IBM WebSphere Application Server for Distributed
Platforms, Version 8.0

Developing and deploying applications

..lli

Note
FBefore using this information, be sure to read the general information under [‘Notices” on page 301

Compilation date: July 25, 2011

© Copyright IBM Corporation 2011.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents
How to send your comments

Changes to serve you more quickly .

Chapter 1. Overview and new features for developing and deploying applications .

Chapter 2. How do | develop and deploy applications?.
Migrating to Java Platform, Enterprise Edition (Java EE) 6.
Migrating to Java Platform, Standard Edition (Java SE) 6

Chapter 3. Designing applications .
Chapter 4. Obtaining an integrated development environment (IDE).

Chapter 5. Debugging applications .
Debugging components in the IBM Rational Appllcatlon Developer for WebSphere
Debugging Service details . G e Coe
Enable service at server startup .
JVM debug port .
JVM debug arguments
Debug class filters .

Chapter 6. Assembling applications .

Application assembly and enterprise appllcatlons
Assembly tools . .
Generating code for web service deployment .
Assembling applications: Resources for learning .

Chapter 7. Class loading .
Class loaders . .
Configuring class Ioaders of a server .
Class loader collection

Class loader ID .

Class loader order .

Class loader settings .
Configuring application class Ioaders
Configuring web module class loaders.
Class loading: Resources for learning .

Chapter 8. Deploying applications
Installing enterprise application files.
Installable enterprise module versions .
Ways to install enterprise applications or modules
Installing enterprise application files with the console
Example: Installing an EAR file using the default bindings
Example: Installing a web services sample with the console .
Preparing for application installation settings .
Preparing for application installation binding settings
Select installation options settings
Manage modules settings
Client module settings.
Client module property settings
Provide options to compile JavaServer Pages settlngs

© Copyright IBM Corp. 2011

. Vi

.1
.12
. 13
. 13
. 13
. 13
. 13

.15
. 16
.17
. 18
. 18

.21
.21
. 26
.27
.27
.27
.27
. 28
. 30
. 31

. 33
. 33
. 34
. 36
. 38
. 45
. 46
. 47
. 48
. 53
. 63
. 65
. 65
. 65

EJB JNDI names for beans.

Bind EJB business settings .

Map default data sources for modules contalnlng 1 X entlty beans
EJB references .

Resource references .

Virtual hosts settings . .

Security role to user or group mapplng

JASPI authentication enablement for appllcatlons

User RunAs collection.

Ensure all unprotected 1.x methods have the correct Ievel of protectlon

Bind listeners for message-driven beans settings .
Map data sources for all 2.x CMP beans . .
Map data sources for all 2.x CMP beans settings.

Ensure all unprotected 2.x methods have the correct Ievel of protectlon

Provide options to perform the EJB Deploy settings .
Shared library reference and mapping settings.
Shared library relationship and mapping settings .
JSP and JSF option settings Coe
Context root for web modules settings .

Initial parameters for servlets settings . .
Environment entries for client modules settings
Environment entries for EJB modules settings .
Environment entries for web modules settings .
Environment entries for application settings .
Resource environment references

Message destination reference settings

Select current backend ID settings . .
Provide JNDI names for JCA objects settmgs .
Correct use of the system identity

Requirements for setting data access |solat|on Ievels
Metadata for module settings .

Provide options to perform the web services deployment settlngs
Display module build ID settings

Installing enterprise application files by addmg them to a momtored dlrectory

Setting monitored directory deployment values .

Installing enterprise application files by adding properties f|Ies to a monltored dlrectory

Installing enterprise modules with JSR-88 .
Customizing modules using DConfigBeans

Chapter 9. Deploying and administering business-level applications

Business-level applications
Assets . .

Composition units .

Importing assets
Upload asset settings
Asset settings

Managing assets .

Asset collection.

Updating assets

Deleting assets .

Exporting assets .

Creating business-level appllcat|ons . .
Creating business-level applications with the console .
Business-level application settings .

Composition unit settings . .
Example: Creating a business- Ievel appllcat|on .

iv Developing and deploying applications

. 67
. 67
. 68
. 69
. 70
. 73
.74
. 75
. 76
. 76
.77
. 78
. 80
. 82
. 83
. 86
. 87
. 88
. 89
. 90
.9
.9
.92
.92
. 93
. 94
. 95
. 95
. 96
. 96
.. 99
. 100
. 101
. 102
. 104
. 108
. 122
. 124

. 127
. 128
. 130
. 131
. 132
. 134
. 134
. 138
. 139
. 139
. 143
. 144
. 144
. 145
. 155
. 157
. 160

SCA application package deployment

Creating SCA business-level applications .
Creating SCA business-level applications with the console
Composition unit settings . .
JMS binding settings for SCA composﬂes .
Provide HTTP endpoint URL information settings for SCA compOS|tes
SCA composite component settings . G e
SCA component reference settings
SCA component service settings

Service provider policy sets and bindings coIIectron for SCA composﬁes.

References policy sets and bindings collection for SCA composites
SCA service provider settings
SCA service client settings
Example: Creating an SCA business- IeveI appllcatlon W|th the console
Starting business-level applications
Stopping business-level applications .
Updating business-level applications .
Updating SCA composite artifacts .
Viewing SCA composite definitions
Viewing SCA domain information

Viewing and editing JMS bindings on references and services of SCA composnes .

Exporting WSDL and XSD documents
Deleting business-level applications .

Chapter 10. Adding logging and tracing to your appllcatlon
Using Java logging in an application . .
Using a logger .
Java logging . .
Configuring the Iogger h|erarchy .
Creating log resource bundles and message f|Ies .
Logger.properties file for configuring logger settings
Configuring applications to use Jakarta Commons Logging.
Jakarta Commons Logging . .
Configurations for the WebSphere Applrcatron Server Iogger .
Programming with the JRas framework . S
JRas logging toolkit .
JRas Extensions . .
JRas messages and trace event types .
Instrumenting an application with JRas extensrons .
Logging Common Base Events in WebSphere Application Server .
The Common Base Event in WebSphere Application Server .
Logging with Common Base Event API and the Java logging API
java.util.logging -- Java logging programming interface .
Logger.properties file. .
Logging Common Base Events in WebSphere Appllcatlon Server .
Showlog commands for Common Base Events .

Chapter 11. Troubleshooting deployment .

Application deployment problems .

Application deployment troubleshooting t|ps

Application startup errors .

Application startup problems .

Reducing annotation searches durlng appllcatlon deployment
A client program does not work .

Web resource is not displayed .

Application uninstallation problems.

. 161
. 163
. 165
. 173
. 176
. 180
. 181
. 182
. 182
. 183
. 185
. 187
. 191
. 194
. 196
. 197
. 197
. 199
. 200
. 201
. 202
. 203
. 204

. 207
. 208
. 209
. 218
. 219
. 220
. 222
. 223
. 224
. 227
. 230
. 231
. 232
. 240
. 243
. 250
. 250
. 264
. 273
. 274
. 275
. 276

. 277
. 277
. 283
. 283
. 288
. 291
. 292
. 293
. 295

Contents

\'}

Appendix. Directory conventions

Notices

Trademarks and service marks .

Index

Vi

Developing and deploying applications

. 297

. 301

. 303

. 305

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.
+ To send comments on articles in the WebSphere Application Server Information Center
1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail
form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

* To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax
them to 919-254-5250.

Be sure to include the document name and number, the WebSphere Application Server version you are
using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2011 vii

Viii Developing and deploying applications

Changes to serve you more quickly

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The
information center is the official delivery format for IBM WebSphere Application Server documentation. If
you use the PDF books primarily for convenient printing, it is now easier to print various parts of the
information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon
is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation
tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a
separate browser window as one HTML file. The HTML file includes each of the topics in the section,
with a table of contents at the top.

4. Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your
selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a
preferable limit. The feedback link is available at the end of most information center pages.

Under construction!

The Information Development Team for IBM WebSphere Application Server is changing its PDF book
delivery strategy to respond better to user needs. The intention is to deliver the content to you in PDF
format more frequently. During a temporary transition phase, you might experience broken links. During
the transition phase, expect the following link behavior:

» Links to Web addresses beginning with http:// work
» Links that refer to specific page numbers within the same PDF book work
* The remaining links will not work. You receive an error message when you click them

Thanks for your patience, in the short term, to facilitate the transition to more frequent PDF book updates.

© Copyright IBM Corp. 2011 ix

X Developing and deploying applications

Chapter 1. Overview and new features for developing and
deploying applications

View the topics in the following list to learn more about developing applications for deployment on this
product.

What is new for developers

This topic provides an overview of new and changed features of the programming model and
application serving environment as it pertains to development and test efforts.

Learn about WebSphere applications: Overview and new features
This topic provides an overview of the programming model.
Accessing the samples

The samples are a good way to become familiar with the programming model.

© IBM Corporation 2003

2 Developing and deploying applications

Chapter 2. How do | develop and deploy applications?
Follow these shortcuts to get started quickly with popular tasks.
When you visit a task in the information center, look for the IBM Suggests feature at the bottom of the

page. Use it to find available tutorials, demonstrations, presentations, developerWorks articles, Redbooks,
support documents, and more.

Il Design applications|

r;«] Automate the build environment with Apache Ant
F;] Secure applications, messages, and data

r;«] Learn about WebSphere programming extensions

[[Configure class loaders]

F;]I'I'roubleshoot deployment problems|

Migrating to Java Platform, Enterprise Edition (Java EE) 6

Version 8.0 of the product supports the Java Platform, Enterprise Edition (Java EE) 6 specification. Your
new and existing enterprise applications can take advantage of the capabilities added by Java EE 6.

About this task

The product supports the following specification and application programming interface (API) levels that
are new in Java EE 6:

* JSR 318: Enterprise JavaBeans (EJB) 3.1

+ JSR 315: Java Servlet 3.0

* JSR 245 JavaServer Pages/Expression Language (JSP/EL) 2.1

* JSR 314: JavaServer Faces (JSF) 2.0

* JSR 199: JMS 1.1

» JSR-299: Java Contexts and Dependency Injection (JCDI) 1.0 (was Web Beans)
* JSR 317: Java Persistence API (JPA) 2.0

» JSR 322: Java EE Connector Architecture (JCA) 1.6

» Java API for XML-Based Web Services (JAX-WS) 2.2

* JSR 311: Java API for RESTful Web Services (JAX-RS) 1.0

* JSR 196: Java Authentication Service Provider Interface for Containers (JASPIC) 1.0
* JSR 303: Bean Validation 1.0

The new specifications add several capabilities to benefit application developers, such as profiles that
provide common features among applications.

Further, several specifications expand the use of annotations to more module types. Java language
annotations simplify development of Java EE applications. By using annotations, many applications can
avoid the need for deployment descriptors. In Version 7, the product supported annotations for EJB 3.0
and Web 2.5 modules . In Version 8, the product supports annotations for additional modules types, such
as resource adapters or RAR files, as well as continues to support the use of deployment descriptors.

© Copyright IBM Corp. 2011

The general steps for migrating your enterprise applications follow.

Procedure
1. Decide whether to take advantage of new Java EE 6 capabilities in your applications.

The Version 8.0 product supports applications written to Java EE 6 and supports portable applications
written to previous Java EE versions, specifically Java EE 5, Java 2 Platform, Enterprise Edition
(J2EE) 1.4, and J2EE 1.3. If you decide not to use new Java EE 6 capabilities, your portable
applications will continue to work without change and with identical behavior on the current version of
the platform.

2. If you select to use new Java EE 6 capabilities in your applications, change the applications as needed
to conform to the specifications.

3. Deploy your applications.

Deploy applications that use new Java EE 6 capabilities only to Version 8 deployment targets. You can
deploy applications written to previous specifications to Version 8 deployment targets or to Version 6.x
or 7.x deployment targets.

What to do next

Test the deployed applications to ensure that the applications behave as expected. Update the applications
as needed.

Migrating to Java Platform, Standard Edition (Java SE) 6

This product version supports the Java Platform, Standard Edition (Java SE) 6 specification. Its Java
virtual machine provides a Java language compiler and runtime environment. Decide whether your new
and existing applications will take advantage of the capabilities added by Java SE 6, adjust the just-in-time
(JIT) mode if necessary, and begin the transition from deprecated functions.

About this task

The following JSRs are new in Java SE 6:

« JSR 105: XML Digital Signature Application Programming Interfaces (APIs)
* JSR 173: Streaming API for XML (StAX)

* JSR 181: Web Services Metadata

* JSR 199: Java Compiler API

* JSR 202: Java Class-File Specification Update

* JSR 221: Java DataBase Connectivity (JDBC) 4.0

* JSR 222: Java Architecture for XML Binding (JAXB) 2.0

» JSR 223: Scripting for the Java Platform

* JSR 224: Java API for XML-Based Web Services (JAX-WS) 2.0
* JSR 250: Common Annotations

* JSR 269: Pluggable Annotation-Processing API

The new virtual machine specification adds several features and functions to benefit application
developers, such as interfaces for integrating the Java and scripting languages, password prompting, file
input-output enhancements, and parsing of streaming XML documents.

The Java Monitoring and Management Console (JConsole) is part of the Sun Java Development Kit (JDK)

and the IBM Software Development Kit (SDK) Version 6. Although these development kits are shipped with
WebSphere Application Server, the product does not support the JConsole tool.

4 Developing and deploying applications

Procedure
BT Determine whether to use the default just-in-time (JIT) mode.

For Java SE 6, the default JIT mode for the Solaris virtual machine depends on the hardware
configuration. It is not always client. With Java SE 6, for server class hardware (meaning 2+ CPU and
greater than 2 GB RAM), the virtual machine automatically switches to server JIT mode.

To configure the -server or -client parameter to your liking, set the generic Java virtual machine
arguments of the server process definition. See Java virtual machine settings.

Decide whether to take advantage of new Java SE 6 capabilities in your applications.

You can deploy applications using Java SE 6 features only to Version 7 or later nodes, as earlier
product versions do not provide the Java SE 6 virtual machine.

Applications that access classes and APIs internal to the Java virtual machine might produce errors.
These classes and APls are not covered by the Java SE 6 specification and are therefore subject to
change. Packages with prefixes such as com.sun.* are considered internal. Additionally, direct use of
implementations of XML and XSL parsers is strongly discouraged, such as direct use of Xerces and
Xalan classes that provide the Java API for XML Processing (JAXP) implementation for the virtual
machine. The direct parser APIs also are considered internal and subject to change. Applications should
rely only on the JAXP APIs defined in the Java SE 6 APl documentation. If your application requires a
specific version of Xerces or Xalan, or some other XML/XSL parser package, then embed the parser
within your application's WEB-INF/1ib directory and set the appropriate class loading mode in your
application deployment so that for your application the XML parser APIs are loaded from the application
class path, not the Java virtual machine bootstrap class path. Failure to follow this guideline can cause
significant errors when you try to migrate to a new Java SE 6 level.

Compile Java SE 6 applications to run on previous Java virtual machine levels by setting the compiler
modes.

When compiling applications that are built with Java SE 6 that are intended for running on previous
specifications, specify -source and -target modes for the Java SE 6 compiler. Doing so ensures that
the bytecode generated is compatible with the earlier Java virtual machine.

For example, if the target Java virtual machine is at 1.4.2 level, when you compile applications with
Java SE 6, you should specify -source 1.4, and target 1.4 to generate bytecode compatible with
1.4.2. This does not handle the usage of packages, classes, or functions new to Java SE 6. It only
addresses bytecode output. Developers must take care in what APIs they are using from the J2SE
packages if they intend to run the application on multiple Java virtual machine specification levels.

Address incompatibilities in previously compiled Java 2 Standard Edition (J2SE) 1.4 and 5.0
applications.

Java SE 6 is upwards binary-compatible with Java 2 Technology Edition, Version 5.0 and Java 2
Technology Edition, Version 1.4.2, except for the incompatibilities documented by Sun Microsystems at
http://java.sun.com/javase/technologies/compatibility.jsp.

Transition from deprecated Java Virtual Machine Debug Interface (JVMDI) and Java Virtual Machine
Profiler Interface (JVMPI) functions to Java Virtual Machine Tool Interface (JVMTI).

Note: JVMDI and JVMPI functions were deprecated in J2SE 5.0. They have been removed from Java
SE 6.

Update your use of the Java command line interface.

The command-line interfaces for the Java SE 6 level have not changed extensively from J2SE 5,
although they vary among virtual machine vendors. You can find them in the JAVA_HOME/bin directory.
Here are some notable command line options that are standard to all Java SE 6 implementations.

— For JVMTI, use -agentlib to load a native agent library that you specify.
— For JVMTI, use -agentpath to load the native agent library by the full path name.

— For JVMTI, use -javaagent to load the Java programming language agent (see java.lang.instrument
for details).

— See apt -help for information about this new command line supporting the annotations capability.

Chapter 2. How do | develop and deploy applications? 5

— See javac -help for information and updates to that command line.
* Update ANT tasks.

If you have created ANT tasks based on the idltojava ANT task shipped with prior versions of this
product, ensure that it passes the proper parameters for Java SE 6 as it does for J2SE 1.4 or 5, to
ensure the stubs, ties and skeletons that it generates are compatible with earlier product releases.

6 Developing and deploying applications

Chapter 3. Designing applications

This topic highlights websites and other ideas for finding best practices for designing WebSphere®
applications, particularly in the realm of WebSphere extensions to the Java Platform, Enterprise Edition
(Java EE) specification.

When designing WebSphere applications, follow the example set by the Samples. Refer to the code in the
Samples Gallery that is available with the product. In particular, the Samples Gallery highlights new and
WebSphere-specific aspects of the programming model.

Use the following links to find relevant supplemental information about designing WebSphere applications.
The information resides on IBM® and non-IBM Internet sites, whose sponsors control the technical
accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere
Application Server product, but is useful all or in part for understanding the product. When possible, links
are provided to technical papers and Redbooks® that supplement the broad coverage of the release
documentation with in-depth examinations of particular product areas.

Web resources for learning
* The top 10 (more or less) J2EE best practices

The authors, who are IBM consultants and performance experts, describe this document in the following
way: Over the last five years, a lot has been written about Java EE best practices. There now are
probably 10 or more books along with dozens of articles that provide insight into how Java EE
applications should be written. In fact, there are so many resources, often with contradictory
recommendations, navigating the maze has become an obstacle to adopting Java EE itself. To provide
some simple guidance for customers entering this maze, we set out to compile the following "top 10" list
of what we feel are the most important best practices for J2EE.

* |BM Patterns for e-Business

Patterns for e-business are a group of reusable assets that can help speed the process of developing
Web-based applications. The patterns leverage the experience of IBM architects to create solutions
quickly, whether for a small local business or a large multinational enterprise.

» Best practices for using XSLT in WebSphere Application Server applications

The author states: In this article | explore the reasons why some WebSphere Application Server
applications use XSL for HTML production instead of JavaServer Pages (JSP) files. | will compare the
performance of XSLT for HTML/XHTML production against JSP files and browser formatting. | will then
provide guidance on how to improve XSLT performance in WebSphere Application Server should you
decide to go this route. While this article focuses on the use of XSLT for the production of HTML, the
performance best practices are directly applicable to other WebSphere Application Server uses of XSLT,
such as XML-to-XML transformations and XML-to-text transformations.

» Rational on developerWorks

The developerWorks® site provides quick links to technical resources and best practices for Rational®
software. Browse information by product or by technology. Find resources for learning, support, and
developer communities.

» developerWorks site

developerWorks is an IBM technical resource for developers, providing a wide range of tools, code, and
education on DB2®, eServer™, Lotus®, Rational, Tivoli®, and WebSphere as well as on open standards
technology such as web services, Wireless, Linux, XML, Java technologies, and more. By providing
focused and relevant technical information for developers, developerWorks offers choices you can apply
to building and deploying applications across heterogeneous systems. Using developerWorks, you can
take full advantage of open standards and the IBM Software Development Platform in an on demand
world.

© Copyright IBM Corp. 2011 7

* Resource reference list

The product has a large amount of existing documentation. Use the following user communities and
other non-IBM sites that gather knowledge about using WebSphere products as a guideline to find the
documentation that you require.

— http://www.websphere-world.com/

— http://www.websphere.org/

— http://www.webspherepro.com/wphome/
— http://www.sys-con.com/websphere/

— http://websphereadvisor.com/

See also the documentation for the type of application that you are developing, such as web applications,
EJB applications, Web services applications, or applications that use messaging.

8 Developing and deploying applications

Chapter 4. Obtaining an integrated development environment
(IDE)

This topic describes obtaining an integrated development environment (IDE). Use Rational products from
IBM to design, construct, and manage changes to applications for deployment on your WebSphere
Application Server products.

Procedure
 See [‘Assembly tools” on page 17|for a description of the Rational Application Developer product.

Insert the product disc and use the documentation and the installation program on the disc to install and
set up the development environment.

* Refer to these web resources for learning.

Rational software pages on ibm.com
Browse the IBM portfolio of software for requirements analysis and tracking, application design
and construction, ensuring software quality, configuration and change management, and
development project management.

Rational developer community
This page provides quick links to technical resources and best practices for Rational software
on developerWorks. Browse information by product or by technology. Find resources for
learning, support, and developer communities.

developerWorks main page
This page is the entrance to the IBM resource for developers.

© IBM Corporation 2004 9

10 Developing and deploying applications

Chapter 5. Debugging applications

To debug your application, you must use a development environment like the IBM Rational Application
Developer for WebSphere to create a Java project. You must then import the program that you want to
debug into the project.

About this task

By following the steps below, you can import the WebSphere Application Server examples into a Java

project. Two debugging styles are available:

» Step-by-step debugging mode prompts you whenever the server calls a method on a web object. A
dialog lets you step into the method or skip it. In the dialog, you can turn off step-by-step mode when
you are finished using it.

» Breakpoints debugging mode lets you debug specific parts of programs. Add breakpoints to the part of
the code that you must debug and run the program until one of the breakpoints is encountered.

Breakpoints actually work with both styles of debugging. Step-by-step mode just lets you see which web
objects are being called without having to set up breakpoints ahead of time.

You do not need to import an entire program into your project. However, if you do not import all of your
program into the project, some of the source might not compile. You can still debug the project. Most
features of the debugger work, including breakpoints, stepping, and viewing and modifying variables. You
must import any source that you want to set breakpoints in.

The inspect and display features in the source view do not work if the source has build errors. These
features let you select an expression in the source view and evaluate it.

Procedure

Create a Java Project by opening the New Project dialog.

Select Java from the left side of the dialog and Java Project in the right side of the dialog.
Click Next and specify a name for the project, for example, WASExamples.

Click Finish to create the project.

Select the new project, choose File > Import > File System, then Next to open the import file
system dialog.

6. Browse the directory for files.

Go to the following directory: [profile_rool/ installedApps/node_name/DefaultApplication.ear/
DefaultWebApplication.war.

7. Select DefaultWebApplication.war in the left side of the Import dialog and then click Finish. This
imports the JavaServer Pages files and Java source for the examples into your project.

8. Add any JAR files needed to build to the Java Build Path.

Select Properties from the right-click menu. Choose the Java Build Path node and then select the
Libraries tab. Click Add External JARs to add the following JAR files:

. 1' nstalledApps/node_name/DefaultApplication.ear/Increment.jar.

When you have added this JAR file, select it and use the Attach Source function to attach the
Increment. jar file because it contains both the source and class files.

* |app_server_root/dev/JavakE/j2ee. jar

* |app_server_root/plugins/com.ibm.ws.runtime.jar

* lapp_server_root/plugins/com.ibm.ws.webcontainer.jar

Click OK when you have added all of the JARs.

9. You can set some breakpoints in the source at this time if you like, however, it is not necessary as
step-by-step mode will prompt you whenever the server calls a method on a web object. Step-by-step
mode is explained in more detail below.

ok w2

© Copyright IBM Corp. 2011 11

10. To start debugging, you need to start the WebSphere Application Server in debug mode and make
note of the JVM debug port. The default value of the JVM debug port is 7777.

11. When the server is started, switch to the debug perspective by selecting Window > Open
Perspective > Debug. You can also enable the debug launch in the Java Perspective by choosing
Window > Customize Perspective and selecting the Debug and Launch checkboxes in the Other
category.

12. Select the workbench toolbar Debug pushbutton and then select WebSphere Application Server
Debug from the list of launch configurations. Click the New pushbutton to create a new configuration.

13. Give your configuration a name and select the project to debug (your new WASExamples project).
Change the port number if you did not start the server on the default port (7777).

14. Click Debug to start debugging.
15. Load one of the examples in your browser. For example: http://your.server.name:9080/hitcount

What to do next

To learn more about debugging, launch the The IBM Rational Application Developer for WebSphere, select
Help > Help Contents and choose the Debugger Guide bookshelf entry. To learn about known
limitations and problems that are associated with the IBM Rational Application Developer for WebSphere,
see the IBM Rational Application Developer for WebSphere release notes. For current information
available from IBM Support on known problems and their resolution, see the page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.
Before opening a PMR, see the [Must gatherl documents page for information to gather to send to IBM
Support.

Debugging components in the IBM Rational Application Developer for
WebSphere

The IBM Rational Application Developer for WebSphere, included with the WebSphere Application Server
on a separately-installable CD, includes debugging functionality that is built on the Eclipse workbench.
Documentation for the IBM Rational Application Developer for WebSphere is provided with that product. To
learn more about the debug components, launch the IBM Rational Application Developer for WebSphere,
select Help > Help Contents and choose the Developing > Debugging applications bookshelf entries.

The IBM Rational Application Developer for WebSpheret includes the following components:

The WebSphere Application Server debug adapter
which allows you to debug web objects that are running on WebSphere Application Server and
that you have launched in a browser. These objects include enterprise beans, JavaServer Pages
files, and servlets.

The JavaScript debug adapter
which enables server-side JavaScript debugging.

The Compiled language debugger
which allows you to detect and diagnose errors in compiled-language applications.

The Java development tools (JDT) debugger
which allows you to debug Java code.

All of the debug components in the IBM Rational Application Developer for WebSphere can be used for
debugging locally and for remote debugging. To learn more about the debug components, launch the IBM
Rational Application Developer for WebSphere, select Help > Help Contents and choose the Developing
> Debugging applications bookshelf entries.

12 Developing and deploying applications

http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDF
http://www-1.ibm.com/support/search.wss?rs=180&q=mustgather

To learn more about Log and Trace Analyzer, launch the IBM Rational Application Developer for
WebSphere, and select Help > Help Contents. To learn about known limitations and problems that are
associated with the IBM Rational Application Developer for WebSphere, see the IBM Rational Application
Developer for WebSphere release notes.

Debugging Service details

Use this page to view and modify the settings used by the Debugging Service.

To view this administrative console page, click Servers > Servers Types>WebSphere application
servers > server name > Debugging Service.

The steps below describe how to enable a debug session on WebSphere Application Server. Debugging
can prove useful when your program behaves differently on the application server than on your local
system.

Enable service at server startup
Specifies whether the server will attempt to start the Debug service when the server starts.

JVM debug port

Specifies the port that the Java virtual machine will listen on for debug connections.

JVM debug arguments
Specifies the debugging argument string used to start the JVM in debug mode.

Debug class filters

Specifies an array of classes to ignore during debugging. When running in step-by-step mode, the
debugger will not stop in classes that match a filter entry.

Chapter 5. Debugging applications 13

14 Developing and deploying applications

Chapter 6. Assembling applications

Application assembly consists of creating Java Platform, Enterprise Edition (Java EE) modules that can be
deployed onto application servers. The modules are created from code artifacts such as web application
archive (WAR) files, resource adapter archive (RAR) files, enterprise bean (EJB) JAR files, and application
client archive (JAR) files. This packaging and configuring of code artifacts into enterprise archive (EAR)
modules or stand-alone web modules is necessary for deploying the modules onto an application server.

