.xmi, and the like).

Metadata XML files for an application can be loaded from one of two locations. The metadata files can
be loaded from the same location as the application binary files (such as application_root/META-INF)
or they can be loaded from the WebSphere configuration tree, ${CONFIG_ROOT}/cells/cell_name/
applications /application_EAR_name/deployments/application_name/. The value of the
useMetadataFromBinary flag specified during application installation controls which location is used. If
specified, the metadata files are loaded from the same location as the application binary files. If not
specified, the metadata files are loaded from the application deployment folder in the configuration
tree.

Important: You can have useMetadataFromBinaries=true, change an extracted copy of your
application using hot deployment, and have the changes take effect at run time by

284 Administering applications and their environment

following the procedure in this topic. However, changes that you make to your application
files using hot deployment are not recognized by console or wsadmin application
management functions. Those functions recognize only the original application files and
not the files changed by hot deployment. Do not use hot deployment if you intend to
export your application, generate a plug-in based on the application configuration, or
perform other application management in the future. Hot deployment enables you to
quickly change application files; it does not support the full management lifecycle of an
application.

For the remainder of this information, metadata_root represents the location of the metadata files for
the specified application or module.

3. Optional: Examine the values specified for Reload classes when application files are updated and
Polling interval for updated files on the settings page for your application's class loader.

If reloading of classes is enabled and the polling interval is greater than zero (0), the application files
are reloaded after the application is updated. For JavaServer Pages (JSP) files in a web module, a
web container reloads JSP files only when the IBM extension jspReloadingEnabled in the jspAttributes
of the ibm-web-ext.xmi file is set to true. You can set jspReloadingEnabled to true when editing your
web module's extended deployment descriptors in an assembly tool.

4. Change or add the following components or modules as needed:
v Application files
v WAR files
v EJB Jar files
v HTTP plug-in configuration files

5. For changes to take effect, you might need to start, stop, or restart an application.

“Starting or stopping enterprise applications” on page 270 provides information on using the
administrative console to start, stop, or restart an application.

Results

The application files are updated on the server.

Because you directly manipulated the application files on the server, you might not be able to later use the
administrative console or a wsadmin scripting command to work with the files. For example, if you try
exporting a manually changed application using Export on an Enterprise applications console page, your
manual changes to an application in the installedApps directory are not exported. To export those
changes, you must copy and move the application files manually.

Changing or adding application files
You can change or add application files on application servers without having to stop the server and start it
again.

About this task

The following note applies to the xmi file references in this topic:

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

Chapter 8. Deploying and administering enterprise applications 285

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

Restriction:

The hot deployment and dynamic reloading function is not supported
when the product is running on these operating systems. The Java archive (JAR) files within
the associated Java Development Kit (JDK) are memory mapped. If these JAR files are
updated by the hot deployment and dynamic reloading functionality when they are being
used by the Java virtual machine (JVM), the files become inconsistent, which results in an
application server crash. When you make changes to an application on these operating
systems, do not use the hot deployment and dynamic reloading functionality. Instead, restart
the application to reflect the changes.

There are several changes that you can make to deployed application files without stopping the server and
starting it again.

Important: See “Ways to update enterprise application files” on page 275 and determine whether hot
deployment is the appropriate way for you to update your application files. Other ways are
easier and hot deployment is appropriate only for experienced users. You can use the update
wizard of the administrative console to make the changes without having to stop and restart
the server.

The following table lists the changes that you can make by manipulating an application file on the server
where the application is deployed. The table also states whether you use hot deployment or dynamic
reloading to make the changes.

 Table 37. Available changes to deployed application files. Available changes using hot deployment or dynamic
reloading.

Change Hot deployment Dynamic reloading

Update an existing application on a running server by providing a new
EAR file.

Yes Yes

Add a new application to a running server. Yes No

Remove an existing application from a running server. Yes No

Change or add files to existing EJB or web modules. Yes No

Change the application.xml file for an application. Not applicable Yes

Change the ibm-app-ext.xmi file for an application. Not applicable Yes

Change the ibm-app-bnd.xmi file for an application. Not applicable Yes

Change a non-module Jar file contained in the EAR file. Yes Yes

Procedure
v Update an existing application on a running server by providing a new EAR file.

Reinstall an updated application using the administrative console or the wsadmin $AdminApp install
command with the -update option.

Both reinstallation methods enable you to update an existing application using any of the other steps
listed in this file, including changing classes, adding modules, removing modules, changing modules, or
changing metadata files. The application reinstallation methods detect the changes in your application
and prompt you for additional binding data that might be needed to install the application. The
reinstallation process automatically stops and restarts your application on the appropriate servers.

v Add a new application to a running server.

286 Administering applications and their environment

Install an application using the administrative console or the wsadmin install command.

v Remove an existing application from a running server.

Stop the application and then uninstall it from the server. Use the administrative console to stop the
application and then uninstall it. Or use the stopApplication attribute of the AdminControl object with
the wsadmin tool and then run the uninstall command.

v Change or add files to existing EJB or web modules.

1. Update the application files in the application_root location.

2. Restart the application.

Use the administrative console to restart the application. Or use the startApplication and
stopApplication attributes of the AdminControl object with the wsadmin tool.

v Change the application.xml file for an application.

Restart the application. Automatic reloading will not detect the change. Use the administrative console
to restart the application. Or use the startApplication and stopApplication attributes of the
AdminControl object with the wsadmin tool.

v Change the ibm-app-ext.xmi file for an application.

Restart the application. Automatic reloading will not detect the change. Use the administrative console
to restart the application. Or use the startApplication and stopApplication attributes of the
AdminControl object with the wsadmin tool.

v Change the ibm-app-bnd.xmi file for an application.

Restart the application. Automatic reloading will not detect the change. Use the administrative console
to restart the application. Or use the startApplication and stopApplication attributes of the
AdminControl object with the wsadmin tool.

v Change a non-module Jar file contained in the EAR file.

1. Update the non-module Jar file in the application_root location.

2. If automatic reloading is not enabled, restart the application. Use the administrative console to
restart the application. Or use the startApplication and stopApplication attributes of the
AdminControl object with the wsadmin tool.

If automatic reloading is enabled, you do not need to take further action. Automatic reloading will
detect the change.

Changing or adding WAR files
You can change web application archives (WAR files) on application servers without having to stop the
server and start it again.

About this task

The following note applies to the file references with a .xmi extension in this topic:

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

Chapter 8. Deploying and administering enterprise applications 287

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

Restriction:

The hot deployment and dynamic reloading function is not supported
when the product is running on these operating systems. The Java archive (JAR) files within
the associated Java Development Kit (JDK) are memory mapped. If these JAR files are
updated by the hot deployment and dynamic reloading functionality when they are being
used by the Java virtual machine (JVM), the files become inconsistent, which results in an
application server crash. When you make changes to an application on these operating
systems, do not use the hot deployment and dynamic reloading functionality. Instead, restart
the application to reflect the changes.

There are several changes that you can make to WAR files without stopping the server and starting it
again.

Important: See “Ways to update enterprise application files” on page 275 and determine whether hot
deployment is the appropriate way for you to update your WAR files. Other ways are easier
and hot deployment is appropriate only for experienced users. You can use the update wizard
of the administrative console to make the changes without having to stop and restart the
server.

The following table lists the changes that you can make by manipulating a WAR file on the server where
the application is deployed. The table also states whether you use hot deployment or dynamic reloading to
make the changes.

 Table 38. Available changes to deployed WAR files. Available changes using hot deployment or dynamic reloading.

Change Hot deployment Dynamic reloading

Change an existing JavaServer Pages (JSP) file. Not applicable Yes

Add a new JSP file to an existing application. Yes Yes

Change an existing servlet class by editing and recompiling. Not applicable Yes

Change a dependent class of an existing servlet class. Not applicable Yes

Add a new servlet using the Invoker (Serve Servlets by class name)
facility or add a dependent class to an existing application.

Yes Not applicable

Add a new servlet, including a new definition of the servlet in the
web.xml deployment descriptor for the application.

Yes Not applicable

Change the web.xml file of a WAR file. Yes Yes

Change the ibm-web-ext.xmi file of a WAR file. Not applicable Yes

Change the ibm-web-bnd.xmi file of a WAR file. Not applicable Yes

Procedure
v Change an existing JavaServer Pages (JSP) file.

Place the changed JSP file directly in the application_root/module_name directory or the appropriate
subdirectory. The change will be automatically detected and the JSP will be recompiled and reloaded.

v Add a new JSP file to an existing application.

Place the new JSP file directly in the application_root/module_name directory or the appropriate
subdirectory. The new file will be automatically detected and compiled on the first request to the page.

v Change an existing servlet class by editing and recompiling.

1. Place the new version of the servlet .class file directly in the application_root/module_name/WEB-
INF/classes directory. If the .class file is part of a Jar file, you can place the new version of the Jar

288 Administering applications and their environment

file directly in application_root/module_name/WEB-INF/lib. In either case, the change will be
detected, the web application will be shut down and reinitialized, picking up the new class.

2. If automatic reloading is not enabled, restart the application. Use the administrative console to
restart the application. Or use the startApplication and stopApplication attributes of the
AdminControl object with the wsadmin tool.

If automatic reloading is enabled, you do not need to take further action. Automatic reloading will
detect the change.

v Change a dependent class of an existing servlet class.

1. Place the new version of the dependent .class file directly in the application_root/module_name/
WEB-INF/classes directory. If the .class file is part of a Jar file, you can place the new version of the
Jar file directly in application_root/module_name/WEB-INF/lib. In either case, the change will be
detected, the web application will be shut down and reinitialized, picking up the new class.

2. If automatic reloading is not enabled, restart the application. Use the administrative console to
restart the application. Or use the startApplication and stopApplication attributes of the
AdminControl object with the wsadmin tool.

If automatic reloading is enabled, you do not need to take further action. Automatic reloading will
detect the change.

v Add a new servlet using the Invoker (Serve Servlets by class name) facility or add a dependent class to
an existing application.

1. Place the new .class file directly in the application_root/module_name/WEB-INF/classes directory.
If the .class file is part of a Jar file, you can place the new version of the Jar file directly in
application_root/module_name/WEB-INF/lib. In either case, the change will be detected, the web
application will be shut down and reinitialized, picking up the new class.

This case is treated the same as changing an existing class. The difference is that adding the
servlet or class does not immediately cause the web application to reload because the class has
never been loaded before. The class simply becomes available for execution.

2. If automatic reloading is not enabled, restart the application. Use the administrative console to
restart the application. Or use the startApplication and stopApplication attributes of the
AdminControl object with the wsadmin tool.

If automatic reloading is enabled, you do not need to take further action. Automatic reloading will
detect the change.

v Add a new servlet, including a new definition of the servlet in the web.xml deployment descriptor for the
application.

1. Place the new .class file directly in the application_root/module_name/WEB-INF/classes directory.
If the .class file is part of a Jar file, you can place the new version of the Jar file directly in
application_root/module_name/WEB-INF/lib.

You can edit the web.xml file in place or copy it into the application_root/module_name/WEB-INF/
classes directory. The new .class file will not trigger a reloading of the application.

2. Restart the application.

Use the administrative console to restart the application. Or use the startApplication and
stopApplication attributes of the AdminControl object with the wsadmin tool. After the application
restarts, the new servlet is available for service.

v Change the web.xml file of a WAR file.

1. Edit the web.xml file in place or copy it into the metadata_root/module_name/WEB-INF directory.

2. Restart the application.

Use the administrative console to restart the application. Or use the startApplication and
stopApplication attributes of the AdminControl object with the wsadmin tool.

v Change the ibm-web-ext.xmi file of a WAR file.

Edit the extension settings as needed. You can change all of the extension settings. The only warning is
if you set the reloadInterval property to zero (0) or the reloadEnabled property to false, the application

Chapter 8. Deploying and administering enterprise applications 289

no longer automatically detects changes to class files. Both of these changes disable the automatic
reloading function. The only way to re-enable automatic reloading is to change the appropriate property
and restart the application. See other task descriptions in this file for information on restarting an
application.

Note: The reloadInterval and reloadingEnabled attributes of the IBM deployment descriptor extensions,
including both the WAR file extension WEB-INF/ibm-web-ext.xmi and the application extension
META-INF/ibm-application-ext.xmi are deprecated.

v Change the ibm-web-bnd.xmi file of a WAR file.

1. Edit the bindings as needed. You can change all of the values but ensure that the entities you are
binding to are present in the configuration of the server.

2. Restart the application.

Use the administrative console to restart the application. Or use the startApplication and
stopApplication attributes of the AdminControl object with the wsadmin tool.

Changing or adding EJB JAR files
You can change enterprise bean (EJB) Java archive (JAR) files on application servers without having to
stop the server and start it again.

About this task

The following note applies to the file references with .xmi extensions in this topic:

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

Restriction:

The hot deployment and dynamic reloading function is not supported
when the product is running on these operating systems. The Java archive (JAR) files within
the associated Java Development Kit (JDK) are memory mapped. If these JAR files are
updated by the hot deployment and dynamic reloading functionality when they are being
used by the Java virtual machine (JVM), the files become inconsistent, which results in an
application server crash. When you make changes to an application on these operating
systems, do not use the hot deployment and dynamic reloading functionality. Instead, restart
the application to reflect the changes.

There are several changes that you can make to EJB JAR files without stopping the server and starting it
again.

Important: See “Ways to update enterprise application files” on page 275 and determine whether hot
deployment is the appropriate way for you to update your EJB JAR files. Other ways are

290 Administering applications and their environment

easier and hot deployment is appropriate only for experienced users. You can use the update
wizard of the administrative console to make the changes without having to stop and restart
the server.

The following table lists the changes that you can make to EJB JAR files by manipulating an EJB file on
the server where the application is deployed. The table also states whether you use hot deployment or
dynamic reloading to make the changes.

 Table 39. Available changes to EJB JAR files. Available changes using hot deployment or dynamic reloading.

Change Hot deployment Dynamic reloading

Change the ejb-jar.xml file of an EJB JAR file. Not applicable Yes

Change the ibm-ejb-jar-ext.xmi or ibm-ejb-jar-bnd.xmi file of an EJB
JAR file.

Not applicable Yes

Change the Table.ddl file for an EJB JAR file. Not applicable Not applicable

Change the Map.mapxmi or Schema.dbxmi file for an EJB JAR file. Not applicable Yes

Update the implementation class for an EJB file or a dependent class of
the implementation class for an EJB file.

Not applicable Yes

Update the Home/Remote interface class for an EJB file. Not applicable Yes

Add a new EJB file to an existing EJB JAR file. Yes Yes

Procedure
v Change the ejb-jar.xml file of an EJB JAR file.

Restart the application. Automatic reloading will not detect the change. Use the administrative console
to restart the application. Or use the startApplication and stopApplication attributes of the
AdminControl object with the wsadmin tool.

v Change the ibm-ejb-jar-ext.xmi or ibm-ejb-jar-bnd.xmi file of an EJB JAR file.

Restart the application. Automatic reloading will not detect the change. Use the administrative console
to restart the application. Or use the startApplication and stopApplication attributes of the
AdminControl object with the wsadmin tool.

v Change the Table.ddl file for an EJB JAR file.

Rerun the DDL file on the user database server. Changing the Table.ddl file has no effect on the
application server and is a change to the database table schema for the EJB files.

v Change the Map.mapxmi or Schema.dbxmi file for an EJB JAR file.

1. Change the Map.mapxmi or Schema.dbxmi file for an EJB JAR file.

2. Regenerate the deployed code artifacts for the EJB file.

3. Apply the new EJB JAR file to the server.

4. Restart the application. Use the administrative console to restart the application. Or use the
startApplication and stopApplication attributes of the AdminControl object with the wsadmin tool.

v Update the implementation class for an EJB file or a dependent class of the implementation class for an
EJB file.

1. Update the class file in the application_root/module_name.jar file.

2. If automatic reloading is enabled, you do not need to take further action. Automatic reloading will
detect the change.

If automatic reloading is not enabled, restart the application of which the EJB file is a member. If the
updated module is used by other modules in other applications, restart those applications as well.
Use the administrative console to restart the application. Or use the startApplication and
stopApplication attributes of the AdminControl object with the wsadmin tool.

v Update the Home/Remote interface class for an EJB file.

1. Update the interface class of the EJB file.

Chapter 8. Deploying and administering enterprise applications 291

2. Regenerate the deployed code artifacts for the EJB file.

3. Apply the new EJB JAR file to the server.

4. If automatic reloading is enabled, you do not need to take further action. Automatic reloading will
detect the change.

If automatic reloading is not enabled, restart the application of which the EJB file is a member. Use
the administrative console to restart the application. Or use the startApplication and
stopApplication attributes of the AdminControl object with the wsadmin tool.

v Add a new EJB file to an existing EJB JAR file.

1. Apply the new or updated JAR file to the application_root location.

2. If automatic reloading is enabled, you do not need to take further action. Automatic reloading will
detect the change.

If automatic reloading is not enabled, restart the application. Use the administrative console to
restart the application. Or use the startApplication and stopApplication attributes of the
AdminControl object with the wsadmin tool.

Changing the HTTP plug-in configuration
You can change the HTTP plug-in configuration without having to stop the server and start it again.

About this task

Restriction:

The hot deployment and dynamic reloading function is not supported
when the product is running on these operating systems. The Java archive (JAR) files within
the associated Java Development Kit (JDK) are memory mapped. If these JAR files are
updated by the hot deployment and dynamic reloading functionality when they are being
used by the Java virtual machine (JVM), the files become inconsistent, which results in an
application server crash. When you make changes to an application on these operating
systems, do not use the hot deployment and dynamic reloading functionality. Instead, restart
the application to reflect the changes.

There are several change that you can make to the HTTP plug-in configuration without stopping the server
and starting it again.

Important: See “Ways to update enterprise application files” on page 275 and determine whether hot
deployment is the appropriate way for you to update your HTTP plug-in configuration. Other
ways are easier and hot deployment is appropriate only for experienced users.

The following table lists the changes that you can make to the HTTP plug-in configuration. The table also
states whether you use hot deployment or dynamic reloading to make the changes.

 Table 40. Available changes to HTTP plug-in configuration files. Available changes using hot deployment or dynamic
reloading.

Change Hot deployment Dynamic reloading

Change the application.xml file to change the context root of a web
application archive (WAR file).

Yes No

Change the web.xml file to add, remove, or modify a servlet mapping. Yes Yes

Change the server.xml file to add, remove, or modify an HTTP
transport or change the virtualhost.xml file to add or remove a virtual
host or to add, remove, or modify a virtual host alias.

Yes Yes

Note: The following steps reference the GenPluginCfg.bat/sh script. You must delete the plugin-cfg.xml
file in the profile_root/config/cells directory before you use the GenPluginCfg.bat/sh script.
Otherwise, configuration changes do not persist to the plugin-cfg.xml file.

292 Administering applications and their environment

Procedure
v Change the application.xml file to change the context root of a WAR file.

1. Change the application.xml file.

2. If the plug-in configuration property Automatically propagate plug-in configuration file is selected
for this plug-in, it is automatically regenerated whenever the application.xml file changes.

See documentation on the web server plug-in properties for information on how to set this property.
You can also run the GenPluginCfg.bat/sh script, or issue a wsadmin command to regenerate the
plug-in configuration file.

v Change the web.xml file to add, remove, or modify a servlet mapping.

1. Change the web.xml file.

2. If the plug-in configuration property Automatically propagate plug-in configuration file is selected
for this plug-in, it is automatically regenerated whenever the web.xml file changes.

See documentation on the web server plug-in properties for information on how to set this property.
You can also run the GenPluginCfg.bat/sh script, or issue a wsadmin command to regenerate the
plug-in configuration file.

If the web application has file serving enabled or has a servlet mapping of /, the plug-in
configuration does not have to be regenerated. In all other cases a regeneration is required.

v Change the server.xml file to add, remove, or modify an HTTP transport or change the
virtualhost.xml file to add or remove a virtual host or to add, remove, or modify a virtual host alias.

1. Change the server.xml file or the virtualhost.xml file.

2. If the plug-in configuration property Automatically propagate plug-in configuration file is selected
for this plug-in, it is automatically regenerated whenever the server.xml file changes.

See documentation on the web server plug-in properties for information on how to set this property.
You can also run the GenPluginCfg.bat/sh script, or issue a wsadmin command to regenerate the
plug-in configuration file.

Resolving application configuration conflicts
In a shared environment with multiple administrative users, it is possible that different administrative users
might attempt concurrent updates of the same WebSphere Application Server configuration documents.
The following information should help you detect and deal with any exceptions that might occur if multiple
administrative users attempt to concurrently update the same configuration documents.

Whenever you log into an administrative client using either the administrative console or wsadmin tool, a
unique workspace session is created to track any configuration changes that are made. For each
workspace session, a temporary workspace directory is associated with each workspace session. This
directory is used to store all of the configuration files that you change during a login session. The files in
this directory are initially extracted from the cell configuration repository, and your changes only exist in the
workspace copies of these files until a save occurs. When a save occurs, the configuration management
runtime makes sure that the configuration files you changed have not already been modified and saved by
another user, and then copies the changed files from your workspace directory back to the master
repository,

As long as different workspace sessions modify different configuration files, there is no save conflict.
However if multiple workspace sessions modify one or more of the same configuration files, a save conflict
occurs, and only the first workspace session changes are reflected in the configuration repository for the
cell. When subsequent users attempt to save the changes to the same configuration files, they receive a
save conflict exception

With regard to application deployment, a special provision is made for supporting the concurrent
deployment of applications. Application deployment initiated by different workspace sessions can modify
the same serverindex.xml file. In this situation, the configuration management runtime employs a merge
algorithm for the serverindex.xml file which supports:

Chapter 8. Deploying and administering enterprise applications 293

v Concurrent deployment of different applications to different application servers or to different application
server clusters.

v Concurrent deployment of different applications to the same application server or to the same
application server cluster.

Typically, concurrent or parallel application deployment scenarios are safely executed without any
additional effort on the part of the system administrator. However, there are application deployment
scenarios that the serverindex.xml merge algorithm does not handle. For example, the serverindex.xml
merge algorithm does not handle situations where file changes are concurrently deployed to the same
application, the same cluster or the same server. The merge algorithm also does not handle configuration
conflicts that arise during other concurrent administration activities that involve more than application
deployment.

Obtaining the requisite object references and constructing the parameter list

There are some simple measures you can take to ensure against configuration conflicts, and to resolve
any conflicts when using the wsadmin tool. The wsadmin commands that are employed for configuration
conflict detection and resolution rely on obtaining a reference to the ConfigService MBean, and then
invoking the getConflictDocuments method provided by that MBean to determine if users have made
conflicting changes to a file during their workspace session. See the Javadoc for the ConfigService MBean
for more information about this Mbean.

The following code example illustrates how to obtain the requisite object references and construct the
parameter list that is required to invoke the getConflictDocuments method that the ConfigService MBean
provides:
// get ConfigService MBean reference

wsadmin>cs = AdminControl.queryNames(’WebSphere:*,type=ConfigService’)

// obtain ObjectName for ConfigService MBean

wsadmin>import javax.management as mgmt

wsadmin>csName=mgmt.ObjectName(cs)

// get session object for the current administrative user session

wsadmin>session=AdminConfig.getCurrentSession()

// manipulate and prepare the administrative session object and

// MBean operation arguments for use

wsadmin>from com.ibm.websphere.management import Session

wsadmin>from jarray import array

wsadmin>parms=array([session], java.lang.Object)

wsadmin>ptype=array([’com.ibm.websphere.management.Session’], java.lang.String)

After the variables and parameter list is initialized, the getConflictDocuments method is invoked. If there
are no conflicts, the method returns the following message:
// invoke MBean getConflictDocuments method to obtain a list of any document conflicts

wsadmin>AdminControl.invoke_jmx(csName,’getConflictDocuments’, parms, ptype)
{}
wsadmin>

If configuration conflicts exist because of changes another user made during a work session, the method
returns a message, similar to the following message, that lists the XML files that have changed:
Listing 3
wsadmin>AdminControl.invoke_jmx(csName,’ getConflictDocuments’, parms, ptype)
{[’cells/cell_name/nodes/node_name/serverindex.xml’,cells/cell_name/applications/
DefaultApplication.ear.ear/deltas/DefaultApplication.ear/delta-1278791909117’,
... <list abbreviated> ...}

 wsadmin>

294 Administering applications and their environment

In this situation, you can issue the AdminConfig.reset() command to discard the changes that you made
since the last AdminConfig.save() command was issued:
wsadmin>AdminConfig.reset()

Even if you call the getConflictDocuments method prior to saving your changes, and see that there are no
conflict documents, there is no guarantee that a save will succeed, even if you immediately issue the
AdminConfig.save() command because some other session might have modified the same configuration
files between when you call the getConflictDocuments method, and when you issue the
AdminConfig.save() command.

When a save to the master repository is unsuccessful, you get a ConfigServiceException exception that is
similar to the following exception:
WASX7015E: Exception running command: "AdminConfig.save()"; exception information:
com.ibm.websphere.management.exception.ConfigServiceException
java.security.PrivilegedActionException:
java.security.PrivilegedActionException:
com.ibm.ws.sm.workspace.WorkSpaceException: RepositoryException

If you receive a save conflict exception:

1. Use the getConflictDocuments method to determine which configuration files were already saved by
another user.

2. Issue the AdminConfig.reset() command to discard your changes.

3. After discarding these changes, you can reapply your changes to the appropriate configuration files,
and issue the AdminConfig.save() command to save these changes.

The subsequent attempt to save your changes is likely to succeed because it is not typical to experience
multiple save conflicts during the same session. However, if this subsequent save attempt is not
successful, repeat the preceding actions, and save your changes again.

Exporting enterprise applications
You can export an enterprise application to a location of your choice.

Before you begin

This topic assumes that you have installed an enterprise application on a server and that you want to
export the application.

About this task

Exporting applications enables you to back up your applications and preserve binding information for the
applications. You might export your applications before updating installed applications or migrating to a
later version of the product.

To export applications, use the Export button on the Enterprise applications page. Using Export produces
an enhanced enterprise archive (EAR) file that contains the application as well as the deployment
configuration. The deployment configuration consists of the deployment.xml and other configuration files
that control the application behavior on a deployment target.

Procedure
1. Click Applications > Application Types > WebSphere enterprise applications in the console

navigation tree to access the Enterprise applications page.

2. Select the check box beside the application and click Export.

3. On the Export application EAR files page, click on the link to download the exported EAR file.

4. Use the browser dialogue to specify a location at which to save the exported EAR file.

Chapter 8. Deploying and administering enterprise applications 295

5. Click Back to return to the Enterprise applications page.

Results

The file containing binding information is exported to the specified node and directory, and has the name
enterprise_application_name.ear.

Using the Export button to export applications does not export any manual changes that were made to
applications in the installedApps directory. To export those changes, you must copy and move the
application files manually.

What to do next

You can edit your exported enhanced EAR file and then reinstall it. By default, installation expands an
EAR file in the profile_root/installedApps/cell_name directory. If you specified the $(CELL) variable for
Directory to install application on the Select installation options panel of the application installation
wizard when you first installed the application, the cell_name directory is the current cell name.

To reinstall the enhanced EAR file, do either of the following:

v Use the Update operation available from the Enterprise applications page to upgrade the existing
application installation.

The Update operation adds the application files to the profile_root/installedApps/cell_name directory,
where cell_name is the current cell name or the name of the cell that you specified for Directory to
install application when you first installed the application on a deployment target. The Directory to
install application setting is on the Select installation options panel of the application installation
wizard. If you specified the $(CELL) variable for Directory to install application when you first installed
the application, the cell_name directory is the current cell name.

v Use the Applications > New application > New Enterprise Application operation to install the
exported EAR file.

If you specified the $(CELL) variable for Directory to install application when you first installed the
application, the cell_name directory is the current cell name. That is, if the file is originally installed on
Cell1 with $(CELL) variable in the destination directory and you reinstall the enhanced EAR file on Cell2,
the cell_name directory is Cell2, the current cell name.

If the $(CELL) variable was not specified for the first installation, using New Enterprise Application to
reinstall an enhanced EAR file installs the application in the cell_name directory of the exported
application. That is, if the application is originally installed on and exported from Cell1 and you reinstall
the enhanced EAR file on Cell2, the cell_name directory is Cell1. The enhanced EAR file expands in
the Cell1 directory even though the current cell name is Cell2. By default, the application destination
directory contains Cell1 in its path because the deployment.xml file in the exported application has
Cell1 in it.

If you exported the application from Cell1 and did not specify the $(CELL) variable when first installing
the application, and you want to install the enhanced EAR file on a different cell, deselect Process
embedded configuration on the Select installation options panel of the application installation wizard to
expand the enhanced EAR file in the current cell name directory, which is not Cell1.

Exporting enterprise application files
You can export individual files of a Java Platform, Enterprise Edition (Java EE) application or module.

Before you begin

This topic assumes that you have installed an application or module on a server and that you want to
export a file in the application or module.

296 Administering applications and their environment

About this task

Exporting a file in a deployed application or module downloads the file to a location of your choice.

To export a file using the administrative console, use Export File.

To export an entire application, use Export. For information on Export, see “Exporting enterprise
applications” on page 295. The exported enterprise archive (EAR) file contains application configuration
data as well as the application.

Procedure
1. Click Applications > Application Types > WebSphere enterprise applications in the administrative

console navigation tree to access the Enterprise applications page.

2. Place a check mark in the check box beside the application and click Export File. A drop-down list of
exportable files is displayed.

3. Select a file from the list and click Export. A dialog in which you select a target location is displayed.

If the browser does not prompt for a location to store the file, click File > Save as and specify a
location to save the file that is shown in the browser.

4. Specify the location to which to download the file.

Results

The file is downloaded to the specified location.

What to do next

Click Back to return to the Enterprise applications page.

Exporting DDL files
You can export data definition language (DDL) files in the enterprise bean (EJB) modules of an
application.

About this task

Exporting DDL (Table.ddl) files in the EJB modules of an application downloads the DDL files to a
location of your choice.

Procedure
1. Click Applications > Application Types > WebSphere enterprise applications in the administrative

console navigation tree to access the Enterprise applications page.

2. Place a check mark in the check box beside the application and click Export DDL. If the application
has no DDL files in any of its EJB modules, then the message No DDL files were found is displayed at
the top of the page. If the application has DDL files in its EJB modules, then a page listing DDL files in
the format application_name.ear/_module.jar_Table.ddl is displayed.

3. Click on a file in the list and specify the location to which to download the file.

Tip: For Firefox browsers, right-click the file name, select Save Link As, and specify the location to
which to download the file.

Mozilla browsers might display the contents of the Table.ddl file instead of saving the file to disk.
To save the file, edit the Helper Application preference settings of the Mozilla browser by adding
a new type for DDL and specifying that you want to save DDL files to disk. That is, set MIME type
= ddl and Extension = ddl.

Chapter 8. Deploying and administering enterprise applications 297

Results

The product downloads the DDL file to the specified location.

Uninstalling enterprise applications using the console
After an application no longer is needed, you can uninstall it.

Before you begin

This topic assumes that you have installed an enterprise application on a server and that you want to
delete the application from the server.

About this task

Uninstalling an application deletes the application from the product configuration repository and deletes the
application binaries from the file system of all nodes where the application modules are installed.

Procedure
1. Click Applications > Application Types > WebSphere enterprise applications in the administrative

console navigation tree to access the Enterprise applications page.

2. If you need to retain a copy of the application, back up the application.

a. Select the application to uninstall.

b. Click Export.

The product exports the application to an enterprise application (.ear) file, preserving the binding
information.

3. Uninstall the application.

a. Select the application to uninstall.

b. Click Uninstall.

c. On the Uninstall application page, click OK.

4. Save changes made to the administrative configuration.

Results

On single-server products, application binaries are deleted after you save the changes.

Removing enterprise files
After a file is no longer needed, you can remove the file from a Java Platform, Enterprise Edition (Java
EE) application or module deployed on a server.

Before you begin

This topic assumes that you have installed an application or module file on a server and that you want to
delete the file.

About this task

Removing a file deletes the file from the product configuration repository and deletes the file from the file
system of all nodes where the file is installed.

You can use the administrative console to remove a file from an application or module.

298 Administering applications and their environment

Procedure
v Remove a file from an application.

1. Go to the Enterprise applications page.

Click Applications > Application Types > WebSphere enterprise applications in the console
navigation tree.

2. Select the application that contains a file you want removed.

3. Click Remove File. The Remove a file page is displayed

4. Select the URI of the file that you want removed from the application.

5. Back up the application.

Under Export before removing file, select the application name and then specify the location to
which you want the file exported.

6. Click OK to remove the file.

v Remove a file from a module.

1. Go to the Manage modules page.

Click Applications > Application Types > WebSphere enterprise applications >
application_name > Manage modules in the console navigation tree.

2. Select the module from which you want to delete a file.

3. Click Remove File. The Remove a file from a module page is displayed.

4. Select the URI of the file that you want removed from the module.

5. Back up the application.

Under Export before removing file, select the application name and then specify the location to
which you want the file exported.

6. Click OK to remove the file.

Results

The file is exported to the designated location and removed from the application or module. The
application or stand-alone Web module that had a file removed is restarted so the changes take effect.

What to do next

Save the changes to your administrative configuration.

On single-server products, application binaries are deleted after you save the changes.

Uninstalling enterprise application files by dragging them from a
monitored directory
After an application file no longer is needed, you can uninstall it by removing its enterprise archive (EAR),
web application archive (WAR), Java archive (JAR), or Session Initiation Protocol (SIP) archive (SAR) from
a monitored directory. An enterprise application file must conform to the Java Platform, Enterprise Edition
(Java EE) specification.

Before you begin

This topic assumes that you previously installed an enterprise application or module on a server by
dragging or copying it to a monitored directory and that you want to delete it from the server. The EAR,
JAR, WAR, or SAR file exists in a monitored subdirectory:

v app_server_root/profiles/profile_name/monitoredDeployableApps

Chapter 8. Deploying and administering enterprise applications 299

For base (stand-alone) application servers on distributed operating systems, the monitored directory is
under the application server profile. The directory path is app_server_root/profiles/
application_server_profile_name/monitoredDeployableApps/servers/server_name.

Restriction: Installing an EAR, JAR, WAR, or SAR file by adding it to a monitored directory is available
only on distributed and z/OS operating systems. It is not supported on IBM i operating
systems.

About this task

For applications previously installed by adding an EAR, JAR, WAR, or SAR file to a monitored
monitoredDeployableApps subdirectory, you can uninstall the application or module from the application
server by dragging or deleting the EAR, JAR, WAR, or SAR file from the monitoredDeployableApps
subdirectory.

The product scans a monitored directory for new applications no more frequently than every five seconds,
by default. The server must be running for the product to notice changes to files in its monitored directory.

After not finding the EAR, JAR, WAR, or SAR file in the monitored directory, the product stops the
application or module and uninstalls the file from the application server. Also, the product removes
application files from the directory for installed applications:

v app_server_root/profiles/profile_name/installedApps/cell_name

Uninstalling an application file deletes it from the product configuration repository and deletes the
application module binaries from the file system of the node where the application modules are installed.

This topic assumes that you use a graphical file browser to drag or delete the EAR, JAR, WAR, or SAR
file from the directory. Alternatively, you can use operating system commands to delete a file from a
monitored directory.

Procedure
1. Ensure that the application server from which you want to remove the enterprise application file is

running.

To see which servers are running, you can use the serverStatus -all command. To start a server,
you can use the startServer server_name command.

For example, for a stand-alone application server node with a profile name of AppSrv02, run the
serverStatus command from a command prompt at the app_server_root/profiles/AppSrv02/bin
directory:
serverStatus -all

If the server is not running, start the server. For example, to start an application server named server1
on AppSrv02, run the startServer command from a command prompt at the app_server_root/
profiles/AppSrv02/bin directory:
startServer server1

The Server server1 open for e-business message indicates that the server is running.

2. Open a file browser and locate the monitored directory.

For example, for server1 in the AppSrv02 profile, locate the app_server_root/profiles/AppSrv02/
monitoredDeployableApps/servers/server1 directory.

3. Remove the EAR, JAR, WAR, or SAR file that you want to uninstall.

For example, drag or delete the DynaCacheEsi.ear file from the app_server_root/profiles/AppSrv02/
monitoredDeployableApps/servers/server1 directory.

300 Administering applications and their environment

Results

The product stops the application or module and uninstalls it from the application server.

For the AppSrv02 example, the product writes messages about the uninstallation to the SystemOut.log file
in the app_server_root/logs/server_name directory. The messages start with the CWLDD message key.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

What to do next

Examine the server to verify that the application or module is no longer installed.

If the uninstallation is not successful, read messages in the SystemOut.log and fix the error condition. Add
the EAR, JAR, WAR, or SAR file back into the monitored monitoredDeployableApps subdirectory, wait for
the product to detect the file, and then remove it from the directory again. If the uninstallation still is not
successful, use the administrative console or a wsadmin script to uninstall the application file.

Deploying and administering applications: Resources for learning
Use the following links to find relevant supplemental information about deploying and administering
applications using the administrative console. The information resides on IBM and non-IBM Internet sites,
whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere
Application Server product, but is useful all or in part for understanding the product. When possible, links
are provided to technical papers and Redbooks that supplement the broad coverage of the release
documentation with in-depth examinations of particular product areas.

View links to additional information about:
v “Programming model and decisions”
v “Programming instructions and examples” on page 302
v “Administration” on page 302

Programming model and decisions
v Designing Enterprise Applications with the JavaTM 2 Platform, Enterprise Edition, Second Edition,

http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/

v Java EE Tutorials, http://java.sun.com/javaee/reference/tutorials/

v Recommended reading list: J2EE and WebSphere Application Server, http://www.ibm.com/
developerworks/websphere/library/techarticles/0305_issw/recommendedreading.html

v Java EE 5: Power and productivity with less complexity – An overview of Java EE 5 features and
developer-productivity enhancements, http://www.ibm.com/developerworks/java/library/j-jee5/
index.html?ca=drs-

v Rational Application Developer V7 Programming Guide, SG24-7501-00, http://www.redbooks.ibm.com/
abstracts/sg247501.html?Open

v IBM WebSphere Developer Technical Journal: The top Java EE best practices, http://www.ibm.com/
developerworks/websphere/techjournal/0701_botzum/0701_botzum.html

Chapter 8. Deploying and administering enterprise applications 301

Programming instructions and examples
v IBM WebSphere: Deployment and Advanced Configuration, Roland Barcia, et al., ISBN 0131468626

(Prentice Hall, 2004)

v WebSphere Application Server, Express V6 Developers Guide and Development Examples,
http://www.redbooks.ibm.com/abstracts/sg246500.html

v IBM WebSphere Developer Technical Journal: Co-hosting multiple versions of J2EE applications,
http://www.ibm.com/developerworks/websphere/techjournal/0405_poddar/0405_poddar.html

v Automated Deployment of Enterprise Application Updates: Part 1 - Basic concepts,
http://websphere.sys-con.com/read/47889.htm

Administration
v IBM WebSphere Developer Technical Journal: System management for WebSphere Application Server

V6 -- Part 1 Overview of system management enhancements, http://www.ibm.com/developerworks/
websphere/techjournal/0501_williamson/0501_williamson.html

v IBM WebSphere Developer Technical Journal: System management for WebSphere Application Server
V6 -- Part 5: Flexible options for updating deployed applications, http://www.ibm.com/developerworks/
websphere/techjournal/0510_apte/0510_apte.html

v WebSphere Application Server V6.1: System Management Configuration Handbook, SG24-7304-00,
http://www.redbooks.ibm.com/abstracts/SG247304.html?Open

302 Administering applications and their environment

Chapter 9. Managing applications through programming

Through Java MBean programming, you can install, update, and delete a Java Platform, Enterprise Edition
(Java EE) application on a WebSphere Application Server deployment target.

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming,
see MBean Java application programming interface (API) documentation.

For information on the restarting of updated applications, refer to Fine-grained recycle behavior in IBM
WebSphere Developer Technical Journal: System management for WebSphere Application Server V6 --
Part 5 Flexible options for updating deployed applications.

Before you can install or change an application on a deployment target, you must first create or update
your application and assemble it using an assembly tool.

About this task

Besides installing, uninstalling, and updating applications through programming, you can additionally
install, uninstall, and update Java EE applications through the administrative console or the wsadmin tool.
All three ways provide identical updating capabilities.

Procedure
1. Perform any or all of the following tasks to manage your Java EE applications through programming.

v Access the application management function.

This topic provides examples to access the application management functionality:

– From WebSphere Application Server code

– From outside WebSphere Application Server

– When WebSphere Application Server is not running

v Install an application.

This topic provides an example for initially installing an application on a deployment target such as a
server .

v Uninstall an application.

This topic provides an example for uninstalling an application that resides on a deployment target.

v Manipulate additional attributes for a deployed application.

This topic provides an example for manipulating attributes that are not exposed through the
AppDeploymentTask object.

v Share sessions for application management.

This topic provides an example for saving application-specific updates for a deployed application to
a session, and then to the configuration repository.

v Update an application.

This topic provides an example for updating the installed application on a server with a new
application. When you completely update an application, the deployed application is uninstalled and
the new enterprise archive (EAR) file is installed.

v Add to, update, or delete part of an application.

This topic provides an example that you can use to add, update, or delete part of an application on
a server .

v Edit an application.

This topic provides an example that you can use to edit an application on a server .

© Copyright IBM Corp. 2011 303

http://www.ibm.com/developerworks/websphere/techjournal/0510_apte/0510_apte.html#sec4

v Add a module.

This topic provides an example for adding a module to an application that resides on a server .

v Update a module.

This topic provides an example for updating a module that resides on a server . When you update a
module, the deployed module is uninstalled and the updated module is installed.

v Delete a module.

This topic provides an example for deleting a module that resides on a server . When you delete a
module, the deployed module is uninstalled.

v Add a file.

This topic provides an example for adding a file to an application that resides on a server .

v Update a file.

This topic provides an example for updating a file on a server . When you update a file, the
deployed file is uninstalled and the updated file is installed.

v Delete a file.

This topic provides an example for deleting a file on a server . When you delete a file, the deployed
file is uninstalled.

2. Save your changes to the master configuration repository.

What to do next

If you have further application updates, you can do the updates through programming, the administrative
console, or the wsadmin tool.

You can use the common deployment framework to add additional logic to application management
operations. See Chapter 10, “Extending application management operations through programming,” on
page 359. The tasks that the extensions provide are available through all the administrative clients, such
as the wsadmin tool, the administrative console, or through programmatic APIs that the AppManagement
MBean provides.

Accessing the application management function
The com.ibm.websphere.management.application.AppManagementProxy class provides uniform access to
application management functionality, regardless of whether the functionality is accessed from the server
process, administrative client process, or a stand-alone Java program in the absence of WebSphere
Application Server. This topic provides code excerpts that demonstrate how to obtain an
AppManagementProxy instance in a variety of cases.

Before you begin

This task assumes a basic familiarity with WebSphere Application Server programming interfaces and
MBean programming. Read about WebSphere Application Server programming interfaces and MBean
programming in the application programming interfaces documentation.

About this task

Perform any of the following tasks to access application management functionality through programming.

Procedure
v To access application management functionality from WebSphere Application Server code, for example,

as a custom service, create the AppManagementProxy class.
AppManagement appMgmt =
 AppManagementProxy.getJMXProxyForServer();

304 Administering applications and their environment

v To access application management functionality from outside WebSphere Application Server through the
AppManagement MBean, create an administrative client to establish a connection to WebSphere
Application Server and then create the AppManagementProxy class.

AdminClient adminClient =

// create AppManagement proxy object
AppManagement appMgmt = AppManagementProxy.getJMXProxyForClient (adminClient);

v To access application management functionality when WebSphere Application Server is not running
(local mode), create the AppManagementProxy class.

AppManagement appMgmt = AppManagementProxy.getLocalProxy ();

– When running in local mode set the com.ibm.ws.management.standalone system property to true. If
you want to modify configuration documents in a non-default location, set the location of the
configuration directory through the was.repository.root system property.

– Although you can use application management functions with or without WebSphere Application
Server running, do not access application management functions concurrently through local mode
and the AppManagement MBean. Otherwise, updates that are made using these modes can collide
and break the integrity of the WebSphere Application Server configuration.

Results

After you successfully create the AppManagementProxy class, you have access to application
management functionality.

What to do next

You can perform various management tasks such as installing, uninstalling, editing, and so on.

Preparing an application for installation using programming
The product application management architecture provides a set of classes that allows application
developers to collect WebSphere Application Server-specific deployment information, hereafter called
binding information, and store it in the application EAR file. Such an EAR file can then be installed into a
WebSphere Application Server configuration, using application management interfaces that are described
in the topic Installing an application through programming. This topic uses a programming example to
explain how an EAR file can be populated with binding information.

Before you begin

This task assumes a basic familiarity with WebSphere Application Server programming interfaces and
MBean programming. Read about WebSphere Application Server programming interfaces and MBean
programming in the application programming interfaces documentation.

About this task

Complete the following tasks to prepare an application for installation through programming.

Procedure
1. Create an AppDeploymentController.

The AppDeploymentController takes an EAR file as an argument and creates a sequence of steps,
represented by AppDeploymentTask objects (hereafter called tasks). The tasks are typically presented
to the deployer to collect binding information, or are manipulated programmatically. The following code
excerpt shows how to create an AppDeploymentController instance:
// create preferences to pass in the locale information
Hashtable prefs = new Hashtable();
prefs.put(AppConstants.APPDEPL_LOCALE, Locale.getDefault());

Chapter 9. Managing applications through programming 305

// create a controller instance for EAR file
// specified by a fully-qualified path in earName
AppDeploymentController flowController =
AppManagementFactory.readArchive (earName, prefs);

2. Obtain AppDeploymentTask instances. After creating AppDeploymentController, you can iterate over
the task objects that it creates. Each task collects a specific kind of binding information for various
modules in the application or for the application itself. A task can have the following attributes, and
corresponding getters/setters, as applicable. See the javadoc for the AppDeploymentTask API for more
information about these attributes.

 Table 41. Task attributes

Name Description Value

appController A controller instance that manages
tasks.

AppDeploymentController

colNames The task column names java.lang.String[]

hasHiddenColumns Specifies whether the task has any
hidden columns.

boolean

HiddenColumns An array of boolean that indicates
that these columns should not be
shown by the tool that displays the
tasks to the end user.

boolean[]

HIGHEST_VERSION Public static final java.lang.String
HIGHEST_VERSION

static java.lang.String

isSufficientlyDone Specifies whether the task has any
required data that is not specified.

boolean

isTaskDisabled Specifies whether the task should be
shown or changed.

boolean

isTaskEmpty Specifies whether the task has any
data in it.

boolean

isValidationEnabled Specifies whether the task should be
validated

boolean

mutables An array of boolean indicating if the
task data in a specific column index
can be changed by the person who is
deploying the application.

boolean[]

name A unique task name java.lang.String

requiredColumns An array of boolean indicating if a
task column must have a non-null
value.

boolean[]

taskData A 2-dimensional array (table) of
strings. The first row of the table
contains the column headings for the
task (e.g. name of the module,
module URI, JNDI name etc). The
rest of the rows represent
application-specific information.

java.lang.String[]

taskValidateErrorMessages The error messages that are
generated when a task is validated

java.lang.String[]

VERSION_HIGHEST public static final int
VERSION_HIGHEST

static int

306 Administering applications and their environment

The following table lists various task names that are typically created by the AppDeploymentController
for a J2EE 1.2, J2EE 1.3, or a Java EE 5 or later application. You might notice more tasks if the
application contains WebSphere Application Server enterprise extensions.

 Table 42. task names that are typically created by the AppDeploymentController for a J2EE 1.2, J2EE 1.3, or a Java
EE 5 or later application

AppDeploymentTask name Description Task column names

MapRolesToUsers Allows you to specify users or groups
for a security role. You must map
each role that is defined in the
application or module to a user or
group from the domain user registry.
Each row of task data represents a
single security role. You can specify
multiple users or groups for a single
role by separating them with a
quotation mark (").

v role- lists the specific capabilities
that are given to a user. Role
privileges give users and groups
permission to run as specified. For
example, you might map the user
Joe to the administrator role, which
enables user Joe to perform all of
the tasks associated with the
administrator role. The
authorization policy is only
enforced when global security is
enabled.

v everyone - specifies whether to
map everyone to a specified role.

v allAuthenticatedUsers - specifies
whether to map all authenticated
users regardless of the realm to a
specified role

v mappedUsers - lists the users that
are mapped to the specified role
within this application.

v

v mappedGroups - lists the groups
that are mapped to this specified
role within this application.

v allAuthenticatedUsersInRealms -
specifies whether to map all users
in the trusted realms to a specified
role.

v userAccessIds - specifies the user
information that is used for Java
Platform, Enterprise Edition
authorization when using the
WebSphere Application Server
default authorization engine. The
format for the user accessIds is
user:realm/uniqueUserID.

v groupAccessIds - specifies the
group information. The format for
the group accessIds is
group:realm/uniqueGroupID.

Chapter 9. Managing applications through programming 307

Table 42. task names that are typically created by the AppDeploymentController for a J2EE 1.2, J2EE 1.3, or a Java
EE 5 or later application (continued)

AppDeploymentTask name Description Task column names

MapRunAsRolesToUsers Allows you to specify credentials for a
run-as role.. The enterprise beans
that you install contain predefined
RunAs roles. Enterprise beans that
need to run as a particular role for
recognition while interacting with
another enterprise bean use RunAs
roles. Each row of task data
represents a single run-as role.

v role - maps specific capabilities to
a user. The authorization policy is
only enforced when global security
is enabled.

v userName - specifies a user name
for the RunAs role user. This user
already maps to a role specified for
the MapRolesToUsers task. You
can map the user to its appropriate
role by either mapping the user to
that role directly or mapping a
group that contains the user to that
role.

v password - specifies the password
for the RunAs user.

BindJndiForEJBNonMessageBinding Allows you to specify JNDI names for
enterprise java beans (EJBs). This
JNDI name is used to look up EJB
Homes from client programs. A row of
task data specifies a single EJB for
which a JNDI name can be supplied.

v EJBModule - specifies the EJB
module that contains the enterprise
beans that bind to the JNDI name.

v

v EJB - specifies the name of an
enterprise bean that is contained
by the module.

v uri - the Uniform Resource
Identifier (URI) specifies the
location of the module archive
relative to the root of the
application EAR.

v JNDI - specifies the JNDI name
associated with the enterprise bean
in an EJB module.

308 Administering applications and their environment

Table 42. task names that are typically created by the AppDeploymentController for a J2EE 1.2, J2EE 1.3, or a Java
EE 5 or later application (continued)

AppDeploymentTask name Description Task column names

BindJndiForEJBMessageBinding Allows you to specify a listener port
name or JNDI of an activation
specification for message-driven
beans (MDBs). Ensure each MDB in
your application or module is bound
to a listener port name or JNDI of an
activation specification. Each row of
task data represents a single
message-driven bean.

v EJBModule - specifies the
Enterprise JavaBeans module that
contains the enterprise bean.

v

v EJB - specifies the name of an
MDB in the application.

v uri - the Uniform Resource
Identifier (URI) specifies the
location of the module archive
relative to the root of the
application EAR.

v listenerPort - specifies a listener
port namefor the MDB.

v actSpecJNDI - specifies an
activation specification JNDI name
for the MDB. When a MDB is
bound to an activation specification
JNDI name you can also specify
the destination JNDI name and the
authentication alias.

v actSpecDestinationJNDI - specifies
a destination JNDI name for the
activation specification.

v actSpecAuth - specifies a
authentication alias that is used to
access the user name and
password that are set on the
configured J2C activation
specification.

BindJndiForEJBBusiness Allows you to specify JNDI name
bindings for each enterprise bean
with a business interface in an EJB
module. Each enterprise bean with a
business interface in an EJB module
must be bound to a JNDI name. A
row of task data specifies a single
enterprise bean for which a JNDI
name can be supplied.

v EJBModule - specifies the EJB
module that contains the enterprise
beans that bind to the JNDI name.

v

v EJB - specifies the name of an
enterprise bean that binds to the
JNDI name..

v uri - the Uniform Resource
Identifier (URI) specifies the
location of the module archive
relative to the root of the
application EAR.

v businessInterface - specifies the
enterprise bean business interface
in an EJB module.

v JNDI - specifies the JNDI name
associated with the enterprise bean
business interface in an EJB
module.

Chapter 9. Managing applications through programming 309

Table 42. task names that are typically created by the AppDeploymentController for a J2EE 1.2, J2EE 1.3, or a Java
EE 5 or later application (continued)

AppDeploymentTask name Description Task column names

MapEJBRefToEJB Allows you to specify JNDI names of
EJBs that are bound to ejb-refs. Each
row of task data represents a single
ejb-ref defined in a module,

An EJB 3.0 module cannot contain
container-managed or bean-managed
persistence entity beans. Installation
fails when a container-managed or
bean-managed persistence entity
bean is packaged in a EJB 3.0
module of a Java EE application. You
can only package container-managed
or bean-managed persistence in an
EJB 2.1 or earlier module.

If the EJB reference is from an EJB
3.0, Web 2.4, or Web 2.5 module, the
JNDI name is optional. If the Allow
EJB reference targets to resolved
automatically option is enabled, the
JNDI name is optional for all
modules. The runtime provides a
container default or automatically
resolves the EJB reference if a
binding is not provided.

v EJB - specifies the name of an
enterprise bean that is contained
by the module.

v uri - the Uniform Resource
Identifier (URI) specifies the
location of the module archive
relative to the root of the
application EAR.

v referenceBinding - specifies the
name of the EJB reference that is
used in the enterprise bean.

v class - Specifies the name of a
Java class associated with this
enterprise bean.

v JNDI - specifies the JNDI name
associated with the enterprise bean
in an EJB module

310 Administering applications and their environment

Table 42. task names that are typically created by the AppDeploymentController for a J2EE 1.2, J2EE 1.3, or a Java
EE 5 or later application (continued)

AppDeploymentTask name Description Task column names

MapResRefToEJB Allows you to specify JNDI names of
resources defined in WebSphere
Application Server configuration that
are bound to resource-refs. Each row
of task data represents a single
resource-ref defined in amodule.

v AppVersion - specifies the version
of the application.

v ModuleVersion - specifies the
version of the module.

v Module - specifies the name of a
module in the application.

v EJB - specifies the name of an
enterprise bean that contains the
resource reference. (Only applies
for an EJB module)

v uri - the Uniform Resource
Identifier (URI) specifies the
location of the module archive
relative to the root of the
application EAR.

v referenceBinding - specifies the
name of a resource reference that
is contained by the module.

v targetResourceJNDI - specifies the
JNDI name of the resource that is
the mapping target of the resource
reference.

v Login configuration - this column
applies to data sources and
connection factories only, and
refers to the authentication method
for securing the resource.

Java 2 Connectors (J2C) use the
DefaultPrincipalMapping login
configuration to map users to
principals that are defined in the
J2C authentication data entries. If
the login.config.name is set to
DefaultPrincipalMapping, a
property is created with the name
com.ibm.mapping.authDataAlias .
The value of the property is set by
the authentication props. If the
login.config name is not set to
DefaultPrincipalMapping, the
authentication props can specify
multiple properties.

v authentication properties -
specifies properties used by login
configuration. The string format is:

websphere:name= <name1>,value=<value1>,description=<desc1>

You can use the plus sign (+) to
specify multiple properties.

v Resource authorization - specifies
the authorization type for securing
the resource.

v Extended data source properties -
specifies the extended data source
properties for a DB2 database. You
can use these properties to allow
an application to extend the
custom properties for a data
source, or override any non-core
properties that already exist for that

Chapter 9. Managing applications through programming 311

Table 42. task names that are typically created by the AppDeploymentController for a J2EE 1.2, J2EE 1.3, or a Java
EE 5 or later application (continued)

AppDeploymentTask name Description Task column names

MapResEnvRefToRes Allows you to specify the JNDI names
of resources defined in the
WebSphere Application Server
configuration that are bound to
resource-env-refs. Each row of task
data represents a single
resource-env-ref defined in a module.

v Module - specifies the name of a
module in the application.

v EJB - specifies the name of an
enterprise bean that contains the
resource environment reference.
(Only applies for an EJB module).

v uri - the Uniform Resource
Identifier (URI) specifies the
location of the module archive
relative to the root of the
application EAR.

v referenceBinding - specifies the
name of a resource environment
reference. The reference
corresponds to a resource that is
bound as a resource environment
entry into the JNDI name space of
the application server.

v resEnvRef.type - specifies the type
associated with the resource
environment reference.

v JNDI- specifies the JNDI name of
the resource environment entry
that is the mapping target of the
resource environment reference.

MapSharedLibForMod Allows you to associate defined
shared libraries with an application or
Web module. A shared library is an
external Java archive (JAR) file that is
used by one or more applications.
Using shared libraries enables
multiple applications deployed on a
server to use a single library, rather
than use multiple copies of the same
library. After you associate shared
libraries with an application or
module, the application or module
class loader loads classes
represented by the shared libraries
and makes those classes available to
the application or module. Each row
of task data represents a single
application or Web module.

v application - specifies the name of
the application that you are
installing.

v module - specifies the name of the
module associated with the shared
libraries.

v uri - the Uniform Resource
Identifier (URI) specifies the
location of the module archive
relative to the root of the
application EAR.

v sharedLibraries - Specifies the
name of the shared library files
associated with the application or
module

312 Administering applications and their environment

Table 42. task names that are typically created by the AppDeploymentController for a J2EE 1.2, J2EE 1.3, or a Java
EE 5 or later application (continued)

AppDeploymentTask name Description Task column names

SharedLibRelationship Allows you to specify relationship
identifiers and composition unit
names for shared libraries that
modules in your enterprise application
reference. When installing your
enterprise application, the product
creates a composition unit for each
shared library relationship in the
business-level application that you
specified. Each row of task data
represents a single application or
Web module.

v module - specifies the name of the
module associated with the shared
libraries.

v uri - the Uniform Resource
Identifier (URI) specifies the
location of the module archive
relative to the root of the
application EAR.

v relationshipIdentifiers - specifies a
shared library asset or composition
unit identifier for the module shared
library relationship. The string
format is:

assetname=<assetName> or cuname=<cuName>

You can use the plus sign (+) to
specify multiple relationships.

v compositionUnit - specifies the
composition unit name for the
shared library relationship. The
product uses this value to name
the composition unit that it creates
for the shared library relationship in
the business-level application.
Composition unit name is
positionally matched with the name
of the asset or composition unit
identifier specified in the
relationship field.

v matchTarget - specifies whether
the product maps the composition
unit for the shared library
relationship to the same
deployment target as the
business-level application. The
following values are valid for this
column:

– AppConstants.YES_KEY, which
indicates that you want the
product to maps the
composition unit for the shared
library relationship to the same
deployment target as the
business-level application.

– AppConstants.NO_KEY, which
indicates that you do not want
the product to maps the
composition unit for the shared
library relationship to the same
deployment target as the
business-level application.

Chapter 9. Managing applications through programming 313

Table 42. task names that are typically created by the AppDeploymentController for a J2EE 1.2, J2EE 1.3, or a Java
EE 5 or later application (continued)

AppDeploymentTask name Description Task column names

CtxRootForWebMod Allows you to specify the context root
for Web modules during or after
installation of an application onto a
WebSphere Application Server
deployment target. Each row of task
data represents a single Web module.

v webModule - specifies the name of
a Web module in the application
that you are installing or that you
are viewing after installation.

v uri - the Uniform Resource
Identifier (URI) specifies the
location of the module archive
relative to the root of the
application EAR.

v contextRoot - specifies the context
root of the Web application (WAR).
A context root for each Web
module is defined in the application
deployment descriptor during
application assembly. The context
root is combined with the defined
servlet mapping (from the WAR
file) to compose the full URL that
users type to access the servlet.
For example, if the context root is
/gettingstarted and the servlet
mapping is MySession, then the
URL is http://host:port/
gettingstarted/MySession.

314 Administering applications and their environment

Table 42. task names that are typically created by the AppDeploymentController for a J2EE 1.2, J2EE 1.3, or a Java
EE 5 or later application (continued)

AppDeploymentTask name Description Task column names

MapInitParamForServlet Allows you to specify initial parameter
values for servlets in Web modules
during or after installation of an
application onto a WebSphere
Application Server deployment target.
The <param-value> values specified
in <init-param> statements in the
web.xml file of Web modules are
used by default. Each row of task
data represents a single servlet.

v module - specifies the name of a
module in the application that you
are installing or that you are
viewing after installation.

v uri - the Uniform Resource
Identifier (URI) specifies the
location of the module archive
relative to the root of the
application EAR.

v servlet - specifies a unique name
for the servlet within the
application. You must package
servlets in a Web archive (WAR)
file or Web module for deployment
to an application server. Servlets
run on a Java-enabled Web server
and extend the capabilities of a
Web server, similar to the way
applets run on a browser and
extend the capabilities of a
browser.

v name - specifies the name of the
initial parameter passed to the init
method of the Web module servlet
filter. The following example servlet
filter statement in a web.xml file
specifies an initial parameter name
of attribute:

<init-param>
 <param-name>attribute</param-name>
 <param-value>tests.Filter.DoFilter_Filter.SERVLET_MAPPED</param-value>
</init-param>

v value - specifies the value
assigned to an initial parameter
passed to the init method of the
Web module servlet filter. The
following example servlet filter
statement in a web.xml file
specifies an initial parameter value
of
tests.Filter.DoFilter_Filter.SERVLET_MAPPED
for the init parameter attribute:

<init-param>
 <param-name>attribute</param-name>
 <param-value>tests.Filter.DoFilter_Filter.SERVLET_MAPPED</param-value>
</init-param>

v description - specifies information
about the initial parameter.

Chapter 9. Managing applications through programming 315

Table 42. task names that are typically created by the AppDeploymentController for a J2EE 1.2, J2EE 1.3, or a Java
EE 5 or later application (continued)

AppDeploymentTask name Description Task column names

MapEnvEntryForEJBMod Allows you to configure the
environment entries of Enterprise
JavaBeans™ (EJB) modules such as
entity, session, or message driven
beans. Each row of task data
represents a single environment entry
in an EJB module.

v module - specifies the name of an
EJB module.

v uri - the Uniform Resource
Identifier (URI) specifies the
location of the module archive
relative to the root of the
application EAR.

v EJB - specifies the name of an
enterprise bean that is contained
by the module.

v name - specifies the name of the
environment entry that you are
editing or viewing. The environment
entry is the env-entry property in
the EJB module.

v type - specifies a data type for the
environment entry defined by the
env-entry property in the EJB
module.

v description - specifies information
on the environment entry.

v value - specifies an editable value
for the environment entry defined
by the env-entry property in the
EJB module.

MapEnvEntryForWebMod Allows you to configure the
environment entries of Web modules
such as servlets and JavaServer
Pages (JSP) files. Each row of task
data represents a single environment
entry in a Web module.

v module - specifies the name of an
Web module.

v uri - the Uniform Resource
Identifier (URI) specifies the
location of the module archive
relative to the root of the
application EAR.

v name - specifies the name of the
environment entry that you are
editing or viewing. The environment
entry is the env-entry property in
the Web module.

v type - specifies a data type for the
environment entry defined by the
env-entry property in the Web
module.

v description - specifies information
on the environment entry.

v value - specifies an editable value
for the environment entry defined
by the env-entry property in the
Web module.

316 Administering applications and their environment

Table 42. task names that are typically created by the AppDeploymentController for a J2EE 1.2, J2EE 1.3, or a Java
EE 5 or later application (continued)

AppDeploymentTask name Description Task column names

MapMessageDestinationRefToEJB Allows you to specify the JNDI name
of the J2C administered object to bind
the message destination reference to
the message driven beans. Each row
of task data represents a single
message destination reference in a
module.

v module - specifies the name of an
EJB module.

v EJB - specifies the name of
message-driven beans (MDBs) that
is contained by the module.

v uri - the Uniform Resource
Identifier (URI) specifies the
location of the module archive
relative to the root of the
application EAR.

v messageDestinationObject -
specifies the name of the message
destination reference or message
destination link if a destination link
is provided

v JNDI - specifies the target JNDI of
the referenced message
destination bean. If a message
destination link is provided, this
field defaults to the destination
JNDI of the message driven bean
that the message destination link
references.

DataSourceFor10EJBModules Allows you to specify JNDI name of
the default data source used for an
EJB module that contains EJB1.x
beans. Each row of task data
represents a single EJB module.

v EJBModule - specifies the name of
the module that contains the 1.x
enterprise beans.

v uri - the Uniform Resource
Identifier (URI) specifies the
location of the module archive
relative to the root of the
application EAR.

v JNDI - specifies the JNDI name
default data source for the EJB
module.

v userName - specifies the user
name that, along with the
password, comprises the
authentication alias for securing the
data source.

v password- specifies the password
that, along with the user name,
comprises the authentication alias
for securing the data source.

v Login configuration - specifies to
the authentication method for
securing the data source.

v authentication properties - specifies
properties used by login
configuration. The string format is:

websphere:name= <name1>,value=<value1>,description=<desc1>

You can use the plus sign (+) to
specify multiple properties.

Chapter 9. Managing applications through programming 317

Table 42. task names that are typically created by the AppDeploymentController for a J2EE 1.2, J2EE 1.3, or a Java
EE 5 or later application (continued)

AppDeploymentTask name Description Task column names

DataSourceFor20EJBModules Allows you to specify JNDI name of
the default connection factory used
for an EJB module that contains
EJB2.x beans. Each row of task data
represents a single EJB module.

v EJBModule - specifies the name of
the module that contains the 1.x
enterprise beans.

v uri - the Uniform Resource
Identifier (URI) specifies the
location of the module archive
relative to the root of the
application EAR.

v JNDI - specifies the JNDI name
default data source for the EJB
module.

v Resource authorization - specifies
the authorization type for securing
the resource. The valid values are
AppConstants.APPDEPL_CMPBINDING_RESAUTHTYPE_CONTAINER
and
AppConstants.APPDEPL_CMPBINDING_RESAUTHTYPE_PER_CONNECTION_FACTORY.

v Login configuration - specifies to
the authentication method for
securing the data source.

v authentication properties - specifies
properties used by login
configuration. The string format is:

websphere:name= <name1>,value=<value1>,description=<desc1>

You can use the plus sign (+) to
specify multiple properties.

v Extended data source properties -
specifies the extended data source
properties for a DB2 database.

You can use these properties to
allow an application to extend the
custom properties for a data
source, or override any non-core
properties that already exist for that
data source.

318 Administering applications and their environment

Table 42. task names that are typically created by the AppDeploymentController for a J2EE 1.2, J2EE 1.3, or a Java
EE 5 or later application (continued)

AppDeploymentTask name Description Task column names

DataSourceFor10CMPBeans Allows you to specify JNDI name of
the data source to be used for an
EJB1.x bean with container managed
persistence. A row of task data
represents a single EJB.

v EJBModule - specifies the name of
the module that contains the 1.x
enterprise beans.

v EJB - specifies the name of an
enterprise bean that is contained
by the module.

v uri - the Uniform Resource
Identifier (URI) specifies the
location of the module archive
relative to the root of the
application EAR.

v JNDI - specifies the JNDI name
default data source for the EJB
module.

v userName - specifies the user
name that, along with the
password, comprises the
authentication alias for securing the
data source.

v password- specifies the password
that, along with the user name,
comprises the authentication alias
for securing the data source.

v Login configuration - specifies to
the authentication method for
securing the data source.

v authentication properties - specifies
properties used by login
configuration. The string format is:

websphere:name= <name1>,value=<value1>,description=<desc1>

You can use the plus sign (+) to
specify multiple properties.

Chapter 9. Managing applications through programming 319

Table 42. task names that are typically created by the AppDeploymentController for a J2EE 1.2, J2EE 1.3, or a Java
EE 5 or later application (continued)

AppDeploymentTask name Description Task column names

DataSourceFor20CMPBeans Allows you to specify JNDI name of
the connection factory to be used for
an EJB2.x bean with container
managed persistence. A row of task
data represents a single EJB.

v EJBModule - specifies the name of
the module that contains the 1.x
enterprise beans.

v EJB - specifies the name of an
enterprise bean that is contained
by the module.

v uri - the Uniform Resource
Identifier (URI) specifies the
location of the module archive
relative to the root of the
application EAR.

v JNDI - specifies the JNDI name
default data source for the EJB
module.

v Resource authorization - specifies
the authorization type for securing
the resource. The valid values are
AppConstants.APPDEPL_CMPBINDING_RESAUTHTYPE_CONTAINER
and
AppConstants.APPDEPL_CMPBINDING_RESAUTHTYPE_PER_CONNECTION_FACTORY.

v Login configuration - specifies to
the authentication method for
securing the data source.

v authentication properties - specifies
properties used by login
configuration. The string format is:

websphere:name= <name1>,value=<value1>,description=<desc1>

You can use the plus sign (+) to
specify multiple properties.

v Extended data source properties -
specifies the extended data source
properties for a DB2 database.

You can use these properties to
allow an application to extend the
custom properties for a data
source, or override any non-core
properties that already exist for that
data source.

320 Administering applications and their environment

Table 42. task names that are typically created by the AppDeploymentController for a J2EE 1.2, J2EE 1.3, or a Java
EE 5 or later application (continued)

AppDeploymentTask name Description Task column names

MapWebModToVH Allows you to specify virtual hosts for
Web modules. Each row of task data
represents a Web module in the
application for which virtual host
information is to be collected. Web
modules can be installed on the same
virtual host or dispersed among
several virtual hosts. Each row of task
data represents a single Web module.

v webModule - specifies the name of
a Web module in the application
that you are installing or that you
are viewing after installation.

v uri - the Uniform Resource
Identifier (URI) specifies the
location of the module archive
relative to the root of the
application EAR.

v virtualHost - specifies the name of
the virtual host to which the Web
module is currently mapped.

Do not specify the same virtual
host for different Web modules that
have the same context root and
are deployed on targets belonging
to the same node even if the Web
modules are contained in different
applications. Specifying the same
virtual host causes a validation
error.