Before you begin

This topic assumes that you have developed code artifacts that you want to deploy onto an application
server and have unit tested the code artifacts in your favorite integrated development environment. Code
artifacts that you might assemble into deployable Java EE modules include the following:

* Enterprise beans

» Servlets, JavaServer Pages (JSP) files and other web components

* Resource adapter (connector) implementations

» Client applications

+ Session Initiation Protocol (SIP) modules (SAR files)

» Other supporting classes and files

To assemble your code artifacts into deployable Java EE modules, you can use a|supported assembly|
The product supports IBM Rational Application Developer for WebSphere Software for developing,
assembling, and deploying Java EE modules.

About this task

You assemble code artifacts into Java EE modules in order to deploy the code artifacts onto an application
server. When you assemble code artifacts, you package and configure the code artifacts into deployable
Java EE applications and modules, edit annotations or deployment descriptors, and map databases as
needed. Unless you assemble your code artifacts into Java EE modules, you cannot run them successfully
on an application server.

This topic describes how to assemble Java EE code artifacts into deployable modules using an assembly
tool. Alternatively, you can use a rapid deployment tool to quickly assemble and deploy Java 2 Platform,
Enterprise Edition (J2EE) 1.3 or 1.4 code artifacts. Refer to "Rapid deployment of J2EE applications" for
details.

Procedure

1. Start an assembly tool.

2. Optional: Read the online documentation for the assembly tool.
3. Configure the assembly tool for work on Java EE modules.
4

Migrate J2EE 1.4 or earlier projects or code artifacts created with the Application Server Toolkit,
Assembly Toolkit, Application Assembly Tool (AAT) or a different tool.

To migrate files, use the Migration wizard or import the files to the assembly tool.

5. Create an enterprise application project to which you can add archive files. You can create an
enterprise application project separately or when you create archive files such as the following:

» Create a web project.

* Create an enterprise bean (EJB) project.

* Create an application client.

« Create a resource adapter (connector) project.

© Copyright IBM Corp. 2011 15

6. Edit the annotations or deployment descriptors as needed. You can edit annotations or deployment
descriptors for enterprise application, Web, application client, resource adapter (connector), and
Enterprise JavaBeans (EJB) modules.

Topics in Rational Application Developer documentation provide extensive information on editing
annotations or deployment descriptors.

7. Optional: Generate enterprise bean (EJB) to relational database (RDB) mappings for EJB 2.1 or earlier
modules.

8. Verify the archive files.

9. |Generate code for deployment for web services-enabled modulesl or for enterprise applications that
use web service modules.

What to do next

After assembling your applications, use a systems management tool to deploy the EAR or WAR files onto
the application server. "Ways to install enterprise applications or modules" lists systems management tools
available for deploying Java EE modules on an application server. The systems management tool follows
the security and deployment instructions defined in the annotations or deployment descriptors, and
enables you to modify bindings specified within an assembly tool. The tool locates the required external
resources that the application uses, such as enterprise beans and databases.

Package your application so that the EAR file contains necessary modules only. Modules can include
metadata for the modules such as information on annotations, deployment descriptors, bindings, and IBM
extensions.

Use the administrative console at installation to complete the security instructions defined in the
annotations or deployment descriptors and to locate required external resources, such as enterprise beans
and databases. You can add configuration properties and redefine binding properties defined in an
assembly tool.

Application assembly and enterprise applications

Application assembly is the process of creating an enterprise archive (EAR) file containing all files related
to an application. This configuration and packaging prepares the application for deployment onto an
application server.

EAR files are comprised of the following archives:

* Enterprise bean JAR files (known as EJB modules)

* Web archive (WAR) files (known as web modules)

» Application client JAR files (known as client modules)

* Resource adapter archive (RAR) files (known as resource adapter modules)
SAR files (known as Session Initiation Protocol (SIP) modules)

Ensure that modules are contained in an EAR file so that they can be deployed onto the server. The
exceptions are WAR modules, which you can deploy individually. Although WAR modules can contain
regular Java archive (JAR) files, they cannot contain the other module types described previously.

The assembly process includes the following actions:
» Selecting all of the files to include in the module.

» Creating an annotation or deployment descriptor containing instructions for module deployment on the
application server.

You can use the graphical interface of Rational Application Developer assembly tools to generate the
annotation or deployment descriptor. You can also edit annotations or descriptors directly in your favorite
XML editor.

» Packaging modules into a single EAR file, which contains one or more files in a compressed format.

16 Developing and deploying applications

As part of the assembly process, you might also set environment-specific binding information. These
bindings are defaults for an administrator to use when installing the application through the administrative
console. Further, you might define IBM extensions to the Java Platform, Enterprise Edition (Java EE)
specifications, such as to allow servlets to be served by class name. To ensure portability to other
application servers, these extensions are saved in an XML file that is separate from the standard
annotation or deployment descriptor.

Restriction: Do not include a pound sign (#) in the name of files that are packaged within an application
archive. Due to internal processing, the application server fails to correctly deploy the
application when a pound sign is included in a file name within the application archive. When
this failure occurs, an exception might occur when the application is being processed. Also,
parts of the application might be missing after the application is deployed. To address this
issue, rename any file names within the application archive so that they do not contain a
pound sign.

Assembly tools

WebSphere Application Server supports assembly tools that you can use to develop, assemble, and
deploy Java Platform, Enterprise Edition (Java EE) modules.

The IBM Rational Application Developer for WebSphere Software product and the IBM Assembly and
Deploy Tools for WebSphere Administration product are supported assembly tools. Although this
information center refers to the products as the assembly tools, you can use the products to do more than
assemble modules.

The Rational Application Developer product provides an integrated development environment to design,
develop, analyze, test, profile, and deploy web, service-oriented architecture (SOA), Java, and Java EE
applications. It contains tools for software developers, including many simple wizards and visual editors,
that support the Java EE programming model.

The Rational Application Developer product provides Service Component Architecture (SCA) Development

Tools that you can use to assemble SOA components based on open SCA specifications. Use the tools to

do the following:

» Develop SCA service components implemented with annotated Java code.

* Wire components together graphically to form new composite services.

» Associate protocol bindings and quality of service intents to SCA components.

» Package SCA assets and deploy them to a WebSphere Application Server server in a business-level
application.

A subset of the capability in the Rational Application Developer product is available in Assembly and
Deploy Tools for WebSphere Administration, which is available with WebSphere Application Server. With
these tools, you can assemble and deploy applications to a WebSphere Application Server server .

For documentation on the tools, see "Rational Application Developer documentation." Topics on application
assembly in this information center supplement that documentation.

The assembly tools are available in the WebSphere Application Server disc package with two licenses.
The license for IBM Assembly and Deploy Tools for WebSphere Administration does not expire. The
license for IBM Rational Application Developer for WebSphere Software is available on a Trial basis and is
only available for a limited time.

The Trial download for Rational Application Developer is available at http://www.ibm.com/developerworks/
downloads/r/rad/.

Chapter 6. Assembling applications 17

Important: The assembly tools run on Windows and Linux Intel platforms. Users of WebSphere
Application Server on all platforms must assemble their modules using an assembly tool
installed on Windows or Linux Intel platforms. To install an assembly tool, follow instructions
available with the tool.

Generating code for web service deployment

Before deploying web services-enabled modules or any enterprise application archive (EAR) files that
contain web services-enabled module onto an application server, you must generate deployment code for
the application.

Before you begin

This article assumes you have assembled a module enabled with Web services, added it to an application,
saved the application, and verified the application. It also assumes that you have started and configured
an assembly tool.

About this task

You can use an [assembly tool|to generate deployment code for the web services-enabled module or for
the EAR file that contains the web services-enabled module.

Procedure

1. If you have turned automatic validation off, manually validate any modules that use web services with
the web services validator before generating deployment code for them. If validating your
module results in compilation errors or validation errors, fix the errors before generating deployment
code. However, if validating your module results in warning or information messages, you can generate
deployment code.

2. In the Project Explorer view of the assembly tool, right-click on the web services-enabled module
(WAR, enterprise bean JAR, or application client JAR file) for which you want to generate code for
deployment.

3. Click Deploy. Alternatively, you can generate deployment code for web services-enabled modules
using the deployment tool for web services (wsdeploy) from a command prompt.

4. If messages indicate that automatic file overwriting is not enabled, click Yes to All so the generated
files are added to the module.

5. If errors such as Unbound classpath variable: WAS_50_PLUGINDIR display in the Tasks list, change
the Java build path libraries properties to define that variable to be the WebSphere Application Server
installation directory.

Results

Code is generated into the folder where your web services-enable module is located. Problems with the
generation of code result in a window that displays error messages.

What to do next

Install the Java Platform, Enterprise Edition (Java EE) application on your server machine. You can install
the application onto a server using the administrative console. Before installing the application, you might
need to set class paths.

Assembling applications: Resources for learning

Additional information and guidance on assembling applications is available on various Internet sites.

18 Developing and deploying applications

http://www.ibm.com/developerworks/webservices/library/ws-jsrart/

Use the following links to find relevant supplemental information about the application assembly and using
an assembly tool. The information resides on IBM and non-IBM Internet sites, whose sponsors control the
technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere
Application Server product, but is useful all or in part for understanding the product. When possible, links
are provided to technical papers and Redbooks publications that supplement the broad coverage of the
release documentation with in-depth examinations of particular product areas.

View links to additional information about:

* [‘Programming instructions and examples”l
« [‘Programming specifications’|

+ [‘Administration’]

Programming instructions and examples

» Rational Application Developer V8 Programming Guide, SG24-7835-00, http://www.redbooks.ibm.com/
abstracts/sg247835.htm1?0pen

+ Rational developer community, http://www.ibm.com/developerworks/rational/

* IBM WebSphere Developer Technical Journal: Using Rational Developer to create a simple web service
and use it in a web application, http://www.ibm.com/developerworks/websphere/techjournal/
0506_parkin/0506_parkin.html

» Java EE Tutorials, http://www.oracle.com/technetwork/java/javaee/documentation/tutorials-
137605.html

* Recommended reading list: Java EE and WebSphere Application Server, http://www.ibm.com/
developerworks/websphere/library/techarticles/0305 issw/recommendedreading.html

Programming specifications
» Specifications and APl documentation

Administration

* WebSphere Application Server V7 Administration and Configuration Guide, SG24-7615-01,
http://www.redbooks.ibm.com/abstracts/sg247615.htm1

Chapter 6. Assembling applications 19

20 Developing and deploying applications

Chapter 7. Class loading

Class loaders are part of the Java virtual machine (JVM) code and are responsible for finding and loading
class files. Class loaders enable applications that are deployed on servers to access repositories of
available classes and resources. Application developers and deployers must consider the location of class
and resource files, and the class loaders used to access those files, to make the files available to
deployed applications. Class loaders affect the packaging of applications and the runtime behavior of
packaged applications of deployed applications.

Before you begin

This topic describes how to configure class loaders for application files or modules that are installed on an
application server.

To better understand class loaders in WebSphere Application Server, read|“CIass Ioaders.”l The topic
[‘Class loading: Resources for learning” on page 31| refers to additional sources.

About this task

Configure class loaders for application files or modules that are installed on an application server using the
administrative console. You configure class loaders to ensure that deployed application files and modules
can access the classes and resources that they need to run successfully.

Procedure

1. If an installed application module uses a resource, create a resource provider that specifies the
directory name of the resource drivers.

Do not specify the resource Java archive (JAR) file names. All JAR files in the specified directory are
added into the class path of the WebSphere Application Server extensions class loader. If a resource
driver requires a native library (.d11 or .so file), specify the name of the directory that contains the
library in the native path of the resource configuration.

Specify [class-loader values for an application server|
Specify [class-loader values for an installed enterprise application]
Specify the [class-loader mode for an installed web module}

If your deployed application uses shared library files, associate the shared library files with your
application. Use a library reference to associate a shared library file with your application.

a. If you have not done so already, define shared libraries for library files that your applications need.
b. Define a library reference for each shared library that your application uses.

ok 0N

What to do next

After configuring class loaders, ensure that your application performs as desired. To diagnose and fix
problems with class loaders, refer to Troubleshooting class loaders.

Class loaders

Class loaders find and load class files. Class loaders enable applications that are deployed on servers to
access repositories of available classes and resources. Application developers and deployers must
consider the location of class and resource files, and the class loaders used to access those files, to make
the files available to deployed applications.

This topic provides the following information about class loaders in WebSphere Application Server:
» |“Class loaders used and the order of use” on page 22|
« [‘Class-loader isolation policies” on page 23|

© Copyright IBM Corp. 2011 21

+ [“Class-loader modes” on page 25|

Class loaders used and the order of use

The product runtime environment uses the following class loaders to find and load new classes for an
application in the following order:

1.

—_
mule class loader
a,____P____

22

The bootstrap, extensions, and CLASSPATH class loaders created by the Java virtual machine

The bootstrap class loader uses the boot class path (typically classes in jre/1ib) to find and load
classes. The extensions class loader uses the system property java.ext.dirs (typically jre/1ib/ext) to
find and load classes. The CLASSPATH class loader uses the CLASSPATH environment variable to
find and load classes.

The CLASSPATH class loader loads the Java Platform, Enterprise Edition (Java EE) application
programming interfaces (APIs) provided by the WebSphere Application Server product in the j2ee.jar
file. Because this class loader loads the Java EE APIs, you can add libraries that depend on the Java
EE APIs to the class path system property to extend a server class path. However, a preferred method
of extending a server class path is to add a shared library.

A WebSphere extensions class loader

The WebSphere extensions class loader loads the WebSphere Application Server classes that are
required at run time. The extensions class loader uses a ws.ext.dirs system property to determine the
path that is used to load classes. Each directory in the ws.ext.dirs class path and every Java archive
(JAR) file or compressed file in these directories is added to the class path used by this class loader.

The WebSphere extensions class loader also loads resource provider classes into a server if an
application module installed on the server refers to a resource that is associated with the provider and
if the provider specifies the directory name of the resource drivers.

One or more application module class loaders that load elements of enterprise applications running in
the server

The application elements can be web modules, enterprise bean (EJB) modules, resource adapter
archives (RAR files), and dependency JAR files. Application class loaders follow Java EE class-loading
rules to load classes and JAR files from an enterprise application. The product enables you to
associate shared libraries with an application.

Zero or more web module class loaders

By default, web module class loaders load the contents of the WEB-INF/classes and WEB-INF/1ib
directories. Web module class loaders are children of application class loaders. You can specify that an
application class loader load the contents of a web module rather than the web module class loader.

Java class Joaders A
Web&phere extensions

class Inader/
"'\-_.___
Application module class loader

Web module ﬂl@ ﬁeb module niasskﬁ
-_____‘_‘__

Developing and deploying applications

Each class loader is a child of the previous class loader. That is, the application module class loaders are
children of the WebSphere extensions class loader, which is a child of the CLASSPATH Java class loader.
Whenever a class needs to be loaded, the class loader usually delegates the request to its parent class
loader. If none of the parent class loaders can find the class, the original class loader attempts to load the
class. Requests can only go to a parent class loader; they cannot go to a child class loader. If the
WebSphere extensions class loader is requested to find a class in a Java EE module, it cannot go to the
application module class loader to find that class and a ClassNotFoundException error occurs. After a
class is loaded by a class loader, any new classes that it tries to load reuse the same class loader or go
up the precedence list until the class is found.

Class-loader isolation policies
The number and function of the application module class loaders depend on the class-loader policies that
are specified in the server configuration. Class loaders provide multiple options for isolating applications

and modules to enable different application packaging schemes to run on an application server.

Two class-loader policies control the isolation of applications and modules:

Table 1. Class-loader policy descriptions. Available policies include Application and WAR.

Class-loader policy Description

Application Application class loaders load EJB modules, dependency JAR files, embedded resource
adapters, and application-scoped shared libraries. Depending on the application
class-loader policy, an application class loader can be shared by multiple applications
(Single) or unique for each application (Multiple). The application class-loader policy
controls the isolation of applications that are running in the system. When set to Single,
applications are not isolated. When set to Multiple, applications are isolated from each
other.

WAR By default, web module class loaders load the contents of the WEB-INF/classes and
WEB-INF/11ib directories. The application class loader is the parent of the web module class
loader. You can change the default behavior by changing the web application archive
(WAR) class-loader policy of the application.

The WAR class-loader policy controls the isolation of web modules. If this policy is set to
Application, then the Web module contents also are loaded by the application class loader
(in addition to the EJB files, RAR files, dependency JAR files, and shared libraries). If the
policy is set to Module, then each web module receives its own class loader whose parent
is the application class loader.

Tip: The console and the underlying deployment.xml file use different names for WAR
class-loader policy values. In the console, the WAR class-loader policy values are
Application or Module. However, in the underlying deployment.xml file where the policy is
set, the WAR class-loader policy values are Single instead of Application, or Multiple
instead of Module. Application is the same as Single, and Module is the same as
MultipTe.

Restriction: WebSphere Application Server class loaders never load application client modules.

For each application server in the system, you can set the application class-loader policy to Single or
Multiple. When the application class-loader policy is set to Single, then a single application class loader
loads all EJB modules, dependency JAR files, and shared libraries in the system. When the application
class-loader policy is set to Multiple, then each application receives its own class loader that is used for
loading the EJB modules, dependency JAR files, and shared libraries for that application.

An application class loader loads classes from web modules if the application's WAR class-loader policy is

set to Application. If the application's WAR class-loader policy is set to Module, then each WAR module
receives its own class loader.

Chapter 7. Class loading 23

The following example shows that when the application class-loader policy is set to Single, a single
application class loader loads all of the EJB modules, dependency JAR files, and shared libraries of all
applications on the server. The single application class loader can also load web modules if an application
has its WAR class-loader policy set to Application. Applications that have a WAR class-loader policy set
to Module use a separate class loader for web modules.

Server's application class-loader policy: Single
Application's WAR class-loader policy: Module

AppTlication 1
Module: EJBl.jar
Module: WARl.war
MANIFEST Class-Path: Dependencyl.jar
WAR Classloader Policy = Module
Application 2
Module: EJB2.jar
MANIFEST Class-Path: Dependency?2.jar
Module: WAR2.war
WAR Classloader Policy = Application

WebSphere extensions class loader

Classpath:
WebSphere/AppServer/classes
WebSphere/AppServer/ib
WebSphere/AppServer/lib/ext

A

Application class loader
Classpath:

Ejb1.jar

Dependency1.jar

EjbZ2.jar

Dependency?2.jar

WARZ.war (WEB-INF/classes, ...)

/

WAR class loader

WAR1 . war

The following example shows that when the application class-loader policy of an application server is set
to Multiple, each application on the server has its own class loader. An application class loader also loads
its web modules if the application WAR class-loader policy is set to Application. If the policy is set to
Module, then a web module uses its own class loader.

Server's application class-loader policy: Multiple
Application's WAR class-Toader policy: Module

Application 1
Module: EJBl.jar
Module: WARl.war
MANIFEST Class-Path: Dependencyl.jar
WAR Classloader Policy = Module
Application 2

24 Developing and deploying applications

Module: EJB2.jar

MANIFEST Class-Path: Dependency?2.jar

Module: WAR2.war

WAR Classloader Policy = Application

WebSphere extensions class loader

Classpath:

WebSphere/AppServer/classes
WebSphere/AppServer/lib
WebSphere/AppServer/lib/ext

o

S

Application class loader Application class loader
Classpath: Classpath:
Ejb1.jar Ejb2 jar

Dependency1.jar

Dependency2 jar
WARZ2 war (WEB-INF/classes, ...}

—

WAR class loader
WAR1 war

Class-loader modes

The class-loader delegation mode, also known as the class loader order, determines whether a class
loader delegates the loading of classes to the parent class loader. The following values for class-loader

mode are supported:

Table 2. Class-loader mode descriptions. Available modes include Parent first and Parent last.

Class-loader mode

Description

Parent first

Also known as Classes
loaded with parent
class loader first.

The Parent first class-loader mode causes the class loader to delegate the loading of
classes to its parent class loader before attempting to load the class from its local class
path. This value is the default for the class-loader policy and for standard JVM class
loaders.

Parent last

Also known as Classes
loaded with local
class loader first or

Application first.

The Parent last class-loader mode causes the class loader to attempt to load classes
from its local class path before delegating the class loading to its parent. Using this policy,
an application class loader can override and provide its own version of a class that exists in
the parent class loader.

The following settings determine the mode of a class loader:
 If the application class-loader policy of an application server is Single, the server-level mode value
defines the mode for an application class loader.

 If the application class-loader policy of an application server is Multiple, the application-level mode
value defines the mode for an application class loader.

Chapter 7. Class loading 25

» If the WAR class-loader policy of an application is Module, the module-level mode value defines the
mode for a WAR class loader.

Configuring class loaders of a server

You can configure the application class loaders for an application server. Class loaders enable applications
that are deployed on the application server to access repositories of available classes and resources.

Before you begin

This topic assumes that an administrator created an application server on a WebSphere Application Server
product.

About this task

Configure the class loaders of an application server to set class-loader policy and mode values which
affect all applications that are deployed on the server. Use the administrative console to configure the
class loaders.

Procedure

1. Click Servers > Server Types > WebSphere application servers > server_name to access an
application server settings page.

2. Specify the application class-loader policy for the application server.

The application class-loader policy controls the isolation of applications that run in the system (on the
server). An application class loader groups enterprise bean (EJB) modules, shared libraries, resource
adapter archives (RAR files), and dependency Java archive (JAR) files associated to an application.
Dependency JAR files are JAR files that contain code which can be used by both enterprise beans
and servlets. The application class-loader policy controls whether an application class loader can be
shared by multiple applications or is unique for each application.

Use the application server settings page to specify the application class-loader policy for the server:

Option Description

Single Applications are not isolated from each other. Uses a
single application class loader to load all of the EJB
modules, shared libraries, and dependency JAR files in
the system.

Multiple Applications are isolated from each other. Gives each
application its own class loader to load the EJB modules,
shared libraries, and dependency JAR files of that
application.

3. Specify the application class-loader mode for the application server.
The application class loading mode specifies the class-loader mode when the application class-loader
policy is Single.
On the application server settings page, select either of the following values:

Option Description

Classes loaded with parent class loader first Causes the class loader to delegate the loading of
classes to its parent class loader before attempting to
load the class from its local class path. Classes Toaded
with parent class Toader first is the default value for
class loading mode.

This value is also known as parent first.

26 Developing and deploying applications

Option Description

Classes loaded with local class loader first (parent Causes the class loader to attempt to load classes from
last) its local class path before delegating the class loading to
its parent. Using this policy, an application class loader
can override and provide its own version of a class that
exists in the parent class loader.

4. Specify the class-loader mode for the class loader.

a. On the application server settings page, click Java and Process Management > Class loader to
access the Class loader page.

On the |Class loader pagﬂ, click New to access the settings page for a class loader.
On the |c|ass loader settings pagel, specify the class loader order.

The Classes Toaded with parent class lToader first value causes the class loader to delegate
the loading of classes to its parent class loader before attempting to load the class from its local
class path.

The Classes loaded with Tocal class Toader first (parent last) value causes the class loader
to attempt to load classes from its local class path before delegating the class loading to its parent.

d. Click OK.

An identifier is assigned to a class-loader instance. The instance is added to the collection of class
loaders shown on the [Class loader page]

What to do next

Save the changes to the administrative configuration.

Class loader collection

Use this page to manage class-loader instances on an application server. A class loader determines
whether an application class loader or a parent class loader finds and loads Java class files for an
application.

To view this administrative console page, click Servers > Server types > WebSphere application
servers > server_name. Under Server Infrastructure, expand Java and Process Management then
click Class loader.

Class loader ID

Specifies a string that is unique to the server identifying the class-loader instance. The product assigns the
identifier.

Class loader order

Specifies whether the class loader searches in the parent class loader or in the application class loader
first to load a class. The standard for development kit class loaders and WebSphere Application Server
class loaders is Classes loaded with parent class Toader first (Parent first). By specifying Classes
Toaded with Tocal class loader first (Parent last), your application can override classes contained in
the parent class loader, but this action can potentially result in ClassCastException or LinkageErrors if you
have mixed use of overridden classes and non-overridden classes.

Class loader settings
Use this page to configure a class loader for applications that reside on an application server.

Chapter 7. Class loading 27

To view this administrative console page, click Servers > Server types > WebSphere application
servers > server_name. Under Server Infrastructure, expand Java and Process Management then
click Class loader. Click on a Class_loader._ID.

Class loader ID
Specifies a string that is unique to the server identifying the class-loader instance. The product assigns the
identifier.

Data type String

Class loader order

Specifies whether the class loader searches in the parent class loader or in the application class loader
first to load a class. The standard for development kit class loaders and WebSphere Application Server
class loaders is Classes loaded with parent class loader first. By specifying Classes loaded with
Tocal class loader first (parent last), your application can override classes contained in the parent
class loader, but this action can potentially result in ClassCastException or LinkageErrors if you have
mixed use of overridden classes and non-overridden classes.

The options are Classes loaded with parent class Toader first and Classes loaded with local class
Toader first (parent last). The default is to search in the parent class loader before searching in the
application class loader to load a class.

For your application to use the default configuration of Jakarta Commons Logging in this product, set this
application class loader order to Classes loaded with parent class Toader first. For your application to
override the default configuration of Jakarta Commons Logging, your application must provide the
configuration in a form supported by Jakarta Commons Logging and this class loader order must be set to
Classes loaded with Tocal class Toader first (parent last). Also, to override the default
configuration, set the class loader order for each web module in your application so that the correct logger
factory loads.

Data type String
Default Parent first

Configuring application class loaders

You can set values that control the class-loading behavior of an installed enterprise application. Class
loaders enable an application to access repositories of available classes and resources.

Before you begin

This topic assumes that you installed an application on an application server.
About this task

Configure the class loaders of an enterprise application to set class-loader policy and mode values for this
application.

An application class loader groups enterprise bean (EJB) modules, shared libraries, resource adapter
archive (RAR) files, and dependency Java archive (JAR) files associated to an application. Dependency
JAR files are JAR files that contain code which can be used by both enterprise beans and servlets.

An application class loader is the parent of a web application archive (WAR) class loader. By default, a
web module has its own WAR class loader to load the contents of the web module. The WAR class-loader
policy value of an application class loader determines whether the WAR class loader or the application
class loader is used to load the contents of the Web module.

28 Developing and deploying applications

Use the administrative console to configure the class loaders.

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Procedure

1.

Click Applications > Application Types > WebSphere enterprise applications > application_name
> Class loading and update detection to access the settings page for an application class loader.

Specify whether to reload application classes when the application or its files are updated.

By default, class reloading is not enabled. Select Override class reloading settings for web and
EJB modules to choose to reload application classes. You might specify different values for EJB
modules and for web modules such as servlets and JavaServer Pages (JSP) files.

Specify the number of seconds to scan the application's file system for updated files.

The value specified for Polling interval for updated files takes effect only if class reloading is
enabled. The default is the value of the reloading interval attribute in the IBM extension
(META-INF/ibm-application-ext.xmi) file of the enterprise application (EAR file). You might specify
different values for EJB modules and for web modules such as servlets and JSP files.

To enable reloading, specify an integer value that is greater than zero (for example, 1 to 2147483647).
To disable reloading, specify zero (0).

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending
on whether you are using a pre-Jdava EE 5 application or module or a Java EE 5 or later
application or module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi
where * is the type of extension or binding file such as app, application, ejb-jar, or web. The
following conditions apply:

» For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

» For an application or module that uses Java EE 5 or later, the file extension must be .xml. If
xmi files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE
5 files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

Specify the class loader order for the application.

The application class loader order specifies whether the class loader searches in the parent class
loader or in the application class loader first to load a class. The default is to search in the parent class
loader before searching in the application class loader to load a class.

Select either of the following values for Classes loader order:

Option Description

Classes loaded with parent class loader first Causes the class loader to search in the parent class

loader first to load a class. This value is the standard for
Development Kit class loaders and WebSphere
Application Server class loaders.

Chapter 7. Class loading 29

Option Description

Classes loaded with local class loader first (parent Causes the class loader to search in the application class
last) loader first to load a class. By specifying Classes loaded
with local class Toader first (parent Tast), your
application can override classes contained in the parent
class loader.

Note: Specifying the Classes loaded with local class
Toader first (parent last) value might result in
LinkageErrors or ClassCastException messages if you
have mixed use of overridden classes and non-overridden
classes.

5. Specify whether to use a single or multiple class loaders to load web application archives (WAR files)
of your application.

By default, web modules have their own WAR class loader to load the contents of the WEB-INF/classes
and WEB-INF/11ib directories. The default WAR class loader value is Class loader for each WAR file
in application, which uses a separate class loader to load each WAR file. Setting the value to Single
class Toader for application causes the application class loader to load the web module contents
as well as the EJB modules, shared libraries, RAR files, and dependency JAR files associated to the
application. The application class loader is the parent of the WAR class loader.

Select either of the following values for WAR class loader policy:

Option Description

Class loader for each WAR file in application Uses a different class loader for each WAR file.

Single class loader for application Uses a single class loader to load all of the WAR files in
your application.

6. Click OK.

What to do next

Save the changes to the administrative configuration.

Configuring web module class loaders

You can set values that control the class-loading behavior of an installed web module.
Before you begin

This topic assumes that you installed a web module on an application server.
About this task

Configure the class loader order value of an installed web module. By default, a web module has its own
web application archive (WAR) class loader to load the contents of the web module, which are in the
WEB-INF/classes and WEB-INF/1ib directories.

An application class loader is the parent of a WAR class loader. The WAR class-loader policy value of an
application class loader determines whether the WAR class loader or the application class loader is used
to load the contents of the web module.

The default WAR class loader policy value is Class Toader for each WAR file in application. If the
policy is set to Class Toader for each WAR file in application, then each web module receives its own
class loader whose parent is the application class loader. If the policy is set to Single class loader for
application, then the application class loader loads the web module contents as well as the enterprise

30 Developing and deploying applications

bean (EJB) modules, shared libraries, resource adapter archive (RAR) files, and dependency Java archive
(JAR) files associated to an application. Thus, the configuration of the parent application class loader
affects the WAR class loader. You can set the policy on the Class loading and update detection page of an
administrative console.

Use the administrative console to configure the application and WAR class loaders.

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Procedure
1. If you have not done so already, |configure the application class Ioader|

Settings such as Override class reloading settings for web and EJB modules, Polling interval for
updated files and WAR class loader policy can affect web module class loading.

If WAR class loader policy is set to Class Toader for each WAR file in application, then the web
module receives its own class loader and the WAR class-loader policy of the web module defines the
mode for a WAR class loader. If the policy is set to Single class Toader for application, then the
application class loader loads the web module contents.

2. Specify the class loader order for the installed web module.

The web module class-loader mode specifies whether the class loader searches in the parent
application class loader or in the WAR class loader first to load a class. The default is to search in the
parent application class loader before searching in the WAR class loader to load a class.

Select either of the following values for Class loader order:

Option Description

Classes loaded with parent class loader first This option causes the class loader to prefer classes that
are provided by the product over the classes that exist
within the web module. This approach is standard for
Development Kit class loaders and WebSphere
Application Server class loaders.

Classes loaded with local class loader first This option causes the class loader to prefer classes that
exist in the web module over the classes that are
provided by the product. If the same class exists in both
the product and the web module, the class from the web
module is loaded.

Attention: If you specify the Classes Toaded with

local class Toader first value, you might receive
LinkageErrors or ClassCastException messages if you
have mixed use of overridden classes and non-overridden
classes.

3. Click OK.
What to do next

Save the changes to the administrative configuration.

Class loading: Resources for learning

Additional information and guidance on class loading is available on various Internet sites.

Chapter 7. Class loading 31

Use the following links to find relevant supplemental information about class loaders. The information
resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the
information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere
Application Server product, but is useful all or in part for understanding the product. When possible, links
are provided to technical papers and Redbooks publications that supplement the broad coverage of the
release documentation with in-depth examinations of particular product areas.

View links to additional information about:

* [“Programming model and decisions’]

* [‘Programming instructions and examples”l
« [‘Programming specifications’|

Programming model and decisions

» Demystifying class loading problems, Part 1: An introduction to class loading and debugging tools -
Learn how class loading works and how your JVM can help you sort out class loading problems
(developerWorks, November 2005), http://www.ibm.com/developerworks/java/library/j-dcipl/
?S_TACT=106AH10W&S_CMP=NC

» Demystifying class loading problems, Part 2: Basic class loading exceptions - An in-depth look at some
simple class loading quirks and conundrums (developerWorks, December 2005), http://www.ibm.com/
developerworks/java/library/j-dclp2.htm1?S_TACT=105AGX10&S_CMP=NC

» Demystifying class loading problems, Part 3: Tackling more unusual class loading problems -
Understand class loading and quash subtle exceptions (developerWorks, December 2005),
http://www.ibm.com/developerworks/java/library/j-dc1p3/?S_TACT=105AGX10&S_CMP=NC

« J2EE Class Loading Demystified (developerWorks, August 2002), http://www.ibm.com/developerworks/
websphere/library/techarticles/0112_deboer/deboer.htm]

« Java programming dynamics, Part 1: Classes and class loading - A look at classes and what goes on
as they're loaded by a JVM (developerWorks, April 2003), http://www.ibm.com/developerworks/java/
Tibrary/j-dyn0429/

Programming instructions and examples

* WebSphere Application Server V7: Understanding Class Loaders, http://publib-b.boulder.ibm.com/
abstracts/redp4581.htm1?0pen

Programming specifications
» Specifications and APl documentation

32 Developing and deploying applications

Chapter 8. Deploying applications

Deploying Java Platform, Enterprise Edition (Java EE) application files consists of placing assembled
enterprise application, web, enterprise bean (EJB), or other installable modules on a server configured to
hold the files. Installed files that start and run properly are considered deployed.

Installing enterprise application files

As part of deploying an application, you install application files on a server configured to hold installable
modules.

Before you begin

Before you can install your Java Platform, Enterprise Edition (Java EE) application files on an application
server, you must assemble modules as needed.

Also, before you install the files, configure the target application server. As part of configuring the server,
determine whether your application files can be installed to your deployment targets.

About this task

You can install the following enterprise modules on a server:
» Enterprise archive (EAR)

* Enterprise bean (EJB)

» Web archive (WAR)

» Session Initiation Protocol (SIP) module (SAR)

» Resource adapter (connector or RAR)

» Application client modules

Application client files can be installed in a WebSphere Application Server configuration but cannot be run
on a server.

Complete the following steps to install your files.

Procedure
1. Determine which method to use to install your application files. The product provides several
2. Install the application files using

* Administrative console

» Drag and drop to a monitored directory

* wsadmin scripts

» Java administrative programs that use Java Management Extensions (JMX) application
programming interfaces (APIs)

« Java programs that define a Java EE DeploymentManager object in accordance with Java EE
Application Deployment specification (JSR-88)

3. Start the deployed application files using
* Administrative console
* wsadmin startApplication
» Java programs that use ApplicationManager or AppManagement MBeans
» Java programs that define a Java EE DeploymentManager object in accordance with Java EE
Application Deployment specification (JSR-88)

© Copyright IBM Corp. 2011 33

What to do next
Save the changes to your administrative configuration.

Next, test the application. For example, point a web browser at the URL for a deployed application.
Typically, the URL is http://hostname:9060/web_module name, where hostname is your valid web server
and 9060 is the default port number. Examine the performance of the application. If the application does
not perform as desired, edit the application configuration, then save and test it again.

If your application contains many classes with annotations and takes a long time to deploy, you can
reduce annotation searches to speed up deployment. See the topic on reducing annotation searches
during application deployment.

Installable enterprise module versions

The contents of a Java Platform, Enterprise Edition (Java EE) module affect whether you can install the
module on a deployment target. A deployment target is a server on a WebSphere Application Server
product.

Installable application modules

Select only appropriate deployment targets for a module. You must install an application, enterprise bean
(EJB) module, Session Initiation Protocol (SIP) archive (SAR), web module, or client module on a Version
8.x target under any of the following conditions:

» The module supports Java Platform, Enterprise Edition (Java EE) 6

* The module calls an 8.x runtime application programming interface (API).

* The module uses an 8.x product feature.

For example, because support for deployment of application client modules using the administrative
console or wsadmin AdminApp commands was added in Version 8.0, you must install a client module
using the console or an AdminApp command only to a Version 8.x target.

If a module supports Java 2 Platform, Enterprise Edition (J2EE) 1.4, then you can install the module on a
Version 6.x, 7.x or 8.x deployment target. Modules that call a 6.1.x APl or use a 6.1.x feature can be
installed on a 6.1.x, 7.x or 8.x deployment target. Modules that call a 6.0.x API or use a 6.0.x feature can
be installed on a 6.0.x, 6.1.x, 7.x or 8.x deployment target. Modules that require 6.1.x feature pack
functionality can be installed on a 7.x or 8.x deployment target or on a 6.1.x deployment target that has
been enabled with that feature pack. Modules that require 7.x feature pack functionality can be installed on
a 8.x deployment target or on a 7.x deployment target that has been enabled with that feature pack.

Selecting options such as Precompile JavaServer Pages files, Use binary configuration, Deploy web
services or Deploy enterprise beans during application installation indicates that the application uses
6.1.x product features. You cannot deploy such applications on a 6.0.x deployment target. You must
deploy such applications on a 6.1.x, 7.x or 8.x deployment target.

Note: You must package container-managed persistence (CMP) or bean-managed persistence (BMP)
entity beans in an EJB 2.1 or earlier module. You cannot install an EJB 3.0 or EJB 3.1 module that
contains CMP or BMP entity beans. Installation fails when a CMP or BMP entity bean is packaged
in an EJB 3.0 or EJB 3.1 module. You can install EJB 2.1 or earlier modules on a 6.x, 7.x or 8.x
deployment target.

Installable RAR files

You can install a stand-alone resource adapter (connector) module, or RAR file, developed for a Version
6.0.x product to a 6.x, 7.x or 8.x deployment target. If the module calls a 6.1.x API, then you must install
the module on a 6.1.x, 7.x or 8.x deployment target. You must install a module that calls a 7.x APl on a 7.x
or 8.x deployment target. You must install a module that calls a 8.x APl on a 8.x deployment target.

34 Developing and deploying applications

Deployment targets

Table 1 lists the compatible deployment target versions for various modules. "6.x, 7.x or 8.x" for
Deployment target versions indicates that you can deploy the module to a WebSphere Application
Server Version 6, 7, or 8 server.

Table 3. Compatible deployment target versions for 6.x, 7.x and 8.x modules. Deploy modules to compatible
deployment target versions.

Module type

Module Java

Module calls 6.x, 7.x

Client versions that

Deployment target

support or 8.x runtime APIs |can install module versions
or uses 6.x, 7.x or
8.x features?
Application, EJB, or | J2EE 1.3 No 6.x, 7.x or 8.x 6.x, 7.x or 8.x
web
Application, EJB, or J2EE 1.3 Yes 6.x, 7.x or 8.x for 6.x |6.x, 7.x or 8.x
web APIs or features
You must install
7.x or 8.x for 7.x APIs | modules that call
or features 6.1.x runtime APlIs or
use 6.1.x features on
8.x for 8.x APIs or a 6.1.x, 7.x or 8.x
features deployment target.
You can install
modules that call
6.0.x runtime APIs or
use 6.0.x features on
any 6.x, 7.x or 8.x
deployment target.
Application, EJB, J2EE 1.4 Yes or No 6.x, 7.x or 8.x 6.x, 7.x or 8.x
SAR, or web
Application, EJB, Java EE 5 Yes or No 7.x or 8.x 7.x or 8.x
SAR, or web
Application, EJB, Java EE 6 Yes or No 8.x 8.x
SAR, or web
Client Any Java EE version |Yes or No 8.x 8.x
Resource adapter JCA 1.0 No 6.x, 7.x or 8.x 6.x, 7.x or 8.x
Resource adapter JCA 1.0 Yes 6.X, 7.x or 8.x 6.X, 7.x or 8.x

You must install
modules that call
6.1.x runtime APIs on
a6.1.x, 7.x or 8.x
deployment target.
You can install
modules that call
6.0.x runtime APIs on
any 6.x, 7.x or 8.x
deployment target.

Chapter 8. Deploying applications

35

Table 3. Compatible deployment target versions for 6.x, 7.x and 8.x modules (continued). Deploy modules to
compatible deployment target versions.

Resource adapter

JCA 15

Yes or No

6.X, 7.x or 8.x

6.X, 7.x or 8.x

You must install
modules that call
6.1.x runtime APIs on
a 6.1.x, 7.x or 8.x
deployment target.
You can install
modules that call
6.0.x runtime APIs on
any 6.x, 7.x or 8.x
deployment target.

Resource adapter

JCA 1.6

Yes or No

JCA 1.6 resource
adapters can only be
installed on 8.x.
Resource adapter
archive annotations
are not supported on
previous WebSphere
Application Server
releases.

JCA 1.6 resource
adapters can only be
installed on 8.x.
Resource adapter
archive annotations
are not supported on
previous WebSphere
Application Server
releases.

Ways to install enterprise applications or modules
The product provides several ways to install Java Platform, Enterprise Edition (Java EE) application files.

Installable files include enterprise archive (EAR), enterprise bean (EJB), web application archive (WAR),
Session Initiation Protocol (SIP) archive (SAR), resource adapter (connector or RAR), and application
client modules. They can be installed on a server. Application client files can be installed in a WebSphere
Application Server configuration but cannot be run on a server.

Table 4. Ways to install application files. Deploy an application or module using the administrative console,
wsadmin, programming, or deployment tools.

Option

Method

Modules

Comments

Starting after install

Administrative
console install
wizard

See topics on
installing enterprise
application files with
the console.

Click Applications > New
application > New
Enterprise Application in the
console navigation tree and
follow instructions in the
wizard.

Files for all of the
following modules:
* EAR
- EJB
+ WAR
* SAR
* RAR
* Application client

Provides one of the easier ways to
install application files.

For applications that do not require
changes to the default bindings,
after you specify the application
file, expand Choose to generate
default bindings and mappings,
select Generate default bindings,
click the Summary step, and then
click Finish.

Click Start on the Enterprise
applications page accessed by
clicking Applications >
Application Types >
WebSphere enterprise
applications in the console
navigation tree.

36 Developing and deploying applications

Table 4. Ways to install application files (continued). Deploy an application or module using the administrative
console, wsadmin, programming, or deployment tools.

Option

Method

Modules

Comments

Starting after install

Monitored directory

Add an EAR file or module to
a dragDropDeployableApps
subdirectory of an application
server profile.

For base (stand-alone)
application servers, the
monitored directory is the
dragDropDeployableApps
/servers/server_name
directory of the application
server profile.

Files for all of the
following modules:
* EAR
« EJB
+ WAR
* SAR

Use this option for drag
and drop deployment of
Java EE 5.0 and later
modules.

Provides one of the easier ways to
install applications.

You cannot specify bindings during
deployment. For applications that
require changes to the bindings,
install the application using the
administrative console install
wizard, application properties files,
or wsadmin scripts.

Monitored directory deployment
differs from rapid deployment tools
in several ways:

» Monitored directory deployment
supports deployment to base and
network deployment environments.
Rapid deployment tools support
deployment only to the base
environment.

» Monitored directory deployment
does not start a new daemon.
Rapid deployment tools start a
separate process.

* Monitored directory deployment
supports deployment of Java EE 5
and later modules. Rapid
deployment tools support assembly
of J2EE 1.3 and 1.4 modules, and
deployment of all Java EE module
versions.

 Monitored directory deployment
supports use of a properties file to
specify deployment options. Rapid
deployment tools does not support
use of a properties file.

After application or module
installation or update, the
product starts the application or
module automatically.

Application
properties files

Create a properties file that

specifies to install or update

application files. Then, run the

wsadmin

applyConfigProperties

command in any of the

following ways:

* In a script

* At a command prompt

* By adding the properties
file to a
dragDropDeployableApps
/deploymentProperties
monitored directory

Files for all of the
following modules:
+ EAR
+ EJB
+ WAR
* SAR

For information on deploying

applications using properties files,

see the following topics:

» Using application properties files
to install, update, and delete
enterprise application files

Installing enterprise application
files by adding properties files to
a monitored directory

After application or module
installation or update, the
product starts the application or
module automatically.

wsadmin scripts

Invoke AdminApp object
install commands in a script

Files for all of the
following modules:

"Getting started with scripting" in
the Using the administrative clients

* Invoke the AdminApp
startApplication command.

or at a command prompt. « EAR PDF provides an overview of
- EJB wsadmin. * Invoke the startApplication
+ WAR method on an
*+ SAR ApplicationManager MBean
* RAR using AdminControl.
» Application client
Java application Install programs by All EAR files Use Java Management Extensions | Start the application by calling

programming
interfaces

completing the steps in
Installing an application
through programming.

(JMX) MBeans to install the
application. For an overview of
Java MBean programming, see
Managing applications through
programming.

the startApplication method on
a proxy.

Chapter 8.

37

Deploying applications

Table 4. Ways to install application files (continued). Deploy an application or module using the administrative
console, wsadmin, programming, or deployment tools.

Option

Method

Modules

Comments

Starting after install

Rapid deployment
tools

Refer to topics
under Rapid
deployment of
J2EE applications.

Briefly, do the following:

1. Update your J2EE
application files.

2. Set up the rapid
deployment environment.

3. Create a free-form project.

4. Launch a rapid deployment
session.

5. Drop your updated
application files into the
free-form project.

J2EE modules at the
J2EE 1.3 0or 1.4
specification levels,
including EAR files and
the following
stand-alone modules:
+ EJB

+ WAR

+ SAR

* RAR

» Application client

The rapid deployment
tools do not support the
J2EE 1.2 or Java EE
5.0 and later
specification levels. Use
this option for drag and
drop deployment of
J2EE 1.3 or 1.4
modules. Unlike the
monitored directory
option, the rapid
deployment tools do not
support drag and drop
deployment of Java EE
5.0 and later modules.

Rapid deployment tools offer the
following advantages:

* You do not need to assemble
your J2EE application files prior to
deployment.

* You do not need to use other
installation tools mentioned in this
table to deploy the files.

For a list of ways in which the
rapid deployment tools differ from
monitored directory deployment,
see the monitored directory
description in this table.

Use any of the options in this
table to start the application.
Clicking Start on the Enterprise
applications page is the easiest
option.

Java programs

Code programs that use Java
EE DeploymentManager
(JSR-88) methods.

Note: Application installation
using JSR-88 has been
deprecated in WebSphere
Application Server Version
8.0. Use another way listed in
this table to deploy
applications or modules.

All Java EE modules,
including EAR files and
the following
stand-alone modules:

- EJB

+ WAR

* SAR

* RAR

» Application client

» Uses Java EE Application

Deployment Specification (JSR-88).

 Can customize modules using
DConfigBeans.

Call the Java EE
DeploymentManager (JSR-88)
start method in a program to
start the deployed modules
when the module's running
environment initializes.

Installing enterprise application files with the console

Installing Java Platform, Enterprise Edition (Java EE) application files consists of placing assembled
enterprise application, Web, enterprise bean (EJB), or other installable modules on a server or cluster
configured to hold the files. Installed files that start and run properly are considered deployed.

Before you begin

Before installing enterprise application files, ensure that you are installing your application files onto a
compatible deployment target. If the deployment target is not compatible, select a different target.

Optionally, determine whether the application that you are installing uses library files that other deployed
applications also use. You can define a shared library for each of these shared files. Using shared libraries
reduces the number of library file copies on your workstation or server.

About this task

To install new enterprise application files to a WebSphere Application Server configuration, you can use

the following options:

* Administrative console

* wsadmin scripts

* Monitored directory deployment
» Application properties files

38 Developing and deploying applications

* Java MBean programs
» Java programs that call Java EE DeploymentManager (JSR-88) methods

This topic describes how to use the administrative console to install an application, EJB component,
Session Initiation Protocol (SIP) archive (SAR), or web module.

Note: After you start completing steps in the application installation wizard, click Cancel to exit if you
decide not to install the application. Do not simply move to another administrative console page
without first clicking Cancel on an application installation page.

Procedure
1. Click Applications > New application > New Enterprise Application in the console navigation tree.
2. On the first |Preparing for application installation paget

a. Specify the full path name of the source enterprise application file (.ear file otherwise known as an
EAR file).

The EAR file that you are installing can be either on the client machine (the machine that runs the
Web browser) or on the server machine (the machine to which the client is connected). If you
specify an EAR file on the client machine, then the administrative console uploads the EAR file to
the machine on which the console is running and proceeds with application installation.

You can also specify a stand-alone web archive (WAR), SAR, or Java archive (JAR) file for
installation.

Note: Il !f you attempt to install an application from a remote file system and the Java
virtual machine (JVM) is registered as a Microsoft Windows service, the administrative
console does not show a mapped network drive. In this scenario, the Windows service runs
as a new log on session whose security identifier (SID) is different from the user session.
Thus, the service cannot manipulate the mapped network drive, which is established by the
login user. To install the application from a remote file system, you must use the
WASService command to unregister the JVM from the Windows service. For more
information, see the documentation about the WASService command.

b. Click Next.
3. On the second Preparing for application installation page:

a. Select whether to view all installation options.
Fast Path - Prompt only when additional information is required
Displays the module mapping step as well as any steps that require you to specify needed
information to install the application successfully.
Detailed - Show all installation options and parameters
Displays all installation options.

b. Select whether to generate default bindings.

Select Generate default bindings to have the product supply default values for incomplete Java
Naming and Directory (JNDI) and other application bindings. The product does not change existing
bindings.

You do not need to specify JNDI values for EJB bean, local home, remote home, or business
interfaces of EJB 3.x modules. The product assigns container default values during run time.
Similarly, for any EJB reference within an EJB 3.x or a Web 2.4 or later module, you do not need
to specify JNDI values because the product resolves the targets automatically during run time.
Even when you select Generate default bindings, the product does not generate default values
for those JNDI values but it does generate default values for other bindings such as virtual host.

You can customize default values used in generating default bindings. |“Preparing for application|
|insta||ation binding settings” on page 48| describes available customization and provides sample
bindings.

Chapter 8. Deploying applications 39

c. Click Next. If security warnings are displayed, click Continue. The Install New Application pages
are displayed. If you chose to generate default bindings, you can proceed to the step.

[‘Example: Installing an EAR file using the default bindings” on page 45| provides sample steps.

Specify values for installation options as needed.

You can click on a step number to move directly to that page instead of clicking Next. The contents of
the application or module that you are installing determines which pages are available.

Table 5. Wizard page descriptions.

The table describes each wizard page.

Page

Description

|Select installation options|

On the Select installation options page, provide values for the settings specific
to the product. Default values are used if you do not specify a value.

[Map modules to servers|

On the Map modules to servers page, specify deployment targets where you
want to install the modules contained in your application. Modules can be installed
on the same deployment target or dispersed among several deployment targets.
Each module must be mapped to a target server.

On single-server products, a deployment target can be an application server or
web server.

|IProvide options to compile|

If the Precompile JavaServer Pages files setting is enabled on the

[JsSPs|

installation options|page and your application uses JavaServer Pages (JSP)

files, then you can specify JSP compiler options on the Provide options to
compile JSPs page.

[Provide JNDI names for beans|

On the Provide JNDI names for beans page, specify a JNDI name for each
enterprise bean in every EJB 2.1 and earlier module. You must specify a JNDI
name for every enterprise bean defined in the application. For example, for the
EJB module MyBean. jar, specify MyBean.

As to EJB 3.x modules, you can specify JNDI names, local home JNDI names,
remote home JNDI names, or no JNDI names. If you do not specify a value, the
product provides a default value.

|Bind EJB business

On the Bind EJB business page, you can specify business interface JNDI names
for EJB 3.x modules. If you specified a JNDI name for a bean on the Provide
JNDI names for beans page, do not specify a business interface JNDI name on
this page for the same bean. If you do not specify the JNDI name for a bean, you
can optionally specify a business interface JNDI name. When you do not specify a
business interface JNDI name, the product provides a container default. For a
no-interface view, the business interface value is an empty string ("").

[Map default data sources for|
[[modules containing 1.x entity|

|bean§|

If your application uses EJB modules that contain Container Managed Persistence
(CMP) beans that are based on the EJB 1.x specification, for Map default data
sources for modules containing 1.x entity beans, specify a JNDI name for the
default data source for the EJB modules. The default data source for the EJB
modules is optional if data sources are specified for individual CMP beans.

[Map EJB references to beans|

On the Map EJB references to beans page, if your application defines EJB
references, you can specify JNDI names for enterprise beans that represent the
logical names specified in EJB references.

If the EJB reference is from an EJB 3.x, or Web 2.4 or later module, the JNDI
name is optional. For earlier modules, each EJB reference defined in the
application must be bound to an EJB file.

If Allow EJB reference targets to resolve automatically is enabled, the JNDI
name is optional for all modules. The product provides a container default value or
automatically resolves the EJB reference for incomplete bindings.

40 Developing and deploying applications

Table 5. Wizard page descriptions (continued). The table describes each wizard page.

Page

Description

[Map resource references to|
[resources|

If your application defines resource references, for Map resource references to
resources, specify JNDI names for the resources that represent the logical names
defined in resource references. You can optionally specify login configuration
name and authentication properties for the resource. After specifying
authentication properties, click OK to save the values and return to the mapping
step. You can optionally specify extended data source properties to enable a data
source that uses heterogeneous pooling to connect to a DB2 database. Each
resource reference defined in the application must be bound to a resource defined
in your WebSphere Application Server configuration before clicking Finish on the
Summary page.

[Map virtual hosts for web]
Imodules|

If your application uses web modules, for Map virtual hosts for web modules,
select a virtual host from the list to map to a web module defined in the
application. The port number specified in the virtual host definition is used in the
URL that is used to access artifacts such as servlets and JSP files in the web
module. Each web module must have a virtual host to which it maps. Not
specifying all needed virtual hosts will result in a validation error displaying after
you click Finish on the Summary page.

IMap security roles to users or|

|_g rou ESl

If the application has security roles defined in its deployment descriptor then, for

Map security roles to users or groups, specify users and groups that are

mapped to each of the security roles. Select Role to select all the roles or select

individual roles. For each role, you can specify whether predefined users such as

Everyone or All authenticated users are mapped to it. To select specific users

or groups from the user registry:

1. Select a role and click Lookup users or Lookup groups.

2. On the Lookup users or groups page displayed, enter search criteria to extract
a list of users or groups from the user registry.

3. Select individual users or groups from the results displayed.

4. Click OK to map the selected users or groups to the role selected on the Map
security roles to users or groups page.

IMap RunAs roles to users|

If the application has Run As roles defined in its deployment descriptor, for Map
RunAs roles to users, specify the Run As user name and password for every
Run As role. Run As roles are used by enterprise beans that must run as a
particular role while interacting with another enterprise bean. Select Role to select
all the roles or select individual roles. After selecting a role, enter values for the
user name, password, and verify password and click Apply.

|[Ensure all unprotected 1.x|
(Imethods have the correct level|
|of protection|

If your application contains EJB 1.x CMP beans that do not have method
permissions defined for some of the EJB methods, for Ensure all unprotected
1.x methods have the correct level of protection, specify if you want to leave
such methods unprotected or assign protection with deny all access.