EnsureMethodProtectionFor10EJB Allows you to specify if all
unprotected methods of an EJB1.x
module should be made inaccessible.
Each task row represents a single
EJB1.x module.

v EJBModule - specifies the name of
the module that contains the
EJB2.x beans.

v uri - the Uniform Resource
Identifier (URI) specifies the
location of the module archive
relative to the root of the
application EAR.

v method.denyAllAccessPermission
- specifies one of the following
access permissions:

– AAppConstants.YES_KEY,
which indicates that you want to
protect this EJB module by
making it inaccessible to users
regardless of their access
permissions.

– AppConstants.NO_KEY, which
indicates that you want to make
this EJB module accessible to
users that have the appropriate
access permissions.

Chapter 9. Managing applications through programming 321

Table 42. task names that are typically created by the AppDeploymentController for a J2EE 1.2, J2EE 1.3, or a Java
EE 5 or later application (continued)

AppDeploymentTask name Description Task column names

EnsureMethodProtectionFor20EJB Allows you to specify protection level
for unprotected methods of EJB2.x
beans in EJB modules. Each row of
task data specifies method protection
per EJB module.

v EJBModule - specifies the name of
the module that contains the
EJB2.x beans.

v uri - the Uniform Resource
Identifier (URI) specifies the
location of the module archive
relative to the root of the
application EAR.

v method.protectionType - specifies
one of the following protection
methods:

–
 AppConstants.APPDEPL_METHOD_PROTECTION_UNCHECK,
which indicates that you do not
want the application server to
verify the access permissions for
the EJB module. Everyone can
access the EJB module.

–
 AppConstants.APPDEPL_METHOD_PROTECTION_EXCLUDE,
which indicates that you want to
protect this EJB module by
making it inaccessible to users
regardless of their access
permissions.

322 Administering applications and their environment

Table 42. task names that are typically created by the AppDeploymentController for a J2EE 1.2, J2EE 1.3, or a Java
EE 5 or later application (continued)

AppDeploymentTask name Description Task column names

AppDeploymentOptions Allows you to specify various
deployment-specific options. This task
has only 2 rows. The first row
specifies the option name and the
second row has the corresponding
option value. The following values are
the valid values for these options
unless otherwise indicated in the
option description:

v AppConstants.YES_KEY, which
indicates you want to use this
deployment option.

v AppConstants.NO_KEY, which
indicates that you do not want to
use this deployment option.

The options names that can be
specified are:

v preCompileJSPs - indicates
whether the JavaServer Pages files
are recompiled.

v installed.ear.destination - specifies
the directory to which you want the
enterprise archive (EAR) file
installed. The value for this option
is a fully-qualified directory path
such as profile_root/
installedApps/mycell/myapp.ear

v distributeApp - indicates whether
the application management
component distributes application
binaries.

v useMetaDataFromBinary -
indicates whether the metadata
that is used at run time, such as
deployment descriptors, bindings,
and extensions, come from the
EAR file.

v deployejb - specifies whether to
run the EJBDeploy tool during
installation.

v appname - specifies the name of
the application you are deploying
with these options.

v createMBeansForResources -
indicates whether MBeans are
created for all resources, such as
servlets, JavaServer Pages (JSP)
files, and enterprise beans, that are
defined in an application when the
application starts on a deployment
target.

v reloadEnabled - indicates whether
the file system of the application is
scanned for updated files so that
changes reload dynamically.

v reloadInterval - specifies, in
seconds, the length of time that the
file system of the application will be
scanned for updated files. The
value specified for this option is an
integer greater than zero.

v eployws - specifies whether to run
the wsdeploy tool during
deployment.

v validateinput - Specifies whether
the product examines the
application references specified
during application installation or
updating and, if validation is
enabled, warns you of incorrect
references or fails the operation.
Valid values are
AppConstants.APPDEPL_VALIDATE_INSTALL_OFF,
AppConstants.APPDEPL_VALIDATE_INSTALL_WARM,

d

Chapter 9. Managing applications through programming 323

Table 42. task names that are typically created by the AppDeploymentController for a J2EE 1.2, J2EE 1.3, or a Java
EE 5 or later application (continued)

AppDeploymentTask name Description Task column names

JSPReloadForWebMod Allows you to configure the class
reloading of Web modules such as
JavaServer Pages (JSP) files and to
select a JSF implementation to use
with this application. Each row of task
data represents a single Web module.

v webModule - specifies the name of
a Web module in the application
that you are installing or that you
are viewing after installation.

v uri - the Uniform Resource
Identifier (URI) specifies the
location of the module archive
relative to the root of the
application EAR.

v enableJSPClassReloading -
specifies whether to enable class
reloading when JSP files are
updated.

v JSPReloadInterval - specifies, in
seconds, how frequently the
product scans the file system for
the application to check for
updated JSP files.

324 Administering applications and their environment

Table 42. task names that are typically created by the AppDeploymentController for a J2EE 1.2, J2EE 1.3, or a Java
EE 5 or later application (continued)

AppDeploymentTask name Description Task column names

EJBDeployOptions Allows you to specify options for the
enterprise bean (EJB) deployment
tool. The tool generates code needed
to run enterprise bean files. You can
specify extra class paths, Remote
Method Invocation compiler (RMIC)
options, database types, and
database schema names to be used
while running the EJB deployment
tool.

v deployejb.classpath - specifies the
class path of one or more zipped
or Java archive (JAR) files on
which the JAR or EAR file being
installed depends.

v deployejb.rmic - specifies whether
the EJB deployment tool passes
RMIC options to the Remote
Method Invocation compiler. Refer
to RMI Tools documentation for
information on the options. The
following values are valid for this
column:

– AAppConstants.YES_KEY,
which enables the EJB
deployment tool to pass RMIC
options to the Remote Method
Invocation compiler.

– AppConstants.NO_KEY, which
prevents the EJB deployment
tool from passing RMIC options
to the Remote Method
Invocation compiler.

v deployejb.dbtype - specifies the
name of the database vendor,
which is used to determine
database column types, mapping
information, Table.sql, and other
information. If you specify a
database type, previously defined
backend IDs for all of the EJB
modules are overwritten by the
chosen database type. To enable
backend IDs for individual EJB
modules, do no specify a value for
this column.

v deployejb.dbschema - specifies the
name of the schema that you want
to create. he EJB deployment tool
saves database information in the
schema document in the JAR or
EAR file, which means that the
options do not need to be specified
again. It also means that when a
JAR or EAR is generated, the
correct database must be defined
at that point because it cannot be
changed later. If the name of the
schema contains any spaces, the
entire name must be enclosed in
double quotes. For example:

"my schema"

v deployejb.dbaccesstype - specifies
the database access type for a
DB2 database that supports
Structured Query Language for
Java (SQLJ). Use SQLJ to develop
data access applications that
connect to DB2 databases. SQLJ
is a set of programming extensions

Chapter 9. Managing applications through programming 325

Table 42. task names that are typically created by the AppDeploymentController for a J2EE 1.2, J2EE 1.3, or a Java
EE 5 or later application (continued)

AppDeploymentTask name Description Task column names

JSPCompileOptions Allows you to specify various options
to be used by the JavaServer Pages
(JSP) compiler.

v webModule - specifies the name of
a Web module in the application.

v uri - the Uniform Resource
Identifier (URI) specifies the
location of the module archive
relative to the root of the
application EAR.

v JSPclasspath - specifies a
temporary classpath for the JSP
compiler to use when compiling
JSP files during application
installation. This classpath is not
saved when the application
installation is complete and is not
used when the application is
running. This classpath is used
only to identify resources outside of
the application which are
necessary for JSP compilation and
which will be identified by other
means (such as shared libraries)
after the application is installed.

In network deployment
configurations, this class path is
specific to the deployment
manager machine.

v useFullPackageNames - specifies
whether the JSP engine generates
and loads JSP classes using full
package names. When full
package names are used,
precompiled JSP class files can be
configured as servlets in the
web.xml file, without having to use
the jsp-file attribute. When full
package names are not used, all
JSP classes are generated in the
same package, which has the
benefit of smaller file-system paths.

v JDKSourceLevel - specifies the
source level at which the Java
compiler compiles JSP Java
sources. When specifying the value
for this column, omit the decimal
point in the level number. For
example, specify 15 for JDK level
1.5.

v disableJSPRuntimeCompilation -
specifies whether a JSP file should
never be translated or compiled at
run time, even when a .class file
does not exist. The following
values are valid for this column:

– AAppConstants.YES_KEY,
which indicates that you want to
disable JSP runtime
compilation.

– AppConstants.NO_KEY, which
indicates that you do not want
to disable JSP runtime

326 Administering applications and their environment

Table 42. task names that are typically created by the AppDeploymentController for a J2EE 1.2, J2EE 1.3, or a Java
EE 5 or later application (continued)

AppDeploymentTask name Description Task column names

MapModulesToServers Allows you to specify the target
servers or clusters for modules in an
application. Each row of task data
represents one module in the
application. The server target is
specified as
WebSphere:cell=cellName,node=nodeName,server=serveName,
and the cluster target is specified as
WebSphere:cell=cellName,cluster=clusterName.
Multiple targets can be specified for a
given module by delimiting them with
"+". Each row of task data represents
a single module.

v Module - specifies the name of a
module in the application.

v uri - the Uniform Resource
Identifier (URI) specifies the
location of the module archive
relative to the root of the
application EAR.

v server- specifies the target server
or cluster for this module.

CorrectUseSystemIdentity Allows you to manage the system
identity properties for the Enterprise
JavaBeans™ (EJB) method in your
application.

v role - specifies the RunAs role that
is used for this EJB method.

v userName - specifies a user name
for the RunAs role user. The user
name is used in conjunction with
the RunAs role that you select for
the role.

v password - specifies the password
that is associated with the user
name in the user registry.

CorrectOracleIsolationLevel Allows you to specify the isolation
level for the Oracle type provider for
resource references that map to
resources that are using an Oracle
database that is doing backend
processing. Each row represents one
resource reference that maps to an
Oracle database resource.

v Module - specifies the name of a
module in the application.

v resourceRef - specifies the name
of a resource reference

v JNDI - the JNDI name of the
resource that is the mapping target
of the resource reference.

v isolationLevel - specifies the
isolation level you want to use for
the Oracle type provider. The two
values that can be specified for this
column are:

– rc, which indicates a JDBC
Read Committed isolation level.

– s, which indicates a JDBC
Serializable isolation level.

ActSpecJNDI Allow you to provide JNDI names for
JCA objects of embedded resource
adapter modules.

v Module - specifies the name of a
module in the application.

v uri - the Uniform Resource
Identifier (URI) specifies the
location of the module archive
relative to the root of the
application EAR.

v JCA object - specifies the name of
a JCA object for J2C connection
factory, administered object, or
activation specification.

v JNDI- specifies the JNDI name for
the JCA object.

Chapter 9. Managing applications through programming 327

Table 42. task names that are typically created by the AppDeploymentController for a J2EE 1.2, J2EE 1.3, or a Java
EE 5 or later application (continued)

AppDeploymentTask name Description Task column names

BackendIdSelection Allows you to change the backend ID
for the enterprise bean Java archive
(JAR) modules that have
container-managed persistence
(CMP) beans. An enterprise bean
JAR module can support multiple
backend configurations as specified
using an application assembly tool.
This task is useful if your application
has EJB modules for which
deployment code has been generated
for multiple backend databases using
an assembly tool.

v Module - specifies the name of an
EJB module in the application.

v uri - the Uniform Resource
Identifier (URI) specifies the
location of the module archive
relative to the root of the
application EAR.

v ID - the existing backend ID that
represents a backend database.

v currentID - specifies the new
backend ID representing the
backend database to be used

MetadataCompleteForModules Allows each EJB 3.0 module or Web
2.5 module to write out the complete
deployment descriptor including
deployment information from
annotations. Then the system marks
the deployment descriptor for the
module as complete. Each row of
task data represents a single module.

v module - specifies the name of an
EJB 3.0 or Web 2.5 module.

v uri - the Uniform Resource
Identifier (URI) specifies the
location of the module archive
relative to the root of the
application EAR.

v metadataComplete- specifies
whether to write the complete
module deployment descriptor
including deployment information
from annotation to XML format.
When the metadata complete of a
module is set to true, WebSphere
writes out the complete deployment
descriptor including deployment
information from annotations. The
following values are valid for this
column:

– AppConstants.YES_KEY, which
indicates that EJB 3.0 modules
or Web 2.5 modules can write
out the complete deployment
descriptor including deployment
information from annotations.

– AppConstants.NO_KEY, which
indicates that EJB 3.0 modules
or Web 2.5 modules cannot
write out the complete
deployment descriptor including
deployment information from
annotations.

The URI column in various tasks uniquely identifies a module in the application using the format as its
value, where moduleURI is the module file name defined in the application's deployment descriptor,
and ddURI is the URI of the deployment descriptor within the module (for standard deployment
descriptor) or the URI of the alternate deployment descriptor for the module, as defined in the
application's deployment descriptor. For example, if an application has a Web module in MyWeb.war
and the module uses a standard deployment descriptor, then the value of the URI column in various
tasks for this module is MyWeb.war,WEB-INF/web.xml. Thus the URI column value always guarantees
a unique identification of a module.

328 Administering applications and their environment

The following code excerpt shows how to obtain tasks from AppDeploymentController:
AppDeploymentTask task =flowController.getFirstTask();
while (task != null)
{
// manipulate task data as necessary
task = flowController.getNextTask();
}

3. Manipulate task data

Using task name, task column names, and the J2EE artifact for which binding information is to be
supplied, the task data can be modified if the corresponding column is marked as mutable. The
following sample code shows how binding information can be supplied for a specific task. In this
example, we are specifying users for a security role: consider that the application has a security role
named Role1, and that you need to assign users User1 and User2 to that role:
if (task.getName().equals ("MapRolesToUsers") && !task. isTaskDisabled())
{
// find out column index for role and user column
// refer to the table above to find the column names
int roleColumn = -1;
int userColumn = -1;
String[] colNames = task.getColumnNames();
for (int i=0; i < colNames.length; i++)
{
if (colNames[i].equals ("role"))
roleColumn = i;
else if (colNames[i].equals ("role.user"))
userColumn = i;
}

// iterate over task data starting at row 1 as row0 is
// column names
String[][]data = task.getTaskData();
for (int i=1; i < data.length; i++)
{
if (data[i][roleColumn].equals ("Role1"))
{
data[i][userColumn]="User1|User2";
break;
}
}

// now that the task data is changed, save it back
task.setTaskData (data);
}

Similar logic can be used to specify all other types of binding information, such as JNDI names for
EJBs, virtual host names for Web modules, etc., in various tasks. The task information and the sample
code above do not allow you to collect binding information for application client modules. You need to
use the Client Configuration tool shipped with WebSphere Application Server to configure application
clients.

4. Save the EAR file and obtain install options.

After all the necessary binding information has been supplied in various tasks, the task data should be
saved back into the EAR file so that the populated EAR file can be installed into the WebSphere
Application Server configuration. In addition to the binding information that is stored in the EAR file,
there are several other deployment options that are collected by tasks, such as
AppDeploymentOptions, EJBDeployOptions, and MapModulesToServers. These options are not saved
in the EAR file but should be passed when the application is installed into the WebSphere Application
Server configuration. After the task data is manipulated as necessary and the EAR file is saved, these
options can be obtained from AppDeploymentController as a hash table. Alternately, these options can
be passed directly during application installation, as explained in the Installing applications section
below, and in the javadoc for installApplication API of
com.ibm.websphere.management.application.AppManagement interface.

Chapter 9. Managing applications through programming 329

The following code shows how to save the task data into the EAR file and get generated installation
options:
// the following line of code saves the task data
// in the EAR file specified as earName in step 1
flowController.saveAndClose();

// get the installation options
Hashtable options = flowController.getAppDeploymentSavedResults();

What to do next

Use programming to install the application.

Installing an application through programming
You can install an application through the administrative console, the wsadmin tool, or programming. Use
this example to install an application through programming.

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming,
see MBean Java application programming interface (API) documentation.

Before you can install an application on WebSphere Application Server, you must install the application.

About this task

The AppDeploymentController instance contains meta-data defined in XMLl-based deployment descriptors
as well as annotations defined in Java classes within the input enterprise archive (EAR) file.

Perform the following tasks to install an application through programming.

Procedure
 1. Populate the EAR file with WebSphere Application Server-specific binding information.

a. Create the controller and populate the EAR file with appropriate options.

b. Optionally run the default binding generator.

c. Save and close the EAR file.

d. Retrieve the saved options table that will be passed to the installApplication MBean API.

 2. Connect to WebSphere Application Server.

 3. Create the application management proxy.

 4. If the preparation phase (population of the EAR file) is not performed, the do the following actions:

a. Create an options table to be passed to the installApplication MBean API.

b. Create a table for module to server relations and add the table to the options table.

Refer to the com.ibm.websphere.management.application.AppManagement class in the
application programming interfaces documentation to understand various options that can be
passed to the installApplication MBean API.

 5. Create the notification filter for listening to installation events.

 6. Add the listener.

 7. Install the application.

 8. Wait for some timeout so that the program does not end.

 9. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

330 Administering applications and their environment

10. When the installation is done, remove the listener and quit.

Results

After you successfully run the code, the application is installed.

Example

The following example shows how to install an application based on the previous steps. Some statements
are split on multiple lines for printing purposes.
import java.lang.*;
import java.io.*;
import java.util.*;
import java.lang.reflect.*;
import com.ibm.websphere.management.application.*;
import com.ibm.websphere.management.application.client.*;
import com.ibm.websphere.management.*;

import javax.management.*;

public class Install {

 public static void main (String [] args) {

 try {
 String earFile = "C:/test/test.ear";
 String appName = "MyApp";

// Preparation phase: Begin
// Through the preparation phase you populate the enterprise archive (EAR) file with
// WebSphere Application Server-specific binding information. For example, you can specify
// Java Naming and Directory Interface (JNDI) names for enterprise beans, or virtual hosts
// for web modules, and so on.

// First, create the controller and populate the EAR file with the appropriate options.
 Hashtable prefs = new Hashtable();
 prefs.put(AppConstants.APPDEPL_LOCALE, Locale.getDefault());

// You can optionally run the default binding generator by using the following options.
// Refer to Java documentation for the AppDeploymentController class to see all the
// options that you can set.
 Properties defaultBnd = new Properties();
 prefs.put (AppConstants.APPDEPL_DFLTBNDG, defaultBnd);
 defaultBnd.put (AppConstants.APPDEPL_DFLTBNDG_VHOST, "default_host");

// Create the controller.
 AppDeploymentController controller = AppDeploymentController
 .readArchive(earFile, prefs);
 AppDeploymentTask task = controller.getFirstTask();
 while (task != null)
 {
// Populate the task data.
 String[][] data = task.getTaskData();
// Manipulate task data which is a table of stringtask.
 task.setTaskData(data);
 task = controller.getNextTask();
 }
 controller.saveAndClose();

 Hashtable options = controller.getAppDeploymentSavedResults();
// The previous options table contains the module-to-server relationship if it was set by
// using tasks.
//Preparation phase: End

// Get a connection to WebSphere Application Server.
 String host = "localhost";
 String port = "8880";
 String target = "WebSphere:cell=cellName,node=nodeName,server=server1";

 Properties config = new Properties();
 config.put (AdminClient.CONNECTOR_HOST, host);
 config.put (AdminClient.CONNECTOR_PORT, port);
 config.put (AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);
 System.out.println ("Config: " + config);
 AdminClient _soapClient = AdminClientFactory.createAdminClient(config);

// Create the application management proxy, AppManagement.
 AppManagement proxy = AppManagementProxy. getJMXProxyForClient (_soapClient);

// If code for the preparation phase has been run, then you already have the options table.
// If not, create a new table and add the module-to-server relationship to it by uncommenting
// the next statement.
//Hashtable options = new Hashtable();
 options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

Chapter 9. Managing applications through programming 331

// Uncomment the following statements to add the module to the server relationship table if
// the preparation phase does not collect it.
//Hashtable module2server = new Hashtable();
//module2server.put ("*", target);
//options.put (AppConstants.APPDEPL_MODULE_TO_SERVER, module2server);

//Create the notification filter for listening to installation events.
 NotificationFilterSupport myFilter = new NotificationFilterSupport();
 myFilter.enableType (AppConstants.NotificationType);

//Add the listener.
 NotificationListener listener = new AListener(_soapClient,
myFilter, "Install: " + appName, AppNotification.INSTALL);

// Install the application.
 proxy.installApplication (earFile, appName, options, null);
 System.out.println ("After install App is called..");

// Wait for some timeout. The installation application programming interface (API) is
// asynchronous and so returns immediately.
// If the program does not wait here, the program ends.
 Thread.sleep(300000); // Wait so that the program does not end.

 }
 catch (Exception e) {
 e.printStackTrace();
 }

 }

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.
class AListener implements NotificationListener
{
 AdminClient _soapClient;
 NotificationFilterSupport myFilter;
 Object handback;
 ObjectName on;
 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl,
Object h, String eType) throws Exception
 {
 _soapClient = cl;
 myFilter = fl;
 handback = h;
 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(
"WebSphere:type=AppManagement,*"), null).iterator();
 on = (ObjectName)iter.next();
 System.out.println ("ObjectName: " + on);
 _soapClient.addNotificationListener (on, this, myFilter, handback);
 }

 public void handleNotification (Notification notf, Object handback)
 {
 AppNotification ev = (AppNotification) notf.getUserData();
 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

 //When the installation is done, remove the listener and quit.

 if (ev.taskName.equals (eventTypeToCheck) &&
 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||
 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))
 {
 try
 {
 _soapClient.removeNotificationListener (on, this);
 }
 catch (Throwable th)
 {
 System.out.println ("Error removing listener: " + th);
 }
 System.exit (0);
 }
 }
}

What to do next

Once you install the application, you must explicitly start the application or you must stop and restart the
server. For information on starting an application, see the Starting an application through programming

332 Administering applications and their environment

topic in the Using the administrative clients PDF. For information on stopping or restarting the server, see
the Stopping an application server topic or the Starting an application server topic, respectively, in the
Setting up the application serving environment PDF.

Application management

Java Platform, Enterprise Edition (Java EE) applications and modules include an Extensible Markup
Language (XML)-based deployment descriptor that specifies various Java EE artifacts that pertain to
applications or modules. The Java EE artifacts include Enterprise JavaBeans (EJB) definitions, security
role definitions, EJB references, resource references, and so on. These artifacts define various unresolved
references that the application logic uses. The Java EE specification requires that these artifacts map to
Java EE platform-specific information, such as that found in WebSphere Application Server, during
deployment of Java EE applications.

The application assembly tools that WebSphere Application Server supports, as well as the application
management support that is provided with the product, facilitate collection of certain WebSphere
Application Server information. The collected information is used to resolve references that are defined in
various deployment descriptors in a Java EE application. This information is stored in the application EAR
file in conjunction with the deployment descriptors. The following diagram shows the structure of an
enterprise archive (EAR) file that is populated with deployment information that is specific to WebSphere
Application Server.

The application management architecture provides a set of classes with which deployers can collect
WebSphere Application Serverdeployment information. This information is also referred to as binding
information, and is stored in the application EAR file. The deployer can install the EAR file into
aWebSphere Application Serverconfiguration by using the AppManagement interface.

The application management support in WebSphere Application Server provides functions such as
installing and uninstalling applications, editing binding information for installed applications, updating the
entire application or part of the application, exporting the application, and so on. The
com.ibm.websphere.management.application.AppManagement interface, which is exposed as a Java
Management Extensions (JMX)-based AppManagement MBean in WebSphere Application Server, provides
this functionality. Code that runs on the server or in a stand-alone administrative client program can

Chapter 9. Managing applications through programming 333

access the interface. Access to the application management functions is also possible in the absence of
WebSphere Application Server. This mode, known as local mode, is particularly useful for installing Java
EE applications as part of product installation.

Starting an application through programming
You can start an application through the administrative console, the wsadmin tool, or programming. Use
this example to start an application through programming.

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming,
see MBean Java application programming interface (API) documentation.

Before you can start an application on WebSphere Application Server, you must install your application.

About this task

Perform the following tasks to start an application through programming.

Procedure
1. Connect the administrative client to WebSphere Application Server.

2. Create the application management proxy.

3. Call the startApplication method on the proxy by passing the application name and optionally the list of
targets on which to start the application.

Results

After you successfully run the code, the application is started.

Example

The following example shows how to start an application following the previously listed steps. Some
statements are split on multiple lines for printing purposes.
//Do a get of the administrative client to connect to
//WebSphere Application Server.

AdminClient client = ...;
String appName = "myApp";
Hashtable prefs = new Hashtable();
// Use the AppManagement MBean to start and stop applications on all or some targets.

// The AppManagement MBean is on server1 in the product.
// Query and get the AppManagement MBean.
ObjectName on = new ObjectName ("WebSphere:type=AppManagement,*");
Iterator iter = client.queryNames (on, null).iterator();
ObjectName appmgmtON = (ObjectName)iter.next();

//Start the application on all targets.
AppManagement proxy = AppManagementProxy.getJMXProxyForClient(client);
String started = proxy.startApplication(appName, prefs, null);
System.out.println("Application started on folloing servers: " + started);

//Start the application on some targets.
//String targets = "WebSphere:cell=cellname,node=nodename,
server=servername+WebSphere:cell=cellname,cluster=clusterName";
//String started1 = proxy.startApplication(appName, targets, prefs, null);
//System.out.println("Application started on following servers: " + started1)

334 Administering applications and their environment

Sharing sessions for application management
With the configuration service interface, ConfigService, you can create a session that is a temporary
staging area, where you can save all the configuration modifications. Saving the session saves all the
updates from the session into the WebSphere Application Server configuration repository. The application
management logic supports session sharing with the configuration service. You can perform all the
application management functions in the same session as the one that the configuration service creates.
Saving such a session saves all the updates, including the ones that are application-specific.

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming,
see MBean Java application programming interface (API) documentation.

About this task

Perform the following tasks for your deployed application to share and save application-specific updates
through the configService configuration service.

Procedure
1. Create a configuration service proxy object.

2. Create a session.

3. Pass the session information to the AppManagement MBean.

Every method on the AppMangement interface takes session ID (workspace ID) as the last parameter.
If the session information is passed in this parameter, the application management function uses the
session. If you set the parameter to a null value:

v No session sharing occurs

v The configuration changes are always saved in the configuration repository if the operation
succeeds.

4. Save the session after all the necessary changes are made.

The following example outlines the general steps for session sharing through the configService
configuration service. For a detailed example, see “Manipulating additional attributes for a deployed
application” on page 336.

public void installApplication (String localEarPath,
 String appName, Hashtable properties, String workspaceID)
 throws AdminException;

AdminClient adminClient =;

// Create a configuration service proxy object.
ConfigService configService = new ConfigServiceProxy(adminClient);

// Create a session.
 Session session = new Session();

// Pass the session information to AppManagement MBean.
appMgmt = ...
appMgmt.installApplication
 (earPath, appName, properties, session.toString());
//Save the session after all necessary changes are made.
configService.save(session, false);

Results

After you successfully complete the steps, you have saved application-specific updates for a deployed
application to a session, and then to the configuration repository.

Chapter 9. Managing applications through programming 335

Manipulating additional attributes for a deployed application
You can manipulate attributes for a deployed application through the administrative console, the wsadmin
tool, or by programming. Use this example to manipulate attributes that are not exposed during or after
application installation through the AppDeploymentTask object.

Before you begin

This task assumes a basic familiarity with MBean programming and the ConfigService interfaces. Read
about MBean programming and ConfigService interfaces in the application programming interfaces
documentation.

About this task

Perform the following tasks for your deployed application to manipulate attributes that are not exposed
through the AppDeploymentTask object. The attributes are saved in the deployment.xml file that is created
in the configuration repository for each deployed application.

Procedure
1. Create a session.

2. Connect to WebSphere Application Server.

3. Locate the ApplicationDeployment object.

4. Manipulate the attributes.

5. Save your changes.

6. Clean up the session.

Results

After you successfully run the code, the attributes are updated in the deployment.xml file for the deployed
application.

Example

The following example shows how to manipulate the startingWeight, warClassLoaderPolicy, and
classloader attributes based on the previous steps.
import java.util.Properties;

import javax.management.Attribute;
import javax.management.AttributeList;
import javax.management.ObjectName;

import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.websphere.management.Session;
import com.ibm.websphere.management.configservice.ConfigService;
import com.ibm.websphere.management.configservice.ConfigServiceHelper;
import com.ibm.websphere.management.configservice.ConfigServiceProxy;
import com.ibm.websphere.management.exception.ConfigServiceException;
import com.ibm.websphere.management.exception.ConnectorException;

public class AppManagementSample1 {

 public static void main(String[] args) {
 String hostName = "localhost";
 String port = "8880";
 String appName = "ivtApp";

 ConfigService configService = null;

 // create a session.
 Session session = new Session();

 // establish connection to the server.
 try {
 Properties props = new Properties();
 props.setProperty(AdminClient.CONNECTOR_TYPE,

336 Administering applications and their environment

AdminClient.CONNECTOR_TYPE_SOAP);
 props.setProperty(AdminClient.CONNECTOR_HOST, hostName);
 props.setProperty(AdminClient.CONNECTOR_PORT, port);
 AdminClient adminClient =
 AdminClientFactory.createAdminClient(props);

 // create a config service proxy object.
 configService = new ConfigServiceProxy(adminClient);

 // Locate the application object.
 ObjectName rootID = configService.resolve(session,
 "Deployment="+appName)[0];
 System.out.println ("rootID is: " + rootID);

 // Locate the ApplicationDeployment object from the root.
 ObjectName appDeplPattern = ConfigServiceHelper.createObjectName
 (null, "ApplicationDeployment");
 /*
 ObjectName appDeplID = configService.queryConfigObjects(session,
 rootID, appDeplPattern, null)[0];
 */
 AttributeList list1 = configService.getAttributes(session,
 rootID, new String[]{"deployedObject"}, false);
 ObjectName appDeplID = (ObjectName)
 ConfigServiceHelper.getAttributeValue(list1, "deployedObject");
 System.out.println ("appDeplID: " + appDeplID);

 // Locate the class loader.

 // Change the starting weight through the startingWeight attribute. The starting weight
 // affects the order in which applications start.
 AttributeList attrList = new AttributeList();
 Integer newWeight = new Integer (10);
 attrList.add(new Attribute("startingWeight", newWeight));

 // Change the WAR class loader policy through the warClassLoaderPolicy attribute by
 // specifying SINGLE or MULTIPLE.
 // SINGLE=one classloader for all WAR modules
 attrList.add(new Attribute("warClassLoaderPolicy", "SINGLE"));

 // Set the class loader mode to PARENT_FIRST or PARENT_LAST.
 AttributeList clList = (AttributeList) configService.getAttribute
 (session, appDeplID, "classloader");
 ConfigServiceHelper.setAttributeValue (clList, "mode",
 "PARENT_LAST");
 attrList.add (new Attribute ("classloader", clList));

 // Set the new values.
 configService.setAttributes(session, appDeplID, attrList);

 // Save your changes.
 configService.save(session, false);

 } catch (Exception ex) {
 ex.printStackTrace();
 } finally {
 // Clean up the session.
 try {
 configService.discard(session);
 }
 catch (ConfigServiceException csEx)
 {
 csEx.printStackTrace();
 }
 catch (ConnectorException cnEx)
 {
 cnEx.printStackTrace();
 }
 }
 }
}

Editing applications
You can edit deployed applications through the administrative console, the wsadmin tool, or by
programming. Use this example to edit a deployed application through programming.

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming,
see MBean Java application programming interface (API) documentation.

Before you can edit an application on WebSphere Application Server, you must install the application.

Chapter 9. Managing applications through programming 337

About this task

Perform the following tasks to edit your deployed application.

Procedure
1. Connect to WebSphere Application Server.

2. Create the application management proxy.

3. Get information about an installed application.

4. Manipulate task data as necessary.

5. Save changes for the installed application.

Results

After you successfully run the code, the application is edited.

Example

The following example shows how to edit an application, based on the previous steps.
import java.lang.*;
import java.io.*;
import java.util.*;
import java.lang.reflect.*;
import com.ibm.websphere.management.application.*;
import com.ibm.websphere.management.application.client.*;
import com.ibm.websphere.management.*;

import javax.management.*;

public class aa {

 public static void main (String [] args) {

 try {

 // Connect to WebSphere Application Server.
 String host = "localhost";
 String port = "8880";
 String target = "WebSphere:cell=cellName,node=nodeName,server=server1";

 Properties config = new Properties();
 config.put (AdminClient.CONNECTOR_HOST, host);
 config.put (AdminClient.CONNECTOR_PORT, port);
 config.put (AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);
 System.out.println ("Config: " + config);
 AdminClient _soapClient = AdminClientFactory.createAdminClient(config);

 // Create the application management proxy, AppManagement.
 AppManagement proxy = AppManagementProxy. getJMXProxyForClient (_soapClient);

 String appName = "MyApp";
// Get information for an application with name appName:
// Pass Locale information as the preference.
Hashtable prefs = new Hashtable();
 prefs.put(AppConstants.APPDEPL_LOCALE, Locale.getDefault());
Vector allTasks = appMgmt.getApplicationInfo (appName, prefs, null);

// Manipulate task data as necessary.
if (task.getName().equals ("MapRolesToUsers") && !task. isTaskDisabled())
{
 // find out column index for role and user column
 // refer to the previous table to find the column names
 int roleColumn = -1;
 int userColumn = -1;
 String[] colNames = task.getColumnNames();
 for (int i=0; i < colNames.length; i++)
 {
 if (colNames[i].equals ("role"))
 roleColumn = i;
 else if (colNames[i].equals ("role.user"))
 userColumn = i;
 }

 // iterate over task data starting at row 1 as row0 is
 // column names
 String[][]data = task.getTaskData();
 for (int i=1; i < data.length; i++)
 {

338 Administering applications and their environment

if (data[i][roleColumn].equals ("Role1"))
 {
 data[i][userColumn]="User1|User2";
 break;
 }
 }

 // now that the task data is changed, save it back
 task.setTaskData (data);
}

// Save changes back into the installed application:
// Set information for an application with name appName.
// Pass Locale information as the preference.
prefs = new Hashtable();
prefs.put(AppConstants.APPDEPL_LOCALE, Locale.getDefault());
appMgmt.setApplicationInfo (appName, prefs, null, allTasks);

 }
 catch (Exception e) {
 e.printStackTrace();
 }

 }

}

Updating an application through programming
You can update an existing application through the administrative console, the wsadmin tool, or
programming. Use this example to completely update an application through programming.

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming,
see MBean Java application programming interface (API) documentation.

Before you can update an application on WebSphere Application Server, you must install your application.

About this task

Perform the following tasks to completely update an application through programming.

Procedure
1. Connect to WebSphere Application Server.

2. Create the application management proxy.

3. Create the notification filter for listening to events.

4. Add the listener.

5. Prepare the enterprise archive (EAR) file by populating it with binding information.

6. Update the application.

7. Wait for some timeout so that the program does not end.

8. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

9. After you update the application, remove the listener and quit.

Results

After you successfully run the code, the application is updated.

Example

The following example shows how to update an application based on the previous steps. Some statements
are split on multiple lines for printing purposes.

Chapter 9. Managing applications through programming 339

import java.lang.*;
import java.io.*;
import java.util.*;
import java.lang.reflect.*;
import com.ibm.websphere.management.application.*;
import com.ibm.websphere.management.application.client.*;
import com.ibm.websphere.management.*;

import javax.management.*;

public class aa {

 public static void main (String [] args) {

 try {

 // Connect to WebSphere Application Server.
 String host = "localhost";
 String port = "8880";
 String target = "WebSphere:cell=cellName,node=nodeName,server=server1";

 Properties config = new Properties();
 config.put (AdminClient.CONNECTOR_HOST, host);
 config.put (AdminClient.CONNECTOR_PORT, port);
 config.put (AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);
 System.out.println ("Config: " + config);
 AdminClient _soapClient = AdminClientFactory.createAdminClient(config);

 // Create the application management proxy, AppManagement.
 AppManagement proxy = AppManagementProxy.getJMXProxyForClient (_soapClient);

 String appName = "MyApp";

String fileContents = "C:\test\test.ear";

String fileContents = "/test/test.ear";

 // Create the notification filter.
 NotificationFilterSupport myFilter = new NotificationFilterSupport();
 myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);
 //Add the listener.
 NotificationListener listener = new AListener(_soapClient, myFilter,
"Install: " + appName, AppNotification.INSTALL);

// Refer to the installation example to see how you can prepare the enterprise archive (EAR)
// file by populating it with binding information.
// If code for the preparation phase has started, then you already have the options table.
// If not, create a new table and add the module-to-server relationship to it by uncommenting
// the next statement.
//Hashtable options = new Hashtable();
 options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());
 options.put ((AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_CONTENT_APP);

// Uncomment the following statements to add the module to the server relationship table if
// the preparation phase does not collect it
//Hashtable module2server = new Hashtable();
//module2server.put ("*", target);
//options.put (AppConstants.APPDEPL_MODULE_TO_SERVER, module2server);
// Update the application.
 proxy.updateApplication (appName,
 null,
 fileContents,
 AppConstants.APPUPDATE_UPDATE,
 options,
 null);

// Wait for some timeout. The installation application programming interface (API) is
// asynchronous and so returns immediately.
// If the program does not wait here, the program ends.
 Thread.sleep(300000); // Wait so that the program does not end.

 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.
class AListener implements NotificationListener
{
 AdminClient _soapClient;
 NotificationFilterSupport myFilter;
 Object handback;
 ObjectName on;

340 Administering applications and their environment

String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl,
Object h, String eType) throws Exception
 {
 _soapClient = cl;
 myFilter = fl;
 handback = h;
 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(
"WebSphere:type=AppManagement,*"), null).iterator();
 on = (ObjectName)iter.next();
 System.out.println ("ObjectName: " + on);
 _soapClient.addNotificationListener (on, this, myFilter, handback);
 }

 public void handleNotification (Notification notf, Object handback)
 {
 AppNotification ev = (AppNotification) notf.getUserData();
 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

 //When the installation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&
 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||
 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))
 {
 try
 {
 _soapClient.removeNotificationListener (on, this);
 }
 catch (Throwable th)
 {
 System.out.println ("Error removing listener: " + th);
 }
 System.exit (0);
 }
 }
}

Adding to, updating, or deleting part of an application through
programming
You can add to, update, or delete part of an existing application through the administrative console, the
wsadmin tool, or programming. This example changes part of an application through programming. You
can use this example whether you add to, update, or delete part of an existing application. Multiple
changes to an application can be packaged in a single compressed .zip file.

Before you begin

To learn about the structure of the compressed .zip file, see the Updating applications topic in the
Developing and deploying applications PDF. This task assumes a basic familiarity with MBean
programming. For information on MBean programming, see MBean Java application programming
interface (API) documentation.

Before you can add to, update, or delete part of an application on WebSphere Application Server, you
must install the application.

About this task

Perform the following tasks to add to, update, or delete part of an application through programming.

Procedure
1. Connect to WebSphere Application Server.

2. Create the application management proxy.

3. Create the notification filter.

4. Add the listener.

5. Partially change the existing application.

Chapter 9. Managing applications through programming 341

6. Wait for some timeout so that the program does not end.

7. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

Results

After you successfully run the code, you have changed the application.

Example

The following example shows how to add to, update, or delete part of an application based on the
previous steps. Some statements are split on multiple lines for printing purposes.
//Inputs:
//partialApp specifies the location of the partial application.
//appName specifies the name of the application.

String partialApp = "C:\apps\partial.zip";

String partialApp = "/apps/partial.zip";

String appName = "MyApp";

//Do a get of the administrative client to connect to the product.

AdminClient client = ...;

//Create the application management proxy.
AppManagement proxy = AppManagementProxy.getJMXProxyForClient (client);

// Create the notification filter.
NotificationFilterSupport myFilter = new NotificationFilterSupport();
myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);
//Add the listener.
NotificationListener listener = new AListener(_soapClient, myFilter,
"Install: " + appName, AppNotification.UPDATE);
//Partially change the existing application, MyApp.

Hashtable options = new Hashtable();
options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());
options.put (AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_CONTENT_PARTIALAPP);

proxy.updateApplication (appName,
 null,
 partialApp,
 null,
 options,
 null);

// Wait for some timeout. The installation application programming interface (API) is
// asynchronous and so returns immediately.
// If the program does not wait here, the program ends.
 Thread.sleep(300000); // Wait so that the program does not end.
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
}
// Specify the Java Management Extensions (JMX) notification listener for JMX events.
class AListener implements NotificationListener
{
 AdminClient _soapClient;
 NotificationFilterSupport myFilter;
 Object handback;
 ObjectName on;
 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl,
Object h, String eType) throws Exception
 {
 _soapClient = cl;
 myFilter = fl;
 handback = h;
 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(
"WebSphere:type=AppManagement,*"), null).iterator();
 on = (ObjectName)iter.next();

342 Administering applications and their environment

System.out.println ("ObjectName: " + on);
 _soapClient.addNotificationListener (on, this, myFilter, handback);
 }

 public void handleNotification (Notification notf, Object handback)
 {
 AppNotification ev = (AppNotification) notf.getUserData();
 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

 //When the installation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&
 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||
 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))
 {
 try
 {
 _soapClient.removeNotificationListener (on, this);
 }
 catch (Throwable th)
 {
 System.out.println ("Error removing listener: " + th);
 }
 System.exit (0);
 }
 }
}

What to do next

After you update the application, remove the listener and quit.

Preparing a module and adding it to an existing application through
programming
You can add a module to an existing application through the administrative console, the wsadmin tool, or
programming. Use this example to add a module through programming.

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming,
see MBean Java application programming interface (API) documentation.

Before you can add a module to an application on WebSphere Application Server, you must install your
application.

About this task

Perform the following tasks to add a module to an application through programming.

Procedure
 1. Create an application deployment controller instance to populate the module file with binding

information.

 2. Save the binding information in the module.

 3. Get the installation options.

 4. If the preparation phase (population of the EAR file) is not performed, the do the following actions:

a. Create an options table to be passed to the updateApplication MBean API.

b. Create a table for module to server relations and add the table to the options table.

 5. Connect to WebSphere Application Server.

 6. Create the application management proxy.

 7. Create the notification filter.

 8. Add the listener.

 9. Add the module to the application.

Chapter 9. Managing applications through programming 343

10. Specify the target for the new module.

11. Wait for some timeout so that the program does not end.

12. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

Results

After you successfully run the code, the module is added to the application.

Example

The following example shows how to add a module to an application based on the previous steps. Some
statements are split on multiple lines for printing purposes.
//Inputs:
//moduleName specifies the name of the module that you add to the application.
//moduleURI specifies a URI that gives the target location of the module
// archive contents on a file system. The URI provides the location of the new
// module after installation. The URI is relative to the application URL.
//uniquemoduleURI specfies the URI that gives the target location of the
// deployment descriptor file. The URI is relative to the application URL.
//target specifies the cell, node, and server on which the module is installed.

String moduleName = "C:\apps\foo.jar";

String moduleName = "/apps/foo.jar";

String moduleURI = "Increment.jar";
String uniquemoduleURI = "Increment.jar+META-INF/ejb-jar.xml";
String target = "WebSphere:cell=cellname,node=nodename,server=servername";

//Create an application deployment controller instance, AppDeploymentController,
//to populate the Java Archive (JAR) file with binding information.
//The binding information is WebSphere Application Server-specific deployment information.

Hashtable preferences = new Hashtable();
preferences.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());
preferences.put (AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_CONTENT_MODULEFILE);
AppDeploymentController controller = AppManagementFactory.readArchiveForUpdate(
 moduleName,
 moduleURI,
 AppConstants.APPUPDATE_ADD,
 preferences,
 null);

If the module that you add to the application lacks any bindings, add the bindings so that the module
addition works. Collect and add the bindings by using the public APIs provided with the product. Refer to
Java documentation for the com.ibm.websphere.management.application.client.AppDeploymentController
instance to learn more about how to collect and populate tasks with WebSphere Application
Server-specific binding information. The AppDeploymentController instance contains meta-data defined in
XML-based deployment descriptors as well as annotations defined in Java classes within the input module.
//After you collect all the binding information, save it in the module.
controller.saveAndClose();

//Get the installation options.
Hashtable options = controller.getAppDeploymentSavedResults();

//Connect the administrative client, AdminClient, to WebSphere Application Server.
AdminClient client = ...;

//Create the application management proxy.
AppManagement proxy = AppManagementProxy.getJMXProxyForClient (client);

//Update the existing application, MyApp, by adding the module.
String appName = "MyApp";

options.put (AppConstants.APPUPDATE_CONTENTTYPE,
 AppConstants. APPUPDATE_CONTENT_MODULEFILE);

//Create the notification filter.
 NotificationFilterSupport myFilter = new NotificationFilterSupport();
 myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);
 //Add the listener.
 NotificationListener listener = new AListener(_soapClient, myFilter,

344 Administering applications and their environment

"Install: " + appName, AppNotification.UPDATE);

//Specify the target for the new module.
Hashtable mod2svr = new Hashtable();
options.put (AppConstants.APPDEPL_MODULE_TO_SERVER, mod2svr);
mod2svr.put (uniquemoduleURI, target);
proxy.updateApplication (appName,
 moduleURI,
 moduleName,
 AppConstants.APPUPDATE_ADD,
 options,
 null);

// Wait for some timeout. The installation application programming interface (API) is
// asynchronous and so returns immediately.
// If the program does not wait here, the program ends.
 Thread.sleep(300000); // Wait so that the program does not end.
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
}
// Specify the Java Management Extensions (JMX) notification listener for JMX events.
class AListener implements NotificationListener
{
 AdminClient _soapClient;
 NotificationFilterSupport myFilter;
 Object handback;
 ObjectName on;
 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl,
Object h, String eType) throws Exception
 {
 _soapClient = cl;
 myFilter = fl;
 handback = h;
 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(
"WebSphere:type=AppManagement,*"), null).iterator();
 on = (ObjectName)iter.next();
 System.out.println ("ObjectName: " + on);
 _soapClient.addNotificationListener (on, this, myFilter, handback);
 }

 public void handleNotification (Notification notf, Object handback)
 {
 AppNotification ev = (AppNotification) notf.getUserData();
 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

 //When the installation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&
 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||
 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))
 {
 try
 {
 _soapClient.removeNotificationListener (on, this);
 }
 catch (Throwable th)
 {
 System.out.println ("Error removing listener: " + th);
 }
 System.exit (0);
 }
 }
}

What to do next

After you add the module successfully, remove the listener and quit.

Preparing and updating a module through programming
You can update a module for an existing application through the administrative console, the wsadmin tool,
or programming. When you update a module, you replace the existing module with a new version. Use
this example to update a module through programming.

Chapter 9. Managing applications through programming 345

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming,
see MBean Java application programming interface (API) documentation.

Before you can update a module on WebSphere Application Server, you must first install the application.

About this task

Perform the following tasks to update a module through programming.

Procedure
 1. Create an application deployment controller instance to populate the Java archive file with binding

information.

 2. Save the binding information in the module.

 3. Get the installation options.

 4. If the preparation phase (population of the EAR file) is not performed, the do the following actions:

a. Create an options table to be passed to the updateApplication MBean API.

b. Create a table for module to server relations and add the table to the options table.

 5. Connect to WebSphere Application Server.

 6. Create the application management proxy.

 7. Create the notification filter.

 8. Add the listener.

 9. Replace the module in the application.

10. Specify the target for the new module.

11. Wait for some timeout so that the program does not end.

12. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

13. When the module addition is done, remove the listener and quit.

Results

After you successfully run the code, the existing module is replaced with the new one.

Example

The following example shows how to add a module to an application based on the previous steps. Some
statements are split on multiple lines for printing purposes.
//Inputs:
//moduleName specifies the name of the module that you add to the application.
//moduleURI specifies a URI that gives the target location of the module
// archive contents on a file system. The URI provides the location of the new
// module after installation. The URI is relative to the application URL.
//uniquemoduleURI specfies the URI that gives the target location of the
// deployment descriptor file. The URI is relative to the application URL.
//target specifies the cell, node, and server on which the module is installed.
//appName specifies the name of the application to update.

String moduleName = "C:\apps\foo.jar";

String moduleName = "/apps/foo.jar";

String moduleURI = "Increment.jar";
String uniquemoduleURI = "Increment.jar+META-INF/ejb-jar.xml";
String target = "WebSphere:cell=cellname,node=nodename,server=servername";
String appName = "MyApp";

346 Administering applications and their environment

//Get the administrative client to connect to
//WebSphere Application Server.
AdminClient client = ...;
AppManagement proxy = AppManagementProxy.getJMXProxyForClient (client);

Vector tasks = proxy.getApplicationInfo (appName, new Hashtable(), null);

//Create an application deployment controller instance, AppDeploymentController,
//to populate the Java archive (JAR) file with binding information.
//The binding information is WebSphere Application Server-specific deployment information.

Hashtable preferences = new Hashtable();
preferences.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());
preferences.put (AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_CONTENT_MODULEFILE);
// When a module is update, there are three possible merge actions:
// AppConstants.APPREDEPL_DEFAULT_MERGE (the default merge action),
// This option specifies during the update action, the binding information from
// the new version of the EAR file or module is preferred
// over the corresponding binding information from the old version. If any element
// of binding is missing in the new version, the corresponding
// element from the old version is used.
// AppConstants.APPREDEPL_IGNORE_OLDBND,
// This option specifies that during the update action, the binding information
// from the new version of the module is preferred over
// the corresponding binding information from the old version. The bindings from
// the old version of the application or module are ignored.
// AppConstants.APPREDEPL_IGNORE_NEWBND
// This option specifies that during the update action, binding information from
// the old version of the module is preferred over
// the corresponding binding information from the new version. If any element of
// the binding does not exist in the old version,
// the element from the new version is used.
//
// To find the matching configuration object to perform the merge action, the values
// of the read only fields of the task for the new module are compared
// with the values of the read only fields of the task from the existing module.
// If all the read only values match, then the appropriate merge action is
// performed.
preferences.put (AppConstants.APPREDEPL_IGNORE_NEWBND, Boolean.TRUE);
AppDeploymentController controller = AppManagementFactory.readArchiveForUpdate(
 moduleName,
 moduleURI,
 AppConstants.APPUPDATE_UPDATE,
 preferences,
 tasks);

If the module that you update for the application lacks any bindings, add the bindings so that the module
update works. Collect and add the bindings by using the public APIs that are provided with the product.
Refer to Java documentation for the AppDeploymentController instance to learn more about how to collect
and populate tasks with WebSphere Application Server-specific binding information. The
AppDeploymentController instance contains meta-data defined in XML-based deployment descriptors as
well as annotations defined in Java classes within the input module.
//After you collect all the binding information, save it in the module.
controller.saveAndClose();

//Create the notification filter.
 NotificationFilterSupport myFilter = new NotificationFilterSupport();
 myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);
 //Add the listener.
 NotificationListener listener = new AListener(_soapClient, myFilter,
"Install: " + appName, AppNotification.UPDATE);

//Get the installation options.
Hashtable options = controller. getAppDeploymentSavedResults();

//Update the existing application by adding the module.

options.put (AppConstants.APPUPDATE_CONTENTTYPE,
 AppConstants. APPUPDATE_CONTENT_MODULEFILE);

//Specify the target for the new module
Hashtable mod2svr = new Hashtable();
options.put (AppConstants.APPDEPL_MODULE_TO_SERVER, mod2svr);
mod2svr.put (uniquemoduleURI, target);

proxy.updateApplication (appName,
 moduleURI,
 moduleName,
 AppConstants.APPUPDATE_UPDATE,
 options,
 null);
// Wait. The installation application programming interface (API) is
// asynchronous and so returns immediately.
// If the program does not wait here, the program ends.
 Thread.sleep(300000); // Wait so that the program does not end.

Chapter 9. Managing applications through programming 347

}
 catch (Exception e) {
 e.printStackTrace();
 }
 }
}
// Specify the Java Management Extensions (JMX) notification listener for JMX events.
class AListener implements NotificationListener
{
 AdminClient _soapClient;
 NotificationFilterSupport myFilter;
 Object handback;
 ObjectName on;
 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl,
Object h, String eType) throws Exception
 {
 _soapClient = cl;
 myFilter = fl;
 handback = h;
 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(
"WebSphere:type=AppManagement,*"), null).iterator();
 on = (ObjectName)iter.next();
 System.out.println ("ObjectName: " + on);
 _soapClient.addNotificationListener (on, this, myFilter, handback);
 }

 public void handleNotification (Notification notf, Object handback)
 {
 AppNotification ev = (AppNotification) notf.getUserData();
 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

 //When the installation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&
 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||
 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))
 {
 try
 {
 _soapClient.removeNotificationListener (on, this);
 }
 catch (Throwable th)
 {
 System.out.println ("Error removing listener: " + th);
 }
 System.exit (0);
 }
 }
}

Adding a file through programming
You can add a file to an existing application through the administrative console, the wsadmin tool, or
programming. This example describes how to add a file through programming.

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming,
see MBean Java application programming interface (API) documentation.

Before you can add a file to an application on WebSphere Application Server, you must install your
application.

About this task

Perform the following tasks to add a file to an application through programming.

Procedure
1. Connect to WebSphere Application Server.

2. Create the application management proxy.

3. Create the notification filter for listening to events.

348 Administering applications and their environment

4. Add the listener.

5. Add the file to the application.

6. Wait for some timeout so that the program does not end.

7. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

8. After you add a file, remove the listener and quit.

Results

After you successfully run the code, the file is added to the application.

Example

The following example shows how to add a file to an application based on the previous steps. Some
statements are split on multiple lines for printing purposes.
import java.lang.*;
import java.io.*;
import java.util.*;
import java.lang.reflect.*;
import com.ibm.websphere.management.application.*;
import com.ibm.websphere.management.application.client.*;
import com.ibm.websphere.management.*;

import javax.management.*;

public class FileAdd {

 public static void main (String [] args) {

 try {

// Get a connection to WebSphere Application Server.
 String host = "localhost";
 String port = "8880";
 String target = "WebSphere:cell=cellName,node=nodeName,server=server1";

 Properties config = new Properties();
 config.put (AdminClient.CONNECTOR_HOST, host);
 config.put (AdminClient.CONNECTOR_PORT, port);
 config.put (AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);
 System.out.println ("Config: " + config);
 AdminClient _soapClient = AdminClientFactory.createAdminClient(config);

 // Create the application management proxy, AppManagement.
 AppManagement proxy = AppManagementProxy.getJMXProxyForClient (_soapClient);

 String appName = "MyApp";
 String fileURI = "test.war/com/acme/abc.jsp";

 String fileContents = "C:\temp\abc.jsp";

 String fileContents = "/temp/abc.jsp";

 //Create the notification filter.
 NotificationFilterSupport myFilter = new NotificationFilterSupport();
 myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);

 //Add the listener.
 NotificationListener listener = new AListener(_soapClient, myFilter,
"Install: " + appName, AppNotification.UPDATE);

 Hashtable options = new Hashtable();
 options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());
 options.put (AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_CONTENT_FILE);

 // Update the application
 proxy.updateApplication (appName,
 fileURI,
 fileContents,
 AppConstants.APPUPDATE_ADD,
 options,
 null);

// Wait; the installation Application Programming Interface (API) is
// asynchronous and so returns immediately.

Chapter 9. Managing applications through programming 349

// If the program does not wait here, the program ends.
 Thread.sleep(90000); // Wait so that the program does not end.

 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.
class AListener implements NotificationListener
{
 AdminClient _soapClient;
 NotificationFilterSupport myFilter;
 Object handback;
 ObjectName on;
 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl,
Object h, String eType) throws Exception
 {
 _soapClient = cl;
 myFilter = fl;
 handback = h;
 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(
"WebSphere:type=AppManagement,*"), null).iterator();
 on = (ObjectName)iter.next();
 System.out.println ("ObjectName: " + on);
 _soapClient.addNotificationListener (on, this, myFilter, handback);
 }

 public void handleNotification (Notification notf, Object handback)
 {
 AppNotification ev = (AppNotification) notf.getUserData();
 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

 //When the installation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&
 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||
 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))
 {
 try
 {
 _soapClient.removeNotificationListener (on, this);
 }
 catch (Throwable th)
 {
 System.out.println ("Error removing listener: " + th);
 }
 System.exit (0);
 }
 }
}

Updating a file through programming
You can update a file for an existing application through the administrative console, the wsadmin tool, or
programming. This example describes how to update a file through programming.

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming,
see MBean Java application programming interface (API) documentation.

Before you can update a file for an application on WebSphere Application Server, you must install the
application.

About this task

Perform the following tasks to update a file through programming.

350 Administering applications and their environment

Procedure
1. Connect to WebSphere Application Server.

2. Create the application management proxy.

3. Create the notification filter for listening to events.

4. Add the listener.

5. Update the file in the application.

6. Wait for some timeout so that the program does not end.

7. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

8. When the installation completes, remove the listener and quit.

Results

After you successfully run the code, the file is updated for the application.

Example

The following example shows how to add a file to an application based on the previous steps. Some
statements are split on multiple lines for printing purposes.
//Inputs:
//fileContents specifies the name of the file that you add to the application.
//appName specifies the name of the application.
//fileURI specifies a URI that gives the target location of the file. The URI
// provides the location of the new module after installation. The URI is
// relative to the application URL.

String fileContents = "C:\apps\test.jsp";

String fileContents = "/apps/test.jsp";

String appName = "MyApp";
String fileURI = "SomeWebMod.war/com/foo/abc.jsp";

//Get the administrative client to connect to
//WebSphere Application Server.
AdminClient client = ...;

//Create the application management proxy.
AppManagement proxy = AppManagementProxy.getJMXProxyForClient (client);

//Create the notification filter.
 NotificationFilterSupport myFilter = new NotificationFilterSupport();
 myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);
 //Add the listener.
 NotificationListener listener = new AListener(_soapClient, myFilter,
"Install: " + appName, AppNotification.UPDATE);

Hashtable options = new Hashtable();
options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());
options.put (AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_CONTENT_FILE);

proxy.updateApplication (appName,
 fileURI,
 fileContents,
 AppConstants.APPUPDATE_UPDATE,
 options,
 null);

// Wait; the installation application programming interface (API) is
// asynchronous and so returns immediately.
// If the program does not wait here, the program ends.
 Thread.sleep(300000); // Wait so that the program does not end.
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
}
// Specify the Java Management Extensions (JMX) notification listener for JMX events.
class AListener implements NotificationListener
{

Chapter 9. Managing applications through programming 351

AdminClient _soapClient;
 NotificationFilterSupport myFilter;
 Object handback;
 ObjectName on;
 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl,
Object h, String eType) throws Exception
 {
 _soapClient = cl;
 myFilter = fl;
 handback = h;
 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(
"WebSphere:type=AppManagement,*"), null).iterator();
 on = (ObjectName)iter.next();
 System.out.println ("ObjectName: " + on);
 _soapClient.addNotificationListener (on, this, myFilter, handback);
 }

 public void handleNotification (Notification notf, Object handback)
 {
 AppNotification ev = (AppNotification) notf.getUserData();
 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

 //When the installation is done, remove the listener and quit.

 if (ev.taskName.equals (eventTypeToCheck) &&
 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||
 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))
 {
 try
 {
 _soapClient.removeNotificationListener (on, this);
 }
 catch (Throwable th)
 {
 System.out.println ("Error removing listener: " + th);
 }
 System.exit (0);
 }
 }
}

Uninstalling an application through programming
You can uninstall an application through the administrative console, the wsadmin tool, or programming.
Use this example to uninstall an application through programming.

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming,
see MBean Java application programming interface (API) documentation.

Before you can uninstall an application on WebSphere Application Server, you must first install it.

About this task

Perform the following tasks to uninstall an application through programming.

Procedure
1. Get a connection to WebSphere Application Server.

2. Get the application management proxy.

3. Create the notification filter for listening to uninstallation events.

4. Add the listener.

5. Uninstall the application.

6. Wait for some timeout so that the program does not end.

7. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

8. When the uninstallation completes, remove the listener and quit.

352 Administering applications and their environment

Results

After you successfully run the code, the application is uninstalled.

Example

The following example shows how to uninstall an application based on the previous steps. Some
statements are split on multiple lines for printing purposes.
import java.lang.*;
import java.io.*;
import java.util.*;
import java.lang.reflect.*;
import com.ibm.websphere.management.application.*;
import com.ibm.websphere.management.application.client.*;
import com.ibm.websphere.management.*;

import javax.management.*;

public class Uninstall {

 public static void main (String [] args) {

 try {

// Get a connection to the server.
 String host = "localhost";
 String port = "8880";
 String target = "WebSphere:cell=cellName,node=nodeName,server=server1";

 Properties config = new Properties();
 config.put (AdminClient.CONNECTOR_HOST, host);
 config.put (AdminClient.CONNECTOR_PORT, port);
 config.put (AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);
 System.out.println ("Config: " + config);
 AdminClient _soapClient = AdminClientFactory.createAdminClient(config);

 // Get the application management proxy.
 AppManagement proxy = AppManagementProxy. getJMXProxyForClient (_soapClient);

 String appName = "MyApp";
 Hashtable options = new Hashtable();
 options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

 //Create the notification filter.
 NotificationFilterSupport myFilter = new NotificationFilterSupport();
 myFilter.enableType (AppConstants.NotificationType);

 //Add the listener.
 NotificationListener listener = new AListener(_soapClient,
myFilter, "Install: " + appName, AppNotification.UNINSTALL);

 // Uninstall the application.
 proxy.uninstallApplication (appName, options, null);
 System.out.println ("After uninstall App is called..");

// Wait for some timeout. The installation application programming interface (API) is
// asynchronous and so returns immediately.
// If the program does not wait here, the program ends.
 Thread.sleep(300000); // Wait so that the program does not end.

 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.
class AListener implements NotificationListener
{
 AdminClient _soapClient;
 NotificationFilterSupport myFilter;
 Object handback;
 ObjectName on;
 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl,
Object h, String eType) throws Exception
 {
 _soapClient = cl;
 myFilter = fl;
 handback = h;
 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(

Chapter 9. Managing applications through programming 353

"WebSphere:type=AppManagement,*"), null).iterator();
 on = (ObjectName)iter.next();
 System.out.println ("ObjectName: " + on);
 _soapClient.addNotificationListener (on, this, myFilter, handback);
 }

 public void handleNotification (Notification notf, Object handback)
 {
 AppNotification ev = (AppNotification) notf.getUserData();
 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

 //When the unistallation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&
 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||
 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))
 {
 try
 {
 _soapClient.removeNotificationListener (on, this);
 }
 catch (Throwable th)
 {
 System.out.println ("Error removing listener: " + th);
 }
 System.exit (0);
 }
 }
}

Deleting a module through programming
You can delete a module from an existing application through the administrative console, the wsadmin
tool, or programming. Use this example to delete a module through programming.

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming,
see MBean Java application programming interface (API) documentation.

Before you can delete a module from an application on WebSphere Application Server, you must install
the application.

About this task

Perform the following tasks to delete a module through programming.

Procedure
1. Connect to WebSphere Application Server.

2. Create the application management proxy.

3. Create the notification filter for listening to events.

4. Add the listener.

5. Delete the module.

6. Wait for some timeout so that the program does not end.

7. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

8. When the module is deleted, remove the listener and quit.

Results

After you successfully run the code, the existing module is deleted from the application.

Example

The following example shows how to delete a module from an application based on the previous steps.
Some statements are split on multiple lines for printing purposes.

354 Administering applications and their environment

//moduleURI specifies a URI that gives the target location of the module.
//appName specifies the name of the application to update.
String moduleURI = "Increment.jar";
String appName = "MyApp";

//Get the administrative client to connect to
//WebSphere Application Server.
AdminClient client = ...;

//Create the application management proxy.

AppManagement proxy = AppManagementProxy.getJMXProxyForClient (client);

//Create the notification filter.
 NotificationFilterSupport myFilter = new NotificationFilterSupport();
 myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);
 //Add the listener.
 NotificationListener listener = new AListener(_soapClient, myFilter,
"Install: " + appName, AppNotification.UPDATE);

//Update the existing application, MyApp, by deleting the module.
Hashtable options = new Hashtable();
options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());
options.put (AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_CONTENT_MODULEFILE);

proxy.updateApplication (appName,
 moduleURI,
 null,
 AppConstants.APPUPDATE_DELETE,
 options,
 null);

// Wait; the installation application programming interface (API) is
// asynchronous and so returns immediately.
// If the program does not wait here, the program ends.
 Thread.sleep(300000); // Wait so that the program does not end.
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
}
// Specify the Java Management Extensions (JMX) notification listener for JMX events.
class AListener implements NotificationListener
{
 AdminClient _soapClient;
 NotificationFilterSupport myFilter;
 Object handback;
 ObjectName on;
 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl,
Object h, String eType) throws Exception
 {
 _soapClient = cl;
 myFilter = fl;
 handback = h;
 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(
"WebSphere:type=AppManagement,*"), null).iterator();
 on = (ObjectName)iter.next();
 System.out.println ("ObjectName: " + on);
 _soapClient.addNotificationListener (on, this, myFilter, handback);
 }

 public void handleNotification (Notification notf, Object handback)
 {
 AppNotification ev = (AppNotification) notf.getUserData();
 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

 //When the installation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&
 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||
 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))
 {
 try
 {
 _soapClient.removeNotificationListener (on, this);
 }
 catch (Throwable th)
 {
 System.out.println ("Error removing listener: " + th);
 }
 System.exit (0);
 }
 }
}

Chapter 9. Managing applications through programming 355

Deleting a file through programming
You can delete a file from an existing application through the administrative console, the wsadmin tool, or
programming. Use this example to delete a file through programming.

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming,
see MBean Java application programming interface (API) documentation.

Before you can delete a file from an application on WebSphere Application Server, you must install the
application.

About this task

Perform the following tasks to delete a file through programming.

Procedure
1. Connect to WebSphere Application Server.

2. Create the application management proxy.

3. Create the notification filter for listening to events.

4. Add the listener.

5. Delete the file from the application.

6. Wait for some timeout so that the program does not end.

7. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

8. When the file is deleted from the application, remove the listener and quit.

Results

After you successfully run the code, the file is deleted from the application.

Example

The following example shows how to delete a file based on the previous steps. Some statements are split
on multiple lines for printing purposes.
//Inputs:
//fileURI specifies a URI that gives the target location of the file. The URI
// provides the location of the new module after installation. The URI is
// relative to the application URL.
//appName specifies the name of the application.

String fileURI = "Increment.jar/com/acme/Foo.class";
String appName = "MyApp";

//Get the administrative client to connect to
//WebSphere Application Server.
AdminClient client = ...;

//Create the application management proxy.
AppManagement proxy = AppManagementProxy. getJMXProxyForClient (client);

//Create the notification filter.
 NotificationFilterSupport myFilter = new NotificationFilterSupport();
 myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);
 //Add the listener.
 NotificationListener listener = new AListener(_soapClient, myFilter,
"Install: " + appName, AppNotification.UPDATE);

//Update the existing application, MyApp, by deleting the file.
Hashtable options = new Hashtable();
options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());
options.put (AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_CONTENT_FILE);

proxy.updateApplication (appName,
 fileURI,

356 Administering applications and their environment

null,
 AppConstants.APPUPDATE_DELETE,
 options,
 null);

// Wait for some timeout. The installation Application Programming Interface (API) is
// asynchronous and so returns immediately.
// If the program does not wait here, the program ends.
 Thread.sleep(300000); // Wait so that the program does not end.
 }
 catch (Exception e) {
 e.printStackTrace();
 }

 }

}
// Specify the Java Management Extensions (JMX) notification listener for JMX events.
class AListener implements NotificationListener
{
 AdminClient _soapClient;
 NotificationFilterSupport myFilter;
 Object handback;
 ObjectName on;
 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl,
Object h, String eType) throws Exception
 {
 _soapClient = cl;
 myFilter = fl;
 handback = h;
 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(
"WebSphere:type=AppManagement,*"), null).iterator();
 on = (ObjectName)iter.next();
 System.out.println ("ObjectName: " + on);
 _soapClient.addNotificationListener (on, this, myFilter, handback);
 }

 public void handleNotification (Notification notf, Object handback)
 {
 AppNotification ev = (AppNotification) notf.getUserData();
 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

 //Once the installation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&
 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||
 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))
 {
 try
 {
 _soapClient.removeNotificationListener (on, this);
 }
 catch (Throwable th)
 {
 System.out.println ("Error removing listener: " + th);
 }
 System.exit (0);
 }
 }
}

Chapter 9. Managing applications through programming 357

358 Administering applications and their environment

Chapter 10. Extending application management operations
through programming

You can use the common deployment framework to add additional logic to application management
operations. The additional logic can do such tasks as code generation, configuration operations, additional
validation, and so on. This topic demonstrates, through programming, how to plug into the common
deployment framework to extend application management operations.

Before you begin

This task assumes a basic familiarity with Java application programming interfaces (APIs). Read about the
Java APIs in the application programming interfaces documentation.

Before you can extend application management operations, you must first install WebSphere Application
Server.

About this task

Use this example to extend application management through programming. The tasks that the extensions
provide are available through all the administrative clients, such as the wsadmin tool, the administrative
console, or through programmatic APIs that the AppManagement MBean provides.

Procedure
1. Define your extension as an Eclipse plug-in and add a plugin.xml file to register your extension

provider with the deployment framework.

a. In the plugin.xml file, provide an extension provider implementation class for the
common-deployment-framework-extensionprovider extension point.

b. Put the plug-in Java archive (JAR) file in the plugins directory of your WebSphere Application
Server installation.

<?xml version="1.0" encoding="UTF-8"?>
<plugin
 id=“com.ibm.myproduct.MyExtensionProvider”
 name=“My Extension"
 version="1.0.0">

 <extension point=“common-deployment-framework-extensionprovider”>
 <action class=“com.acme.MyExtendProviderImpl“/>
 </extension>
</plugin>

2. Provide an extension provider.

An extension provider class provides steps for a given operation on an application Enterprise archive
(EAR) file. Before an operation runs, the deployment framework queries all the registered extension
providers for additional steps. A single list of steps is passed to each provider. Each provider can add
steps to the list. The default provider that the deployment framework provides is called first to populate
the list with default steps. Other extension providers are called next.