[Bind listeners for
|Imessage-driven beans|

If your application contains message driven enterprise beans, for Bind listeners
for message-driven beans, provide a listener port name or an activation
specification JNDI name for every message driven bean.

IMap default data sources for|
modules containing 2.x entity|
beans|

If your application uses EJB modules that contain CMP beans that are based on
the EJB 2.x specification, for Map default data sources for modules containing
2.x entity beans, specify a JNDI name for the default data source and the type of
resource authorization to be used for the default data source for the EJB modules.
You can optionally specify a login configuration name and authentication
properties for the data source. When creating authentication properties, you must
click OK to save the values and return to the mapping step. You can optionally
specify extended data source properties to enable a data source that uses
heterogeneous pooling to connect to a DB2 database. The default data source for
EJB modules is optional if data sources are specified for individual CMP beans.

Chapter 8. Deploying applications 41

Table 5. Wizard page descriptions (continued). The table describes each wizard page.

Page

Description

IMap data sources for all 2.x|

|CMP bean§|

If your application has CMP beans that are based on the EJB 2.x specification, on
the Map data sources for all 2.x CMP beans page, for each of the 2.x CMP
beans specify a JNDI name and the type of resource authorization for data
sources to be used.

You can optionally specify a login configuration name and authentication
properties for the data source. When creating authentication properties, you must
click OK to save the values and return to the mapping step. The data source
attribute is optional for individual CMP beans if a default data source is specified
for the EJB module that contains CMP beans. If a default data source for the EJB
module and a data source for individual CMP beans are not specified, then a
validation error is displayed after you click Finish and installation is canceled.

|[Ensure all unprotected 2.x|
[methods have the correct level|

|of Erotection|

If your application contains EJB 2.x CMP beans that do not have method
permissions defined in the deployment descriptors for some of the EJB methods,
on the Ensure all unprotected 2.x methods have the correct level of
protection page, specify whether you want to assign a specific role to the
unprotected methods, add the methods to the exclude list, or mark them as
deselected. Methods added to the exclude list are marked as uncallable. For
methods marked deselected no authorization check is performed before their
invocation.

|Provide options to perform the|

If the Deploy enterprise beans setting is enabled on the |Select installation|

[EJB Deploy|

|ogtion§| page, then you can specify options for the EJB deployment tool on the
Provide options to perform the EJB Deploy page. On this page, you can
specify extra class paths, RMIC options, database types, and database schema
names to be used while running the EJB deployment tool.

You can specify the EJB deployment tool options on this page when installing or
updating an application that contains EJB modules. The EJB deployment tool runs
during installation of EJB 1.x or 2.x modules. The EJB deployment tool does not
run during installation of EJB 3.x modules.

Map shared libraries

On the Shared library references and Shared library mapping pages, specify
shared library files for your application or web modules to use. A defined shared
library must exist to associate your application or module to the library file.

IMap shared library|

|re|ationship§|

On the Map shared library relationships page, specify relationship identifiers
and composition unit names for shared libraries that modules in your enterprise
application reference.

When installing your enterprise application, the product creates a composition unit
for each shared library relationship in the business-level application that you
specified for Business-level application name on the [Select installation|

page.

[Provide JSP reloading options]|
[for web modules|

If your application uses web modules, for Provide JSP reloading options for
web modules, configure the class reloading of JavaServer Pages (JSP) files.

|ﬁ\/|ap context roots for web|

|modu|e§|

If your application uses web modules that are defined in the application XML
deployment descriptor, for Map context roots for web modules, specify a
context root for each web module in the application.

The product does not include web modules from annotations on this page.

linitialize parameters for|

|serv|et§|

If your application uses web modules that support Servlet 2.5, for Initialize
parameters for servlets, specify or override initial parameters that are passed to
the init method of web module servlet filters.

This page shows servlets from the module XML deployment descriptor. Servlet
deployment information from annotations is not available on this page.

42

Developing and deploying applications

Table 5. Wizard page descriptions (continued). The table describes each wizard page.

Page

Description

IMap environment entries for|
[EJB modules|

If your application uses EJB modules, for Map environment entries for EJB
modules, configure the environment entries of EJB modules such as entity,
session, or message driven beans.

[Map environment entries for|
[client modules|

If you are deploying one or more application client modules, for Map environment
entries for client modules, configure the environment entries of client modules
that are deployed as JAR files. To view the Map environment entries for client
modules page, select the Deploy client modules option on the Select installation
options page.

[Miap environment entries for|
|[web modules|

If your application uses web modules that support Servlet 2.5, for Map
environment entries for web modules, configure the environment entries of web
modules such as servlets and JSP files.

IMap environment entries for|
lapplication level|

If your application defines one or more environment entries, for Map environment
entries for application level, configure the environment entries of applications
that are deployed as EAR files.

IMap resource environment|
lentry references to resources|

If your application contains resource environment references, for Map resource
environment entry references to resources, specify JNDI names of resources
that map to the logical names defined in resource environment references. If each
resource environment reference does not have a resource associated with it, after
you click Finish a validation error is displayed.

|Correct use of system identity]|

If your application defines Run-As Identity as System Identity, for Correct use of
system identity, you can optionally change it to Run-As role and specify a user
name and password for the Run As role specified. Selecting System Identity
implies that the invocation is done using the WebSphere Application Server
security server ID and should be used with caution as this ID has more privileges.

[Correct isolation levels for all|
[resource references|

If your application has resource references that map to resources that have an
Oracle database doing backend processing, for Correct isolation levels for all
resource references, specify or correct the isolation level to be used for such
resources when used by the application. Oracle databases support
ReadCommitted and Serializable isolation levels only.

[Map JASPI Provider|

On the Map JASPI Provider page, if your application has web modules, you can
specify values to override the JASPI settings from the global or domain security
configuration. By default, an application inherits the JASPI settings defined in the
WebSphere Application Server global or domain security configuration, and web
modules inherit the application setting.

[Bind message destination|
[references to administered|
lobjects|

If your application uses message driven beans, for Bind message destination
references to administered objects, specify the JNDI name of the J2C
administered object to bind the message destination reference to the message
driven beans.

If the message destination reference is from an EJB 3.0 or later module, then the
JNDI name is optional and the run time provides a container default value.

Attention: If multiple message destination references link to the same message
destination, only one JNDI name is collected. When a message destination
reference links to the same message destination as a message driven bean and
the destination JNDI name has been collected already, the destination JNDI name
for the message destination reference is not collected.

|IProvide JNDI names for JCA|

|ob'|ects|

If your application contains an embedded .rar file, for Provide JNDI names for
JCA objects, specify the name and JNDI name of each JCA connection factory,
administered object and activation specification.

Chapter 8. Deploying applications 43

Table 5. Wizard page descriptions (continued). The table describes each wizard page.

Page Description
Bind J2C activationspecs to If your application contains an embedded .rar file, its activationSpec property has
destination JNDI names the value Destination, and its introspected type is javax.jms.Destination, for

Bind J2C activationspecs to destination JNDI names, specify the jndiName
value for each activation bound to it.

|Select current backend ID| If your application has EJB modules for which deployment code has been
generated for multiple backend databases using an assembly tool, for Select
current backend ID, specify the backend ID representing the backend database
to be used when the EJB module runs.

For information about backend databases, see topics on the EJB deployment tool.

This step is not shown if the Deploy enterprise beans setting is enabled on the
Select installation options page and if a database type other than None is
specified on the Provide options to perform the EJB Deploy page.

[Metadata for modules| If your application has EJB 3.x or Web 2.5 modules, you can lock deployment
descriptors for one or more of the EJB 3.x or Web 2.5 modules. If you set the
metadata-complete attribute to true and lock deployment descriptors, the product
writes the complete module deployment descriptor, including deployment
information from annotations, to XML format.

[Provide options to perform the|| If the Deploy web services setting is enabled on the [Select installation options]
|web services deployment] page and your application uses web services, then you can specify wsdeploy
command options on the Provide options to perform the web services
deployment page. For information about this page, refer to descriptions of the
wsdeploy -cp and -jardir options.

[Display module build 1D| If the MANIFEST.MF file of a module in an enterprise application specifies a build
identifer, this page shows the build identifier of the module.

5. On the Summary page, verify the cell, node, and server onto which the application modules will install:
a. Beside Cell/Node/Server, click Click here.
b. Verify the settings.
c. Return to the Summary page.
d. Click Finish.

Results
Several messages are displayed, indicating whether your application file is installing successfully.

If Validate input off/warn/fail on the Select installation options page is set to warn, the default, several
validation warnings might be displayed. If the setting is fail, the validation warnings might cause errors.

If you receive an OutOfMemory error and the source application file does not install, your system might not
have enough memory or your application might have too many modules in it to install successfully onto the
server. If lack of system memory is not the cause of the error, package your application again so the .ear
file has fewer modules.

If lack of system memory and the number of modules are not the cause of the error, check the options you
specified on the Java virtual machine page of the application server running the administrative console.
You might increase the maximum heap size. Then, try installing the application file again.

What to do next

After the application file installs successfully, do the following:
1. Save the changes to your configuration.

44 Developing and deploying applications

For example, click the Save link in the application installation messages.

The application is registered with the administrative configuration and application files are copied to the
target directory, which is app_server_root/installedApps/cell_name by default or the directory that you
designate.

For a single-server product, application files are copied to the destination directory when the changes
are saved.

If you clicked the Save link in the application installation messages, the Preparing for the application
installation page displays again. Click Applications > Application Types > WebSphere enterprise
applications to exit the page and to see your application in the list of installed applications.

Start the application.

Test the application. For example, point a web browser at the URL for the deployed application and
examine the performance of the application. If necessary, edit the application configuration.

Example: Installing an EAR file using the default bindings

If application bindings were not specified for all enterprise beans or resources in an enterprise application
during application development or assembly, you can select to generate default bindings. After application
installation, you can modify the bindings as needed using the administrative console.

Before you begin

This topic assumes that the application can run on a web server.

About this task

This topic describes how to install a simple .ear file using the default bindings. You can follow the steps to
install any application, including applications provided from the Samples information center.

Procedure

1.
2.

Click Applications > New Application > New Enterprise Application in the console navigation tree.
On the first Preparing for application install page, specify the full path name of the EAR file.

a. For Path to the new application, specify the full path name of the .ear file. For this example, the
base file name is my_app1.ear and the file resides on a server at C:/sample_apps.

b. Click Next.

On the second Preparing for application install page, choose to generate default bindings.
a. Expand Choose to generate default bindings and mappings.

b. Select Generate default bindings.

Using the default bindings causes any incomplete bindings in the application to be filled in with
default values. The product does not change existing bindings. By choosing this option, you can
skip many of the steps of the application installation wizard and go directly to the Summary step.

c. Click Next.
If application security warnings are displayed, read the warnings and click Continue.

On the Install New Application page, click the step number for Map modules to servers, and verify
the cell, node, and server onto which the application files will install.

a. From the Clusters and servers list, select the server onto which the application files will install.
b. Select all of the application modules.
c. Click Next.

On the Map modules to servers page, you can map modules to other servers such as web servers. If
you want a web server to serve the application, use the Ctrl key to select an application server or
cluster and the web server together in order to have the plug-in configuration file plugin-cfg.xml for
that web server generated based on the applications which are routed through it.

Chapter 8. Deploying applications 45

6. On the Install New Application page, click the step number beside Summary, the last step.
7. On the Summary page, click Finish.

What to do next

Examine the application installation progress messages. If the application installs successfully, save your
administrative configuration. You can now see the name of your application in the list of deployed
applications on the Enterprise applications page accessed by clicking Applications > Application Types
> WebSphere enterprise applications in the console navigation tree.

If the application does not install successfully, read the messages to identify why the installation failed.
Correct problems with the application as needed and try installing the application again.

If the application has a web module, try opening a browser on the application.
1. Point a web browser at the URL for the deployed application.

The URL typically has the format http://host_name:9060/web_module name, where host_name is your
valid web server and 9060 is the default port number.

2. Examine the performance of the application.

If the application does not perform as desired, edit the application configuration, then save and test it
again.

Example: Installing a web services sample with the console
The product provides a web services sample application that you can install on an application server.

Before you begin

Download and extract the JaxWSServicesSample sample application. Ensure that your product installation
has a Version 7.x or later application server onto which you can install the Web Services Sample.

About this task

The JaxWSServicesSamples.ear enterprise application and supporting Java archives (JAR) files are located
in the installableApps directory within the Jax\WSServicesSamples sample application.

This topic describes how to install and start the JaxWSServicesSamples.ear enterprise application using an
administrative console.

Procedure
1. Click Applications > New Application > New Enterprise Application in the console navigation tree.
2. On the first Preparing for the application installation page, specify to install JaxWSServicesSamples.ear.

a. Click Local file system or Remote file system and specify the full path name of the
JaxWSServicesSamples.ear file.

.../installableApps/JaxWSServicesSamples.ear
b. Click Next.
3. On the second Preparing for the application installation page, select the fast path option.
a. Select Fast Path - Prompt only when additional information is required.
b. Click Next.
4. Click Next on each page until you reach the Summary page.

Do not go directly from Step 1 to the Summary page. You must click Next on each page that has
mandatory settings to enter values for those settings. Simply click Next to enter the default values. You
optionally can change the values to suit your environment.

46 Developing and deploying applications

5. On the Summary page, verify the cell, node, and server onto which the application modules will install,
and then click Finish.

6. Examine the application installation progress messages.

If the application installs successfully, the message Application JaxWSServicesSamples installed
successfully is displayed. Click Save. After the configuration changes are saved, you can see the
name of the application in the list of deployed applications on the Enterprise applications page
accessed by clicking Applications > Application Types > WebSphere enterprise applications in the
console navigation tree.

If the application does not install successfully, read the messages to identify why the installation failed.
Correct problems with the server or application and try installing the application again.

Results

The JaxWSServicesSamples application is in the list of deployed applications on the Enterprise
applications page.

What to do next

After the application installs successfully, do the following:
1. Start the application.

On the Enterprise applications page, select the check boxes beside JaxWSServicesSamples, and
then click Start.

2. Test the application. Point your web browser at:
http://localhost:9080/wssamplesei/demo

If the Tocalhost address does not load, substitute the host name (IP address) of the computer for
localhost; for example, http://9.22.33.44:9080/wssamplesei/demo.

If you have another WebSphere Application Server installation on your machine, the server port
number is likely not 9680. See the Ports table in the administrative console to find the WC_defaulthost
server port number. Click Servers > Server Types > WebSphere application servers > server1 >
Ports. The Port descriptions table lists the important ports.

Table 6. Port descriptions. Use the WC_defaulthost port in the URL to test the sample.

Port name Description

WC_adminhost Port used to open an unsecure administrative console in the URL
http://host_name:administrative_port/ibm/console

WC_adminhost_secure Port used to open a secure administrative console in the URL
http://host_name:administrative_port/ibm/console

WC_defaulthost Port used to test running applications in the URL http://host_name:server_port/
servlet_name

WC_defaulthost_secure Port used to securely test running applications in the URL http://
host_name:server_port/servlet_name

Preparing for application installation settings
Use this page to specify an application or module to install.

To view this administrative console page, click Applications > New application > New Enterprise
Application.

This page is the first Preparing for the application installation page. On this page, specify an application or

module to install. You can install an enterprise application archive (EAR file), enterprise bean (EJB)
module (JAR file), Session Initiation Protocol (SIP) module (SAR file), or web module (WAR file).

Chapter 8. Deploying applications 47

The second Preparing for the application installation page has more installation options, such as to
generate default bindings for incomplete existing bindings in your application or module.

Path to the new application
Specifies the fully qualified path to the enterprise application file.

The file can be an .ear, .jar, .sar, or .war file.

During application installation, the product typically uploads application files from a client workstation
running the browser to the server running the administrative console, and then deploys the application files
on the server. In such cases, use the web browser running the administrative console to select EAR,
WAR, SAR, or JAR modules to upload to the server.

Use Local file system when the browser and application files are on the same computer.

Use Remote file system in the following situations:

« The application file resides on any node in the current cell context. Only .ear, .jar, .sar, or .war files
are shown during the browsing.

» The application file resides on the file system of any of the nodes in a cell.

* The application file already resides on the computer running the application server. For example, the
field value might be profile root/installableApps/test.ear.

After the product transfers the application file, the Remote file system value shows the path of the
temporary location on the server.

Preparing for application installation binding settings

Use this page to select whether to view all installation options and to change the existing bindings for you
application or module during installation. You can choose to generate default bindings for any incomplete
bindings in the application or module or to assign specific bindings during installation.

This page is the second Preparing for the application installation page.

To view this administrative console page, click Applications > New application > New Enterprise
Application, specify the path for the application or module to install, and then click Next.

The console page might not display all of the binding options listed in this topic. The contents of the
application or module that you are installing determines which options are displayed on the console page.
Also, the Specify bindings to use option displays only when updating an installed application.

How do you want to install the application?

Specifies whether to show only installation options that require you to supply information or to show all
installation options.

Table 7. Installation option descriptions. You can select a Fast Path or select to see all installation options and
parameters.

Option Description

Fast Path - Prompt only Displays only those options that require your attention, based on the contents of
when additional information | your application or module. Use the fast path to install your application more easily
is required because you do not need to examine all available installation options.

Detailed - Show all Displays all available installation options.

installation options and

parameters

48 Developing and deploying applications

Specify bindings to use

Specifies whether to merge bindings when you update applications or to use new or existing bindings.

This setting is shown only when you update an installed application, and not when you install a new

application.

Table 8. Binding option descriptions. You can use merged, new, or existing bindings.

Option

Description

Merge new and existing
bindings

The binding information from the updated application or modules is preferred over
the corresponding binding information from the installed version. If any element of
the binding is missing in the updated version, the corresponding element from the
installed version is used. If both the installed and the updated application or module
does not have a binding value, the default value is used. The product assigns a
default value only if you select the Generate default bindings option.

Use new bindings

The binding information in the updated application or module is used. The binding
information from the updated version of the application or module is preferred over
the corresponding binding information in the installed version. The binding
information from the installed version of the application or module is ignored.

Use existing bindings

The binding information from the installed version of the application or module is
preferred over the corresponding binding information from the updated version. If
any element of the binding information does not exist in the installed version, the
element from the updated version is used. That is, bindings from the updated
version of the application or module are ignored if a binding exists in the installed
version. Otherwise, the new bindings are honored and not ignored.

Generate default bindings

Specifies whether to generate

default bindings and mappings. To view this setting, expand Choose to

generate default bindings and mappings. If you select Generate default bindings, then the product
completes any incomplete bindings in the application with default values. The product does not change

existing bindings.

After you select Generate default bindings, you can advance directly to the Summary step and install the
application if none of the steps have a red asterisk (*). A red asterisk denotes that the step has incomplete
data and requires a valid value. On the Summary page, verify the cell, node, and server on which the

application is installed.

transition: You do not need to specify Java Naming and Directory Interface (JNDI) values for EJB bean,
local home, remote home, or business interfaces of EJB 3.0 or later modules. The product
assigns container default values during run time. Similarly, for any EJB reference within an

EJB 3.0, EJB 3.1,

Web 2.4, or Web 2.5 module, you do not need to specify JNDI values

because the product resolves the targets automatically during run time. Even when you select

Generate default
values but it does

bindings, the product does not generate default values for those JNDI
generate default values for other bindings such as virtual host.

If you select Generate default bindings, the product generates bindings as follows:

» Enterprise bean (EJB) JNDI
ejb, but can be overridden.

names are generated in the form prefix/ejb-name. The default prefix is
The ejb-name is as specified in the deployment descriptors <ejb-name> tag

or in its corresponding annotation for EJB 3.0 or later modules. The product does not generate default

values for enterprise beans
default values.

in an EJB 3.0 or later module because the run time provides container

» EJB references are bound if an <ejb-1ink> is found. Otherwise, if a unique enterprise bean is found
with a matching home (or local home) interface as the referenced bean, the reference is resolved
automatically. The product does not generate default values for EJB reference in an EJB 3.0, EJB 3.1,
Web 2.4, or Web 2.5 module because the run time provides container default values or automatically
resolves the target references.

Chapter 8. Deploying applications 49

* Resource reference bindings are derived from the <res-ref-name> tag or its corresponding annotation
for Java Platform, Enterprise Edition (Java EE) 5 or 6 modules. This action assumes that the
Jjava:comp/env name is the same as the resource global JNDI name.

» Connection factory bindings for EJB 2.0 and EJB 2.1 JAR files are generated based on the JNDI name
and authorization information provided. This action results in default connection factory settings for each
EJB 2.0 and EJB 2.1 JAR file in the application being installed. No bean-level connection factory
bindings are generated.

« Data source bindings for EJB 1.1 JAR files are generated based on the JNDI name, data source user
name and password options. This action results in default data source settings for each JAR file. No
bean-level data source bindings are generated.

* For EJB 2.0 or later message-driven beans deployed as Java EE Connector Architecture (JCA)
1.5-compliant resources, the JNDI names corresponding to activationSpec instances are generated in
the form eis/MDB_ejb-name. Message destination references are bound if a <message-destination-
1ink> is found, then the JNDI name is set to ejs/message-destination-1linkName. Otherwise, the JNDI
name is set to eis/message-destination-refName.

» For EJB 2.0 or later message-driven beans deployed against listener ports, the listener ports are
derived from the message-driven bean <ejb-name> tag with the string Port appended.

» For .war files, the virtual host is set as default_host unless otherwise specified.

The default strategy suffices for most applications or at least for most bindings in most applications.

However, if you experience errors, complete the following actions:

» Control the global JNDI names of one or more EJB files.

» Control data source bindings for container-managed persistence (CMP) beans. That is, you have
multiple data sources and need more than one global data source.

* Map resource references to global resource JNDI names that are different from the java:comp/env
name.

In such cases, you can change the behavior with an XML document, which is a custom strategy. Use the
Specific bindings file setting to specify a custom strategy and see the setting description in this help file
for examples.

Override existing bindings
Specifies whether generated bindings are to replace existing bindings.

The default is to not override existing bindings. Select Override existing bindings to have generated
bindings replace existing bindings.

Specific bindings file
Specifies a bindings file that overrides the default binding.

Change the behavior of the default binding with an XML document, which is a custom strategy. Custom
strategies extend the default strategy so you only need to customize those areas where the default
strategy is insufficient. Thus, you only need to describe how you want to change the bindings generated
by the default strategy; you do not have to define bindings for the entire application.

Use the following examples to override various aspects of the default bindings generator:

Controlling an EJB JNDI name

<?xml version="1.0"?>
<!IDOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<df1tbndngs>
<module-bindings>
<ejb-jar-binding>
<jar-name>helloEjb.jar</jar-name>
<ejb-bindings>
<ejb-binding>
<ejb-name>HelToEjb</ejb-name>
<jndi-name>com/acme/ejb/Hel1oHome</jndi-name>
</ejb-binding>
</ejb-bindings>
</ejb-jar-binding>
</module-bindings>
</df1tbndngs>

50 Developing and deploying applications

Remember: Ensure that the setting for <ejb-name> matches the ejb-name entry in the EJB JAR
deployment descriptor. Here the setting is <ejb-name>Hel1oEjb</ejb-name>.

Setting the connection factory binding for an EJB JAR file

<IDOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<dfltbndngs>
<module-bindings>
<ejb-jar-binding>
<jar-name>yourEjb20.jar</jar-name>
<connection-factory>
<jndi-name>eis/jdbc/YourData_CMP</jndi-name>
<res-auth>Container</res-auth>
</connection-factory>
</ejb-jar-binding>
</module-bindings>
</df1tbndngs>

Setting the connection factory binding for an EJB file

<?xml version="1.0">
<IDOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<df1tbndngs>
<module-bindings>
<ejb-jar-binding>
<jar-name>yourEjb20.jar</jar-name>
<ejb-bindings>
<ejb-binding>
<ejb-name>YourCmp20</ejb-name>
<connection-factory>
<jndi-name>eis/jdbc/YourData_CMP</jndi-name>
<res-auth>PerConnFact</res-auth>
</connection-factory>
</ejb-binding>
</ejb-bindings>
</ejb-jar-binding>
</module-bindings>
</df1tbndngs>

Restriction: Ensure that the setting for <ejb-name> matches the ejb-name tag in the deployment
descriptor. Here the setting is <ejb-name>YourCmp20</ejb-name>.

Setting the message destination reference JNDI for a specific enterprise bean

This example shows an XML extract in a custom strategy file for setting message-destination-refs for a
specific enterprise bean.

<?xml version="1.0">
<IDOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<df1tbndngs>
<module-bindings>
<ejb-jar-binding>
<jar-name>yourEjb21.jar</jar-name>
<ejb-bindings>
<ejb-binding>
<ejb-name>YourSession21</ejb-name>
<message-destination-ref-bindings>
<message-destination-ref-binding>
<message-destination-ref-name>jdbc/MyDataSrc</message-destination-ref-name>
<jndi-name>eis/somA0</jndi-name>
</message-destination-ref-binding>
</message-destination-ref-bindings>
</ejb-binding>
</ejb-bindings>
</ejb-jar-binding>
</module-bindings>
</df1tbndngs>

Restriction: Ensure that the setting for <ejb-name> matches the ejb-name tag in the deployment
descriptor. Here the setting is <ejb-name>YourSession21</ejb-name>. Also ensure that the
setting for <message-destination-ref-name> matches the message-destination-ref-name tag
in the deployment descriptor. Here the setting is <message-destination-ref-name>jdbc/
MyDataSrc</message-destination-ref-name>.

Overriding a resource reference binding from a WAR, EJB JAR file, or Java EE client JAR file

Chapter 8. Deploying applications 51

This example shows code for overriding a resource reference binding from a WAR file. Use similar code to
override a resource reference binding from an enterprise bean (EJB) JAR file or a Java EE client JAR file.

<?xml version="1.0"?>
<IDOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<dfltbndngs>
<module-bindings>
<war-binding>
<jar-name>hello.war</jar-name>
<resource-ref-bindings>
<resource-ref-binding>
<resource-ref-name>jdbc/MyDataSrc</resource-ref-name>
<jndi-name>war/override/dataSource</jndi-name>
</resource-ref-binding>
</resource-ref-bindings>
</war-binding>
</module-bindings>
</df1tbndngs>

Restriction: Ensure that the setting for <resource-ref-name> matches the resource-ref tag in the
deployment descriptor. In the previous example, the setting is <resource-ref-name>jdbc/
MyDataSrc</resource-ref-name>.

Overriding the JNDI name for a message-driven bean deployed as a JCA 1.5-compliant resource

This example shows an XML extract in a custom strategy file for overriding the Java Message Service
(JMS) activationSpec JNDI name for an EJB 2.0 or later message-driven bean deployed as a JCA
1.5-compliant resource.

<?xml version="1.0"7>
<IDOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<df1tbndngs>
<module-bindings>
<ejb-jar-binding>
<jar-name>YourEjbJar.jar</jar-name>
<ejb-bindings>
<ejb-binding>
<ejb-name>YourMDB</ejb-name>
<activationspec-jndi-name>activationSpecIJNDI</activationspec-jndi-name>
</ejb-binding>
</ejb-bindings>
</ejb-jar-binding>
</module-bindings>
</dfltbndngs>

Overriding the JMS listener port name for an EJB 2.0, 2.1, or 3.0 message-driven bean

This example shows an XML extract in a custom strategy file for overriding the JMS listener port name for
an EJB 2.0 or later message-driven bean deployed against a listener port.

<?xml version="1.0"?>
<IDOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<df1tbndngs>
<module-bindings>
<ejb-jar-binding>
<jar-name>YourEjbJar.jar</jar-name>
<ejb-bindings>
<ejb-binding>
<ejb-name>YourMDB</ejb-name>
<listener-port>yourMdbListPort</listener-port>
</ejb-binding>
</ejb-bindings>
</ejb-jar-binding>
</module-bindings>
</dfltbndngs>

Overriding an EJB reference binding from an EJB JAR, WAR file, or EJB file

This example shows code for overriding an EJB reference binding from an EJB JAR file. Use similar code
to override an EJB reference binding from a WAR file or an EJB file.

<?xml version="1.0"?>
<IDOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<df1tbndngs>
<module-bindings>
<ejb-jar-binding>
<jar-name>YourEjbJar.jar</jar-name>
<ejb-ref-bindings>

52 Developing and deploying applications

<ejb-ref-binding>
<ejb-ref-name>YourEjb</ejb-ref-name>
<jndi-name>YourEjb/JINDI</jndi-name>

</ejb-ref-binding>

</ejb-ref-bindings>
</ejb-jar-binding>
</module-bindings>
</df1tbndngs>

Specify unique prefix for beans
Specifies a string that the product applies to the beginning of generated enterprise bean JNDI names. The
prefix must be unique within the cell or node.

The default is to not specify a unique prefix for beans.

Default bindings for EJB 1.1 CMP beans

Specifies the default data source JNDI name and other bindings for container-managed persistence (CMP)
1.1 beans.

The default is to not use default bindings for EJB 1.1 CMP beans.

If you select Default bindings for EJB 1.1 CMP beans, specify the JNDI name for the default data
source to be used with the CMP 1.1 beans. Also specify the user name and password for this default data
source.

Default connection factory bindings
Specifies the default connection factory JNDI name.

The default is to not use default connection factory bindings. Select Default connection factory bindings
to specify bindings for connection factories.

If you select Default connection factory bindings, specify the JNDI name for the default connection
factory to be used. Also specify whether the resource authorization is for the application or container-wide.

Use default virtual host name for web and SIP modules
Specifies the virtual host for the web module (WAR file) or Session Initiation Protocol (SIP) module (SAR
file).

The default is to not use default virtual host name for web or SIP modules. If you select Use default
virtual host name for web and SIP modules, specify a default host name.

Select installation options settings

Use this page to specify options for the installation of a Java Platform, Enterprise Edition (Java EE)
application onto a WebSphere Application Server deployment target. Default values for the options are
used if you do not specify a value. After application installation, you can specify values for many of these
options from an enterprise application settings page.

To view this administrative console page, click Applications > New application > New Enterprise
Application and then specify values as needed for your application on the Preparing for application
installation pages.

The Select installation options page is the same for the application installation and update wizards.

Precompile JavaServer Pages files
Specify whether to precompile JavaServer Pages (JSP) files as a part of installation. The default is not to
precompile JSP files.

For this option, install only onto a Version 8 deployment target.

Chapter 8. Deploying applications 53

If you select Precompile JavaServer Pages files and try installing your application onto an earlier
deployment target such as Version 7, the installation is rejected. You can deploy applications to only those
deployment targets that have same version as the product. If applications are targeted to servers that have
an earlier version than the product, then you cannot deploy to those targets.

Data type Boolean
Default false

Directory to install application
Specifies the directory to which the enterprise archive (EAR) file will be installed.

By default, the EAR file is installed in the profile root/installedApps/cell _name/application _name.ear
directory.

Setting options include the following:
» Do not specify a value and leave the field empty.

The default value is ${APP_INSTALL RO0T}/cell name, where the ${APP_INSTALL_ROOT} variable is
profile _root/installedApps. A directory having the EAR file name of the application being installed is
appended to ${APP_INSTALL R0OT}/cell name. Thus, if you do not specify a directory, the EAR file is
installed in the profile _root/installedApps/cell name/application_name.ear directory.

» Specify a directory.
If you specify a directory for Directory to install application, the application is installed in
specified path/application_name.ear directory. A directory having the EAR file name of the application
being installed is appended to the path that you specify for Directory to install application. For
example, if you are installing Clock.ear and specify C:/myapps on Windows computers, the application
is installed in the myapps/Clock.ear directory. The ${APP_INSTALL_ROOT]} variable is set to the
specified path.

» Specify ${APP_INSTALL ROOT}/${CELL} for the initial installation of the application.

If you intend to export the application from one cell and later install the exported application on a
different cell, specify the ${CELL} variable for the initial installation of the application. For example,
specify ${APP_INSTALL ROOT}/${CELL} for this setting. Exporting the application creates an enhanced
EAR file that has the application and its deployment configuration. The deployment configuration retains
the cell name of the initial installation in the destination directory unless you specify the ${CELL}
variable. Specifying the ${CELL} variable ensures that the destination directory has the current cell
name, and not the original cell name.

Important: If an installation directory is not specified when an application is installed on a single-server
configuration, the application is installed in ${APP_INSTALL_ROOT}/cell_name. When the
server is made a part of a multiple-server configuration (using the addNode utility), the cell
name of the new configuration becomes the cell name of the deployment manager node. If
the -includeapps option is used for the addNode utility, then the applications that are
installed prior to the addNode operation still use the installation directory
${APP_INSTALL ROOT}/cell name. However, an application that is installed after the server is
added to the network configuration uses the default installation directory
${APP_INSTALL_ROOT}/network_cell_name. To move the application to the
${APP_INSTALL_ROOT}/network_cell_name location upon running the addNode operation,
explicitly specify the installation directory as ${APP_INSTALL ROOT}/${CELL} during
installation. In such a case, the application files can always be found under
${APP_INSTALL_ROOT}/current_cell_name.

 If the application has been exported and you are installing the exported EAR file in a different cell or
location, specify ${APP_INSTALL ROOT}/cell name/application _name.ear if you did not specify
${APP_INSTALL_ROOT}/${CELL} for the initial installation.

54 Developing and deploying applications

The exported EAR file is an enhanced EAR file that has the application and its deployment
configuration. The deployment configuration retains the value for Directory to install application that
was used for the previous installation of the application. Unless you specify a different value for
Directory to install application for this installation, the enhanced EAR file will be installed to the same
directory as for the previous installation.

If you did not specify the ${CELL} variable during the initial installation, the deployment configuration
uses the cell name of the initial installation in the destination directory. If you are installing on a different
cell, specify ${APP_INSTALL ROOT}/cell name/application _name.ear, where cell_name is the name of
the cell to which you want to install the enhanced EAR file. If you do not designate the current cell
name, cell_name will be the original cell name even though you are installing the enhanced EAR file on
a cell that has a different name.

» Specify an absolute path or a use pathmap variable.

You can specify an absolute path or use a pathmap variable such as ${MY_APPS}. You can use a
pathmap variable in any installation.

This Directory to install application field is the same as the Location (full path) setting on an
Application binaries page.

Data type String
Units Full path name

Distribute application

Specifies whether the product expands application binaries in the installation location during installation
and deletes application binaries during uninstallation. The default is to enable application distribution.
Application binaries for installed applications are expanded to the directory specified.

On single-server products, the binaries are deleted when you uninstall and save changes to the
configuration.

On multiple-server products, the binaries are deleted when you uninstall and save changes to the
configuration and synchronize changes.

If you disable this option, then you must ensure that the application binaries are expanded appropriately in
the destination directories of all nodes where the application runs.

Note: If you disable this option and you do not copy and expand the application binaries to the nodes, a
later saving of the configuration or manual synchronization does not move the application binaries
to the nodes for you.

This Distribute application field is the same as the Enable binary distribution, expansion and cleanup
post uninstallation setting on an Application binaries page.

Data type Boolean
Default true

Use binary configuration

Specifies whether the application server uses the binding, extensions, and deployment descriptors located
with the application deployment document, the deployment.xm1 file (default), or those located in the
enterprise archive (EAR) file. Select this setting for applications installed on Version 6.0 or later
deployment targets only.

The default (false) is to use the binding, extensions, and deployment descriptors located in

depToyment.xml. To use the binding, extensions, and deployment descriptors located in the EAR file,
enable this setting (true).

Chapter 8. Deploying applications 55

This Use binary configuration field is the same as the Use configuration information in binary setting
on an Application binaries page.

Data type Boolean
Default false

Deploy enterprise beans
Specifies whether the EJBDeploy tool runs during application installation.

The tool generates code needed to run Enterprise JavaBeans (EJB) files. You must enable this setting in

the following situations:

* The EAR file was assembled using an assembly tool such as Rational Application Developer and the
EJBDeploy tool was not run during assembly.

* The EAR file was not assembled using an assembly tool such as Rational Application Developer.

+ The EAR file was assembled using versions of the Application Assembly Tool (AAT) previous to Version
5.0.

If an EJB module is packaged in a web archive (WAR), you do not need to enable this setting.

The EJB deployment tool runs during installation of EJB 1.x or 2.x modules. The EJB deployment tool
does not run during installation of EJB 3.x modules.

For this option, install only onto a Version 8 deployment target.

If you select Deploy enterprise beans and try installing your application onto an earlier deployment target
such as Version 7, the installation is rejected. You can deploy applications to only those targets that have
same WebSphere version as the product. If applications are targeted to servers that have an earlier
version than the product, then you cannot deploy to those targets.

Also, if you select Deploy enterprise beans and specify a database type on the Provide options to
perform the EJB Deploy page, previously defined backend IDs for all of the EJB modules are overwritten
by the chosen database type. To enable backend IDs for individual EJB modules, set the database type to
"" (null) on the Provide options to perform the EJB Deploy page.

Enabling this setting might cause the installation program to run for several minutes.

Data type Boolean
Default true (false for EJB 3.0 modules)

Application name

Specifies a logical name for the application. An application name must be unique within a cell and cannot
contain an unsupported character.

An application name cannot begin with a period (.), cannot contain leading or trailing spaces, and cannot
contain any of the following characters:

Table 9. Characters that you cannot use in a name. The product does not support these characters in a name.

Unsupported characters

| forward slash $ dollar sign ' single quote mark

\ backslash = equal sign " double quote mark

* asterisk % percent sign | vertical bar

, comma + plus sign < left angle bracket
colon @ at sign > right angle bracket

56 Developing and deploying applications

Table 9. Characters that you cannot use in a name (continued). The product does not support these characters in a
name.

Unsupported characters

; semi-colon # hash mark & ampersand (and sign)

? question mark 11> No specific name exists for this character combination

This Application name field is the same as the Name setting on an Enterprise application settings page.

Data type String

Create MBeans for resources
Specifies whether to create MBeans for resources such as servlets or JSP files within an application when
the application starts. The default is to create MBeans.

This field is the same as the Create MBeans for resources setting on a Startup behavior page.

Data type Boolean
Default true

Override class reloading settings for web and EJB modules

Specifies whether the product run time detects changes to application classes when the application is
running. If this setting is enabled and if application classes are changed, then the application is stopped
and restarted to reload updated classes.

The default is not to enable class reloading.

This field is the same as the Override class reloading settings for web and EJB modules setting on a
Class loading and update detection page.

Data type Boolean
Default false

Reload interval in seconds

Specifies the number of seconds to scan the application's file system for updated files. The default is the
value of the reloading interval attribute in the IBM extension (META-INF/ibm-application-ext.xmi) file of
the EAR file.

The reloading interval attribute takes effect only if class reloading is enabled.

To enable reloading, specify a value greater than zero (for example, 1 to 2147483647). To disable
reloading, specify zero (0). The range is from 0 to 2147483647.

This Reload interval in seconds field is the same as the Polling interval for updated files setting on a
Class loading and update detection page.

Data type Integer
Units Seconds
Default 3

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-dava EE 5 application or module or a Java EE 5 or later application or

Chapter 8. Deploying applications 57

module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the

type of extension or binding file such as app, application, ejb-jar, or web. The following conditions

apply:

* For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

» For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

Deploy web services
Specifies whether the web services deploy tool wsdeploy runs during application installation.

The tool generates code needed to run applications using web services. The default is not to run the
wsdeploy tool. You must enable this setting if the EAR file contains modules using Web services and has
not previously had the wsdeploy tool run on it, either from the Deploy menu choice of an assembly tool or
from a command line.

For this option, install only onto a Version 6.1 or later deployment target.

If you select Deploy web services and try installing your application onto an earlier deployment target
such as Version 6.0, the installation is rejected. You can deploy applications to only those targets that have
same version as the product. If applications are targeted to servers that have an earlier version than the
product, then you cannot deploy to those targets.

Data type Boolean
Default false

Validate input off/warn/fail
Specifies whether the product examines the application references specified during application installation
or updating and, if validation is enabled, warns you of incorrect references or fails the operation.

An application typically refers to resources using data sources for container managed persistence (CMP)
beans or using resource references or resource environment references defined in deployment descriptors.
The validation checks whether the resource referred to by the application is defined in the scope of the
deployment target of that application.

Select off for no resource validation, warn for warning messages about incorrect resource references, or
fail to stop operations that fail as a result of incorrect resource references.

This Validate input off/warn/fail field is the same as the Application reference validation setting on an
Enterprise application settings page.

Data type String
Default warn

Process embedded configuration
Specifies whether the embedded configuration should be processed. An embedded configuration consists
of files such as resource.xml and variables.xml. When selected or true, the embedded configuration is

58 Developing and deploying applications

loaded to the application scope from the .ear file. If the .ear file does not contain an embedded
configuration, the default is false. If the .ear file contains an embedded configuration, the default is true.

This setting affects installation of enhanced EAR files. An enhanced EAR file results when you export an
installed application.

When false, an enhanced EAR file is installed like any other application and the product ignores its
embedded configuration.

If you exported the application from a cell other than the current cell and did not specify the $ (CELL)
variable for Directory to install application when first installing the application, deselect this setting
(false) to expand the enhanced EAR file in the profile root/installedApps/current cell name directory.
Otherwise, if this setting is selected (true), the enhanced EAR file is expanded in the

profile root/installedApps/original cell name directory, where original_cell_name is the cell on which
the application was first installed. If you specified the $ (CELL) variable for Directory to install application
when you first installed the application, installation expands the enhanced EAR file in the
profile_root/installedApps/current_cell_name directory.

Data type Boolean
Default false (deselected)

File permission
Specifies access permissions for application binaries for installed applications that are expanded to the
directory specified.

The Distribute application option must be enabled to specify file permissions.

You can specify file permissions in the text field. You can also set some of the commonly used file
permissions by selecting them from the multiple-selection list. List selections overwrite file permissions set
in the text field.

You can set one or more of the following file permission strings in the list. Selecting multiple options
combines the file permission strings.

Table 10. File permission string sets for list options. Select a list option or specify a file permission string in the text
field.

Multiple-selection list option File permission string set

Allow all files to be read but not written to .*=755

Allow executables to execute .*\.d11=755#.%\.s0=755#.*\.a=755#.*\.s1=755
Allow HTML and image files to be read by .*\.htm=755#.%\ . htm1=755#.*\.gif=755#.*\.jpg=755
everyone

Instead of using the multiple-selection list to specify file permissions, you can specify a file permission
string in the text field. File permissions use a string that has the following format:

file_name_pattern=permission#file_name_pattern=permission

where file_name_pattern is a regular expression file name filter (for example, .*\\.jsp for all JSP files),
permission provides the file access control lists (ACLs), and # is the separator between multiple entries of
file_name_pattern and permission. If # is a character in a file_name_pattern string, use \# instead.

If multiple file name patterns and file permissions in the string match a uniform resource identifier (URI)
within the application, then the product uses the most stringent applicable file permission for the file. For
example, if the file permission string is .*\\.jsp=775#a.*\\.jsp=754, then the abc. jsp file has file
permission 754.

Chapter 8. Deploying applications 59

best-practices: Using regular expressions for file matching pattern compares an entire string URI against
the specified file permission pattern. You must provide more precise matching patterns
using regular expressions as defined by Java programming API. For example, suppose
the following directory and file URIs are processed during a file permission operation:

Table 11. Example URIs for file permission operations. Results are shown following this table.

1 /opt/WebSphere/profiles/AppSrv0l/installedApps/MyCel1/MyApp.ear/MyWarModule.war

/opt/WebSphere/profiles/AppSrvOl/installedApps/MyCel1/MyApp.ear/MyWarModule.war/MyJsp.jsp

/opt/WebSphere/profiles/AppSrv0l/installedApps/MyCell/MyApp.ear/MyWarModule.war/META-INF/
MANIFEST.MF

4 /opt/WebSphere/profiles/AppSrv0l/installedApps/MyCel1/MyApp.ear/MyWarModule.war/WEB-INF/classes/
MyClass.class

5 /opt/WebSphere/profiles/AppSrv01l/installedApps/MyCel1/MyApp.ear/MyWarModule.war/mydir/
MyClass2.class

6 /opt/WebSphere/profiles/AppSrv0l/installedApps/MyCel1/MyApp.ear/MyWarModule.war/META-INF

The file pattern matching results are:

* MyWarModule.war does not match any of the URIs

e .x*MyWarModule.war.* matches all URIs

e .xMyWarModule.war$ matches only URI 1

« .*\\.jsp=755 matches only URI 2

* .*META-INF.* matches URIs 3 and 6

e .*MyWarModule.war/.*/.*\.class matches URIs 4 and 5

If you specify a directory name pattern for File permissions, then the directory permission is set based on
the value specified. Otherwise, the File permissions value set on the directory is the same as its parent.
For example, suppose you have the following file and directory structure:

/opt/WebSphere/profiles/AppSrv0l/installedApps/MyCell/MyApp.ear/MyWarModule.war/MyJsp.jsp

and you specify the following file pattern string:
.*MyApp.ear$=755#.*\.jsp=644

The file pattern matching results are:

* Directory MyApp.ear is set to 755

* Directory MyWarModule.war is set to 755
» Directory MyWarModule.war is set to 755

best-practices: Regardless of the operation system, always use a forward slash (/) as a file path
separator in file patterns.

T You cannot unset read permission on a file on Windows operating systems. With POSIX style
permission bits, the bit for denoting readable on a file is 4, writable is 2, and executable is 1. Thus,
permission of a file on a Windows operating system is either 5 or 7. Also, in POSIX style there are user,
group and world permissions. You can only set the user permission for a file on Windows operating
systems. The group and world permission bits are ignored.

Access permissions specified here are at the application level. You can also specify access permissions
for application binaries in the node-level configuration. The node-level file permissions specify the
maximum (most lenient) permissions that can be given to application binaries. Access permissions
specified here at application level can only be the same as or more restrictive than those specified at the
node level.

This setting is the same as the File permissions field on the Application binaries page.

60 Developing and deploying applications

Data type String

Application build identifier
Specifies an uneditable string that identifies the build version of the application.

This Application build identifier field is the same as the Application build level field on the Application
binaries page.

Data type String

Business-level application name

Specifies whether the product creates a new business-level application with the enterprise application that
you are installing or makes the enterprise application a composition unit of an existing business-level
application.

The default is to create a new business-level application with a setting value of
WebSphere:blaname=Anyasset,blaedition=BASE. When you select to create a new business-level
application from the drop-down list, the product creates a business-level application that has the same
name as your enterprise application. If a business-level application with the name of your enterprise
application exists already, the product does not create a new business-level application; it adds your
enterprise application as a composition unit to that existing business-level application.

If you need to use the Shared library relationship and mapping settings page to specify dependency
relationships on existing shared libraries in the business-level application, select the business-level
application name from the drop-down list. No shared libraries are shown in the page if you choose to
create a new business-level application and a business-level application with the default name exists
already.

To add your enterprise application to an existing business-level application, select an existing
business-level application from the drop-down list. The product makes your enterprise application a
composition unit of the existing business-level application.

Data type String
Default Create a new business-level application that has the same name as the
enterprise application that you are installing.

WebSphere:blaname=Anyasset,blaedition=BASE

Asynchronous request dispatch type

Specifies whether web modules can dispatch requests concurrently on separate threads and, if so,
whether the server or client dispatches the requests. Concurrent dispatching can improve servlet response
time.

If operations are dependant on each other, do not enable asynchronous request dispatching. Select
Disabled. Concurrent dispatching might result in errors when operations are dependant.

Select Server side to enable the server to dispatch requests concurrently. Select Client side to enable
the client to dispatch requests concurrently.

Data type String
Default Disabled

Chapter 8. Deploying applications 61

Allow EJB reference targets to resolve automatically
Specifies whether the product assigns default JNDI values for or automatically resolves incomplete EJB
reference targets.

Select this option to enable EJB reference targets to resolve automatically if the references are from EJB

2.1 or earlier modules or from Web 2.3 or earlier modules. If you enable this option, the runtime container
provides a default value or automatically resolves the EJB reference for any EJB reference that does not

have a binding.

If you selected Generate default bindings on the Preparing for application installation page, then you do
not need to select this option. The product generates default values.

If you select Allow EJB reference targets to resolve automatically, all modules in the application must
share one deployment target. If you select this option and all of the application modules do not share a
common server, after you click Finish on the Summary page, the product displays a warning message
and does not install the application. You must deselect this setting before you click Finish to install the
application.

Data type Boolean
Default false

Deploy client modules
Specifies whether to deploy client modules.

Select this option (set to true) if the file to deploy has one or more client modules and you want to
configure environment entries for the client modules. Also select this option to configure resources such as
EJB references, resource references, resource environment references, or message destination
references. Selecting this option enables you to view the Map environment entries for client modules page.
If you are deploying the client modules to a federated node of a deployment manager (Federated) or to an
application server (Server Deployed), select this option and set Client deployment mode to the
appropriate value for the deployment target, Federated or Server Deployed.

If you select this option, install the client modules only onto a Version 8.0 deployment target.

Data type Boolean
Default false

Client deployment mode
Specifies whether to deploy client modules to an isolated deployment target (Isolated), a federated node
of a deployment manager (Federated), or an application server (Server Deployed).

The choice of client deployment mode affects how java: lookups are handled. All Java URL name spaces
(global, application, module, and component) are local in isolated client processes. The name spaces
reside on a server in federated and server deployed client processes. The server chosen as a target for a
client module determines where those name spaces are created. All java: lookups for federated or server
deployed client modules are directed to the target server. The client module does not actually run in the
target server. Multiple instances of the same client module will all share the component name space in the
Federated and Server Deployed modes. Choosing the Federated mode is simply a declaration of intent
to launch the client module using Java Network Launching Protocol (JNLP), but the Java Naming and
Directory Interface (JNDI) mechanics of federated and server deployed modes are the same.

Data type String
Default Isolated

62 Developing and deploying applications

Validate schema

Specifies whether to validate the deployment descriptors against published Java EE deployment descriptor
schemas. When this option is selected, the product analyzes each deployment descriptor to determine the
Java EE specification version for the deployment descriptor, selects the appropriate schema, and then
checks the deployment descriptor against the Java EE deployment descriptor schema. Validation errors
result in error messages.

A Java EE deployment descriptor schema is also known as a DTD.

If you select this option, install your application or module only onto a Version 8.0 deployment target.

Data type Boolean
Default false

Manage modules settings

Use this page to specify deployment targets where you want to install the modules that are contained in
your application. Modules can be installed on the same deployment target or dispersed among several
deployment targets.

On single-server products, a deployment target can be an application server or web server.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Manage modules. This page is the similar to the Map
modules to servers page on the application installation and update wizards.

On this page, each Module must map to one or more targets, identified under Server. To change a

mapping:

1. In the list of mappings, select each module that you want mapped to the same target or targets.

2. From the Clusters and servers list, select one or more targets. Select only appropriate deployment
targets for a module. You cannot install modules that use WebSphere Application Server Version 8.x
features on a Version 7.x or 6.x target server. Similarly, you cannot install modules that use Version 7.x
features on a Version 6.x target server.

Use the Cirl key to select multiple targets. For example, to have a web server serve your application,
press the Ctrl key and then select an application server and the web server together. The product
generates the plug-in configuration file, plugin-cfg.xml, for that web server based on the applications
which are routed through it.

3. Click Apply.

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

If you accessed this Manage modules page from a console enterprise application page for an already
installed application, you can also use this page to view and manage modules in your application.

To view the values specified for a module configuration, click the module name in the list. The displayed
module settings page shows the values specified. On the settings page, you can change existing
configuration values and link to additional console pages that assist you in configuring the module.

To manage a module, select the module name in the list and click a button:

Chapter 8. Deploying applications 63

Button Resulting action

Remove Removes the selected module from the deployed application. The module is deleted
from the application in the configuration repository and also from all of the nodes
where the application is installed and running or expected to run.

Update Opens a wizard that helps you update modules in an application. If a module has the
same URI as a module already existing in the application, the new module replaces
the existing module. If the new module does not exist in the application, it is added to
the deployed application.

Remove File Deletes a file from a module of a deployed application.

Export File Accesses the Export a file from an application page, which you use to export a file of
an enterprise application or module to a location of your choice.

If the browser does not prompt for a location to store the file, click File > Save as and
specify a location to save the file that is shown in the browser.

Clusters and servers
Lists the names of available deployment targets. This list is the same for every application that is installed
in the cell.

From this list, select only appropriate deployment targets for a module. You must install an application,
enterprise bean (EJB) module, Session Initiation Protocol (SIP) archive (SAR), web module, or client
module on a Version 8.x target under any of the following conditions:

* The module supports Java Platform, Enterprise Edition (Java EE) 6.

* The module calls an 8.x runtime application programming interface (API).

* The module uses an 8.x product feature.

You must install an application, EJB, SAR, or web module on a Version 8.x or 7.x target under any of the
following conditions:

* The module supports Java EE 5.

* The module calls a 7.x runtime API.

* The module uses a 7.x product feature.

If a module supports J2EE 1.4, then you must install the module on a Version 6.x, 7.x or 8.x deployment
target. Modules that call a 6.1.x API or use a 6.1.x feature can be installed on a 6.1.x, 7.x or 8.x
deployment target. Modules that require 6.1.x feature pack functionality can be installed on a 6.1.x
deployment target that has been enabled with that feature pack or on a 7.x or 8.x deployment target.

You can install an application or module developed for a Version 5.x product on any deployment target.

Module
Specifies the name of a module in the installed (or deployed) application.

URI

Specifies the location of the module relative to the root of the application (EAR file).

Module type
Specifies the type of module, for example, a web module or EJB module.

This setting is shown on the Manage modules page accessed from a console enterprise application page.

Server
Specifies the name of each deployment target to which the module currently is mapped.

To change the deployment targets for a module, select one or more targets from the Clusters and
servers list and click Apply. The new mapping replaces the previous mapping.

64 Developing and deploying applications

Client module settings
Use this page to configure a deployed client module.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Manage modules > client_module_name. This page is
viewable only if the selected application contains a client module and the client deployment mode is a
value other than isolated.

URI

Specifies the location of the client module relative to the root of the application.

Alternate deployment descriptor
Specifies the alternate deployment descriptor for the module as defined in the application deployment
descriptor according to the Java Platform, Enterprise Edition (Java EE) specification.

Client module property settings
Use this page to configure the deployment mode of a deployed client module.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Client module deployment mode. This page is viewable
only if the selected application contains a client module.

Client module deployment mode
Specifies whether to deploy client modules to an isolated deployment target (Isolated) or an application
server (Server Deployed).

Data type String
Default Isolated

Provide options to compile JavaServer Pages settings
Use this page to specify options to be used by the JavaServer Pages (JSP) compiler.

This administrative console page is a step in the application installation and update wizards. To view this
page, you must select Precompile JavaServer Pages files on the Select installations options page.
Thus, to view this page, click Applications > New Application > New Enterprise Application >
application_path > Next > Detailed - Show me all installation options and parameters > Next > Next
or Continue > Precompile JavaServer Pages files > Next > Step: Provide options to compile JSPs.

You can specify the JSP compiler options on this page only when installing or updating an application that
contains web modules. After the application is installed, you must edit the JSP engine configuration
parameters of a web module WEB-INF/ibm-web-ext.xmi file to change its JSP compiler options.