Various operations that you can extend through the common deployment framework are defined as
constants in the DeploymentConstants class. These operations are described in the following table.
Some operations are split on multiple lines for printing purposes.

 Table 43. Extensible DeploymentConstants operations. Select an operation to extend..

Operation Description

DeploymentConstants.CDF_OP_INSTALLJ2EE Installs a Java Platform, Enterprise Edition (Java EE)
EAR file

DeploymentConstants.CDF_OP_EDITJ2EE Edits a deployment application configuration

© Copyright IBM Corp. 2011 359

Table 43. Extensible DeploymentConstants operations (continued). Select an operation to extend..

Operation Description

DeploymentConstants.CDF_OP_UPDATEJ2EE Applies a fine-grained update to an application such as
addition, removal, or update of a file or a module; or
partial update of an application

DeploymentConstants.CDF_OP_UNINSTALLJ2EE Uninstalls a Java EE application

DeploymentConstants.
CDF_OP_CREATE_EAR_WRAPPERJ2EE

Wraps the contents input to the application installation
into an EAR file

The AppManagement MBean, which is responsible for deploying and managing Java EE applications
on WebSphere Application Server, runs all the operations except the
CDF_OP_CREATE_EAR_WRAPPERJ2EE operation. Deploy the extensions that extend these
operations in the plugins directory of the stand-alone Application Server .

Either the wsadmin utlity or the administrative console runs the
CDF_OP_CREATE_EAR_WRAPPERJ2EE operation when the input contents that are supplied to the
CDF_OP_INSTALLJ2EE operation are not packaged as an EAR file. Deploy an extension that extends
the CDF_OP_CREATE_EAR_WRAPPERJ2EE operation in the plugins directory of the wsadmin
installation.

The following example provides an extension provider that does the following tasks:

a. Adds two additional steps for the application installation operation

b. Adds one step for wrapping input contents into an EAR file
package com.acme;

import com.ibm.websphere.management.deployment.registry.ExtensionProvider;
import com.ibm.websphere.management.deployment.core.DeploymentConstants;

public class MyExtensionProviderImpl extends ExtensionProvider {
 public void addSteps (String type, String op, String phase,
 List steps)
 {
 if (op.equals (DeploymentConstants.CDF_OP_INSTALLJ2EE))
 {
 // Add a code generation step.
 steps.add (0, new com.acme.CodeGenStep());
 // Add a configuration step.
 steps.add (new com.acme.ConfigStep());
 }
 else if (op.equals (DeploymentConstants.CDF_OP_CREATE_EAR_WRAPPERJ2EE))
 {
 // Add an ear-wrapper step.
 steps.add (new com.acme.EarWrapperStep());
 }
 }
}

3. Provide the deployment step implementation.

An extension provider adds a deployment step. The step contains logic that performs additional
processing in an application management operation. The logic provides the step access to the
deployment context and the deployable object. The deployment context provides information, such as
the name of the operation, the configuration session ID, a temporary location for creating temporary
files, operation parameters, and so on. The deployable object wraps the deployment content input to
the operation. For example, the deployable object wraps the Java EE EAR file for the installation
operation or a file, a module, or a partial application for the update operation.

v The following example illustrates how an extension during installation entirely changes an EAR file
that is input to the installation operation. The example provides a deployment step during the
installation operation that does the following tasks:

a. Runs code generation to generate a new EAR file.

b. Calls the setContentPath method in the DeployableObject class to set the new EAR file path.
The default installation logic, such as steps that the default installation logic adds, uses this new
EAR file for installation in the configuration repository.

360 Administering applications and their environment

package com.acme;

import com.ibm.websphere.management.deployment.core.DeploymentStep;
import com.ibm.websphere.management.deployment.core.DeployableObject;

public class CodeGenStep extends DeploymentStep
{
 public void execute (DeployableObject dObject)
 {
 EARFile earFile = (EARFile)dObject.getHandle();
 String newEARPath = null;
 // Use step specific logic to create another EAR file after code generation.
 ...
 newEARPath = _context.getTempDir() + "new.ear";

 dObject.setContentPath (newEARPath);
 }
}

v The following example provides a deployment step that:

a. Reads the contents of the input EAR file.

b. Manipulates the configuration session accessed through the context instance, _context.
package com.acme;

public class ConfigStep extends DeploymentStep
{
 public void execute (DeployableObject dObject)
 {
 EARFile earFile = (EARFile) dObject.getHandle();

 // Use the following example code to perform the configuration.
 String sessionID = _context.getSessionID();
 com.ibm.websphere.management.Session session = new
 com.ibm.websphere.management.Session (sessionID, true);
 // Use the configuration service to perform the configuration steps.
 ...

 // Read the application configuration.
 Application appDD = earFile.getDeploymentDescriptor();
 ...

 String newEARPath = null;
 }
}

v The following example provides a deployment step to wrap arbitrary content around an EAR file.
Application management logic accepts only the EAR file for deployment. An extension is required if
you want to input anything other than an EAR file to the deployment process.

package com.acme;

import com.ibm.websphere.management.deployment.core.DeploymentStep;
import com.ibm.websphere.management.deployment.core.DeployableObject;

public class EarWrapperStep extends DeploymentStep
{
 public void execute (DeployableObject dObject)
 {
 Archive archive = (Archive) dObject.getHandle();
 String newEARPath = null;
 // provide your logic to wrap the jar with the ear
 ...
 newEARPath = //;
 // Set the new ear path back into DeploymentContext
 this.getContext().getContextData()
 .put(DeploymentContext.RETURN_Object_key, newEARPath);
 }
}

Results

Through programming, you have plugged into the common deployment framework to extend application
management operations.

What to do next

You can extend other application management operations, or do any other administrative operations you
choose.

Chapter 10. Extending application management operations through programming 361

362 Administering applications and their environment

Chapter 11. Deploying and administering business-level
applications

Deploying a business-level application consists of creating the business-level application on a Version 7.0
or later server.

Before you begin

A business-level application is an administration model that provides the entire definition of an application
as it makes sense to the business. It is a WebSphere configuration artifact, similar to a server, that is
stored in the product configuration repository. A business-level application can contain artifacts such as
Java Platform, Enterprise Edition (Java EE) applications or modules, shared libraries, data files, and other
business-level applications. You might use a business-level application to group related artifacts or to add
capability to an existing application. For example, suppose you want to add capability provided in a Java
archive (JAR) to a Java EE application already deployed on a product server. You can add that capability
by creating a new business-level application and adding the JAR file and the deployed Java EE application
to the business-level application. In some cases, you do not even need to change the deployed Java EE
application configuration to add the capability.

Before creating a business-level application, you must develop the artifacts to go in the application and
configure the target server. Before choosing a deployment target for the application, ensure that the target
version is 7.0 or later.

About this task

When creating a business-level application, you can configure the application enough to enable it to run on
the server. Later, you can configure the application and its contents further, start or stop the application,
and otherwise manage its activity.

The topics in this section describe how to deploy and administer a business-level application or its
contents using the administrative console. You can also use programming or wsadmin scripting.

Procedure
v Import assets to a repository.

v View, delete, update, or export assets.

v Create a business-level application.

v Create a Service Component Architecture (SCA) business-level application that has SCA assets, shared
libraries, or business-level applications.

v Start the application.

v Stop the application.

v Update the application and its configuration units.

v Update SCA composite artifacts.

v View the composite definition of an SCA asset composition unit.

v View SCA domain information.

v “Viewing and editing JMS bindings on references and services of SCA composites” on page 438

v Delete the application.

What to do next

After making changes to administrative configurations of your applications in the administrative console,
ensure that you save the changes.

© IBM Corporation 2007 363

Business-level applications
A business-level application is an administration model that provides the entire definition of an application
as it makes sense to the business. A business-level application is a WebSphere configuration artifact,
similar to a server or cluster, that is stored in the product configuration repository.
v Business-level application characteristics
v Comparisons to Java EE applications

Business-level application characteristics

A business-level application has the following characteristics:

v A business-level application is an administration model of the definition of an enterprise-level application
that consists of WebSphere and non-WebSphere artifacts. The business-level application might not
explicitly manage the lifecycle of every artifact. It is a model for defining an application.

v A business-level application does not represent or contain application binary files. It is a configuration
that lists one or more composition units, which represent the application binary files. A business-level
application uses the binary files to run the application business logic. Administration of binary files is
separate from administration of the application definition.

v A business-level application supports recursive composition by reference that facilitates hierarchical
assembly of business-level applications and individual deployed artifacts within or outside a WebSphere
product. The composition at its lowest level consists of configured instances of application binary files
that run in a specific runtime environment such as an application server. Installable packages or
archives, such as Java archives (JAR) or enterprise archive (EAR) files, typically deliver the business
logic that these configured instances represent to corresponding runtime platforms.

The following diagram shows the composition model for business-level applications:

364 Administering applications and their environment

A business-level application does not introduce new programming, runtime, or packaging models:

v You do not need to change your application business logic. The business-level application function does
not introduce new application programming interfaces (APIs).

v You do not need to change your application runtime settings. The product supports all of the runtime
characteristics, such as security, class loading and isolation, required by individual programming models
to which business components are written.

v You do not need to change your application packaging. There is no specific unique packaging model
that provides a business-level application definition.

Typically, you first create an empty business-level application and then add composition units to it. The
business-level application name must be unique within a cell. The business level application itself has
minimal configuration data associated with it, solely the list of composition units, but individual composition
units might save application-specific configuration data.

A business-level application is defined in the product configuration repository under profile_root/config/
cells/cell_name/blas/business_level_application_name/bver/BASE/bla.xml.

Comparisons to Java EE applications

Business-level applications can consist of or aggregate Java Platform, Enterprise Edition (Java EE)
applications and modules with non-Java EE artifacts. The contents of Java EE applications integrate with
business-level application concepts for deployment and management of applications. Existing Java EE
application management APIs continue to work after you add Java EE application or modules to a
business-level application. The business-level application management API accepts Java EE contents and
configurations and delegates to existing Java EE management APIs. Control operations such as starting
and stopping a Java EE composition unit are delegated to ApplicationManager MBean on application
servers that start and stop Java EE applications.

 Table 44. Java EE concepts compared to business-level application concepts. Business-level application concepts
include assets, composition units, and deployable units.

Java EE concept
Business-level application
concept Description

EAR or stand-alone
module for
deployment

Asset Java EE application contents are assets.

Java EE application
created at the end of
application install

Composition unit A Java EE application is in an enterprise archive (EAR)
file. The product saves the EAR file in the product
repository as a composition unit.

Java EE modules
within the EAR file

Deployable units in the asset Each module in the EAR file is a deployable unit that you
can install on independent deployment targets. The EAR
file is still managed as a single asset in its entirety.

Chapter 11. Deploying and administering business-level applications 365

Table 44. Java EE concepts compared to business-level application concepts (continued). Business-level application
concepts include assets, composition units, and deployable units.

Java EE concept
Business-level application
concept Description

Java EE application
installation using the
administrative
console,
programming, or
wsadmin commands

Multiple business-level
application management
commands

During Java EE application
deployment, you can specify the
name of the business-level
application to include the Java
EE application. If the
business-level application name
is not set, the product creates a
default business-level
application with the same name
as the Java EE application
name. The product adds a
composition unit with the same
name as the Java EE
application name under the
business-level application. You
can deploy multiple Java EE
applications under a single
business-level application.

You can make a Java EE application a business-level
application and add it to another business-level application:

1. Install the Java EE application (EAR file) using the
enterprise application installation console wizard,
programming, or wsadmin. Keep the default selection
to create a business-level application that has the
same name as the Java EE application.

2. Create an empty business-level application.

3. Add the EAR file business-level application to the
empty business-level application. The EAR file
business-level application is a composition unit of the
containing business-level application.

Or, you can make a Java EE application an asset and add
it to another business-level application:

1. Import an EAR file as an asset. It has an asset type
aspect of Java EE ear.

2. Create an empty business-level application.

3. Add the Java EE application asset to the business-level
application. The EAR file asset is a composition unit of
the containing business-level application.

4. Collect targets for each deployable unit (Java EE
module).

Uninstall Java EE
application

Multiple business-level
application management
commands

You delete the Java EE application composition unit from
the business-level application:

1. Remove the composition unit for the Java EE
application from the business-level application.

2. If the EAR file is an asset, delete the asset.

Start the Java EE
application.

Start the composition unit. Starting a business-level application starts any Java EE
application in it.

Stop the Java EE
application.

Stop the composition unit. Stopping a business-level application stops any Java EE
application in it.

Assets
An asset represents one or more application binary files that are stored in an asset repository. Typical
assets include application business logic such as Java Platform, Enterprise Edition (Java EE) archives,
library files, and other resource files.

An asset repository stores the binary files for the asset. The product configuration repository provides a
default asset repository.

Assets in the configuration repository are managed by the product management domain. The configuration
repository stores asset binary files in app_server_root/config/cells/cell_name/assets/asset_name/aver/
BASE/bin/.

An asset name must be unique within a cell, the product administrative domain.

366 Administering applications and their environment

The product creates an asset.xml file when an asset is registered with the product configuration. The file
contains information about the asset such as its name, destination location, and dependencies on other
assets.

You must register files as assets before you can add them to one or more business-level applications. At
the time of asset registration, you can import the physical application files into the product configuration
repository or you can specify an external location where the asset resides.

Composition units
A composition unit represents a configured asset in a business-level application. A composition unit
enables the asset contents to interact with other assets in the application. It also enables the product run
time to load and run asset contents.

The product supports three types of composition units:

Asset composition units
Composition units created from assets by configuring each deployable unit of the asset to run on
deployment targets.

Shared library composition units
Composition units created from JAR-based assets by ignoring all the deployable objects from the
asset and treating the asset JAR file as a library of classes.

Business-level application composition units
Composition units created from business-level applications that are added to existing
business-level applications.

 A composition unit contains the following information:

v Configuration information that binds contents of an asset with a specific hosting run time and adds the
configuration necessary for the run time to load and run the asset

v References to external services, components, or other resources that the asset uses

v Customized configurations for service definitions, references and other relevant configuration data

v A list of deployment targets or runtime environments along with the runtime environment-specific
configuration where the composition unit runs.

For example, a composition unit for an enterprise bean (EJB) Java archive (JAR) asset is an EJB module
instance that contains necessary EJB binding information, such as EJB Java Naming and Directory
Interface (JNDI) names and ejb-ref resolutions, along with a list of application servers where the EJB
JAR runs.

The product creates a composition unit from only one asset. However, multiple composition units can
share a single asset. This is particularly useful in scenarios where different configurations use the same
application binary files to provide different runtime behavior.

The following rules apply to a composition unit:

v A composition unit can exist only in a business-level application.

v Because a composition unit contains application-specific configuration and wiring information, multiple
business-level applications cannot share an asset or shared library composition unit.

The following graphic shows the use of composition units in business-level applications. Assume that you
have unprocessed files, such as archives, that you want to use in business-level applications. Before you
can add the files to business-level applications, you must first import the files as assets, which adds the
files to the product repository. Next, you add the assets to business-level applications, which creates
composition units for the assets. Business-level applications can contain asset composition units, shared

Chapter 11. Deploying and administering business-level applications 367

library composition units, or business-level composition units.

Importing assets
You must register application business logic such as Java Platform, Enterprise Edition (Java EE) archives,
libraries, and other resource files with the product configuration as assets before you can add the assets
to one or more business-level applications. Importing an asset registers it with the product configuration.

Before you begin

This topic assumes that you have one or more application binary files that you want to add to a
business-level application. You must register those binary files as assets before you can add them to the
business-level application.

About this task

Before a business-level application that uses an asset can be started on the target run time, the asset
binaries must be extracted to a deployer-defined location on the file system that is local to the target run
time. Importing an asset extracts binaries to a location that is local to the target run time.

The application server run time that reads the asset binaries either at application start time or while
serving an incoming client request determines the extraction format of the asset binaries. The extraction
format might include unzipping of Java archive (JAR) or compressed (zip) files.

This topic describes how to import an asset using the administrative console. Alternatively, you can use
the wsadmin tool or programming.

368 Administering applications and their environment

Procedure
1. Click Applications > New Application > New Asset in the console navigation tree.

2. On the Upload asset page, specify the asset package to import.

a. Specify the full path name of the asset.

b. Click Next.

3. On the Select options for importing an asset page, specify asset settings.

You typically can click Next and use the default values.

a. Optional: For Asset description, specify a brief description of the asset.

b. Optional: For Asset binaries destination URL, specify the target location of the asset.

This setting specifies the location to which the product extracts the asset. After an asset is
imported, the product looks for the asset in this location when a running application uses the asset.

If you do not specify a value, the product installs the asset to the default location,
${profile_root}/installedAssets/asset_name/BASE/.

c. Optional: For Asset type aspects, examine the asset content type and version specified by the
product. You cannot change this setting value.

The type aspect typically denotes the type of application contents, such as a specification to which
the application is written. For example, an enterprise bean (EJB) that supports the EJB Version 2.0
specification has the aspects type=EJB,version=2.0.

If the type aspect is none and if the asset is a JAR file, then the product associates a javarchive
type aspect with the asset by default.

d. For File permissions, specify any file permissions that are set on asset binary files so the target
run time can read or run the asset. Importing the asset extracts its binary files on the disk local to
the target runtime environment.

Try importing the asset using the default value. For detailed information on the File permissions
setting, refer to the Select options for importing an asset page online help.

e. For Current asset relationships, add assets that the asset you are importing needs to run or
remove assets that are not needed.

When the product imports a JAR asset, the product detects asset relationships automatically by
matching the dependencies defined in the JAR manifest with the assets that are already imported
into the administrative domain.

f. For Validate asset, specify whether the product validates the asset.

The setting is deselected by default. This false (no) value is appropriate for most assets. Only
select true (yes) to validate an asset when needed.

The product does not save the value specified for Validate asset. Thus, if you select to validate the
asset (yes) now and later update the asset, when you update the asset you must enable this
setting again for the product to validate the updated files.

g. Click Next.

4. On the Summary page, click Finish.

Results

Several messages are displayed, indicating whether your asset is imported successfully.

An asset can contain multiple deployable objects as defined by the application contents of that asset. A
deployable object is a part of the asset that you can map to a deployment target such as an application
server. If the product imports the asset successfully, then appropriate deployable objects are identified in
the asset and are further used when a composition unit is created from that asset.

If the asset importing is not successful, read the messages and try importing the asset again. Correct the
values noted in the messages.

Chapter 11. Deploying and administering business-level applications 369

What to do next

If the product imports the asset successfully and displays the list of assets on the Assets page, then click
Save.

Add a composition unit to a business-level application using the asset that you imported. An asset included
in a business-level application is represented by a composition unit.

Upload asset settings
Use this page to specify the asset to register with the asset repository. You can add registered assets to a
business-level application.

To view this administrative console page, click Applications > New application > New Asset.

Importing an asset registers the asset with the asset repository.

The product manages the contents of a registered asset as a single entity. The contents of a registered
asset must be accessible to application servers, web servers and other runtime environments that use the
asset.

During asset importing, asset files typically are uploaded from a client workstation running the browser to
the server running the administrative console, where they are registered. In such cases, use the web
browser running the administrative console to select files to upload to the server.

Path to the asset
Specifies the fully qualified path to the asset.

Specify one of the following supported assets:
v A single file, such as an enterprise bean (EJB) file
v An archive of files, such as a Java archive (JAR) or a compressed .zip file
v An archive of archives, such as an enterprise archive (EAR) or shared library file

Use Local file system if the browser and asset files are on the same machine (whether or not the server
is on that machine, too).

Use Remote file system if the asset file resides on any node in the current cell context. Only supported
assets are shown during the browsing. Also use Remote file system to specify an asset file that is
already residing on the machine running the application server. For example, the field value might be
profile_root/installableApps/my_bean.ejb. After the asset file is transferred, the Remote file system
value shows the path of the temporary location on the server.

Asset settings
Use this page to specify options for the registration of an asset with the asset repository. Default values for
the options are used if you do not specify a value. If the asset is an OSGi application, additional
information about bundle download status is displayed.

To view this administrative console page, click Applications > Application Types > Assets >
asset_name. This page is similar to the Select options for importing an asset page on the asset import
and update wizards.

Asset name
Specifies a logical name for the asset. An asset name must be unique within a cell and cannot contain an
unsupported character.

370 Administering applications and their environment

An asset name cannot begin with a period (.), cannot contain leading or trailing spaces, and cannot
contain any of the following characters:

 Table 45. Characters that you cannot use in a name. The product does not support these characters in a name.

Unsupported characters

/ forward slash $ dollar sign ' single quote mark

\ backslash = equal sign " double quote mark

* asterisk % percent sign | vertical bar

, comma + plus sign < left angle bracket

: colon @ at sign > right angle bracket

; semi-colon # hash mark & ampersand (and sign)

? question mark]]> No specific name exists for this character combination

This Asset name field is the same as the Name setting on an Assets page.

 Data type String

Asset description
Specifies a description for the asset.

Asset binaries destination URL
Specifies the directory to which the product imports the asset file.

 Data type String
Units Full path name

Asset type aspects
Specifies the type of asset content. Examples of asset type include Java archive (JAR) files, shared
libraries, enterprise application archive (EAR) files, and enterprise bundle archive (EBA) files.

The asset type suggests the content of the asset. For example an asset packaged as a JAR file might
contain a web module, portlet and web service, and an asset packaged as an EBA file contains an OSGi
application.

This setting is read-only. You cannot edit this setting.

 Data type String
Units File type
Default none

File permissions
Specifies access permissions for asset binaries that the product expands to the asset binaries destination
URL.

You can specify file permissions in the text field. You can also set some of the commonly used file
permissions by selecting them from the list. List selections overwrite file permissions set in the text field.

You can set one or more of the following file permission strings in the list. Selecting multiple options
combines the file permission strings.

Chapter 11. Deploying and administering business-level applications 371

Table 46. File permission string sets for list options. Select a list option or specify a file permission string in the text
field.

Multiple-selection list option File permission string set

Allow all files to be read but not written to .*=755

Allow executables to execute .*\.dll=755#.*\.so=755#.*\.a=755#.*\.sl=755

Allow HTML and image files to be read by
everyone

.*\.htm=755#.*\.html=755#.*\.gif=755#.*\.jpg=755

Instead of using the multiple-selection list to specify file permissions, you can specify a file permission
string in the text field. File permissions use a string that has the following format:
file_name_pattern=permission#file_name_pattern=permission

where file_name_pattern is a regular expression file name filter (for example, .*\\.jsp for all JSP files),
permission provides the file access control lists (ACLs), and # is the separator between multiple entries of
file_name_pattern and permission. If # is a character in a file_name_pattern string, use \# instead.

If multiple file name patterns and file permissions in the string match a uniform resource identifier (URI)
within the asset, then the product uses the most stringent applicable file permission for the file. For
example, if the file permission string is .*\\.jsp=775#a.*\\.jsp=754, then the abc.jsp file has file
permission 754.

Tip: Using regular expressions for file matching pattern compares an entire string URI against the
specified file permission pattern. You must provide more precise matching patterns using regular
expressions as defined by Java programming API. For example, suppose the product processes the
following directory and file URIs during a file permission operation:

 Table 47. Example URIs for file permission operations. Results are shown following this table.

1 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war

2 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/MyJsp.jsp

3 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/META-INF/
MANIFEST.MF

4 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/WEB-INF/classes/
MyClass.class

5 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/mydir/
MyClass2.class

6 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/META-INF

The file pattern matching results are:
v MyWarModule.war does not match any of the URIs
v .*MyWarModule.war.* matches all URIs
v .*MyWarModule.war$ matches only URI 1
v .*\\.jsp=755 matches only URI 2
v .*META-INF.* matches URIs 3 and 6
v .*MyWarModule.war/.*/.*\.class matches URIs 4 and 5

If you specify a directory name pattern for File permissions, then the directory permission is set based on
the value specified. Otherwise, the File permissions value set on the directory is the same as its parent.
For example, suppose you have the following file and directory structure:
/opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/MyJsp.jsp

and you specify the following file pattern string:
.*MyApp.ear$=755#.*\.jsp=644

372 Administering applications and their environment

The file pattern matching results are:
v Directory MyApp.ear is set to 755
v Directory MyWarModule.war is set to 755
v Directory MyWarModule.war is set to 755

Important: Regardless of the operation system, always use a forward slash (/) as a file path separator in
file patterns.

You cannot unset read permission on a file on Windows operating systems. With POSIX style

permission bits, the bit for denoting readable on a file is 4, writable is 2, and executable is 1. Thus,
permission of a file on a Windows operating system is either 5 or 7. Also, in POSIX style there are user,
group and world permissions. You can only set the user permission for a file on Windows operating
systems. The group and world permission bits are ignored.

Access permissions specified here are at the asset level. You can also specify access permissions for
asset binaries in the node-level configuration. The node-level file permissions specify the maximum (most
lenient) permissions that can be given to asset binaries. Access permissions specified here at asset level
can only be the same as or more restrictive than those specified at the node level.

 Data type String

Current asset relationships
Specifies the assets to which this asset is related.

To add or remove a relationship, use the Manage relationships page:

1. Click Manage Relationships to access the Manage relationships page. The Selected list on the right
lists the current asset relationships.

2. To add a relationship, select an asset in the Available list on the left and click >>.

3. To remove a relationship, select an asset in the Selected list on the right and click <<.

4. Click OK.

 Data type String
Default none

Validate asset
Specifies whether the product examines the asset references specified during asset importing or updating
and, if validation is enabled, warns you of incorrect references or fails the operation.

An asset typically refers to resources using data sources for container-managed persistence (CMP) beans
or using resource references or resource environment references defined in deployment descriptors. The
validation checks whether the resource referred to by the asset is defined in the scope of the deployment
target of that asset.

Select true (enable the check box) for resource validation and to stop operations that fail as a result of
incorrect resource references. Select false (empty check box) for no resource validation.

 Data type String
Default false (empty check box)

EBA Dependencies
For an enterprise bundle archive (EBA) asset, displays the current bundle download status for all bundles
in the asset. This item is only displayed if your asset is an EBA asset, which means that it contains an
OSGi application.

Chapter 11. Deploying and administering business-level applications 373

You cannot update an EBA asset until bundle downloads are complete from any previous update, and until
the business-level application that uses the asset has picked up the previous updates by being restarted.
Before you try and update bundle versions, you can use the EBA dependency information to check the
bundle download status of the asset. The status displayed is one of the following values:

v Bundles downloading...

v Bundle downloads are complete.

v No bundles downloads are required.

Note: In addition to the information given here, you can also check the bundle download status indirectly,
by checking the status of the associated EBA composition unit as described in Checking and
updating the EBA asset version used by a business-level application.

If bundle downloads for the asset are complete, or no bundle downloads are required, you can update the
asset using either of the methods described in Maintaining bundle versions for an EBA asset.

If bundle downloads for the asset are complete, and a new version of the EBA asset is available, restart
the business-level application to bring the EBA composition unit up-to-date and to run the newer
configuration.

Managing assets
After application binary files are imported and registered with the product management domain as assets,
you can view, update and export those assets.

Before you begin

Import one or more assets. The name of each imported assets is shown on the list of assets on the
administrative console Assets page.

About this task

You can view the contents of assets, update assets, remove assets from the product management
domain, or export copies of assets to a target location. This topic describes how to perform these asset
management operations from the administrative console Assets page. Alternatively, you can use
programming or the wsadmin tool.

Procedure
v View or edit asset settings.

1. Go to the administrative console Assets page.

Click Applications > Application Types > Assets.

2. Click the asset name in the list of assets. The Asset settings page displays the values that are
specified for the asset.

3. Optional: Change the asset settings as needed and click OK to save the changes.

v Remove one or more assets from the product management domain.

v Update the contents of an asset.

v Export an asset to a target location.

What to do next

Create a business level application and add the asset to the business-level application.

374 Administering applications and their environment

Asset collection
Use this page to view a list of assets in the asset repository and to manage those assets. After importing
an asset, you can add the asset to a business-level application.

Assets include Java archive (JAR) and compressed files that are used by applications installed on a
server.

To view this administrative console page, click Applications > Application Types > Assets.

To view the values specified for an asset, click the asset name in the list. The displayed asset settings
page shows the values specified. On the settings page, you can change existing asset values.

To manage an asset, enable the Select check box beside the asset name in the list and click a button:

 Table 48. Button descriptions. Use the buttons to manage assets.

Button Resulting action

Import Opens a wizard that helps you add an asset to the asset repository.

Delete Removes the asset from the asset repository and deletes the asset binaries from the file
system of all nodes where the assets are installed.

On single-server installations, deletion occurs after the configuration is saved.

Update Opens a wizard that helps you update asset files. You can replace a file or module that
exists on the server with a file or module that has the same name. Or you can add a
new file or module, provided the new file or module does not have the same name as an
asset that already exists on the server.

Export Accesses the Export asset page, which you use to export an asset to a file at a location
of your choice. Use the Export action to back up an asset.

Name
Specifies the name of the asset. Asset names must be unique within a cell and cannot contain an
unsupported character.

Description
Specifies a description for the asset.

Updating assets
You can use the Update asset wizard to update classes, composites, wsdl, xsd, and definitions.xml files
in an asset.

Before you begin

Import one or more assets. The file name of each deployable object in the imported assets is shown on
the list of assets on the administrative console Assets page.

About this task

You can update all or part of the contents of assets that are in the product management domain. Complete
the steps in the Procedure to update an asset using the administrative console Update asset wizard.
Alternatively, you can update assets using programming or the wsadmin tool.

The following update limitations exist if the asset you are updating is a Service Component Architecture
(SCA) asset:

Chapter 11. Deploying and administering business-level applications 375

v You cannot delete a composite file that a composition unit is using. If a delete is attempted, a warning
message is sent to the Update asset log.

v You cannot update an sca-contribution.xml file.

– SCA cannot detect deployable composites that are either added or deleted. Therefore, during
deployment of a new composition unit, you do not see the new deployable composite in the
deployables option list.

– SCA cannot detect dependencies that are added/removed during the Update asset process.

- If a new import package is added and if a class in an existing composition unit is updated to
require this new package, then the Update asset wizard fails with a ClassNotFoundException.
Deployment of any new composition units from the updated asset are successful as the
dependencies are detected during deployment operation.

- If a new export package/namespace is added, then it has no affect on the existing composition
unit and the Update asset wizard completes successfully.

v Because the Update asset wizard uses the new composite definition file provided in the asset for the
existing composition unit, the following post deployment related changes to the composite configuration
are not saved.

– Binding resources: If you want to save this information, export all the data to the composite definition
file in the new asset before you do the update.

– Component reference target URIs: If you want to save this information, export all the data to the
composite definition file in the new asset before you do the update.

– Component properties: If you want to save this information, export all the data to the composite
definition file in the new asset before you do the update.

– HTTP Endpoint URL information: You need to reconfigure this information after the Update asset
wizard finishes.

v For web services policy set attachments, during Update asset processing:

– If there is a policy set specified for an endpoint in the updated composite definition file, SCA checks
to see if a policy set has already been attached to that endpoint in the deployed composition unit. If
an attachment already exists for that endpoint, the attachment is removed, and the policy set listed in
the new composite file for that endpoint is attached. In this situation, if you have made any post
deployment policy set configuration changes, these changes are lost.

– If there is no policy set defined for an endpoint in the update composite definition file, then any
existing attachments to that endpoint are removed.

Policy set bindings follow these same rules.

v For RunAs and RoleToUser mapping definitions, during Update asset processing:

– For implementation.java, implementation.spring and implementation.osgiapp, any new roles defined
in the definition.xml file in the asset are picked up and users can be mapped to these roles using
either the editCompositionUnit command or the administrative console. Any existing role mappings
for the original roles are preserved.

– For implementation.jee, the runAs and RoleToUser mappings are defined in the JEE application
instead of in the SCA asset or SCA composition unit. Therefore, SCA does not do anything with
these mappings during Update asset processing.

v The user defined virtual host that hosts web content for binding.ws, binding.atom, binding.http with
wireformat.jsonrpc and implementation.widget is not supported. A virtual host mapping of default_host
is used during Update asset processing.

Procedure
1. Go to the Update asset wizard.

a. Click Applications > Application Types > Assets to access the Assets page.

b. Select the check box beside the asset that you want to update.

c. Click Update.

376 Administering applications and their environment

2. On the Update asset page, specify whether you want replace an entire asset or update its contents
and, as needed, the replacement file or module.

a. Select an update option.

You can update asset contents by adding, deleting, or updating a single file or module in the asset,
or by merging multiple files or modules. Update options include the following:
v Replace entire asset
v Replace specific asset contents
v Add module or file to asset
v Remove file or module from asset
v Merge asset contents

The online help for the Update asset page describes the options.

b. If you are updating specific asset contents or removing a file or module, specify the path beginning
with the asset archive file.

For Specify the path beginning with the asset archive file, specify a relative path to the file that
starts from the root of the asset file. For example, if the file is located at com/company/
greeting.class in module hello.jar, specify a relative path of hello.jar/com/company/
greeting.class.

c. If you are updating the entire asset, updating an asset file or module, or merging asset contents,
specify the full path name of the new file or module.

d. Click Next.

3. On the Select options for updating an asset page, specify asset settings and click Next.

The online help for the Select options for importing an asset page describes the settings.

4. On the Summary page, click Finish.

Results

If you update an asset packaged as a library JAR file that is not a Java Platform, Enterprise Edition (Java
EE) archive, then the product automatically distributes the updated asset to all of the composition units
that use the asset.

However, if you update a Java EE asset, then the product does not automatically distribute the updated
Java EE archive to composition units created from that asset, which are Java EE applications. You must
select every Java EE application created from that asset and use the Update button to update the Java
EE application individually by specifying the update contents.

What to do next

Create a business-level application and add the asset to the business-level application.

Update asset settings
Use this page to select whether you want replace an entire asset or update its contents. You can update
asset contents by adding, deleting, or updating a single file or module in the asset, or by merging multiple
files or modules into an asset. Updating an asset registers the updated files with the product management
domain.

To view this administrative console page, click Applications > Application Types > Assets, select the
asset to update, and then click Update.

The product manages the contents of a registered asset as a single entity. The contents of a registered
asset must be accessible to application servers, web servers and other runtime environments that use the
asset.

When you replace an asset or update an asset by adding a file or module, asset files typically are
uploaded from a client workstation running the browser to the server machine running the administrative

Chapter 11. Deploying and administering business-level applications 377

console, where they are registered. In such cases, use the web browser running the administrative
console to select files to upload to the server machine.

The specified asset that you are installing must be one of the following supported assets:
v A single file, such as an enterprise bean (EJB) file
v An archive of files, such as a Java archive (JAR) or a compressed .zip file
v An archive of archives, such as an enterprise archive (EAR) or shared library file

Replace entire asset:

Under Select the type of update to perform, specifies to replace the entire asset installed on the server
with a new (updated) asset.

 After selecting this option, specify whether the asset is on a local or remote file system and the full path
name of the asset. The path provides the location of the updated asset before installation.

Use Local file system if the browser and asset files are on the same machine (whether or not the server
is on that machine, too).

Use Remote file system if the asset file resides on any node in the current cell context. Only supported
assets are shown during the browsing. Also use Remote file system to specify an asset file that is
already residing on the machine running the application server. For example, the field value might be
profile_root/installableApps/my_bean.ejb. After the asset file is transferred, the Remote file system
value shows the path of the temporary location on the server.

Replace specific asset contents:

Under Select the type of update to perform, specifies to replace a file or module of the asset installed
on the server.

 After selecting this option, do the following:

1. For Specify the path beginning with the asset archive file, specify a relative path to the file that
starts from the root of the asset file. For example, if the file is located at com/company/greeting.class
in module hello.jar, specify a relative path of hello.jar/com/company/greeting.class.

2. Specify whether the asset is on a local or remote file system and the full path name of the asset. The
path provides the location of the updated asset before installation.

3. Click Next.

The Replace entire asset description describes options for specifying the full path name of an asset or
file to add using Local file system and Remote file system options.

Add a module or file to an asset:

Under Select the type of update to perform, specifies to add a file to the asset installed on the server.

 After selecting this option, do the following:

1. For Specify the path beginning with the asset archive file, specify a relative path to the file that
starts from the root of the asset file. For example, if the file is located at com/company/greeting.class
in module hello.jar, specify a relative path of hello.jar/com/company/greeting.class.

2. Specify whether the asset is on a local or remote file system and the full path name of the asset. The
path provides the location of the updated asset before installation.

The Replace entire asset description describes options for specifying the full path name of an asset or
file to add using Local file system and Remote file system options.

378 Administering applications and their environment

Remove a file or module from an asset:

Under Select the type of update to perform, specifies to remove a file or module from the asset installed
on the server.

 After selecting this option, do the following:

1. For Specify the path beginning with the asset archive file, specify a relative path to the file to be
removed that starts from the root of the asset file. For example, if the file is located at
com/company/greeting.class in module hello.jar, specify a relative path of hello.jar/com/company/
greeting.class.

2. Click Next.

Merge asset contents:

Under Select the type of update to perform, specifies to compare the new file or module with the file or
module of the asset installed on the server. If the file or module exists, it is replaced. Otherwise, it is
added to the installed asset.

 After selecting this option, specify whether the new file or module is on a local or remote file system and
the full path name of the file or module. The path provides the location of the updated asset before
installation.

The Replace entire asset description describes options for specifying the full path name of a file or
module to merge using Local file system and Remote file system options.

Update associated composition unit:

Specifies whether to update the composition units that are associated with an enterprise (Java EE) asset.
This option applies to enterprise assets only.

 The default value is NONE. Specify ALL to update all of the composition units that are associated with the
enterprise asset.

Deleting assets
You can remove application binary files that are registered as assets from the product management
domain.

Before you begin

Import one or more assets. The name of each imported asset is shown on the list of assets on the
administrative console Assets page.

About this task

You can remove assets from the product management domain, provided the asset does not have an
existing composition unit. If an asset has one or more composition units defined in the management
domain, then you cannot delete that asset until those composition units are removed.

This topic describes how to delete assets using the administrative console. Alternatively, you can use
programming or the wsadmin tool.

Procedure
1. Go to the Delete asset page.

a. Click Applications > Application Types > Assets to access the Assets page.

Chapter 11. Deploying and administering business-level applications 379

b. Select the check box beside the asset that you want to delete.

c. Click Delete.

2. On the Delete asset page, click OK to confirm that you want the specified asset removed from the
product management domain.

Click Cancel to return to the Assets page and not delete the asset.

Results

The product deletes the asset from the product management domain.

What to do next

On the Assets page, verify that the deleted asset is no longer in the list of imported assets.

Exporting assets
After application binary files are imported and registered with the product management domain as assets,
you can export those assets.

Before you begin

Import one or more assets. The file name of each deployable object in the imported assets is shown on
the list of assets on the administrative console Assets page.

About this task

You can export copies of assets to a target location. Exporting stores application binary files, enabling you
to back up the files or edit them. The file resulting from exporting an asset contains configuration
information for the asset.

This topic describes how to export an asset from the administrative console Assets page. Alternatively, you
can use programming or the wsadmin tool.

Procedure
1. Go to the Export asset page.

a. Click Applications > Application Types > Assets to access the Assets page.

b. Select the check box beside the asset that you want to export.

c. Click Export.

2. On the Export asset page, click the asset name or identifier.

To cancel the export operation and return to the Assets page, click Back.

3. Specify the target location for the asset file.

What to do next

Examine the target file to verify that the asset exported correctly. You can later edit this file and import the
edited asset.

Creating business-level applications
You can create an empty business-level application and then add assets, shared libraries, business-level
applications, and other artifacts as composition units to the empty business-level application.

380 Administering applications and their environment

Before you begin

Configure each target application server as needed. You must deploy a business-level application to a
Version 7.0 server.

Optionally, determine what assets or other files that you want to add to your business-level application and
whether your application files can run on your deployment targets.

About this task

You can create business-level applications using the administrative console, programming, or the wsadmin
tool.

Procedure
1. Select a way to create your business level application.

 Table 49. Ways to create business level applications. You can create business-level applications using the
administrative console, programming, or wsadmin.

Option Method

Administrative console
business-level application creation
wizard

See “Creating business-level
applications with the console.”

Click Applications > New application > New Business-level Application and
follow instructions in the wizard.

Administrative console Java
Platform, Enterprise Edition (Java
EE) application installation wizard

See “Installing enterprise
application files with the console”
on page 172.

Click Applications > New application > New Enterprise Application and
follow instructions in the wizard.

The product creates a new business-level application with the enterprise
application that you install or makes the enterprise application a composition unit
of an existing business-level application. See the Business-level application
name setting on the Select installation options wizard page.

2. Create your business-level application using the administrative console, programming or wsadmin.

3. Save the changes to your administrative configuration.

Results

The name of the application is shown in the list on the Business-level applications page.

What to do next

After you create a business-level application, you can do the following to add composition units to it:

1. Import any assets needed by your business-level application.

2. Add assets, shared libraries, or other business-level applications as composition units.

3. Save the changes to your administrative configuration.

4. Start the business-level application.

If the application does not run as desired, edit the application configuration, then save and run it again.

Creating business-level applications with the console
You can create an empty business-level application and then add assets or business-level applications as
composition units to the empty business-level application.

Chapter 11. Deploying and administering business-level applications 381

Before you begin

Before you create a business-level application, decide upon an application name. Optionally, determine
which assets, shared libraries, or business-level applications that the new business-level application
needs.

About this task

This topic describes how to create an empty business-level application and then add assets as
composition units to the application using the administrative console. Alternatively, you can use
programming or the wsadmin tool.

You can add an asset or shared library composition unit to multiple business-level applications. However,
each composition unit for the same asset must have a unique composition unit name. You can add a
business-level application composition unit to more than one business-level application.

Procedure
1. Create an empty business-level application.

a. Click Applications > New application > New Business Level Application.

b. On the New business-level application page, specify a unique name for the application and a
description, and then click OK.

c. On the business-level application settings page, click Save.

The name and description are shown in the list of applications on the Business-level applications page.
Because the application is empty, its status is Unavailable.

2. Optional: Add one or more assets, non-Java EE shared libraries, or business-level applications to a
business-level application. The product adds these assets as composition units of your business-level
application.

v If the asset that you want to add to your business-level application is a Java Platform, Enterprise
Edition (Java EE) application or module that is not yet deployed, see step 3.

v If the asset is a Java EE shared library, see step 4.

v If the asset is an enterprise bundle archive (EBA) asset, see Adding an EBA asset to a
business-level application using the administrative console.

a. Import the assets or create the business-level applications that you want to add to the
business-level application.

b. Go to the business-level application settings page.

Click Applications > Application Types > Business-level applications > application_name.

c. On the business-level application settings page, specify the type of composition unit to add.

v To add an asset, under Deployed assets, click Add > Add Asset.

v To add a shared library, under Deployed assets, click Add > Add Shared Library.

v To add a business-level application, under Business-level applications, click Add.

d. On the Add page, select a unit from the list of available units, and then click Continue.

If you are adding one or more deployable unit assets and you have multiple imported assets
available, you can select more than one deployable unit.

e. On the Set options page, change the composition unit settings as needed, and then click Next.

This page is not shown when you add a Java EE asset as a shared library or if you have multiple
deployable unit assets. If the application installation or update wizard displays and you want to add
a Java EE asset as a shared library, see step 4.

f. On the Map composition unit to a target page, change the deployment target as needed, and then
click Next.

This page is not shown when you add a business-level application.

382 Administering applications and their environment

g. If you are adding one or more deployable unit assets, specify composition unit relationship options.

See “Relationship options settings” on page 390.

h. On the Summary page, click Finish. Several messages are displayed, indicating whether the
product adds the unit to the business-level application successfully. A message having the format
Completed res=[WebSphere:cuname=unit_name,cuedition=version] indicates that the addition is
successful. Click Manage application.

If the product adds the unit successfully, the name of the unit is shown on the list of composition
units on the Adding composition unit to the business-level application page.

If the unit addition is not successful, read the messages and try adding the unit again. Correct the
problems noted in the messages.

i. On the Adding composition unit to the business-level application page, click Save.

The product creates composition units for the asset, shared library, or business-level application. The
unit names are shown in lists of composition units on the settings page of your business-level
application. To view the settings page, click Applications > Application Types > Business-level
applications > your_application_name.

3. Optional: Install a Java EE application or module, and add it as a composition unit to your
business-level application.

When installing an enterprise archive (EAR) file or a stand-alone Java EE module using the application
installation wizard, you can specify a business-level application to which to add the EAR file or module.
You can also specify relationships to any shared libraries that your Java EE application or module
uses. The product creates composition units that represent those relationships.

a. Click Applications > New application > New Enterprise Application.

b. On the first Preparing for the application installation page, specify the Java EE application or
module to install and click Next.

c. On the second Preparing for the application installation page, select Detailed - Show all
installation options and parameters, specify whether to generate default bindings and mappings
as needed for the application or module, and click Next.

d. On the Select installation options page of the wizard, select your business-level application for
Business-level application name and click Next. The product creates a composition unit that has
the same name as the Java EE application or module and adds the unit to your business-level
application.

If you do not specify a value for Business-level application name, then the product creates a
default business-level application that has the same name as the Java EE application that you are
installing. The product does not add the Java EE application as a composition unit to the
business-level application that you created in step 1.

e. Optional: On the Map shared library relationship page of the wizard, specify relationship identifiers
and composition unit names for shared libraries that modules in your Java EE application use. The
product creates a composition unit for each shared library relationship in your business-level
application.

You can map shared library relationships when installing your Java EE application or module or,
after installation, return to the Map shared library relationship page and specify shared library
relationships. See step 4.

f. Complete the other application installation wizard options as needed to install the Java EE
application or module.

The product creates composition units for the application, module, or shared library relationships. The
unit names are shown in lists of composition units on the settings page of your business-level
application. To view the settings page, click Applications > Application Types > Business-level
applications > your_application_name.

Chapter 11. Deploying and administering business-level applications 383

4. Optional: After installation of a Java EE application or module, you can specify composition units for
relationships to shared libraries that are used by your business-level application. Specify relationships
to shared libraries on the Map shared library relationship page of the application installation or update
wizard.

a. If you have not done so already, import a Java EE asset such as an enterprise bean (EJB) or web
module (WAR) that uses a shared library file.

If the product displays javaarchive for Asset type aspects on the asset settings page, continue to
step 4b.

If the product does not display javaarchive for Asset type aspects on the asset settings page,
then the asset is not a Java EE asset. Use step 2 to add a shared library to your business-level
application.

b. Go to a settings page for your business-level application.

Click Applications > Application Types > Business-level applications >
your_application_name.

c. Under Deployed assets, click Add > Add Shared Library.

d. On the Add composition unit page, select the Java EE asset that you imported and then click
Continue.

The Java EE application installation or update wizard displays. Select the Java EE application or
module that uses the asset, and complete the steps in the wizard.

e. On the Select installation options page of the wizard, select your business-level application for
Business-level application name.

f. On the Map shared library relationship page of the wizard, specify a relationship identifier and
composition unit name for the asset.

g. Complete the other wizard options as needed.

The product creates a composition unit for the shared library relationship. The unit name is shown in
the list of deployed asset composition units on the settings page of your business-level application.

Results

The name of your business-level application is shown on the Business-level applications page in the list of
applications.

What to do next

After you create the application, save the changes to your configuration and start the application as
needed.

Business-level application collection
Use this page to view and manage business-level applications.

To view this administrative console page, click Applications > Application Types > Business-level
applications.

To view the values specified for an application configuration, click the application name in the list. The
displayed application settings page shows the values specified. On the settings page, you can change
existing configuration values and link to additional console pages that assist you in configuring the
application.

To manage a business-level application, enable the Select check box beside the application name in the
list and click a button:

384 Administering applications and their environment

Table 50. Button descriptions. Use the buttons to manage business-level applications.

Button Resulting action

Start Attempts to run the application. After the application starts successfully, the state of the
application changes to Started if the application starts on all deployment targets, else the
state changes to Partial Start.

Stop Attempts to stop the processing of the application. After the application stops
successfully, the state of the application changes to Stopped if the application stops on
all deployment targets, else the state changes to Partial Stop.

New Opens a wizard that helps you add assets, shared libraries, or business-level
applications as composition units to your application.

Delete Deletes the application from the product configuration repository and deletes the
application binaries from the file system of all nodes where the application modules are
installed.

On single-server installations, deletion occurs after the configuration is saved.

Name:

Specifies the name of the business-level application. Application names must be unique within a cell and
cannot contain an unsupported character.

Description:

Specifies a description for the business-level application.

Status:

Indicates whether the application deployed on the application server is started, stopped, or unknown.

 Table 51. Application status. The status indicates whether the application is running.

Started Application is running.

Partial start Application is in the process of changing from a Stopped state to a Started
state. Application is starting to run but is not fully running yet. Or, it cannot fully
start because a server mapped to one or more application modules is stopped.

Stopped Application is not running.

Partial stop Application is in the process of changing from a Started state to a Stopped

state. Application has not stopped running yet.

Unknown Status cannot be determined.

On single-server installations, an application with an unknown status might, in
fact, be running but have an unknown status because the server running the
administrative console cannot communicate with the server running the
application.

Pending Status is temporarily unknown pending an event that a user did not initiate,

such as pending an asynchronous call.

Not applicable Application does not provide information as to whether it is running.

The status of an application on a web server is always Unknown.

New business-level application settings
Use this page to name and describe a new business-level application.

To view this administrative console page, click Applications > New application > New Business-level
Application.

Chapter 11. Deploying and administering business-level applications 385

Name:

Specifies a logical name for the business-level application. An application name must be unique within a
cell and cannot contain an unsupported character.

 An application name cannot begin with a period (.), cannot contain leading or trailing spaces, and cannot
contain any of the following characters:

 Table 52. Characters that you cannot use in a name. The product does not support these characters in a name.

Unsupported characters

/ forward slash $ dollar sign ' single quote mark

\ backslash = equal sign " double quote mark

* asterisk % percent sign | vertical bar

, comma + plus sign < left angle bracket

: colon @ at sign > right angle bracket

; semi-colon # hash mark & ampersand (and sign)

? question mark]]> No specific name exists for this character combination

 Data type String

Description:

Specifies a description for the application.

 This field is the same as the Description setting on a Business-level applications page.

Shared library relationship and mapping settings
Use the Shared library relationship and Shared library relationship mapping pages to specify relationship
identifiers and composition unit names for shared libraries that modules in your enterprise application
reference. When installing your enterprise application, the product creates a composition unit for each
shared library relationship in the business-level application that you specified on the Select installation
options page of the application installation wizard.

To view this console page in a wizard, click Applications > Install new application > New Enterprise
Application > application_path > Next > Detailed - Show all installation options and parameters >
Next > application_name > Step: Map shared library relationships.

After installation, click Applications > Application Types > WebSphere enterprise applications >
Shared library relationships.

To map library files used in a business-level application to an application or web module, use the Shared
library relationship mapping page:

1. Click Reference shared libraries.

2. Note the application or module in Map libraries to the application or module listed. You are
associating library files with that application or module.

3. From the Available list, select one or more libraries that the application or module uses.

4. Click >> to add them to the Selected list.

5. To remove an association, select one or more libraries in the Selected list and click <<.

6. Click OK.

Module:

386 Administering applications and their environment

Specifies the name of the module associated with the shared libraries.

URI:

Specifies the location of the module relative to the root of the application EAR file.

Relationship identifers:

Specifies an identifier for a module shared library relationship. The product assigns an identifier to the
composition unit that it creates for the shared library relationship in the business-level application.

Composition unit names:

Specifies a composition unit name for the shared library relationship. The product uses this value to name
the composition unit that it creates for the shared library relationship in the business-level application that
you specified on the Select installation options page of this wizard.

 This setting is only in the application installation and update wizards.

Match target:

Specifies whether the product maps the composition unit for the shared library relationship to the same
deployment target as the business-level application.

Note: If you later change the deployment target of the business-level application or its modules, you must
manually update the shared library target to match the target of the application and modules. The
targets of shared library composition units are not automatically updated. Not updating the target of
the shared library composition unit might cause java.lang.ClassNotFoundException errors and
prevent the application or its modules from starting. To prevent these error conditions, also ensure
that shared libraries upon which other modules or applications depend have a lower starting weight
than dependent applications and modules.

Add composition unit settings
Use this page to specify options for the composition unit to be added to the business-level application. The
product assigns a default value for an option when you do not specify a value.

To view this administrative console page, click Applications > Application Types > Business-level
applications > business-level_application_name > Add > Add unit_type.

Name:

Specifies the name of the composition unit to be added to the business-level application.

 The table lists available composition units. Select a unit from this list.

Description:

Specifies a description for the composition unit.

Add asset settings
Use this page to add one or more assets to a business-level application.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > Add > Add Asset.

Deployable units:

Chapter 11. Deploying and administering business-level applications 387

Specifies the imported assets available for use in a business-level application. The list of deployable units
includes only imported assets, and not shared libraries or business-level applications.

 From this list, select one or more deployable units to add as composition units to your business-level
application.

Set options settings
Use this page to specify options for the composition unit to be added to the business-level application. The
product supplies default values for the options if you do not specify a value.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name. On the business-level application settings page, specify the type of
composition unit to add:

v To add an asset, under Deployed assets, click Add > Add Asset.

v To add a shared library, under Deployed assets, click Add > Add Shared Library.

v To add a business-level application, under Business-level applications, click Add.

Backing identifier:

Specifies a unique identifier for a composition unit that is registered in the application management
domain.

 The identifier has the format: WebSphere:unit_typename=unit_name,unit_typeversion=version_number. For
example, for the MyApp.jar asset, the backing identifier might be WebSphere:assetname=MyApp.jar.

 Data type String
Units Composition unit identifier

Name:

Specifies the name of the composition unit.

 For example, for the MyApp.jar asset, the name might be MyApp.jar.

A unit name cannot begin with a period (.), cannot contain leading or trailing spaces, and cannot contain
any of the following characters:

 Table 53. Characters that you cannot use in a name. The product does not support these characters in a name.

Unsupported characters

/ forward slash $ dollar sign ' single quote mark

\ backslash = equal sign " double quote mark

* asterisk % percent sign | vertical bar

, comma + plus sign < left angle bracket

: colon @ at sign > right angle bracket

; semi-colon # hash mark & ampersand (and sign)

? question mark]]> No specific name exists for this character combination

 Data type String

Description:

388 Administering applications and their environment

Specifies a description for the composition unit.

Starting weight:

Specifies the order in which composition units are started when the server starts. The starting weight is
like the startup order. The composition unit with the lowest starting weight is started first.

 The value that you set for Starting weight determines the importance or weight of a composition unit
within the business-level application. For example, for the most important composition unit within a
business-level application, specify 1 for Starting weight. For the next most important composition unit
within the business-level application, specify 2 for Starting weight, and so on.

 Data type Integer
Default 1
Range 0 to 2147483647

Start composition unit upon distribution:

Specifies whether to start the composition unit after the product distributes the composition unit to other
locations.

 The default is not to start the composition unit.

 Data type Boolean
Default false

Restart behavior on update:

Specifies whether the product restarts deployment targets after updates to the composition unit.

 Usually, a composition unit is mapped to one or more deployment targets. This setting determines whether
the product restarts those targets after editing the composition unit.

 Table 54. Restart behavior on update options. Depending on your selection, the product restarts all target nodes,
the nodes controlled by sync plug-ins, or no nodes.

Option Description

ALL The product restarts each target node of the composition unit after editing the composition unit.

DEFAULT The product restarts the nodes controlled by the sync plug-ins after editing the composition unit.

NONE The product does not restart nodes after editing the composition unit.

Map target settings
Use this page to map a composition unit to a deployment target. The product assigns a default target
when you do not specify a target.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > composition_unit_name > Modify Target. The Map target page is
similar to the Map composition unit to a target page in the add composition unit wizard.

On single-server products, a deployment target can be an application server or web server.

On this page, map a composition unit to one or more desired targets.

Current targets:

Chapter 11. Deploying and administering business-level applications 389

Specifies the existing deployment targets for the composition unit.

Available:

Lists the names of available deployment targets. This list is the same for every composition unit that is
registered in the cell.

 From this list, select only appropriate deployment targets for a composition unit.

If the unit calls a Version 8.x application programming interface (API) or uses a 8.x feature, then you must
map the unit to a 8.x deployment target. If the unit supports Java Platform, Enterprise Edition (Java EE) 6,
then you must map the unit to a 8.x deployment target.

If the unit calls a Version 7.x API, uses a 7.x feature, or supports Java EE 5, then you must map the unit
to an 8.x or 7.x deployment target.

If the unit supports Java 2 Platform, Enterprise Edition (J2EE) 1.4, then you must map the unit to an 8.x,
7.x or 6.x deployment target. You can map units that call a 6.x API or use a 6.x feature to an 8.x, 7.x or
6.x deployment target.

To map a composition unit to a deployment target, select a target from the Available list and click >>. The
target name is displayed in the Selected list.

Selected:

Lists the names of desired deployment targets.

 When you click OK, the product maps the composition unit to the deployment targets in the Selected list.

To remove a deployment target from the Selected list, select the target and click <<.

Relationship options settings
Use this page to specify relationship options for deployable or composition units in an asset deployed as
part of a business-level application. Specifying a relationship declares a dependency relationship that a
deployable unit or composition unit has on another asset deployed as a shared library in the same
business-level application.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > deployed_asset_name > Relationship options. This help also
pertains to wizard pages that are shown when you add multiple deployable or composition unit assets to a
business-level application. These pages are shown for the Define relationship with existing
composition units and Options for creating new composition units to satisfy asset relationships
wizard steps.

A business-level application consists of composition units. When you add an asset to a business-level
application, the product creates a composition unit for the asset. The composition unit name can be
different from the name of the asset being deployed. The list of deployed assets shown for a
business-level application consists of the composition unit names for the deployed assets. The
relationships defined in this page are composition unit relationships. The deployable units listed for a
composition unit are those you chose from the associated asset when adding the asset. Composition unit
relationships are expressed as deployable unit dependencies on other composition units belonging to the
same business-level application. Only a composition unit for an asset deployed as a shared library can be
specified as a dependency. You can map each deployable unit to a target independently from the others.
Modifying relationships in this page only affects the composition unit, not the associated asset.

To specify relationship options, select a deployable unit and click a button.

390 Administering applications and their environment

Button Resulting action

Set Relationships Displays a page through which you can add or change relationships for the deployable
unit. Specify a relationship if a deployable unit depends on another asset deployed as
a shared library in order to run.

This button is on the Set relationship options page.

Enable Match Targets If the deployable unit has a dependency relationship defined, click Enable Match
Targets to map the related deployed assets to the same deployment targets as the
dependent deployable unit.

Disable Match Targets If the deployable unit has a dependency relationship defined, click Disable Match
Targets if the related deployed assets do not need to be deployed to the same targets
as the deployable unit.

Deployable unit name or composition unit name:

Specifies the name of the deployable unit or the composition unit of the selected deployed asset.

Relationship:

Specifies the composition unit names for all relationships defined for the associated deployable unit.

 This setting is on the Set relationship options page.

By default, a deployable unit has no relationships. To add or change related composition units, do the
following:
1. Select the deployable unit.
2. Click Set Relationships.
3. Select the composition units that the deployable unit requires by moving them from the Available list

to the Selected list.
4. Click OK.

Match targets:

Indicates the match targets value selected for the associated deployable unit. The default value is true.

 A match targets value of true maps the composition units listed under Relationship to the same
deployment targets as the associated deployable unit. Typically, you must deploy related composition units
to the same targets as the dependent deployable unit in order for the deployable unit to run.

A false value indicates that the related composition unit can map to deployment targets which are
different from the deployment targets of the deployable unit.

To set the value to true, select the deployable unit and click Enable Match Targets. To set the value to
false, select the deployable unit and click Disable Match Targets. To set this value, the deployable unit
must have a related composition unit.

Business-level application settings
Use this page to configure a business-level application.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name.

This page is the same as the Adding composition unit to the business-level application page.

Chapter 11. Deploying and administering business-level applications 391

Name
Specifies a logical name for the application. An application name must be unique within a cell and cannot
contain an unsupported character.

An application name cannot begin with a period (.), cannot contain leading or trailing spaces, and cannot
contain any of the following characters:

 Table 55. Characters that you cannot use in a name. The product does not support these characters in a name.

Unsupported characters

/ forward slash $ dollar sign ' single quote mark

\ backslash = equal sign " double quote mark

* asterisk % percent sign | vertical bar

, comma + plus sign < left angle bracket

: colon @ at sign > right angle bracket

; semi-colon # hash mark & ampersand (and sign)

? question mark]]> No specific name exists for this character combination

 Data type String

Description
Specifies a description for the business-level application.

Deployed assets
Specifies the asset and shared library composition units in the business-level application. A composition
unit is a registered asset or shared library that has additional configuration information, which you specify
when adding the asset to the application.

For each composition unit, the table provides a name, description, asset type, and the runtime status of
the composition unit.

 Table 56. Deployed assets button descriptions. Use the buttons to add or delete composition units.

Button Resulting action

Add > Add Asset For assets that contain Java Platform, Enterprise Edition (Java EE) applications or modules,
opens the application installation wizard. On the Select installation options page of this wizard,
you can specify a Business-level application name value that identifies the target
business-level application. On the Map shared library relationships page, you can identify the
shared library files that individual modules need to run and specify composition unit names for
the module-shared library relationships.

For non-Java EE assets, opens a wizard that helps you add an asset as a composition unit to
your business-level application.

Add > Add Shared
Library

Opens a wizard that helps you add a library file as a composition unit to your business-level
application.

Delete Deletes the composition unit from the product configuration repository and deletes the
application binaries from the file system of all nodes where the application modules are
installed.

On single-server installations, deletion occurs after the configuration is saved.

Business-level applications
Specifies the business-level applications in this business-level application.

392 Administering applications and their environment

The table provides a name, description, and the runtime status of each contained business-level
application.

 Table 57. Business-level applications button descriptions. Use the buttons to add or delete composition units.

Button Resulting action

Add Opens a wizard that helps you add a business-level application to your business-level
application.

Delete Deletes the business-level application from the product configuration repository and deletes
the application binaries from the file system of all nodes where the application modules are
installed.

On single-server installations, deletion occurs after the configuration is saved.

Composition unit settings
Use this page to view composition unit settings and to change the configuration properties of a
composition unit. The specific settings that are available for configuration can vary, depending upon the
contents of the composition unit. For example, there are additional configuration settings if the asset
contained in the composition unit is an SCA composite, or an OSGi application.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > deployed_asset_name. The deployed asset is a composition unit of
the business-level application.

v “Settings that are common to all composition units”

v “Additional composition unit settings for SCA composites” on page 395

v “Additional composition unit settings for OSGi applications” on page 395

Settings that are common to all composition units

Name:

Specifies a logical name for the composition unit. You cannot change the name on this page.

Description:

Specifies a description for the composition unit.

Backing ID:

Specifies a unique identifier for a composition unit that is registered in the application management
domain.

 The identifier has the format WebSphere:unit_typename=unit_name. For example, for the MyApp.jar asset,
the backing identifier might be WebSphere:assetname=MyApp.jar.

You cannot change the identifier on this page.

 Data type String
Units Configuration unit identifier

Starting weight:

Specifies the order in which composition units are started when the server starts. The starting weight is
like the startup order. The composition unit with the lowest starting weight is started first.

Chapter 11. Deploying and administering business-level applications 393

The value that you set for Starting weight determines the importance or weight of a composition unit
within the business level application. For example, for the most important composition unit within a
business-level application, specify 1 for Starting weight. For the next most important composition unit
within the business-level application, specify 2 for Starting weight, and so on.

Note: Assign composition units upon which other composition units depend a lower starting weight than
the dependent composition units. If a composition unit is not started and running before its
dependent composition units, java.lang.ClassNotFoundException errors might result when you
attempt to start the application or its modules.

 Data type Integer
Default 1
Range 0 to 2147483647

Start on distribution:

Specifies whether to start the composition unit when the product distributes the composition unit to other
locations.

 The default is not to start the composition unit.

This setting applies to asset or shared library composition units. This setting does not apply when the
composition unit is a business-level application.

 Data type Boolean
Default false

Recycle behavior on update:

Specifies whether the product restarts the composition unit after the composition unit is updated.

 The default is to restart the composition unit after partial updating of the composition unit.

This setting applies to asset or shared library composition units. This setting does not apply when the
composition unit is a business-level application.

 Table 58. Option descriptions. Specifies whether to restart an asset or shared library composition unit.

Option Description

ALL Restarts the composition unit after the entire composition unit is updated

DEFAULT Restarts the composition unit after the part of the composition unit is updated

NONE Does not restart the composition unit after the composition unit is updated

Target mapping:

Specifies the current targets for the composition unit.

 To change the deployment targets, click Modify targets then select a different set of deployment targets
from the list of available clusters and servers.

For SCA, you must specify only a single server or cluster as the target. Do not map an SCA composition
unit to multiple servers or clusters.

394 Administering applications and their environment

Note: When you change the deployment target of composition units in a business-level application, the
startup order changes to the same order in which you remap composition unit targets, even if the
starting weight for all composition units is set to 1. To avoid java.lang.ClassNotFoundException
errors when attempting to start the remapped composition units, remap targets for composition units
in the same order as that used to add the composition units or, after remapping, check starting
weights to ensure that composition units upon which other composition units depend are started
first.

Additional composition unit settings for SCA composites

SCA composite components:

Specifies the component names and component implementations of SCA composites in the application.

 Table 59. Column descriptions. Provides the name of each component and the name of the class or code
implementing the component.

Column Description

Component Name Specifies the name of a component associated with the SCA composite.

Component Implementation Specifies the name of the class or code implementing the component.

None indicates that the SCA composite does not have defined components.

SCA composite properties:

Specifies the names and values of SCA composite properties in the application.

 Table 60. Column descriptions. Provides the name and value of SCA composite properties.

Column Description

Property Name Specifies the name of an SCA composite property.

Property Value Specifies the value of the property.

None indicates that the SCA composite does not have defined name-value properties.

SCA composite wires:

Specifies the sources and targets of wires in the SCA composite.

 Table 61. Column descriptions. Provides the source and target of wires.

Column Description

Wire Source Specifies the source of a wire in the SCA composite.

Wire Target Specifies the target of the wire.

None indicates that the SCA composite does not have defined wires.

Additional composition unit settings for OSGi applications

OSGi application deployment status:

The deployment status shows whether updates are available for the EBA asset that is contained in the
composition unit. If a new version of an EBA asset is available, and all bundle downloads for the asset are
complete, you can update the EBA composition unit so that the business-level application uses the latest
configuration. You do not have to update the composition unit every time you update the asset.

Chapter 11. Deploying and administering business-level applications 395

There are four distinct deployment statuses for an EBA composition unit:

Using latest OSGi application deployment.
The composition unit is running the latest configuration of the backing asset and any CBA
extensions.

New OSGi application deployment not yet available because it requires bundles that are still
downloading.

The backing asset is currently undergoing a bundle version update, or bundles are downloading
for a CBA extension.

New OSGi application deployment available.
The backing asset is available at a newer configuration than the configuration that is currently
running in this composition unit, or a CBA extension has been added or replaced.

New OSGi application deployment cannot be applied because bundle downloads have failed.
The last bundle version update for the backing asset or CBA extension did not succeed, and
therefore the newer configuration is not yet available.

If the status is “New OSGi application deployment available”, the Update to latest deployment ... button
is available. Click this button to bring the EBA composition unit up-to-date and run the updated
business-level application. If any of the updates need configuration changes, a wizard prompts you to
update the configuration information.

When you save the changes to the EBA composition unit, the associated business-level application is
updated to use the new configuration. If the business-level application is running, the bundle and
configuration updates are applied immediately. If possible (that is, depending on the nature of the updates)
the system applies the updates without restarting the application. Updates that pull in new use bundles at
run time prompt a full restart of the application. Updates that pull in new provision bundles might also
prompt a full application restart.

Example: Creating a business-level application
You can add many different types of artifacts to business-level applications. For example, you can add
Java Platform, Enterprise Edition (Java EE) applications or modules, Java archives (JAR files), data in
compressed files, and other business-level applications.

About this task

An example of creating a simple business-level application follows. This example assumes that you have a
compressed file, such as a compressed file, or other archive available on your computer or on a remote
server that you can use to complete the example.

If you do not have a compressed file available, look in product directories. Installing the product samples
adds several sample files to the /samples directory. You can use these sample files in a business-level
application.

Procedure
1. Import assets.

a. Click Applications > New application > New Asset in the console navigation tree.

b. On the Upload asset page, specify the asset package to import and click Next.

For example, specify a compressed file such as a compressed file and click Next.

c. On the Select options for importing an asset page, click Next.

d. On the Summary page, click Finish.

e. On the Adding asset to repository page, if messages show that the operation completed, click
Manage assets.

396 Administering applications and their environment

f. On the Assets page, click Save.

The file name displays in the list of assets.

2. Create an empty business-level application named MySampleBLA.

a. Click Applications > New application > New Business Level Application.

b. On the New business-level application page, specify a unique name such as MySampleBLA and a
description, and then click OK.

c. On the business-level application settings page, click Save.

The name and description are shown in the list of applications on the Business-level applications page.
Because the application is empty, its status is Unavailable.

3. Add the asset composition unit to your business-level application.

a. On the Business-level applications page, click the application name in the list of applications.

b. On the business-level application settings page, click Add > Add Asset.

c. On the Add composition unit page, select an asset composition unit from the list of available units,
and then click Continue.

For example, select the compressed file asset and then click Continue.

d. On the Set options page, click Next.

e. On the Map composition unit to a target page, change the target server as needed, and then click
Next.

f. On the Summary page, click Finish. Several messages are displayed. A message having the
format Completed res=[WebSphere:cuname=unit_name] indicates that the addition is successful.

g. If the addition is successful, click Manage application.

h. On the business-level application settings page, click Save.

The asset name and type displays in the list of deployed assets.

4. Start the business-level application.

a. Click Applications > Application Types > Business-level applications.

b. On the Business-level applications page, select the check box beside your application.

c. Click Start.

When the business-level application is running, a green arrow displays for Status. If the business-level
application does not start, ensure that the deployment target to which the application maps is running
and try starting the application again.