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

* For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

* For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-dava EE 5
files and uses the .xmi file name extension.

Chapter 8. Deploying applications 65

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

Web module
Specifies the name of a module within the application.

URI

Specifies the location of the module relative to the root of the application (EAR file).

JSP class path

Specifies a temporary class path for the JSP compiler to use when compiling JSP files during application
installation. This class path is not saved when the application installation is complete and is not used when
the application is running. This class path is used only to identify resources outside of the application
which are necessary for JSP compilation and which will be identified by other means (such as shared
libraries) after the application is installed. In network deployment configurations, this class path is specific
to the deployment manager machine.

To specify that multiple web modules use the same class path:

1. In the list of web modules, select the Select check box beside each web module that you want to use
a particular class path.

2. Expand Apply Multiple Mappings.

3. Specify the desired class path.

4. Click Apply.

Use full package names
Specifies whether the JSP engine generates and loads JSP classes using full package names.

When full package names are used, precompiled JSP class files can be configured as servlets in the
web.xml file, without having to use the jsp-file attribute. When full package names are not used, all JSP
classes are generated in the same package, which has the benefit of smaller file-system paths.

When the options useFullPackageNames and disableJspRuntimeCompilation are both true, a single class
loader is used to load all JSP classes, even if the JSP files are not configured as servlets in the web.xm1
file.

This option is the same as the useFullPackageNames JSP engine parameter.

JDK source level

Specifies the source level at which the Java compiler compiles JSP Java sources. Valid values are 13, 14,
and 15. The default value is 13 for pre-Java EE 5 web modules, which specifies source level 1.3 and 15 for
Java EE 5 and later web modules.

Disable JSP runtime compilation
Specifies whether a JSP file should never be translated or compiled at run time, even when a .class file
does not exist.

When this option is set to true, the JSP engine does not translate and compile JSP files at run time; the
JSP engine loads only precompiled class files. JSP source files do not need to be present in order to load
class files. You can install an application without JSP source, but the application must have precompiled
class files.

For a single web application class loader to load all JSP classes, this compiler option and the Use full
package names option both must be set to true.

This option is the same as the disableJspRuntimeCompilation JSP engine parameter.

66 Developing and deploying applications

EJB JNDI names for beans

Use this page to view and modify the Java Naming and Directory Interface (JNDI) names of
non-message-driven enterprise beans in your application or module.

If your application uses Enterprise JavaBeans (EJB) 2.1 and earlier modules, on the Provide JNDI names
for beans panel, specify a JNDI name for each enterprise bean in every EJB 2.1 and earlier module. You
must specify a JNDI name for every EJB 2.1 and earlier enterprise bean defined in the application. For
example, for the EJB module MyBean.jar, specify MyBean.

The JNDI name for an EJB module can be used for both EJB 3.x modules and pre-EJB 3.0 modules. For
a pre-EJB 3.0 module, you need to provide a JNDI name for the bean. For an EJB 3.x module, you have
three options

* Provide no JNDI names at all

» Select the radio button to provide a JNDI name for the bean, or

» Select the radio button to provide local or remote home JNDI names.

If no JNDI name is provided, the run time provides a default value. If JNDI name for the bean is provided,
you cannot provide any JNDI name for business interface in the Provide JNDI names for business
interfaces panel.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application > EJB JNDI names.

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Module
Specifies the name of the Enterprise JavaBeans module used by your application.

Bean
Specifies the name of an enterprise bean that is contained by the module.

URI
The Uniform Resource Identifier (URI) specifies the location of the module archive relative to the root of
the application EAR.

Target Resource JNDI name
Specifies the Java Naming and Directory Interface (JNDI) name of the enterprise bean.

This is a data entry field. To modify the JNDI name bound to this bean, type the new name in this field,
then select OK.

Data type String

Bind EJB business settings

Use this administrative console page to specify Java Naming and Directory (JNDI) name bindings for each
enterprise bean with a business interface in an EJB module. Each enterprise bean with a business
interface in an EJB module must be bound to a JNDI name. For any business interface that does not
provide a JNDI name, or if its bean does not provide a JNDI name, a default binding name is provided. If
its bean provides a JNDI name, the default JNDI name for the business interface is provided on top of its
bean JNDI name by appending the package-qualified class name of the interface.

Chapter 8. Deploying applications 67

If you specify the JNDI name for a bean in the Provide JNDI names for beans page, do not specify any
business interface JNDI name in this page for the same bean. If you do not specify the JNDI name for a
bean in the Provide JNDI names for beans page, you can optionally specify a business interface JNDI
name. If you do not specify a business interface JNDI name, the run time provides a container default.

To view this page in the administrative console, click Applications > Application Types > WebSphere
enterprise applications > application_name > Bind EJB business.

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Module
Specifies the EJB module that contains the enterprise beans that bind to the JNDI name.

Bean
Specifies the enterprise bean that binds to the JNDI name.

URI
The Uniform Resource Identifier (URI) specifies the location of the module archive relative to the root of
the application EAR.

Business Interface
Specifies the enterprise bean business interface in an EJB module.

For a no-interface view, the business interface value is an empty string ("").

JNDI Name
Specifies the JNDI name associated with the enterprise bean business interface in an EJB module.

Map default data sources for modules containing 1.x entity beans

Use this page to set the default data source mapping for EJB modules that contain 1.x container-managed
persistence (CMP) beans. Unless you configure individual data sources for your 1.x CMP beans, this
default mapping applies to all beans within the module.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Map default data sources for modules containing 1.x
entity beans.

Guidelines for using this administrative console page:
* The page displays a table that depicts the EJB modules in your application that contain 1.x CMP beans.

» Each table row corresponds to a module. A row shows the JNDI name of the data source mapping
target of the EJB module only if you bound them together during application assembly. For every data
source that is displayed, you see the corresponding security configuration.

» To set your default data source mappings:

1. Select a row. Be aware that if you check multiple rows on this page, the data source mapping target
that you select in step 2 applies to all of those EJB modules.

2. Click Browse to select a data source from the new page that is displayed, the Available Resources
page. The Available Resources page shows all data sources that are available mapping targets for
your EJB modules.

3. Click Apply. The console displays the 1.x entity bean data sources page again. In the rows that you
previously selected, you now see the JNDI name of the new resource mapping target.

68 Developing and deploying applications

4. Before you click OK to save your new configuration, set the security parameters for the data source.
Use the following steps.

» To specify security settings for the default data source:

1. Select a row. Be aware that if you check multiple rows on this page, the security settings that you
select later apply to all of those data sources.

2. Type in a user name and password that comprise the authentication alias for signing on to the data
source. If these entries are not listed in the application Java Platform, Enterprise Edition (Java EE)
Connector (J2C) authentication data list, you must input them into the list after saving your settings
on this page. Read the information center topic on managing Java EE Connector Architecture
authentication data entries for more information.

3. Click Apply that immediately follows the user name and password input fields.

* Repeat all of the previous steps as necessary.

+ Click OK to save your work.

Select

Select the check boxes of the rows that you want to edit.

EJB Module

The name of the module that contains the 1.x enterprise beans.

URI

Specifies location of the module relative to the root of the application EAR file.

JNDI name

The Java Naming and Directory Interface (JNDI) name of the default data source for the EJB module.
Data type String

User name

The user name and password that comprise the authentication alias for securing the data source.

EJB references

Use this page to view and modify the Enterprise JavaBeans (EJB) references to the enterprise beans.
References are logical names used to locate external resources for enterprise applications. References
are defined in the application's deployment descriptor file. At deployment, the references are bound to the
physical location (global Java Naming and Directory Interface (JNDI) name) of the resource in the target
operational environment.

If your application defines EJB references, for Map EJB references to beans, specify JNDI names for
enterprise beans that represent the logical names that are specified in EJB references. Each EJB
reference defined in the application must be bound to an EJB file before clicking Finish in the Summary
panel.

If the EJB reference is from an EJB 3.x, Web 2.4, Web 2.5, or Client 5.0 module, the JNDI name is
optional. If the Allow EJB reference targets to resolved automatically option is enabled, the JNDI name
is optional for all modules. The runtime provides a container default or automatically resolves the EJB
reference if a binding is not provided.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > EJB references.

Values are displayed for Lookup name and EJB Link if they are configured in the application. Only one of
these values is allowed. If both are set, the value must be overridden by a target resource JNDI name.

Chapter 8. Deploying applications 69

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Module
Specifies the name of the Enterprise JavaBeans module used by your application.

Bean
Specifies the name of an enterprise bean that is contained by the module.

URI

Specifies location of the module relative to the root of the application EAR file.

Resource Reference
Specifies the name of the EJB reference that is used in the enterprise bean, if applicable, and declared in
the deployment descriptor of the application module.

Class
Specifies the name of a Java class associated with this enterprise bean.

Target Resource JNDI Name
Specifies the JNDI name of the enterprise bean.

This is a data entry field. To modify the JNDI name bound to this bean, type the new name in this field,
then select OK.

Data type String

Resource references

Use this page to designate how the resource references of application modules map to the actual
resources that are configured for the application.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Resource references.

You can also view this page during the Map resource references to resources step when you install an
application.

 If your application uses any of the following resource types, you can set or reset their mapping
configurations:

— Default messaging JMS queues destinations

— Default messaging JMS topic destinations

— Data source

— Generic JMS connection factory

— Mail session

— J2C connection factory

— JMS queue connection factory for the JMS provider of WebSphere MQ
— JMS queue destination for WebSphere MQ

— JMS topic connection factory for WebSphere MQ

— JMS topic destination for WebSphere MQ

— Unified JMS connection factory for WebSphere MQ

70 Developing and deploying applications

— URL configuration

The page is composed of sections that correspond to each applicable resource type. Each section
heading is the class name for the resource. If your application contains only one applicable resource
type, you see only one section.

Each section contains a table. Each table row depicts a resource reference within a specific module of
your application.

The rows contain the JNDI names of resource mapping targets for your references only if you bound
them together during application assembly. You can modify those bindings on this administrative
console page.

To set your mappings:

1.

Select a row. If you want to apply the same mapping to multiple rows, complete the steps in the
section, Set multiple JNDI names.

Click Browse to view a new page listing of all resources that are available mapping targets for your
application references.

Select a resource and click Apply. The console displays the Resource references page again. The
JNDI name of the selected resource mapping displays in the Target Resource JNDI Name field.

Repeat the previous steps as necessary.

If you are editing the resource references of an existing enterprise application, click OK. You now
return to the general configuration page for your enterprise application. If you are installing the
application and have completed the Map resource references to resources step, continue to the
next step.

For data sources and connection factories: Sections for these resource types contain an additional
set of steps for modifying your security settings. Use the last column in the displayed table to view the
authorization type for each resource configuration per application module. You can modify the
corresponding authentication method only if the authorization type is container. Container-managed
authorization indicates that the product performs signon to the resource rather than the enterprise bean
code. The reconfiguring process differs slightly for each authentication method option:

When you want to assign no authentication method to a resource:
1. Determine which resource configurations to designate with no authentication method.
2. Select the appropriate table rows.

3. Click Modify Resource Authentication Method and select None from the authentication
method options that are displayed above the table.

4. Click Apply.

When you want to assign the WebSphere Application Server DefaultPrincipalMapping login
configuration to a resource:

1. You must apply this option to each resource individually if you want to designate different
authentication data aliases. See the topic, J2EE connector security, for more information about
the default mapping configuration.

2. Select the appropriate table rows.

3. Click Modify Resource Authentication Method and select Use default method from the list of
authentication method options that are displayed above the table.

4. Select an authentication data entry or alias from the list.
5. Click Apply.
When you want to assign a trusted context to a resource:

1. You must have a data source that is running at least DB2 Version 9.1 for z/0S®, and the data
source must have trusted context enabled.

2. You must have a data source server that is running at least DB2 Version 9.1 for z/OS, and the
data source must have trusted context enabled.

3. Select the appropriate table rows that have trusted context enabled.

Chapter 8. Deploying applications 71

4. Click Modify Resource Authentication Method and select Use trusted connections from the
authentication method options that are displayed above the table.

5. Select an authentication alias from the list that matches an alias that is already defined in the
DB2 data source. If you do not have an alias defined that is suitable, you must define a new

alias.

6. Click Apply.

7. To edit the properties of the custom login configuration, click Mapping Properties in the table
cell.

— When you want to assign a custom Java Authentication and Authorization Service (JAAS) login
configuration to a resource:

1. See the topic, J2EE connector security, for more information about custom JAAS login
configurations.

2. Select the appropriate table row.

3. Click Modify Resource Authentication Method and select Use custom login configuration
from the authentication method options that are displayed above the table.

4. Select an application login configuration from the list.

5. Click Apply.
6. To edit the properties of the custom login configuration, click Mapping Properties in the table
cell.

Set multiple JNDI names
Use this option to set the same JNDI name on multiple resources with one operation.

Click Set multiple JNDI names to display a menu of JNDI names. If you make a selection from this list, it
is applied to the Target Resource JNDI Name field of all the selected rows of the table.

Modify Resource Authentication Method
Use this panel to toggle the display of a panel above the table rows.

This use of this panel is described in the For data sources and connection factories section.

Extended Properties
Use this panel to set additional properties on the selected resource.

Select a single table row and click Extended Properties to set additional properties on the selected
resource. For more details on using this function, see the documentation on extending DB2 data source
definitions at the application level.

Select
Select the check boxes of the rows that you want to edit.

Module
The name of a module in the application.

Bean
The name of an enterprise bean that is contained by the module.

URI

Specifies location of the module relative to the root of the application EAR file.

Resource Reference
The name of a resource reference that is used in the enterprise bean, if applicable, and is declared in the
deployment descriptor of the application module.

72 Developing and deploying applications

Target Resource JNDI name
The Java Naming and Directory Interface (JNDI) name of the resource that is the mapping target of the
resource reference.

Data type String

Login configuration
This column applies to data sources and connection factories only and refers to the authorization type and
the authentication method for securing the resource.

Virtual hosts settings

Use this page to specify virtual hosts for web modules contained in your application. Web modules can be
installed on the same virtual host or dispersed among several virtual hosts.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Virtual hosts. This page is the same as the Map virtual
hosts for web modules page on the application installation and update wizards.

On this page, each web module must map to a previously defined virtual host, identified under Virtual
host. You can see information on previously defined virtual hosts by clicking Environment > Virtual hosts
in the administrative console. Virtual hosts enable you to associate a unique port with a module or
application. The aliases of a virtual host identify the port numbers defined for that virtual host. A port
number specified in a virtual host alias is used in the URL that is used to access artifacts such as servlets
and JavaServer Pages (JSP) files in a web module. For example, the alias myhost:8080 is the

host name:port number portion of the URL http://myhost:8080/serviet/snoop.

The default virtual host setting usually is default_host, which provides several port numbers through its
aliases:

80 An internal, insecure port used when no port number is specified

9080 An internal port

9443 An external, secure port

Unless you want to isolate your web module from other modules or resources on the same node (physical
machine), default_host is a suitable virtual host for your web module.

In addition to default_host, the product provides admin_host, which is the virtual host for the
administrative console system application. admin_host is on port 9060. Its secure port is 9043. Do not
select admin_host unless the web module relates to system administration.

To change a mapping:

1. In the list of mappings, select the Select check box beside each web module that you want mapped to
a particular virtual host.

2. From the Virtual host drop-down list, select the desired virtual host. If you selected more than one
virtual host in step 1:
a. Expand Apply Multiple Mappings.
b. Select the desired virtual host from the Virtual Host drop-down list.
c. Click Apply.

3. Click OK.

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

Chapter 8. Deploying applications 73

Web module

Specifies the name of a web module in the application that you are installing or that you are viewing after
installation.

Virtual host
Specifies the name of the virtual host to which the Web module is currently mapped.

Expanding the drop-down list displays a list of previously defined virtual hosts. To change a mapping,
select a different virtual host from the list.

Do not specify the same virtual host for different web modules that have the same context root and are
deployed on targets belonging to the same node even if the web modules are contained in different
applications. Specifying the same virtual host causes a validation error.

Security role to user or group mapping

Use this page to specify the users and groups that are mapped to the security roles that are used with the
enterprise application.

To view this administrative console page, click Applications > Application types > WebSphere
enterprise applications >application_name. Under Detail Properties, click Security role to user/group

mapping.
Table 12. User and group mapping. User and group mapping.

Button Resulting action

Map Users Lists the users that are mapped to the specified role within this application.

If trusted realms are configured, a drop-down list of realms to search is displayed. Users
from the non-default realm are displayed as user@realm

Map Groups Lists the groups that are mapped to this specified role within this application.

If trusted realms are configured, a drop-down list of realms to search is displayed. Users
from the non-default realm are displayed as user@realm

Map Special Subjects | This choice appears if multiple realms are being used. It enables you to map any of the
following Special Subjects to a selected role:

» All authenticated in application realm: All authenticated users that are in the
applications realm, which specifies whether to map all of the authenticated users to a
specified role. When you map all authenticated users to a specified role, all of the valid
users in the current registry who have been authenticated can access resources that
are protected by this role.

This selection also applies to all authenticated users regardless of the realm.

» Everyone: map everyone to the selected role. When you map everyone to a role,
anyone can access the resources that are protected by this role and, essentially, there
is no security.

* None: Do not map anyone to the selected role

Attention:

 If the secured realm cannot be reached, the left list is replaced with 3 text fields (that
is, name, realm, and uid). You can add the user when the secured realm is not
available.

It is not possible to map two subjects to the same role in this release of WebSphere
Application Server.

74 Developing and deploying applications

Role
Lists the specific capabilities to a user. Role privileges give users and groups permission to run as
specified.

For example, you might map the user Joe to the administrator role, which enables user Joe to perform all
of the tasks associated with the administrator role.

The authorization policy is only enforced when global security is enabled.

Mapped users
Lists the users that are mapped to the specified role within this application.

Special subjects
Lists which special subjects are mapped to the security role when an application uses multiple realms.

Mapped groups
Lists the groups that are mapped to this specified role within this application.

JASPI authentication enablement for applications

Use this page to enable or disable Java Authentication SPI (JASPI) authentication for an application or
web module, and to specify the name of a JASPI authentication provider to be used for authenticating
messages for the application or web module.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications. Select an application, and under Detail Properties, select JASPI provider.

Select JASPI provider

Select to indicate the web modules in the application that you wish to specify or to override the default
JASPI authentication settings for.

Select one of the JASPI provider names to choose a provider to use to perform authentication of web
requests for the selected Web module or the application.

To specify how JASPI authentication is performed for the selected web module or the application, choose
one of the following:

Do not use JASPI
Select to disable JASPI authentication for the selected web module or for the application.

Inherit JASPI provider
Select to inherit the JASPI authentication settings from default values in the cell or domain security
configuration, as appropriate.

When Inherit JASPI provider is selected for a web module, JASPI authentication settings for the
selected module are the settings that are specified for the application.

When Inherit JASPI provider is selected for the application, JASPI authentication settings are the
settings that are specified in the appropriate cell or domain security configuration.

Provider name
When a specific provider name is selected, that provider is used to perform authentication of web
requests for the selected application or web module.

If JASPI authentication is enabled, and a specific provider name is not specified, then the default provider

name is used. For more information, read about configuring a new JASPI authentication provider using the
administrative console.

Chapter 8. Deploying applications 75

If JASPI authentication is disabled, or if no default provider is selected, JASPI authentication is not
performed. Web authentication is then performed according to another authentication mechanism as
selected in the cell or domain security configuration.

User RunAs collection

Use this page to map a specified user identity and password to a RunAs role. This panel enables you to
specify application-specific privileges for individual users to run specific tasks using another user identity.

To view this administrative console page, complete the following steps:
1. Click Applications > Enterprise applications > application_name.
2. Under Detail properties, click User runAs roles.

The enterprise beans that you install contain predefined RunAs roles. RunAs roles are used by enterprise
beans that need to run as a particular role for recognition while interacting with another enterprise bean.

Username
Specifies a user name for the RunAs role user.

This user already maps to the role specified in the Mapping users and groups to roles panel. You can map
the user to its appropriate role by either mapping the user to that role directly or mapping a group that
contains the user to that role. After you specify the user name and password for the user and select a
RunAs role, click Apply.

Data type: String
Password

Specifies the password for the RunAs user.

Data type: String
Role

Maps specific capabilities to a user.

The authorization policy is only enforced when global security is enabled.

Ensure all unprotected 1.x methods have the correct level of
protection

Use this page to verify that the unprotected Enterprise JavaBeans (EJB) Version 1.x methods have the
correct level of protection before you map users to roles.

This administrative console panel is displayed during the application deployment process. To access the
administrative console panel, click Application > New application > New Enterprise Application . The
panel is displayed as Ensure all unprotected 1.x methods have the correct level of protection in the
application deployment steps. On this administrative console panel, you can specify whether users can
access specific EJB modules.

EJB module
Specifies the EJB module name.

URI
Specifies the Uniform Resource Identifier (URI) that is used to locate the Java archive (JAR) file for the
EJB module.

76 Developing and deploying applications

Deny all access

Select this option to protect this EJB module by making it inaccessible to users regardless of their access

permissions.

Default: Cleared

Bind listeners for message-driven beans settings
Use this page to specify bindings for message-driven beans in your application or module.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Message Driven Bean listener bindings. This page is
the same as the Bind listeners for message-driven beans page on the application installation and
update wizards.

Each message-driven bean must be bound to a listener port name or to an activation specification Java
Naming and Directory Interface (JNDI) name.

Provide a listener port name if your application uses any of the following Java Message Service (JMS)
providers:

* V5 default messaging provider

* WebSphere MQ messaging provider

» Generic messaging provider

Provide an activation specification JNDI name if your application's resources are configured using the
default messaging provider or any generic J2C resource adapter that supports inbound messaging.

Not providing valid listener port names or activation specification JNDI names results in the following

errors:

» If neither a listener port name or an activation specification JNDI name is specified for a message
driven bean, then a validation error is displayed after you click Finish on the Summary page.

» If multiple message driven beans are linked to the same destination, specify the same destination JNDI
name for each message driven bean. If you specify different destination JNDI names, a validation error

is displayed and all JNDI specifications after the first one are ignored.

To apply binding changes to multiple mappings:

1. In the list of mappings, select the Select check box beside each EJB module that you want mapped
a particular binding.

2. Expand Apply Multiple Mappings.
3. Complete one of the following steps:
» Specify a listener port name.

« Select a target resource JNDI name for an activation specification. Optionally specify the following

parameters:

Destination JNDI name
For resource adapters that support JMS, specify javax.jms.Destinations so the resource
adapter can service messages from the JMS destination. A destination JNDI name set as
part of application deployment take precedence over properties set on an activation
specification administrative object.

ActivationSpec authentication alias

to

Specify an authentication alias that is used to access the user name and password that are
set on the configured J2C activation specification. Authentication alias properties set as part
of application deployment take precedence over properties set on an activation specification

administrative object.
4. Click Apply.

Chapter 8. Deploying applications

77

5. Click OK or Next.

Module
Specifies the name of the module that contains the enterprise bean.

Bean
Specifies name of an enterprise bean in the application.

URI

Specifies the location of the module relative to the root of the application EAR file.

Messaging Type
Specifies the type of message-driven bean.

Listener Bindings

Specifies a listener port name or an activation specification JNDI name for the message-driven bean.
When a message-driven enterprise bean is bound to an activation specification JNDI name you can also
specify the destination JNDI name and the authentication alias.

Bindings specify JNDI names for the referenceable and referenced artifacts in an application. An example
JNDI name for a listener port to be used by a Store application might be StoreMdbListener. The binding
definition is stored in IBM bindings files such as ibm-ejb-jar-bnd.xmi.

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

* For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

* For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-dava EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

Map data sources for all 2.x CMP beans

Use this page to set the default data source mapping for EJB modules that contain 2.x container-managed
persistence (CMP) beans. Unless you configure individual data sources for your 2.x CMP beans, this
default mapping applies to all beans within the module.

To view this administrative console panel, click Applications > Application Types > Websphere
enterprise applications > application_name > Map data sources for all 2.x CMP beans .

This panel displays a table that depicts the EJB modules in your application that contain 2.x CMP beans.
Each table row corresponds to a module. A row shows the JNDI name of the data source mapping target
of the EJB module only if you bound them together during application assembly. For every data source
that is displayed, you see the corresponding security configuration.

78 Developing and deploying applications

Set Multiple JNDI Names
Specifies the JNDI name to bind to one or more modules. Select one or more modules, click Set Multiple
JNDI Names, and select the JNDI name for the resource to which you would like to bind the module.

Set Authorization Type
Specifies the authorization type that you to use for the modules. Select one or more modules, click Set
Authorization Type, and select the authorization type.

You can choose:
» Per application - indicates that the enterprise bean code performs signon.
« Container - indicates that the application server performs signon to the data source.

Modify Resource Authentication Method

Specifies the resource authentication method for the modules that you have configured with
container-managed authorization. Select one or more modules, click Modify Resource Authentication
Method, and select the authentication method.

You can choose between the following authentication methods:
* None:
1. Determine which data source configurations to designate with no authentication method.
2. Select the appropriate table rows.
3. Select None from the list of authentication method options that precede the table.
4. Click Apply.
* Use default method (many-to-one mapping):

1. Determine which data source configurations to designate with the WebSphere Application Server
DefaultPrincipalMapping login configuration. Apply this option to each data source individually if you
want to designate different authentication data aliases. See the information center topic on J2EE
Connector security for more information on the default mapping configuration.

2. Select the appropriate table rows.

3. Select Use default method (many-to-one mapping) from the list of authentication method options
that precede the table.

4. Select an authentication data entry or alias from the list.
5. Click Apply.
* Use Kerberos authentication: Specifies to use the Kerberos authentication method.
1. Ensure that you have configured the Kerberos authentication mechanism in the application server.
2. Select the appropriate table row.
3. Select Use Kerberos authentication from the list of authentication method options that precede the

table.
4. Select an application login configuration from the list.
5. Click Apply.

6. To edit the properties of the custom login configuration, click Mapping Properties in the table cell.
The application server will attempt to verify that you are connecting to the correct type of database
when you select this option.

» Use trusted connections (one-to-one mapping):

1. Determine which data source configurations to designate with a custom Java Authentication and
Authorization Service (JAAS) login configuration. See the information center topic on J2EE
Connector security for more information on custom JAAS login configurations.

2. Select the appropriate table row.
3. Ensure that the database to which the modules will connect is configured for trusted connections.

Chapter 8. Deploying applications 79

4. Select Use trusted connections (one-to-one mapping) from the list of authentication method
options that precede the table.

5. Select an application login configuration from the list.
6. Click Apply.
The application server will attempt to verify that you are connecting to the correct type of database
when you select this option.
+ Custom login configuration:

1. Determine which data source configurations to designate with a custom Java Authentication and
Authorization Service (JAAS) login configuration. See the information center topic on J2EE
Connector security for more information on custom JAAS login configurations.

2. Select the appropriate table row.
3. Select Use custom login configuration from the list of authentication method options that precede

the table.

4. Select an application login configuration from the list.

5. Click Apply.

6. To edit the properties of the custom login configuration, click Mapping Properties in the table cell.
Select
Select the check boxes of the rows you want to edit.
EJB Module
Specifies the name of the module that contains the 2.x enterprise beans.
URI
Specifies location of the module relative to the root of the application EAR file.
JNDI name

Specifies the Java Naming and Directory Interface (JNDI) name of the default data source for the EJB
module.

Data type String

Resource authorization
Specifies the authorization type and the authentication method for securing the data source.

Extended Datasource Properties
When selected, you will be directed to a panel on which you can specify extended properties that the
module can use for the DB2 data source.

The application server will attempt to verify that you are connecting to the correct type of database when
you select this option.

Map data sources for all 2.x CMP beans settings

Use this page to map container-managed persistence (CMP) 2.x beans of an application to data sources
that are available to the application.

To view this administrative console page, click Applications > Application Types > Websphere
enterprise applications > application_name > Map data sources for all 2.x CMP beans.

Each table row corresponds to a CMP bean within a specific EJB module. A row shows the JNDI name of

the data source mapping target of the bean only if you bound them together during application assembly.
For every data source that is displayed, you see the corresponding security configuration.

80 Developing and deploying applications

Set Multiple JNDI names

Specify the Java Naming and Directory Interface (JNDI) name for multiple EJB modules. Select one or
more EJB modules from the table, and select a JNDI name from this list to configure the EJB modules
with that JNDI name.

Data type Drop-down list

Set Authorization Type
Specify the authorization type for securing the data source. Select one or more EJB modules from the
table to set the authorization type.

Select either Container or Application from the displayed list. Container-managed authorization indicates
that WebSphere Application Server performs signon to the data source. Application-managed authorization
indicates that the enterprise bean code performs signon.

Modify Resource Authentication Method
Specify the authorization type and the authentication method for securing the data source. Select one or
more EJB modules from the table to modify the resource authentication method.

You can choose between the following authentication methods:
* None:
1. Determine which data source configurations to designate with no authentication method.
2. Select the appropriate table rows.
3. Select None from the list of authentication method options that precede the table.
4. Click Apply.
* Use default method (many-to-one mapping):

1. Determine which data source configurations to designate with the WebSphere Application Server
DefaultPrincipalMapping login configuration. Apply this option to each data source individually if you
want to designate different authentication data aliases. See the information center topic on J2EE
Connector security for more information on the default mapping configuration.

2. Select the appropriate table rows.

3. Select Use default method (many-to-one mapping) from the list of authentication method options
that precede the table.

4. Select an authentication data entry or alias from the list.
5. Click Apply.
* Use Kerberos authentication: Specifies to use the Kerberos authentication method.
1. Ensure that you have configured the Kerberos authentication mechanism in the application server.
2. Select the appropriate table row.
3. Select Use Kerberos authentication from the list of authentication method options that precede the

table.
4. Select an application login configuration from the list.
5. Click Apply.

6. To edit the properties of the custom login configuration, click Mapping Properties in the table cell.
The application server will attempt to verify that you are connecting to the correct type of database
when you select this option.

» Use trusted connections (one-to-one mapping):

1. Determine which data source configurations to designate with a custom Java Authentication and
Authorization Service (JAAS) login configuration. See the information center topic on J2EE
Connector security for more information on custom JAAS login configurations.

2. Select the appropriate table row.

Chapter 8. Deploying applications 81

3. Ensure that the database to which the modules will connect is configured for trusted connections.

4. Select Use trusted connections (one-to-one mapping) from the list of authentication method
options that precede the table.

5. Select an application login configuration from the list.
6. Click Apply.
The application server will attempt to verify that you are connecting to the correct type of database
when you select this option.
* Custom login configuration:

1. Determine which data source configurations to designate with a custom Java Authentication and
Authorization Service (JAAS) login configuration. See the information center topic on J2EE
Connector security for more information on custom JAAS login configurations.

2. Select the appropriate table row.
3. Select Use custom login configuration from the list of authentication method options that precede

the table.

4. Select an application login configuration from the list.

5. Click Apply.

6. To edit the properties of the custom login configuration, click Mapping Properties in the table cell.
Select
Select the check boxes of the rows that you want to edit.
EJB
The name of an enterprise bean in the application.
EJB Module
The name of the module that contains the enterprise bean.
URI

Specifies location of the module relative to the root of the application EAR file.

Target resource JNDI name
Specifies the resource to which the CMP bean is bound.

Resource authorization
Specifies the current setting for the resource authorization type.

Modify this setting with Set authorization type.

Ensure all unprotected 2.x methods have the correct level of
protection

Use this page to verify that the unprotected Enterprise JavaBeans (EJB) Version 2.x methods have the
correct level of protection before you map users to roles.

This administrative console panel is displayed during the application deployment process. To access the
administrative console panel, click Applications > New application application_name. The panel is
displayed as Ensure all unprotected 2.x methods have the correct level of protection in the application
deployment steps. On this administrative console panel, you can specify whether users can access
specific EJB modules.

To use this administrative console page, select the Uncheck, Exclude, or Role option, the check box next

to the EJB module, and click Apply. If you select Role option, select the appropriate role for the EJB
module before you click Apply.

82 Developing and deploying applications

Uncheck
Select this option if you do not want the application server to verify the access permissions for the EJB
module. Everyone can access the EJB module.

Default: Selected

Exclude
Select this option to protect this EJB module by making it inaccessible to users regardless of their access
permissions.

Default: Deselected

Role
Specifies the EJB level of protection based on the security role.

The roles listed in this menu are obtained from the application scope. If the selected role is not in the
module, then it is added to the modules or Java archive (JAR) files.

Default: Deselected

EJB module
Specifies the name of the module.

If a module name appears in this list, then the module contains unprotected EJB methods.
URI:

Specifies the Uniform Resource Identifier (URI) that is used to locate the Java archive (JAR) file for the
EJB module.

Protection type
Specifies the level of protection that is assigned to a particular module name.

After you select the Uncheck, Exclude, or Role option and click Apply, the selected protection option is
displayed in this column.

Provide options to perform the EJB Deploy settings

Use this page to specify options for the enterprise bean (EJB) deployment tool. The tool generates code
needed to run enterprise bean files. You can specify extra class paths, Remote Method Invocation
compiler (RMIC) options, database types, and database schema names to be used while running the EJB
deployment tool.

This administrative console page is a step in the application installation and update wizards. To view this
page, you must select Deploy enterprise beans on the Select installation options page. Thus, to view
this page, click Applications > New Application > New Enterprise Application > application_path >
Next > Detailed - Show all installation options and parameters > Next > Deploy enterprise beans >
Next > Step: Provide options to perform the EJB Deploy.

You can specify the EJB deployment tool options on this page when installing or updating an application

that contains EJB modules. The EJB deployment tool runs during installation of EJB 1.x or 2.x modules.
The EJB deployment tool does not run during installation of EJB 3.x modules.

Chapter 8. Deploying applications 83

The options that you specify set parameter values for the ejbdeploy command. The tool, and thus the
ejbdeploy command, is run on the enterprise archive (EAR) file during installation after you click Finish on
the Summary page of the wizard.

Class path
Specifies the class path of one or more zipped or Java archive (JAR) files on which the JAR or EAR file
being installed depends.

To specify the class paths of multiple entries, the file names must be fully qualified, separated by a path
separator that the target server uses, and enclosed in double quotation marks.

T On Windows operating systems, the path separator is a semicolon (;). For example:
path\myJarl.jar;path\myJar2.jar;path\myJar3.jar

I On the other supported operating systems, the path
separator is a colon (:). For example:

path/myJarl.jar:path/myJar2.jar:path/myJar3.jar

Class path is the same as the ejbdeploy command parameter -cp class_path.

Data type String
Default null
RMIC

Specifies whether the EJB deployment tool passes RMIC options to the Remote Method Invocation
compiler. Refer to RMI Tools documentation for information on the options.

Separate options by a space and enclose them in double quotation marks. For example:
"-nowarn -verbose"

The RMIC setting is the same as the ejbdeploy command parameter -rmic "options".

Data type String
Default null

Database type

Specifies the name of the database vendor, which is used to determine database column types, mapping
information, Table.sql, and other information. Select a database type or the empty choice from the
drop-down list. The list contains the names of valid database vendors. Selecting the empty choice sets the
database type to "" (null).

If you specify a database type, previously defined backend IDs for all of the EJB modules are overwritten
by the chosen database type. To enable backend IDs for individual EJB modules, select the empty choice
to set the database type to null.

Note: The backend IDs SQL92 (1992 SQL Standard) and SQL99 (1999 SQL Standard) are deprecated.
Although the SQL92 and SQL99 backend IDs are available in the list on the Provide options to
perform the EJB Deploy page, they are deprecated.

Database type is the same as the ejbdeploy command parameter -dbvendor name.

Data type String
Default DB2UDB_V82

84 Developing and deploying applications

Database schema
Specifies the name of the schema that you want to create.

The EJB deployment tool saves database information in the schema document in the JAR or EAR file,
which means that the options do not need to be specified again. It also means that when a JAR or EAR is
generated, the correct database must be defined at that point because it cannot be changed later.

If the name of the schema contains any spaces, the entire name must be enclosed in double quotes. For
example:

"my schema"

Database schema is the same as the ejbdeploy command parameter -dbschema "name".

Data type String
Default null

Database access type

Specifies the database access type for a DB2 database that supports Structured Query Language for Java
(SQLJ). Use SQLJ to develop data access applications that connect to DB2 databases. SQLJ is a set of
programming extensions that support use of the Java programming language to embed statements that
provide SQL (Structured Query Language) database requests.

To view this setting, you must select a DB2 backend database that supports SQLJ from the Database
type drop-down list.

Available database access types include JDBC and SQLJ.

Data type String
Default JDBC

SQLJ class path

Specifies the class path of the DB2 SQLJ tool sqlj.zip file. The product uses this class path to run the
DB2 SQLJ tool during application installation and generate SQLJ profiles (.ser files).

To view this setting, you must select a DB2 backend database that supports SQLJ from the Database
type drop-down list.

Specify the drive and directory where the sqlj.zip file resides. For example:
W On Windows operating systems, specify c¢:\SQLJ\sql1j.zip.

BT T BT BT On all other operating systems, specify /SQLJ/sq1j.zip.

When you reinstall an application EAR file, the product deletes any existing SQLJ profiles and creates new
profiles.

If you do not specify a class path, the product displays a warning about the missing class path. After you
specify a valid class path, you can continue using the wizard for the application installation.

You can customize or add bindings to the generated SQLJ profile after the product installs the application.
Use the administrative console SQLJ profiles and pureQuery bind files page accessed by clicking
Applications > Application Types > WebSphere enterprise applications > application_name > SQLJ
profiles and pureQuery bind files.

Data type String

Chapter 8. Deploying applications 85

Default null

JDK compliance level
Specifies the Java developer kit compiler compliance level as 1.4, 5.0, or 6.0 when you include application
source files for compilation.

The default is to use whatever developer kit version the ejbdeploy command is using. If your application is
using new functionality defined in Version 5.0 or 6.0 or you are including source files (which is not
recommended), then you must specify the Version 5.0 or 6.0 level.

JDK compliance level is the same as the ejbdeploy command parameter -compliancelLevel "I.4" |
||5'0|| | "6.0".

Data type String
Default null (empty string)

Shared library reference and mapping settings

Use the Shared library references and Shared library mapping pages to associate defined shared libraries
with an application or web module. A shared library is an external Java archive (JAR) file that is used by
one or more applications. Using shared libraries enables multiple applications deployed on a server to use
a single library, rather than use multiple copies of the same library. After you associate shared libraries
with an application or module, the application or module class loader loads classes represented by the
shared libraries and makes those classes available to the application or module.

To view the Shared library references console page, click Applications > Application Types >
WebSphere enterprise applications > application_name > Shared library references. To view the
Shared library mapping page, click Reference shared libraries on the Shared library references page.
These pages are the same as the Map shared libraries and Map shared libraries to an entire application or
module pages in the application installation and update wizards.

On the Shared library references page, the first element listed is the application. The other elements are
modules in the application.

To associate shared libraries with your application or module:
1. Select an application or module.
2. Click Reference shared libraries.

3. On the Shared library mapping page, select one or more shared libraries that the application or
modules uses in the Available list, click >> to add them to the Selected list, and click OK.

A defined shared library for a file that your application or module uses must exist to associate your
application or module to the library.

If no shared libraries are defined and the application is installed already, on the Shared library mapping
page, click New and define a shared library.

You can otherwise define a shared library as follows:

1. Click Environment > Shared libraries.

2. Specify whether the shared library is visible at the cell, node or server level.

3. Click New.

4. On the settings page for the new shared library, specify a name and one or more class paths. If the

libraries are platform-specific files such as .d11, .so, or *“SRVPGM objects, also specify a native library
path. Then, click Apply.

86 Developing and deploying applications

5. Save the administrative configuration.

Application
Specifies the name of the application that you are installing or that you selected on the Enterprise
applications page.

Module
Specifies the name of the module associated with the shared libraries.

URI
Specifies the location of the module relative to the root of the application EAR file.

Shared libraries
Specifies the name of the shared library files associated with the application or module.

Shared library relationship and mapping settings

Use the Shared library relationship and Shared library relationship mapping pages to specify relationship
identifiers and composition unit names for shared libraries that modules in your enterprise application
reference. When installing your enterprise application, the product creates a composition unit for each
shared library relationship in the business-level application that you specified on the Select installation
options page of the application installation wizard.

To view this console page in a wizard, click Applications > Install new application > New Enterprise
Application > application_path > Next > Detailed - Show all installation options and parameters >
Next > application_name > Step: Map shared library relationships.

After installation, click Applications > Application Types > WebSphere enterprise applications >
Shared library relationships.

To map library files used in a business-level application to an application or web module, use the Shared
library relationship mapping page:
1. Click Reference shared libraries.

2. Note the application or module in Map libraries to the application or module listed. You are
associating library files with that application or module.

3. From the Available list, select one or more libraries that the application or module uses.
4. Click >> to add them to the Selected list.

5. To remove an association, select one or more libraries in the Selected list and click <<.
6. Click OK.

Module

Specifies the name of the module associated with the shared libraries.

URI

Specifies the location of the module relative to the root of the application EAR file.

Relationship identifers
Specifies an identifier for a module shared library relationship. The product assigns an identifier to the
composition unit that it creates for the shared library relationship in the business-level application.

Composition unit names

Specifies a composition unit name for the shared library relationship. The product uses this value to name
the composition unit that it creates for the shared library relationship in the business-level application that
you specified on the Select installation options page of this wizard.

This setting is only in the application installation and update wizards.

Chapter 8. Deploying applications 87

Match target
Specifies whether the product maps the composition unit for the shared library relationship to the same
deployment target as the business-level application.

Note: If you later change the deployment target of the business-level application or its modules, you must
manually update the shared library target to match the target of the application and modules. The
targets of shared library composition units are not automatically updated. Not updating the target of
the shared library composition unit might cause java.lang.ClassNotFoundException errors and
prevent the application or its modules from starting. To prevent these error conditions, also ensure
that shared libraries upon which other modules or applications depend have a lower starting weight
than dependent applications and modules.

JSP and JSF option settings

Use this panel to configure the class reloading of web modules such as JavaServer Pages (JSP) files and
to select a JSF implementation to use with this application.

To view this administrative console panel, click Applications > Application Types > WebSphere
enterprise applications > application_name > JSP and JSF options. This panel is the same as the
Provide JSP reloading options for web modules panel on the application installation and update
wizards.

The following note applies to the files with a .xmi extension in this topic:

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

* For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

* For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-dava EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

Web module
Specifies the name of a web module in the installed or deployed application.

URI

Specifies the location of the module that is relative to the root of the application (EAR file).

JSP enable class reloading
Specifies whether to enable class reloading when JSP files are updated.

A web container reloads JSP files only when the IBM extension reloadEnabled in the jspAttributes of the
ibm-web-ext.xmi file is set to true.

Java Platform, Enterprise Edition 5 (Java EE 5) applications IBM extension files are in .xml file format. For
applications versions earlier than Java EE 5, they are in the .xmi file format.

88 Developing and deploying applications

JSP reload interval in seconds

Specifies the number of seconds to scan the application file system for updated JSP files. The default is
the value of the reloading interval attribute in the IBM extension (META-INF/ibm-web-ext.xmi) file of the
web module.

To enable reloading, specify a value greater than zero (for example, 1 to 2147483647). The default reload
interval is 5. To disable reloading, specify zero (0). The range is from 0 to 2147483647.

The reloading interval attribute takes effect only if class reloading is enabled.

Java EE 5 applications IBM extension files are in .xm1 file format. For applications versions earlier than
Java EE 5, they are in the .xmi file format.

Sun Reference Implementation 1.2
Select this option to use the Sun Reference Implementation 1.2 JSF implementation.

If you change the JSF implementation that you are using for your application, you must delete any
previously compiled JSP files. If you precompiled your application, you must recompile. If you did not
precompile, but have already requested JSP files from this application, you must delete the JSP files from
the temp directory of your profile.

You can set the JSF engine configuration parameter, com.ibm.ws.jsf.JSF_IMPL_CHECK, to true to
automatically mark the JSP files to recompile at application startup.

MyFaces 2.0
Select this option to use the MyFaces JSF implementation. This is the default JSF implementation.

If you change the JSF implementation that you are using for your application, you must delete any
previously compiled JSP files. If you precompiled your application, you must recompile. If you did not
precompile, but have already requested JSP files from this application, you must delete the JSP files from
the temp directory of your profile.

You can set the JSF engine configuration parameter, com.ibm.ws.jsf.JSF_IMPL_CHECK, to true to
automatically mark the JSP files to recompile at application startup.

In a mixed-version cell, a V7 node uses MyFaces 1.2 if the MyFaces selection is toggled, while a V8 node
uses MyFaces 2.0. For WebSphere Application Server versions before V7 (for example, V6.1 and earlier),
this toggle is ineffective because JSF implementation switching was not supported before V7.

Context root for web modules settings

Use this page to specify the context root for web modules during or after installation of an application onto
a WebSphere Application Server deployment target.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Context root for web modules. This page is the same
as the Context root for web modules page on the application installation and update wizards.

Web Module

Specifies the name of a web module in the application that you are installing or that you are viewing after
installation.

URI

Specifies the location of the module relative to the root of the application EAR file.

Context Root
Specifies the context root of the web application (WAR).

Chapter 8. Deploying applications 89

A context root for each web module is defined in the application deployment descriptor during application
assembly. Use this field to assign a different context root to a web module. The context root is combined
with the defined servlet mapping (from the WAR file) to compose the full URL that users type to access
the servlet. For example, if the context root is /gettingstarted and the servlet mapping is MySession, then
the URL is http://host:port/gettingstarted/MySession.

Initial parameters for servlets settings

Use this page to specify initial parameters that are passed to the init method of web module servlet filters.
You can specify initial parameter values for servlets in web modules during or after installation of an
application onto a WebSphere Application Server deployment target. The <param-value> values specified
in <init-param> statements in the web.xm1 file of web modules are used by default.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Init parameters for servlets. This page is the same as
the Init parameters for servlets in each web module panel on the application installation and update
wizards.

Module

Specifies the name of a module in the application that you are installing or that you are viewing after
installation.

URI

Specifies the location of the module relative to the root of the application (EAR file).

Serviet
Specifies a unique name for the servlet within the application.

A servlet is a Java program that uses the Java Servlet Application Programming Interface (API). You must
package servlets in a Web archive (WAR) file or web module for deployment to an application server.
Servlets run on a Java-enabled web server and extend the capabilities of a web server, similar to the way
applets run on a browser and extend the capabilities of a browser.

Name
Specifies the name of the initial parameter passed to the init method of the web module servlet filter.

The following example servlet filter statement in a web.xm1 file specifies an initial parameter name of
attribute:
<init-param>
<param-name>attribute</param-name>
<param-value>tests.Filter.DoFilter_Filter.SERVLET_MAPPED</param-value>
</init-param>

Value
Specifies the value assigned to an initial parameter passed to the init method of the web module servlet
filter.

The following example servlet filter statement in a web.xm1 file specifies an initial parameter value of
tests.Filter.DoFilter_Filter.SERVLET_MAPPED for the init parameter attribute:

<init-param>
<param-name>attribute</param-name>
<param-value>tests.Filter.DoFilter_Filter.SERVLET_MAPPED</param-value>
</init-param>

Description
Specifies information on the initial parameter.

90 Developing and deploying applications

Environment entries for client modules settings

Use this page to configure the environment entries of application client modules that are deployed as Java
archive (JAR) files.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Environment entries for client modules.

This page is the same as the Map environment entries for client modules page on the application
installation and update wizards. To view the Map environment entries for client modules page in a wizard,
you must select the Deploy client modules option on the Select installation options page.

Client module
Specifies the name of a client module.

URI
Specifies the location of the client module relative to the root of the application.

Name
Specifies the name of the environment entry that you are editing or viewing. The environment entry is the
env-entry property in the client module.

Type

Specifies a data type for the environment entry defined by the env-entry property in the client module.

Description
Specifies information about the environment entry.

Value
Specifies an editable value for the environment entry. The value is defined by the env-entry property in
the client module.

The lookup name is displayed in the Value column if the lookup name is configured in the application
metadata. The lookup name is not editable. If you do not specify a value on this page, the lookup name is
used for the value.

Environment entries for EJB modules settings

Use this page to configure the environment entries of Enterprise JavaBeans (EJB) modules such as entity,
session, or message driven beans.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Environment entries for EJB modules. This page is the
same as the Map environment entries for EJB modules page on the application installation and update
wizards.

Module
Specifies the name of an EJB module.

URI

Specifies the location of the EJB module relative to the root of the application.

Bean
Specifies the name of an enterprise bean that is contained by the module.

Name
Specifies the name of the environment entry that you are editing or viewing. The environment entry is the
env-entry property in the EJB module.

Chapter 8. Deploying applications 91

Type

Specifies a data type for the environment entry defined by the env-entry property in the EJB module.

Description
Specifies information on the environment entry.

Value
Specifies an editable value for the environment entry defined by the env-entry property in the EJB
module.

The lookup name is displayed in the Value column if the lookup name is configured in the application
metadata. The lookup name is not editable. If you do not specify a value on this page, the lookup name is
used for the value.

Environment entries for web modules settings

Use this page to configure the environment entries of Web modules such as servlets and JavaServer
Pages (JSP) files.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Environment entries for web modules. This page is the
same as the Environment entries for web modules page on the application installation and update wizards.

Module
Specifies the name of a web module.

URI

Specifies the location of the module relative to the root of the application (EAR file).

Name
Specifies the name of the environment entry that you are editing or viewing. The environment entry is the
env-entry property in the web module.

Type

Specifies a data type for the environment entry defined by the env-entry property in the web module.

Description
Specifies information on the environment entry.

Value
Specifies an editable value for the environment entry defined by the env-entry property in the web
module.

The lookup name is displayed in the Value column if the lookup name is configured in the application
metadata. The lookup name is not editable. If you do not specify a value on this page, the lookup name is
used for the value.

Environment entries for application settings

Use this page to configure the environment entries of applications that are deployed as enterprise archive
(EAR) files.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Environment entries for the application.

92 Developing and deploying applications

This page is the same as the Map environment entries for application level page on the application
installation and update wizards. To view this page, the application must define one or more environment
entries.

Name
Specifies the name of the environment entry that you are editing or viewing. The environment entry is the
env-entry property in the application.

Type

Specifies a data type for the environment entry defined by the env-entry property in the application.

Description
Specifies information about the environment entry.

Value
Specifies an editable value for the environment entry. The value is defined by the env-entry property in
the application.

The lookup name is displayed in the Value column if the lookup name is configured in the application
metadata. The lookup name is not editable. If you do not specify a value on this page, the lookup name is
used for the value.

Resource environment references

Use this page to designate how the resource environment references of application modules map to
remote resources, which are represented in the product as resource environment entries.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Resource environment references.

Each row of the table depicts a resource environment reference within a specific module of your
application. If you bound any references to resource environment entries during application assembly, you
see the JNDI names of those resource environment entries in the applicable rows.

To set the mapping relationships between your resource environment references and resource
environment entries:

1. Select a row. Be aware that if you check multiple rows on this page, the resource mapping target that
you select in step 2 applies to all of those references.

2. Click Browse to select a resource environment entry from the new page that is displayed, the
Available Resources page. The Available Resources page shows all resource environment entries that
are available mapping targets for your application references.

3. Click Apply. The console displays the Resource environment references page again. In the rows that
you previously selected, you now see the JNDI name of the new resource mapping target.

4. Repeat the previous steps as necessary.
5. Click OK. You now return to the general configuration page for your enterprise application.

Table column heading descriptions:

Select
Select the check boxes of the rows that you want to edit.

Module
The name of a module in the application.

EJB

The name of an enterprise bean that is accessed by the module.

Chapter 8. Deploying applications 93

URI

Specifies location of the module relative to the root of the application EAR file.

Reference binding

The name of a resource environment reference that is declared in the deployment descriptor of the
application module. The reference corresponds to a resource that is bound as a resource environment
entry into the JNDI name space of the application server.

JNDI name

The Java Naming and Directory Interface (JNDI) name of the resource environment entry that is the
mapping target of the resource environment reference.

Data type String

Message destination reference settings

If your application uses message-driven beans, use this page to specify the Java Naming and Directory
Interface (JNDI) name of the J2C administered object to bind the message destination reference to the
message-driven beans. You must map each message destination reference that is defined in your
application to an administered object.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Message destination references. This page is the same
as the Bind message destination references to administered objects page on the application
installation and update wizards.

If the message destination reference is from an EJB 3.0 or later module, then the JNDI name is optional
and the run time provides a container default value.

Attention: If multiple message destination references link to the same message destination, only one
JNDI name is collected. When a message destination reference links to the same message destination as
a message-driven bean and the destination JNDI name has been collected already, the destination JNDI
name for the message destination reference is not collected.

To apply binding changes to multiple mappings:

1. In the list of mappings, select the Select check box beside each EJB module that you want mapped to
a particular binding.

2. Expand Apply Multiple Mappings.
3. Complete one of the following steps:
* Specify a message destination name.
» Select a target resource JNDI name for a message destination.
4. Click Apply.
5. Click OK or Next.

Module
Specifies the name of the module that contains the bean.

Bean
Specifies name of a bean in the application.

URI

Specifies the location of the module relative to the root of the enterprise archive (EAR) file.

94 Developing and deploying applications

Message destination object
Specifies the message destination object.

Type
Specifies the type of object.

Target Resource JNDI Name
Specifies the Java Naming and Directory Interface (JNDI) name of the bean.

This is a data entry field. To change the JNDI name bound to this bean, type the new name in this field.

Select current backend ID settings

Use this page to select a backend identifier for container-managed persistence (CMP) beans that contain
mappings for multiple backend databases.

This administrative console page is a step in the application installation and update wizards. To view this
administrative console page, click Applications > New Application > New Enterprise Application >
application_path > Next > Detailed - Show all installation options and parameters > Next > Next or
Continue > Step: Select current backend ID. This page is displayed in the wizards if Database type is
blank on the Provide options to perform the EJB Deploy page.

A backend can represent different database vendors, or simply alternative mappings and table qualifiers. If
a Java archive (JAR) file for an enterprise bean defines CMP beans that contain mappings for multiple
backend databases, you must select a current backend ID to be used when the module is installed on a
deployment target. The backend ID determines the persister classes that get loaded at deployment.

Module
Specifies the name of the module that contains the bean.

URI

Specifies the location of the module relative to the root of the application EAR file.

Current backend ID
Specifies the current backend ID to be used when the module is installed on a deployment target.

Provide JNDI names for JCA objects settings

Use this page to configure Java Naming and Directory Interface (JNDI) name values for J2C objects
(J2CConnectionFactory, J2CActivationSpec, and J2CAdminObject) in your application or modules. If your
application contains an embedded resource archive (RAR) file, specify the name and JNDI name of each
JCA connection factory, administered object, and activation specification.

This administrative console page is a step in the application installation and update wizards. To view this
administrative console page, click Applications > New Application > New Enterprise Application >
application_path > Next > Detailed - Show all installation options and parameters > Next > Next or
Continue > Step: Provide JNDI names for JCA objects.

Connector module
Specifies the name of a connector module of the RAR file.

URI

Specifies the location of the module that is relative to the root of the RAR file.