What to do next

You can add other assets to your business-level application.

SCA application package deployment
The product supports deployment of many types of Service Component Architecture (SCA) artifacts as
composition units of business-level applications. Typical artifacts include Java archive (JAR) files,
compressed .zip files, and web application archive (WAR) files.

Details about deployment of SCA artifacts follow.
v Deployment of JAR or compressed files
v Deployment of WAR files
v Notes and limitations

Deployment of JAR or compressed files
v The product supports one composite file for each package. The product determines which composite file

to support using the following process:

Chapter 11. Deploying and administering business-level applications 397

1. The SCA deployment extension looks for the META-INF/sca-contribution.xml file, gets the name of
each deployable composite defined in the file, and uses QName values to find the actual composite
file names under any directory for that composite. If more than one composite is found in the
sca-contribution.xml file, you can select the composite to deploy.

2. If there is no META-INF/sca-contribution.xml file defined, the SCA deployment extension looks for
a composite file in the META-INF/sca-deployables directory.

v The product validates SCA composites for inconsistencies with SCA specifications.

One specification requirement is that the names of top-level components must be unique. Thus, the
product validates top-level component name uniqueness.

Tip: Top-level components are also called domain components, with the top-level or domain typically
the cell on multiple-server installations and the server scope on single-server installations.

The product validates all composite files in a JAR or compressed file, regardless of the file location in
the archive or whether the sca-contribution.xml file references the composite file. The product does
not validate all services and references.

The product writes warning and error messages resulting from the validation tests to the SystemOut.log
file. Read the log file to learn about inconsistencies with specifications in your SCA composites.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are
using HPEL, you can access all of your log and trace information using the LogViewer
command-line tool from your server profile bin directory. See the information about using HPEL
to troubleshoot applications for more information on using HPEL.

v The product uses the following process for QName resolution:

– The product uses the QName to resolve composite files included in the top-level composite that use
the element. For example, the <include name="mynamespace:MyService"/> statement looks for a
composite file whose composite name is MyService and whose targetNameSpace is mynamespace.
The following rules apply:
- name: Use the outer composite.
- namespace declarations: Merged into the outer composite.
- targetNamespace: Use the outer composite (must be the same).
- local: Use the composite (preferably the same but not required).
- requires(intents) and policySets: Must be compatible, and aggregated into the outer composite.

Deployable composite files must have name and targetNamespace values. The name and
targetNamespace values are combined to form the QName of a composite file.

– When a composite is used as a component implementation in the top-level composite, the composite
is also resolved using the QName. For example, the <implementation.composite
name="mynamespace:MyComposite"/> statement causes the product administration to look for a
composite file whose composite name is MyComposite and whose targetNamespace is mynamespace.

v A JAR file can contain other JAR files at the top level. The contained JAR files are available on the
classpath. However, any archives inside those JAR files are not available. The product supports one
level of embedded JAR files.

Deployment of WAR files
v A composite file in a WAR file must be named default.composite. A composite file that is not in a WAR

file can have any name.

v The default.composite composite file must be inside a WAR file in the META-INF/sca-deployables
directory.

v The META-INF/sca-deployables directory must contain no more than one composite file. If there is more
than one composite file in the META-INF/sca-deployables directory, then the product returns a validation
error and stops the WAR file deployment.

398 Administering applications and their environment

However, you can place other composite files in directories other than META-INF/sca-deployables, and
reference those composite files in the top-level composite under the META-INF/sca-deployables
directory.

v The product does not support having a sca-contribution.xml file inside the WAR file under the
META-INF directory. If the product finds a sca-contribution.xml file, then the product returns a validation
error and stops the WAR file deployment.

Notes and limitations
v The product does not provide administration console pages for configuring contributions.

v If you import a package or namepace from a different contribution, or JAR (contribution.xml), you
might need to import that contribution as an asset before importing your own asset.

For example, suppose your Contribution A imports a JAR file from Contribution B. You might need to
import Contribution B and then Contribution A as assets. Contribution A depends on Contribution B so
you must import Contribution B before importing Contribution A.

v You cannot use a local interface across a class loader boundary. Use a remotable interface to cross a
class loader boundary.

Creating SCA business-level applications
You can create an empty business-level application and then add Service Component Architecture (SCA)
assets, shared libraries, business-level applications, and other artifacts as composition units to the empty
business-level application.

Before you begin

Configure the target application server. You must deploy SCA composite assets of a business-level
application to a Version 8.0 server (target) or to a Version 7.0 target that is enabled for the Feature Pack
for SCA.

If your SCA composite or application uses Feature Pack for SCA Version 1.0.1 functionality, you must
deploy the SCA asset or application to a Version 8.0 target or to a feature pack Version 1.0.1.0 target.
Version 1.0.1 functionality includes:
v Java Message Service (JMS) bindings
v Atom bindings
v HTTP bindings with a wire format of JSON-RPC
v Java Platform, Enterprise Edition (Java EE) integration modules (implementation.jee,

implementation.web, or implementation.ejb components)
v SCA Spring component implementations
v OSGi applications as SCA component implementations
v Service Data Objects (SDO) composites

Optionally, determine what assets or other files that you want to add to your business-level application and
whether your application files can run on your deployment targets.

About this task

You can create business-level applications using the administrative console, the wsadmin tool, or
programming.

You create SCA business-level applications the same way as for non-SCA business-level applications.
However, when you use an SCA asset in a business-level application, function that applies only to
applications that use SCA composites becomes available. For example, you can access administrative
console pages that apply only to applications that use SCA composites.

Chapter 11. Deploying and administering business-level applications 399

Procedure
1. Select a way to create your business-level application.

 Table 62. Ways to create SCA business-level applications. You can create a business-level application using the
administrative console, wsadmin scripts, or programming.

Option Method

Administrative console
business-level application creation
wizard

See “Creating SCA business-level
applications with the console” on
page 401.

Click Applications > New Application > New Business Level Application and
follow instructions in the wizard.

For example use of the console to create a business-level application that has
an SCA asset, see “Example: Creating an SCA business-level application with
the console” on page 430.

2. Create your business-level application using the administrative console, wsadmin, or programming.

3. Save the changes to your administrative configuration.

Results

The name of the application is shown in the list on the Business-level applications page.

What to do next

After you create a business-level application, you can do the following to add composition units to it:

1. Import any SCA or other assets needed by your business-level application.

2. Add assets, shared libraries, or other business-level applications as composition units.

If the asset or application uses Feature Pack for SCA Version 1.0.1 functionality, specify a Version 8.0
target or a feature pack Version 1.0.1.0 target.

For applications that use implementation.osgiapp, add the enterprise bundle archive (EBA) asset as a
composition unit to the business-level application before adding the SCA asset as a composition unit.

3. Save the changes to your administrative configuration.

4. Start the business-level application.

If the application does not run as desired, edit the application configuration, then save and run it again.

If the business-level application does not start, ensure that the deployment target to which the application
maps is running and try starting the application again. If SCA composite assets do not start, ensure that
each asset is mapped to a deployment target that supports SCA composites.

If an asset composition unit uses an Enterprise JavaBeans (EJB) binding and does not start because it
has a non-WebSphere target of "null", delete the asset composition unit and add it again to the
business-level application. Specify a target that supports SCA composites when you add the asset to the
business-level application. You cannot change the target after deployment.

If the META-INF/sca-deployables directory has multiple SCA composite files and the application does not
start because the product cannot obtain the CompUnitInfoLoader value, place only the file that contains
the composite in the META-INF/sca-deployables directory. You can place the other composite files
anywhere else within the archive.

If the SCA application uses security, the target must be in the global security domain.

For applications that use implementation.osgiapp in multiple-node environments, target the EBA
composition unit to the same server or cluster as the SCA composition unit.

400 Administering applications and their environment

Creating SCA business-level applications with the console
You can create an empty business-level application and then add Service Component Architecture (SCA)
assets, shared libraries, or business-level applications as composition units to the empty business-level
application.

Before you begin

Configure the target application server. You must deploy SCA composite assets of a business-level
application to a Version 8.0 server (target) or to a Version 7.0 target that is enabled for the Feature Pack
for SCA.

If your SCA composite or application uses Feature Pack for SCA Version 1.0.1 functionality, you must
deploy the SCA asset or application to a Version 8.0 target or to a feature pack Version 1.0.1.0 target.
Version 1.0.1 functionality includes:
v Java Message Service (JMS) bindings
v Atom bindings
v HTTP bindings with a wire format of JSON-RPC
v Java Platform, Enterprise Edition (Java EE) integration modules (implementation.jee,

implementation.web, or implementation.ejb components)
v SCA Spring component implementations
v OSGi applications as SCA component implementations
v Service Data Objects (SDO) composites

Also, determine an application name. Optionally, determine which assets, shared libraries, or
business-level applications that the new business-level application needs.

About this task

You can create a business-level application that has SCA assets using the administrative console.
Alternatively, you can use the wsadmin scripting tool or programming.

You can add an asset or shared library composition unit to multiple business-level applications. However,
each composition unit for the same asset must have a unique composition unit name. You can add a
business-level application composition unit to more than one business-level application.

Procedure
1. Create an empty business-level application.

a. Click Applications > New Application > New Business-level Application.

b. On the New business-level application page, specify a unique name for the application and a
description, and then click Apply.

c. On the business-level application settings page, click Save.

The name and description are shown in the list of applications on the Business-level applications page.
Because the application is empty, its status is Unknown.

2. Add one SCA asset to your business-level application. The product adds the asset as a composition
unit of your business-level application.

a. Import the SCA asset.

b. Go to the business-level application settings page.

Click Applications > Application Types > Business-level applications > application_name.

c. On the business-level application settings page, specify the type of composition unit to add.

Although you can add an asset, shared library, or business-level application to your business-level
application, the logic is in your SCA asset. Add the SCA asset as a composition unit.

Under Deployed assets, click Add > Add Asset.

Chapter 11. Deploying and administering business-level applications 401

d. On the Add page, select one unit from the list of available units, and then click Continue.

On the Add page, you might be able to select multiple deployable SCA composites. However, you
can deploy only one deployable SCA composite at a time. Select only one unit and click Continue.
If you select multiple units, the product deploys only one of those units.

For applications that use implementation.osgiapp, add the enterprise bundle archive (EBA) asset
as a composition unit to the business-level application before adding the SCA asset as a
composition unit.

e. On the Set options page, change the composition unit settings as needed, and then click Next.

This page is not shown if you have multiple deployable unit assets.

f. On the Map composition unit to a target page, specify one target server that supports SCA
composites, and then click Next.

The target server can be an existing cluster. To map the composition unit to a cluster, select the
existing cluster from the Available list, click Add, and then click Next. The cluster name is shown in
the Current targets list as WebSphere:cluster=cluster_name.

If you are adding an SCA asset that uses security, specify a target server that is in the global
security domain.

For applications that use implementation.osgiapp in multiple-node environments, target the EBA
composition unit to the same server as the SCA composition unit.

This page is not shown when you add a business-level application.

g. On the Relationship options page, click Next to accept the default values.

The relationships in SCA applications are set at the asset level. Either the asset must be defined
as an SCA contribution or, in the asset view, a relationship must be set to another asset. When a
relationship is set to another asset manually at the asset level, the relationship only exposes all the
packages within the asset to the other depended asset. The namespaces are not exposed.

This page is shown only for SCA assets that have multiple deployable or composition units.

h. On the Set Java EE composition unit relationship page, associate SCA components with Java EE
applications and then click Next.

Java EE applications are also known as enterprise applications or enterprise archive (EAR) files.
An SCA composite definition can specify an EAR file to use on the archive attribute of an
implementation.jee tag. Use this page to associate SCA components in this business-level
application to the EAR files named in the composite definition. If your SCA application does not use
EAR files, take the default values and click Next.

i. On the Map security roles to users or groups page, specify security roles for users or groups as
needed, and then click Next.

This page is only shown for SCA assets that use security.

j. On the Map RunAs roles to users page, map a user identity and password to RunAs roles as
needed, and then click Next.

This page is only shown for SCA assets that use security.

k. On the Map virtual host page, specify a virtual host that hosts web services for each SCA
composite, and then click Next. By default, composites map to default_host.

This page is only shown for SCA assets that contain a web service binding.

l. On the Attach policy set page, attach a policy set and assign policy set bindings as needed, and
then click Next.

This page is only shown for SCA assets that use web services.

m. On the Summary page, click Finish. Several messages are displayed, indicating whether the
product adds the unit to the business-level application successfully. A message having the format
Completed res=[WebSphere:cuname=unit_name] indicates that the addition is successful. Click
Manage application.

If the product adds the unit successfully, the name of the unit is shown in a list of deployed assets
on the business-level application settings page.

402 Administering applications and their environment

If the unit addition is not successful, read the messages and add the unit again. Correct the
problems noted in the messages.

n. On the Adding composition unit to the business-level application page, click Save.

3. Optional: Add one or more assets, shared libraries, or business-level applications to your
business-level application.

Repeat Step 2 to add another asset or add a shared library or business-level application.

Results

A business-level application that contains the specified composition units.

What to do next

After you create the application, save the changes to your configuration and start the application as
needed.

If a composite asset is deployed to a target that does not support SCA composites, the SCA composite
does not start. You must deploy an SCA asset to a target that supports SCA composites.

Map virtual host settings for SCA composites
Use this page to map Service Component Architecture (SCA) composites that use a web service binding
to a virtual host. You must map the composites to the virtual host that hosts the web services.

This administrative console page displays in the business-level application creation and update wizards. To
view the Map virtual host page, the asset that you add to a business-level application must contain a web
service binding. To view this page, do the following:
1. Import an asset that contains a web service binding.
2. Create a business-level application to which to add the asset.
3. Click Applications > Application Types > Business-level applications > application_name > Add

> Add Asset.
4. On the Add composition unit page, select the asset that contains a web service binding, and click

Continue.
5. On the Set options page, change the settings as needed and click Next.
6. On the Map composition unit to a target page, specify target servers as needed and click Next.
7. On the Define relationship with existing composition units page, change the settings as needed and

click Next.
8. Continue changing settings as needed and click Next on any other pages until the Map virtual host

page is displayed in the wizard.

Composite Name:

Specifies the name of the composite that uses a web service binding in the SCA artifact.

Virtual Host:

Specifies a virtual host to associate with the composite.

 Select the virtual host that hosts the web services for the composite. By default, the product associates a
component with the default_host virtual host.

Set Java EE composition unit relationships for SCA composites
Use this page to associate Service Component Architecture (SCA) components in an SCA composite with
Java Platform, Enterprise Edition (Java EE) applications, otherwise known as enterprise applications or
enterprise archive (EAR) files.

Chapter 11. Deploying and administering business-level applications 403

An SCA composite definition can define Java EE applications as component implementations. You can
define an EAR asset on an archive attribute of the implementation.jee tag for the component and use
the application deployed from the asset as its implementation. On this page, associate SCA components in
a business-level application with the EAR files named in the composite definition.

This administrative console page displays in the business-level application creation and update wizards. To
view the Set Java EE composition unit relationship page, the asset that you add to a business-level
application must contain an SCA composite. To view this page, complete the following actions:

1. Import an asset that contains an SCA composite.

2. Create a business-level application to which to add the asset.

3. Click Applications > Application Types > Business-level applications > application_name > Add
> Add Asset.

4. On the Add composition unit page, select the SCA composite asset and click Continue.

5. On the Set options page, change the settings as needed and click Next.

6. On the Map composition unit to a target page, specify target servers as needed and click Next.

7. On the Define relationship with existing composition units page, change the settings as needed and
click Next.

8. Continue changing settings as needed and click Next on any other pages until the Set Java EE
composition unit relationship page is displayed in the wizard.

Component Name:

Specifies the name of an SCA component in the SCA composite that you are deploying.

EAR Asset Name:

Specifies the name of the enterprise application, or EAR file, that the SCA component uses.

 An EAR asset is an EAR file that has been imported as an asset. The EAR asset name must match the
archive attribute on the implementation.jee tag in the SCA composite definition.

Associated Java EE Composition Unit:

Specifies the composition unit name of the EAR asset. Select the Java EE composition unit that the SCA
component uses. To associate an SCA component with an EAR file, the EAR file must be a composition
unit of your SCA business-level application.

 If the Java EE composition unit that you want to associate with an SCA component is not in the drop-down
list, import the EAR file that is named by the archive attribute on the implementation.jee tag of the SCA
composite definition as an asset. Then, add the EAR asset as a composition unit of this business-level
application.

You can use the Import an asset and Add an asset links on this page to add EAR files as assets and
make them composition units of your SCA business-level application.

Attach policy set settings
Use this page to attach a policy set and assign policy set bindings for the composite defined in a Service
Component Architecture (SCA) application.

This administrative console page displays in the Create new business-level application wizard. To have the
Attach policy set page in the wizard, the SCA component in the asset that you add to a business-level
application must use a web service binding, binding.ws, and the composite file or annotation must specify
the intents or policy sets. To view this page, do the following:

404 Administering applications and their environment

1. Import an asset that uses a web service binding and a composite file or annotation that specifies the
intents or policy sets.

2. Create a business-level application to which to add the asset.
3. Click Applications > Application Types > Business-level applications > application_name > Add

> Add Asset.
4. On the Add composition unit page, select the asset that uses a web service binding, and click

Continue.
5. On the Set options page, change the settings as needed and click Next.
6. On the Map composition unit to a target page, specify target servers as needed and click Next.
7. On the Define relationship with existing composition units page, change the settings as needed and

click Next.
8. Continue changing settings as needed and click Next on any other pages until the Attach policy set

page is displayed in the wizard.

To attach or detach a policy set or to assign a policy set binding, do the following:

1. Select a composite, component, service, reference, or binding from Name. The Name list is nested,
indicating parent-child relationships. When you select a parent, the children are automatically selected.

2. Click the desired button.

 Table 63. Button descriptions. Use the buttons to attach or detach policy sets and to assign policy set bindings.

Button Resulting action

Attach Attaches a policy set to the selected composite, component, service, reference, or binding.

When the Include default policy sets option is not enabled, the options for this button
contain user-created policy sets only.

When the Include default policy sets option is not enabled and no user-created policy
sets exist, then there are no button options. You can select Include default policy sets to
display the default policy set options.

When the Include default policy sets option is enabled, the options for this button
include both default policy sets and any user-created policy sets.

To attach a policy set, select a composite, component, service, reference, or binding from
Name and click Attach > policy_set_option.

To close the menu list, click Attach.

Detach Policy Set Detaches a policy set from the selected composite, component, service, reference, or
binding.

Assign Service Policy
Set Binding

Assigns a service policy set binding to the selected composite, component, service,
reference, or binding. There are two default options:

Default specifies to assign the default service policy set binding.

Provider Sample specifies to assign a policy set binding that is provided with the product
to the service.

If you are deploying the composition unit to a server or cluster that belongs to a security
domain, the list of policy set bindings consists of bindings that have been defined in the
security domain to which the composition unit is being deployed.

Chapter 11. Deploying and administering business-level applications 405

Table 63. Button descriptions (continued). Use the buttons to attach or detach policy sets and to assign policy set
bindings.

Button Resulting action

Assign Reference
Policy Set Binding

Assigns a reference policy set binding to the selected composite, component, service,
reference, or binding. There are two default options:

Default specifies to assign the default reference policy set binding.

Client Sample specifies to assign a policy set binding that is provided with the product to
the reference.

If you are deploying the composition unit to a server or cluster that belongs to a security
domain, the list of policy set bindings consists of bindings that have been defined in the
security domain to which the composition unit is being deployed.

Include default policy sets:

Specifies whether to include default policy sets. Default policy sets specify common quality of service
(QoS) behavior for generic message format.

 Before selecting this option, determine whether the default policy sets provide adequate QoS
characteristics for your services.

By default, this option is not enabled.

Name:

Specifies a composite, component, service, reference, or binding in the artifact.

 The Name list is nested, indicating parent-child relationships. When you select a parent, the children are
automatically selected.

Intents:

Specifies the aggregate of the intents from the composite file and the annotations. SCA intents are used to
describe the abstract policy requirements of a component.

 The intents shown include any intents inherited from a parent.

Matched Policy Sets:

Specifies policy sets that potentially satisfy the intents.

 You can include default policy sets by enabling the Include default policy sets check box. To exclude
default policy sets, deselect the check box.

Attached Policy Set:

Specifies attached policy sets. If no value is shown, then the composite, component, service, reference, or
binding is not attached to a policy set.

 To attach a policy set, select a composite, component, service, reference, or binding and click an Attach
option.

To detach a policy set, use Detach Policy Set. You can detach any policy set, including pre-attached
policy sets.

406 Administering applications and their environment

Policy Set Binding:

Specifies service and reference policy set bindings. If no value is shown, then the composite, component,
service, reference, or binding is not assigned to a policy set binding.

 To assign a policy set binding, select a composite, component, service, reference, or binding and click an
Assign Service Policy Set Binding or Assign Reference Policy Set Binding option.

To reset the bindings, select the Default option. For example, select Assign Service Policy Set Binding
> Default or Assign Reference Policy Set Binding > Default.

Map security roles to users or groups collection for SCA composites
Use this page to view and manage mappings of security roles to users and groups that are used with the
Service Component Architecture (SCA) composites.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > deployed_asset_composition_unit_name > Map security roles to
users or groups. This page is the same as the Map security roles to users or groups page in the Create
new business-level application wizard. To view this page, your composition unit must support SCA security.

Different roles can have different security authorizations. Mapping users or groups to a role authorizes
those users or groups to access applications defined by the role. Users, groups, and roles are defined
when an application is installed or configured.

To map a role to a user or group, enable the Select check box beside the role name in the list and click a
button. On the displayed page, specify one or more users or groups to map to the role.

 Table 64. Button descriptions. Use the buttons to map security roles to users, groups, or special subjects.

Button Resulting action

Map Users Displays the Map users or groups page on which you can specify the users to have the
selected security role.

Map Groups Displays the Map users or groups page on which you can specify the groups to have the
selected security role.

Map Special Subjects Maps special subjects according to the option that you select:

None specifies to map none of the special subjects to the role.

All Authenticated in Application's Realm specifies to map all of the authenticated users
to a specified role. When you map all authenticated users to a specified role, all of the
valid users in the current registry who have been authenticated can access resources that
are protected by this role.

All Authenticated in Trusted Realms specifies to map all of the authenticated users in
the trusted realms to a specified role. This option gives all authenticated users who belong
to the user registry access to the application's realm and all authenticated users who
belong to user registries access to realms which are trusted by the current security
domain.

Everyone specifies to map everyone to a specified role. When you map everyone to a
role, anyone can access the resources that are protected by this role and, essentially,
there is no security.

Role:

Specifies a security role.

 Special Subjects:

Chapter 11. Deploying and administering business-level applications 407

Specifies which special subjects are mapped to the security role. This option applies only when an
application uses multiple realms.

None Specifies to map none of the special subjects to the role.

All Authenticated in Application's Realm
Specifies to map all of the authenticated users to a specified role. When you map all authenticated
users to a specified role, all of the valid users in the current registry who have been authenticated
can access resources that are protected by this role.

All Authenticated in Trusted Realms
Specifies to map all of the authenticated users in the trusted realms to a specified role. All
authenticated users who belong to the user registry that is mapped to the application's realm and
all authenticated users who belong to user registries that are mapped to realms which are trusted
by the current security domain are successfully authorized.

Everyone
Specifies to map everyone to a specified role. When you map everyone to a role, anyone can
access the resources that are protected by this role and, essentially, there is no security.

 To change the value, select the role, click Map Special Subjects, and select an option.

Users:

Lists the users that are mapped to the specified role within this application.

 Users from the non-default realm are displayed as user@realm.

Groups:

Lists the groups that are mapped to this specified role within this application.

 Map RunAs roles to users collection for SCA composites
Use this page to map a specified user identity and password to a RunAs role for a Service Component
Architecture (SCA) composite. This page enables you to specify application-specific privileges for
individual users to run specific tasks using another user identity.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > deployed_asset_composition_unit_name > Map RunAs roles to
users. This page is the same as the Map RunAs roles to users page in the Create new business-level
application wizard.

To view this page, the components in your composition unit must contain predefined RunAs roles and
support SCA security. RunAs roles are used by components that need to run as a particular role for
recognition while interacting with another component.

Username:

Specifies a user name for the RunAs role user.

 This user already maps to the role specified in the Mapping users and groups to roles page. You can map
the user to its appropriate role by either mapping the user to that role directly or mapping a group that
contains the user to that role. After you specify the user name and password for the user and select a
RunAs role, click Apply.

Password:

Specifies the password for the RunAs user.

408 Administering applications and their environment

Role:

Specifies a security role for a user within this application.

 The authorization policy is only enforced when security is enabled.

User:

Lists the user that is mapped to the specified role within this application.

 Composition unit settings
Use this page to view composition unit settings and to change the configuration properties of a
composition unit. The specific settings that are available for configuration can vary, depending upon the
contents of the composition unit. For example, there are additional configuration settings if the asset
contained in the composition unit is an SCA composite, or an OSGi application.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > deployed_asset_name. The deployed asset is a composition unit of
the business-level application.

v “Settings that are common to all composition units” on page 393

v “Additional composition unit settings for SCA composites” on page 395

v “Additional composition unit settings for OSGi applications” on page 395

Settings that are common to all composition units

Name:

Specifies a logical name for the composition unit. You cannot change the name on this page.

Description:

Specifies a description for the composition unit.

Backing ID:

Specifies a unique identifier for a composition unit that is registered in the application management
domain.

 The identifier has the format WebSphere:unit_typename=unit_name. For example, for the MyApp.jar asset,
the backing identifier might be WebSphere:assetname=MyApp.jar.

You cannot change the identifier on this page.

 Data type String
Units Configuration unit identifier

Starting weight:

Specifies the order in which composition units are started when the server starts. The starting weight is
like the startup order. The composition unit with the lowest starting weight is started first.

 The value that you set for Starting weight determines the importance or weight of a composition unit
within the business level application. For example, for the most important composition unit within a
business-level application, specify 1 for Starting weight. For the next most important composition unit
within the business-level application, specify 2 for Starting weight, and so on.

Chapter 11. Deploying and administering business-level applications 409

Note: Assign composition units upon which other composition units depend a lower starting weight than
the dependent composition units. If a composition unit is not started and running before its
dependent composition units, java.lang.ClassNotFoundException errors might result when you
attempt to start the application or its modules.

 Data type Integer
Default 1
Range 0 to 2147483647

Start on distribution:

Specifies whether to start the composition unit when the product distributes the composition unit to other
locations.

 The default is not to start the composition unit.

This setting applies to asset or shared library composition units. This setting does not apply when the
composition unit is a business-level application.

 Data type Boolean
Default false

Recycle behavior on update:

Specifies whether the product restarts the composition unit after the composition unit is updated.

 The default is to restart the composition unit after partial updating of the composition unit.

This setting applies to asset or shared library composition units. This setting does not apply when the
composition unit is a business-level application.

 Table 65. Option descriptions. Specifies whether to restart an asset or shared library composition unit.

Option Description

ALL Restarts the composition unit after the entire composition unit is updated

DEFAULT Restarts the composition unit after the part of the composition unit is updated

NONE Does not restart the composition unit after the composition unit is updated

Target mapping:

Specifies the current targets for the composition unit.

 To change the deployment targets, click Modify targets then select a different set of deployment targets
from the list of available clusters and servers.

For SCA, you must specify only a single server or cluster as the target. Do not map an SCA composition
unit to multiple servers or clusters.

Note: When you change the deployment target of composition units in a business-level application, the
startup order changes to the same order in which you remap composition unit targets, even if the
starting weight for all composition units is set to 1. To avoid java.lang.ClassNotFoundException
errors when attempting to start the remapped composition units, remap targets for composition units

410 Administering applications and their environment

in the same order as that used to add the composition units or, after remapping, check starting
weights to ensure that composition units upon which other composition units depend are started
first.

Additional composition unit settings for SCA composites

SCA composite components:

Specifies the component names and component implementations of SCA composites in the application.

 Table 66. Column descriptions. Provides the name of each component and the name of the class or code
implementing the component.

Column Description

Component Name Specifies the name of a component associated with the SCA composite.

Component Implementation Specifies the name of the class or code implementing the component.

None indicates that the SCA composite does not have defined components.

SCA composite properties:

Specifies the names and values of SCA composite properties in the application.

 Table 67. Column descriptions. Provides the name and value of SCA composite properties.

Column Description

Property Name Specifies the name of an SCA composite property.

Property Value Specifies the value of the property.

None indicates that the SCA composite does not have defined name-value properties.

SCA composite wires:

Specifies the sources and targets of wires in the SCA composite.

 Table 68. Column descriptions. Provides the source and target of wires.

Column Description

Wire Source Specifies the source of a wire in the SCA composite.

Wire Target Specifies the target of the wire.

None indicates that the SCA composite does not have defined wires.

Additional composition unit settings for OSGi applications

OSGi application deployment status:

The deployment status shows whether updates are available for the EBA asset that is contained in the
composition unit. If a new version of an EBA asset is available, and all bundle downloads for the asset are
complete, you can update the EBA composition unit so that the business-level application uses the latest
configuration. You do not have to update the composition unit every time you update the asset.

 There are four distinct deployment statuses for an EBA composition unit:

Chapter 11. Deploying and administering business-level applications 411

Using latest OSGi application deployment.
The composition unit is running the latest configuration of the backing asset and any CBA
extensions.

New OSGi application deployment not yet available because it requires bundles that are still
downloading.

The backing asset is currently undergoing a bundle version update, or bundles are downloading
for a CBA extension.

New OSGi application deployment available.
The backing asset is available at a newer configuration than the configuration that is currently
running in this composition unit, or a CBA extension has been added or replaced.

New OSGi application deployment cannot be applied because bundle downloads have failed.
The last bundle version update for the backing asset or CBA extension did not succeed, and
therefore the newer configuration is not yet available.

If the status is “New OSGi application deployment available”, the Update to latest deployment ... button
is available. Click this button to bring the EBA composition unit up-to-date and run the updated
business-level application. If any of the updates need configuration changes, a wizard prompts you to
update the configuration information.

When you save the changes to the EBA composition unit, the associated business-level application is
updated to use the new configuration. If the business-level application is running, the bundle and
configuration updates are applied immediately. If possible (that is, depending on the nature of the updates)
the system applies the updates without restarting the application. Updates that pull in new use bundles at
run time prompt a full restart of the application. Updates that pull in new provision bundles might also
prompt a full application restart.

JMS binding settings for SCA composites
Use this page to view property settings for a Java Message Service (JMS) binding that connects Service
Component Architecture (SCA) composite references or services. Also use this page to edit resources of
the JMS binding. The settings shown on this page define a binding.jms element.

To view this administrative console page, your composition unit must support a JMS binding reference or
service. In the administrative console, do the following:

1. Click Applications > Application Types > Business-level applications > application_name >
deployed_asset_composition_unit_name.

2. From the composition unit settings page for SCA composites, select to view references or services:

v For an SCA component reference, click SCA Composite Components >
SCA_component_reference_name > SCA Component References > reference_name >
Bindings > JMS binding.

v For an SCA component service, click SCA Composite Components >
SCA_component_service_name > SCA Component Services > service_name > Bindings >
JMS binding.

You can use a JMS binding to identify existing JMS resources using Java Naming and Directory Interface
(JNDI) names.
v General properties (read-only)
v Resources
v Response resources
v Request header properties for a reference (read-only)
v “Response header properties” on page 416 for a service (read-only)

412 Administering applications and their environment

General properties
Specifies property settings that apply to all binding.jms elements. The settings pertain to both services
and references. You cannot edit the settings.

JMS binding URI
Specifies a uniform resource identifier (URI) that identifies properties such as the destination,
connection factory and activation specification to be used to send or receive the JMS message.

 The URI has the following format:
jms: jms_destination?
connectionFactoryName=connection_factory_name &
destinationType={queue|topic} &
deliveryMode=delivery_mode &
timeToLive=time_to_live &
priority=priority &
user_property=user_property_value & ...

Correlation schema
Specifies the correlation scheme used when sending reply or callback messages.

 Valid values are requestmsgidtocorrelid (the default), requestcorrelidtocorrelid, and none.

Initial context factory
Specifies the name of the initial context factory used to obtain a JNDI initial context.

 This setting is optional. If no factory is specified, the WebSphere Application Server initial context
factory is used.

JNDI URL
Specifies the uniform resource locator (URL) for the JNDI provider.

Request connection
Specifies a binding.jms element that is present in a composite definition file.

 A request is a message that is sent to an SCA service or sent by an SCA reference.

Response connection
Specifies a binding.jms element that is present in a composite definition file.

 A response is a message received by a reference (that is, a reply from an invoked service) or a
message sent by a service in response to a previous request message. A response in SCA is
always a reply to a previous request.

Request wire format
Specifies the component definition element name of a wire that connects SCA composites.

 For example, wireFormat.jmsObject.

A request is a message that is sent to an SCA service or sent by an SCA reference.

Response wire format
Specifies the component definition element name of a wire that connects SCA composites.

 For example, wireFormat.jmsObject.

A response is a message received by a reference (that is, a reply from an invoked service) or a
message sent by a service in response to a previous request message. A response in SCA is
always a reply to a previous request.

Resources
Specifies resources for the JMS binding. You can both read and edit resource settings for Destination
JNDI name, Activation specification JNDI name, and Connection factory JNDI name. All other
resource settings are read-only.

Chapter 11. Deploying and administering business-level applications 413

Destination type
Specifies the type of the request destination. Permitted values are queue (the default value) and
topic. When topic is specified, then all the operations in the interface that correspond to the
binding must be one-way.

 This setting is for both services and references and is read-only.

@type is the destination type.

Destination JNDI name
Specifies an optional parameter that gives the JNDI name of a destination to which the binding is
connected. For example, jms/InvokeService_Callback.

 You can set a destination name for both services and references.

@name is the JNDI name of the destination.

Destination create
Specifies whether to create a destination for the binding.

 Valid values are ifnotexist (the default), always, and never. When the value is ifnotexist, the
product dynamically creates destination resources necessary for the SCA composite, if those
resources do not exist and relate to the default messaging provider. The product creates the
resources when adding the SCA composite to a business-level application.

The product validates a composite definition when adding an SCA asset to a business-level
application. If the validation results in an error, the product does not add the asset to the
application. If the value is always and the destination exists, deployment stops with an error.

Activation specification JNDI name
Specifies the activation specification that the binding uses to connect to a JMS destination to
process request messages. The value must be a JNDI name.

 You can set an activation specification for services only.

The attributes of this element follow those defined for the destination element.

Activation specification create
Specifies whether to create an activation specification for the binding. You can create an activation
specification for services only.

 Valid values are ifnotexist (the default), always, and never. When the value is ifnotexist, the
product dynamically creates activation specification resources necessary for the SCA composite, if
those resources do not exist and relate to the default messaging provider. If the value is always
and the activation specification exists when the SCA composite is added to a business-level
application, deployment stops with an error.

Connection factory JNDI name
Specifies the connection factory that the binding uses to process request messages. The value
must be a JNDI name.

 You can set a connection factory JNDI name for references only.

The attributes of this property follow those defined for the destination element. This property is
mutually exclusive with the activationSpec property.

Connection factory create
Specifies whether to create a connection factory for the binding. You can create a connection
factory for references only.

 Valid values are ifnotexist (the default), always, and never. When the value is ifnotexist, the
product dynamically creates connection factory resources necessary for the SCA composite, if
those resources do not exist and relate to the default messaging provider. If the value is always
and the connection factory exists when the SCA composite is added to a business-level
application, deployment stops with an error.

414 Administering applications and their environment

Response resources
Specifies the resources used for handling response messages, receiving responses for a reference, and
for sending responses from a service. A response element defines the destination and either the
connection factory or activation specification elements for handling response messages.

Response resources pertain to both services and references. You can both read and edit resource settings
for Response destination JNDI name and Response connection factory JNDI name. All other resource
settings are read-only.

Response destination type
Specifies the type of the response destination. Permitted values are queue (the default value) and
topic. When topic is specified, then all the operations in the interface that corresponds to the
binding must be one-way.

 This setting is for both services and references and is read-only.

Response destination JNDI name
Specifies the destination that is to be used to process responses by this binding. Attributes are the
same as for the parent destination element. For example, jms/InvokeService_Response.

 You can set a destination name for both services and references.

Response destination create
Specifies whether to create a response destination for the binding.

 Valid values are ifnotexist (the default), always, and never. When the value is ifnotexist, the
product dynamically creates response destination resources necessary for the SCA composite, if
those resources do not exist and relate to the default messaging provider. If the value is always
and the response destination exists when the SCA composite is added to a business-level
application, deployment stops with an error.

Response connection factory JNDI name
Specifies the connection factory that the binding uses to process response messages. The value
must be a JNDI name.

 You can set a response connection factory for both services and references.

The attributes of this element follow those defined for the destination element. This element is
mutually exclusive with the activationSpec element.

Response connection factory create
Specifies whether to create a response connection factory that the binding can use to process
response messages.

 Valid values are ifnotexist (the default), always, and never. When the value is ifnotexist, the
product dynamically creates response connection factory resources necessary for the SCA
composite, if those resources do not exist and relate to the default messaging provider. If the
value is always and the response connection factory exists when the SCA composite is added to a
business-level application, deployment stops with an error.

Request header properties
Specifies JMS header properties that apply to requests from a reference. You cannot edit the header
properties.

If a JMS header property is specified, the property must not appear in the URI.

JMS type
Specifies a JMS type to use in the JMS header property using @JMSType.

JMS correlation ID
Specifies a JMS correlation identification to use in the JMS header property using
@JMSCorrelationID.

Chapter 11. Deploying and administering business-level applications 415

JMS delivery mode
Specifies a JMS delivery mode to use in the JMS header property using @JMSDeliveryMode.

JMS time to live
Specifies a JMS time to live to use in the JMS header property using @JMSTimeToLive.

JMS priority
Specifies a JMS priority to use in the JMS header property using @JMSPriority.

Header property
Specifies a value to use for the specified JMS user property.

Response header properties
Specifies JMS header properties that apply to responses from a service for outbound messages. You
cannot edit the header properties.

If a JMS header property is specified, the property must not appear in the URI.

JMS type
Specifies a JMS type to use in the JMS header property using @JMSType.

JMS correlation ID
Specifies a JMS correlation identification to use in the JMS header property using
@JMSCorrelationID.

JMS delivery mode
Specifies a JMS delivery mode to use in the JMS header property using @JMSDeliveryMode.

JMS time to live
Specifies a JMS time to live to use in the JMS header property using @JMSTimeToLive.

JMS priority
Specifies a JMS priority to use in the JMS header property using @JMSPriority.

Header property
Specifies a value to use for the specified JMS user property.

Provide HTTP endpoint URL information settings for SCA composites
Use this page to specify endpoint Universal Resource Locator (URL) prefix information for Service
Component Architecture (SCA) composites accessed by web service bindings. The information is used to
form complete endpoint addresses.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > deployed_asset_composition_unit_name > Provide HTTP
endpoint URL information.

Default SCA URL prefixes
Shows the predefined default endpoint URL prefixes for SCA composites that are accessed by Hypertext
Transfer Protocol (HTTP) or Hypertext Transfer Protocol Secure (HTTPS) for service endpoints.

The field shows both unsecure and secure custom endpoint URL values separated by a space. For
example:
http://theHost:9081 https://theHost:9044

For each endpoint URL prefix, the format is protocol://host_name:port_number. The protocol is either
http or https. In this example, host_name is theHost and port_number is the port used in the endpoint
URL.

To use the default endpoint URL prefixes, deselect the Override default SCA URL prefixes check box.

416 Administering applications and their environment

Override default SCA URL prefixes
Specifies whether to use a custom endpoint URL prefix when the service has a proxied front end. The
endpoint URL prefixes are those of the proxy server. You must specify proxied endpoints when deploying
services that use the web service binding in a clustered configuration.

To specify a custom endpoint URL prefix, do the following:

1. Select the Override default SCA URL prefixes check box.

2. For HTTP host name, specify the host name of the unsecure custom endpoint. For example: myHost

3. For HTTP port, specify the port of the unsecure custom endpoint. For example: 9081

4. For HTTPS host name, specify the host name of the secure custom endpoint. For example: myHost

5. For HTTPS port, specify the port of the secure custom endpoint. For example: 9044

6. Click OK.

SCA composite component settings
Use this page to view and edit the attributes associated with a Service Component Architecture (SCA)
component.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > deployed_asset_name > SCA_composite_component_name.

Components are configured instances of implementations. Components provide and consume services.
More than one component can use and configure the same implementation, where each component
configures the implementation differently. For example each component might configure a reference of the
same implementation to consume a different service.

An implementation defines the aspects configurable by a component in the form of a component type. The
component type is in effect a description of the contract honored by the implementation.

A reference represents a requirement that the implementation has on a service provided by another
component.

Component name
Specifies the component name of the attribute.

Implementation
Specifies the name of the class or configuration file that contains the component implementation.

For implementation.java, the Java class is shown. For other implementations, the name of the resource
identified by the implementation is shown:

v For implementation.jee, the archive name is shown.

v For implementation.spring, the application context file is shown.

v For implementation.osgiapp, the application symbolic name and version is shown.

Type
Specifies the type of attribute. In this case, the type is Component.

SCA component services
Specifies the names of the services.

SCA component references
Specifies the names and targets of component references. You can edit the reference target for
customization.

Chapter 11. Deploying and administering business-level applications 417

SCA component properties
Specifies the Property Input Source and Property Value for each property.

Options for Property Input Source include the following:

v XPath indicates the source attribute of the property.

v File indicates the file attribute of the property.

v Value indicates the property element value.

SCA component reference settings
Use this page to view and edit the attributes associated with a Service Component Architecture (SCA)
component reference.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > deployed_asset_composition_unit_name >
SCA_composite_component_name > reference_name.

SCA component references within an implementation represent links to services the implementation uses
that must be provided by other components in the SCA system. For a composite, you can wire references
of components within the composite (component references) to references of the composite (composite
references), indicating that the component references must be resolved by services outside the composite.

References use bindings to describe the access methods used to invoke the services.

Under Additional Properties, click View domain to view a list of services available in the current cell or
domain. This can be helpful when updating the Target setting value, for example.

Reference name
Specifies the reference name of the attribute.

Type
Specifies the type of attribute. In this case, it is Reference.

Reference target URI
Specifies one or more target service uniform resource identifiers (URIs), depending on the multiplicity
setting. Each target wires the reference to a component service that resolves the reference. Targets can
contain a list of targets separated by a space, in the form target1 target2.

Bindings
Specifies the URI of the binding.

Supported bindings include the SCA default binding, enterprise bean (EJB) binding, web service binding,
Java Message Service (JMS) binding, Atom binding, and HTTP binding.

SCA component service settings
Use this page to view and edit the attributes associated with a component service.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > deployed_asset_composition_unit_name >
SCA_composite_component_name > service_name.

Services are used to publish services provided by implementations, so that they are addressable by other
components.

418 Administering applications and their environment

A service published by a component can be provided by a service of a component defined within the
component, or it can be provided by a component reference. The latter case allows the republication of a
service with a new address or new bindings.

Service name
Specifies the service name of the attribute.

Type
Specifies the type of attribute. In this case, Service.

Work manager JNDI name
Specifies the Java Naming and Directory Interface (JNDI) name of the work manager.

Bindings
Specifies the uniform resource identifier (URI) of the binding.

Supported bindings include the SCA default binding, enterprise bean (EJB) binding, web service binding,
Java Message Service (JMS) binding, Atom binding, and HTTP binding.

Service provider policy sets and bindings collection for SCA
composites
Use this page to attach and detach policy sets to a composition unit, a service provider, its endpoints, or
operations of a Service Component Architecture (SCA) composite. You can select the default bindings,
create new application-specific bindings, or use bindings that you created for an attached policy set. You
can view or change whether the service provider can share its current policy configuration.

To view this administrative console page, your composition unit must use web services and support SCA.
Click Applications > Application Types > Business-level applications > application_name >
deployed_asset_composition_unit_name > Service provider policy sets and bindings .

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

To attach or detach a policy set or binding, do the following:

1. Select a composition unit, service, endpoint, or operation. The Composition unit/Service/Endpoint/
Operation list is nested, indicating parent-child relationships.

2. Click the desired button.

 Table 69. Button descriptions. Use the buttons to attach or detach policy sets and to assign policy set bindings.

Button Resulting action

Attach Attaches a policy set to the selected composition unit, service, endpoint, or operation. To attach a
policy set, select a unit, service, endpoint, or operation and click Attach > policy_set_option.

To close the menu list, click Attach.

Detach Policy
Set

Detaches a policy set from the selected composition unit, service, endpoint, or operation.

After the policy set is detached, if there is no policy set attached to an upper-level service
resource, the Attached Policy Set column displays None and the Binding column displays Not
applicable.

If there is a policy set attached to an upper-level service resource, the Attached Policy Set
column displays policy_set_name (inherited) and the binding used for the upper-level
attachment is applied. The binding name is displayed followed by (inherited).

Chapter 11. Deploying and administering business-level applications 419

Table 69. Button descriptions (continued). Use the buttons to attach or detach policy sets and to assign policy set
bindings.

Button Resulting action

Assign Binding Assigns a policy set binding to the selected composition unit, service, endpoint, or operation. The
options include the following:

Default Specifies the default binding for the selected service reference, endpoint, or operation.
You can specify client and provider default bindings to be used at the cell level or global
security domain level, for a particular server, or for a security domain. The default
bindings are used when an application-specific binding has not been assigned to the
attachment. When you attach a policy set to a service resource, the binding is initially set
to the default. If you do not specifically assign a binding to the attachment point using this
Assign Binding action, the default specified at the nearest scope is used.

 For any policy set attachment, the run time checks to see if the attachment includes a
binding. If so, it uses that binding. If not, the run time checks in the following order and
uses the first available default binding:

1. Default general bindings for the server

2. Default general bindings for the domain in which the server resides

3. Default general bindings for the global security domain

New Application Specific Binding
Select this option to create a new application-specific binding for the policy set
attachments. The new binding you create is used for the selected resources. If you select
more than one resource, ensure that all selected resources have the same policy set
attached.

Provider sample
Select this option to use the Provider sample binding.

Provider sample V2
Select this option to use the Provider sample V2 binding when you are using either the
Kerberos V5 WSSecurity default or the TrustServiceKerberosDefault policy sets.

Saml Bearer Provider sample
Select this option to use the Saml Bearer Provider sample. The Saml Bearer Provider
sample extends the Provider sample binding to support SAML Bearer token usage
scenarios. You can use this sample with any of the SAML bearer token default policy
sets.

Saml HoK Symmetric Provider sample
Select this option to use the Saml HoK Symmetric Provider sample. The Saml HoK
Symmetric Provider sample extends the Provider sample binding to support SAML
holder-of-key (HoK) symmetric key token usage scenarios. You can use this sample with
one of the SAML HoK Symmetric key default policy sets: either SAML11 HoK Symmetric
WSSecurity default or SAML20 HoK Symmetric WSSecurity default.

Composition unit/Service/Endpoint/Operation
Specifies the name of the composition unit and the associated service providers, endpoints or operations.

The Composition unit/Service/Endpoint/Operation column lists the composition unit and the service
providers, endpoints, or operations that the composition unit contains.

Attached Policy Set
Specifies the policy set that is attached to a composition unit, service provider, endpoint, or operation.

The Attached Policy Set column can contain the following values:

v None. No policy set is attached, either directly or to a higher-level service resource.

v Policy_set_name. The name of the policy set that is attached directly to the service resource, for
example, WS-I RSP.

420 Administering applications and their environment

v Policy_set_name (inherited). The name of the policy set that is not attached directly to a service
resource, but that is attached to a higher-level service resource.

When the value in the column is a link, click the link to view or change settings about the attached policy
set.

Binding
Specifies the binding configuration that is available for a service provider, endpoint, or operation.

The Binding column can contain the following values:

v Not applicable. No policy set is attached, either directly or to a higher-level service resource.

v Binding_name or Default. The binding name is displayed if a policy set is attached directly and an
application-specific binding or a general binding is assigned, for example, MyBindings1. Default is
displayed if a policy set is attached directly but the service resource uses the default bindings.

v Binding_name (inherited) or Default (inherited). A service resource inherits the bindings from an
attachment to a higher-level resource.

When the value in the Binding column is a link, click the link to view or change settings about the binding.

References policy sets and bindings collection for SCA composites
Use this page to attach and detach policy sets to a composition unit, a service reference, its endpoints, or
operations of a Service Component Architecture (SCA) composite. You can select the default bindings,
create new application-specific bindings, or use bindings that you created for an attached policy set. You
can view or change whether the service reference can share its current policy configuration.

To view this administrative console page, your composition unit must use web services and support SCA.
Click Applications > Application Types > Business-level applications > application_name >
deployed_asset_composition_unit_name > References policy sets and bindings.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

To attach or detach a policy set or binding, do the following:

1. Select a composition unit, service, endpoint, or operation. The Composition unit/Service/Endpoint/
Operation list is nested, indicating parent-child relationships.

2. Click the desired button.

 Table 70. Button descriptions. Use the buttons to attach or detach client policy sets and to assign policy set
bindings.

Button Resulting action

Attach Client Policy
Set

Attaches a client policy set to the selected composition unit, service, endpoint, or
operation. To attach a policy set, select a composition unit, service, endpoint, or operation
and click Attach Client Policy Set > policy_set_option.

To close the menu list, click Attach Client Policy Set.

Chapter 11. Deploying and administering business-level applications 421

Table 70. Button descriptions (continued). Use the buttons to attach or detach client policy sets and to assign policy
set bindings.

Button Resulting action

Detach Client Policy
Set

Detaches a client policy set from the selected composition unit, service, endpoint, or
operation.

After the policy set is detached, if there is no policy set attached to an upper-level service
resource, the Attached Client Policy Set column displays None and the Binding column
displays Not applicable.

If there is a policy set attached to an upper-level service resource, the Attached Client
Policy Set column displays policy_set_name (inherited) and the binding used for the
upper-level attachment is applied. The binding name is displayed followed by (inherited).

Assign Binding Assigns a policy set binding to the selected composition unit, service, endpoint, or
operation. The options include the following:

Default Specifies the default binding for the selected service, endpoint, or operation. You
can specify client and provider default bindings to be used at the cell level or
global security domain level, for a particular server, or for a security domain. The
default bindings are used when an application-specific binding has not been
assigned to the attachment. When you attach a policy set to a service resource,
the binding is initially set to the default. If you do not specifically assign a binding
to the attachment point using this Assign Binding action, the default specified at
the nearest scope is used.

 For any policy set attachment, the run time checks to see if the attachment
includes a binding. If so, it uses that binding. If not, the run time checks in the
following order and uses the first available default binding:

1. Default general bindings for the server

2. Default general bindings for the domain in which the server resides

3. Default general bindings for the global security domain

New Application Specific Binding
Select this option to create a new application-specific binding for the policy set
attachments. The new binding you create is used for the selected resources. If
you select more than one resource, ensure that all selected resources have the
same policy set attached.

Client sample
Select this option to use the Client sample binding.

Client sample V2
Select this option to use the Client sample V2 binding when you are using either
the Kerberos V5 WSSecurity default or the TrustServiceKerberosDefault policy
sets.

Saml Bearer Client sample
Select this option to use the Saml Bearer Client sample. The Saml Bearer Client
sample extends the Client sample binding to support SAML Bearer token usage
scenarios. You can use this sample with any of the SAML bearer token default
policy sets.

Saml HoK Symmetric Client sample
Select this option to use the Saml HoK Symmetric Client sample. The Saml HoK
Symmetric Client sample extends the Client sample binding to support SAML
holder-of-key (HoK) symmetric key token usage scenarios. You can use this
sample with one of the SAML HoK Symmetric key default policy sets: either
SAML11 HoK Symmetric WSSecurity default or SAML20 HoK Symmetric
WSSecurity default.

422 Administering applications and their environment

Composition unit/Service/Endpoint/Operation
Specifies the name of the composition unit and the associated service references, endpoints or operations.

The Composition unit/Service/Endpoint/Operation column lists the service composition unit and the service
references, endpoints, or operations that the composition unit contains.

Attached Client Policy Set
Specifies the policy set that is attached to a composition unit, service reference, endpoint, or operation.

The Attached Client Policy Set column can contain the following values:

v None. No policy set is attached, either directly or to a higher-level service resource.

v Policy_set_name. The name of the policy set that is attached directly to the service resource, for
example, WS-I RSP.

v Policy_set_name (inherited). The name of the policy set that is not attached directly to a service
resource, but that is attached to a higher-level service resource.

When the value in the column is a link, click the link to view or change settings about the attached policy
set.

Binding
Specifies the binding configuration that is available for a service reference, endpoint, or operation.

The Binding column can contain the following values:

v Not applicable. No policy set is attached, either directly or to a higher-level service resource.

v Binding_name or Default. The binding name is displayed if a policy set is attached directly and an
application-specific binding or a general binding is assigned, for example, MyBindings1. Default is
displayed if a policy set is attached directly but the service resource uses the default bindings.

v Binding_name (inherited) or Default (inherited). A service resource inherits the bindings from an
attachment to a higher-level resource.

When the value in the Binding column is a link, click the link to view or change settings about the binding.

SCA service provider settings
Use this page to manage policy sets for a Service Component Architecture (SCA) web service provider.
You can attach and detach policy sets to a service provider, its endpoints, or operations. You can select
the default bindings, create new application-specific bindings, or use bindings that you created for an
attached policy set. You can view or change whether the service provider can share its current policy
configuration.

To view this administrative console page, your composition unit must use web services and support SCA.
Click Services > Service providers > service_provider_name.

Service provider
Specifies the full QName of the service provider. The QName must be in a format that supports the Java
class javax.xml.namespace.QName.

For the SCA sample business-level application HelloWorldAsync, the service provider name resembles the
following:
{http://websphere.ibm.com/HelloWorldServiceComponent/HelloWorldService}HelloWorldService

Policy Set Attachments
Specifies the attached policy sets and assigned bindings for services, endpoints, or operations in the
service provider.

Chapter 11. Deploying and administering business-level applications 423

To attach or detach a policy set or to assign bindings with system-specific configurations, do the following:

1. Select a service, endpoint, or operation. The Service/Endpoint/Operation list is nested, indicating
parent-child relationships.

2. Click the desired button.

 Table 71. Button descriptions. Use the buttons to attach or detach policy sets and to assign policy set bindings.

Button Resulting action

Attach Attaches a policy set to the selected service, endpoint, or operation. To attach a policy set, select
a service, endpoint, or operation and click Attach > policy_set_option.

To close the menu list, click Attach.

Detach Policy
Set

Detaches a policy set from the selected service, endpoint, or operation.

After the policy set is detached, if there is no policy set attached to an upper-level service
resource, the Attached Policy Set column displays None and the Binding column displays Not
applicable.

If there is a policy set attached to an upper-level service resource, the Attached Policy Set
column displays policy_set_name (inherited) and the binding used for the upper-level
attachment is applied. The binding name is displayed followed by (inherited).

424 Administering applications and their environment

Table 71. Button descriptions (continued). Use the buttons to attach or detach policy sets and to assign policy set
bindings.

Button Resulting action

Assign Binding Assigns a policy set binding to the selected service, endpoint, or operation. The options include
the following:

Default Specifies the default binding for the selected service reference, endpoint, or operation.
You can specify client and provider default bindings to be used at the cell level or global
security domain level, for a particular server, or for a security domain. The default
bindings are used when an application-specific binding has not been assigned to the
attachment. When you attach a policy set to a service resource, the binding is initially set
to the default. If you do not specifically assign a binding to the attachment point using this
Assign Binding action, the default specified at the nearest scope is used.

 For any policy set attachment, the run time checks to see if the attachment includes a
binding. If so, it uses that binding. If not, the run time checks in the following order and
uses the first available default binding:

1. Default general bindings for the server

2. Default general bindings for the domain in which the server resides

3. Default general bindings for the global security domain

New Application Specific Binding
Select this option to create a new application-specific binding for the policy set
attachments. The new binding you create is used for the selected resources. If you select
more than one resource, ensure that all selected resources have the same policy set
attached.

Provider sample
Select this option to use the Provider sample binding.

Provider sample V2
Select this option to use the Provider sample V2 binding when you are using either the
Kerberos V5 WSSecurity default or the TrustServiceKerberosDefault policy sets.

Saml Bearer Provider sample
Select this option to use the Saml Bearer Provider sample. The Saml Bearer Provider
sample extends the Provider sample binding to support SAML Bearer token usage
scenarios. You can use this sample with any of the SAML bearer token default policy
sets.

Saml HoK Symmetric Provider sample
Select this option to use the Saml HoK Symmetric Provider sample. The Saml HoK
Symmetric Provider sample extends the Provider sample binding to support SAML
holder-of-key (HoK) symmetric key token usage scenarios. You can use this sample with
one of the SAML HoK Symmetric key default policy sets: either SAML11 HoK Symmetric
WSSecurity default or SAML20 HoK Symmetric WSSecurity default.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Service/Endpoint/Operation
Specifies the name of the service and the associated service providers, endpoints or operations.

 The Service/Endpoint/Operation column lists the service and the service providers, endpoints, or
operations that the service contains.

Attached Policy Set
Specifies the policy set that is attached to a service provider, endpoint, or operation.

 The Attached Policy Set column can contain the following values:

v None. No policy set is attached, either directly or to a higher-level service resource.

Chapter 11. Deploying and administering business-level applications 425

v Policy_set_name. The name of the policy set that is attached directly to the service resource,
for example, WS-I RSP.

v Policy_set_name (inherited). The name of the policy set that is not attached directly to a
service resource, but that is attached to a higher-level service resource.

When the value in the column is a link, click the link to view or change settings about the attached
policy set.

Binding
Specifies the binding configuration that is available for a service provider, endpoint, or operation.

 The Binding column can contain the following values:

v Not applicable. No policy set is attached, either directly or to a higher-level service resource.

v Binding_name or Default. The binding name is displayed if a policy set is attached directly and
an application-specific binding or a general binding is assigned, for example, MyBindings1.
Default is displayed if a policy set is attached directly but the service resource uses the default
bindings.

v Binding_name (inherited) or Default (inherited). A service resource inherits the bindings from
an attachment to a higher-level resource.

When the value in the Binding column is a link, click the link to view or change settings about the
binding.

 About policy set bindings

In this release, there are two types of bindings: application-specific bindings and general bindings.
Composition units can use both application-specific bindings and general bindings.

Application-specific bindings

You can create application-specific bindings only at a policy set attachment point. These bindings are
specific to, and constrained by, the characteristics of the defined policy. Application-specific bindings can
provide configuration for advanced policy requirements such as multiple signatures; however, these
bindings are reusable only within an application. Also, application-specific bindings have very limited reuse
across policy sets.

When you create an application-specific binding for a policy set attachment, the binding begins in a
completely unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that
you want to override the default binding, and fully configure the bindings for each policy that you add. For
WS-Security policy, some high level configuration attributes such as TokenConsumer, TokenGenerator,
SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not configured in the
application-specific bindings.

For service providers, you can create application-specific bindings only by selecting Assign Binding >
New Application Specific Binding, on the Service providers policy sets and bindings collection page, for
service provider resources that have an attached policy set. Similarly, for service clients, you can create
application-specific bindings only by selecting Assign Binding > New Application Specific Binding, on
the Service clients policy sets and bindings collection page, for service client resources that have an
attached policy set.

General bindings

You can configure general bindings to be used across a range of policy sets and they can be reused
across applications and for trust service attachments. Although general bindings are highly reusable, they
cannot provide configuration for advanced policy requirements such as multiple signatures. There are two
types of general bindings: general provider policy set bindings and general client policy set bindings.

426 Administering applications and their environment

You can create general provider policy set bindings by clicking Services > Policy sets > General
provider policy set bindings > New in the general provider policy sets panel, or by clicking Services >
Policy sets > General client policy set bindings > New in the general client policy set and bindings
panel. For details about defining and managing service client or provider bindings, see the related links.
General provider policy set bindings might also be used for trust service attachments.

SCA service client settings
Use this page to manage policy sets for a Service Component Architecture (SCA) web service client. You
can attach and detach policy sets to a service reference, its endpoints, or operations. You can select the
default bindings, create new application-specific bindings, or use bindings that you created for an attached
policy set. You can view or change whether the service reference can share its current policy
configuration.

To view this administrative console page, your composition unit must use web services and support SCA.
Click Services > Service clients > service_client_name.

Service client
Specifies the full QName of the service client. The QName must be in a format that supports the Java
class javax.xml.namespace.QName.

For the SCA sample business-level application HelloWorldAsync, the service client name resembles the
following:
{http://websphere.ibm.com/HelloWorldServiceComponent/HelloWorldService}HelloWorldCallbackService

This SCA application has the product web service namespace, http://websphere.ibm.com/, and the
service name in its service client name.

Policy Set Attachments
Specifies the attached policy sets and assigned bindings for services, endpoints, or operations in the
service client.

To attach or detach a policy set or to assign bindings with system-specific configurations, do the following:

1. Select a service, endpoint, or operation. The Service/Endpoint/Operation list is nested, indicating
parent-child relationships.

2. Click the desired button.

 Table 72. Button descriptions. Use the buttons to attach or detach client policy sets and to assign policy set
bindings.

Button Resulting action

Attach Client Policy
Set

Attaches a client policy set to the selected service, endpoint, or operation. To attach a
policy set, select a service, endpoint, or operation and click Attach Client Policy Set >
policy_set_option.

To close the menu list, click Attach Client Policy Set.

Detach Client Policy
Set

Detaches a client policy set from the selected service, endpoint, or operation.

After the policy set is detached, if there is no policy set attached to an upper-level service
resource, the Attached Client Policy Set column displays None and the Binding column
displays Not applicable.

If there is a policy set attached to an upper-level service resource, the Attached Client
Policy Set column displays policy_set_name (inherited) and the binding used for the
upper-level attachment is applied. The binding name is displayed followed by (inherited).

Chapter 11. Deploying and administering business-level applications 427

Table 72. Button descriptions (continued). Use the buttons to attach or detach client policy sets and to assign policy
set bindings.

Button Resulting action

Assign Binding Assigns a policy set binding to the selected service, endpoint, or operation. The options
include the following:

Default Specifies the default binding for the selected service, endpoint, or operation. You
can specify client and provider default bindings to be used at the cell level or
global security domain level, for a particular server, or for a security domain. The
default bindings are used when an application-specific binding has not been
assigned to the attachment. When you attach a policy set to a service resource,
the binding is initially set to the default. If you do not specifically assign a binding
to the attachment point using this Assign Binding action, the default specified at
the nearest scope is used.

 For any policy set attachment, the run time checks to see if the attachment
includes a binding. If so, it uses that binding. If not, the run time checks in the
following order and uses the first available default binding:

1. Default general bindings for the server

2. Default general bindings for the domain in which the server resides

3. Default general bindings for the global security domain

New Application Specific Binding
Select this option to create a new application-specific binding for the policy set
attachments. The new binding you create is used for the selected resources. If
you select more than one resource, ensure that all selected resources have the
same policy set attached.

Client sample
Select this option to use the Client sample binding.

Client sample V2
Select this option to use the Client sample V2 binding when you are using either
the Kerberos V5 WSSecurity default or the TrustServiceKerberosDefault policy
sets.

Saml Bearer Client sample
Select this option to use the Saml Bearer Client sample. The Saml Bearer Client
sample extends the Client sample binding to support SAML Bearer token usage
scenarios. You can use this sample with any of the SAML bearer token default
policy sets.

Saml HoK Symmetric Client sample
Select this option to use the Saml HoK Symmetric Client sample. The Saml HoK
Symmetric Client sample extends the Client sample binding to support SAML
holder-of-key (HoK) symmetric key token usage scenarios. You can use this
sample with one of the SAML HoK Symmetric key default policy sets: either
SAML11 HoK Symmetric WSSecurity default or SAML20 HoK Symmetric
WSSecurity default.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Service/Endpoint/Operation
Specifies the name of the service and the associated service references, endpoints or operations.

 The Service/Endpoint/Operation column lists the service and the service references, endpoints, or
operations that the service contains.

Attached Client Policy Set
Specifies the policy set that is attached to a service reference, endpoint, or operation.

428 Administering applications and their environment

The Attached Client Policy Set column can contain the following values:

v None. No policy set is attached, either directly or to a higher-level service resource.

v Policy_set_name. The name of the policy set that is attached directly to the service resource,
for example, WS-I RSP.

v Policy_set_name (inherited). The name of the policy set that is not attached directly to a
service resource, but that is attached to a higher-level service resource.

When the value in the column is a link, click the link to view or change settings about the attached
policy set.

Binding
Specifies the binding configuration that is available for a service reference, endpoint, or operation.

 The Binding column can contain the following values:

v Not applicable. No policy set is attached, either directly or to a higher-level service resource.

v Binding_name or Default. The binding name is displayed if a policy set is attached directly and
an application-specific binding or a general binding is assigned, for example, MyBindings1.
Default is displayed if a policy set is attached directly but the service resource uses the default
bindings.

v Binding_name (inherited) or Default (inherited). A service resource inherits the bindings from
an attachment to a higher-level resource.

When the value in the Binding column is a link, click the link to view or change settings about the
binding.

 About policy set bindings

In this release, there are two types of bindings: application-specific bindings and general bindings.
Composition units can use both application-specific bindings and general bindings.

Application-specific bindings

You can create application-specific bindings only at a policy set attachment point. These bindings are
specific to, and constrained by, the characteristics of the defined policy. Application-specific bindings can
provide configuration for advanced policy requirements such as multiple signatures; however, these
bindings are reusable only within an application. Also, application-specific bindings have very limited reuse
across policy sets.

When you create an application-specific binding for a policy set attachment, the binding begins in a
completely unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that
you want to override the default binding, and fully configure the bindings for each policy that you add. For
WS-Security policy, some high level configuration attributes such as TokenConsumer, TokenGenerator,
SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not configured in the
application-specific bindings.

For service providers, you can create application-specific bindings only by selecting Assign Binding >
New Application Specific Binding, on the Service providers policy sets and bindings collection page, for
service provider resources that have an attached policy set. Similarly, for service clients, you can create
application-specific bindings only by selecting Assign Binding > New Application Specific Binding, on
the Service clients policy sets and bindings collection page, for service client resources that have an
attached policy set.

General bindings

You can configure general bindings to be used across a range of policy sets and they can be reused
across applications and for trust service attachments. Although general bindings are highly reusable, they

Chapter 11. Deploying and administering business-level applications 429

cannot provide configuration for advanced policy requirements such as multiple signatures. There are two
types of general bindings: general provider policy set bindings and general client policy set bindings.

You can create general provider policy set bindings by clicking Services > Policy sets > General
provider policy set bindings > New in the general provider policy sets panel, or by clicking Services >
Policy sets > General client policy set bindings > New in the general client policy set and bindings
panel. For details about defining and managing service client or provider bindings, see the related links.
General provider policy set bindings might also be used for trust service attachments.

Example: Creating an SCA business-level application with the console
You can add many different types of artifacts to business-level applications. For example, you can add
applications or modules, Java archives (JAR files), data in compressed files, and other business-level
applications. This example describes how to create an empty business-level application and then add a
Service Component Architecture (SCA) JAR file to the application using the administrative console.

Before you begin

In a product installation, verify that the target server is configured. As part of configuring the server,
determine whether your application files can run on your deployment target. You must deploy SCA
composite assets of a business-level application to a Version 8.0 server (target) or to a Version 7.0 target
that is enabled for the Feature Pack for SCA.

Download the helloworld-ws-asynch.jar SCA sample file from a product download site:

1. Go to the Samples, Version 8.0 information center.

2. On the Downloads tab, click FTP or HTTP in the Service Component Architecture section.

3. In the authentication window, click OK.

4. In the SCA.zip compressed file, go to the SCA/installableApps directory and download the
helloworld-ws-asynch.jar file.

About this task

For this example, use the administrative console to create a business-level application named
HelloWorldAsync that has an SCA JAR file, helloworld-ws-asynch.jar, as an asset.

Procedure
1. Create an empty business-level application named HelloWorldAsync.

a. Click Applications > New Application > New Business Level Application.

b. On the New application page, specify the name HelloWorldAsync, optionally add a description, and
then click Apply.

c. On the page that is displayed, click the Save link.

The name is shown in the list of applications on the Business-level applications page. Because the
application is empty, its status is Unknown.

2. Import the SCA JAR asset.

a. Click Applications > New Application > New Asset in the console navigation tree.

b. On the Upload asset page, specify the asset package to import, helloworld-ws-asynch.jar, and
click Next.

The JAR file is in the app_server_root/installableApps directory.

c. On the Select options for importing an asset page, click Next to accept the default values.

d. On the Summary page, click Finish.

e. On the Adding asset to repository page, if messages show that the operation completed, click
Manage assets.

430 Administering applications and their environment

f. On the Assets page, click the Save link.

The file name displays in the list of assets.

3. Add the SCA JAR asset as a composition unit of the business-level application.

a. Click Applications > Application Types > Business-level applications.

b. On the Business-level applications page, click the HelloWorldAsync application name.

c. On the business-level application settings page, click Add > Add Asset.

d. On the Add page, select the helloworld-ws-asynch.jar asset composition unit from the list of
available units, and then click Continue.

e. On the Set options page, click Next to accept the default values.

f. On the Map composition unit to a target page, specify a target server that supports SCA
composites, and then click Next.

g. On the Define relationship with existing composition units page, click Next to accept the default
values.

h. On the Map virtual host page, click Next to accept the default values.

i. On the Summary page, click Finish.

Several messages are displayed. A message having the format Completed
res=[WebSphere:cuname=helloworldws] indicates that the addition is successful.

During deployment of the composition unit, you can view the Uniform Resource Identifier (URI) for
composite level service of some bindings, along with the service name and binding type. Only the
URI is editable. The product does not validate the URI.

j. If the addition is successful, click Manage application.

k. On the business-level application settings page, click Save.

The asset name and type displays in the list of deployed assets. If you click on the asset name, the
composition unit settings page displays, with the asset name in the SCA Composite Components list.

4. Start the HelloWorldAsync business-level application.

a. Click Applications > Application Types > Business-level applications.

b. On the Business-level applications page, select the check box beside HelloWorldAsync.

c. Click Start.

When the business-level application is running, a green arrow displays for Status. If the business-level
application does not start, ensure that the deployment target to which the application maps is running
and try starting the application again.

What to do next

Optionally examine, and possibly use in applications, other SCA sample files in the SCA/installableApps
directory of the downloadable SCA samples.

If the business-level application does not start, ensure that the deployment target to which the application
maps is running and try starting the application again. If SCA composite assets do not start, ensure that
each asset is mapped to a deployment target that supports SCA composites.

If an asset composition unit uses an Enterprise JavaBeans (EJB) binding and does not start because it
has a non-WebSphere target of "null", delete the asset composition unit and add it again to the
business-level application. Specify a target that supports SCA composites when you add the asset to the
business-level application. You cannot change the target after deployment.

If the SCA application uses security, the target server or cluster must be in the global security domain.

Chapter 11. Deploying and administering business-level applications 431

Starting business-level applications
You can start a business-level application that is not running (has a status of Stopped). The application
must contain code that can run on a server to start.

Before you begin

The application must be installed on a server. By default, the application starts automatically when the
server starts.

About this task

You can start and stop business-level applications manually using the administrative console or wsadmin
commands.

This topic describes how to use the administrative console to start a business-level application.

Procedure
1. Go to the Business-level applications page.

Click Applications > Application Types > Business-level applications in the console navigation
tree.

2. Select the check box for the application you want started.

3. Click Start. The product runs the application and changes the state of the application to Started. The
status is changed to partially started if not all servers on which the application is deployed are
running.

Results

A message stating that the application started displays at the top the page.

If the business-level application does not start, ensure that the deployment target to which the application
maps is running and try starting the application again.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

If the application contains Service Component Architecture (SCA) composites and does not start, check for
the following problems:

v If SCA composite assets do not start, ensure that each asset is mapped to a Version 8 deployment
target or to a Version 7 deployment target that supports SCA composites.

v If an asset composition unit uses an Enterprise JavaBeans (EJB) binding and does not start because it
has a non-WebSphere target of "null", delete the asset composition unit and add it again to the
business-level application. Specify a target that supports SCA composites when you add the asset to
the business-level application. You cannot change the target after deployment.

v If the META-INF/sca-deployables directory has multiple SCA composite files and the application does
not start because the product cannot obtain the CompUnitInfoLoader value, place only the file that
contains the composite in the META-INF/sca-deployables directory. You can place the other composite
files anywhere else within the archive.

432 Administering applications and their environment

What to do next

To restart a running application, select the application you want to restart, click Stop and then click Start.

Stopping business-level applications
You can stop a business-level application that is running and has a status of Started).

Before you begin

The application must be running on a product server.

About this task

You can stop applications manually using the administrative console or wsadmin commands.

This topic describes how to use the administrative console to stop a business-level application.

Procedure
1. Go to the Business-level applications page.

Click Applications > Application Types > Business-level applications in the console navigation
tree.

2. Select the check box for the application you want stopped.

3. Click Stop. The product stops the processing of the application and changes the state of the
application to Stopped.

Results

The status of the application changes and a message stating that the application stopped displays at the
top the page.

What to do next

To restart a stopped application, select the application you want to restart, and then click Start.

Updating business-level applications
You can update business-level applications by deleting or changing composition units, or by mapping
composition units to different deployment targets.

Before you begin

Determine the changes that you want to make to your application. Also, determine whether the changed
application can run on your deployment targets.

The administrative console Server pages show the versions for deployment targets.

If you want to change a composition unit that contains an enterprise bundle archive (EBA) asset, see
Modifying the configuration of an EBA asset.

About this task

Updating consists of adding new composition units to an application, replacing or removing composition
units, or mapping composition units to different deployment targets.

Chapter 11. Deploying and administering business-level applications 433

You can add an asset or shared library composition unit to multiple business-level applications. However,
each composition unit for the same asset must have a unique composition unit name. You can add a
business-level application composition unit to more than one business-level application.

This topic describes how to update business-level applications using the administrative console.
Alternatively, you can use programming or the wsadmin tool.

Procedure
v Delete composition units from your business-level application.

1. Go to the business-level application settings page.

Click Applications > Application Types > Business-level applications > application_name in
the console navigation tree.

2. Select each composition unit of the application that you want to delete.

3. Click Delete.

4. On the Delete composition unit from business-level application page, confirm the deletion and click
OK.

v Add new or updated assets, shared libraries, or other business-level applications to your business-level
application.

 1. Update asset binary files or shared libraries as needed.

 2. If you are adding new assets that are not registered with the product management domain, import
the assets.

 3. If you are updating existing assets, use the Update option to update asset files.

 4. On the business-level application settings page, specify the type of composition unit to add.

– To add an asset, under Deployed assets, click Add > Add Asset.

– To add a shared library, under Deployed assets, click Add > Add Shared Library.

– To add a business-level application, under Business-level applications, click Add.

 5. On the New composition unit page, select a unit from the list of available units, and then click
Continue.

 6. On the Set options page, change the composition unit settings as needed, and then click Next.

 7. On the Map composition unit to a target page, change the deployment target as needed, and then
click Next.

This page is not shown when you add a business-level application.

 8. On the Summary page, click Finish.

 9. If the product adds the unit successfully, click Manage application.

If the unit addition is not successful, read the messages, and try adding the unit again. Correct the
errors noted in any messages.

10. On the Adding composition unit to the business-level application page, click Save.

11. Repeat these steps to add any other assets, shared libraries, or applications needed by the
business-level application.

The business-level application settings page displays the configuration unit names.

v Map composition units to different deployment targets.

1. On the composition unit settings page, select the composition unit that you want to change.

2. Under Current targets, click Modify Target.

3. On the Map targets page, change the target.
a. From the list of available clusters and servers, select a different deployment target.
b. Click >> to add the deployment target to the Selected list.
c. To remove a deployment target from the Selected list, select the target and click <<.
d. Click OK.

434 Administering applications and their environment

The business-level application settings page displays the selected deployment target.

What to do next

Save the changes to your administrative configuration.

Updating SCA composite artifacts
You can view and update Service Component Architecture (SCA) composite artifacts in business-level
applications.

Before you begin

Add an SCA artifact as a composition unit to a business-level application.

About this task

You can view and update the following SCA composite artifacts:
v Composite level property definition
v Composite level component property definition
v Composite level component reference definition

You can view and update SCA composite artifacts using the administrative console or the wsadmin tool.
This topic describes how to view and update SCA composite artifacts using the administrative console.

Procedure
1. Go to the composition unit settings page for an SCA composite artifact in a business-level application.

Click Applications > Application Types > Business-level applications > application_name >
SCA_deployed_asset_composition_unit_name.

The composition unit settings page for an SCA composite artifact has fields that are not shown on the
composition unit settings page for a non-SCA artifact:
v SCA composite components
v SCA composite properties
v SCA composite wires

2. Click on a name link in one of these SCA fields to view the settings for an SCA artifact.

The SCA fields display None instead of a name link if the composition unit does not have that particular
type of SCA composite.

3. Optional: Update a SCA composite setting value.

a. Change an existing setting value for the SCA artifact.

b. Click OK.

The setting value is updated.

Viewing and updating SCA composites in HelloWorldAsync

“Example: Creating an SCA business-level application with the console” on page 430 describes how to
create the HelloWorldAsync business-level application. This application contains an SCA artifact,
helloworldws, as a composition unit. You can view and update settings for SCA composites in the
helloworldws composition unit using the console.

1. Go to the composition unit settings page for the helloworldws composition unit in the HelloWorldAsync
business-level application.

Click Applications > Application Types > Business-level applications > HelloWorldAsync >
helloworldws.

Chapter 11. Deploying and administering business-level applications 435

From the composition unit settings page, you can view information associated with helloworldws, as
well as update composite settings.

2. Click on a link for the SCA artifact to be viewed or updated.

For example, click on the HelloWorldServiceComponent link under SCA composite components and,
in the page that displays, click on the HelloWorldService link under Service. In the Component service
settings page that displays, you can specify a setting value for the service.

3. If you update a setting value for the SCA artifact, click OK.

What to do next

Save the changes to your administrative configuration.

On multiple-server products, when saving the configuration, synchronize the configuration with the nodes
where the application is expected to run.

Viewing SCA composite definitions
You can view information on the definition of a Service Component Architecture (SCA) composite in the
administrative console.

Before you begin

The SCA composite must be a composition unit in a business-level application.

About this task

The composite definition provides data on the composite, such as component names and service
references. The View composite page displays the composite definition of an SCA deployed asset
composition unit.

Procedure
1. Go to the View composite page.

Click Applications > Application Types > Business-level applications > application_name >
SCA_deployed_asset_name > View composite.

2. Optional: Click Expand All or Collapse All to more easily browse the page.

Results

The View composite page displays the contents of the composition unit definition.

Example

Suppose the HelloWorldAsync business-level application provided as a sample with the product is
installed. Click Applications > Application Types > Business-level applications > HelloWorldAsync >
helloworldws > View composite.

The View composite page displays configuration information resembling the following:
<composite targetNamespace="http://helloworld" name="helloworldws" >
 <component name="AsynchTranslatorComponent" >
 <implementation.java class="helloworld.impl.AsynchTranslatorComponent" />
 <service name="AsynchTranslatorService">
 <interface.java interface="helloworld.AsynchTranslatorService"
 callbackInterface="helloworld.HelloWorldCallback" />
 <binding.ws/>
 <callback>
 <binding.ws/>

436 Administering applications and their environment

</callback>
 </service>
 </component>
</composite>

What to do next

Browse the page to ensure that it contains the intended configuration information.

Viewing SCA domain information
You can view information on Service Component Architecture (SCA) composites in an SCA domain in the
administrative console.

Before you begin

The SCA composite must be a composition unit in a business-level application.

About this task

Viewing SCA domain information enables you to see on one console page information on all components
in an SCA domain. The View domain page displays information on available services in the current
domain.

Procedure
1. Go to the View domain page.

Click Applications > Application Types > Business-level applications > application_name >
SCA_deployed_asset_name > View domain.

2. Optional: Click Expand All or Collapse All to more easily browse the page.

Results

The View domain page lists information on components in the current domain.

Example

Suppose the HelloWorldAsync business-level application provided as a sample with the product is
installed. Click Applications > Application Types > Business-level applications > HelloWorldAsync >
helloworldws > View domain.

The View domain page displays information resembling the following:
<domain name="myCell02">
 <component name = "AsynchTranslatorComponent"
 mapTarget = "WebSphere:cell=myCell02,node=myNode02,server=server1">
 <service name = "AsynchTranslatorService">
 <interface.java interface = "helloworld.AsynchTranslatorService"/>
 </service>
 <reference name = "AsynchTranslatorService" target = ""/>
 <httpurlendpoints name = "endpoints" uri = ""/>
 </component>
</domain>

What to do next

Browse the page to ensure that it contains the intended information.

Chapter 11. Deploying and administering business-level applications 437

You can export the same domain information to a file using the exportCompositeToDomain command. See
“Exporting SCA domain information using scripting.”

Viewing and editing JMS bindings on references and services of SCA
composites
You can view information on a Java Message Service (JMS) binding for a Service Component Architecture
(SCA) composite in the administrative console. The JMS bindings page of the console displays the
settings of a binding.jms element. You can use the console page to edit resource and response resource
settings.

Before you begin

Configure an SCA composite that uses JMS bindings and add that composite as a composition unit to a
business-level application. To view and edit settings for a JMS binding on references, the composite must
define a JMS binding in the reference. Similarly, to view and edit settings for a JMS binding on services,
the composite must define a JMS binding in the service.

About this task

The JMS bindings page enables you to see JMS binding settings for an SCA composite in the
administrative console. The information shown is similar to that shown by running the viewCompUnit
wsadmin scripting command to view the SCA composite composition unit. However, the console page
shows JMS binding settings only, and does not show other information on the composition unit that
running viewCompUnit returns.

After deployment of an SCA composite that uses JMS bindings, you can edit JMS binding resource or
response resource settings that specify Java Naming and Directory Interface (JNDI) names on the JMS
bindings page. The editing capabilities are similar to those of the editCompUnit scripting command. To edit
settings, the JMS resource must exist. The product does not dynamically create JMS resources when you
edit a composition unit.

Procedure
1. Go to the JMS bindings page.

To view this page, your composition unit must support a JMS binding reference or service.

a. Click Applications > Application Types > Business-level applications > application_name >
deployed_asset_composition_unit_name.

b. From the composition unit settings page for SCA composites, select to view references or services:

v For an SCA component reference, click SCA Composite Components >
SCA_component_reference_name > SCA Component References > reference_name >
Bindings > JMS binding.

v For an SCA component service, click SCA Composite Components >
SCA_component_service_name > SCA Component Services > service_name > Bindings >
JMS binding.

2. View the JMS binding settings for the composition unit.

3. Edit the Destination JNDI name, Activation specification JNDI name, Connection factory JNDI
name, Response destination JNDI name, or Response connection factory JNDI name settings as
needed and click Apply.

Results

The JMS bindings page displays property settings for a JMS binding. If you change resource or response
resource JNDI name values, the changed values are shown.

438 Administering applications and their environment

Example

Suppose that you have a business-level application named MyJmsBLA, which has an SCA composite named
MySCAComposite. This composite uses a JMS binding on service named JmsService, in a composition unit
named myJmsBindingCU.

1. Click Applications > Application Types > Business-level applications > MyJmsBLA >
myJmsBindingCU > SCA Composite Components > MySCAComposite > SCA Component
Services > JmsService > Bindings > JMS binding.

The JMS bindings page displays general binding settings and settings for a JMS binding on services.

2. Edit the value specified for Activation specification JNDI name, and click Apply.

The JMS bindings page displays the changed value.

What to do next

Browse the page to ensure that it contains the binding information.

For information on JMS binding settings, refer to the online help for the JMS bindings page or Section 1.4
of the SCA JMS Binding specification, Version 1.00.

Exporting WSDL and XSD documents
You can export Web Services Description Language (WSDL) and XML schema definition (XSD)
documents used by a Service Component Architecture (SCA) composition unit to a location of your choice.

Before you begin

Your SCA business-level application must contain one or more composition units that use a WSDL or XSD
document.

A WSDL document is a file that provides a set of definitions that describe a web service in WSDL, an
Extensible Markup Language (XML)-based description language.

An XSD document is an instance of an XML schema written in the XML schema definition language. The
document has the extension .xsd. The prefix xsd in the XML elements of an XSD document indicates the
XML schema namespace.

About this task

Note: You can export WSDL and XSD documents that are used by an SCA composition unit using the
administrative console. In previous releases, you had to use the exportWSDLArtifacts command to
export WSDL and XSD documents.

On the composition unit settings page for an SCA composite, click the Export WSDL and XSD
documents link and then specify the target location for the files.

The product extracts from the selected composition unit the WSDL and XSD files that are required for web
services client development. The files are for the services exposed by the web service binding,
binding.ws.

Procedure
1. Go to the composition unit settings page for the SCA composite.

Click Applications > Application Types > Business-level applications > application_name >
SCA_deployed_asset_name.

2. Click the Export WSDL and XSD documents link.

Chapter 11. Deploying and administering business-level applications 439

3. From the displayed dialog, specify the target directory to which to save the documents.

Results

The WSDL and XSD documents are copied to the target directory.

Example

Suppose you want to export WSDL or XSD documents in the HelloWorldAsync business-level application
that the product provides as a sample. Complete the following actions in the administrative console:

1. Click Applications > Application Types > Business-level applications > HelloWorldAsync >
helloworldws > Export WSDL and XSD documents.

2. Using the displayed dialog, specify a directory that exists on your computer.

The product adds the helloworldws_WSDLArtifacts.zip file to the specified directory. The
helloworldws_WSDLArtifacts.zip file has one WSDL file,
AsynchTranslatorComponentTranslatorService_wsdlgen.wsdl.

What to do next

Examine the exported files to ensure that they contain the intended WSDL and XSD documents.

You can export WSDL and XSD documents using the exportWSDLArtifacts command. See "Exporting
WSDL and XSD documents using scripting."

Deleting business-level applications
After an application no longer is needed, you can delete it.

About this task

Deleting a business-level application removes the application from the product configuration repository and
it deletes the application binaries from the file system of all nodes where the application files are installed.

Procedure
1. Go to the Business-level applications page.

Click Applications > Application Types > Business-level applications in the console navigation
tree.

2. If you need to retain a copy of the application, back up composition units of the application.

3. Delete composition units of the application.

a. On the Business-level applications page, click the name of the business-level application that you
want to delete.

b. On the business-level application settings page, delete each composition unit of the application.
Deployed assets and business-level applications can be composition units of a business-level
application.

Select one or more composition units and click Delete.

For Service Component Architecture (SCA) business-level applications that use an OSGi
implementation in an enterprise bundle archive (EBA) composition unit, delete the SCA composition
unit before attempting to delete the EBA composition unit, otherwise the product returns an error.
An EBA composition unit that is used for the implementation cannot be deleted until the SCA
composition unit that uses the implementation.osgiapp is deleted.

c. On the Delete composition unit from Business-level application page, confirm the deletion and click
OK.

440 Administering applications and their environment

d. Repeat steps b and c until the business-level application that you want to delete has no more
composition units.

Deleting a composition unit removes the configuration from the profile_root/config/cells/cell_name/
cus directory.

4. Delete the business-level application.

a. Select the application that you want to delete.

b. Click Delete.

Unless the application is used by another business-level application, deleting a business-level
application removes the configuration from the profile_root/config/cells/cell_name/blas directory.

5. On the Delete business-level application page, confirm the deletion and click OK.

6. Save changes made to the administrative configuration.

Results

On single-server products, application binaries are deleted after you save the changes.

Deleting the HelloWorldAsync business-level application

“Example: Creating an SCA business-level application with the console” on page 430 describes how to
create the HelloWorldAsync business-level application. You can delete this application using the console.

1. Go to the Business-level applications page and, if HelloWorldAsync is running, change its status to
Stopped.
a. Click Applications > Application Types > Business-level applications.
b. Select HelloWorldAsync.
c. Click Stop.

2. Go to the business-level applications settings page for HelloWorldAsync and delete the helloworldws
composition unit.
a. Click Applications > Application Types > Business-level applications > HelloWorldAsync.
b. From Deployed assets, select helloworldws.
c. Click Delete.
d. On the Delete composition unit from Business-level application page, confirm the deletion and click

OK.
e. Click the Save link to save the changes.

3. From the business-level applications page, delete the HelloWorldAsync application.
a. Click Applications > Application Types > Business-level applications.
b. Select HelloWorldAsync.
c. Click Delete.
d. On the Delete business-level application page, click OK.
e. Click the Save link to save the changes.

4. Optionally, from the Assets page, delete the helloworld-ws-asynch.jar asset from the asset repository.
a. Click Applications > Application Types > Assets.
b. Select helloworld-ws-asynch.jar.
c. Click Delete.
d. On the Delete asset page, click OK.
e. Click the Save link to save the changes.

What to do next

If using the administrative console Delete options does not fully delete a business-level application or its
composition units, you can delete the business-level application and its composition units manually from a
stand-alone server. Suppose you want to delete a business-level application named ExampleBLA, and
ExampleBLA is not used by another business-level application. Complete the following steps to manually
delete the ExampleBLA configurations from the blas and cus directories:

Chapter 11. Deploying and administering business-level applications 441

1. Delete the profile_root/config/cells/cell_name/blas/ExampleBLA directory.

2. Delete the profile_root/config/cells/cell_name/cus/ExampleBLA directory.

3. Save changes made to the administrative configuration.

442 Administering applications and their environment

Chapter 12. Administering business-level applications using
programming

You can use the command framework programming to create, edit, update, start, stop, delete, export,
import, and query information about business-level applications. A business-level application defines an
enterprise-level application.

Before you begin

This task assumes a basic familiarity with the command framework. Read about the command framework
in the application programming interfaces documentation.

About this task

Besides creating, editing, updating, starting, stopping, deleting, exporting, importing, and querying
information about business-level applications using programming, you can do these tasks using the
administrative console or the wsadmin scripting tool.

Procedure
1. Perform any of the following tasks to administer your business-level applications using programming.

a. Create an empty business-level application.

You typically create an empty business-level application and then add assets or business-level
applications as composition units to the empty business-level application.

b. Import an asset.

You can import an asset to register the asset with the product and optionally store the asset in the
product repository so that you can later use the asset in a business-level application. An asset
represents at least one binary file that implements business logic.

c. Add a composition unit.

You can add an asset to a business-level application by creating a composition unit for the asset. A
composition unit is typically created from an asset and contains configuration information that
makes the asset runnable.

d. Start a business-level application.

You can start a business-level application, which starts each composition unit in that business-level
application. Each composition unit is started on the respective targets on which the business-level
application is deployed.

e. Stop a business-level application.

You can stop a business-level application, which stops each composition unit in that business-level
application. Each composition unit is stopped on the respective targets on which the business-level
application is deployed.

f. Check the status of a business-level application.

You can check the status of an entire business-level application. You can also limit the status to a
particular composition unit of a business-level application, a specific deployment target, or check the
status of the composition unit and the deployment target at the same time.

g. Delete a business-level application.

You can delete a business-level application using programming. You might delete a business-level
application if the application is not functioning correctly, no longer needed, and so on.

h. Delete an asset.

You can delete an asset from a business-level application using programming if the asset is not
functioning corrctly, the asset is no longer needed, and so on. An asset represents at least one
binary file that implements business logic.

© Copyright IBM Corp. 2011 443

i. Delete a composition unit.

You can delete a composition unit from a business-level application if the composition unit is not
functioning correctly, the composition unit is no longer needed, and so on. A composition unit is
typically created from a business-level application or an asset and contains configuration information
that makes the asset runnable.

j. Export an asset.

You can export an asset from the current session so that you can back up the asset, import the
asset to another session, and so on. An asset represents at least one binary file that implements
business logic.

k. List assets.

You can list the assets that have been imported to the current workspace so that you can do
further asset administration, such as deleting or exporting assets. An asset represents at least one
binary file that implements business logic.

l. List composition units.

You can list the composition units for a specific business-level application in a session so that you
can do further composition unit administration, such as deleting or adding composition units. A
composition unit is typically created from a business-level application or an asset and contains
configuration information that makes the asset runnable.

m. List business-level applications.

You can list the business-level applications of a session so that you can do further business-level
application administration such as deleting a business-level application. A business-level
application is an administrative model that captures the definition of an enterprise-level application
so that you can perform specific business functions, such as accounting.

n. Edit a composition unit.

You can edit the configuration information in a composition unit of a business-level application if,
for example, you want to change which modules in the composition unit are configured to run in
which targets. A composition unit is typically created from a business-level application or an asset
and contains configuration information that makes the asset runnable.

o. Edit an asset.

You can edit the information of an asset, for example, its destination location, its relationship with
other assets, and so on. An asset represents at least one binary file that implements business logic

p. Edit a business-level application.

You can edit the information of a business-level application such as its description. A business-level
application is an administrative model that captures the entire definition of an enterprise-level
application.

q. Update an asset.

You can update an asset by adding, deleting, or updating a single file or Java Platform, Enterprise
Edition (Java EE) module, or by merging multiple files or Java EE modules into an asset. You can
also update an asset by replacing the entire asset.

r. View a composition unit.

You can view the composition unit information so that you can do other tasks associated with the
composition unit, such as editing an asset or deleting a composition unit. A composition unit is
typically created from a business-level application or an asset and contains configuration
information that makes the asset runnable.

s. View an asset.

You can view the asset information so that you can do other tasks associated with the asset, such
as editing or exporting an asset. An asset represents at least one binary file that implements
business logic.

t. View a business-level application.

444 Administering applications and their environment

You can view business-level application information such as the description so that you can do
other tasks associated with the business-level application, such as editing the business-level
application. A business-level application is an administrative model that captures the entire definition
of an enterprise-level application.

u. List control operations.

You can list the control operations of a business-level application or a composition unit for a
session. You use control operations, such as start or stop, to change or query the runtime
environment of a business-level application or a composition unit.

2. Save your changes to the master configuration repository.

3. Synchronize changes to the master configuration across the nodes for the changes to take effect.

Results

Depending on which tasks you complete, you have created, edited, updated, started, stopped, deleted,
exported, imported, or queried information about business-level applications.

What to do next

If you have further business-level application updates, you can do the updates through programming, the
administrative console, or the wsadmin scripting tool.

Creating an empty business-level application using programming
You can create an empty business-level application, and then add assets or business-level applications as
composition units to the empty business-level application.

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command
framework programming in the application programming interfaces documentation.

You can create an empty business-level application using programming, the administrative console, or the
wsadmin tool.

About this task

Perform the following steps to create an empty business-level application using programming. In your code
that creates the empty business-level application, you must provide the name parameter. The name
parameter specifies the name of the business-level application that you create.

Procedure
1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without
being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query
existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the
progress of the running command, you have to create an asynchronous command handler to receive
notifications that the command generates.

4. Create the asynchronous command client.

Chapter 12. Administering business-level applications using programming 445

An asynchronous command client provides a higher level interface to work with an asynchronous
command. If you created an asynchronous command handler in the previous step, the handler is
passed to the asynchronous command client. The asynchronous command client forwards the
command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to create and set up the command that
creates an empty business-level application.

The command name is createEmptyBLA. The name parameter is a required parameter that you use to
specify the name of the business-level application. You can optionally provide the description
parameter to provide a description of the newly created business-level application.

6. Call the processCommandParameters method in the asynchronous command client to process the
command parameters.

The command framework asynchronous command model requires this call.

7. Call the execute method in the asynchronous command client to run the command that creates an
empty business-level application.

You might have created an asynchronous command handler to implement the
AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command
client listens to command notifications and forwards the notifications to the handler. The handler
performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by
calling the command.getCommandResult method.

Results

After you successfully run the code, the empty business-level application is created.

Example

The following example shows how to create an empty business-level application based on the previous
steps. Some statements are split on multiple lines for printing purposes.
package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.websphere.management.Session;
import com.ibm.websphere.management.cmdframework.AdminCommand;
import com.ibm.websphere.management.cmdframework.CommandMgr;
import com.ibm.websphere.management.cmdframework.CommandResult;
import com.ibm.websphere.management.exception.AdminException;
import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class CreateEmptyBLA {

 public static void main(String[] args) {

 try {

 // Connect to the application server.
 // This step is optional if you use the local
 // command manager. Comment out the lines to and including
 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(
 // soapClient);
 // to get the soapClient soap client if you use the local
 // command manager.

 String host = "localhost";

446 Administering applications and their environment

String port = "8880";
 // Change to your port number if it is
 // not 8880.

 Properties config = new Properties();
 config.put(AdminClient.CONNECTOR_HOST, host);
 config.put(AdminClient.CONNECTOR_PORT, port);
 config.put(AdminClient.CONNECTOR_TYPE,
 AdminClient.CONNECTOR_TYPE_SOAP);
 System.out.println("Config: " + config);
 AdminClient soapClient =
 AdminClientFactory.createAdminClient(config);

 // Create the command manager.
 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command
 // manager if you are using a local command manager.
 // Uncomment the following line to create a local command
 // manager:
 //
 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();
 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler
 // for listening to command notifications.
 // Comment out the following line if no further handling
 // of command notification is required:
 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.
 String id = Long.toHexString(System.currentTimeMillis());
 String user = "content" + id;
 Session session = new Session(user, true);

 // If no command handler is used, replace the listener with
 // null for the AsyncCommandClient object that follows.

 AsyncCommandClient asyncCmdClientHelper = new
 AsyncCommandClient(session, listener);
 System.out.println("\nCreated async command client");

 // Create the command that creates an empty
 // business-level application.
 String cmdName = "createEmptyBLA";

 AdminCommand cmd = cmdMgr.createCommand(cmdName);
 cmd.setConfigSession(session); // Create an empty
 // business-level application using
 // the session created.
 System.out.println("\nCreated " + cmdName);

 // Set the name command parameter.
 String blaName = "bla1";
 cmd.setParameter("name", blaName);

 System.out.println("\nSet name parameter to "
 + cmd.getParameter("name"));

 // Uncomment the following lines to set the description of
 // the business-level application being created:
 //
 // String blaDescription = "description for bla1";
 // cmd.setParameter("description", blaDescription);
 // System.out.println("\nSet description parameter to " +

Chapter 12. Administering business-level applications using programming 447

// cmd.getParameter("description"));

 // Call the asynchronous command client to
 // process the command parameters.
 try {
 asyncCmdClientHelper.processCommandParameters(cmd);
 System.out.println("\nCompleted process command " +
 "parameters");
 } catch (Throwable th) {
 System.out.println("Failed from " +
 "asyncCmdClientHelper.processCommandParameters(cmd).");
 th.printStackTrace();
 System.exit(-1);
 }

 // Call the asynchronous command client to run the command.
 asyncCmdClientHelper.execute(cmd);
 System.out.println("\nCompleted command execution");

 // Check the command result.
 CommandResult result = cmd.getCommandResult();
 if (result != null) {
 if (result.isSuccessful()) {
 System.out.println("\nCommand ran successfully "
 + "with result\n" + result.getResult());
 } else {
 System.out.println("\nCommand ran with " +
 "Exception");
 result.getException().printStackTrace();
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;
import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {
 // Add your own code here to handle the received notification.
 System.out.println("\nEXAMPLE: notification received: " +
 notification);
 }
}

What to do next

You can add business-level applications or assets as composition units into the newly created
business-level application. Alternatively, you can add the newly created business-level application to other
business-level applications.

Importing an asset using programming
You can import an asset to register the asset with the product and optionally store the asset in the product
repository so that you can later use that asset in a business-level application. An asset represents at least
one binary file that implements business logic.

448 Administering applications and their environment

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command
framework programming in the application programming interfaces documentation.

You can import an asset using programming, the administrative console, or the wsadmin tool.

About this task

When you import an asset, you register the asset with the product and optionally store the asset in the
product repository.

You must provide a file path to the source that you are importing. Specify an absolute path name to the
source, as the behavior for a relative path is unpredictable.

You can specify a destination location from where the application server reads the asset file while starting
a composition unit created from the asset. The asset is copied to this location when the configuration
session is saved after the asset is imported. The default asset destination is profile_root/installedAssets/
asset_name.

You can optionally specify a storage type of FULL, METADATA, or NONE. The default value is FULL,
which means that the asset and associated meta data are stored in the product asset repository. If you
specify a storage type of METADATA, the asset is not copied to the product repository, but associated
meta data is stored in the product repository. If you specify a storage type of NONE, neither the asset nor
the asset meta data is stored in the product asset repository. For storage types of METADATA and NONE,
the asset is expected to reside at the destination file path. Storage types of METADATA and NONE are
typically used by development tools which enable iterative development on the copy of the asset in the
directory structure of the tool.

Perform the following steps to import an asset using programming.

Procedure
1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without
being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query
existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the
progress of the running command, you have to create an asynchronous command handler to receive
notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous
command. If you created an asynchronous command handler in the previous step, the handler is
passed to the asynchronous command client. The asynchronous command client forwards the
command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to set up the command that imports an
asset.

The command name is importAsset. The source parameter is a required parameter that you use to
specify the path to the asset. You can optionally provide the storageType parameter to specify how to
save the asset in the configuration repository.

Chapter 12. Administering business-level applications using programming 449

6. Call the processCommandParameters method in the asynchronous command client to process the
command parameters.

The command framework asynchronous command model requires this call.

7. Set up the command step parameters.

You can set parameters in the AssetOptions step that contains data about the asset such as its
description, file permission, and relationship with other assets.

8. Call the asynchronous command client to run the command that imports an asset.

You might have created an asynchronous command handler to implement the
AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command
client listens to command notifications and forwards the notifications to the handler. The handler
performs any necessary actions while waiting for the command to complete.

9. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by
calling the command.getCommandResult method.

Results

After you successfully run the code, the asset is imported.

Example

The following example shows how to import an asset based on the previous steps.

Some statements are split on multiple lines for printing purposes.
package com.ibm.ws.management.application.task;

import java.util.Properties;
import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.websphere.management.Session;

import com.ibm.websphere.management.cmdframework.CommandMgr;
import com.ibm.websphere.management.cmdframework.AdminCommand;
import com.ibm.websphere.management.cmdframework.TaskCommand;
import com.ibm.websphere.management.cmdframework.CommandStep;
import com.ibm.websphere.management.cmdframework.CommandResult;
import com.ibm.websphere.management.cmdframework.UploadFile;
import com.ibm.websphere.management.exception.AdminException;
import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class ImportAsset {

 public static void main (String [] args) {

 try {

 // Connect to the application server.
 // This step is optional if you use the local
 // command manager. Comment out the lines to and including
 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(
 // soapClient);
 // to get the soapClient soap client if you use the local
 // command manager.

 String host = "localhost";
 String port = "8880"; //Change to your port number if it is not
 //8880.

 Properties config = new Properties();
 config.put (AdminClient.CONNECTOR_HOST, host);

450 Administering applications and their environment

config.put (AdminClient.CONNECTOR_PORT, port);
 config.put (AdminClient.CONNECTOR_TYPE,
 AdminClient.CONNECTOR_TYPE_SOAP);
 System.out.println ("Config: " + config);
 AdminClient soapClient =
 AdminClientFactory.createAdminClient(config);

 // Create the command manager.
 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command
 // manager if you are using a local command manager.
 // Uncomment the following line to create a local command
 // manager:
 //
 //CommandMgr cmdMgr = CommandMgr.getCommandMgr();

 System.out.println("\nCreated command manager");

 // Optionally create the asynchronous command handler.
 // Comment out the following line if no further handling
 // of command notification is required:
 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Setup the session.
 String id = Long.toHexString(System.currentTimeMillis());
 String user = "content" + id;
 Session session = new Session(user, true);

 // If no command handler is used, replace the following listener with
 // null for the AsyncCommandClient object.

 AsyncCommandClient asyncCmdClientHelper = new
 AsyncCommandClient(session, listener);
 System.out.println("\nCreated async command client");

 String cmdName = "importAsset";
 UploadFile assetSource = new

UploadFile("c:\sources\test5.zip"); //Change to the directory of your sources.

UploadFile("/sources/test5.zip"); //Change to the directory of your sources.

 // Create the command to import an asset.
 AdminCommand cmd = cmdMgr.createCommand(cmdName);
 cmd.setConfigSession(session); //import the asset using
 //the session created
 System.out.println("\nCreated " + cmdName);

 // Set the source command parameter.
 cmd.setParameter("source", assetSource);
 System.out.println("\nSet source parameter to " +
 cmd.getParameter("source"));

 // Uncomment the following line to set the storage type to
 // a value of STORAGETYPE_META or STORAGETYPE_NONE instead of
 // the default of STORAGETYE_FULL:
 //
 //cmd.setParameter(“storageType,
 // CommandConstants.STORAGETYPE_NONE);

Chapter 12. Administering business-level applications using programming 451

// Call the asynchronous client helper to process parameters.
 try {
 asyncCmdClientHelper.processCommandParameters(cmd);
 System.out.println("\nCompleted process command " +
 "parameters");
 }
 catch(Throwable th) {
 System.out.println("Failed from " +
 "asyncCmdClientHelper.processCommandParameters(cmd).");
 th.printStackTrace();
 System.exit(-1);
 }

 // Set up the step parameters for the AssetOptions step.
 String stepName = "AssetOptions";
 CommandStep step = ((TaskCommand) cmd).gotoStep(stepName);

 // The new asset name must contain the
 // same extension as the original .zip file name.
 String assetNewName = "asset1.zip";

 // If you override the default destination, include the
 // entire path with the file name for the new destination.

 String destName = "c:\websphere\asset\installDir\asset1.zip";

 String destName = "/websphere/asset/installDir/asset1.zip";

 for (int i = 0; i < step.getNumberOfRows(); i++) {
 // The following lines change the name and destination
 // step parameters. Other step parameters that you can
 // use follow, but are commented out.
 // Change your set
 // of step parameters as required by your scenario.

 // Set the name.
 step.setParameter("name", assetNewName, i);
 System.out.println("\nSet name parameter to " +
 step.getParameter("name", i));

 // Set the destination.
 step.setParameter("destination", destName, i);
 System.out.println("\nSet destination parameter to " +
 step.getParameter("destination", i));

 // Set the description.
 //String desc = "description for asset1.zip";
 //step.setParameter("description", desc, i);
 //System.out.println("\nSet description parameter to " +
 // step.getParameter("description", i));

 // Set the validation.
 //String validate = "Yes";
 //step.setParameter("validate", validate, i);
 //System.out.println("\nSet validate parameter to " +
 // step.getParameter("validate", i));

 // Set the file permission.
 //String filePermission = ".*\\.dll=755";
 //step.setParameter("filePermission", filePermission, i);
 //System.out.println("\nSet filePermission parameter to " +
 // step.getParameter("filePermission", i));

 // Set the type aspect parameter value.

452 Administering applications and their environment

// Format for a typeAspect: WebSphere:spec=xxx,version=n.n+
 // Websphere:spec=xxx,version=n.n.
 //String typeAspect = "";
 //step.setParameter("typeAspect", typeAspect, i);
 //System.out.println("\nGet typeAspect: " +
 // step.getParameter("typeAspect", i));

 // Set the relationship parameter.
 // The relationship parameter declares dependency
 // relationships on other assets. The parameter value
 // is a list which contains the ID of each asset declared
 // as a dependency. Each ID in the list is separated by
 // a "plus" sign ("+").
 //
 // Only assets which are Java archives can be referenced in
 // dependency relationships. An asset is a Java archive if
 // it has a type aspect identifying it as such.
 //
 // If an asset declared as a dependency does not exist or
 // does not have a Java archive type aspect, it is ignored
 // and no dependency on the asset is registered in the
 // asset’s configuration.
 //
 //String relationship =
 // "assetname=shared.zip+assetname=shared2.zip";
 //step.setParameter("relationship", relationship, i);
 //System.out.println("\nGet relationship: " +
 // step.getParameter("relationship", i));

 }

 // Call the asynchronous command client that imports the asset.
 asyncCmdClientHelper.execute(cmd);
 System.out.println("\nCompleted running of command");

 // Check the command result.
 CommandResult result = cmd.getCommandResult();
 if (result != null) {
 if (result.isSuccessful()) {
 System.out.println("\nCommand ran successfully " +
 "with result\n" + result.getResult());
 } else {
 System.out.println("\nCommand ran with " +
 "exception");
 result.getException().printStackTrace();
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;
import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {
 // Add your own code here to handle the received notification
 System.out.println("\nEXAMPLE: notification received: " +
 notification);
 }
}

Chapter 12. Administering business-level applications using programming 453

What to do next

Add a composition unit to a business-level application using the asset that you imported. An asset included
in a business-level application is represented by a composition unit.

Listing assets using programming
You can list the assets that have been imported so that you can do further asset administration, such as
deleting or exporting assets. An asset represents at least one binary file that implements business logic.

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command
framework programming in the application programming interfaces documentation.

You can list assets using programming, the administrative console, or the wsadmin tool.

About this task

You can list assets using programming, the administrative console, or the wsadmin tool. This topic
describes how to list assets using programming.

When you list assets, all the assets are listed unless you set the assetID to specify the asset that you
want to list. You can optionally include deployable units or a description of the assets when you list the
assets. After you list the assets, you can use the information to do further administration, such as deleting
or exporting assets.

Perform the following tasks to list assets using programming.

Procedure
1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without
being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query
existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the
progress of the running command, you have to create an asynchronous command handler to receive
notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous
command. If you created an asynchronous command handler in the previous step, the handler is
passed to the asynchronous command client. The asynchronous command client forwards the
command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to create and set up the command that
lists assets.

The command name is listAssets. You can optionally set the assetID parameter to query for assets
that match the ID. You can also optionally set the includeDescription parameter and the
includeDeplUnit parameter to include the display of the asset description and its deployable units.

6. Call the processCommandParameters method in the asynchronous command client to process the
command parameters.

The command framework asynchronous command model requires this call.

454 Administering applications and their environment

7. Call the asynchronous command client to list the asset.

You might have created an asynchronous command handler to implement the
AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command
client listens to command notifications and forwards the notifications to the handler. The handler
performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by
calling the command.getCommandResult method.

Results

After you successfully run the code, a list of assets is displayed.

Example

The following example shows how to list the assets based on the previous steps. Some statements are
split on multiple lines for printing purposes.
package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.websphere.management.Session;
import com.ibm.websphere.management.cmdframework.AdminCommand;
import com.ibm.websphere.management.cmdframework.CommandMgr;
import com.ibm.websphere.management.cmdframework.CommandResult;
import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class ListAssets {

 public static void main(String[] args) {

 try {

 // Connect to the application server.
 // This step is optional if you use the local
 // command manager. Comment out the lines to and including
 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(
 // soapClient);
 // to get the soapClient soap client if you use the local
 // command manager.

 String host = "localhost";
 String port = "8880"; // Change to your port number if
 // it is not 8880.

 Properties config = new Properties();
 config.put(AdminClient.CONNECTOR_HOST, host);
 config.put(AdminClient.CONNECTOR_PORT, port);
 config.put(AdminClient.CONNECTOR_TYPE,
 AdminClient.CONNECTOR_TYPE_SOAP);
 System.out.println("Config: " + config);
 AdminClient soapClient =
 AdminClientFactory.createAdminClient(config);

 // Create the command manager.
 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command
 // manager if you are using a local command manager.
 // Uncomment the following line to create a local command

Chapter 12. Administering business-level applications using programming 455

// manager:
 //
 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();
 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler.
 // Comment out the following line if no further handling
 // of command notification is required.
 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.
 String id = Long.toHexString(System.currentTimeMillis());
 String user = "content" + id;
 Session session = new Session(user, true);

 // If no command handler is used, replace listener with
 // null for the AsyncCommandClient object.
 AsyncCommandClient asyncCmdClientHelper = new
 AsyncCommandClient(session, listener);
 System.out.println("\nCreated async command client");

 // Create the command that lists the assets.
 String cmdName = "listAssets";
 AdminCommand cmd = cmdMgr.createCommand(cmdName);
 cmd.setConfigSession(session); // list all the assets
 // using the session created.
 System.out.println("\nCreated " + cmdName);

 // Optionally set the assetID parameter.
 // Uncomment the following code to set the assetID parameter to
 // only list the asset with the ID specified, otherwise all
 // assets are listed. Change the assetID parameter according to your
 // scenario.
 // Examples of valid formats for the assetID parameter are:
 // - aName
 // - assetname=aName
 // - WebSphere:assetname=aName
 // All assets that match the ID specification are listed.
 // The ID must include at least the asset name.
 // String assetID = "asset1.zip";
 // cmd.setParameter("assetID", assetID);

 //System.out.println("\nSet assetID parameter to "
 // + cmd.getParameter("assetID"));

 // Optionally include a description by setting
 // the includeDescription parameter to true or false.
 String includeDescription = "true";
 cmd.setParameter("includeDescription", includeDescription);

 System.out.println("\nSet includeDescription parameter to "
 + cmd.getParameter("includeDescription"));

 // Optionally include deployable units by setting
 // the includeDeplUnit parameter to true or false.
 String includeDeplUnit = "false";
 cmd.setParameter("includeDeplUnit", includeDeplUnit);

 System.out.println("\nSet includeDeplUnit parameter to "
 + cmd.getParameter("includeDeplUnit"));

 // Call the asynchronous client helper to process parameters.
 try {
 asyncCmdClientHelper.processCommandParameters(cmd);
 System.out.println("\nCompleted process command " +

456 Administering applications and their environment

"parameters");
 } catch (Throwable th) {
 System.out.println("Failed from " +
 "asyncCmdClientHelper.processCommandParameters(cmd).");
 th.printStackTrace();
 System.exit(-1);
 }

 // Run the command to list assets.
 asyncCmdClientHelper.execute(cmd);
 System.out.println("\nCompleted running of the command");

 // Check the command result.
 CommandResult result = cmd.getCommandResult();
 if (result != null) {
 if (result.isSuccessful()) {
 System.out.println("\nCommand ran successfully "
 + "with result\n" + result.getResult());
 }
 else {
 System.out.println("\nCommand ran with " +
 "Exception");
 result.getException().printStackTrace();
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 ’}
}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;
import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {
 // Add your own code here to handle the received notification
 System.out.println("\nEXAMPLE: notification received: " +
 notification);
 }
}

What to do next

You can complete other tasks associated with assets, such as deleting, editing, and exporting assets.

Viewing an asset using programming
You can view the asset information so that you can complete other tasks associated with the asset, such
as editing or exporting an asset. An asset represents at least one binary file that implements business
logic.

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command
framework programming in the application programming interface documentation.

Before you can view an asset of a business-level application, you must have imported an asset.

Chapter 12. Administering business-level applications using programming 457

About this task

You can view an asset using programming, the administrative console, or the wsadmin tool. This topic
describes how to view an asset using programming.

You must provide the assetID parameter to specify the asset you are viewing. You can view configuration
information of an asset, such as the destination location and relationships with other assets.

Perform the following tasks to view an asset of a business-level application using programming.

Procedure
1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without
being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query
existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the
progress of the running command, you have to create an asynchronous command handler to receive
notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous
command. If you created an asynchronous command handler in the previous step, the handler is
passed to the asynchronous command client. The asynchronous command client forwards the
command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to create and set up the command to
view an asset.

The command name is viewAsset. Use the required assetID parameter to specify the asset that you
are viewing.

6. Call the processCommandParameters method in the asynchronous command client to process the
command parameters.

The command framework asynchronous command model requires this call.

7. Call the asynchronous command client to run the command and view an asset.

You might have created an asynchronous command handler to implement the
AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command
client listens to command notifications and forwards the notifications to the handler. The handler
performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by
calling the command.getCommandResult method.

Results

After you successfully run the code, you can view the configuration information of an asset.

Example

The following example shows how to view an asset based on the previous steps. Some statements are
split on multiple lines for printing purposes.

458 Administering applications and their environment

package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.websphere.management.Session;
import com.ibm.websphere.management.cmdframework.AdminCommand;
import com.ibm.websphere.management.cmdframework.CommandMgr;
import com.ibm.websphere.management.cmdframework.CommandResult;
import com.ibm.websphere.management.cmdframework.CommandStep;
import com.ibm.websphere.management.cmdframework.TaskCommand;
import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class ViewAsset {

 public static void main(String [] args) {

 try {
 // Connect to the application server.
 // This step is optional if you use the local
 // command manager. Comment out the lines to and including
 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(
 // soapClient);
 // to get the soapClient soap client if you use the local
 // command manager.
 String host = "localhost";
 String port = "8880"; // Change to your port number if it is
 // not 8880.

 Properties config = new Properties();
 config.put(AdminClient.CONNECTOR_HOST, host);
 config.put(AdminClient.CONNECTOR_PORT, port);
 config.put(AdminClient.CONNECTOR_TYPE,
 AdminClient.CONNECTOR_TYPE_SOAP);
 System.out.println("Config: " + config);
 AdminClient soapClient =
 AdminClientFactory.createAdminClient(config);

 // Create the command manager.
 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command
 // manager if you are using a local command manager.
 // Uncomment the following line to create a local command
 // manager:
 //
 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();
 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler.
 // Comment out the following line if no further handling
 // of command notification is required:
 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.
 String id = Long.toHexString(System.currentTimeMillis());
 String user = "content" + id;
 Session session = new Session(user, true);

 // If no command handler is used, replace the following listener with
 // null for the AsyncCommandClient object:
 AsyncCommandClient asyncCmdClientHelper = new
 AsyncCommandClient(session, listener);
 System.out.println("\nCreated async command client");

Chapter 12. Administering business-level applications using programming 459

// Create the command to view the asset.
 String cmdName = "viewAsset";
 AdminCommand cmd = cmdMgr.createCommand(cmdName);
 cmd.setConfigSession(session); // View a certain composition
 // unit of a business-level application
 // using the session created.
 System.out.println("\nCreated " + cmdName);

 // (required) Set the assetID parameter to the asset.
 // Examples of valid formats for the assetID parameter:
 // - aName
 // - assetname=aName
 // - WebSphere:assetname=aName
 // This parameter accepts an incomplete ID as long as the
 // incomplete ID can resolve to a unique asset.
 String assetID = "asset1.zip";
 cmd.setParameter("assetID", assetID);

 System.out.println("\nSet assetID parameter to "
 + cmd.getParameter("assetID"));

 // Call the asynchronous client helper to process parameters
 try {
 asyncCmdClientHelper.processCommandParameters(cmd);
 System.out.println("\nCompleted process command " +
 "parameters");
 } catch (Throwable th) {
 System.out.println("Failed from " +
 "asyncCmdClientHelper.processCommandParameters(cmd).");
 th.printStackTrace();
 System.exit(-1);
 }

 // Call the asynchronous command client to run the command.
 asyncCmdClientHelper.execute(cmd);
 System.out.println("\nCompleted running of command");

 // Check the command result.
 CommandResult result = cmd.getCommandResult();
 if (result != null) {
 if (result.isSuccessful()) {
 System.out.println("\nCommand ran successfully "
 + "with result\n" + result.getResult());
 }
 else {
 System.out.println("\nCommand ran with " +
 "Exception");
 result.getException().printStackTrace();
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;
import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {
 public void handleNotification(CommandNotification notification) {
 // Add your own code here to handle the received notification

460 Administering applications and their environment

System.out.println("\nEXAMPLE: notification received: " +
 notification);
 }
}

What to do next

You can use the asset information that you viewed to perform other tasks. For instance, you might edit the
asset to make improvements to the asset. You might export the asset and then import it into another
configuration repository. You can then add the asset as a composition unit to a business-level application.

Editing an asset using programming
You can edit the information of an asset such as its destination location, its relationship with other assets,
and so on. An asset represents at least one binary file that implements business logic.

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command
framework programming in the application programming interfaces documentation.

Before you can edit an asset, you must have imported an asset.

You can edit an asset of a business-level application using programming, the administrative console, or
the wsadmin tool.

About this task

You can edit an asset of a business-level application using programming, the administrative console, or
the wsadmin tool. This topic describes how to edit an asset of a business-level application using
programming.

You must provide the assetID parameter to specify the asset that you are editing.

Perform the following tasks to edit an asset of a business-level application using programming.

Procedure
1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without
being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query
existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the
progress of the running command, you have to create an asynchronous command handler to receive
notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous
command. If you created an asynchronous command handler in the previous step, the handler is
passed to the asynchronous command client. The asynchronous command client forwards the
command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to create and set up the command that
edits an asset.

Chapter 12. Administering business-level applications using programming 461

The command name is editAsset. The assetID parameter is a required parameter to specify the asset
that you are editing.

6. Call the asynchronous command client to process the command parameters.

7. Set up the command step parameters.

The AssetOptions step contains data about the asset such as its description, file permission, and
relationship with other assets. You can edit various parameters in the AssetOptions step.

8. Call the asynchronous command client to run the command that edits an asset of a business-level
application.

You might have created an asynchronous command handler to implement the
AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command
client listens to command notifications and forwards the notifications to the handler. The handler
performs any necessary actions while waiting for the command to complete.

9. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by
calling the command.getCommandResult method.

Results

After you successfully run the code, the asset of a business-level application is edited.

Example

The following example shows how to edit an asset of a business-level application based on the previous
steps. Some statements are split on multiple lines for printing purposes.
package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.websphere.management.Session;
import com.ibm.websphere.management.cmdframework.AdminCommand;
import com.ibm.websphere.management.cmdframework.CommandMgr;
import com.ibm.websphere.management.cmdframework.CommandResult;
import com.ibm.websphere.management.cmdframework.CommandStep;
import com.ibm.websphere.management.cmdframework.TaskCommand;
import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class EditAsset {

 public static void main(String [] args) {

 try {

 // Connect to the application server.
 // This step is optional if you use the local
 // command manager.

 // Comment out the lines to and including get the
 // soapClient soap client if you use the local command manager.
 // Comment out the lines to and including
 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(
 // soapClient);
 // to get the soapClient soap client if you use the
 // local command manager.
 String host = "localhost";
 String port = "8880"; // Change to your port number if it is
 // not 8880.

 Properties config = new Properties();

462 Administering applications and their environment

config.put(AdminClient.CONNECTOR_HOST, host);
 config.put(AdminClient.CONNECTOR_PORT, port);
 config.put(AdminClient.CONNECTOR_TYPE,
 AdminClient.CONNECTOR_TYPE_SOAP);
 System.out.println("Config: " + config);
 AdminClient soapClient =
 AdminClientFactory.createAdminClient(config);

 // Create the command manager:
 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command
 // manager if you are using a local command manager.
 // Uncomment the following line to create a local command
 // manager.
 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();
 System.out.println("\nCreated command manager");

 // Optionally create async command handler.
 // Comment out the following line if no further handling
 // of command notification is required:
 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.
 String id = Long.toHexString(System.currentTimeMillis());
 String user = "content" + id;
 Session session = new Session(user, true);

 // If no command handler is used, replace the listener with
 // null for the following AsyncCommandClient object.
 AsyncCommandClient asyncCmdClientHelper = new
 AsyncCommandClient(session, listener);
 System.out.println("\nCreated async command client");

 // Create the command that edits the asset.
 String cmdName = "editAsset";
 AdminCommand cmd = cmdMgr.createCommand(cmdName);
 cmd.setConfigSession(session); // Edit an imported asset
 // using the session created.
 System.out.println("\nCreated " + cmdName);

 // Set the assetID parameter
 // Examples of valid formats for the assetID parameter are:
 // - aName
 // - assetname=aName
 // - WebSphere:assetname=aName
 // This parameter accepts an incomplete ID as long as
 // the incomplete ID can resolve to a unique asset.
 String assetID = "asset1.zip";
 cmd.setParameter("assetID", assetID);

 System.out.println("\nSet assetID parameter to "
 + cmd.getParameter("assetID"));

 // Call the asynchronous client helper to process parameters.
 try {
 asyncCmdClientHelper.processCommandParameters(cmd);
 System.out.println("\nCompleted process command " +
 "parameters");
 } catch (Throwable th) {
 System.out.println("Failed from " +
 "asyncCmdClientHelper.processCommandParameters(cmd).");
 th.printStackTrace();
 System.exit(-1);
 }

Chapter 12. Administering business-level applications using programming 463

// Set up the step parameters for the AssetOptions step.
 String stepName = "AssetOptions";
 CommandStep step = ((TaskCommand) cmd).gotoStep(stepName);

 // Asset description:
 String description = "asset for testing";

 // destination of deployed asset

 String destinationUrl = "c:\myInstalledAssets\asset1.zip";

 String destinationUrl = "/myInstalledAssets/asset1.zip";

 // Asset type aspect:
 String typeAspect = "spec=sharedlib";

 // Asset validation:
 String validate = "yes";

 // Permission of files:
 String filePermission = ".*\\.dll=755";

 // Asset relationship:
 String relationship = "";

 for (int i = 0; i < step.getNumberOfRows(); i++) {
 // The following lines set the description and typeAspect
 // step parameters. There are other step parameters
 // in the AssetOptions step in the following comments. Change your set
 // of step parameters as required by your scenario.

 // For example, set description
 step.setParameter("description", description, i);
 System.out.println("\nSet description parameter to " +
 step.getParameter("description", i));

 // For example, set the typeAspect parameter.
 // Format of a typeAspect is:
 // WebSphere:spec=xxx,version=n.n+
 // WebSphere:spec=xxx,version=n.n
 step.setParameter("typeAspect", typeAspect, i);
 System.out.println("\nGet typeAspect: " +
 step.getParameter("typeAspect", i));

 // For example, set the destination parameter.
 step.setParameter("destination", destination, i);
 System.out.println("\nSet destination parameter to " +
 step.getParameter("destination", i));

 // For example, set the validate parameter.
 step.setParameter("validate", validate, i);
 System.out.println("\nSet validate parameter to " +
 step.getParameter("validate", i));

 // For example, set the filePermission perameter.
 step.setParameter("filePermission", filePermission, i);
 System.out.println("\nSet filePermission parameter to " +
 step.getParameter("filePermission", i));

 // For example, set relationship.
 step.setParameter("relationship", relationship, i);
 System.out.println("\nSet relationship paramter to " +
 step.getParameter("relationship", i));

464 Administering applications and their environment

}

 // Run the command to edit the asset.
 asyncCmdClientHelper.execute(cmd);
 System.out.println("\nCompleted running of command");

 // Check the command result.
 CommandResult result = cmd.getCommandResult();
 if (result != null) {
 if (result.isSuccessful()) {
 System.out.println("\nCommand ran successfully "
 + "with result\n" + result.getResult());
 }
 else {
 System.out.println("\nCommand ran with " +
 "Exception");
 result.getException().printStackTrace();
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;
import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {
 // Add your own code here to handle the received notification
 System.out.println("\nEXAMPLE: notification received: " +
 notification);
 }
}

What to do next

After you edit the asset, you can add the asset as a composition unit to a business-level application, or
export the asset.

Deleting an asset using programming
You can delete an asset from a business-level application using programming if the asset is not
functioning correctly, the asset is no longer needed, and so on. An asset represents at least one binary file
that implements business logic.

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command
framework programming in the application programming interface documentation.

Before you can delete an asset, you must have imported the asset. All the composition units associated
with the asset must be deleted using the deleteCompUnit command before you delete the asset.
Otherwise, you have to force the deletion. If you do not force the deletion, the deletion fails. If any other
composition units have a dependency on a composition unit being deleted with the force option, the
deletion fails. After all dependencies on the composition unit are removed, the force option succeeds.

Chapter 12. Administering business-level applications using programming 465

About this task

You can delete an asset using programming, the administrative console, or the wsadmin tool. Use this
topic to delete an asset using programming.

You must specify the assetID parameter of the asset that you are deleting. You might delete an asset if it
is not functioning correctly, it is no longer needed, and so on.

Perform the following tasks to delete an asset using programming.

Procedure
1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without
being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query
existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the
progress of the running command, you have to create an asynchronous command handler to receive
notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous
command. If you created an asynchronous command handler in the previous step, the handler is
passed to the asynchronous command client. The asynchronous command client forwards the
command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to create and set up the command that
deletes an asset.

The command name is deleteAsset. The assetID parameter is a required parameter to specify the
asset to delete. You can optionally specify the delete parameter to force deletion of an asset if
composition units are still associated with the asset.

6. Call the processCommandParameters method in the asynchronous command client to process the
command parameters.

The command framework asynchronous command model requires this call.

7. Call the asynchronous command client to run the command that deletes an asset.

You might have created an asynchronous command handler to implement the
AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command
client listens to command notifications and forwards the notifications to the handler. The handler
performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by
calling the command.getCommandResult method.

Results

After you successfully run the code, the asset is deleted.

Example

The following example shows how to delete an asset from a business-level application based on the
previous steps. Some statements are split on multiple lines for printing purposes.

466 Administering applications and their environment

package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.websphere.management.Session;
import com.ibm.websphere.management.cmdframework.AdminCommand;
import com.ibm.websphere.management.cmdframework.CommandMgr;
import com.ibm.websphere.management.cmdframework.CommandResult;
import com.ibm.websphere.management.cmdframework.CommandStep;
import com.ibm.websphere.management.cmdframework.TaskCommand;
import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class DeleteAsset {

 public static void main(String [] args) {

 try {

 // Connect to the application server.
 // This step is optional if you use the local
 // command manager. Comment out the lines to and including
 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(
 // soapClient);
 // to get the soapClient soap client if you use the local
 // command manager.

 String host = "localhost";
 String port = "8880"; // Change to your port number if it is
 // not 8880.

 Properties config = new Properties();
 config.put(AdminClient.CONNECTOR_HOST, host);
 config.put(AdminClient.CONNECTOR_PORT, port);
 config.put(AdminClient.CONNECTOR_TYPE,
 AdminClient.CONNECTOR_TYPE_SOAP);
 System.out.println("Config: " + config);
 AdminClient soapClient =
 AdminClientFactory.createAdminClient(config);

 // Create the command manager.
 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command
 // manager if you are using a local command manager.
 // Uncomment the following line to create a local command
 // manager.
 //
 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();
 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler.
 // Comment out the following line if no further handling
 // of command notification is required.
 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.
 String id = Long.toHexString(System.currentTimeMillis());
 String user = "content" + id;
 Session session = new Session(user, true);

 // If no command handler is used, replace listener with
 // null for the following AsyncCommandClient object:

Chapter 12. Administering business-level applications using programming 467

AsyncCommandClient asyncCmdClientHelper = new
 AsyncCommandClient(session, listener);
 System.out.println("\nCreated async command client");

 // Create the command that deletes the asset.
 String cmdName = "deleteAsset";
 AdminCommand cmd = cmdMgr.createCommand(cmdName);
 cmd.setConfigSession(session); // Delete the asset from the
 // business-level application using the session created.
 System.out.println("\nCreated " + cmdName);

 // Set the assetID parameter to the asset that is to be
 // deleted.
 // Examples of valid formats for the assetID parameter are:
 // - aName
 // - assetname=aName
 // - WebSphere:assetname=aName
 // This parameter will accept an incomplete ID as long as
 // the incomplete ID can resolve to a unique asset
 // in the business-level application.
 String assetID = "as1";
 cmd.setParameter("assetID", assetID);

 System.out.println("\nSet assetID parameter to "
 + cmd.getParameter("assetID"));
 // Uncomment the following line of code to set the force parameter
 // to force the deletion even if there are composition units
 // associated with this asset.
 //
 // cmd.setParameter("force", "true");

 // Call the asynchronous client helper to process parameters.
 try {
 asyncCmdClientHelper.processCommandParameters(cmd);
 System.out.println("\nCompleted process command " +
 "parameters");
 } catch (Throwable th) {
 System.out.println("Failed from " +
 "asyncCmdClientHelper.processCommandParameters(cmd).");
 th.printStackTrace();
 System.exit(-1);
 }

 // Call the asynchronous command client to run the command.
 asyncCmdClientHelper.execute(cmd);
 System.out.println("\nCompleted running the command");

 // Check the command result.
 CommandResult result = cmd.getCommandResult();
 if (result != null) {
 if (result.isSuccessful()) {
 System.out.println("\nCommand ran successfully "
 + "with result\n" + result.getResult());
 }
 else {
 System.out.println("\nCommand ran with " +
 "Exception");
 result.getException().printStackTrace();
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

468 Administering applications and their environment

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;
import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {
 // Add your own code here to handle the received notification
 System.out.println("\nEXAMPLE: notification received: " +
 notification);
 }
}

What to do next

You can complete other steps associated with assets in business-level applications, such as adding or
deleting other assets, listing assets, exporting assets, and so on.

Exporting an asset using programming
You can export an asset from the current session so that you can back up the asset, import the asset to
another session, and so on. An asset represents at least one binary file that implements business logic.

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command
framework programming in the application programming interfaces documentation.

This task assumes that you have already imported an asset.

About this task

You can export an asset using programming, the administrative console, or the wsadmin tool. This topic
describes how to export an asset using programming.

You must provide an assetID parameter value and a file name parameter value to export an asset. The
assetID parameter identifies the asset you want to export. An asset ID can take a number of forms. The
list below shows various forms for an asset named asset1.jar.

v asset1.jar

v assetname=asset1.jar

v WebSphere:assetname=asset1.jar

The filename parameter specifies a file system file name and location for the exported asset. Specify a
fully qualified file path for the file name parameter because the results with relative path names are
unpredictable. If you specify a file name parameter of a file that already exists, the file is overwritten with
the exported asset.

Perform the following tasks to export an asset from a business-level application using programming.

Procedure
1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without
being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

Chapter 12. Administering business-level applications using programming 469

The command manager provides the functionality to create a new administrative command or query
existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the
progress of the running command, you have to create an asynchronous command handler to receive
notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous
command. If you created an asynchronous command handler in the previous step, the handler is
passed to the asynchronous command client. The asynchronous command client forwards the
command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to create and set up the command that
exports an asset.

The command name is exportAsset. The assetID and filename parameters are required parameters to
specify the asset to export and the file name and directory where the asset is exported.

6. Call the processCommandParameters method in the asynchronous command client to process the
command parameters.

The command framework asynchronous command model requires this call.

7. Call the asynchronous command client to run the command that exports an asset.

You might have created an asynchronous command handler to implement the
AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command
client listens to command notifications and forwards the notifications to the handler. The handler
performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by
calling the command.getCommandResult method.

Results

After you successfully run the code, the asset is exported.

Example

The following example shows how to export an asset from a business-level application based on the
previous steps.

Some statements are split on multiple lines for printing purposes.
package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.websphere.management.Session;
import com.ibm.websphere.management.cmdframework.AdminCommand;
import com.ibm.websphere.management.cmdframework.CommandMgr;
import com.ibm.websphere.management.cmdframework.CommandResult;
import com.ibm.websphere.management.cmdframework.TaskCommand;
import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class ExportAsset {

 public static void main(String [] args) {

 try {

470 Administering applications and their environment

// Connect to the application server.
 // This step is optional if you use the local
 // command manager. Comment out the lines to and including
 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(
 // soapClient);
 // to get the soapClient soap client if you use the local
 // command manager.

 String host = "localhost";
 String port = "8880"; // Change to your port number if it is
 // not 8880.

 Properties config = new Properties();
 config.put(AdminClient.CONNECTOR_HOST, host);
 config.put(AdminClient.CONNECTOR_PORT, port);
 config.put(AdminClient.CONNECTOR_TYPE,
 AdminClient.CONNECTOR_TYPE_SOAP);
 System.out.println("Config: " + config);
 AdminClient soapClient =
 AdminClientFactory.createAdminClient(config);

 // Create the command manager.
 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command
 // manager if you are using a local command manager.
 // Uncomment the following line to create a local command
 // manager:
 //
 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();
 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler.
 // Comment out the following line if no further handling
 // of command notification is required:
 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.
 String id = Long.toHexString(System.currentTimeMillis());
 String user = "content" + id;
 Session session = new Session(user, true);

 // If no command handler is used, replace the following listener with
 // null for the AsyncCommandClient object.
 AsyncCommandClient asyncCmdClientHelper = new
 AsyncCommandClient(session, listener);
 System.out.println("\nCreated async command client");

 // Create command that exports the asset.
 String cmdName = "exportAsset";
 AdminCommand cmd = cmdMgr.createCommand(cmdName);
 cmd.setConfigSession(session); // Export as asset
 // using the session created.
 System.out.println("\nCreated " + cmdName);

 // (required) Set the assetID parameter to the composition
 // unit that you are exporting.
 // Examples of valid formats for the assetID parameter are:
 // - aName
 // - assetname=aName
 // - WebSphere:assetname=aName
 // This parameter accepts an incomplete ID as long as
 // the incomplete ID can resolve to a unique asset
 // within the business-level application.
 String assetID = "test5.zip";

Chapter 12. Administering business-level applications using programming 471

cmd.setParameter("assetID", assetID);

 System.out.println("\nSet assetID parameter to "
 + cmd.getParameter("assetID"));

 // Set the file name for the asset to be exported. Use a
 // fully qualified path name. An existing file with the specified
 // name will be overwritten.

 DownloadFile filename = new DownloadFile("c:\assets\asset1.zip");

DownloadFile filename = new DownloadFile("/assets/asset1.zip");

 cmd.setParameter("filename", filename);

 System.out.println("\nSet filename parameter to "
 + cmd.getParameter("filename"));

 // Call the asynchronous client helper to process parameters.
 try {
 asyncCmdClientHelper.processCommandParameters(cmd);
 System.out.println("\nCompleted process command " +
 "parameters");
 } catch (Throwable th) {
 System.out.println("Failed from " +
 "asyncCmdClientHelper.processCommandParameters(cmd).");
 th.printStackTrace();
 System.exit(-1);
 }

 // Call the asynchronous command client to run the command.
 asyncCmdClientHelper.execute(cmd);
 System.out.println("\nCompleted running of the command");

 // Check the command result.
 CommandResult result = cmd.getCommandResult();
 if (result != null) {
 if (result.isSuccessful()) {
 System.out.println("\nCommand ran successfully "
 + "with result\n" + result.getResult());
 }
 else {
 System.out.println("\nCommand ran with " +
 "Exception");
 result.getException().printStackTrace();
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;
import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {
 // Add your own code here to handle the received notification

472 Administering applications and their environment

System.out.println("\nEXAMPLE: notification received: " +
 notification);
 }
}

What to do next

You can import the asset to another session. You can complete other tasks associated with assets, such
as listing assets, and editing assets.

Starting a business-level application using programming
You can start a business-level application, which starts each composition unit in that business-level
application. Each composition unit is started on the respective targets on which the business-level
application is deployed.

Before you begin

Before you can start a business-level application, you must have created an empty business-level
application, imported an asset, and added a composition unit to the business-level application.

You can start a business-level application using programming, the administrative console, or the wsadmin
tool.

This task assumes a basic familiarity with command framework programming. Read about command
framework programming in the application programming interfaces documentation.

About this task

You must specify the blaID parameter of the business-level application that you start.

Perform the following steps to start a business-level application using programming.

Procedure
1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without
being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query
existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the
progress of the running command, you have to create an asynchronous command handler to receive
notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous
command. If you created an asynchronous command handler in the previous step, the handler is
passed to the asynchronous command client. The asynchronous command client forwards the
command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to set up the command that starts a
business-level application.

The command name is startBLA. The blaID parameter is a required parameter to specify the
business-level application to start.

Chapter 12. Administering business-level applications using programming 473

6. Call the processCommandParameters method in the asynchronous command client to process the
command parameters.

The command framework asynchronous command model requires this call.

7. Call the asynchronous command client to run the command that starts a business-level application.

You might have created an asynchronous command handler to implement the
AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command
client listens to command notifications and forwards the notifications to the handler. The handler
performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by
calling the command.getCommandResult method.

Results

After you successfully run the code, the business-level application is started.

Example

The following example shows how to start a business-level application based on the previous steps. Some
statements are split on multiple lines for printing purposes.
package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.websphere.management.Session;
import com.ibm.websphere.management.cmdframework.AdminCommand;
import com.ibm.websphere.management.cmdframework.CommandMgr;
import com.ibm.websphere.management.cmdframework.CommandResult;
import com.ibm.websphere.management.cmdframework.CommandStep;
import com.ibm.websphere.management.cmdframework.TaskCommand;
import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class startBLA {

 public static void main(String [] args) {

 try {

 // Connect to the application server.
 // This step is optional if you use the local command
 // manager. Comment out the lines to and including
 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(
 // soapClient);
 // to get the soapClient soap client if
 // you use the local command manager.

 String host = "localhost";
 String port = "8880"; // Change to your port number if it is
 // not 8880.

 Properties config = new Properties();
 config.put(AdminClient.CONNECTOR_HOST, host);
 config.put(AdminClient.CONNECTOR_PORT, port);
 config.put(AdminClient.CONNECTOR_TYPE,
 AdminClient.CONNECTOR_TYPE_SOAP);
 System.out.println("Config: " + config);
 AdminClient soapClient =
 AdminClientFactory.createAdminClient(config);

474 Administering applications and their environment

// Create the command manager
 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command
 // manager if you are using a local command manager.
 // Uncomment the following line to create a local command
 // manager:
 //
 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();
 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler
 // for listening to command notifications.
 // Comment out the following line if no further handling
 // of command notification is required:
 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.
 String id = Long.toHexString(System.currentTimeMillis());
 String user = "content" + id;
 Session session = new Session(user, true);

 // If no command handler is used, replace the listener with
 // null for the AsyncCommandClient object that follows.
 AsyncCommandClient asyncCmdClientHelper = new
 AsyncCommandClient(session, listener);
 System.out.println("\nCreated async command client");

 // Create the command that starts the business-level application.
 String cmdName = "startBLA";
 AdminCommand cmd = cmdMgr.createCommand(cmdName);
 cmd.setConfigSession(session); // Start a business-level
 //application using the session created.
 System.out.println("\nCreated " + cmdName);

 // (required) Set the blaID parameter.
 // Examples of valid formats for the blaID parameter are:
 // - bName
 // - blaname=bName
 // - WebSphere:blaname=bName
 // This parameter
 // accepts an incomplete ID as long as the incomplete
 // ID can resolve to a unique business-level application.
 String blaID = "bla1";
 cmd.setParameter("blaID", blaID);

 System.out.println("\nSet blaID parameter to "
 + cmd.getParameter("blaID"));

 // Call asynchronous client helper to process parameters.
 try {
 asyncCmdClientHelper.processCommandParameters(cmd);
 System.out.println("\nCompleted process command " +
 "parameters");
 } catch (Throwable th) {
 System.out.println("Failed from " +
 "asyncCmdClientHelper.processCommandParameters(cmd).");
 th.printStackTrace();
 System.exit(-1);
 }

 // Call the asynchronous command client to run the command command.
 asyncCmdClientHelper.execute(cmd);
 System.out.println("\nCompleted running the command");

Chapter 12. Administering business-level applications using programming 475

// Check the command result.
 CommandResult result = cmd.getCommandResult();
 if (result != null) {
 if (result.isSuccessful()) {
 System.out.println("\nCommand ran successfully "
 + "with result\n" + result.getResult());
 }
 else {
 System.out.println("\nCommand ran with " +
 "Exception");
 result.getException().printStackTrace();
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;
import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {
 // Add your own code here to handle the received notification
 System.out.println("\nEXAMPLE: notification received: " +
 notification);
 }
}

What to do next

Your users can access the business-level application that you started.

Stopping a business-level application using programming
You can stop a business-level application, which stops each composition unit in that business-level
application. Each composition unit is stopped on the respective targets on which the business-level
application is deployed.

Before you begin

Before you can stop a business-level application, you must have created an empty business-level
application, imported an asset, added a composition unit to the business-level application, and started the
business-level application.

About this task

You can stop a business-level application using programming, the administrative console, or the wsadmin
tool. This topic describes how to stop a business-level application using programming.

Perform the following steps to stop a business-level application using programming.

Procedure
1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without
being connected to the application server. This step is optional if the application server is not running.

476 Administering applications and their environment

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query
existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the
progress of the running command, you have to create an asynchronous command handler to receive
notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous
command. If you created an asynchronous command handler in the previous step, the handler is
passed to the asynchronous command client. The asynchronous command client forwards the
command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step Create and set up the command that
stops a business-level application.

The command name is stopBLA. The blaID parameter is a required parameter to specify the
business-level application to stop.

6. Call the processCommandParameters method in the asynchronous command client to process the
command parameters.

The command framework asynchronous command model requires this call.

7. Call the asynchronous command client to run the command that stops a business-level application.

You might have created an asynchronous command handler to implement the
AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command
client listens to command notifications and forwards the notifications to the handler. The handler
performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by
calling the command.getCommandResult method.

Results

After you successfully run the code, the business-level application is stopped.

Example

The following example shows how to stop a business-level application based on the previous steps. Some
statements are split on multiple lines for printing purposes.
package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.websphere.management.Session;
import com.ibm.websphere.management.cmdframework.AdminCommand;
import com.ibm.websphere.management.cmdframework.CommandMgr;
import com.ibm.websphere.management.cmdframework.CommandResult;
import com.ibm.websphere.management.cmdframework.CommandStep;
import com.ibm.websphere.management.cmdframework.TaskCommand;
import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class stopBLA {

 public static void main(String [] args) {

 try {

Chapter 12. Administering business-level applications using programming 477

// Connect to the application server.
 // This step is optional if you use the local command
 // manager. Comment out the lines to and including
 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(
 // soapClient);
 // to get the soapClient soap client if
 // you use the local command manager.

 String host = "localhost";
 String port = "8880"; // Change to your port number if it is
 // not 8880.

 Properties config = new Properties();
 config.put(AdminClient.CONNECTOR_HOST, host);
 config.put(AdminClient.CONNECTOR_PORT, port);
 config.put(AdminClient.CONNECTOR_TYPE,
 AdminClient.CONNECTOR_TYPE_SOAP);
 System.out.println("Config: " + config);
 AdminClient soapClient =
 AdminClientFactory.createAdminClient(config);

 // Create the command manager
 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command
 // manager if you are using a local command manager.
 // Uncomment the following line to create a local command
 // manage:.
 //
 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();
 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler
 // for listening to command notifications.
 // Comment out the following line if no further handling
 // of command notification is required.
 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.
 String id = Long.toHexString(System.currentTimeMillis());
 String user = "content" + id;
 Session session = new Session(user, true);

 // If no command handler is used, replace the listener with
 // null for the AsyncCommandClient object that follows.
 AsyncCommandClient asyncCmdClientHelper = new
 AsyncCommandClient(session, listener);
 System.out.println("\nCreated async command client");

 // Create the command that stops the business-level application.
 String cmdName = "stopBLA";
 AdminCommand cmd = cmdMgr.createCommand(cmdName);
 cmd.setConfigSession(session); // Stop a business-level
 //application that is using the session created.
 System.out.println("\nCreated " + cmdName);

 // (required) Set the blaID parameter.
 // Examples of valid formats for the blaID parameter are:
 // - bName
 // - blaname=bName
 // - WebSphere:blaname=bName
 // This parameter
 // accepts an incomplete ID as long as the incomplete
 // ID can resolve to a unique business-level application.
 String blaID = "bla1";

478 Administering applications and their environment

cmd.setParameter("blaID", blaID);

 System.out.println("\nSet blaID parameter to "
 + cmd.getParameter("blaID"));

 // Call asynchronous client helper to process parameters.
 try {
 asyncCmdClientHelper.processCommandParameters(cmd);
 System.out.println("\nCompleted process command " +
 "parameters");
 } catch (Throwable th) {
 System.out.println("Failed from " +
 "asyncCmdClientHelper.processCommandParameters(cmd).");
 th.printStackTrace();
 System.exit(-1);
 }

 // Call the asynchronous command client to run the command command.
 asyncCmdClientHelper.execute(cmd);
 System.out.println("\nCompleted running of command");

 // Check the command result.
 CommandResult result = cmd.getCommandResult();
 if (result != null) {
 if (result.isSuccessful()) {
 System.out.println("\nCommand ran successfully "
 + "with result\n" + result.getResult());
 }
 else {
 System.out.println("\nCommand ran with " +
 "Exception");
 result.getException().printStackTrace();
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;
import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {
 // Add your own code here to handle the received notification
 System.out.println("\nEXAMPLE: notification received: " +
 notification);
 }
}

What to do next

Complete administrative tasks on the business-level application, such as editing an asset or a composition
unit that is contained in the business-level application.

Chapter 12. Administering business-level applications using programming 479

Checking the status of a business-level application using
programming
You can check the status of an entire business-level application. You can also limit the status to a
particular composition unit of a business-level application, a specific deployment target, or check the status
of the composition unit and the deployment target at the same time.

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command
framework programming in the application programming interface documentation.

Before you can check the status of a business-level application or a composition unit, you must have
created the business-level application.

You can check the status of a business-level application using programming, the administrative console, or
the wsadmin tool.

About this task

You must provide the blaID parameter to specify the business-level application that you are viewing.

Perform the following tasks to view a business-level application using programming.

Procedure
1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without
being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query
existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the
progress of the running command, you have to create an asynchronous command handler to receive
notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous
command. If you created an asynchronous command handler in the previous step, the handler is
passed to the asynchronous command client. The asynchronous command client forwards the
command notification to the handler and helps to control running of the command.

5. Create and set up the getBLAStatus command to check the status of a business-level application.

a. Set the blaID parameter for the business-level application whose status you want to check.

b. Optionally set the cuID parameter if you want to narrow the scope of the query to a single
composition unit.

c. Optionally set the targetID if you want to narrow the scope of the query to a single target server
process or cluster.

6. Call the processCommandParameters method in the asynchronous command client to process the
command parameters.

The command framework asynchronous command model requires this call.

7. Call the asynchronous command client to run the command to check the status of the business-level
application.

480 Administering applications and their environment

You could have created an asynchronous command handler to implement the
AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command
client listens to command notifications and forwards the notifications to the handler. The handler
performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by
calling the command.getCommandResult method.

Results

After you successfully run the code, you can check the status of an entire business-level application, if you
chose not to limit the status. If you chose options to limit the status, you could check the status to a
particular composition unit of a business-level application, a specific deployment target, or check the status
of the composition unit and the deployment target at the same time.

The smallest unit of status data that the system maintains is for a single composition unit in a single server
or cluster member process. Business-level application status can be based on one or more composition
units, each having one or more targets, with targets potentially consisting of clusters with multiple member
processes. Therefore, the single status value returned from the getBLAStatus command is a compilation of
individual status data for all composition units on all target process within the scope of the status query.
The following table describes how individual status data is compiled into a single status value. The term
composition unit instance used in the table refers to a composition unit on a single server or single cluster
member process.

 Table 73. Business-level application status descriptions. Read the descriptions to learn about application status.

Status Description

ExecutionState.STARTED All composition unit instances within the scope of the query have been started.

ExecutionState.STOPPED All composition unit instances within the scope of the query have not been started
or have been stopped.

ExecutionState.PARTIAL_START Some composition unit instances within the scope of the query have a status of
ExecutionState.STARTED and some have a status of ExecutionState.STOPPED.

ExecutionState.UNKNOWN Status data for at least one composition instance within the scope of the query
cannot be obtained for some reason.

Example

The following example shows how to check the status of a business-level application based on the
previous steps. Some statements are split on multiple lines for printing purposes.
package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.websphere.management.Session;
import com.ibm.websphere.management.cmdframework.AdminCommand;
import com.ibm.websphere.management.cmdframework.CommandMgr;
import com.ibm.websphere.management.cmdframework.CommandResult;
import com.ibm.websphere.management.cmdframework.CommandStep;
import com.ibm.websphere.management.cmdframework.TaskCommand;
import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class EditBLA {

 public static void main(String[] args) {

 try {

 // Connect to the application server.
 // This step is optional if you use the local command manager.
 // Comment out the following lines to get the soapClient soap client if
 // you are going to use the local command manager. You would
 // comment out the lines to and including

Chapter 12. Administering business-level applications using programming 481

// CommandMgr cmdMgr =
 // CommandMgr.getClientCommandMgr(soapClient);

 String host = "localhost"; // Change to your host if it is not localhost.
 String port = "8880"; // Change to your port number if it is not 8880.

 Properties config = new Properties();
 config.put(AdminClient.CONNECTOR_HOST, host);
 config.put(AdminClient.CONNECTOR_PORT, port);
 config.put(AdminClient.CONNECTOR_TYPE,
 AdminClient.CONNECTOR_TYPE_SOAP);
 System.out.println("Config: " + config);
 AdminClient soapClient =
 AdminClientFactory.createAdminClient(config);

 // Create command manager.
 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command
 // manager if you are using a local command manager.
 // Uncomment the following line to create a local command
 // manager.
 //
 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();

 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler.
 // Comment out the following line if no further handling
 // of command notification is required.
 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.
 // This example creates a new session. You can replace the
 // following code to use an existing session that has been
 // created.
 String id = Long.toHexString(System.currentTimeMillis());
 String user = "content" + id;
 Session session = new Session(user, true);

 // If no command handler is used, replace the listener with
 // null for the following AsyncCommandClient object.
 AsyncCommandClient asyncCmdClientHelper = new
 AsyncCommandClient(session, listener);
 System.out.println("\nCreated async command client");

 // Create the command.
 String cmdName = "getBLAStatus";
 AdminCommand cmd = cmdMgr.createCommand(cmdName);
 cmd.setConfigSession(session); // Check the status
 // using the session
 // created
 System.out.println("\nCreated " + cmdName);

 // Set the required blaID parameter
 // Examples of valid formats for the blaID parameter are:
 // - bName
 // - blaname=bName
 // - WebSphere:blaname=bName
 String blaID = "MyBLA"; // Replace the MyBLA value with your
 // blaID value.
 cmd.setParameter("blaID", blaID);

 System.out.println("\nSet blaID parameter to "
 + cmd.getParameter("blaID"));

 // Optionally set the cuID parameter.
 String cuID = "myCU.zip"; // Replace the myCU.zip value with your
 // cuID value.
 cmd.setParameter("cuID", cuID);

 System.out.println("\nSet cuID parameter to "
 + cmd.getParameter("cuID"));

 // Optionally set the targetID parameter.
 // The format of the targetID parameter for a cluster
 // is WebSphere:cluster=cluster1
 String targetID = "WebSphere:node=node1,server=server1"; // Replace
 // this with your targetID value.
 cmd.setParameter("targetID", targetID);

 System.out.println("\nSet targetID parameter to "
 + cmd.getParameter("targetID"));

 // Call the asynchronous client helper to process parameters.
 try {
 asyncCmdClientHelper.processCommandParameters(cmd);
 System.out.println("\nCompleted processCommandParameters");

482 Administering applications and their environment

} catch (Throwable th) {
 System.out.println("Throwing an exception from " +
 "asyncCmdClientHelper.processCommandParameters(cmd).");
 th.printStackTrace();
 System.exit(-1);
 }

 // Run the command to check the status of the
 // business-level application.
 asyncCmdClientHelper.execute(cmd);
 System.out.println("\nCompleted command execution");

 CommandResult result = cmd.getCommandResult();
 if (result != null) {
 if (result.isSuccessful()) {
 System.out.println("\nCommand executed successfully "
 + "with result\n" + result.getResult());
 }
 else {
 System.out.println("\nCommand executed with " +
 "Exception");
 result.getException().printStackTrace();
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;
import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {
 // Add your own code here to handle the received notification.
 System.out.println("\nEXAMPLE: notification received: " +
 notification);
 }
}

What to do next

You can use the results of the status check to perform other tasks. For instance, if the results indicate that
none of the composition units is started, you could start the business-level application.

Listing business-level applications using programming
You can list the business-level applications of a session so that you can complete further business-level
application administration such as deleting a business-level application. A business-level application is an
administrative model that captures the definition of an enterprise-level application so that you can perform
specific business functions, such as accounting.

Before you begin

Before you can list business-level applications of a session, you must have created an empty
business-level application.

About this task

You can list business-level applications of a session using programming, the administrative console, or the
wsadmin tool. This topic describes how to list business-level applications using programming.

List all the business-level applications of a session unless you set the blatID parameter to specify the
business-level application that you want to list. You can optionally list the business-level applications with a
description for those that have a description if you set the includeDescription parameter to true. After you
list the business-level applications, you can use the information to do further administration, such as
starting or deleting business-level applications.

Chapter 12. Administering business-level applications using programming 483

Perform the following tasks to list business-level applications of a session using programming.

Procedure
1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without
being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query
existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the
progress of the running command, you have to create an asynchronous command handler to receive
notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous
command. If you created an asynchronous command handler in the previous step, the handler is
passed to the asynchronous command client. The asynchronous command client forwards the
command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to create and set up the command that
lists business-level applications of a session.

The command name is listBLAs. You can optionally set the blaID parameter to query for business-level
applications that match the ID. You can optionally set the includeDescription parameter to display the
business-level application descriptions.

6. Call the processCommandParameters method in the asynchronous command client to process the
command parameters.

The command framework asynchronous command model requires this call.

7. Call the asynchronous command client to list the business-level applications of a session.

You might have created an asynchronous command handler to implement the
AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command
client listens to command notifications and forwards the notifications to the handler. The handler
performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by
calling the command.getCommandResult method.

Results

After you successfully run the code, a list of business-level applications for a session is displayed.

Example

The following example shows how to list the business-level applications of a session based on the
previous steps. Some statements are split on multiple lines for printing purposes.
package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.websphere.management.Session;
import com.ibm.websphere.management.cmdframework.AdminCommand;
import com.ibm.websphere.management.cmdframework.CommandMgr;
import com.ibm.websphere.management.cmdframework.CommandResult;

484 Administering applications and their environment

import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class ListBLAs {

 public static void main(String[] args) {

 try {

 // Connect to the application server.
 // This step is optional if you use the local
 // command manager. Comment out the lines to and including
 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(
 // soapClient);
 // to get the soapClient soap client if you use the local
 // command manager.

 String host = "localhost";
 String port = "8880"; // Change to your port number if
 // it is not 8880.

 Properties config = new Properties();
 config.put(AdminClient.CONNECTOR_HOST, host);
 config.put(AdminClient.CONNECTOR_PORT, port);
 config.put(AdminClient.CONNECTOR_TYPE,
 AdminClient.CONNECTOR_TYPE_SOAP);
 System.out.println("Config: " + config);
 AdminClient soapClient =
 AdminClientFactory.createAdminClient(config);

 // Create the command manager.
 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command
 // manager if you are using a local command manager.
 // Uncomment the following line to create a local command
 // manager:
 //
 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();
 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler.
 // Comment out the following line if no further handling
 // of command notification is required:
 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.
 String id = Long.toHexString(System.currentTimeMillis());
 String user = "content" + id;
 Session session = new Session(user, true);

 // If no command handler is used, replace listener with
 // null for the AsyncCommandClient object.
 AsyncCommandClient asyncCmdClientHelper = new
 AsyncCommandClient(session, listener);
 System.out.println("\nCreated async command client");

 // Create the command that lists the business-level applications.
 String cmdName = "listBLAs";
 AdminCommand cmd = cmdMgr.createCommand(cmdName);
 cmd.setConfigSession(session); // list all the business-level applications
 // using the session created.

 System.out.println("\nCreated " + cmdName);

 // Optionally set the blaID parameter.

Chapter 12. Administering business-level applications using programming 485

// Uncomment the following code to set the blaID parameter to
 // only list the business-level applications with the ID specified. Otherwise all
 // business-level applications are listed. Change the blaID parameter according
 // to your scenario.
 // Examples of valid formats for the blaID parameter are:
 // - bName
 // - blaname=bName
 // - WebSphere:blaname=bName
 // All business-level applications that match the ID specification
 // are listed. The ID must include at least the business-level
 // application name.
 // String blaID = "bla1";
 // cmd.setParameter("blaID", blaID);

 //System.out.println("\nSet blaID parameter to "
 // + cmd.getParameter("blaID"));

 // Optionally include a description by setting
 // the includeDescription parameter to true instead of false.
 String includeDescription = "true";
 cmd.setParameter("includeDescription", includeDescription);

 System.out.println("\nSet includeDescription parameter to "
 + cmd.getParameter("includeDescription"));

 // Call the asynchronous client helper to process parameters.
 try {
 asyncCmdClientHelper.processCommandParameters(cmd);
 System.out.println("\nCompleted process command " +
 "parameters");
 } catch (Throwable th) {
 System.out.println("Failed from " +
 "asyncCmdClientHelper.processCommandParameters(cmd).");
 th.printStackTrace();
 System.exit(-1);
 }

 // Run the command to list business-level applications.
 asyncCmdClientHelper.execute(cmd);
 System.out.println("\nCompleted running of the command");

 // Check the command result.
 CommandResult result = cmd.getCommandResult();
 if (result != null) {
 if (result.isSuccessful()) {
 System.out.println("\nCommand ran successfully "
 + "with result\n" + result.getResult());
 }
 else {
 System.out.println("\nCommand ran with " +
 "Exception");
 result.getException().printStackTrace();
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;
import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

486 Administering applications and their environment

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {
 // Add your own code here to handle the received notification
 System.out.println("\nEXAMPLE: notification received: " +
 notification);
 }
}

What to do next

You can complete other tasks associated with business-level applications, such as deleting, starting, or
stopping business-level applications.

Listing composition units using programming
You can list the composition units for a specific business-level application so that you can complete further
composition unit administration, such as deleting or adding composition units. A composition unit is
typically created from a business-level application or an asset and contains configuration information that
makes the asset runnable.

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command
framework programming in the application programming interfaces documentation.

Before you can list composition units, you must have imported an asset, created an empty business-level
application, and added a composition unit to the business-level application.

About this task

You can list composition units using programming, the administrative console, or the wsadmin tool. This
topic describes how to list composition units using programming.

You must provide the blaID parameter to specify the business-level application to list the composition unit.
When you list composition units for a business-level application, you can optionally list the type for each
composition unit and the description for each composition unit that has a description. You can use the list
to complete further administration, such as deleting or exporting composition units.

Perform the following tasks to list composition units for a business-level application using programming.

Procedure
1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without
being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query
existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the
progress of the running command, you have to create an asynchronous command handler to receive
notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous
command. If you created an asynchronous command handler in the previous step, the handler is

Chapter 12. Administering business-level applications using programming 487

passed to the asynchronous command client. The asynchronous command client forwards the
command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to create and set up the command that
lists composition units.

The command name is listCompUnits. The blaID parameter is a required parameter that you use to
specify the business-level application to list the composition units. You can optionally set the
includeDescription parameter to display the composition unit descriptions. You can also optionally set
the includeType parameter to display the composition unit types.

6. Call the processCommandParameters method in the asynchronous command client to process the
command parameters.

The command framework asynchronous command model requires this call.

7. Call the asynchronous command client to list the composition units.

You might have created an asynchronous command handler to implement the
AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command
client listens to command notifications and forwards the notifications to the handler. The handler
performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by
calling the command.getCommandResult method.

Results

After you successfully run the code, a list of composition units for a business-level application is displayed.

Example

The following example shows how to list the composition units of a specific business-level application
based on the previous steps. Some statements are split on multiple lines for printing purposes.
package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.websphere.management.Session;
import com.ibm.websphere.management.cmdframework.AdminCommand;
import com.ibm.websphere.management.cmdframework.CommandMgr;
import com.ibm.websphere.management.cmdframework.CommandResult;
import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class ListCompUnits {

 public static void main(String[] args) {

 try {

 // Connect to the application server.
 // This step is optional if you use the local
 // command manager. comment out the lines to and including
 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(
 // soapClient);
 // to get the soapClient soap client if you use the local
 // command manager.

 String host = "localhost";
 String port = "8880"; // Change to your port number if
 // it is not 8880.

 Properties config = new Properties();

488 Administering applications and their environment

config.put(AdminClient.CONNECTOR_HOST, host);
 config.put(AdminClient.CONNECTOR_PORT, port);
 config.put(AdminClient.CONNECTOR_TYPE,
 AdminClient.CONNECTOR_TYPE_SOAP);
 System.out.println("Config: " + config);
 AdminClient soapClient =
 AdminClientFactory.createAdminClient(config);

 // Create the command manager.
 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command
 // manager if you are using a local command manager.
 // Uncomment the following line to create a local command
 // manager:
 //
 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();
 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler.
 // Comment out the following line if no further handling
 // of command notification is required:
 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.
 String id = Long.toHexString(System.currentTimeMillis());
 String user = "content" + id;
 Session session = new Session(user, true);

 // If no command handler is used, replace the listener with
 // null for the AsyncCommandClient object.
 AsyncCommandClient asyncCmdClientHelper = new
 AsyncCommandClient(session, listener);
 System.out.println("\nCreated async command client");

 // Create the command that lists the composition units.
 String cmdName = "listCompUnits";
 AdminCommand cmd = cmdMgr.createCommand(cmdName);
 cmd.setConfigSession(session); // List all the compostion units
 // for the business-level application
 // with this session ID.
 System.out.println("\nCreated " + cmdName);

 // Set the blaID parameter to the business-level application
 // whose composition units are listing.
 // Examples of valid formats for the blaID parameter are:
 // - bName
 // - blaname=bName
 // - WebSphere:blaname=bName
 // This parameter accepts an incomplete ID as long as the incomplete
 // ID can resolve to a unique business-level application.
 String blaID = "bla1";
 cmd.setParameter("blaID", blaID);

 System.out.println("\nSet blaID parameter to "
 + cmd.getParameter("blaID"));

 // Optionally include descriptions for each composition unit
 // that has a description by setting
 // the includeDescription parameter to true or false.
 String includeDescription = "true";
 cmd.setParameter("includeDescription", includeDescription);

 System.out.println("\nSet includeDescription parameter to "
 + cmd.getParameter("includeDescription"));

Chapter 12. Administering business-level applications using programming 489

// Optionally include types for each composition unit
 // by setting the includeType parameter to true or false.
 String includeType = "true";
 cmd.setParameter("includeType", includeType);

 System.out.println("\nSet includeType parameter to "
 + cmd.getParameter("includeType"));

 // Call the asynchronous client helper to process parameters.
 try {
 asyncCmdClientHelper.processCommandParameters(cmd);
 System.out.println("\nCompleted process command " +
 "parameters");
 } catch (Throwable th) {
 System.out.println("Failed from " +
 "asyncCmdClientHelper.processCommandParameters(cmd).");
 th.printStackTrace();
 System.exit(-1);
 }

 // Run the command to list the composition units.
 asyncCmdClientHelper.execute(cmd);
 System.out.println("\nCompleted running of command");

 // Check the command result.
 CommandResult result = cmd.getCommandResult();
 if (result != null) {
 if (result.isSuccessful()) {
 System.out.println("\nCommand ran successfully "
 + "with result\n" + result.getResult());
 }
 else {
 System.out.println("\nCommand ran with " +
 "Exception");
 result.getException().printStackTrace();
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;
import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {
 // Add your own code here to handle the received notification
 System.out.println("\nEXAMPLE: notification received: " +
 notification);
 }
}

What to do next

Now that you have listed the composition units for a business-level application, you can complete other
tasks associated with composition units, such as adding or deleting composition units.

490 Administering applications and their environment

Listing control operations using programming
You can list the control operations of a business-level application or a composition unit for a session. You
can use control operations, such as start or stop, to change or query the runtime environment of a
business-level application or a composition unit.

Before you begin

Before you can list control operations of a business-level application or a composition unit for a session,
you must have created an empty business-level application, imported an asset, and added a composition
unit.

About this task

You can list control operations of a business-level application or a composition unit using programming,
the administrative console, or the wsadmin tool. This topic describes how to list control operations using
programming.

To list control operations for a business-level application of a session, provide a blaID paramaeter value,
but no cuID parameter value. To list control operations for a composition unit, specify both a blaID
parameter value and a cuID parameter value. To list all control operations for the specified business-level
application or the specified composition unit, do not specify an opName parameter value. To list the details
for a specific control operation, set the opName parameter value to the name of the operation to list. To list
details of the control operation definition, set the long parameter to true.

Perform the following tasks to list control operations for a business-level application or a composition unit
of a session using programming.

Procedure
1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without
being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query
existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the
progress of the running command, you have to create an asynchronous command handler to receive
notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous
command. If you created an asynchronous command handler in the previous step, the handler is
passed to the asynchronous command client. The asynchronous command client forwards the
command notification to the handler and helps to control running of the command.

5. Create and set up the command that lists control operations of a business-level application or a
composition unit of a session.

6. Call the processCommandParameters method in the asynchronous command client to process the
command parameters.

The command framework asynchronous command model requires this call.

7. Call the asynchronous command client to list the control operations of a business-level application or a
composition unit of a session.

You might have created an asynchronous command handler to implement the
AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command

Chapter 12. Administering business-level applications using programming 491

client listens to command notifications and forwards the notifications to the handler. The handler
performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by
calling the command.getCommandResult method.

Results

After you successfully run the code, a control operations of a business-level application or a composition
unit for a session is displayed.

Example

The following example shows how to list the control operation of a business-level application or a
composition unit of a session based on the previous steps. Some statements are split on multiple lines for
printing purposes.
package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.websphere.management.Session;
import com.ibm.websphere.management.cmdframework.AdminCommand;
import com.ibm.websphere.management.cmdframework.CommandMgr;
import com.ibm.websphere.management.cmdframework.CommandResult;
import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class listControlOps {

 public static void main(String[] args) {

 try {

 // Connect to the application server.
 // This step is optional if you use the local
 // command manager. Comment out the lines to and including
 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(
 // soapClient);
 // to get the soapClient soap client if you use the local
 // command manager.
 String host = "localhost";
 String port = "8880"; // Change to your port number if
 // it is not 8880.

 Properties config = new Properties();
 config.put(AdminClient.CONNECTOR_HOST, host);
 config.put(AdminClient.CONNECTOR_PORT, port);
 config.put(AdminClient.CONNECTOR_TYPE,
 AdminClient.CONNECTOR_TYPE_SOAP);
 System.out.println("Config: " + config);
 AdminClient soapClient =
 AdminClientFactory.createAdminClient(config);

 // Create the command manager.
 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command
 // manager if you are using a local command manager.
 // Uncomment the following line to create a local command
 // manager:
 //
 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();

492 Administering applications and their environment

System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler.
 // Comment out the following line if no further handling
 // of command notification is required:
 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.
 String id = Long.toHexString(System.currentTimeMillis());
 String user = "content" + id;
 Session session = new Session(user, true);

 // If no command handler is used, replace listener with
 // null for the AsyncCommandClient object.
 AsyncCommandClient asyncCmdClientHelper = new
 AsyncCommandClient(session, listener);
 System.out.println("\nCreated async command client");

 // Create the command that lists the control operations.
 String cmdName = "listControlOps";
 AdminCommand cmd = cmdMgr.createCommand(cmdName);
 cmd.setConfigSession(session); // List all the control operations
 // using the session created.
 System.out.println("\nCreated " + cmdName);

 // Set the blaID parameter, which is required.
 // The blaID is for either the business-level application whose control
 // units you are listing or for the business-level application whose
 // composition unit control operations you are listing.
 // Change the blaID parameter according to your
 // scenario.
 // Examples of valid formats for the blaID parameter are:
 // - bName
 // - blaname=bName
 // - WebSphere:blaname=bName
 // This parameter accepts an incomplete ID as long as the incomplete
 // ID can resolve to a unique business-level application.
 // String blaID = "bla1";
 // cmd.setParameter("blaID", blaID);

 // System.out.println("\nSet blaID parameter to "
 // + cmd.getParameter("blaID"));

 // Optionally set the cuID parameter to the composition
 // unit whose control operations you are listing.
 // Examples of valid formats for the cuID parameter are:
 // - name
 // - cuname=name
 // - WebSphere:cuname=name
 // This parameter accepts an incomplete ID as long as the
 // incomplete ID can resolve to a unique composition unit
 // within the business-level application.
 //
 // String cuID = "test5.zip";
 // cmd.setParameter("cuID", cuID);

 // System.out.println("\nSet cuID parameter to "
 // + cmd.getParameter("cuID"));

 // Optionally set the opName parameter of the operation to list.
 // String opName = "opName1";
 // cmd.setParameter("opName", opName);

 // System.out.println("\nSet opnameID parameter to "

Chapter 12. Administering business-level applications using programming 493

// + cmd.getParameter("opName"));

 // Optionally include details of the control operation definition
 // by setting the long parameter to true.
 // String long = "true";
 // cmd.setParameter("long", long);

 // System.out.println("\nSet long parameter to "
 // + cmd.getParameter("long"));

 // Call the asynchronous client helper to process parameters.
 try {
 asyncCmdClientHelper.processCommandParameters(cmd);
 System.out.println("\nCompleted process command " +
 "parameters");
 } catch (Throwable th) {
 System.out.println("Failed from " +
 "asyncCmdClientHelper.processCommandParameters(cmd).");
 th.printStackTrace();
 System.exit(-1);
 }

 // Run the command to list control operations.
 asyncCmdClientHelper.execute(cmd);
 System.out.println("\nCompleted running of command");

 // Check the command result.
 CommandResult result = cmd.getCommandResult();
 if (result != null) {
 if (result.isSuccessful()) {
 System.out.println("\nCommand ran successfully "
 + "with result\n" + result.getResult());
 }
 else {
 System.out.println("\nCommand ran with " +
 "Exception");
 result.getException().printStackTrace();
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;
import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {
 // Add your own code here to handle the received notification
 System.out.println("\nEXAMPLE: notification received: " +
 notification);
 }
}

What to do next

You can complete other tasks associated with business-level applications and composition units, such as
deleting, starting, or stopping business-level applications or adding or exporting a composition unit.

494 Administering applications and their environment

Viewing a business-level application using programming
You can view business-level application information such as the description so that you can do other tasks
associated with the business-level application, such as editing the business-level application. A
business-level application is an administrative model that captures the entire definition of an
enterprise-level application.

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command
framework programming in the application programming interface documentation.

Before you can view a business-level application, you must have created the business-level application.

You can view a business-level application using programming, the administrative console, or the wsadmin
tool.

About this task

You must provide the blaID parameter to specify the business-level application that you are viewing.

Perform the following tasks to view a business-level application using programming.

Procedure
1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without
being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query
existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the
progress of the running command, you have to create an asynchronous command handler to receive
notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous
command. If you created an asynchronous command handler in the previous step, the handler is
passed to the asynchronous command client. The asynchronous command client forwards the
command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to create and set up the command to
view a business-level application.

The command name is viewBLA. Use the required blaID parameter to specify the business-level
application that you are viewing.

6. Call the processCommandParameters method in the asynchronous command client to process the
command parameters.

The command framework asynchronous command model requires this call.

7. Display the command step.

8. Call the asynchronous command client to run the command to view a business-level application.

You could have created an asynchronous command handler to implement the
AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command
client listens to command notifications and forwards the notifications to the handler. The handler
performs any necessary actions while waiting for the command to complete.

Chapter 12. Administering business-level applications using programming 495

9. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by
calling the command.getCommandResult method.

Results

After you successfully run the code, you can view a business-level application.

Example

The following example shows how to view a business-level application based on the previous steps. Some
statements are split on multiple lines for printing purposes.
package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.websphere.management.Session;
import com.ibm.websphere.management.cmdframework.AdminCommand;
import com.ibm.websphere.management.cmdframework.CommandMgr;
import com.ibm.websphere.management.cmdframework.CommandResult;
import com.ibm.websphere.management.cmdframework.CommandStep;
import com.ibm.websphere.management.cmdframework.TaskCommand;
import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class EditBLA {

 public static void main(String[] args) {

 try {

 // Connect to the application server.
 // This step is optional if you use the local command manager.
 // Comment out the following lines to get the soapClient soap client if
 // you are going to use the local command manager. You would
 // comment out the lines to and including
 // CommandMgr cmdMgr =
 // CommandMgr.getClientCommandMgr(soapClient);

 String host = "localhost"; // Change to your host if it is not localhost.
 String port = "8880"; // Change to your port number if it is not 8880.

 Properties config = new Properties();
 config.put(AdminClient.CONNECTOR_HOST, host);
 config.put(AdminClient.CONNECTOR_PORT, port);
 config.put(AdminClient.CONNECTOR_TYPE,
 AdminClient.CONNECTOR_TYPE_SOAP);
 System.out.println("Config: " + config);
 AdminClient soapClient =
 AdminClientFactory.createAdminClient(config);

 // Create the command manager.
 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command
 // manager if you are using a local command manager.
 // Uncomment the following line to create a local command
 // manager.
 //
 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();

 System.out.println("\nCreated command manager");

496 Administering applications and their environment

// Optionally create an asynchronous command handler.
 // Comment out the following line if no further handling
 // of command notification is required.
 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.
 // This example creates a new session. You can replace the
 // code below to use an existing session that has been
 // created.
 String id = Long.toHexString(System.currentTimeMillis());
 String user = "content" + id;
 Session session = new Session(user, true);

 // If no command handler is used, replace the listener with
 // null for the following AsyncCommandClient object.
 AsyncCommandClient asyncCmdClientHelper = new
 AsyncCommandClient(session, listener);
 System.out.println("\nCreated async command client");

 // Create the command.
 String cmdName = "viewBLA";
 AdminCommand cmd = cmdMgr.createCommand(cmdName);
 cmd.setConfigSession(session); // View an existing
 // business-level application
 // using the session created.
 System.out.println("\nCreated " + cmdName);

 // Set the required blaID parameter.
 // Examples of valid formats for the blaID parameter are:
 // - bName
 // - blaname=bName
 // - WebSphere:blaname=bName
 // This parameter accepts an incomplete ID as long as the incomplete
 // ID can resolve to a unique business-level application.
 String blaID = "bla1"; // Replace the bla1 value with your value.
 cmd.setParameter("blaID", blaID);

 System.out.println("\nSet blaID parameter to "
 + cmd.getParameter("blaID"));

 // Call the asynchronous client helper to process parameters.
 try {
 asyncCmdClientHelper.processCommandParameters(cmd);
 System.out.println("\nCompleted process command " +
 "parameters");
 } catch (Throwable th) {
 System.out.println("Throwing an exception from " +
 "asyncCmdClientHelper.processCommandParameters(cmd).");
 th.printStackTrace();
 System.exit(-1);
 }

 // Display step data.
 String[] stepNames = ((TaskCommand) cmd).listCommandSteps();
 for (int i = 0; i < stepNames.length; i++) {

 // Get the step.
 CommandStep step =
 ((TaskCommand)cmd).gotoStep(stepNames[i]);

 List paramNames = step.listParameterName();

 System.out.println("----------- Step: " + step.getName() +
 " ----------");

Chapter 12. Administering business-level applications using programming 497

// Get the parameter values for each row.
 for (int j = 0; j < step.getNumberOfRows(); j++) {
 System.out.println(" Row " + j);

 for (int k = 0; k < paramNames.size(); k++)
 System.out.println(" " + paramNames.get(k) +
 ": " + step.getParameter(
 (String) paramNames.get(k), j));

 }

 }

 // Run the command to view the business-level application.
 asyncCmdClientHelper.execute(cmd);
 System.out.println("\nCompleted command execution");

 CommandResult result = cmd.getCommandResult();
 if (result != null) {
 if (result.isSuccessful()) {
 System.out.println("\nCommand executed successfully "
 + "with result\n" + result.getResult());
 }
 else {
 System.out.println("\nCommand executed with " +
 "Exception");
 result.getException().printStackTrace();
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;
import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {
 // Add your own code here to handle the received notification.
 System.out.println("\nEXAMPLE: notification received: " +
 notification);
 }
}

What to do next

You can use the information that you viewed about the business-level application to perform other tasks.
You might edit the business-level application to make improvements to it. You might start and stop a
business-level application, delete a business-level application, add a composition unit to a business-level
application, and so on.

Viewing a composition unit using programming
A composition unit is typically created from a business-level application or an asset and contains
configuration information that makes the asset runnable. You can view the composition unit information so
that you can complete other tasks associated with the composition unit such as editing an asset or delete
a composition unit.

498 Administering applications and their environment

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command
framework programming in the application programming interfaces documentation.

Before you can view a composition unit of a business-level application, you must have created an empty
business-level application, imported an asset into the business-level application, and added a composition
unit to the business-level application.

About this task

You can view a composition unit using programming, the administrative console, or the wsadmin tool. This
topic describes how to view a composition unit using programming.

You must provide the blaID and cuID parameters to specify the composition unit of the business-level
application that you are viewing. You can view configuration information of the composition unit of a
business-level application. The configuration information identifies the asset from which the composition
unit is created if the composition unit contains an asset. You can also view runtime targets on which the
deployable units of the composition unit are to run.

Perform the following tasks to view a composition unit of a business-level application using programming.

Procedure
1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without
being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query
existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the
progress of the running command, you have to create an asynchronous command handler to receive
notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous
command. If you created an asynchronous command handler in the previous step, the handler is
passed to the asynchronous command client. The asynchronous command client forwards the
command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to create and set up the command to
view a composition unit.

The command name is viewCompUnit. Use the required blaID and cuID parameters to specify the
composition unit of the business-level application that you are viewing.

6. Call the processCommandParameters method in the asynchronous command client to process the
command parameters.

The command framework asynchronous command model requires this call.

7. Call the asynchronous command client to run the command and view a composition unit.

You might have created an asynchronous command handler to implement the
AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command
client listens to command notifications and forwards the notifications to the handler. The handler
performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

Chapter 12. Administering business-level applications using programming 499

When the command finishes running, control is returned to the caller. You can then check the result by
calling the command.getCommandResult method.

Results

After you successfully run the code, you can view the configuration information of a composition unit for a
business-level application.

Example

The following example shows how to view a composition unit of a business-level application based on the
previous steps. Some statements are split on multiple lines for printing purposes.
package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.websphere.management.Session;
import com.ibm.websphere.management.cmdframework.AdminCommand;
import com.ibm.websphere.management.cmdframework.CommandMgr;
import com.ibm.websphere.management.cmdframework.CommandResult;
import com.ibm.websphere.management.cmdframework.CommandStep;
import com.ibm.websphere.management.cmdframework.TaskCommand;
import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class ViewCompUnit {

 public static void main(String [] args) {

 try {
 // Connect to the application server.
 // This step is optional if you use the local
 // command manager. Comment out the lines to and including
 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(
 // soapClient);
 // to get the soapClient soap client if you use the local
 // command manager.
 String host = "localhost";
 String port = "8880"; // Change to your port number if it is
 // not 8880.

 Properties config = new Properties();
 config.put(AdminClient.CONNECTOR_HOST, host);
 config.put(AdminClient.CONNECTOR_PORT, port);
 config.put(AdminClient.CONNECTOR_TYPE,
 AdminClient.CONNECTOR_TYPE_SOAP);
 System.out.println("Config: " + config);
 AdminClient soapClient =
 AdminClientFactory.createAdminClient(config);

 // Create the command manager.
 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command
 // manager if you are using a local command manager.
 // Uncomment the following line to create a local command
 // manager:
 //
 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();
 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler.
 // Comment out the following line if no further handling

500 Administering applications and their environment

// of command notification is required:
 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.
 String id = Long.toHexString(System.currentTimeMillis());
 String user = "content" + id;
 Session session = new Session(user, true);

 // If no command handler is used, replace the following listener with
 // null for the AsyncCommandClient object.
 AsyncCommandClient asyncCmdClientHelper = new
 AsyncCommandClient(session, listener);
 System.out.println("\nCreated async command client");

 // Create the command that views the composition unit.
 String cmdName = "viewCompUnit";
 AdminCommand cmd = cmdMgr.createCommand(cmdName);
 cmd.setConfigSession(session); // View a certain composition
 // unit of a business-level
 // application using the session created.
 System.out.println("\nCreated " + cmdName);

 // (required) Set the blaID parameter.
 // Examples of valid formats for the blaID parameter are:
 // - bName
 // - blaname=bName
 // - WebSphere:blaname=bName
 // This parameter accepts an incomplete ID as long as the incomplete
 // ID can resolve to a unique business-level application.
 String blaID = "bla1";
 cmd.setParameter("blaID", blaID);

 System.out.println("\nSet blaID parameter to "
 + cmd.getParameter("blaID"));

 // (required) Set the cuID parameter to the composition unit.
 // The cuID parameter has the format of
 // WebSphere:cuname=name. This parameter
 // accepts an incomplete ID as long as the incomplete
 // ID can resolve to a unique composition unit within the
 // business-level application.
 String cuID = "cu1";
 cmd.setParameter("cuID", cuID);

 System.out.println("\nSet cuID parameter to "
 + cmd.getParameter("cuID"));

 // Call the asynchronous client helper to process parameters
 try {
 asyncCmdClientHelper.processCommandParameters(cmd);
 System.out.println("\nCompleted process command " +
 "parameters");
 } catch (Throwable th) {
 System.out.println("Failed from " +
 "asyncCmdClientHelper.processCommandParameters(cmd).");
 th.printStackTrace();
 System.exit(-1);
 }

 // Call the asynchronous command client to run the command.
 asyncCmdClientHelper.execute(cmd);
 System.out.println("\nCompleted running of the command");

 // Check the command result.
 CommandResult result = cmd.getCommandResult();

Chapter 12. Administering business-level applications using programming 501

if (result != null) {
 if (result.isSuccessful()) {
 System.out.println("\nCommand ran successfully "
 + "with result\n" + result.getResult());
 }
 else {
 System.out.println("\nCommand ran with " +
 "Exception");
 result.getException().printStackTrace();
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;
import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {
 public void handleNotification(CommandNotification notification) {
 // Add your own code here to handle the received notification
 System.out.println("\nEXAMPLE: notification received: " +
 notification);
 }
}

What to do next

You can use the information that you viewed about the composition unit to perform other tasks. For
instance, you might edit the asset in the composition unit to make improvements to the asset. You might
export the composition unit, and then import that composition unit into another business-level application.

Adding a composition unit using programming
You can add an asset to a business-level application by creating a composition unit for the asset. A
composition unit is typically created from a business-level application or an asset and contains
configuration information that makes the asset runnable.

Before you begin

Before you can add a composition unit to a business-level application, you must have created an empty
business-level application and imported an asset.

You can add a composition unit to a business-level application using programming, the administrative
console, or the wsadmin tool.

About this task

When you add a composition to a business-level application, the composition unit is configured for the
specified business-level application. The composition unit cannot be shared with other business-level
applications.

Perform the following steps to add a composition unit to a business-level application using programming.

Procedure
1. Connect to the application server.

502 Administering applications and their environment

The command framework allows the administrative command to be created and run with or without
being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query
existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the
progress of the running command, you have to create an asynchronous command handler to receive
notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous
command. If you created an asynchronous command handler in the previous step, the handler is
passed to the asynchronous command client. The asynchronous command client forwards the
command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to create and set up the command that
adds a composition unit.

The command name is addCompUnit. The blaID and cuSourceID parameters are required parameters
that you use to specify composition unit source to be added to the business-level application.
Examples of composition unit source are an asset or a business-level application. You can optionally
provide deployable units for the composition unit through the deplUnit parameter. If the cuSourceID
parameter is a Java Platform, Enterprise Edition (Java EE) asset, you can optionally use the
cuConfigStrategyFile parameter or the defaultBindingOptions parameter to specify the default bindings.
The defaultBindingOptions parameter must match the binding options available for this Java EE asset.
To view a list of binding options available for this Java EE asset, look at the AssetOptions step in the
viewAsset command. Specify each binding option in an option_name=option_value pair, with multiple
pairs separated by a # character.

6. Call the processCommandParameters method in the asynchronous command client to process the
command parameters.

The command framework asynchronous command model requires this call.

7. Set up the command step parameters.

You can set up composition unit information through various steps. The CUOptions step contains data
about the composition unit such as its description, starting weight, and start and restart behavior. The
MapTargets step contains target information about where the composition unit is to be deployed. The
RelationshipOptions step contains shared library composition units on which this composition unit has
dependencies. The ActivationPlanOptions step allows you to specify runtime components for each
deployable unit. The CreateAuxCUOptions step contains assets on which this composition unit has
dependencies. You can set up parameters in these steps.

8. Call the asynchronous command client to run the command that adds a composition unit to a
business-level application.

You might have created an asynchronous command handler to implement the
AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command
client listens to command notifications and forwards the notifications to the handler. The handler
performs any necessary actions while waiting for the command to complete.

9. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by
calling the command.getCommandResult method.

Results

After you successfully run the code, the composition unit is added to the business-level application.

Chapter 12. Administering business-level applications using programming 503

Example

The following example shows how to import an asset based on the previous steps. Some statements are
split on multiple lines for printing purposes.
package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.websphere.management.Session;
import com.ibm.websphere.management.cmdframework.AdminCommand;
import com.ibm.websphere.management.cmdframework.CommandMgr;
import com.ibm.websphere.management.cmdframework.CommandResult;
import com.ibm.websphere.management.cmdframework.CommandStep;
import com.ibm.websphere.management.cmdframework.TaskCommand;
import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class AddCompUnit {

 public static void main(String [] args) {

 try {

 // Connect to the application server.
 // This step is optional if you use the local command
 // manager. Comment out the lines to and including
 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(
 // soapClient);
 // to get the soapClient soap client if you use the
 // local command manager.

 String host = "localhost";
 String port = "8880"; // Change to your port number if it is
 // not 8880.

 Properties config = new Properties();
 config.put(AdminClient.CONNECTOR_HOST, host);
 config.put(AdminClient.CONNECTOR_PORT, port);
 config.put(AdminClient.CONNECTOR_TYPE,
 AdminClient.CONNECTOR_TYPE_SOAP);
 System.out.println("Config: " + config);
 AdminClient soapClient =
 AdminClientFactory.createAdminClient(config);

 // Create the command manager
 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command
 // manager if you are using a local command manager.
 // Uncomment the following line to create a local command
 // manager:
 //
 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();

 System.out.println("\nCreated command manager");

 // Optionally create the asynchronous command handler.
 // Comment out the following line if no further handling
 // of command notification is required:
 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.
 String id = Long.toHexString(System.currentTimeMillis());

504 Administering applications and their environment

String user = "content" + id;
 Session session = new Session(user, true);

 // If no command handler is used, replace the following listener with
 // null for the AsyncCommandClient object.
 AsyncCommandClient asyncCmdClientHelper = new
 AsyncCommandClient(session, listener);
 System.out.println("\nCreated async command client");

 // Create the command to add a composition unit to a business-level application.
 String cmdName = "addCompUnit";
 AdminCommand cmd = cmdMgr.createCommand(cmdName);
 cmd.setConfigSession(session); // Add the composition unit using
 // the session created.
 System.out.println("\nCreated " + cmdName);

 // Set the blaID command parameter.
 // Examples of valid formats for the blaID parameter are:
 // - bName
 // - blaname=bName
 // - WebSphere:blaname=bName
 // This parameter accepts an
 // incomplete ID as long as the incomplete
 // ID can resolve to a unique business-level application.
 String blaID = "bla1";
 cmd.setParameter("blaID", blaID);

 System.out.println("\nSet blaID parameter to "
 + cmd.getParameter("blaID"));

 // Set the cuSourceID command parameter.
 // Examples of valid formats for the cuSourceID parameter:
 // If the source is an asset, examples are:
 // - aName
 // - assetname=aName
 // - WebSphere:assetname=aName
 // If the source is another business-level application,
 // examples are:
 // - bName
 // - blaname=bName
 // - WebSphere:blaname=bName
 // The cuSourceID command parameter
 // accepts an incomplete ID as long as the incomplete
 // ID can resolve to a unique asset or business-level application.
 String cuSourceID = "assetname=asset1.zip";
 cmd.setParameter("cuSourceID", cuSourceID);

 System.out.println("\nSet cuSourceID parameter to "
 + cmd.getParameter("cuSourceID"));

 // Set the deplUnits command parameter.
 // If the deployable units of an asset are, for example, a.jar and
 // b.jar, then when you run the addCompUnit command you can
 // specify deplUnits as a.jar+b.jar. You can specify the whole
 // list, a subset of that list, or "default" to create this composition
 // unit as a shared library. If the deplUnits parameter is not specified,
 // the deployable units are set the same as that of their asset.
 String deplUnits = "default";
 cmd.setParameter("deplUnits", deplUnits);

 System.out.println("\nSet deplUnits parameter to "
 + cmd.getParameter("deplUnits"));

 // Call the asynchronous client helper to process parameters.
 try {
 asyncCmdClientHelper.processCommandParameters(cmd);
 System.out.println("\nCompleted process command " +

Chapter 12. Administering business-level applications using programming 505

"parameters");
 } catch (Throwable th) {
 System.out.println("Failed from " +
 "asyncCmdClientHelper.processCommandParameters(cmd).");
 th.printStackTrace();
 System.exit(-1);
 }

 // Set up the step parameters for the CUOptions step.
 // The CUOptions step contains the following arguments:
 // description - description for the composition unit
 // startingWeight - starting weight for the composition
 // unit within the business-level application. The default is 1.
 // startedOnDistributed - to start composition unit upon distribution
 // to target nodes. The default is false.
 // restartBehaviorOnUpdate - restart behavior for a composition unit when
 // updating the composition unit.
 // The default is DEFAULT. Valid values are DEFAULT, ALL, and NONE.
 String stepName = "CUOptions";
 CommandStep step = ((TaskCommand) cmd).gotoStep(stepName);

 // Composition unit name:
 String name = "cu1";

 // Composition unit description:
 String description = "cu1 description";

 for(int i = 0; i < step.getNumberOfRows(); i++) {
 // The following lines change the composition unit name and
 // description step parameters of the CUOptions step. Change
 // your set of step parameters as required for your
 // scenario.

 // Set the name.
 step.setParameter("name", name, i);
 System.out.println("\nSet name parameter to " +
 step.getParameter("name", i));

 // Set the description.
 step.setParameter("description", description, i);
 System.out.println("\nSet description parameter to " +
 step.getParameter("description", i));
 }

 // Set up the step parameters for the MapTargets step.
 stepName = "MapTargets";
 step = ((TaskCommand) cmd).gotoStep(stepName);

 // Specify the targets to deploy the composition unit.
 // The default is server1. Use the + character to
 // specify multiple targets.
 String server = "server1";

 for(int i = 0; i < step.getNumberOfRows(); i++) {
 // The following lines change the composition unit and
 // server step parameters of the
 // MapTargets step. Change your set of step parameters
 // as required for your scenario.

 // Set the server.
 step.setParameter("server", server, i);
 System.out.println("\nSet server parameter to " +
 step.getParameter("server", i));
 }

 // The addCompUnit command might contain the
 // CreateAuxCUOptions, RelationshipOptions and ActivationPlanOptions

506 Administering applications and their environment

// steps, depending on the asset content of the assets imported.
 // The CreateAuxCUOptions step is available if the cuSourceID value
 // is an asset. The asset includes an asset relationship to an
 // asset that does not have a matching composition unit in the
 // business-level application.
 //
 // If the CreateAuxCUOptions step is available, the selected
 // deployable units of the source asset of the "primary" composition
 // unit (that is, the composition unit being added) have dependencies
 // on other assets for which there are no matching composition units
 // in the business-level application. A "secondary" composition unit will be created for each
 // of those asset dependencies.
 //
 // Each CreateAuxCUOptions row corresponds to one dependency
 // relationship declaration. Each row consists of parameter values
 // for the dependency relationship. Some parameters are read-only and
 // some of them are editable. To edit parameter values, use the same
 // approach as that used to edit parameter values in the CUOptions step.
 //
 // The parameters for this step include:
 //
 // deplUnit - The name of the deployable unit which has the
 // dependency. (Read-only.)
 // inputAsset - The asset ID for the source asset of the primary
 // composition unit. (Read-only.)
 // cuID - The name of the secondary composition unit to create.
 // matchTarget - Specifies whether the server target for the secondary
 // composition unit is to match the server target for
 // the primary composition unit. The default value
 // is "true". If the value is set to "false", the
 // secondary composition unit will be created with no
 // target. The target on the secondary composition unit
 // can be set at a later time with the editCompUnit
 // command.
 //
 // If the RelationshipOptions step is available, the selected
 // deployable units of the source asset of the "primary" composition
 // unit (that is, the composition unit being added) have dependencies
 // on other assets for which there are matching "secondary" composition
 // units in the business-level application. The RelationshipOptions step is much like
 // CreateAuxCUOptions except that the required secondary composition
 // units already exist. Also, each RelationshipOptions row maps one
 // deployable unit to one or more secondary composition units, whereas,
 // each CreateAuxCUOptions row maps one deployable unit to one
 // asset dependency.
 //
 // Each RelationshipOptions row corresponds to one deployable unit
 // with one or more dependency relationships and consists of
 // parameter values for the dependency relationships. Some parameters
 // are read-only and some of them are editable. To edit parameter
 // values, use the same approach as that used to edit parameter values
 // in the CUOptions step.
 //
 // The parameters for this step include:
 //
 // deplUnit - The name of the deployable unit which has the
 // dependency. (Read-only.)
 // relationship - Composition unit dependencies in the form of a
 // list of composition unit IDs. Composition unit
 // IDs are separated by a "plus" sign ("+"). Each ID
 // can be fully or partially formed as shown with the
 // following examples:
 // WebSphere:cuname=SharedLib1.jar
 // WebSphere:cuname=SharedLib.jar
 // SharedLib.jar
 // matchTarget - Specifies whether the server target for the secondary
 // composition units are to match the server target for

Chapter 12. Administering business-level applications using programming 507

// the primary composition unit. The default value
 // is "true". If the value is set to "false", the
 // secondary composition unit will be created with no
 // target. The target on the secondary composition unit
 // can be set at a later time with the editCompUnit
 // command.
 // The addCompUnit command contains the ActivationPlanOptions step.
 // The user can set the ActivationPlanOptions step parameters
 // similar to the step parameters for the CUOptions step in
 // the previous examples. The arguments for this step include:
 // deplUnit – deployable unit URI (read only parameter)
 // activationPlan - specifies a list of runtime components in the
 // format of specname=xxxx
 //
 // Run the command to add the composition unit.
 asyncCmdClientHelper.execute(cmd);
 System.out.println("\nCompleted running of command");

 // Check the command result.
 CommandResult result = cmd.getCommandResult();
 if (result != null) {
 if (result.isSuccessful()) {
 System.out.println("\nCommand ran successfully "
 + "with result\n" + result.getResult());
 }
 else {
 System.out.println("\nCommand ran with " +
 "Exception");
 result.getException().printStackTrace();
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;
import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {
 // Add your own code here to handle the received notification
 System.out.println("\nEXAMPLE: notification received: " +
 notification);
 }
}

What to do next

Start the business-level application to which you added the composition unit. Complete administrative
tasks such as viewing or deleting the composition unit.

Updating an asset using programming
You can update an asset by adding, deleting, or updating a single file or Java Platform, Enterprise Edition
(Java EE) module, or by merging multiple files or Java EE modules into an asset. You can also update an
asset by replacing the entire asset.

508 Administering applications and their environment

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command
framework programming in the application programming interface documentation.

Before you can update an asset, you must have imported the asset.

You can update an asset using programming, the administrative console, or the wsadmin tool.

About this task

You must specify the assetID parameter of the asset that you are updating. In addition, you must specify
the operation parameter. Wether or not you must specify the contents and contenturi parameters depends
on the operation that you specify.

You modify one or more files or module files of an asset with this task. You also update the asset binary
file, but do not update the composition units that the system deploys with this asset as a backing object.

Perform the following tasks to update an asset using programming.

Procedure
1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without
being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query
existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the
progress of the running command, you have to create an asynchronous command handler to receive
notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous
command. If you created an asynchronous command handler in the previous step, the handler is
passed to the asynchronous command client. The asynchronous command client forwards the
command notification to the handler and helps to control running of the command.

5. Create and set up the command that updates an asset.

a. Set the parameter for the asset that you are updating.

b. Set the operation parameter.

c. Set the contents parameter unless the operation is set to delete.

d. Set the contenturi parameter if the operation is set to add, update, or addupdate.

6. Call the processCommandParameters method in the asynchronous command client to process the
command parameters.

The command framework asynchronous command model requires this call.

7. Call the asynchronous command client to run the command to update an asset.

You could have created an asynchronous command handler to implement the
AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command
client listens to command notifications and forwards the notifications to the handler. The handler
performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

Chapter 12. Administering business-level applications using programming 509

When the command finishes running, control is returned to the caller. You can then check the result by
calling the command.getCommandResult method.

Results

After you successfully run the code, the asset is updated.

Example

The following example shows how to update an asset based on the previous steps. Some statements are
split on multiple lines for printing purposes.
package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.websphere.management.Session;
import com.ibm.websphere.management.cmdframework.AdminCommand;
import com.ibm.websphere.management.cmdframework.CommandMgr;
import com.ibm.websphere.management.cmdframework.CommandResult;
import com.ibm.websphere.management.cmdframework.CommandStep;
import com.ibm.websphere.management.cmdframework.TaskCommand;
import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class EditBLA {

 public static void main(String[] args) {

 try {

 // Connect to the application server.
 // This step is optional if you use the local command manager.
 // Comment out the following lines to get soapClient soap client if
 // you are going to use the local command manager.
 // Comment out the lines to and including
 // CommandMgr cmdMgr =
 // CommandMgr.getClientCommandMgr(soapClient);

 String host = "localhost"; // Change to your host if it is not localhost.
 String port = "8880"; // Change to your port number if it is not 8880.

 Properties config = new Properties();
 config.put(AdminClient.CONNECTOR_HOST, host);
 config.put(AdminClient.CONNECTOR_PORT, port);
 config.put(AdminClient.CONNECTOR_TYPE,
 AdminClient.CONNECTOR_TYPE_SOAP);
 System.out.println("Config: " + config);
 AdminClient soapClient =
 AdminClientFactory.createAdminClient(config);

 // Create the command manager.
 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command
 // manager if you are using a local command manager.
 // Uncomment the following line to create a local command
 // manager.
 //
 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();

 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler.
 // Comment out the following line if no further handling

510 Administering applications and their environment

// of command notification is required.
 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.
 // This example creates a new session. You can replace the
 // following code to use an existing session that has been
 // created.
 String id = Long.toHexString(System.currentTimeMillis());
 String user = "content" + id;
 Session session = new Session(user, true);

 // If you do not use the command handler, replace the listener with
 // null for the following AsyncCommandClient object.
 AsyncCommandClient asyncCmdClientHelper = new
 AsyncCommandClient(session, listener);
 System.out.println("\nCreated async command client");

 // Create the command that updates the asset.
 String cmdName = "updateAsset";
 AdminCommand cmd = cmdMgr.createCommand(cmdName);
 cmd.setConfigSession(session); // Update an asset
 // using the session
 // created.
 System.out.println("\nCreated " + cmdName);

 // Set the required assetID parameter.
 // Examples of valid formats for the assetID parameter:
 // - aName
 // - assetname=aName
 // - WebSphere:assetname=aName
 // This parameter accepts an incomplete ID as long as the
 // incomplete ID can resolve to a unique asset within the
 // business-level application.
 String assetID = "asset1.zip"; // Replace asset1.zip with your
 // value of the assetID parameter.
 cmd.setParameter("assetID", assetID);

 System.out.println("\nSet assetID parameter to "
 + cmd.getParameter("assetID"));

 // Set the required operation parameter.
 // Possible operation values are add, addupdate, delete, merge,
 // replace, and update.
 // Use the add value to add a new file or Java EE module to the asset.
 // Use the addupdate value to add a new file or Java EE module to the asset, or
 // update an existing file or Java EE module.
 // Use the delete value to delete an existing file or Java EE module in the asset.
 // Use the merge value to provide a partial update with multiple
 // additions, updates, or deletions.
 // Use the replace value for a full update to replace all the contents.
 // Use the update value to update an existing file or Java EE module in the asset.
 String op = "add"; // Replace the add value with your operation value.
 cmd.setParameter("operation", op);

 System.out.println("\nSet operation parameter to "
 + cmd.getParameter("operation"));

 // Set the contents parameter.
 // This parameter is required unless the operation is set to
 // delete.

String contents = "c:\assets\abc.txt";

Chapter 12. Administering business-level applications using programming 511

String contents = "/assets/abc.txt"

 cmd.setParameter("contents", contents);

 System.out.println("\nSet contents parameter to "
 + cmd.getParameter("contents"));

 // Set the contenturi parameter.
 // This parameter is required for the
 // add, addupdate, update, or delete operations.
 String contenturi = "abc.txt"; // URI within the asset to
 // place the new file. Replace
 // with your value.
 cmd.setParameter("contenturi", contenturi);

 System.out.println("\nSet contenturi parameter to "
 + cmd.getParameter("contenturi"));

 // Call the asynchronous client helper to process parameters.
 try {
 asyncCmdClientHelper.processCommandParameters(cmd);
 System.out.println("\nCompleted process command " +
 "parameters");
 } catch (Throwable th) {
 System.out.println("Throwing an exception from " +
 "asyncCmdClientHelper.processCommandParameters(cmd).");
 th.printStackTrace();
 System.exit(-1);
 }

 // Run the command.
 asyncCmdClientHelper.execute(cmd);
 System.out.println("\nCompleted command execution");

 CommandResult result = cmd.getCommandResult();
 if (result != null) {
 if (result.isSuccessful()) {
 System.out.println("\nCommand executed successfully "
 + "with result\n" + result.getResult());
 }
 else {
 System.out.println("\nCommand executed with " +
 "Exception");
 result.getException().printStackTrace();
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;
import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {
 // Add your own code here to handle the received notification.
 System.out.println("\nEXAMPLE: notification received: " +
 notification);
 }
}

512 Administering applications and their environment

What to do next

You can do other tasks associated with assets in business-level applications, such as adding or deleting
other assets, listing assets, exporting assets, and so on.

Editing a business-level application using programming
You can edit the information of a business-level application such as its description. A business-level
application is an administrative model that captures the entire definition of an enterprise-level application.

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command
framework programming in the application programming interfaces documentation.

Before you can edit a business-level application, you must have created a business-level application.

You can edit a business-level application using programming, the administrative console, or the wsadmin
tool.

About this task

You must provide the blaID parameter to specify the business-level application that you are editing.

Perform the following tasks to edit a business-level application using programming.

Procedure
1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without
being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query
existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the
progress of the running command, you have to create an asynchronous command handler to receive
notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous
command. If you created an asynchronous command handler in the previous step, the handler is
passed to the asynchronous command client. The asynchronous command client forwards the
command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to create the command that edits a
business-level application.

The command name is editBLA. Use the required blaID parameter to specify the business-level
application that you are editing.

6. Call the processCommandParameters method in the asynchronous command client to process the
command parameters.

The command framework asynchronous command model requires this call.

7. Set up the command step parameter by setting the description parameter.

The BLAOptions step contains a description for the business-level application. You can edit the
description parameter in the BLAOptions step.

Chapter 12. Administering business-level applications using programming 513

8. Call the asynchronous command client to run the command to edit a business-level application.

You could have created an asynchronous command handler to implement the
AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command
client listens to command notifications and forwards the notifications to the handler. The handler
performs any necessary actions while waiting for the command to complete.

9. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by
calling the command.getCommandResult method.

Results

After you successfully run the code, the business-level application is edited.

Example

The following example shows how to edit a business-level application based on the previous steps. Some
statements are split on multiple lines for printing purposes.
package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.websphere.management.Session;
import com.ibm.websphere.management.cmdframework.AdminCommand;
import com.ibm.websphere.management.cmdframework.CommandMgr;
import com.ibm.websphere.management.cmdframework.CommandResult;
import com.ibm.websphere.management.cmdframework.CommandStep;
import com.ibm.websphere.management.cmdframework.TaskCommand;
import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class EditBLA {

 public static void main(String[] args) {
 try {

 // Connect to the application server.
 // This step is optional if you use the local command manager.
 // Comment out the following lines to get the soapClient SOAP client if
 // you are going to use the local command manager. You would
 // comment out the lines to and including
 // CommandMgr cmdMgr =
 // CommandMgr.getClientCommandMgr(soapClient);

 String host = "localhost"; // Change to your host if it is not localhost.
 String port = "8880"; // Change to your port number if it is not 8880.

 Properties config = new Properties();
 config.put(AdminClient.CONNECTOR_HOST, host);
 config.put(AdminClient.CONNECTOR_PORT, port);
 config.put(AdminClient.CONNECTOR_TYPE,
 AdminClient.CONNECTOR_TYPE_SOAP);
 System.out.println("Config: " + config);
 AdminClient soapClient =
 AdminClientFactory.createAdminClient(config);

 // Create command manager.
 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command
 // manager if you are using a local command manager.
 // Uncomment the following line to create a local command
 // manager.

514 Administering applications and their environment

//
 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();

 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler.
 // Comment out the following line if no further handling
 // of command notification is required.
 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.
 // This example creates a new session. You can replace the
 // code below to use an existing session that has been
 // created.
 String id = Long.toHexString(System.currentTimeMillis());
 String user = "content" + id;
 Session session = new Session(user, true);

 // If no command handler is used, replace the listener with
 // null for the following AsyncCommandClient object.
 AsyncCommandClient asyncCmdClientHelper = new
 AsyncCommandClient(session, listener);
 System.out.println("\nCreated async command client");

 // Create the command that edits the business-level application.
 String cmdName = "editBLA";
 AdminCommand cmd = cmdMgr.createCommand(cmdName);
 cmd.setConfigSession(session); // Edit an existing business-level
 // application using the session
 // created.
 System.out.println("\nCreated " + cmdName);

 // Set the blaID parameter (required).
 // Examples of valid formats for the blaID parameter are:
 // - bName
 // - blaname=bName
 // - WebSphere:blaname=bName
 // This parameter accepts an incomplete ID as long as the incomplete
 // ID can resolve to a unique business-level application.
 String blaID = "bla1"; // Replace bla1 with your value of the blaID.
 cmd.setParameter("blaID", blaID);

 System.out.println("\nSet blaID parameter to "
 + cmd.getParameter("blaID"));

 // Call the asynchronous client helper to process parameters.
 try {
 asyncCmdClientHelper.processCommandParameters(cmd);
 System.out.println("\nCompleted process command " +
 "parameters");
 } catch (Throwable th) {
 System.out.println("Throwing an exception from " +
 "asyncCmdClientHelper.processCommandParameters(cmd).");
 th.printStackTrace();
 System.exit(-1);
 }

 // Set up the step parameters for the BLAOptions step.
 // The only step parameter you can edit is description.
 String stepName = "BLAOptions";
 CommandStep step = ((TaskCommand) cmd).gotoStep(stepName);

 // Edit the business-level application description.
 String description = "bla for testing"; // Replace with your value.

Chapter 12. Administering business-level applications using programming 515

for (int i = 0; i < step.getNumberOfRows(); i++) {
 // The following lines set the description
 // step parameter.
 step.setParameter("description", description, i);
 System.out.println("\nSet description parameter to " +
 step.getParameter("description", i));
 }

 // Run the command to edit the business-level application.
 asyncCmdClientHelper.execute(cmd);
 System.out.println("\nCompleted command execution");

 // Check the command result.
 CommandResult result = cmd.getCommandResult();
 if (result != null) {
 if (result.isSuccessful()) {
 System.out.println("\nCommand executed successfully "
 + "with result\n" + result.getResult());
 }
 else {
 System.out.println("\nCommand executed with " +
 "Exception");
 result.getException().printStackTrace();
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;
import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {
 // Add your own code here to handle the received notification.
 System.out.println("\nEXAMPLE: notification received: " +
 notification);
 }
}

What to do next

After you edit the business-level application, you can continue administration of business-level
applications. You can do such things as start and stop a business-level application, delete a business-level
application, add a composition unit to a business-level application, and so on.

Editing a composition unit using programming
You can edit the configuration information in a composition unit of a business-level application if, for
example, you want to change certain modules in the composition unit that are configured to run in specific
targets. A composition unit is typically created from a business-level application or an asset and contains
configuration information that makes the asset runnable.

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command
framework programming in the application programming interfaces documentation.

516 Administering applications and their environment

Before you can edit a composition unit of a business-level application, you must have created an empty
business-level application, imported an asset, and added a composition unit to the business-level
application.

About this task

You can edit a composition unit of a business-level application using programming, the administrative
console, or the wsadmin tool. This topic describes how to edit a composition unit of a business-level
application using programming.

You must provide the blaID and cuID parameters to specify the composition unit of the business-level
application that you are editing.

Perform the following tasks to edit a composition unit of a business-level application using programming.

Procedure
1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without
being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query
existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the
progress of the running command, you have to create an asynchronous command handler to receive
notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous
command. If you created an asynchronous command handler in the previous step, the handler is
passed to the asynchronous command client. The asynchronous command client forwards the
command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to create and set up the command that
edits a composition unit of a business-level application.

The command name is editCompUnit. Use the required blaID and cuID parameters to specify the
composition unit of the business-level application that you are editing.

6. Call the processCommandParameters method in the asynchronous command client to process the
command parameters.

The command framework asynchronous command model requires this call.

7. Set up the command step parameters.

You can edit various composition unit information through steps. The CUOptions step contains data
about the composition unit such as its description, starting weight, and start and restart behavior. The
MapTargets step contains target information about where to deploy the composition unit. The
RelationshipOptions step contains shared library composition units on which this composition unit has
a dependency. The ActivationPlanOptions step allows you to change runtime components for each
deployable unit. You can edit parameters in these steps.

8. Call the asynchronous command client to run the command that edits a composition unit of a
business-level application.

You might have created an asynchronous command handler to implement the
AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command
client listens to command notifications and forwards the notifications to the handler. The handler
performs any necessary actions while waiting for the command to complete.

9. Check the command result when the command completes.

Chapter 12. Administering business-level applications using programming 517

When the command finishes running, control is returned to the caller. You can then check the result by
calling the command.getCommandResult method.

Results

After you successfully run the code, the composition unit of a business-level application is edited.

Example

The following example shows how to edit a composition unit of a business-level application based on the
previous steps. Some statements are split on multiple lines for printing purposes.
package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.websphere.management.Session;
import com.ibm.websphere.management.cmdframework.AdminCommand;
import com.ibm.websphere.management.cmdframework.CommandMgr;
import com.ibm.websphere.management.cmdframework.CommandResult;
import com.ibm.websphere.management.cmdframework.CommandStep;
import com.ibm.websphere.management.cmdframework.TaskCommand;
import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class EditCompUnit {

 public static void main(String [] args) {

 try {

 // Connect to the application server.
 // This step is optional if you use the local
 // command manager. Comment out the lines to and including
 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(
 // soapClient);
 // to get the soapClient soap client if you use the local
 // command manager.

 String host = "localhost";
 String port = "8880"; // Change to your port number if it is
 // not 8880.

 Properties config = new Properties();
 config.put(AdminClient.CONNECTOR_HOST, host);
 config.put(AdminClient.CONNECTOR_PORT, port);
 config.put(AdminClient.CONNECTOR_TYPE,
 AdminClient.CONNECTOR_TYPE_SOAP);
 System.out.println("Config: " + config);
 AdminClient soapClient =
 AdminClientFactory.createAdminClient(config);

 // Create the command manager.
 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command
 // manager if you are using a local command manager.
 // Uncomment the following line to create a local command
 // manager:
 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();
 System.out.println("\nCreated command manager");

 // Optionally create an asynchronoous command handler.
 // Comment out the following line if no further handling
 // of command notification is required:

518 Administering applications and their environment

AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.
 String id = Long.toHexString(System.currentTimeMillis());
 String user = "content" + id;
 Session session = new Session(user, true);

 // If no command handler is used, replace the listener with
 // null for the following AsyncCommandClient object:
 AsyncCommandClient asyncCmdClientHelper = new
 AsyncCommandClient(session, listener);
 System.out.println("\nCreated async command client");

 // Create the command that edits the composition unit.
 String cmdName = "editCompUnit";
 AdminCommand cmd = cmdMgr.createCommand(cmdName);
 cmd.setConfigSession(session); // Edit a certain composition
 // unit of a business-level using the session created.
 System.out.println("\nCreated " + cmdName);

 // Set the blaID parameter.
 // Examples of valid formats for the blaID parameter are:
 // - bName
 // - blaname=bName
 // - WebSphere:blaname=bName
 // This parameter accepts an incomplete ID as long as the
 // incomplete ID can resolve to a unique business-level application.
 String blaID = "bla1";
 cmd.setParameter("blaID", blaID);

 System.out.println("\nSet blaID parameter to "
 + cmd.getParameter("blaID"));

 // Set the cuID parameter.
 // Examples of valid formats for the cuID parameter are:
 // - name
 // - cuname=name
 // - WebSphere:cuname=name
 // This parameter accepts an incomplete ID as long as the
 // incomplete ID can resolve to a unique composition unit
 // within the business-level application.
 String cuID = "cu1";
 cmd.setParameter("cuID", cuID);

 System.out.println("\nSet cuID parameter to "
 + cmd.getParameter("cuID"));

 // Call the asynchronous client helper to process the command parameters.
 try {
 asyncCmdClientHelper.processCommandParameters(cmd);
 System.out.println("\nCompleted process command " +
 "parameters");
 } catch (Throwable th) {
 System.out.println("Failed from " +
 "asyncCmdClientHelper.processCommandParameters(cmd).");
 th.printStackTrace();
 System.exit(-1);
 }

 // Set up the step parameters for the CUOptions step.
 // The CUOptions step contains the following arguments that can be edited:
 // description - description for the composition unit
 // startingWeight - starting weight for the composition unit
 // within the business-level application.
 // startedOnDistributed - to start composition unit upon distribution

Chapter 12. Administering business-level applications using programming 519

// to target nodes.
 // Valid values are true, false.
 // restartBehaviorOnUpdate - restart behavior for the composition
 // unit when the compostion unit is updated.
 // Valid values are DEFAULT, ALL, NONE
 String stepName = "CUOptions";
 CommandStep step = ((TaskCommand) cmd).gotoStep(stepName);

 // Composition Unit description:
 String description = "cu1 description changed in editCompUnit";

 for(int i = 0; i < step.getNumberOfRows(); i++) {
 // Use the following code to change the composition unit step parameters
 // of the CUOptions step. Change your set of step parameters
 // as required by your scenario.

 // For example, set the description.
 step.setParameter("description", description, i);
 System.out.println("\nSet description parameter to " +
 step.getParameter("description", i));
 }

 // Set up the step parameters for the MapTargets step
 stepName = "MapTargets";
 step = ((TaskCommand) cmd).gotoStep(stepName);

 // In this step the server parameter is required.
 // server - target(s) to deploy the composition unit. The default is server1.
 // To add an additional target to the existing
 // target, add a prefix to the target with a “+”. To
 // delete an existing target, add a prefix to the
 // target with a “#“. To replace the existing
 // target, use the regular syntax as in the addCompUnit example.
 // Example: server = "#server1+server2";
 String server = "server1";

 for(int i = 0; i < step.getNumberOfRows(); i++) {
 // Use the following code to set the server parameter of the MapTargets step.
 // Change your set of step parameters as required by your
 // scenario.

 // For example, set the server.
 step.setParameter("server", server, i);
 System.out.println("\nSet server parameter to " +
 step.getParameter("server", i));
 }

 // If the RelationshipOptions step is available, the selected
 // deployable units of the source asset of the "primary" composition
 // unit (that is, the composition unit being added) have dependencies
 // on other assets for which there are matching "secondary" composition
 // units in the business-level application. The RelationshipOptions step is much like
 // CreateAuxCUOptions except that the required secondary composition
 // units already exist. Also, each RelationshipOptions row maps one
 // deployable unit to one or more secondary composition units, whereas,
 // each CreateAuxCUOptions row maps one deployable unit to one
 // asset dependency.
 //
 // Each RelationshipOptions row corresponds to one deployable unit
 // with one or more dependency relationships and consists of
 // parameter values for the dependency relationships. Some parameters
 // are read-only and some of them are editable. To edit parameter
 // values, use the same approach as that used to edit parameter values
 // in the CUOptions step.
 //
 // The parameters for this step include:
 //

520 Administering applications and their environment

// deplUnit – The name of the deployable unit which has the
 // dependency. (Read-only.)
 // relationship – Composition unit dependencies in the form of a
 // list of composition unit IDs. Composition unit
 // IDs are separated by a "plus" sign ("+"). Each ID
 // can be fully or partially formed as shown with the
 // following examples:
 // WebSphere:cuname=SharedLib1.jar
 // WebSphere:cuname=SharedLib.jar
 // SharedLib.jar
 // matchTarget - Specifies whether the server target for the secondary
 // composition units are to match the server target for
 // the primary composition unit. The default value
 // is "true". If the value is set to "false", the
 // secondary composition unit will be created with no
 // target. The target on the secondary composition unit
 // can be set at a later time with the editCompUnit
 // command.
 // for(int i = 0; i < step.getNumberOfRows(); i++) {
 // Use the following if statement to set the relationship and matchTarget parameters
 // of the RelationshipOptions step. Change your set of
 // step parameters as required by your scenario.

 // Uncomment the following code to match the deplUnit and then set
 // the relationship differently.
 //String deplUnit = (String) step.getParameter(“deplUnit”,
 // i);

 //if (deplUnit.equals(“a1.jar”) {
 // For example, change the relationship for the a1.jar file.
 //step.setParameter("relationship", relationship, i);
 //System.out.println("\nSet relationship parameter " +
 // "to " + step.getParameter("relationship", i));

 // For example, change matchTarget.
 //step.setParameter("matchTarget", matchTarget, i);
 //System.out.println("\nSet matchTarget parameter to "+
 // step.getParameter("matchTarget", i));
 //}
 //}

 // The addCompUnit command contains thr ActivationPlanOptions step.
 // The user can set the ActivationPlanOptions step parameters similar to
 // the step parameters for the CUOptions step in the previous examples.
 // The arguments for this step include:
 // deplUnit – deployable unit URI (read only parameter)
 // activationPlan - specifies a list of runtime components in the
 // format of specname=xxxx

 // Run the command command to edit the composition unit.
 asyncCmdClientHelper.execute(cmd);
 System.out.println("\nCompleted running of the command");

 // Check the command result.
 CommandResult result = cmd.getCommandResult();
 if (result != null) {
 if (result.isSuccessful()) {
 System.out.println("\nCommand ran successfully "
 + "with result\n" + result.getResult());
 }
 else {
 System.out.println("\nCommand ran with " +
 "Exception");
 result.getException().printStackTrace();
 }
 }
 } catch (Exception e) {

Chapter 12. Administering business-level applications using programming 521

e.printStackTrace();
 }
 }
}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;
import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {
 // Add your own code here to handle the received notification
 System.out.println("\nEXAMPLE: notification received: " +
 notification);
 }
}

What to do next

After you edit the composition unit, you can run the updated business-level application.

Deleting a business-level application using programming
You can delete a business-level application using programming. You might delete a business-level
application if it is not functioning correctly, it is no longer needed, and so on.

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command
framework programming in the application programming interfaces documentation.

Before you can delete a business-level application, you must have created an empty business-level
application. You can optionally have added assets or business-level applications as composition units to
the empty business-level application. All the composition units in the business-level application must be
deleted using the deleteCompUnit command before you delete the business-level application. Other
business-level applications cannot reference the business-level application that you are deleting.
Otherwise, the deletion fails.

You can delete a business-level application using programming, the administrative console, or the
wsadmin tool.

About this task

You must specify the blaID parameter of the business-level application that you are deleting. You might
delete a business-level application if it is not functioning correctly, no longer needed, and so on.

Perform the following steps to delete a business-level application using programming.

Procedure
1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without
being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query
existing administrative commands.

522 Administering applications and their environment

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the
progress of the running command, you have to create an asynchronous command handler to receive
notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous
command. If you created an asynchronous command handler in the previous step, the handler is
passed to the asynchronous command client. The asynchronous command client forwards the
command notification to the handler and helps to control running of the command.

5. Use the command manager you created in a previous step to create and set up the command that
deletes the business-level application.

The command name is DeleteBLA. The blaID parameter is a required parameter to specify the
business-level application to delete.

6. Call the processCommandParameters method in the asynchronous command client to process the
command parameters.

The command framework asynchronous command model requires this call.

7. Call the asynchronous command client to run the command that deletes the business-level application.

You might have created an asynchronous command handler to implement the
AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command
client listens to command notifications and forwards the notifications to the handler. The handler
performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by
calling the command.getCommandResult method.

Results

After you successfully run the code, the business-level application is deleted.

Example

The following example shows how to delete a business-level application based on the previous steps.
Some statements are split on multiple lines for printing purposes.
package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.websphere.management.Session;
import com.ibm.websphere.management.cmdframework.AdminCommand;
import com.ibm.websphere.management.cmdframework.CommandMgr;
import com.ibm.websphere.management.cmdframework.CommandResult;
import com.ibm.websphere.management.cmdframework.CommandStep;
import com.ibm.websphere.management.cmdframework.TaskCommand;
import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class DeleteBLA {

 public static void main(String [] args) {

 try {

 // Connect to the application server.
 // This step is optional if you use the local
 // command manager. Comment out the lines to and including

Chapter 12. Administering business-level applications using programming 523

// CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(
 // soapClient);
 // to get the soapClient soap client if you use the local
 // command manager.

 String host = "localhost";
 String port = "8880"; // Change to your port number if it is
 // not 8880.

 Properties config = new Properties();
 config.put(AdminClient.CONNECTOR_HOST, host);
 config.put(AdminClient.CONNECTOR_PORT, port);
 config.put(AdminClient.CONNECTOR_TYPE,
 AdminClient.CONNECTOR_TYPE_SOAP);
 System.out.println("Config: " + config);
 AdminClient soapClient =
 AdminClientFactory.createAdminClient(config);

 // Create the command manager.
 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command
 // manager if you are using a local command manager.
 // Uncomment the following line to create a local command
 // manager:
 //
 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();
 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler.
 // Comment out the following line if no further handling
 // of command notification is required:
 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Setup the session.
 String id = Long.toHexString(System.currentTimeMillis());
 String user = "content" + id;
 Session session = new Session(user, true);

 // If no command handler is used, replace listener with
 // null for the following AsyncCommandClient object:
 AsyncCommandClient asyncCmdClientHelper = new
 AsyncCommandClient(session, listener);
 System.out.println("\nCreated async command client");

 // Create the command that deletes the business-level application.
 String cmdName = "deleteBLA";
 AdminCommand cmd = cmdMgr.createCommand(cmdName);
 cmd.setConfigSession(session); // Delete the business-level
 // application using the session created.
 System.out.println("\nCreated " + cmdName);

 // Set the blaID parameter to the business-level application to delete.
 // Examples of valid formats for the blaID parameter are:
 // - bName
 // - blaname=bName
 // - WebSphere:blaname=bName
 // This parameter accepts an incomplete ID as long as the incomplete
 // ID can resolve to a unique business-level application.
 String blaID = "bla1";
 cmd.setParameter("blaID", blaID);

 System.out.println("\nSet blaID parameter to "
 + cmd.getParameter("blaID"));

524 Administering applications and their environment

// Call the asynchronous client helper to process parameters.
 try {
 asyncCmdClientHelper.processCommandParameters(cmd);
 System.out.println("\nCompleted process command " +
 "parameters");
 } catch (Throwable th) {
 System.out.println("Failed from " +
 "asyncCmdClientHelper.processCommandParameters(cmd).");
 th.printStackTrace();
 System.exit(-1);
 }

 // Call the asynchronous command client to run the command.
 asyncCmdClientHelper.execute(cmd);
 System.out.println("\nCompleted running of the command");

 // Check the command result.
 CommandResult result = cmd.getCommandResult();
 if (result != null) {
 if (result.isSuccessful()) {
 System.out.println("\nCommand ran successfully "
 + "with result\n" + result.getResult());
 }
 else {
 System.out.println("\nCommand ran with " +
 "Exception");
 result.getException().printStackTrace();
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;
import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {
 // Add your own code here to handle the received notification
 System.out.println("\nEXAMPLE: notification received: " +
 notification);
 }
}

What to do next

You can complete other tasks associated with business-level applications, such as creating other
business-level applications, stopping and starting business-level applications, and so on.

Deleting a composition unit using programming
You can delete a composition unit from a business-level application if the composition unit is not
functioning correctly, the composition unit is no longer needed, and so on. A composition unit is typically
created from a business-level application or an asset and contains configuration information that makes
the asset runnable.

Chapter 12. Administering business-level applications using programming 525

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command
framework programming in the application programming interfaces documentation.

Before you can delete a composition unit, you must have created an empty business-level application,
imported an asset, and added a composition unit to the business-level application. If other composition
units depend on the composition unit that you are deleting and you do not use the force option, the
deletion fails.

About this task

You can delete a composition unit using programming, the administrative console, or the wsadmin tool.
This topic describes how to delete a composition unit using programming.

You must provide the blaID and cuID parameters to specify the composition unit that you are deleting from
the business-level application.

Perform the following tasks to delete a composition unit using programming.

Procedure
1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without
being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query
existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the
progress of the running command, you have to create an asynchronous command handler to receive
notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous
command. If you created an asynchronous command handler in the previous step, the handler is
passed to the asynchronous command client. The asynchronous command client forwards the
command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to create and set up the command that
deletes a composition unit.

The command name is deleteCompUnit. The blaID and cuID parameters are required parameters. The
cuID parameter is used to specify the composition unit to delete from the business-level application,
which is specified with the blaID. You can optionally provide the force parameter to force the deletion if
other composition units depend on this composition unit.

6. Call the processCommandParameters method in the asynchronous command client to process the
command parameters.

The command framework asynchronous command model requires this call.

7. Call the asynchronous command client to run the command that deletes a composition unit.

You might have created an asynchronous command handler to implement the
AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command
client listens to command notifications and forwards the notifications to the handler. The handler
performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

526 Administering applications and their environment

When the command finishes running, control is returned to the caller. You can then check the result by
calling the command.getCommandResult method.

Results

After you successfully run the code, the composition unit is deleted.

Example

The following example shows how to delete a composition unit from a business-level application based on
the previous steps. Some statements are split on multiple lines for printing purposes.
package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.websphere.management.Session;
import com.ibm.websphere.management.cmdframework.AdminCommand;
import com.ibm.websphere.management.cmdframework.CommandMgr;
import com.ibm.websphere.management.cmdframework.CommandResult;
import com.ibm.websphere.management.cmdframework.CommandStep;
import com.ibm.websphere.management.cmdframework.TaskCommand;
import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class DeleteCompUnit {

 public static void main(String [] args) {

 try {

 // Connect to the application server.
 // This step is optional if you use the local
 // command manager. Comment out the lines to and including
 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);
 // to get the soapClient soap client if
 // you use the local command manager.

 String host = "localhost";
 String port = "8880"; // Change to your port number if it is
 // not 8880.

 Properties config = new Properties();
 config.put(AdminClient.CONNECTOR_HOST, host);
 config.put(AdminClient.CONNECTOR_PORT, port);
 config.put(AdminClient.CONNECTOR_TYPE,
 AdminClient.CONNECTOR_TYPE_SOAP);
 System.out.println("Config: " + config);
 AdminClient soapClient =
 AdminClientFactory.createAdminClient(config);

 // Create the command manager.
 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command
 // manager if you are using a local command manager.
 // Uncomment the following line to create a local command
 // manager:
 //
 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();
 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler.

Chapter 12. Administering business-level applications using programming 527

// Comment out the following line if no further handling
 // of command notification is required:
 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.
 String id = Long.toHexString(System.currentTimeMillis());
 String user = "content" + id;
 Session session = new Session(user, true);

 // If no command handler is used, replace listener with
 // null for the following AsyncCommandClient object:
 AsyncCommandClient asyncCmdClientHelper = new
 AsyncCommandClient(session, listener);
 System.out.println("\nCreated async command client");

 // Create the command that deletes the composition unit.
 String cmdName = "deleteCompUnit";
 AdminCommand cmd = cmdMgr.createCommand(cmdName);
 cmd.setConfigSession(session); // Delete the composition unit from
 // the business-level application
 // using the session created.
 System.out.println("\nCreated " + cmdName);

 // Set the blaID parameter to the business-level application with
 // the composition unit to delete.
 // Examples of valid formats for the blaID parameter are:
 // - bName
 // - blaname=bName
 // - WebSphere:blaname=bName
 // This parameter accepts an incomplete ID as long as
 // the incomplete ID can resolve to a unique
 // business-level application.
 String blaID = "bla1";
 cmd.setParameter("blaID", blaID);

 System.out.println("\nSet blaID parameter to "
 + cmd.getParameter("blaID"));

 // Set the cuID parameter to the composition unit that is to be
 // deleted.
 // Examples of valid formats for the cuID parameter are:
 // - name
 // - cuname=name
 // - WebSphere:cuname=name
 // This parameter accepts an incomplete ID as long as the
 // incomplete ID can resolve to a unique composition unit
 // within the business-level application.
 String cuID = "cu1";
 cmd.setParameter("cuID", cuID);

 System.out.println("\nSet cuID parameter to "
 + cmd.getParameter("cuID"));
 // Uncomment the following line of code to set the force parameter
 // to force the deletion even if other composition units depend
 // on this composition unit.
 //
 // cmd.setParameter("force", "true");

 // Call the asynchronous client helper to process parameters.
 try {
 asyncCmdClientHelper.processCommandParameters(cmd);
 System.out.println("\nCompleted process command " +
 "parameters");
 } catch (Throwable th) {

528 Administering applications and their environment

System.out.println("Failed from " +
 "asyncCmdClientHelper.processCommandParameters(cmd).");
 th.printStackTrace();
 System.exit(-1);
 }

 // Call the asynchronous command client to run the command.
 asyncCmdClientHelper.execute(cmd);
 System.out.println("\nCompleted running of the command");

 // Check the command result.
 CommandResult result = cmd.getCommandResult();
 if (result != null) {
 if (result.isSuccessful()) {
 System.out.println("\nCommand ran successfully "
 + "with result\n" + result.getResult());
 }
 else {
 System.out.println("\nCommand ran with " +
 "Exception");
 result.getException().printStackTrace();
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;
import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {
 // Add your own code here to handle the received notification
 System.out.println("\nEXAMPLE: notification received: " +
 notification);
 }
}

What to do next

You can complete other tasks associated with the business-level application, such as adding or deleting
other composition units, listing composition units, and so on.

Chapter 12. Administering business-level applications using programming 529

530 Administering applications and their environment

Chapter 13. Troubleshooting deployment

When you are having problems deploying an application, perform some basic diagnostics and verify your
system configuration to solve the problem.

Before you begin

Try to install your application on a product server. Ensure that your application can be installed to the
deployment target. For example, if your application contains modules that support Java Platform,
Enterprise Edition (Java EE) 6 or use a Version 8 product feature or API, you must install the application
to a Version 8 deployment target.

About this task

Determine which of the following steps apply to the deployment problem and read the suggested topics.

Procedure
v If you cannot install the application, troubleshoot problems deploying applications.

See the topics on application deployment problems and troubleshooting tips.

v If you can install the application but it does not start, troubleshoot problems starting applications.

See the topics on application deployment and startup problems.

v If your application contains many classes with annotations and takes a long time to deploy, reduce
annotation searches to speed up deployment.

See the topic on reducing annotation searches during application deployment.

v If you cannot uninstall the application, see the topic on application uninstallation problems.

What to do next

If the topics in this information center do not resolve the deployment problem, examine current information
available from IBM Support on known problems and their resolution. IBM Support has documents that can
save you time gathering information needed to resolve this problem. Before opening a PMR, see topic on
troubleshooting help from IBM.

Application deployment problems
You might encounter problems when deploying, installing, or promoting applications. This topic suggests
ways to resolve the problems.

What kind of problem are you having?

v “I installed my application using the wsadmin tool, but the application does not display under
Applications > Application Types > WebSphere enterprise applications” on page 532

v “Unable to save a deployed application” on page 532

v

“I get a java.lang.RuntimeException: Failed_saving_bytes_to_wor_ERROR_ error in the
assembly tool, administrative console or the wsadmin tool” on page 533

v “WASX7015E error running wsadmin command $AdminApp installInteractive or $AdminApp install” on
page 533

v “Cannot install a CMP or BMP entity bean in an EJB 3.0 module” on page 533

v “Data definition language (DDL) generated by an assembly tool throws SQL error on target platform” on
page 534

© IBM Corporation 2004 531

v “Error message ADMA0004E: Validation error in task Specifying the Default Datasource for EJB
Modules returned when installing application using the administrative console or the wsadmin tool” on
page 534

v “Cannot load resource WEB-INF/ibm-web-bnd.xmi in archive file” on page 535

v “"Timeout!!!" error displays when attempting to install an enterprise application in the administrative
console ” on page 535

v “I get a NameNotFoundException message when deploying an application that contains an EJB
module” on page 536

v

“During application installation, the call to EJB deploy causes an exception” on page 536

v “I get compilation errors and EJB deploy fails when installing an EJB JAR file generated for Version 5.x
or earlier” on page 536

v “After installing the application onto a different machine, the application does not run” on page 536

v “A single file replaces all application files during application update” on page 536

Check the following first:
v Verify that the logical name that you have specified to appear on the console for your application,

enterprise bean module or other resource does not contain invalid characters such as these: - / \ : * ? "
< > |.

v If the application was installed using the wsadmin $AdminApp install command with the -local flag,
restart the server or rerun the command without the -local flag.

If you do not see a problem that resembles yours, or if the information provided does not solve your
problem, check to see if the problem is identified and documented.

I installed my application using the wsadmin tool, but the application does not
display under Applications > Application Types > WebSphere enterprise
applications

The application might be installed but you have not saved the configuration:
1. Verify that the application subdirectory is located under the app_server_root/installedApps directory.
2. Run the $AdminApp list command and verify that the application is not among those displayed.
v In the bin directory, run the wsadmin.bat or wsadmin.sh command.
v From the wsadmin prompt, enter $AdminApp list and verify that the problem application is not

among the items that display.
3. Reinstall your application using the wsadmin tool. Run the $AdminConfig save command in the

wsadmin tool before exiting.

Unable to save a deployed application

If you are unable to save a deployed application, the problem might be that too many files are opened,
exceeding the limit of the operating system.

On the SuSE9 or other Linux platform, you can either increase the number of files that can be

opened to resolve the problem or you can modify the application to close files with disciplines. To increase
the number of files that you can open at the same time, run the following command in the shell before
invoking the process that needs to open a number of files:
ulimit -n number_of_files

Only root has authority to adjust the maximum number of files for each process. Complete the following
steps to modify the application to close files with disciplines:

1. After you open a file and complete your work, call the close method of the file to release the file handle
back to the operating system.

2. Using the java.io.FileInputStream and the FileOutputStream classes as examples, you can invoke their
close method to release any system resources that are associated with the stream.

532 Administering applications and their environment

I get a java.lang.RuntimeException: Failed_saving_bytes_to_wor_ERROR_ error in the
assembly tool, administrative console or the wsadmin tool

If you see this error when attempting to generate deployed code in an assembly tool, installing an
application or module in the administrative console, or using the wsadmin tool to install an application or
module, the file path length of the temporary system file might be exceeded.

To verify this problem, check the TEMP and TMP environment variables for your system. Long environment
variables add path length to the file names accessed by the EJB deployment tool.

To resolve the problem:
1. Stop all WebSphere Application Server processes and close all DOS prompts.
2. Set the TEMP and TMP environment variables to something short, for example C:\TMP and C:\TEMP.
3. Reinstall the application.

Otherwise, try rebooting and redeploying or reinstalling the application.

WASX7015E error running wsadmin command $AdminApp installInteractive or
$AdminApp install

This problem has two possible causes:
v If the full text of the error is similar to:

WASX7015E: Exception running command:
"$AdminApp installInteractive C:/Documents and Settings/
 myUserName/Desktop/MyApp/myapp.ear";
exception information:
com.ibm.bsf.BSFException: error while
evaluating Jacl expression: can’t find method "installInteractive"
with 3 argument(s) for class
"com.ibm.ws.scripting.AdminAppClient"

The file and path name are incorrectly specified. In this case, since the path included spaces, it was
interpreted as multiple parameters by the wsadmin program.

Enter the path of the .ear file correctly. In this case, by enclosing it in double quotes:
$AdminApp installInteractive "C:\Documents
and Settings\myUserName\Desktop\MyApps\myapp.ear"

v If the full text of the error is similar to:
WASX7015E: Exception running command: "$AdminApp installInteractive c:\MyApps\myapp.ear ";
exception information: com.ibm.ws.scripting.ScriptingException: WASX7115E:
Cannot read input file
"c:\WebSphere\AppServer\bin\MyAppsmyapp.ear"

The application path is incorrectly specified. In this case, you must use "forward-slash" (/) separators in
the path.

Cannot install a CMP or BMP entity bean in an EJB 3.0 module

When installing an EJB 3.0 module that contains a container-managed persistence (CMP) or
bean-managed persistence (BMP) entity bean, the installation fails.

The product does not support installation of applications that have a CMP or BMP entity bean packaged in
an EJB 3.0 module. You must package CMP or BMP entity beans in an EJB 2.1 or earlier module.

To resolve this problem:

1. Package the CMP or BMP entity beans in EJB 2.1 or earlier modules.

2. Try installing your application with the EJB 2.1 or earlier modules.

Chapter 13. Troubleshooting deployment 533

Data definition language (DDL) generated by an assembly tool throws SQL error
on target platform

If you receive SQL errors in attempting to execute data definition language (DDL) statements generated by
an assembly tool on a different platform, for example if you are deploying a container-managed
persistence (CMP) enterprise bean designed on Windows onto a UNIX operating system server, try the
following actions:
v Browse the DDL statements for dependencies on specific user identifiers and passwords, and correct as

necessary.
v Browse the DDL statements for dependencies on specific server names, and correct as necessary.
v Refer to the message reference of the vendor for causes and suggested actions regarding specific SQL

errors. For IBM DB2, you can view the message references online at http://www.ibm.com/cgi-bin/
db2www/data/db2 /udb/winos2unix/support/index.d2w/report.

If you receive the following error after executing a DDL file created on the Windows operating system or
on operating systems such as AIX or Linux, the problem might come from a difference in file formats:
SQL0104N An unexpected token "CREATE TABLE AGENT (COMM DOUBLE, PERCENT DOUBLE, P"
was found following " ". Expected tokens may include: " ".
SQLSTATE=42601

To resolve this problem:
v

Edit the DDL in the vi editor, removing the Ctl-M character
at the beginning of each line.

v

Regenerate the deployment code for the application EAR file on a Linux platform.

Error message ADMA0004E: Validation error in task Specifying the Default
Datasource for EJB Modules returned when installing application using the
administrative console or the wsadmin tool

If you see the following error when trying to install an application through the administrative console or the
wsadmin command prompt:
AppDeploymentException: [ADMA0014E: Validation failed.
ADMA0004E: Validation error in task Specifying the Default Datasource for
EJB Modules JNDI name is not
specified for module beannameBean Jar with URI filename.jar,META-INF/ejb-jar.xml.
You have not specified the
data source for each CMP bean belonging to this module. Either specify the data
source for each CMP beans or
specify the default data source for the entire module.]

one possible cause is that, in WebSphere Application Server Version 4.0, it was mandatory to have a data
source defined for each CMP bean in each JAR. In Version 5.0 and later releases, you can specify either
a data source for a container-managed persistence (CMP) bean or a default data source for all CMP
beans in the JAR file. Thus during installation interaction, such as the installation wizard in the
administrative console, the data source fields are optional, but the validation performed at the end of the
installation checks to see that at least one data source is specified.

To correct this problem, step through the installation again, and specify either a default data source or a
data source for each CMP-type enterprise bean.

If you are using the wsadmin tool, use the $AdminApp installInteractive filename command to receive
prompts for data sources during installation, or to provide them in a response file.

Specify data sources as an option to the $AdminApp install command.

534 Administering applications and their environment

http://www.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/index.d2w/report
http://www.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/index.d2w/report

Cannot load resource WEB-INF/ibm-web-bnd.xmi in archive file

The web application tmp.war installs on WebSphere Application Server Versions 5.0 and 5.1, but fails on a
WebSphere Application Server Version 6.0 or later server. The application fails to install because the
WEB-INF/ibm-web-bnd.xmi file contains xmi tags that the underlying WCCM model no longer recognizes.

The following error messages display:
IWAE0007E Could not load resource "WEB-INF/ibm-web-bnd.xmi" in archive "tmp.war"
[2/24/05 14:53:10:297 CST] 000000bc SystemErr R
AppDeploymentException:
com.ibm.etools.j2ee.commonarchivecore.exception.ResourceLoadException:
IWAE0007E Could not load resource "WEB-INF/ibm-web-bnd.xmi" in archive "tmp.war"
[2/24/05 14:53:10:297 CST] 000000bc SystemErr R
com.ibm.etools.j2ee.commonarchivecore.exception.ResourceLoadException:
IWAE0007E Could not load resource "WEB-INF/ibm-web-bnd.xmi" in archive "tmp.war"
!Stack_trace_of_nested_exce!
com.ibm.etools.j2ee.exception.WrappedRuntimeException: Exception occurred loading
WEB-INF/ibm-web-bnd.xmi
!Stack_trace_of_nested_exce!

To work around this problem, remove the xmi:type=EJBLocalRef tag from the ibm-web-bnd.xmi file.
Removing this tag does not affect the application because the tag was previously used for matching the
cross document reference type. The application now works for the WebSphere Application Server Version
5.1 and later releases.

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

"Timeout!!!" error displays when attempting to install an enterprise application in
the administrative console

This error can occur if you attempt to install an enterprise application that has not been deployed.

To correct this problem:
v Open the file_name.ear file in an assembly tool and then click Deploy. This action creates a file with a

name like Deployed_file_name.ear.
v In the administrative console, install the deployed EAR file.

Chapter 13. Troubleshooting deployment 535

I get a NameNotFoundException message when deploying an application that
contains an EJB module

If you specify that the EJB deployment tool be run during application installation and the installation fails
with a NameNotFoundException message, ensure that the input JAR or EAR file does not contain source
files. If there are source files in the input JAR or EAR file, the EJB deployment tools runs a rebuild before
generating the deployment code.

To work around this problem, either remove the source files or include all dependent classes and resource
files on the class path. Otherwise, the source files or the lack of access to dependent classes and
resource files might cause problems during rebuilding of your application on the server.

During application installation, the call to EJB deploy causes an exception

When you specify that the EJB deployment tool be run during application installation and if installation fails
with the error command line too long, the problem is that the deployment command generated during
installation exceeds the character limit for a command line on the Windows platform.

To work around this problem, you can reduce the length of the EAR file name, reduce the length of the
JAR file name within the EAR file, reduce the class path or other options specified for deployment, or
change the %TEMP% location of the Windows system to make its path shorter.

I get compilation errors and EJB deploy fails when installing an EJB JAR file
generated for Version 5.x or earlier

When installing an old application that uses EJB modules that were built to run on WebSphere Application
Server Version 5.x or earlier, compilation errors result and EJB deploy fails. The EJB JAR file contains
Java source for the old generated code. The old Java source was generated for Version 5.x or before but,
when deployed to a WebSphere Application Server Version 6.x or later product, it is compiled using the
Version 6.0 or later runtime JAR files.

To work around this problem, remove all .java files from the application EAR file. After the Java source
files are removed, you can deploy the application onto a server successfully.

After installing the application onto a different machine, the application does not
run

If your application uses application level resources, its application level node information must be correct
for the application to run as expected.

When you add application level resources to an application and deploy the application onto a machine,
ensure that the application level node information is correct. Otherwise, when you install the application
onto a different machine, it is installed to the wrong location and the application does not run as expected.

You can update the application level node information using an assembly tool. Update the nodeName from
deploymentTargets of the deployment.xml file under ibmconfig. Also, ensure that binariesURL from
deployedObject of the deployment.xml file has the correct path.

A single file replaces all application files during application update

If you select the Replace or add a single file option of the application update wizard and the currently
deployed application consists of several files, specify the full path name of the file to be replaced or added
for Specify the path beginning with the installed application archive file to the file to be replaced or
added.

536 Administering applications and their environment

A full path name usually has the structure directory_path/file_name and resembles the following:
PriceChangeSession.jar/priceChangeSession/priceChangeSessionBean.class

Do not specify less than the full path name for Specify the path beginning with the installed
application archive file to the file to be replaced or added. For example, do not specify only a directory
path:
PriceChangeSession.jar/priceChangeSession

If you specify less than a full path name, all files in the directory of the currently deployed application might
be replaced by the single new file that was specified under Specify the path to the file.

Application deployment troubleshooting tips
When you first test or run a deployed application, you might encounter problems.

Select the problem you are having with testing or the first run of deployed code for WebSphere Application
Server:
v “Application startup problems” on page 542.
v “Web resource is not displayed” on page 547.
v “A client program does not work” on page 546.

You can use the following administrative console pages to inspect the configuration of your applications
and JMS resources:

v For a view of the JMS resources for a given application, see the following page: ../ae/
AppToSIBRefs_DetailForm.dita.

v For a view of the applications and JMS resources for a given default messaging provider destination,
see the following page: ../ae/AppsFromSIBRefs_DetailForm.dita.

If you do not see a problem that resembles yours, or if the information provided does not solve your
problem, see Troubleshooting help from IBM.

For current information available from IBM Support on known problems and their resolution, see the IBM
Support webpage.

IBM Support has documents that can save you time gathering information needed to resolve this problem.
Before opening a PMR, see the Must gather documents page for information to gather to send to IBM
Support page.

Application startup errors
Use this information for troubleshooting problems that occur when starting an application.

What kind of error do you see when you start an application?
v “HTTP server and Application Server are working separately, but requests are not passing from HTTP

server to Application Server” on page 538
v “File serving problems” on page 539
v “Graphics do not appear in the JSP file or servlet output” on page 539
v “SRVE0026E: [Servlet Error]-[Unable to compile class for JSP file” on page 540
v “After modifying and saving a JSP file, the change does not show up in the browser (the old JSP file

displays)” on page 541
v “Message like "Message: /jspname.jsp(9,0) Include: Mandatory attribute page missing" appears when

attempting to browse JSP file” on page 541
v “The Java source generated from a JSP file is not retained in the temp directory (only the class file is

found)” on page 541

Chapter 13. Troubleshooting deployment 537

http://www-306.ibm.com/software/webservers/appserv/was/support/
http://www-306.ibm.com/software/webservers/appserv/was/support/
http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg21145599

v “The JSP Batch Compiler fails with the message "Enterprise Application [application name you typed in]
not found."” on page 541

v “There is a translation problem with non-English browser input” on page 542
v “Scroll bars do not appear around items in the browser window” on page 542
v “Error "Page cannot be displayed... server not found or DNS error" appears when attempting to browse

a JavaServer Pages (JSP) file using Internet Explorer” on page 542

The following note applies to the ibm-web-ext.xmi references throughout this topic:

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

HTTP server and Application Server are working separately, but requests are not
passing from HTTP server to Application Server

If your HTTP server appears to be functioning correctly, and the Application Server also works on its own,
but browser requests sent to the HTTP server for pages are not being served, a problem exists in the
WebSphere Application Server plug-in.

In this case:

1. Determine whether the HTTP server is attempting to serve the requested resource itself, rather than
forwarding it to the WebSphere Application Server.
a. Browse the HTTP server access log (IHS install root/logs/access.log for IBM HTTP Server). It

might indicate that it could not find the file in its own document root directory.
b. Browse the plug-in log file as described below.

2. Refresh the plugin-cfg.xml file that determines which requests sent to the HTTP server are forwarded
to the WebSphere Application Server, and to which Application Server.

Use the console to refresh this file:
v In the WebSphere Application Server administrative console, expand the Environment tree control.
v Click Update WebSphere Plugin.
v Stop and restart the HTTP server.
v Retry the web request.

3. Browse the plugin_install_root/logs/web_server_name/http_plugin.log file for clues to the problem.
Make sure the timestamps with the most recent plug-in information stanza, which is printed out when
the plug-in is loaded, correspond to the time the web server started.

4. Turn on plug-in tracing by setting the LogLevel attribute in the plugin-cfg.xml file to Trace and
reloading the request. Browse the plugin_install_root/logs/Web_server_name/http_plugin.log file.
You should be able to see the plug-in attempting to match the request URI with the various URI
definitions for the routes in the plugin-cfg.xml. Check which rules the plug-in is not matching against

538 Administering applications and their environment

and then figure out if you need to add additional ones. If you just recently installed the application you
might need to manually regenerate the plug-in configuration to pick up the new URIs related to the
new application.

For further details on troubleshooting plug-in-related problems, see Webserver plug-in troubleshooting tips
located in the Administering applications and their environment PDF book.

File serving problems

If text output appears on your JSP- or servlet-supported web page, but image files do not:

v Verify that your files are in the right place: the document root directory of your web application
WebSphere Application Server follows the J2EE standard, which means that the document root is the
web_module_name.war directory of your deployed web application.

Typically this directory will be found in the install_root/installedApps/nodename/appname.ear directory
or install_root/installedApps/nodename/appnameNetwork.ear directory.

If the files are in a subdirectory of the document root, verify that the reference to the file reflects that.
That is, if the invoices.html file is stored in Windows directory web_module_name.war\invoices, then
links from other pages in the web application to display it should read "invoices\invoices.html", not
"invoices.html".

v Verify that your web application is configured to enable file serving (in other words, that it is enabled to
display static resources like image and .html files):
1. View the file serving property of the hosting web module by browsing the source .war file in an

assembly tool. If necessary, update the property and redeploy the module. For more information
about the assembly tool, refer to the assembly tools section of the Developing and deploying
applications PDF book.

2. Edit the fileServingEnabled property in the deployed web application ibm-web-ext.xmi configuration
file.

The file typically is found in the install_root/config/cells/nodename or nodenameNetwork/
applications/application_name/deployments/application name/Web_module_name/web-inf
directory.

Graphics do not appear in the JSP file or servlet output

If text output appears on your JSP- or -servlet-supported web page, but image files do not:

v Verify that your graphic files are in the right place: the document root directory of your web application.
The product follows the J2EE standard, which means that the document root is the
web_module_name.war directory of your deployed web application.

Typically, this directory is found in the install_root/installedApps/nodename/appname.ear directory or
install_root/installedApps/nodename/appnameNetwork.ear directory.

If the graphics files are in a subdirectory of the document root, verify that the reference to the graphic
reflects that; for example, if the banner.gif file is stored in Windows directory web_module_name.war/
images, the tag to display it should read: , not .

v Verify that your web application is configured to enable file serving (that is, display of static resources
like image and .html files).
1. View the file serving property of the hosting web module by browsing the source .war file in an

assembly tool. If necessary, update the property and redeploy the module. For more information
about the assembly tool, refer to the assembly tools section of the Developing and deploying
applications PDF book.

2. Edit the fileServingEnabled property in the deployed web application ibm-web-ext.xmi configuration
file.

The file typically is found in the install_root/config/cells/nodename or nodenameNetwork/
applications/application_name/deployments/application name/Web_module_name/web-inf
directory.

Chapter 13. Troubleshooting deployment 539

3. After completing the previous step:
– In the administrative console, expand the Environment tree control .
– Click Update WebSphere Plugin.
– Stop and restart the HTTP server and retry the web request.

SRVE0026E: [Servlet Error]-[Unable to compile class for JSP file

If this error appears in a browser when trying to access a new or modified .jsp file for the first time, the
most likely cause is that the JSP file Java source failed (was incorrect) during the javac compilation phase.

Check the SystemErr.log file for a compiler error message, such as:
C:\WASROOT\temp\ ... test.war_myJsp.java:14: \Duplicate variable declaration: int myInt was int myInt
int myInt = 122;
String myString = "number is 122";
static int myStaticInt=22;
int myInt=121;
 ^

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Fix the problem in the JSP source file, save the source and request the JSP file again.

If this error occurs when trying to serve a JSP file that was copied from another system where it ran
successfully, then there is something different about the new server environment that prevents the JSP file
from running. Browse the text of the error for a statement like:
Undefined variable or class name: MyClass

This error indicates that a supporting class or jar file is not copied to the target server, or is not on the
class path. Find the MyClass.class file, and place it on the web module WEB-INF/classes directory, or
place its containing .jar file in the Web module WEB-INF/lib directory.

Verify that the URL used to access the resource is correct by doing the following:

v For a JSP file, html file, or image file: http://host_name/Web_module_context_root/subdir under doc
root, if any/filename.ext. The document root for a web application is the application_name.WAR
directory of the installed application.
– For example, to access the myJsp.jsp file, located in c:\WebSphere\ApplicationServer\

installedApps\myEntApp.ear\myWebApp.war\invoices on myhost.mydomain.com, and assuming the
context root for the myWebApp web module is myApp, the URL is http://myhost.mydomain.com/
myApp/invoices/myJsp.jsp.

– JSP serving is enabled by default. File serving for HTML and image files must be enabled as a
property of the web module, in an assembly tool, or by setting the fileServingEnabled property to
true in the ibm-web-ext.xmi file of the installed web application and restarting the application. For
more information about the assembly tool, refer to the assembly tools section of the Developing and
deploying applications PDF book.

v For servlets served by class name, the URL is http://hostname/Web_module_context_root/servlet/
packageName.className.

For example, to access myCom.myServlet.class, located in c:\WebSphere\ApplicationServer\
installedApps\ myEntApp.ear\myWebApp.war\WEB-INF\classes, and assuming the context root for the
myWebApp module is "myApp", the URL would be http://myhost.mydomain.com/myApp/servlet/
myCom.MyServlet.

540 Administering applications and their environment

v Serving servlets by class name must be enabled as a property of the web module, and is enabled by
default. File serving for HTML and image files must be enabled as a property of the Web application, in
an assembly tool, or by setting the fileServingEnabled property to true in the ibm-web-ext.xmi file of the
installed web application and restarting the application. For more information about the assembly tool,
refer to the assembly tools section of the Developing and deploying applications PDF book.

Correct the URL in the "from" HTML file, servlet or JSP file. An HREF with no leading slash (/) inherits the
calling resource context. For example:
v an HREF in http://[hostname]/myapp/servlet/MyServlet to "ServletB" resolves to

"http://hostname/myapp/servlet/ServletB"
v an HREF in http://[hostname]/myapp/servlet/MyServlet to "servlet/ServletB" resolves to

"http://hostname/myapp/servlet/servlet/ServletB" (an error)
v an HREF in http://[hostname]/myapp/servlet/MyServlet to "/ServletB" resolves to

"http://hostname/ServletB" (an error, if ServletB requires the same context root as MyServlet)

After modifying and saving a JSP file, the change does not show up in the
browser (the old JSP file displays)

It is probable that the web application is not configured for servlet reloading, or the reload interval is too
high.

To correct this problem, in an assembly tool, check the Reloading Enabled flag and the Reload Interval
value in the IBM Extensions for the web module in question. Enable reloading, or if it is already enabled,
then set the Reload Interval lower. For more information about the assembly tool, refer to the assembly
tools section of the Developing and deploying applications PDF book.

Message like "Message: /jspname.jsp(9,0) Include: Mandatory attribute page
missing" appears when attempting to browse JSP file

It is probable that the JSP file failed during the translation to Java phase. Specifically, a JSP directive, in
this case an Include statement, was incorrect or referred to a file that could not be found.

To correct this problem, fix the problem in the JSP source, save the source and request the JSP file again.

The Java source generated from a JSP file is not retained in the temp directory
(only the class file is found)

It is probable that the JSP processor is not configured to keep generated Java source.

In an assembly tool, check the JSP Attributes under Assembly Property Extensions for the web module in
question. Make sure the keepgenerated attribute is there and is set to true. If not, set this attribute and
restart the web application. To see the results of this operation, delete the class file from the temp directory
to force the JSP processor to translate the JSP source into Java source again. For more information about
the assembly tool, refer to the assembly tools section of the Developing and deploying applications PDF
book.

The JSP Batch Compiler fails with the message "Enterprise Application
[application name you typed in] not found."

It is probable that the full enterprise application path and name, starting with the .ear subdirectory that
resides in the applications directory is expected as an argument to the JspBatchCompiler tool, not just
the display name.

The directory path is install_root\config\cells\node_nameNetwork\applications.

For example:

Chapter 13. Troubleshooting deployment 541

v "JspBatchCompiler -enterpriseapp.name sampleApp.ear/deployments/sampleApp" is correct, as
opposed to

v "JspBatchCompiler -enterpriseapp.name sampleApp", which is incorrect.

There is a translation problem with non-English browser input

If non-English-character-set browser input cannot be translated after being read by a servlet or JSP file,
ensure that the request parameters are encoded according to the expected character set before reading.
For example, if the site is Chinese, the target .jsp file should have a line:
 req.setCharacterEncoding("gb2312");

before any req.getParameter method calls.

This problem affects servlets and jsp files ported from earlier versions of WebSphere Application Server,
which converted characters automatically based upon the locale of the WebSphere Application Server.

Scroll bars do not appear around items in the browser window

In some browsers, tree or list type items that extend beyond their allotted windows do not have scroll bars
to permit viewing of the entire list.

To correct this problem, right-click on the browser window and click Reload from the menu.

Error "Page cannot be displayed... server not found or DNS error" appears when
attempting to browse a JavaServer Pages (JSP) file using Internet Explorer

This error can occur when an HTTP timeout causes the servant to be brought down and restarted. To
correct this problem, increase the ConnectionIOTimeOut value:

1. From the administrative console, select System administration > Deployment manager >
Administration Services > Custom Properties

2. Select ConnectionIOTimeOut.

3. Increase the ConnectionIOTimeOut value.

4. Click OK.

Application startup problems
When an application is not starting or starting with errors, the problem could be from one of various
sources.

What kind of error do you see when you start an application?
v “WSVR0100W: An error occurred initializing, application_name java.lang.NullPointerException when

starting a migrated application” on page 543
v A “java.lang.ClassNotFoundException: classname Bean_AdderServiceHome_04f0e027Bean” on page

543 error occurs
v A “ConnectionFac E J2CA0102E: Invalid EJB component: Cannot use an EJB module with version 1.1

using The Relational Resource Adapter” on page 544 error occurs
v “NMSV0605E: "A Reference object looked up from the context..." error when starting an application” on

page 544.
v A parsing error when running an application that uses the JSF configuration occurs.
v “A Page Not Found, Array Index Out of Bounds, or other error when an updated application restarts” on

page 545

If none of these errors match the error you see:

542 Administering applications and their environment

v Browse the log files of the application server for this application looking for clues. By default, these files
are: app_server_root/logs/server_name/SystemErr.log and SystemOut.log.

v Look up any error or warning messages in the message reference table by clicking the Reference view
and expanding Messages.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

If you do not see a problem that resembles yours, or if the information provided does not solve your
problem, see IBM Support troubleshooting information.

WSVR0100W: An error occurred initializing, application_name
java.lang.NullPointerException when starting a migrated application

After you migrate an enterprise application to Version 8.0, the application might not start. Attempts to start
the application result in an error such as WSVR0100W: An error occurred initializing, application_name
java.lang.NullPointerException.

Examine the deployment.xml file of the migrated application, and remove targetMapping statements such
as the following:
<targetMappings xmi:id="DeploymentTargetMapping_1279594183813" enable="true"/>"

Then, try starting the application again. The Version 8.0 runtime has an application validation process that
might not support migrated targetMappings settings.

java.lang.ClassNotFoundException: classname
Bean_AdderServiceHome_04f0e027Bean

An similar exception occurs when you try to start an undeployed application containing enterprise beans,
or containing undeployed enterprise bean modules.

Enterprise JavaBeans modules created in an assembly tool intentionally have incomplete configuration
information. Deploying these modules completes the configuration by reading the module's deployment
descriptor and completing platform- or installation-dependent settings and adding related classes to the
Enterprise JavaBeans JAR file.

To avoid this problem, do the following:
v Use an assembly tool and administrative console to generate deployment code and install the

application or Enterprise JavaBeans module onto a server.
1. Uninstall the application or Enterprise JavaBeans module in the administrative console.
2. Configure your assembly tool so the target server is a WebSphere Application Server installation. If

you do not have access to the target server, you can specify a false location such as /temp.
Specifying a false location enables you to assemble and generate deployment code for the
enterprise bean.

3. In the Project Explorer view of an assembly tool, right-click the enterprise bean (Enterprise
JavaBeans) in the undeployed .ear file containing the Enterprise JavaBeans module or the
stand-alone undeployed Enterprise JavaBeans JAR file, and click Deploy. If your assembly tool can
access the WebSphere Application Server target server, deployment code is generated for the
Enterprise JavaBeans and the assembly tool attempts to install the application or module onto the
target server. If your assembly tool cannot access the WebSphere Application Server target server
or the installation fails, use the deployment code that is generated for the next step.

Chapter 13. Troubleshooting deployment 543

For information on using an assembly tool, refer to the topic on assembling applications.
4. Use the wsadmin $AdminApp install command or the administrative console to install the deployed

version created by the assembly tool.
v If you use the wsadmin $AdminApp install command, uninstall it and then reinstall using the -EJBDeploy

option. Follow the install command with the $AdminConfig save command.

ConnectionFac E J2CA0102E: Invalid EJB component: Cannot use an EJB module
with version 1.1 using The Relational Resource Adapter

This error occurs when an enterprise bean developed to the Enterprise JavaBeans 1.1 specification is
deployed with a WebSphere Application Server V5 J2C-compliant data source, which is the default data
source. By default, persistent enterprise beans created under WebSphere Application Server V4.0 using
the Application Assembly Tool fulfill the Enterprise JavaBeans 1.1 specification. To run on WebSphere
Application Server V6, these enterprise beans must be associated with a WebSphere Application Server
V4.0-type data source.

Either modify the mapping in the application of enterprise beans to associate 1.x container managed
persistence (CMP) beans to associate them with a V4.0 data source or delete the existing data source and
create a V4.0 data source with the same name.

To modify the mapping in the application of enterprise beans, in the WebSphere Application Server
administrative console, select the properties for the problem application and use Map resource
references to resources or Map data sources for all 1.x CMP beans to switch the data source the
enterprise bean uses. Save the configuration and restart the application.

To delete the existing data source and create a V4.0 data source with the same name:
1. In the administrative console, click Resources > Manage JDBC Providers > JDBC_provider_name

> Data sources.
2. Delete the data source associated with the Enterprise JavaBeans 1.1 module.
3. Click Resources > Manage JDBC Providers > JDBC_provider_name > Data sources (Version 4).
4. Create the data source for the Enterprise JavaBeans 1.1 module.
5. Save the configuration and restart the application.

NMSV0605E: "A Reference object looked up from the context..." error when
starting an application

If the full text of the error is similar to:
[7/17/02 15:20:52:093 CDT] 5ae5a5e2 UrlContextHel W NMSV0605E:
 A Reference object looked up from the context
 "java:" with the name "comp/PM/WebSphereCMPConnectionFactory" was sent to the JNDI Naming Manager
 and an exception resulted. Reference data follows:
 Reference Factory Class Name: com.ibm.ws.naming.util.IndirectJndiLookupObjectFactory
 Reference Factory Class Location URLs:
 Reference Class Name: java.lang.Object
 Type: JndiLookupInfo
 Content: JndiLookupInfo: ; jndiName="eis/jdbc/MyDatasource_CMP"; providerURL="";
 initialContextFactory=""

then the problem might be that the data source intended to support a CMP enterprise bean is not correctly
associated with the enterprise bean.

To resolve this problem:
1. Select the Use this Data Source in container managed persistence (CMP) check box in the data

source "General Properties" panel of the administrative console.
2. Verify the JNDI name in either of the following ways:

544 Administering applications and their environment

v Verify that the JNDI name given in the administrative console under Resources > Manage JDBC
Providers > DataSource > JNDI Name for DataSource matches the JNDI name given for CMP or
BMP resource bindings at the time of assembling the application in an assembly tool.

v Check the JNDI name for CMP or BMP resource bindings specified in the code by J2EE application
developer. Open the deployed .ear folder in an assembly tool, and look for the JNDI name for your
entity beans under CMP or BMP resource bindings. Verify that the names match.

Parsing error when running an application that uses the JSF configuration

If you are using double-byte characters in the profile name, you receive a parsing error when running an
application that uses the JavaServer Faces (JSF) configuration. The problem is related to the JSF
configuration that is part of the jsf-ibm.jar, which is included when building JSF applications in Rational
Application Developer. The configuration files are referencing entities from inside the main
faces-config.xml file.

Avoid using double-byte characters when you create a profile.

A Page Not Found, Array Index Out of Bounds, or other error when an updated
application restarts

If an application is updated while it is running, WebSphere Application Server automatically stops the
application or only its changed components, updates the application logic, and restarts the stopped
application or its components. For more information on the restarting of updated applications, refer to
Fine-grained recycle behavior in IBM WebSphere Developer Technical Journal: System management for
WebSphere Application Server V6 -- Part 5 Flexible options for updating deployed applications.

A Page Not Found, Array Index Out of Bounds, or other error might occur during restarting.

To minimize the occurrence of such errors, update applications in a test environment before updating the
applications in a production environment. Do not put changes directly into a production environment.

Reducing annotation searches during application deployment
Enterprise applications that contain many classes with annotations might take a long time to deploy. Java
EE 5 introduced annotations to add metadata to Java classes. Because of performance issues associated
with reflection and because classes are not always loadable at deployment, bytecode scanning technology
is used to retrieve annotation metadata. Java EE 5 or later applications with many classes might
experience long deployment times because every class within the application is inspected during
deployment. You can reduce the number of annotations to inspect by specifying the modules and Java
packages to ignore for annotations processing in the amm.filter.properties file or by configuring system
properties.

Before you begin

Install an application that supports Java Platform, Enterprise Edition (Java EE) 5 or later on a product
server. If deployment is unreasonably slow and you will be deploying this application again in the future,
complete a procedure in this topic to reduce the number of classes that are searched for annotations
during deployment.

About this task

The product provides a configurable filtering function to reduce the number of classes that are searched
for annotations. You can identify which modules or Java packages to ignore for annotations processing
through two properties:
v Ignore-Scanning-Archives
v Ignore-Scanning-Packages

Chapter 13. Troubleshooting deployment 545

http://www.ibm.com/developerworks/websphere/techjournal/0510_apte/0510_apte.html#sec4

A default set of values is provided in the amm.filter.properties file in app_server_root/properties. The
property values provide both coarse and fine grained control over the search scope for annotations
processing. Use of the Ignore-Scanning-Archives property reduces deployment time more than use of the
Ignore-Scanning-Packages property. The syntax for the Ignore-Scanning-Archives and
Ignore-Scanning-Packages properties follows the comma-separated value convention. No wildcard or
regular expressions are permitted and values are case-sensitive.

The default set of values can be changed by an administrator or augmented by a user using one of the
following steps.

Procedure
v Place an amm.filter.properties file in the profile_root/properties directory.

v Use system properties to supply values for the Ignore-Scanning-Archives and Ignore-Scanning-
Packages properties.

– The com.ibm.ws.amm.scan.context.filter.archives system property supplies values for the
Ignore-Scanning-Archives property.

– The com.ibm.ws.amm.scan.context.filter.packages system property supplies values for the
Ignore-Scanning-Packages property.

See the topic on Java virtual machine custom properties.

v Add Ignore-Scanning-Archives and Ignore-Scanning-Packages entries to the application manifest,
META-INF/MANIFEST.MF.

Note: When updating the application manifest, follow line-length limitations and other constraints for the
manifest.

v Add Ignore-Scanning-Archives and Ignore-Scanning-Packages entries to the module manifest.

Note: When updating the module manifest, follow line-length limitations and other constraints for the
manifest.

What to do next

Install the application again. If deployment continues to be slow, specify more modules and Java packages
to ignore.

A client program does not work
What kind of problem are you seeing?

ActiveX client fails to display ASP files, or WebSphere Application Server
resources (JSP files, servlet, or HTML pages) or both

A possible cause of this problem is that both IIS for serving Active Server Pages (ASP) files and an HTTP
server that supports WebSphere Application Server (such as IBM HTTP Server) are deployed on the same
host. This deployment leads to misdirected HTTP traffic if both servers are listening on the same port
(such as the default port 80).

To resolve this problem, either:
v Open the IIS administrative panel, and edit the properties of the default web server to change the port

number to a value other than 80
v Install IIS and the HTTP server on separate servers.

For current information available from IBM Support on known problems and their resolution, see the IBM
Support page.

546 Administering applications and their environment

http://www-1.ibm.com/support/search.wss?tc=SSEQTP&tc1=SSC3NAD&rs=180
http://www-1.ibm.com/support/search.wss?tc=SSEQTP&tc1=SSC3NAD&rs=180

Plants by WebSphere Catalog Manager (pbwsCatalogMgr) exceptions

When you federate a stand-alone server into a Deployment Manager cell, the bootstrap port number of the
application server may change. This will cause the client to not be able to communicate with the server,
thus causing an exception. The following scenario may cause an exception when you start Plants by
WebSphere:
1. Install a stand-alone WebSphere Application Server.
2. Run the Plants by WebSphere example.
3. Create a Deployment Manager (DMGR) using the Profile Management tool or by using the

manageprofiles command.
4. Federate the stand-alone WebSphere Application Server into a Deployment Manager cell using the

addNode command.
5. Start pbwsCatalogMgr.

To avoid the exception, locate the new (changed) port number on the server and modify the client
configuration to match the port number on the server.

1. Go to was_server_root\profiles\your_server_name\config\cells\your_cell\nodes\your_node.

a. Open the serverindex.xml file.

b. Locate the BOOTSTRAP_ADDRESS port number of the application server, for example 9810.

2. Assign this port number to the client to communicate with your newly-federated application server. Go
to was_client_root\bin and edit the setupClient.bat file.

3. Locate the line 'SET SERVERPORTNUMBER' and set the value for it to 9810.

If you have security enabled, ensure that the bus security is also enabled and that a user is defined to
the bus connector role before running pbwsCatalogMgr.

4. Restart the node agent and the application server.

The client is now properly set up to start pbwsCatalogMgr.

IBM Support has documents that can save you time gathering information needed to resolve this problem.
Before opening a PMR, see the IBM Support page.

Web resource is not displayed
Use this information to troubleshoot problems that occur when attempting to display a resource in a
browser.

If you are not able to display a resource in your browser, follow these steps:
1. Verify that your HTTP server is healthy by accessing the URL http://server_name from a browser and

seeing whether the Welcome page appears. This action indicates whether the HTTP server is up and
running, regardless of the state of WebSphere Application Server.

2. If the HTTP server Welcome page does not appear, that is, if you get a browser message like page
cannot be displayed or something similar, try to diagnose your web server problem.

3. If the HTTP server appears to function correctly, the Application Server might not be serving the target
resource. Try to access the resource directly through the Application Server instead of through the
HTTP server.

If you cannot access the resource directly through the Application Server, verify that the URL used to
access the resource is correct.

If the URL is incorrect and it is created as a link from another JavaServer Pages (JSP) file, servlet, or
HTML file, try correcting it in the browser URL field and reloading, to confirm that the problem is a
malformed URL. Correct the URL in the "from" HTML file, servlet or JSP file.

If the URL appears to be correct, but you cannot access the resource directly through the Application
Server, verify the health of the hosting application server and web module:

Chapter 13. Troubleshooting deployment 547

http://www-1.ibm.com/support/search.wss?tc=SSEQTP&tc1=SSC3NAD&rs=180&q=mustgather

a. View the hosting application server and web module in the administrative console to verify that they
are up and running.

b. Copy a simple HTML or JSP file, such as SimpleJsp.jsp, which is in the WebSphere Application
Server directory structure, to your web module document root, and try to access the file. If
successful, the problem is with the resource.

View the JVM log of your Application Server to find out why your resource cannot be found or
served .

4. If you can access the resource directly through the Application Server, but not through an HTTP server,
the problem lies with the HTTP plug-in, the component that communicates between the HTTP server
and the WebSphere Application Server.

5. If the JSP file and the servlet output are served, but not static resources such as .html and image
files, see the steps for enabling file serving.

6. If certain resources display correctly, but you cannot display a servlet by its class name:
v Verify that the servlet is in a directory in the web module class path, such as in the

/web_module_name.war/WEB-INF/classes directory.
v Verify that you specify the full class name of the servlet, including its package name, in the URL.
v Verify that "/servlet" precedes the class name in the URL. For example, if the root context of a

web module is "myapp", and the servlet is com.mycom.welcomeServlet, then the URL reads:
http://hostname/myapp/servlet/com.mycom.welcomeServlet

v Verify that serving the servlets by class name is enabled for the hosting web module by opening the
source web module in an assembly tool and browsing the serve servlets by classname setting in the
IBM Extensions property page. If necessary, enable this flag and redeploy the web module. For
more information about the assembly tool, refer to the assembly tools section of the Developing and
deploying applications PDF book.

v For servlets or other resources served by mapped URLs, the URL is http://hostname/Web module
context root/mappedURL.

If none of these steps fixes your problem, see if the problem has been identified and documented by
looking at available online support (hints and tips, technotes, and fixes). If you do not find your problem
listed there, see Troubleshooting help from IBM.

Diagnosing web server problems

If you are unable to view the welcome page of your HTTP server, determine if the server is operating
properly.

Look in the Services panel for the service corresponding to your HTTP server, and verify that

the state is Started. If not, start it. If the service does not start, try starting it manually from the command
prompt. If you are using IBM HTTP Server, the command is IHS_install_dir\apache .

Run the ps -ef | grep httpd command. There should be

several processes running with a name of "httpd". If not, start your HTTP server manually. If you are
using IBM HTTP Server, the command is IHS_install_dir/bin/apachectl start.

If the HTTP server does not start:

v Examine the HTTP server error log for clues.

v Try restoring the HTTP server to its configuration prior to installing WebSphere Application Server and
restarting it. If you are using IBM HTTP Server:
– Rename the file IHS_install_dir\httpd.conf.
– Copy the httpd.conf.default file to the httpd.conf directory.
– If Apache is running, stop and restart it.

v For the Sun ONE (iPlanet) Web Server, restore the obj.conf configuration file for Sun ONE V4.1 and
both obj.conf and magnus.conf files for Sun ONE V6.0 and later.

v For the Microsoft Internet Information Server (IIS), remove the WebSphere Application Server plug-in
through the IIS administrative GUI.

548 Administering applications and their environment

If restoring the HTTP server default configuration file works, manually review the configuration file that has
WebSphere Application Server updates to verify directory and file names for WebSphere Application
Server files. If you cannot manually correct the configuration, you can uninstall and reinstall WebSphere
Application Server to create a clean HTTP configuration file.

If restoring the default configuration file does not help, contact technical support for the web server you are
using. If you are using IBM HTTP Server with WebSphere Application Server, check available online
support (hints and tips, technotes, and fixes). If you do not find your problem listed there, see
Troubleshooting help from IBM.

Accessing a web resource through the application server and bypassing the HTTP
server

You can bypass the HTTP server and access a web resource through the application server. It is not
recommended to serve a production website in this way, but it provides a good diagnostic tool when it is
not clear whether a problem resides in the HTTP server, WebSphere Application Server, or the HTTP
plug-in.

To access a web resource through the Application Server:
1. Determine the port of the HTTP service in the target application server.

a. In the administrative console, click Servers > Server Types > WebSphere application servers >
application_server > Web container.

b. Under the Additional Properties of the web container, click HTTP Transports. You see the ports
listed for virtual hosts served by the application server.

c. There can be more than one port listed. In the default application server (server1), for example,
9060 is the port reserved for administrative requests, 9443 and 9043 are used for SSL-encrypted
requests. To test the sample "snoop" servlet, for example, use the default application port 9080,
unless it changes.

2. Use the HTTP transport port number of the application server to access the resource from a browser.
For example, if the port is 9080, the URL is http://hostname:9080/myAppContext/myJSP.jsp.

3. If you are still unable to access the resource, verify that the HTTP transport port is in the "Host Alias"
list:
a. Click Servers > Server Types > WebSphere application servers > application_server > Web

container > HTTP transports to check the Default virtual host and the HTTP transport ports used
by this application server.

b. Click Environment > Virtual hosts > default_host > Host Aliases to check if the HTTP transport
port exists. Add an entry if necessary. For example, if the HTTP port for your application is server
is 9080, add a host alias of *:9082.

Application uninstallation problems
When you try to uninstall an application or node, you might encounter problems. This topic suggests ways
to resolve uninstallation problems.

What kind of problem are you having?
v After uninstalling an application through wsadmin tool, the application continues to run and throws

"DocumentIOException"

If none of these steps fixes your problem:
v Make sure that the application and its web and EJB modules are in a stopped state before uninstalling.
v If you are uninstalling or installing an application using wsadmin, make sure that you are using the

-conntype NONE option to invoke wsadmin and enable local mode. To use the -conntype NONE option,
stop the hosting application server before uninstalling the application.

v Check to see if the problem has been identified and documented by looking at the available online
support (hints and tips, technotes, and fixes).

v If you don't find your problem listed there, contact IBM support

Chapter 13. Troubleshooting deployment 549

After uninstalling application through the wsadmin tool, the application throws
"DocumentIOException"

If this exception occurs after the application was uninstalled using wsadmin with the -conntype NONE
option:
v Restart the server or,
v Rerun the uninstall command without the -conntype NONE option.

550 Administering applications and their environment

Chapter 14. Troubleshooting administration

Use this information if you are having problems with administrative functions.

Procedure
v Select the problem you are experiencing.

– I have problems bringing up or using the administrative console.
– I have problems starting or using the wsadmin command prompt.
– My web module or application server dies or hangs.
– I get errors trying to configure and enable security.
– I have problems creating or using HTTP sessions.
– I have problems using tracing, logging, log files, or other troubleshooting features.
– I get errors connecting to the administrative console from a browser.
– I have problems using command line tools.
– I cannot uninstall or remove a node or application server.
– The stopServer.sh (base and ND) hangs and creates a Java core dump (Red Hat Linux).

v If you did not solve the problem, prepare to contact IBM support.

For current information available from IBM Support on known problems and their resolution, see the
IBM Support page.

If you do not see a problem that resembles yours, or if the information provided does not solve your
problem, contact IBM support for further assistance.

Administration and administrative console troubleshooting

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

In WebSphere Application Server products, administrative functions are supported by:
v The application server (such as server1) process

The process must be running to use the administrative console. The wsadmin command-line utility has a
local mode that you can use to perform some administrative functions, even when the server process is
not running.

What kind of problem are you seeing?
v “Server status and messages in the console view are not current”
v “Role-based authorization fails” on page 552
v “When starting or stopping a server using a wsadmin interactive scripting session, you receive an

exception indicating read timed out” on page 553
v “Problems starting or using the administrative console or wsadmin utility” on page 553

Server status and messages in the console view are not current

When connecting to an Application Server that uses a Simple Object Access Protocol (SOAP) connection
for a long time, the following problems begin to occur:

v Under the status column in the Servers view on an administrative console panel, the status of the
server does not refresh.

v Server messages are not updated in the administrative console.

© Copyright IBM Corp. 2011 551

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDF

v A decrease of system resources occurs as numerous ports are created and left in the TIME_WAIT
state.

This problem persists even after you restart the server or you start another server that uses the SOAP
connection port.

The problem occurs because the SOAP connector does not support connection pooling. If the Application
Server has many ongoing operations that use the SOAP connector, the Application Server quickly opens
and closes many ports. Due to the nature of the underlying TCP/IP protocol, these ports remain in the
TIME_WAIT state for some time before the operating system can reclaim them. The number of ports that
WebSphere Application Server opens can exceed the limit that the operating system imposes. Under this
condition, the opening of additional ports fails through the SOAP connector until the operating system
reclaims ports.

Use the following options to work around the problem:

v Increase the operating system limits on the number of ports.

v For Rational Application Developer, the wsadmin utility, or Java applications that use the Java
Management Extension (JMX) connectors, switch to the Remote Method Invocation (RMI) connector.

v Wait until few or no ports are in the TIME_WAIT state before performing new operations through
Rational Application Developer or the administrative console.

Role-based authorization fails

When you make a Java Management Extension (JMX) call such as getAttribute, setAttribute, invoke, and
so on in your application, the caller requires an administrative role with sufficient permissions. The required
role depends on the MBean attribute or method that the JMX caller calls and can be one of administrator,
configurator, monitor, or operator. If one of the administrative roles is not assigned to the caller, or if the
role is assigned, but the caller does not have the required permissions, the application receives a
role-based authorization failure, for example:
SECJ0305I: Role based authorization check failed for securityname server.domain.name:3890/user.id,
accessId user:server.domain.name:3890/uid=user.id,ou=xxxx,dc=yyy,dc=zzz while invoking method
getNodeName on resource Server and module Server.

If the caller of the application cannot be assigned one of the administrative roles, the application can log in
with one of the roles on behalf of the caller. For example:
 try
 {
 // Create a LoginContext to authenticate a user ID and password.
 javax.security.auth.login.LoginContext
 lc = new javax.security.auth.login.LoginContext("WSLogin",
 new com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl("adminuser",
 "adminpassword"));

 // perform the login
 lc.login();

 // Get the authenticated subject.
 javax.security.auth.Subject adminSubject = lc.getSubject();

 // Define the action that will take place using the authenticated Subject
 // You can define this action anywhere in the code, the action
 // is reference in the WSSubject.doAs that follows.
 java.security.PrivilegedAction adminAction = new java.security.PrivilegedAction()
 {
 public Object run()
 {
 try
 {
 // Get the WebSphere AdminService.
 AdminService adminservice = AdminServiceFactory.getAdminService();

552 Administering applications and their environment

// Get the WebSphere Admin Local Server MBean instance.
 ObjectName objectname = adminservice.getLocalServer();

 // Get the Node name.
 String nodeName = (String)adminservice.getAttribute(objectname, "nodeName");

 // Get the Application Server name.
 String serverName = (String)adminservice.getAttribute(objectname, "name");

 // Get the Application Server Process ID.
 String serverPid = (String)adminservice.getAttribute(objectname, "pid");

 // Return a result, for this example, just return the serverPid.
 return serverPid;
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 return null;
 }
 });

 // Invoke an AdminClient resource using the authenticated subject.
 // This example demonstrates the action of creating an
 // administrative client and returning a String value to use outside
 // the doAs block.
 String myData = (String)
 com.ibm.websphere.security.auth.WSSubject.doAs(adminSubject, adminAction);

 // use "myData" later on....
 }
 catch (javax.security.auth.login.LoginException e)
 {
 e.printStackTrace();
 }

When starting or stopping a server using a wsadmin interactive scripting session,
you receive an exception indicating read timed out

When starting or stopping a server using a wsadmin interactive scripting session, you receive an exception
indicating read timed out, for example:
WASX7015E: Exception running command: "$AdminControl startServer server1 Node1";
exception information: com.ibm.websphere.management.exception.ConnectorException
org.apache.soap.SOAPException: [SOAPException: faultCode=SOAP-ENV:Client; msg=Read
timed out; targetException=java.net.SocketTimeoutException: Read timed out]

This exception occurs because the timeout value is too small. Increase the timeout value specified by the
com.ibm.SOAP.requestTimeout property in the soap.client.props file in the profile_root/properties
directory for a single server edition. The value you choose depends on a number of factors such as the
size and the number of the applications installed on the server, the speed of your machine, and the level
of usage of your machine. The default value of the com.ibm.SOAP.requestTimeout property is 180
seconds.

Problems starting or using the administrative console or wsadmin utility

If you have problems starting or using the administrative console or wsadmin utility, verify that the
supporting server process is started and that it is healthy.
v For the application server process, look at these files:

– profile_root/logs/server_name/startServer.log for the message that indicates that the server
started successfully: ADMU3000I: Server server1 open for e-business; process id is nnnn..

Chapter 14. Troubleshooting administration 553

– profile_root/logs/server_name/SystemOut.log
v Look up any error messages in these files in the message reference table. Select the Reference view

in the information center navigation, and click Messages. A message like WASX7213I: This scripting
client is not connected to a server process when trying to start wsadmin indicates that either the
server process is not running, the host machine where it is running is not accessible, or that the port or
server name that the wsadmin utility uses is incorrect.

v Verify that you are using the right port number to communicate with the administrative console or the
wsadmin server:
– Look in the SystemOut.log file.

- The line ADMC0013I: SOAP connector available at port nnnn indicates the port that the server is
using to listen for wsadmin functions.

- The com.ibm.ws.scripting.port property in the profile_root/properties/wsadmin.properties file
controls the port used by the wsadmin utility to send requests to the server.

– If port value is different from the value shown in the SystemOut.log file, either change the port
number in the wsadmin.properties file, or specify the correct port number when starting the wsadmin
utility by using the -port port_number property on the command line.

The com.ibm.ws.scripting.port property in the profile_root/properties/wsadmin.properties file
controls the port used by the wsadmin utility to send requests to the server.

– If the port value is different than the one specified in the web address for the administrative console,
change the web address in the browser to the correct value. The default value is
http://localhost:9060/ibm/console.

v Use the telnet command to test that the host name where the application server is running, is
reachable from the system where the browser or wsadmin program is used. If you can ping the host
name, no firewall or connectivity issues exist.

v If the host where the application server is running is remote to the machine from which the client
browser or wsadmin command is running, ensure that the appropriate host name parameter is correct.
Verify:
– The host name in the browser web address for the console.
– The -host host name option of the wsadmin command that is used to direct the wsadmin utility to

the right server
v Tracing the administrative component: WebSphere Application Server technical support might ask you to

trace the administrative component for detailed problem determination. The trace specification for this
component is com.ibm.websphere.management.*=all=enabled:com.ibm.ws.management.*=all=enabled"

If none of these steps solves the problem, see if the specific problem you are having is addressed in the
Installation completes but the administrative console does not start topic. Check to see if the problem has
been identified and documented using the links in the Diagnosing and fixing problems: Resources for
learning topic. If you do not see a problem that resembles yours, or if the information provided does not
solve your problem, contact IBM support for further assistance.

For current information available from IBM Support on known problems and their resolution, see the
following topics on the IBM support page:

v Administrative Console

v Administrative Scripting Tools

v System management

IBM Support has documents that can save you time gathering the information that is needed to resolve
this problem. Before opening a PMR, see the following topics on information gathering on the IBM support
page:

v Administrative Console

v Administrative Scripting Tools

v System management

554 Administering applications and their environment

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCPPRK
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCPPRL
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDZ
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCPPRK&q=mustgather
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCPPRL&q=mustgather
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDZ&q=mustgather

Administrative console does not start even though installation
completes
This topic discusses problems that you can encounter when you attempt to access the console.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

What kind of problem are you having?
v “An Internal Server Error, Page cannot be found, 404, or similar error occurs trying to view the

administrative console”
v “An Unable to process login. Check user ID and password and try again. error occurs when trying to

access the administrative console page” on page 556
v “The directory paths in the administrative console contain strange characters” on page 556

If you can bring up the browser page, but the administrative console behavior is inconsistent, error prone,
or unresponsive, try upgrading your browser. Older browsers might not support all the features of the
administrative console.

IBM Support has documents and tools that can save you time gathering information needed to resolve
problems as described in Troubleshooting help from IBM. Before opening a problem report, see the
Support page:

v http://www.ibm.com/software/webservers/appserv/was/support/

An Internal Server Error, Page cannot be found, 404, or similar error occurs trying
to view the administrative console

Here are some steps to try if you are unable to view the administrative console:
v Verify that the application server that supports the administrative console is up and running. For a base

configuration, the administrative console is deployed by default on server1.

Before viewing the administrative console, you must take one of the following actions:
– Run the startServer server1 command for the Windows platform from a command prompt in the

install_dir\bindirectory, or the ./startServer.sh server1 command for operating systems such as
AIX or Linux.

– Click the Start the server link from the First steps console.
– Start WebSphere Application Server as a service or from the Start menu, if you are using a Windows

operating system.
v View the SystemOut.log file for the application server to verify that the server that supports the

administrative console started.
v Check the web address you use to view the console. By default, this address is http://

server_name:9060/ibm/console, where server_name is the host name.
v If you are browsing the administrative console from a remote machine, try to eliminate connection,

address and firewall issues by pinging the server machine from a command prompt, using the server
name in the web address.

v If you have never been able to access the administrative console see the topic on troubleshooting
installation.

Chapter 14. Troubleshooting administration 555

http://www.ibm.com/software/webservers/appserv/was/support/

An Unable to process login. Check user ID and password and try again. error
occurs when trying to access the administrative console page

This error indicates that security is enabled for WebSphere Application Server, and that the user ID or
password supplied is either not valid or not authorized to access the console.

To access the console:
v If you are the administrator, use the ID defined as the security administrative ID. This ID is stored in the

WebSphere Application Server security.xml file.
v If you are not the administrator, ask the administrator to enable your ID for the administrative console.

The directory paths in the administrative console contain strange characters

Directory paths that are used for class paths or resources specified in an assembly tool, in configuration
files, or elsewhere that contain strange characters when they are viewed in the administrative console
might result from the Java run time interpreting a backslash (\) as a control character.

To resolve this problem, modify Windows-style class paths by replacing occurrences of single back slashes
to two. For example, change c:\MyFiles\MyJsp.jsp to c:\\MyFiles\\MyJsp.jsp.

Administrative console - browser connection problems
This topic describes problems that you can have when logging into the administrative console from a
browser.

Review the following information to resolve your browser problem.

If you are able to bring up the browser page, but the console behavior is inconsistent, error-prone, or
unresponsive, try upgrading the browser you are using. Older browsers may not support the administrative
console's features. For a listing of supported web browsers, see the Supported hardware and software
web page.

Check to see if the problem has been identified and documented using the links in Diagnosing and fixing
problems: Resources for learning. If you do not see a problem that resembles yours, or if the information
provided does not solve your problem, contact IBM support for further assistance.

Check the following list for your problem and how to solve it:
v When a single user that uses multiple instances of the Mozilla browser logs into the administrative

console, the first user ID that logs into the administrative console is the current user.
v A user on Mozilla browser Version 1.4 selects a check box on a collection table, presses Enter, and

receives an error.
v A user on Mozilla browser Version 1.4 enters an invalid ID or password, presses Enter, and receives an

error message

When a single user that uses multiple instances of the Mozilla browser
logs into the administrative console, the first user ID that logs into the
administrative console is the current user.
When a single user logged into an operating system tries to use multiple instances of the Mozilla browser,
the first user ID that logs into the administrative console is the current user. This situation occurs because
the browser windows share a single process.

To resolve the problem, do one of the following actions:

v Have single users logged into an operating system use a single instance of the Mozilla browser to log
into the administrative console.

556 Administering applications and their environment

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

v If the operating system allows multiple users on an operating system, have each user log into the
operating system with a different user ID and bring up a single instance of the Mozilla browser.

A user on Mozilla browser Version 1.4 selects a check box on a
collection table, presses Enter, and receives an error.
A user on Mozilla browser Version 1.4 selects a check box on a collection table, presses Enter, and
receives an error.

To resolve the problem, do one of the following actions:

v Explicitly select a button of interest on the administrative console panel instead of pressing Enter.

v Use a later version of a supported Mozilla browser.

v Use a supported version of the Microsoft Internet Explorer browser.

A user on Mozilla browser Version 1.4 enters an invalid ID or
password, presses Enter, and receives an error message
A user on Mozilla browser Version 1.4 enters an invalid user ID or password, presses Enter, and receives
an error message. Clicking OK fails to refresh the administrative login screen

To resolve the problem, do one of the following actions:

v Use a later version of a supported Mozilla browser.

v Use a supported version of the Microsoft Internet Explorer browser.

Web server plug-in troubleshooting tips
The following topics might help you diagnose problems with the web server plug-ins.

If you are having problems using a web server plug-in, try these steps:
v Review the file plugins_root/logs/web_server_name/http_plugin.log for clues. Look up any error or

warning messages in the message table.
v Review your web server's error and access logs to see if the web server is having a problem:

– IBM HTTP Server and Apache: access.log and error.log.
– Domino Web Server: httpd-log and httpd-error.
– Sun Java System: access and error.
– Microsoft IIS: timedatestamp.log.

If these files don't reveal the cause of the problem, follow these additional steps.

Plug-in Problem Determination Steps

The plug-in provides very readable tracing which can be beneficial in helping to figure out the problem. By
setting the LogLevel attribute in the config/plugin-cfg.xml file to Trace, you can follow the request
processing to see what is going wrong.

Note: If you are using a Veritas File System with large file support enabled, file sizes up to two terabytes
are allowed. In this case, if you set the LogLevel attribute in the plugin-cfg.xml file to
LogLevel=Trace, then the http_plugin.log file might grow quickly and consume all available space
on your file system. Therefore, you should set the value of the LogLevel attribute to ERROR or
DEBUG to prevent high CPU utilization..

At a high level, complete these steps.
1. The plug-in gets a request.
2. The plug-in checks the routes defined in the plugin-cfg.xml file.
3. It finds the server group.

Chapter 14. Troubleshooting administration 557

4. It finds the server.
5. It picks the transport protocol, HTTP or HTTPS.
6. It sends the request.
7. It reads the response.
8. It writes it back to the client.

You can see this very clearly by reading through the trace for a single request:
v The first step is to determine if the plug-in has successfully loaded into the web server.

– Check to make sure thehttp_plugin.log file has been created.
– If it has, look in it to see if any error messages indicate some sort of failure that took place during

plug-in initialization. If no errors are found look for the following stanza, which indicates that the
plug-in started normally. Ensure that the timestamps for the messages correspond to the time you
started the web server:
[Thu Jul 11 10:59:15 2002] 0000009e 000000b1 - PLUGIN: ------------System Information----------
[Thu Jul 11 10:59:15 2002] 0000009e 000000b1 - PLUGIN: Bld date: Jul 3 2002, 15:35:09
[Thu Jul 11 10:59:15 2002] 0000009e 000000b1 - PLUGIN: Web server: IIS
[Thu Jul 11 10:59:15 2002] 0000009e 000000b1 - PLUGIN: Hostname = SWEETTJ05
[Thu Jul 11 10:59:15 2002] 0000009e 000000b1 - PLUGIN: OS version 4.0, build 1381, ’Service Pack 6’
[Thu Jul 11 10:59:15 2002] 0000009e 000000b1 - PLUGIN: --

– Some common errors are:
lib_security: loadSecurityLibrary: Failed to load gsk library

Either GSKit did not get installed or the wrong version of GSKit got installed. To determine
which situation occurred:
-

On a Windows platform, search for the file gsk7ssl.dll

-

On a UNIX platform, search for a libgsk7*.so files in the
/usr/lib directory.

If you cannot find the appropriate file, try reinstalling the plug-in with the correct GSKit
version to see if this fixes the problem.

ws_transport: transportInitializeSecurity: Keyring wasn't set
The HTTPS transport defined in the configuration file was prematurely terminated and did
not contain the Property definitions for the keyring and stashfile. Check your XML syntax for
the line number given in the error messages that follow this one to make sure the Transport
element contains definitions for the keyring and stashfiles before it is terminated.

– If thehttp_plugin.log file is not created, check the web server error log to see if any plug-in related
error messages have been logged there that indicate why the plug-in is failing to load. Typical
causes of this can include failing to correctly configure the plug-in with the web server environment.
Check the documentation for configuring the web server that you are using with the web server
plug-in.

v Determine whether there are network connection problems with the plug-in and the various application
servers defined in the configuration. Typically you will see the following message when this is the case:

ws_common: websphereGetStream: Failed to connect to app server, OS err=%d

Where %d is an OS specific error code related to why the connect() call failed. This can happen for a
variety of reasons.
– Ping the machines to make sure they are properly connected to the network. If the machines cannot

be pinged, there is no way for the plug-in to contact them. Possible reasons for this problem include:
- Firewall policies that limit the traffic from the plug-in to the application server.
- The machines are not on the same network.

– If you are able to ping the machines then the probable cause of the problem is that the port is not
active. The port might not be active because the application server or cluster is not started or the
application server has gone down for some reason. To verify that this is the problem, you can try to
manually telnet into the port that the connect is failing on. If you cannot telnet into the port the
application server is not up and that problem needs to be resolved before the plug-in can
successfully connect.

v Determine whether other activity on the machines where the servers are installed is impairing the ability
of the server to service a request. Check the processor utilization as measured by the task manager,
processor ID, or some other outside tool to see if it:
– Is not what was expected.

558 Administering applications and their environment

– Is erratic rather than a constant.
– Shows that a newly added member of the cluster is not being utilized.
– Shows that a failing member that has been fixed is not being utilized.

v Check the administrative console for server status.

Check the administrative console to ensure that the application server is started. View the administrative
console for error messages or look in the JVM logs.

v In the administrative console, select the problem application server and view its installed applications to
verify that they are started.

If none of these steps solves the problem:
v For specific problems that can cause web pages and their contents not to display, seeWeb resource

(JSP file, servlet, html file, image, etc) will not display in the information center.
v Check to see if the problem has been identified and documented using the links in Diagnosing and

fixing problems: Resources for learning.
v If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, contact IBM support for further assistance.

For current information available from IBM Support on known problems and their resolution, see the
following topics on the IBM support page:

v HTTP transport

v HTTP plug-in

v HTTP plug-in remote install

For current information available from IBM Support on known problems and their resolution, see the IBM
Support page. You should also refer to this page before opening a PMR because it contains documents
that can save you time gathering information needed to resolve a problem.

You might find the following topics on the IBM support page helpful:

v HTTP plug-in

v HTTP plug-in remote install

Administrative problems with the wsadmin scripting tool
Use this information if you are having problems starting or using the wsadmin tool.

What kind of problem are you having?
v WASX7016E, WASX7017E, or WASX7209I: Jython scripting language error
v "WASX7023E: Error creating "SOAP" connection to host" or similar error trying to launch wsadmin

command line utility.
v "com.ibm.bsf.BSFException: error while evaluating Jacl expression: no such method "<command

name>" in class com.ibm.ws.scripting.AdminConfigClient" returned from wsadmin command.
v WASX7022E returned from running "wsadmin -c ..." command, indicating invalid command.
v com.ibm.ws.scripting.ScriptingException: WASX7025E: String "" is malformed; cannot create

ObjectName.
v "The input line is too long" error returned from the wsadmin command on a Windows platform.
v WASX701E: Exception received while running file "scriptName.jacl"; exception information:

com.ibm.bsf.BSFException: error while evaluating Jacl expression: missing close-bracket
v WASX7015E: Exception running command: "source c: ..."; exception information:

com.ibm.bsf.BSFException: error while evaluating Jacl expression: couldn't read file "c: ..."
v Unexpected error CWSIV0806E in WebSphere log following deletion of an outbound service
v Separator exception
v The format of "$AdminConfig list" output changed for V6.0
v You are not prompted for user ID and password after applying V6.0.2 service if you use an existing 6.0

profile

Chapter 14. Troubleshooting administration 559

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPBD
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCC2GP
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDA
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPCT
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPCT
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCC2GP&q=mustgather
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDA&q=mustgather

v When running the $AdminApp searchJNDIReferences command with the Java Naming and Directory
Interface (JNDI) name of a message destination, the message destination reference is not returned

v

WASX7022E: Problem running command "import sys" -- exception
information: com.ibm.bsf.BSFException: unable to load language

If you do not see your problem here:
v If you are not able to enter wsadmin command mode, try running wsadmin -c "$Help wsadmin" for

help in verifying that you are entering the command correctly.
v If you can get the wsadmin command prompt, enter $Help help to verify that you are using specific

commands correctly.
v wsadmin commands are a superset of Jacl (Java Command Language), which is in turn a Java-based

implementation of the Tcl command language. For details on Jacl syntax beyond wsadmin commands,
refere to the Tcl developers' site, http://www.tcl.tk. For specific details relating to the Java
implementation of Tcl, refer to http://www.tcl.tk/software/java.

v Browse the install_dir/profiles/profile_name/logs/wsadmin.traceout file for clues.
– Keep in mind that wsadmin.traceout is refreshed (existing log records are deleted) whenever a new

wsadmin session is started.
– If the error returned by wsadmin does not seem to apply to the command you entered, for example,

you receive WASX7023E, stating that a connection could not be created to host "myhost," but you
did not specify "-host myhost" on the command line, examine the properties files used by wsadmin to
determine what properties are specified. If you do not know what properties files were loaded, look
for the WASX7326I messages in the wsadmin.traceout file; there will be one of these messages for
each properties file loaded.

If none of these steps fixes your problem, check to see if the problem has been identified and documented
by looking at the available online support (hints and tips, technotes, and fixes). If you don't find your
problem listed there please contact IBM support.

WASX7016E, WASX7017E, or WASX7209I: Jython scripting language error

The following errors may occur when you run this Jython script:

Jython script

"profile_root/bin/wsadmin.sh -lang jython -profile profile_name -host host_name -f
script_file.py"

Error Messages
WASX7209I: Connected to process "server1" on node
node_name using SOAP connector; The type of process is:
UnManagedProcess

WASX7016E: Exception received while reading file
"script_file.py"; exception information:
sun.io.MalformedInputException

WASX7017E: Exception received while running file
"script_file.py"; exception information:
com.ibm.bsf.BSFException: exception from Jython: Traceback
(innermost last): File "<string>" line 89, in ? NameError: log

These errors can occur because there are UTF-8 characters in the file that are not valid. The default
codepage for RHEL 3 is UTF-8 (en_US.UTF-8). When doing a text file read through Java™ code, the
program assumes all characters are UTF-8 encoded. There might be one or more characters in the file
that are not part of the UTF-8 specification, causing the load to fail. An easy way to determine if a
character that is not valid is causing the error is to enter export LANG=C and run the script again. If you
determine that the problem is a character that is not valid:

1. Open a new text reader on the file.

560 Administering applications and their environment

http://www.tcl.tk
http://www.tcl.tk/software/java

2. Read it one character at a time.

3. Print the character that is not valid.

4. When you press the back characters, you get the exception and will then know which of the characters
is causing the error.

5. Remove any characters that are not valid, then run the script again

"WASX7023E: Error creating "SOAP" connection to host" or similar error trying to
launch wsadmin command line utility

By default, the wsadmin utility attempts to connect to an application server at startup. This is because
some commands act upon running application servers. This error indicates that no connection could be
established.

To resolve this problem:
v If you are not sure whether an application server is running, start it by entering startserver servername

from the command prompt. If the server is already running, you will see an error similar to
"ADMU3027E: An instance of the server is already running".

v If an application server is running and you still get this error:
– If you are running remotely (that is, on a different machine from the one running WebSphere

Application Server), you must use the -host hostname option to the wsadmin command to direct
wsadmin to the right physical server.

– If you are using the -host option, try pinging the server machine from the command line from the
machine on which you are trying to launch wsadmin to verify there are no issues of connectivity such
as firewalls.

– verify that you are using the right port number to connect to the WebSphere Application Server
process:
- If you are not specifying a port number (using the -port option) when you start the wsadmin tool,

the wsadmin tool uses the default port specified in install_dir/profiles/profile_name/properties/
wsadmin.properties file, property name=com.ibm.ws.scripting.port (default value =8879).

- The port that wsadmin should send on depends on the server process wsadmin is trying to
connect to.

For a single-server installation, wsadmin attempts to connect to the application server process by
default. To verify the port number:
v Look in the file profile_root/config/cells/cell_name/nodes/node_name/serverindex.xml for a tag

containing the property serverType="APPLICATION_SERVER".
v Look for an entry within that tag with the property

endPointName="SOAP_CONNECTOR_ADDRESS".
v Look for a port property within that tag. This is the port wsadmin should send on.

"com.ibm.bsf.BSFException: error while eval'ing Jacl expression: no such method
command name in class com.ibm.ws.scripting.AdminConfigClient" returned from
wsadmin command.

This error is usually caused by a misspelled command name. Use the $AdminConfig help command to
get information about what commands are available. Note that command names are case-sensitive.

WASX7022E returned from running "wsadmin -c ..." command, indicating invalid
command

If the command following -c appears to be valid, the problem may be caused by the fact that on Unix,
using wsadmin -c to invoke a command that includes dollar signs results in the shell attempting to do
variable substitution. To confirm that this is the problem, check the command to see if it contains an
unescaped dollar sign, for example: wsadmin -c "$AdminApp install".

Chapter 14. Troubleshooting administration 561

To correct this problem, escape the dollar sign with a backslash. For example: wsadmin -c "\$AdminApp
install ...".

com.ibm.ws.scripting.ScriptingException: WASX7025E: String "" is malformed;
cannot create ObjectName

One possible cause of this error is that an empty string was specified for an object name. This can happen
if you use one scripting statement to create an object name and the next statement to use that name,
perhaps in an "invoke" or "getAttribute" command, but you don't check to see if the first statement really
returned an object name. For example (the following samples use basic Jacl commands in addition to the
wsadmin Jacl extensions to make a sample script):
#let’s misspell "Server"
set serverName [$AdminControl queryNames type=Srever,*]
$AdminControl getAttributes $serverName

To correct this error, make sure that object name strings have values before using them. For example:
set serverName[$AdminControl queryNames node=mynode,type=Server,name=server1,*]
if {$serverName == ""} {puts "queryNames returned empty - check query argument"}
else {$AdminControl getAttributes $serverName}

For details on Jacl syntax beyond wsadmin commands, refer to the Tcl developers' site, http://www.tcl.tk.

"The input line is too long" error returned from the wsadmin command on a
Windows platform

This error indicates that the Windows command line limit of 2048 characters has been exceeded, probably
due to a long profile path used within the wsadmin.bat command. You may get this error when running
wsadmin in a Windows command prompt or calling wsadmin from a .bat file, an ant build file, or Profile
Management Tool. If this error results in running wsadmin other than from the Profile Management Tool,
avoid the problem by using the Windows subst command, which allows you to map an entire path to a
virtual drive. To see the syntax of the subst command, enter help subst from a Windows command
prompt.

For example, if the product resides in the app_server_root directory, edit the app_server_root\bin\
setupCmdLine.bat file as follows:
SET CUR_DIR=%cd%
cd /d "%~dp0.."
SET WAS_HOME=%cd%
cd /d "%CUR_DIR%"

@REM add the following two lines to workaround Windows 2K command line length limit
subst w: %WAS_HOME%
set WAS_HOME=w:

...
...

Then edit the setupCmdLine.bat file residing in the bin directory of your profile as follows:
SET WAS_USER_PROFILE=...
SET USER_INSTALL_ROOT=...
SET WAS_HOME=app_server_root
SET JAVA_HOME=app_server_root\java

@REM add the following three lines to workaround Windows 2K command line length limit
subst w: %WAS_HOME%
set WAS_HOME=w:

562 Administering applications and their environment

http://www.tcl.tk

set JAVA_HOME=%WAS_HOME%\java

...
...

If this error occurred while running the Profile Management Tool, you have to rerun the Profile
Management Tool to provide a shorter profile path with a shorter profile name. If this does not fix the
problem, follow the same instructions above to edit the setupCmdLine.bat file in the bin directory of your
WebSphere Application Server installation. After editing the file, rerun the Profile Management Tool. If the
same problem persists, reinstall WebSphere Application Server with a shorter installation root directory
path.

IBM Support has documents that can save you time gathering information needed to resolve this problem.
Before opening a PMR, see the IBM Support page.

WASX701E: Exception received while running file "scriptName.jacl"; exception
information: com.ibm.bsf.BSFException: error while evaluating Jacl expression:
missing close-bracket

This error is caused by a mix-up between the code page that the scripting client expects to see and the
code page in which the Jacl script was written.

To fix this problem, set the -Dscript.encoding=script codepage option in the wsadmin.sh or wsadmin.bat
file to the code page of the Jacl script. The following guideline will help you to determine the code page of
the script:

v If the script was written in the OMVS interface using the OEDIT editor, the code page is IBM-037. In this
case, set the option to the following: -Dscript.encoding=Cp037

v If the script was written in a telnet session to the OMVS interface using the VI editor, the code page is
IBM-1047. In this case, set the option to the following: -Dscript.encoding=Cp1047

v IF the script was written on a personal computer, or any other ASCII machine, and was transferred to
the host as a text file, the code page is IBM-1047. In this case, set the option to the following:
-Dscript.encoding=Cp1047

v If the script was written on a personal computer, or any other ASCII machine, and transferred to the
host in binary format, the code page is ISO-8859-1 (ASCII). In this case, you do not need to set the
option because the default is ASCII. You should review other possible reasons for this error.

WASX7015E: Exception running command: "source c: ..."; exception information:
com.ibm.bsf.BSFException: error while evaluating Jacl expression: couldn't read
file "c: ..."

This error is caused by using a backslash (\) instead of a forward slash (/) when running the wsadmin
command to source a Jacl script in a Windows® environment. The file path cannot contain the backslash (
\); for example, wsadmin> source c:\temp\test.jacl. The file path must use the forward slash (/) as the
path separator; for example, wsadmin> source c:/temp/test.jacl.

To correct this problem use the forward slash (/) in the file path when using the wsadmin command to
source a Jacl script in a Windows® environment:
app_server_root\bin>wsadmin
WASX7209I: Connected to process "dmgr" on node sunCellManager01
using SOAP connector; The type of process is:
DeploymentManager WASX7029I: For help, enter: "$Help help"
wsadmin>source c:/temp/test.jacl

Chapter 14. Troubleshooting administration 563

http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCQTYF&q=mustgather

Unexpected error CWSIV0806E in WebSphere log following deletion of an
outbound service

This error occurs when an exception is issued for destination MPOutBoundServicePortDestination, on
messaging engine trueliesNode01.server1-FVTSIBus01, on bus FVTSIBus01, for endpoint activation:

com.ibm.websphere.sib.exception.SINotPossibleInCurrentConfigurationException: CWSIP0111E: The
destination with name MPOutBoundServicePortDestination is being deleted on messaging engine {1}.

You can ignore this error; it is benign.

Separator exception

You must use forward slashes (/) as your path separator. Backward slashes (\) will not work.

The format of "$AdminConfig list" output changed in V6.0

If you have a script that parses the output of $AdminConfig list, such as $AdminConfig list Node, you
might receive errors, such as "Node not found." Scripts should not parse the output of $AdminConfig;
however, if you have a script that does this parsing, it must be updated for WebSphere Application Server
V6.0 to reflect changes to the output format.

You are not prompted for user ID and password after applying V6.0.2 service if
you use an existing 6.0 profile

If security is enabled, executing a .bat file requires a user ID and password. On V6.0.2, a new feature is
introduced to prompt you for a user ID and password if they are not supplied in the command line.
However, this feature is not available for profiles that were created at the 6.0 level.

Property files for profiles created at the V6.0 level are not updated after applying the V6.0.2 refresh pack.

There are two solutions to this problem:

1. Create a new profile after applying the V6.0.2 service. This new profile contains all the updated
property files and you will then be prompted for a user ID and password.

2. If you want to keep the existing V6.0 profile and use the new prompt feature, you must manually
update three files:

v for app_server_root/properties/soap.client.props, add the following line:

com.ibm.SOAP.loginSource=prompt

v for app_server_root/properties/wsjaas_client.conf, add the following lines:
WSAdminClientLogin {
 com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy required del
egate=com.ibm.ws.security.common.auth.module.WSAdminClientLoginModuleImpl;
};

v for app_server_root/bin/setupCmdLine.bat add the following line:

SET JAASSOAP=-Djava.security.auth.login.config=app_server_root/properties/
wsjaas_client.conf

When running the $AdminApp searchJNDIReferences command with the Java
Naming and Directory Interface (JNDI) name of a message destination, the
message destination reference is not returned

This problem occurs when the command $AdmnApp searchJNDIReferences is run with the JNDI name of
a message destination. The command cannot collect the message destination reference that is defined in

564 Administering applications and their environment

the application deployment descriptor. The message destination that you configured for the application
server is defined with a message destination link on not one element, but two: both a message-driven
bean (MDB) and a message destination reference.

Currently there is no workaround for this problem. The $AdmnApp searchJNDIReferences command
cannot return a reference for a message destination that is defined on two elements.

WASX7022E: Problem running command "import sys" -- exception information:
com.ibm.bsf.BSFException: unable to load language

This problem may be caused by a limitation on some UNIX platforms, for example, Linux, when attempting
to use the Jython language.

To workaround this problem, perform the following steps:

1. Check the number of open files that you are allowed to have on the machine, for example:
ulimit -a

2. Check the number of open files that you have set on your machine. The default value is 1024.

3. Change it to a higher number, for example:
ulimit -n 2048

4. Try to use the wsadmin tool again with the Jython language.

Tracing and logging facilities - troubleshooting tips
Use this information if you are having problems using tracing, logging or other troubleshooting tools.

What kind of problem are you having?
v Error messages when launching the Log Analyzer.
v Netscape browser fails when trying to enable a component trace.

Error messages when launching the Log Analyzer

Upon starting the Log Analyzer for the first time or after the Log Analyzer preferences files of the users are
deleted, the following message displays in the Log Analyzer shell window:
Cannot open input stream for waslogbrsys

This message is an informational message. You can disregard the message because it does not affect the
execution of the Log Analyzer.

The following error messages might display in the Log Analyzer shell window when you start the Log
Analyzer:
Cannot open input stream for default

Cannot open input stream for default
Cannot load configuration: default
Cannot open input stream for default
Cannot open input stream for default
Cannot load configuration: default

These error messages indicate corrupt or incomplete user preference files.

To resolve this problem, take the following steps:
1. Close the Log Analyzer.
2. Delete all user preference files in the %USERPROFILE%\logbr directory on Windows platforms or

$HOME/logbr directory on UNIX platforms.

Chapter 14. Troubleshooting administration 565

3. Restart the Log Analyzer.

Note:Deleting all user preference files removes the preferences of Log Analyzer set by the user in the
preferences dialog.

Netscape browser fails when trying to enable a component trace

On systems using AIX, the Netscape browser fails when you try to enable trace on a component.

To work around this problem, do one of the following:
v Disable JavaScript on the browser and continue setting trace.
v Administer the AIX server from a remote machine running another browser and operating system.
v Change the trace manually in the server.xml file.

Application Server start or restart problems
If a server process does not start or starts with errors, the following topics might help you to diagnose the
problem.

Installation program completes successfully, but an application server does not
start, or starts with errors

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

v Browse the Application Server log files for clues. The log files are located by default in:
–

profile_root/logs/server_name/SystemErr.log and

SystemOut.log
–

profile_root\logs\server_name\SystemErr.log and SystemOut.log

Several applications deployed on an application server or node can take time to start. Browse the
SystemOut.log periodically and look at the most recent updates to see if the server is still starting up.

v

The tail -f profile_root/ logs/server_name/SystemOut.log
command is a convenient way to watch the progress of the server.

v Look for any errors or warnings relating to specific resources with the module, such as web modules,
enterprise beans and messaging resources. If you find any, examine the application server configuration
file for the configuration settings of that resource. Then restart the server to see if this component
causes the problem.

For example, in a base or non-distributed configuration on Windows systems, browse
profile_root\config\cells/ApplicationServerCell\nodes\node_name\servers\server_name\server.xml,
and examine the XML tags for the properties of that resource. Change its initialState value from
START to STOP.

v Look up any error or warning messages in the message reference table by clicking the Reference view
of the information center navigation and expanding Messages in the navigation tree.

v After you create an application server, you must synchronize the nodes before saving the configuration
settings for the new server. If you do not synchronize the nodes, your new server might not start.
1. On the Applications server page listing all of your application server, click Preferences.
2. Select Synchronize changes with Nodes, if it is not already selected.
3. Click Apply and then click Application servers to return to your list of application servers.
4. Click Save to save the configuration settings for the new server.

v Verify that the logical name that you specified to appear on the console for your application server does
not contain invalid characters like: - / \ : * ? " < > and leading or trailing spaces.

566 Administering applications and their environment

v If you are using Apache Derby and receive an ERROR XSDB6: Another instance of Apache Derby might
have already booted the database databaseName error when starting the application server, consult the
topic Data access problems for more information.

v When using a non-root user ID to run application servers, verify that:
– The non-root user has write access to the app_server_root/temp directory.
– The JVM has write access to app_server_root/config/plugin-cfg.xml file.
– The non-root user has access to the logs directory.

v The application server might not start in the restricted mode. You can configure an application server to
allow or restrict access to internal server classes. The default is to allow access. If access is restricted,
the server might not start. If the application server does not start in Restrict mode, change the access to
internal classes to Allow.

Message "The socket bind failed for host hostname and port portnumber. The port
may already be in use." occurs when restarting an application server.

The following error message might appear in the SystemOut.log after restarting an application server:
The socket bind failed for host hostname and port portnumber. The port may already be in use.

This problem might occur if the network is slow, and the port listed in the message text did not finish
listening when the application was stopped and restarted.

To verify that this is the problem, check the port status.

To correct this problem, wait for a few minutes after stopping the server:

1. Verify that no ports are listening. Use the command:
netstat -a

2. Restart the server

Message "DiscoveryService.sendQuery" exception appears in the FFDC log file

When you start a deployment manager, the deployment manager attempts to discover any configured
node agents within its cell. If the deployment agent does not discover the node agents in the cell, it writes
an exception to the first failure data capture (FFDC) log file for each node agents that the deployment
manager does not discover. If the node agents are not suppose to be running, you can ignore the
exception. If the node agents are suppose to be running, the FFDC log file might contain additional
information that will help you determine why the deployment manager cannot discover the node agents
even though the node agents are suppose to be running.

IBM Support has documents and tools that can save you time gathering information needed to resolve
problems as described in Troubleshooting help from IBM. Before opening a problem report, see the
Support page:

v http://www.ibm.com/software/webservers/appserv/was/support/

Server hangs during shutdown if it creates a Java core dump (Red Hat
Linux)
When you run the stopServer.sh script on Red Hat Linux Advanced Server Version 2.1 with the latest
operating system patches, it creates a Java core dump and hangs the terminal.

To fix this problem:

v kill all Java and MQ processes

v uninstall the latest version of GNU Standard C++ Library

– run the command rpm -e --nodeps libstdc++-2.96-116.7.2

Chapter 14. Troubleshooting administration 567

http://www.ibm.com/software/webservers/appserv/was/support/

v Reinstall the older version from Redhat Advanced Server V2.1 CD

– run the command rpm -ihv libstdc++-2.96-108.1.rpm

Command-line tool problems
This topic provides troubleshooting support for a variety of problems relating to using command-line tools.

What kind of problem are you having?
v Just-in-time (JIT) compiler is disabled when you start application server with DEBUG enabled on a Red

Hat Linux machine
v The startServer.sh or stopServer.sh commands fail to start or stop the server when the server definition

is part of the configuration repository.
v

With Windows service, there is no indication when a server is already started.
v The stopServer command fails to stop the server because the system cannot create a connector to an

invalid hostname.
v

Entering passwords on the command line

Just-in-time (JIT) compiler is disabled when you start the application server with
DEBUG enabled on a Red Hat Linux machine

The just-in-time (JIT) compiler is disabled when you start the application server with Software Developer
Kit (SDK) DEBUG enabled on a Red Hat Linux machine, even though JIT is set to enabled. To verify this
setting, check the SystemOut.log or the startServer.log file.

Use the administrative console to remove the following DEBUG options of the Java process definition.
-Xdebug -Xnoagent

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

The startServer.sh or stopServer.sh commands fail to start or stop the server
when the server definition is part of the configuration repository.

This problem occurs when the startServer.sh or stopServer.sh commands are trying to start or stop non
Java process. To solve this problem, use the -nowait option to start or stop the server, for example:
startServer.sh webserver1 -nowait

stopServer.sh webserver1 -nowait

With Windows service, there is no indication when a server is already started.

When attempting to start an already-started server from the command line, there is no indication that the
server is already started and running. When running startManager.bat on Windows the following output is
displayed before the command returns:

ADMU7701I: Because dmgr is registered to run as a Windows Service, the request to start this
server will be completed by starting the associated Windows Service.

When running startServer.bat, the following output is displayed before the command returns:

568 Administering applications and their environment

ADMU7701I: Because server1 is registered to run as a Windows Service, the request to start this
server will be completed by starting the associated Windows Service.

When running WASService.exe, the following output is displayed before the command returns:

Starting Service: service name

To check if the server is started or if the service is running, use the serverStatus server_name command
or the WASService -status service_name command.

The stopServer command fails to stop the server because the system cannot
create a connector to an invalid hostname.

If the stopServer command fails to stop the server because the system cannot create a connector to an
invalid hostname, you can stop the server using one of following methods:

v Stop the server process on the operating system (for example, on AIX, HP-UX, Linux, or Solaris
computers, issue the kill command).

Or

v Open a wsadmin tool connection directly to the connector port of the server and call the stop method
for the MBean of the server. This method is recommended because it allows ongoing work to shut down
gracefully.

1. Issue the following command to connect to the server:
wsadmin -host host_name -port connector_port -conntype [SOAP | RMI]
-user user_ID -password password

2. Invoke the stop method on the MBean of the server. For example, in Jython you can use:
serverMBean = AdminControl.completeObjectName("*,type=Server")
 AdminControl.invoke(serverMBean, "stop")

Entering passwords on the command line

There are operating system differences when specifying environment variables and for directory notation.
When using the Windows command line, replace $variable with %variable% for environment variables and
replace each forward slash (/) with a backslash (\) in directory paths. If you are using the bash shell on a
Windows system, you can use the UNIX conventions.

On Unix type operating systems, it is usually better to always encapsulate string values associated with all
tags in double quotes (""). You will also need to escape, using a '\' character, the following characters if
they appear in the string values: '!', '\', '"', '`'. This will prevent some command line shells from interpreting
specific characters within these values.

Some examples of usage follow:
gsk7capicmd -keydb -create -db "/tmp/key.kdb" -pw "j\!jj"

Note: When prompted by gsk7capicmd for a value (for example a password) quoting the string and
adding the escape characters should not be done because the shell is no longer influencing this
input.

stopserver server1 -username fn_wasadmin -password $mypass35%% -trace

stopserver server1 -username fn_wasadmin -password ’$mypass35%’ -trace

Chapter 14. Troubleshooting administration 569

Note: Use single quotation marks to specify that what is inside the single quotation marks is to be used.
Using single quotation marks can be helpful for any characters that might otherwise have special
meaning (like the dollar sign ("$") or the backslash ("\")). Single quotation marks treat these
characters literally. In this case, the password being supplied is $mypass35% .

If none of these steps fixes your problem, check to see if the problem has been identified and documented
by looking at the available online support (hints and tips, technotes, and fixes). If you don't find your
problem listed there contact IBM support.

570 Administering applications and their environment

Appendix. Directory conventions

References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This topic describes the conventions in use for WebSphere Application Server.

Default product locations (distributed)

The following file paths are default locations. You can install the product and other components or create
profiles in any directory where you have write access. Multiple installations of WebSphere Application
Server - Express products or components require multiple locations. Default values for installation actions
by root and nonroot users are given. If no nonroot values are specified, then the default directory values
are applicable to both root and nonroot users.

app_client_root

 Table 74. Default installation root directories for the Application Client for IBM WebSphere Application Server.

This table shows the default installation root directories for the Application Client for IBM WebSphere Application
Server.
User Directory

Root

/usr/IBM/WebSphere/AppClient (Java EE Application client
only)

/opt/IBM/WebSphere/

AppClient (Java EE Application client only)

C:\Program Files\IBM\WebSphere\AppClient

Nonroot

user_home/IBM/WebSphere/AppClient (Java EE Application client only)

C:\IBM\WebSphere\AppClient

app_server_root

 Table 75. Default installation directories for WebSphere Application Server.

This table shows the default installation directories for WebSphere Application Server - Express.
User Directory

Root

/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/

AppServer

C:\Program Files\IBM\WebSphere\AppServer

Nonroot

user_home/IBM/WebSphere/AppServer

user_home\IBM\WebSphere\AppServer

component_root
The component installation root directory is any installation root directory described in this topic.
Some programs are for use across multiple components—in particular, the Web Server Plug-ins,
the Application Client, and the IBM HTTP Server. All of these components are part of the product
package.

gskit_root
IBM Global Security Kit (GSKit) can now be installed by any user. GSKit is installed locally inside

© IBM Corporation 2005, 2009 571

the installing product's directory structure and is no longer installed in a global location on the
target system. The following list shows the default installation root directory for Version 8 of the
GSKit, where product_root is the root directory of the product that is installing GSKit, for example
IBM HTTP Server or the web server plug-in.

product_root/gsk8

product_root\gsk8

profile_root

 Table 76. Default profile directories.

This table shows the default directories for a profile named profile_name on each distributed operating system.
User Directory

Root

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/

AppServer/profiles/profile_name

C:\Program Files\IBM\WebSphere\AppServer\profiles\

profile_name

Nonroot

user_home/IBM/WebSphere/AppServer/profiles

user_home\IBM\WebSphere\AppServer\profiles

plugins_root

 Table 77. Default installation root directories for the Web Server Plug-ins.

This table shows the default installation root directories for the Web Server Plug-ins for WebSphere Application
Server.
User Directory

Root

/usr/IBM/WebSphere/Plugins

/opt/IBM/WebSphere/

Plugins

C:\Program Files\IBM\WebSphere\Plugins

Nonroot

user_home/IBM/WebSphere/Plugins

C:\IBM\WebSphere\Plugins

wct_root

 Table 78. Default installation root directories for the WebSphere Customization Toolbox.

This table shows the default installation root directories for the WebSphere Customization Toolbox.
User Directory

Root

/usr/IBM/WebSphere/Toolbox

/opt/IBM/WebSphere/

Toolbox

C:\Program Files\IBM\WebSphere\Toolbox

572 Administering applications and their environment

Table 78. Default installation root directories for the WebSphere Customization Toolbox (continued).

This table shows the default installation root directories for the WebSphere Customization Toolbox.
User Directory

Nonroot

user_home/IBM/WebSphere/Toolbox

C:\IBM\WebSphere\Toolbox

web_server_root

 Table 79. Default installation root directories for the IBM HTTP Server.

This table shows the default installation root directories for the IBM HTTP Server.
User Directory

Root

/usr/IBM/HTTPServer

/opt/IBM/HTTPServer

C:\Program Files\IBM\HTTPServer

Nonroot

user_home/IBM/HTTPServer

C:\IBM\HTTPServer

Appendix. WebSphere Application Server default directories 573

574 Administering applications and their environment

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program, or
service is not intended to state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of IBM's intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and verification of
operation in conjunction with other products, except those expressly designated by IBM, is the user's
responsibility.

APACHE INFORMATION. This information may include all or portions of information which IBM obtained
under the terms and conditions of the Apache License Version 2.0, January 2004. The information may
also consist of voluntary contributions made by many individuals to the Apache Software Foundation. For
more information on the Apache Software Foundation, please see http://www.apache.org. You may obtain
a copy of the Apache License at http://www.apache.org/licenses/LICENSE-2.0.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries,
in writing, to:

 IBM Director of Intellectual Property & Licensing
 IBM Corporation
 North Castle Drive
 Armonk, NY 10504-1785
 USA

© Copyright IBM Corp. 2011 575

576 Administering applications and their environment

Trademarks and service marks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked
terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries. For
a current list of IBM trademarks, visit the IBM Copyright and trademark information Web site
(www.ibm.com/legal/copytrade.shtml).

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Other company, product, or service names may be trademarks or service marks of others.

© Copyright IBM Corp. 2011 577

http://www.ibm.com/legal/copytrade.shtml

578 Administering applications and their environment

Index

A
administrative console 17

accessing help 27
buttons 5
command assistance 28

actions 29
features 8
logging off 19
product installation 18
product uninstallation 18
saving changes 21
settings 22

preferences 24
scopes 26

specifying preferences 22
starting 19
usage 5

Ant 147
application files

adding 285
changing 285

applications
administering

targets 165
AppManagement MBean 359
bindings 240
common deployment framework 166
configuration

binary location usage 251
enterprise applications 238

deployment
targets 165

deployment descriptors 266
deployment targets 275
disabling automatic start 271
dynamic reloading 283
editing applications 337
enterprise applications 245
export copy 296
export data 297
exporting from servers 295
hot deployment 283
installation bindings 182
management 333
managing 303, 304
partial applications

adding to 341
deleting 341
updating 341

removing application files 298
resolving configuration conflicts 293
session sharing 335
settings 247

binary 252
installation 181
startup behavior 249
updates 279

applications (continued)
starting 270
startup configuration 248
status 272
stopping 270
system applications 166
uninstallation 299

administrative console 298
updating

administrative console 277
updating files 274

assets 375
deleting 379
exporting 380
importing 368
managing 374
settings 370

adding 387
updating 377
uploading 370

updating 375
authentication

JASPI enablement
applications 209

B
backend ID

settings 229
business-level applications 364, 384

administering 443
assets 366
composition units 367
creating 381, 396

administrative console 382
deleting 440
programming 445

deleting 522
editing 513
listing 483
starting 473
stopping 476

SCA 399
administrative console 401, 430

settings 385, 391
starting 432
stopping 433
updating 433

C
class loaders 159, 256

Java EE 153
Java EE applications 160
settings 160
web modules 162
WebSphere server 158

© Copyright IBM Corp. 2011 579

class loading
settings

update detection 258
client modules

property settings 199
settings 199

command-line tools 89
commands

cleanupNode 110
EARExpander 136
managesdk 129
registerNode 111

composition units
settings 393, 409

adding 387

D
deployment

applications
targets 165

business-level applications 363
EAR files

default bindings 179
enterprise modules with JSR-88 236
Java EE application files

WebSphere targets 167
Java EE files

administrative console 172
Java EE modules

deployment targets 168, 170
directory

installation
conventions 571

E
EJB Deploy

settings 217
EJB JAR files

adding 290
changing 290

Enterprise JavaBeans (EJB)
JNDI names for beans 201
references 203
settings

binding EJB business settings 202
environment entries

settings
applications 226
client module 225
EJB modules 225

H
HTTP plug-ins

configuration changes 292

I
installation options

settings 187

J
Java EE modules

mapping
to WebSphere servers 262

JMS
binding settings

SCA composites 412
JNDI

settings
JCA objects 229

M
messages

settings
destination references 228

metadata
settings

modules 233, 268
module build ID

settings 235
module customization

DConfigBeans 237
modules

settings 197, 260

O
options

relationship options
settings 390

settings 388

P
policy sets

settings
attaching 404

policy sets and bindings
references 421
service provider 419

programming
adding assets 509
adding composition units 502
adding files 348
adding modules 343
application installation 330
application uninstallation 352
asset deletion 465
attribute manipulation 336
business-level applications 443, 445

status checking 480
composition unit deletion 526
deleting business-level applications 522
editing assets 461

580 Administering applications and their environment

programming (continued)
editing business-level applications 513
editing composition units 516
exporting assets 469
file deletion 356
file updates 350
importing assets 449
listing assets 454
listing business-level applications 483
listing composition units 487
listing control operations 491
module deletion 354
module updates 346
starting applications 334
starting business-level applications 473
stopping business-level applications 476
updating applications 339
viewing assets 457
viewing business-level applications 495
viewing composition units 499

R
roles

RunAs
SCA composites 408

S
SCA

business-level applications
administrative console 430

composite artifacts
updating 435

composite definitions 436
deployment 397
domain information 437
Java EE composition unit relationships 404
JMS bindings

references and services 438
settings

component references 418
component services 418
composite components 417
HTTP endpoint URLs 416
service clients 427
service provider 423

SCA (continued)
settings (continued)

virtual hosts 403
security

command-line tools 145
SCA

mapping roles to users 407
shared library reference and mapping

settings 220
shared library relationship and mapping

settings 221, 386

T
target mapping

settings 389
task automation

using Ant 147

V
virtual hosts

mapping
for web modules 263

settings 207, 264

W
WAR files

adding 287
changing 287

web applications
settings

initial parameters for servlets 224
web services

samples installation 180
settings

options to perform web services deployment 234
WSDL

exporting documents 439

X
XSD

exporting documents 439

Index 581

	Contents
	How to send your comments
	Changes to serve you more quickly
	Chapter 1. Overview and new features for administering applications and their environments
	Chapter 2. How do I administer applications and their environments?
	Chapter 3. Using the administrative clients
	Using the administrative console
	Administrative console
	Administrative console buttons
	Administrative console page features
	Console layout
	Console navigation
	Administrative console browser support
	Console accessibility
	Welcome
	My tasks
	Console identity
	Console identity string
	Administrative console: Resources for learning

	Installing and uninstalling the administrative console
	Starting and logging off the administrative console
	Logging in
	Save changes to the master repository

	Specifying console preferences
	Console preferences settings
	Bidirectional support options
	Administrative console preference settings
	Administrative console scope settings

	Accessing help and product information from the administrative console
	Accessing command assistance from the administrative console

	Changing the console session expiration
	Changing the class loader order of the console module deployed in Integrated Solutions Console

	Getting started with wsadmin scripting
	What is new for scripted administration (wsadmin)
	Overview and new features for scripting the application serving environment

	Using administrative programs (JMX)
	Java Management Extensions (JMX) for WebSphere Application Server
	Creating a custom Java administrative client program using WebSphere Application Server administrative Java APIs
	Developing an administrative client program

	Creating a Java Management Extensions client program using the Java Management Extensions Remote application programming inte
	Developing a Java Management Extensions client program using Java Management Extensions Remote application programming interf

	Extending the WebSphere Application Server administrative system with custom MBeans
	Best practices for standard, dynamic, and open MBeans
	Creating and registering standard, dynamic, and open custom MBeans
	Setting Java 2 security permissions
	Administrative security
	Default MBean security policy
	Defining an explicit MBean security policy
	Specifying fine-grained MBean security in the MBean descriptor

	Administrative programs for multiple Java Platform, Enterprise Edition application servers
	Deploying and managing a custom Java administrative client program with multiple Java Platform, Enterprise Edition applicatio
	Java Management Extensions V1.0 to Java Management Extensions V1.2 migration
	Java Management Extensions (JMX) interoperability

	Using command-line tools
	manageprofiles command
	startServer command
	stopServer command
	serverStatus command
	cleanupNode command
	registerNode command
	deregisterNode command
	backupConfig command
	restoreConfig command
	versionInfo command
	Location of the command file
	Syntax for the versionInfo command
	Parameters
	Report description
	Installation information
	Product list information
	Installed product information

	Sample versionInfo report

	genVersionReport command
	Location of the command file
	Syntax for the genVersionReport command
	Report description
	Installation information
	Product list information
	Installed product information

	Sample genVersionReport report

	historyInfo command
	Location of the command file
	Syntax for the historyInfo command
	Parameters
	Report description
	Installation information
	Installation event information

	Sample historyInfo report

	genHistoryReport command
	Location of the command file
	Syntax for the genHistoryReport command
	Report description
	Installation information
	Installation event information

	Sample historyInfo report

	managesdk command
	GenPluginCfg command
	EARExpander command
	revokeCertificate command
	requestCertificate command
	createCertRequest command
	queryCertificate command
	Example: Security and the command line tools

	Chapter 4. Using Ant to automate tasks
	Chapter 5. Starting and stopping quick reference
	Chapter 6. Backing up and recovering the application serving environment
	Chapter 7. Class loading
	Class loaders
	Configuring class loaders of a server
	Class loader collection
	Class loader ID
	Class loader order
	Class loader settings
	Class loader ID
	Class loader order

	Configuring application class loaders
	Configuring web module class loaders
	Class loading: Resources for learning

	Chapter 8. Deploying and administering enterprise applications
	Enterprise (Java EE) applications
	System applications
	Common deployment framework

	Installing enterprise application files
	Installable enterprise module versions
	Ways to install enterprise applications or modules

	Installing enterprise application files with the console
	Example: Installing an EAR file using the default bindings
	Example: Installing a web services sample with the console
	Preparing for application installation settings
	Path to the new application

	Preparing for application installation binding settings
	How do you want to install the application?
	Specify bindings to use
	Generate default bindings
	Override existing bindings
	Specific bindings file
	Specify unique prefix for beans
	Default bindings for EJB 1.1 CMP beans
	Default connection factory bindings
	Use default virtual host name for web and SIP modules

	Select installation options settings
	Precompile JavaServer Pages files
	Directory to install application
	Distribute application
	Use binary configuration
	Deploy enterprise beans
	Application name
	Create MBeans for resources
	Override class reloading settings for web and EJB modules
	Reload interval in seconds
	Deploy web services
	Validate input off/warn/fail
	Process embedded configuration
	File permission
	Application build identifier
	Business-level application name
	Asynchronous request dispatch type
	Allow EJB reference targets to resolve automatically
	Deploy client modules
	Client deployment mode
	Validate schema

	Manage modules settings
	Clusters and servers
	Module
	URI
	Module type
	Server

	Client module settings
	URI
	Alternate deployment descriptor

	Client module property settings
	Client module deployment mode

	Provide options to compile JavaServer Pages settings
	Web module
	URI
	JSP class path
	Use full package names
	JDK source level
	Disable JSP runtime compilation

	EJB JNDI names for beans
	Module
	Bean
	URI
	Target Resource JNDI name

	Bind EJB business settings
	Module
	Bean
	URI
	Business Interface
	JNDI Name

	Map default data sources for modules containing 1.x entity beans
	Select
	EJB Module
	URI
	JNDI name
	User name

	EJB references
	Module
	Bean
	URI
	Resource Reference
	Class
	Target Resource JNDI Name

	Resource references
	Set multiple JNDI names
	Modify Resource Authentication Method
	Extended Properties
	Select
	Module
	Bean
	URI
	Resource Reference
	Target Resource JNDI name
	Login configuration

	Virtual hosts settings
	Web module
	Virtual host

	Security role to user or group mapping
	Role
	Mapped users
	Special subjects
	Mapped groups

	JASPI authentication enablement for applications
	Select JASPI provider

	User RunAs collection
	Username
	Password
	Role

	Ensure all unprotected 1.x methods have the correct level of protection
	EJB module
	URI
	Deny all access

	Bind listeners for message-driven beans settings
	Module
	Bean
	URI
	Messaging Type
	Listener Bindings

	Map data sources for all 2.x CMP beans
	Set Multiple JNDI Names
	Set Authorization Type
	Modify Resource Authentication Method
	Select
	EJB Module
	URI
	JNDI name
	Resource authorization
	Extended Datasource Properties

	Map data sources for all 2.x CMP beans settings
	Set Multiple JNDI names
	Set Authorization Type
	Modify Resource Authentication Method
	Select
	EJB
	EJB Module
	URI
	Target resource JNDI name
	Resource authorization

	Ensure all unprotected 2.x methods have the correct level of protection
	Uncheck
	Exclude
	Role
	EJB module
	Protection type

	Provide options to perform the EJB Deploy settings
	Class path
	RMIC
	Database type
	Database schema
	Database access type
	SQLJ class path
	JDK compliance level

	Shared library reference and mapping settings
	Application
	Module
	URI
	Shared libraries

	Shared library relationship and mapping settings
	Module
	URI
	Relationship identifers
	Composition unit names
	Match target

	JSP and JSF option settings
	Web module
	URI
	JSP enable class reloading
	JSP reload interval in seconds
	Sun Reference Implementation 1.2
	MyFaces 2.0

	Context root for web modules settings
	Web Module
	URI
	Context Root

	Initial parameters for servlets settings
	Module
	URI
	Servlet
	Name
	Value
	Description

	Environment entries for client modules settings
	Client module
	URI
	Name
	Type
	Description
	Value

	Environment entries for EJB modules settings
	Module
	URI
	Bean
	Name
	Type
	Description
	Value

	Environment entries for web modules settings
	Module
	URI
	Name
	Type
	Description
	Value

	Environment entries for application settings
	Name
	Type
	Description
	Value

	Resource environment references
	Select
	Module
	EJB
	URI
	Reference binding
	JNDI name

	Message destination reference settings
	Module
	Bean
	URI
	Message destination object
	Type
	Target Resource JNDI Name

	Select current backend ID settings
	Module
	URI
	Current backend ID

	Provide JNDI names for JCA objects settings
	Connector module
	URI
	Object identifier
	Bindings

	Correct use of the system identity
	Bean
	Module
	URI
	Method signature
	Role
	Username

	Requirements for setting data access isolation levels
	Metadata for module settings
	Module
	URI
	metadata-complete attribute

	Provide options to perform the web services deployment settings
	Deploy web services option - Classpath
	Deploy web services option - Extension Directories

	Display module build ID settings
	Module
	URI
	Build ID

	Installing enterprise modules with JSR-88
	Customizing modules using DConfigBeans
	Configuring enterprise application files
	Application bindings
	Enterprise application collection
	Name
	Application Status
	Startup order
	Enterprise application settings

	Configuring application startup
	Startup behavior settings

	Configuring binary location and use
	Application binary settings

	Configuring the use of class loaders by an application
	Class loading and update detection settings

	Manage modules settings
	Clusters and servers
	Module
	URI
	Module type
	Server

	Mapping modules to servers
	Mapping virtual hosts for web modules
	Virtual hosts settings

	Mapping properties for a custom login or trusted connection configuration
	Name
	Value
	Description

	Viewing deployment descriptors
	Metadata for module settings
	Module
	URI
	metadata-complete attribute

	Starting or stopping enterprise applications
	Disabling automatic starting of applications
	Target specific application status
	Target
	Node
	Version
	Auto Start
	Application Status

	Updating enterprise application files
	Ways to update enterprise application files
	Updating enterprise applications with the console
	Preparing for application update settings
	Application to be updated
	Replace the entire application
	Replace or add a single module
	Replace or add a single file
	Replace, add, or delete multiple files

	Hot deployment and dynamic reloading
	Changing or adding application files
	Changing or adding WAR files
	Changing or adding EJB JAR files
	Changing the HTTP plug-in configuration

	Resolving application configuration conflicts
	Exporting enterprise applications
	Exporting enterprise application files
	Exporting DDL files
	Uninstalling enterprise applications using the console
	Removing enterprise files
	Uninstalling enterprise application files by dragging them from a monitored directory
	Deploying and administering applications: Resources for learning

	Chapter 9. Managing applications through programming
	Accessing the application management function
	Preparing an application for installation using programming
	Installing an application through programming
	Application management
	Starting an application through programming
	Sharing sessions for application management
	Manipulating additional attributes for a deployed application
	Editing applications
	Updating an application through programming
	Adding to, updating, or deleting part of an application through programming
	Preparing a module and adding it to an existing application through programming
	Preparing and updating a module through programming
	Adding a file through programming
	Updating a file through programming
	Uninstalling an application through programming
	Deleting a module through programming
	Deleting a file through programming

	Chapter 10. Extending application management operations through programming
	Chapter 11. Deploying and administering business-level applications
	Business-level applications
	Assets
	Composition units

	Importing assets
	Upload asset settings
	Path to the asset

	Asset settings
	Asset name
	Asset description
	Asset binaries destination URL
	Asset type aspects
	File permissions
	Current asset relationships
	Validate asset
	EBA Dependencies

	Managing assets
	Asset collection
	Name
	Description

	Updating assets
	Update asset settings

	Deleting assets
	Exporting assets

	Creating business-level applications
	Creating business-level applications with the console
	Business-level application collection
	New business-level application settings
	Shared library relationship and mapping settings
	Add composition unit settings
	Add asset settings
	Set options settings
	Map target settings
	Relationship options settings

	Business-level application settings
	Name
	Description
	Deployed assets
	Business-level applications

	Composition unit settings
	Settings that are common to all composition units
	Additional composition unit settings for SCA composites
	Additional composition unit settings for OSGi applications

	Example: Creating a business-level application

	SCA application package deployment
	Creating SCA business-level applications
	Creating SCA business-level applications with the console
	Map virtual host settings for SCA composites
	Set Java EE composition unit relationships for SCA composites
	Attach policy set settings
	Map security roles to users or groups collection for SCA composites
	Map RunAs roles to users collection for SCA composites

	Composition unit settings
	Settings that are common to all composition units
	Additional composition unit settings for SCA composites
	Additional composition unit settings for OSGi applications

	JMS binding settings for SCA composites
	General properties
	Resources
	Response resources
	Request header properties
	Response header properties

	Provide HTTP endpoint URL information settings for SCA composites
	Default SCA URL prefixes
	Override default SCA URL prefixes

	SCA composite component settings
	Component name
	Implementation
	Type
	SCA component services
	SCA component references
	SCA component properties

	SCA component reference settings
	Reference name
	Type
	Reference target URI
	Bindings

	SCA component service settings
	Service name
	Type
	Work manager JNDI name
	Bindings

	Service provider policy sets and bindings collection for SCA composites
	Composition unit/Service/Endpoint/Operation
	Attached Policy Set
	Binding

	References policy sets and bindings collection for SCA composites
	Composition unit/Service/Endpoint/Operation
	Attached Client Policy Set
	Binding

	SCA service provider settings
	Service provider
	Policy Set Attachments

	SCA service client settings
	Service client
	Policy Set Attachments

	Example: Creating an SCA business-level application with the console

	Starting business-level applications
	Stopping business-level applications
	Updating business-level applications
	Updating SCA composite artifacts
	Viewing SCA composite definitions
	Viewing SCA domain information
	Viewing and editing JMS bindings on references and services of SCA composites
	Exporting WSDL and XSD documents
	Deleting business-level applications

	Chapter 12. Administering business-level applications using programming
	Creating an empty business-level application using programming
	Importing an asset using programming
	Listing assets using programming
	Viewing an asset using programming
	Editing an asset using programming
	Deleting an asset using programming
	Exporting an asset using programming
	Starting a business-level application using programming
	Stopping a business-level application using programming
	Checking the status of a business-level application using programming
	Listing business-level applications using programming
	Listing composition units using programming
	Listing control operations using programming
	Viewing a business-level application using programming
	Viewing a composition unit using programming
	Adding a composition unit using programming
	Updating an asset using programming
	Editing a business-level application using programming
	Editing a composition unit using programming
	Deleting a business-level application using programming
	Deleting a composition unit using programming

	Chapter 13. Troubleshooting deployment
	Application deployment problems
	Application deployment troubleshooting tips
	Application startup errors
	Application startup problems
	Reducing annotation searches during application deployment
	A client program does not work
	Web resource is not displayed
	Application uninstallation problems

	Chapter 14. Troubleshooting administration
	Administration and administrative console troubleshooting
	Administrative console does not start even though installation completes
	Administrative console - browser connection problems
	When a single user that uses multiple instances of the Mozilla browser logs into the administrative console, the first user I
	A user on Mozilla browser Version 1.4 selects a check box on a collection table, presses Enter, and receives an error.
	A user on Mozilla browser Version 1.4 enters an invalid ID or password, presses Enter, and receives an error message

	Web server plug-in troubleshooting tips
	Administrative problems with the wsadmin scripting tool
	Tracing and logging facilities - troubleshooting tips
	Application Server start or restart problems
	Server hangs during shutdown if it creates a Java core dump (Red Hat Linux)
	Command-line tool problems

	Appendix. Directory conventions
	Notices
	Trademarks and service marks
	Index
	A
	B
	C
	D
	E
	H
	I
	J
	M
	O
	P
	R
	S
	T
	V
	W
	X