Object identifier
Specifies the name of the J2C object. The object can be a JCA connection factory, administered object, or
activation specification.

Chapter 8. Deploying applications 95

Bindings
Specifies the name and Java Naming and Directory Interface (JNDI) name of the J2C object.

These are data entry fields. To change the name or JNDI name bound to this object, type the new names
in the fields.

Correct use of the system identity

Use this page to manage the system identity properties for the Enterprise JavaBeans (EJB) method in
your application.

This administrative console page is displayed during the application deployment process. To access the
administrative console , click Application > New application > New Enterprise Application. The is
displayed as Correct use of System Identity in the application deployment steps.

To use this page, complete the following steps:

1. Select an application that supports security and click Next.

2. Select Detailed - Show all installation options and parameters and click Next.
3. Select the Correct use of system identity step.

Bean
A component that implements a business task or business entity and resides in an EJB container. Entity
beans, session beans, and message-driven beans are all enterprise beans.

Module

In Java EE programming, a software unit that consists of one or more components of the same container
type and one deployment descriptor of that type. Examples include EJB, Web, and application client
modules.

URI

A Uniform Resource Identifier (URI) is a unique address that is used to identify content on the Web, such
as a page of text, a video or sound clip, a still or animated image, or a program.

Method signature
The combination of a name of a method along with the number and types of the parameters and their
order.

Role
Specifies the RunAs role that is used for this EJB method.

Username
Specifies the user name that is assigned to the RunAs role for this EJB method.

The user name is used in conjunction with the RunAs role that you select for the Role.

Requirements for setting data access isolation levels

This article discusses the criteria and effects of setting isolation levels for data access components that
comprise Enterprise JavaBeans (EJB) 2.x and later modules.

In an EJB 1.1 module, you can set the isolation level at the method level or bean level. This capability also
applies to container-managed persistence (CMP) 1.1 beans that you assemble into EJB 2.x modules.
WebSphere Application Server permits the deployment descriptor of a CMP bean to declare the version
level of 1.1, regardless of the overall module version.

96 Developing and deploying applications

However, the ability to set isolation level at the method or bean level does not apply to other enterprise
beans within an EJB 2.x module, including CMP 2.x beans. WebSphere Application Server Version 5.0
removed this capability from EJB 2.0 modules to deliver an architecture that ultimately provides more
efficient connection use.

Consequently, later versions of the product enforce the following restrictions on declaring isolation level for
CMP 2.x beans—as well as session beans, message-driven beans, and bean managed persistence (BMP)
beans that you assemble into EJB 2.x modules:

You cannot specify isolation level on the EJB method level or bean level.

If you configure a JDBC application, a bean-managed persistence (BMP) bean, or a servlet to
participate in global transactions, any connection that is shared cannot accept a user-specified isolation
level. WebSphere Application Server can only set a user-specified isolation level on a connection that is
not shared within a global transaction. Generally, you want to refrain from specifying isolation levels on
shareable connections.

The configuration for the isolation level is determined by the type of bean that is used by the component:

Isolation level on connections used by 2.x CMP beans

In a EJB 2.x module, when a CMP 2.x bean uses a new data source to access a backend
database, the isolation level is determined by the WebSphere Application Server run time, based
on the type of access intent assigned to the bean or the calling method. Other non-CMP
connection users can access this same data source and also use the access intent and
application profile support to manage their concurrency control.

Connections used by other 2.x enterprise beans and other non-CMP components

For all other JDBC connection instances (connections other than those used by CMP beans), you
can specify an isolation level on the data source resource reference. For shareable connections
that run in global transactions, this method is the only way to set the isolationLevel for
connections. Trying to directly set the isolation level through the setTransactionlsolation() method
on a shareable connection that runs in a global transaction is not allowed. To use a different
isolation level on connections, you must provide a different resource reference. Set these defaults
through your assembly tool.

Each resource reference associates with one isolation level. When your application uses this
resource reference Java Naming and Directory Interface (JNDI) name to look up a data source,
every connection returned from this data source using this resource reference has the same
isolation level.

Components needing to use shareable connections with multiple isolation levels can create
multiple resource references, giving them different JNDI names, and have their code look up the
appropriate data source for the isolation level they need. In this way, you use separate
connections with the different isolation levels enabled on them.

It is possible to map these multiple resource references to the same configured data source. The
connections still come from the same underlying pool, however; the connection manager does not
allow sharing of connections requested by resource references with different isolation levels.
Consider the following scenario:

* A data source is bound to two resource references: jdbc/RRResRef and jdbc/RCResRef.
* RRResRef has the RepeatableRead isolation level defined. RCResRef has the ReadCommitted
isolation level defined.

If your application wants to update the tables or a BMP bean updates some attributes, it can use
the jdbc/RRResRef JNDI name to look up the data source instance. All connections returned from
the data source instance have a RepeatableRead isolation level. If the application wants to
perform a query for read only, then it is better to use the jadbc/RCResRef JNDI name to look up the
data source.

If you do not specify the isolation level:

Chapter 8. Deploying applications 97

The product does not require you to set the isolation level on a data source resource reference for
a non-CMP application module. If you do not specify isolation level on the resource reference, or if
you specify TRANSACTION_NONE, the WebSphere Application Server run time uses a default
isolation level for the data source. Application Server uses a default setting based on the JDBC
driver.

For most drivers, WebSphere Application Server uses an isolation level default of
TRANSACTION_REPEATABLE_READ. For Oracle drivers, however, Application Server uses an
isolation level of TRANSACTION_READ_COMMITTED. Use the following table for quick
reference:

Database: DB2 Oracle Sybase Informix® Apache Derby |SQL Server

Default

level:

(for

entities)

isolation

connections
used by
non-CMP

RR RC RR RR RR RR

* Note: These same default isolation levels are used in cases of direct JNDI lookups of a data
source.

* RR = JDBC Repeatable read (TRANSACTION_REPEATABLE_READ)
* RC = JDBC Read committed (TRANSACTION_READ_COMMITTED)

To customize the default isolation level, you can use the webSphereDefaultlsolationLevel custom
property for the data source. In most cases you should define the isolation level in the deployment
descriptor when you package the EAR file, but in certain situations you might need to customize
the default isolation level. This property will have no effect if any of the above options are used,
and this custom property is provided for those situations in which there is no other means of
setting the isolation level.

Use the following values for webSphereDefaultlsolationLevel custom property:

Possible values |JDBC isolation level DB2 isolation level

8 TRANSACTION_SERIALIZABLE Repeatable Read (RR)
4 (default) TRANSACTION_REPEATABLE_READ Read Stability (RS)

2 TRANSACTION_READ_COMMITTED Cursor Stability (CS)

1 TRANSACTION_READ_UNCOMMITTED Uncommitted Read (UR)

To define this custom property for a data source:
1. Click Resources > JDBC provider > JDBC_provider.

2. Click Data sources in the Additional Properties section.

3. Click the name of the data source.

4. Click Custom properties.

5. Create the webSphereDefaultlsolationLevel custom property.

a. Click New.
b. Enter webSphereDefaultlsolationLevel for the name field.
c. Enter one of the possible values in the value field.

Application Server sets the isolation level by prioritizing the available settings. Application Server will set
the isolation level based on the values for the following, in this order:

98 Developing and deploying applications

Resource reference isolation level

Isolation level that is specified by the access intent policy
Custom property that configures an isolation level
Application Server's default setting.

ML~

Metadata for module settings

Use this page to instruct a Java Platform, Enterprise Edition (Java EE) enterprise bean (EJB) deployment
descriptor, web module deployment descriptor, or JCA resource adapter archive (RAR) module to ignore
annotations that specify deployment information.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Metadata for modules. This page is the same as the
Metadata for modules page on the application installation and update wizards.

If your application contains Java EE 5 or later modules, you can select to lock the deployment descriptor
of one or more of the modules on the Metadata for modules page. If you select a metadata-complete
attribute check box (set the metadata-complete attribute to true) and lock deployment descriptors, the
product writes the complete module deployment descriptor, including deployment information from
annotations, to XML format.

Annotations are a standard mechanism of adding metadata to Java classes. You can use metadata to
simplify development and deployment of Java EE 5 or later artifacts. Prior to the introduction of Java
language annotations, deployment descriptors were the standard mechanism used by Java EE
components. These deployment descriptors were mapped to XML format, which facilitated their
persistence. If you select to lock deployment descriptors, the product merges Java EE annotation-based
metadata with the XML-based existing deployment descriptor metadata and persists the result.

When applications contain a large number of Java classes, the deployment processing time for the
annotations can increase. To minimize the performance impact, you can use one of the following methods:

* Determine whether the module needs to use Java EE 5 or 6. If the module does not need to use Java
EE 5 or 6, the annotations within the Java classes are not scanned.

+ Use the ['metadata-complete attribute” on page 100|in the module descriptor if the module uses Java
EE 5 or later and it does not contain any annotations. This attribute disables the annotations processing
for the module, but Java EE 5 or later modules might still be placed in the descriptor file. If you are
migrating your application, but you are not adding annotations, consider using this attribute value.

» Restructure the application to place the utility Java archive (JAR) files into shared libraries if those JAR
files do not have annotation information. Consider this method if you cannot set the [‘metadata-complete|
[attribute” on page 100

* Move the JAR files in the WEB-INF/1ib directory to the root directory of the enterprise archive (EAR) file.
Nested archives, such as a JAR file that is within a web application archive (WAR) that is within an EAR
file, are very cumbersome to search through because of the multiple levels of compression.

Module
Specifies the name of a module in the installed (or deployed) application.

Data type String

URI

Specifies the location of the module relative to the root of the EAR file.

Data type String

Chapter 8. Deploying applications 99

metadata-complete attribute
Specifies whether to write the complete module deployment descriptor, including deployment information
from annotations, to extensible markup language (XML) format.

By default, a metadata-complete attribute check box is not selected and the product does not write out
annotation data to a module deployment descriptor.

If your modules do not have a metadata-complete attribute or the metadata-complete attribute is set to
false, you can select a check box and instruct the product to write out annotation data to a module
deployment descriptor.

Note: If your Java EE 5 or later application uses annotations and a shared library, do not select
metadata-complete attribute. When your application uses annotations and a shared library, setting
the metadata-complete attribute to true causes the product to incorrectly represent an @EJB
annotation in the deployment descriptor as <ejb-ref> rather than <ejb-1ocal-ref>. For web
modules, setting the metadata-complete attribute to true might cause InjectionException errors. If
you must select metadata-complete attribute (set the metadata-complete attribute to true), avoid
errors by not using a shared library, by placing the shared library in either the classes or 1ib
directory of the application server, or by fully specifying the metadata in the deployment descriptors.

After you select a check box, you cannot deselect (clear) the check box and the module is no longer
shown in the list of modules on this page. If you select all the check boxes, the link to this page is no
longer shown on the enterprise application settings page.

Data type Boolean
Default false (deselected)

Provide options to perform the web services deployment settings
Use this page to specify options for web services deployment.

This administrative console page is a step in the application installation and update wizards.
To view this page, you must select Deploy web services on the Select installation options page.

To view this administrative console page, complete the following steps:
1. Click Applications > New application > application_path .

2. Select the option to Show all installation options and parameters .

3. Click Next to get to the Step: Select installation options page.

4. Select Deploy web service.

5. Click Next to get to the Step: Provide options to perform the web services deployment page.

You can specify the web services deployment options on this page only when installing or updating an
application that uses web services.

The wsdeploy command is supported by Java API for XML-based RPC (JAX-RPC) applications. The Java
API for XML-Based Web Services (JAX-WS) programming model that is implemented by the application
server does not support the wsdeploy command. If your web services application contains only JAX-WS
endpoints, you do not need to run the wsdeploy command, as this command is used to process only
JAX-RPC endpoints.

The options that you specify set parameter values for the wsdeploy command. The wsdeploy command

adds product-specific deployment classes to a web services-compatible enterprise archive (EAR) file or an
application client Java archive (JAR) file. These classes include:

100 Developing and deploying applications

e Stubs
» Serializers and deserializers
* Implementations of service interfaces

The wsdeploy command is run during installation after you click Finish on the Summary page of the
wizard.

Deploy web services option - Classpath
Specifies entries to add to the CLASSPATH when the generated classes are compiled.

To specify the class paths of multiple entries, you need to separate the entries with a semicolon on
Windows platforms and on Linux, Unix, and z/OS platforms, you need to use a colon to separate the
entries. This is the same separator that is used with the CLASSPATH environment variable.

This option is the same as the wsdeploy command parameter -cp class_path.

Data type String
Default null

Deploy web services option - Extension Directories
Specifies a directory that contains zipped or Java archive (JAR) files. All zipped and JAR files in this
directory are added to the CLASSPATH used to compile the generated files.

This option is the same as the wsdeploy command parameter -jardir directory.

Data type String
Default null

Display module build ID settings

Use this page to view the build identifier of a module in a Java Platform, Enterprise Edition (Java EE)
enterprise archive (EAR file). The build identifier for a module is shown if the MANIFEST.MF file of a module
or application specifies a build identifer.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Display module build IDs. This page is the same as the
Display module build IDs page on the application installation and update wizards.

Module
Specifies the name of a module in the installed (or deployed) application.

Data type String

URI

Specifies the location of the module relative to the root of the application EAR file.
Data type String

Build ID

Specifies the build identifier for a module if the MANIFEST.MF file specifies a build identifer.

You cannot modify the build ID on this page because this field is read-only.

Data type String

Chapter 8. Deploying applications 101

Installing enterprise application files by adding them to a monitored
directory

You can install an enterprise application file on an application server by dragging or copying an enterprise
archive (EAR), web application archive (WAR), Java archive (JAR), or Session Initiation Protocol (SIP)
archive (SAR) to a monitored directory. An enterprise application file must conform to the Java Platform,
Enterprise Edition (Java EE) specification.

Before you begin

Develop and assemble the EAR, JAR, WAR, or SAR file. You can use a supported assembly tool such as
an IBM Rational Application Developer for WebSphere Software product to specify bindings and assemble
the file.

Installing an EAR, JAR, WAR, or SAR file by adding it to a monitored directory does not change existing
Java Naming and Directory (JNDI) and other application bindings. If you must set binding values during
deployment, install the file using the administrative console application installation wizard, a wsadmin
script, or a properties file that sets bindings. See|Installing enterprise application files by adding properties|
fiiles to a monitored directory|

By default, monitored directory deployment is not enabled. Before you can use monitored directory
deployment, you must enable it. See[Setting monitored directory deployment values|

Restriction: Installing an EAR, JAR, WAR, or SAR file by adding it to a monitored directory is available
only on distributed and z/OS operating systems. It is not supported on IBM i operating
systems.

About this task

Note: You can deploy an EAR, JAR, WAR, or SAR file to an application server by dragging or copying the
file to a monitored directory. For base (stand-alone) application servers, the monitored directory is
the monitoredDeployableApps/servers/server_name directory of the application server profile. The
product scans a monitored directory for new applications no more frequently than every five
seconds, by default. After finding a new EAR, JAR, WAR, or SAR file in a monitored directory, the
product installs the file on the application server and starts the application or module.

After you add an EAR file to a monitored directory, the product creates a temporary copy of the EAR file in
another directory and installs the file on the server. After you add a JAR, WAR, or SAR file to a monitored
directory, the product creates a temporary copy of the archive in another directory, wraps the archive in an
EAR file named archive_extension.ear, and installs the new EAR file. For example, simpTeApp.war is
installed as simpleApp_war.ear. The original archive that you added to the monitored directory is not
changed.

You can update application files the same way. If you later add an updated EAR, JAR, WAR, or SAR file
to the same monitored directory, the product stops the previously deployed application, installs the updated
file on the application server, and starts the updated application or module. For example, suppose you
previously deployed my _app.ear by dragging it to a monitored directory. If you later drag a file named
my_app.ear to the monitored directory, the product replaces the previously deployed EAR file with the
updated EAR file that has the same name. The server must be running for the product to notice changes
to files in its monitored directory.

You can use a graphical file browser to drag or copy the EAR, JAR, WAR, or SAR file. Alternatively, you

can use operating system commands to copy a file into a monitored monitoredDeployableApps
subdirectory.

102 Developing and deploying applications

Procedure
1. Ensure that the application server on which you want to install the enterprise application file is running.
2. Ensure that monitored directory deployment is enabled.
See Setting monitored directory deployment values.
3. Browse the file structure of the computer and find the monitored directory.

For base (stand-alone) application servers, the monitored directory is under the application server
profile. The directory path is:

e app_server_root/profiles/application_server profile name/monitoredDeployableApps/servers/
server_name
For stand-alone servers, the product creates a monitored server_name directory automatically.
4. Copy the EAR, JAR, WAR, or SAR file that you want to deploy to the monitored directory.

Choose a file that is not already deployed to the target monitored directory, unless you want to update
a currently deployed file.

Results

The product adds a directory having the same name as the file to the installedApps/cell_name directory
of the profile.

Also, the product writes messages about the application deployment to the SystemOut.1og file in the
app_server_root/logs/server_name directory. The messages start with the CWLDD message key.

The messages indicate that the product deployed the application file and that the application is running.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Example

Suppose you want to install the sample DynaCacheEsi .ear file by copying the EAR file to a monitored
directory. You can find the sample EAR file in the app_server_root/installableApps directory.

Deploying an EAR file on a stand-alone application server
1. Ensure that the application server on which you want to install the DynaCacheEsi.ear file is running.

To see if the server is running, you can use the serverStatus -all command. To start the server, you
can use the startServer server_name command.

For example, suppose the stand-alone application server has a profile name of AppSrv02. Run the
serverStatus command from a command prompt at the app_server_root/profiles/AppSrv02/bin
directory:

serverStatus -all

If the server is not running, start the server.

For example, to start an application server named server1 on AppSrv02, run the startServer
command from a command prompt at the app_server_root/profiles/AppSrv02/bin directory:

startServer serverl

The Server serverl open for e-business message indicates that the server is running.
2. Locate the monitored directory.

Chapter 8. Deploying applications 103

For the stand-alone AppSrv02 profile, the monitored directory is app_server _root/profiles/AppSrv02/
monitoredDeployableApps/servers/serverl.

3. Copy the DynaCacheEsi.ear file in the app_server_root/installableApps directory to the monitored
directory.

4. Verify that the directory for installed applications exists.
e app_server_root/profiles/AppSrv02/installedApps/cell name/DynaCacheEsi.ear
5. Verify that DynaCacheEsi.ear is in the list of installed enterprise applications and is running.

What to do next

Test the deployed application or module. For example, point a web browser at the URL for a deployed
application and examine the performance of the application.

If the deployment is not successful, read messages in the SystemOut.Tog file, fix the error condition, and
add the application or module to the monitored directory again.

Setting monitored directory deployment values

Before you can use monitored directory deployment, you must enable it. You can optionally change the
default monitored directory and polling interval values. By default, monitored directory deployment is not
enabled, the monitored directory is app_server_root/monitoredDeployableApps, and the polling interval is 5
seconds.

Before you begin

See topics on monitored directory deployment to determine whether monitored directory deployment offers
a suitable way to deploy your enterprise application files:

« [Installing enterprise application files by adding them to a monitored directory|
« [Installing enterprise application files by adding properties files to a monitored directory]

Restriction: Installing an enterprise application file by adding a file to a monitored directory is available
only on distributed and z/OS operating systems. It is not supported on IBM i operating
systems.

About this task

You can use an administrative console or wsadmin scripting to enable or disable monitored directory
deployment and change the monitored directory and polling interval.

A monitoredDirectoryDeployment object has the following attributes:

enabled
Default is false. Set to true to enable monitored directory deployment.

monitoredDirectory
Default is USER_INSTALL ROOT}/monitoredDeployableApps. Optionally set to a different file system
directory. To change the default monitored directory, specify a different directory path for this
setting. List the entire value for the directory, including the environment variable.

For base (stand-alone) application servers, the default monitored directory is the
monitoredDeployableApps/servers/server_name directory of the application server profile.

pollinginterval
Default is 5 seconds. Optionally set to a different number of seconds. Valid values are 5 or higher.
The product changes 0 (zero) or negative values to 5 when the server starts.

104 Developing and deploying applications

Procedure

* Use the Global deployment settings page of an administrative console to set monitored directory values.

1. Click Applications > Global deployment settings.

2. To enable monitored directory deployment, select Monitor directory to automatically deploy
applications.

To disable monitored directory deployment, clear Monitor directory to automatically deploy
applications.

3. To change the monitored directory path, specify a new value for Monitored directory.

Ensure that the directory that you specified for Monitored directory exists. The product does not

create the directory for you.
4. To change the polling interval, specify the number of seconds for Polling interval.
5. Click Apply.
6. Restart the application server.
To view a default value, after a non-default value is set, clear the field.
» Use wsadmin scripting to set monitored directory values.
1. Start wsadmin at a command prompt for the bin directory of the profile.
2. Set the cell context for the profile to a variable.

Run the AdminConfig getid command and set a variable for the cell name of the profile. For
example, to set the c1 variable to the myNode01Cel1 cell name, run the following command:

Using Jython:
cl = AdminConfig.getid('/Cell:helyarNode01Cell/")
Using Jacl:
set c1 [$AdminConfig getid /Cell:myNode01Cell/]
3. Set the monitoredDirectoryDeployment attribute of the cell to a variable.

Run the AdminConfig showAttribute command and set a variable for the monitored directory
deployment attribute of the cell. For example, to set the md variable to the
monitoredDirectoryDeployment attribute, run the following command:
Using Jython:
md = AdminConfig.showAttribute(cl, "monitoredDirectoryDeployment")
Using Jacl:
set md [$AdminConfig showAttribute $cl monitoredDirectoryDeployment]
4. Set monitored directory values.

— To enable monitored directory deployment, run the AdminConfig modify command and set the

enabled attribute to true.

Using Jython:

AdminConfig.modify(md, [['enabled', "true"]])

Using Jacl:

$AdminConfig modify $md {{enabled true}}

To disable monitored directory deployment, run the modify command and set the enabled

attribute to false. The product converts values other than true or false to a boolean value of

false.

Using Jython:

AdminConfig.modify(md, [['enabled', "false"]])
Using Jacl:

$AdminConfig modify $md {{enabled false}}

— To change the polling interval, run the modify command and set the polTingInterval attribute to
a positive integer. Values other than integers result in a com.ibm.ws.scripting.ScriptingException

error.

Chapter 8. Deploying applications

Using Jython:

AdminConfig.modify(md, [['pollingInterval', "10"]])
Using Jacl:

$AdminConfig modify $md {{pollingInterval 10}}

— To change the monitored directory, run the modify command and set the monitoredDirectory
attribute to a directory on the computer.

Using Jython:
| Linux |

AdminConfig.modify(md, [['monitoredDirectory', "/newPath"]])

| Viindows |

AdminConfig.modify(md, [['monitoredDirectory', "C:/newPath"]])
Using Jacl:

$AdminConfig modify $md {{monitoredDirectory /newPath}}

_Windows |

$AdminConfig modify $md {{monitoredDirectory C:/newPath}}

Ensure that the specified monitored directory exists. The product does not create the newPath
directory for you.

— To clear an attribute value and reset it to the default value, run the unsetAttributes command.
Using Jython:
AdminConfig.unsetAttributes(md, 'enabled')

AdminConfig.unsetAttributes(md, 'pollingInterval')

AdminConfig.unsetAttributes(md, 'monitoredDirectory')
Using Jacl:
$AdminConfig unsetAttributes $md {enabled}

$AdminConfig unsetAttributes $md {pollingInterval}

$AdminConfig unsetAttributes $md {monitoredDirectory}
5. To view monitored directory values, run the AdminConfig show command.
Using Jython:
print AdminConfig.show(md)
Using Jacl:
$AdminConfig show $md
Running the show command displays attribute values such as the following:

[enabled false]
[monitoredDirectory ${USER_INSTALL ROOT}/monitoredDeployableApps]
[pollingInterval 5]

6. Save configuration changes.
Using Jython:
AdminConfig.save()

Using Jacl:
$AdminConfig save

7. Restart the application server.
Results

The product sets monitored directory deployment attributes to the values that you specified.

106 Developing and deploying applications

What to do next

If you enabled monitored directory deployment, deploy your applications by adding files to a monitored
directory.

Global deployment settings
Use this page to manage settings that apply to all applications or to a subset of application types.

You can also use this page to change settings for monitored directory deployment.

Restriction: Monitored directory deployment is available only on distributed or z/OS operating systems. It
is not supported on IBM i operating systems.

To view this administrative console page, click Applications > Global deployment settings.
Monitor directory to automatically deploy applications:
Specifies whether to enable monitored directory deployment.

You can use monitored directory deployment to install or update an enterprise application file on an
application server, or to uninstall an application file that was previously installed using monitored directory
deployment.

You can install or update an application file by dragging or copying an enterprise archive (EAR), web
archive (WAR), Java archive (JAR), or Session Initiation Protocol (SIP) archive (SAR) to a monitored
directory. The application file must conform to the Java Platform, Enterprise Edition (Java EE)
specification. To uninstall a deployed application file, remove it from the monitored directory.

You can also install, update, or uninstall an application file by dragging or copying an application properties
file to a monitored directory. The properties file must specify the deployment actions to be performed.

By default, monitored directory deployment is disabled.

Data type Boolean
Default false (clear checkbox)

Monitored directory:

Specifies the directory to use for monitored directory deployment. The default monitored directory is
monitoredDeployableApps. Using this setting, you can specify a different default monitored directory.

For deployment by dragging or copying an enterprise application file to a monitored directory, the directory
to which you add enterprise application files depends upon the product profile:

» For base (stand-alone) application servers, the default monitored directory is the
monitoredDeployableApps/servers/server_name directory of the application server profile.

For deployment using properties files, the monitored directory is a subdirectory, named
deploymentProperties, of the directory specified by this setting; for example, monitoredDeployableApps/
deploymentProperties.

To change the default monitored directory, specify a different directory path for this setting. List the entire
value for the directory, including the environment variable. You must select the Monitor directory to
automatically deploy applications option to change this setting.

To view the default value, after a non-default value is set, clear the field.

Chapter 8. Deploying applications 107

Data type String
Default ${USER_INSTALL_ROOT}/monitoredDeployableApps

Polling interval:

Specifies the number of seconds that elapse before the product scans a monitored directory for new
applications.

The product scans a monitored directory for new applications no more frequently than every 5 seconds, by
default.

To change this setting, specify a value of 5 or higher. The product changes 0 (zero) or negative values to 5
when the server starts. Monitor directory to automatically deploy applications must be enabled to
change this setting.

To view the default value, after a non-default value is set, clear the field.

Data type Integer
Default 5

Installing enterprise application files by adding properties files to a
monitored directory

You can use application properties files to install enterprise application files on a server, update deployed
applications or modules, or uninstall deployed applications or modules. Drag or copy a properties file to a
monitored directory and the product performs the deployment action described in the properties file. The
enterprise application files that you can install, update, or uninstall using properties files include enterprise
archive (EAR), web archive (WAR), Java archive (JAR), and Session Initiation Protocol (SIP) archive
(SAR) files. An enterprise application file must conform to the Java Platform, Enterprise Edition (Java EE)
specification.

Before you begin

Develop and assemble the EAR, JAR, WAR, or SAR file. You can use a supported assembly tool such as
an IBM Rational Application Developer for WebSphere Software product to specify bindings and assemble
the file.

Unlike the procedure described in Installing enterprise application files by adding them to a monitored
directory, which does not change existing Java Naming and Directory (JNDI) and other application
bindings, you can set bindings in a properties file.

By default, monitored directory deployment is not enabled. Before you can use monitored directory
deployment, you must enable it. See|Setting monitored directory deployment valuesl

Restriction: Installing an EAR, JAR, WAR, or SAR file by adding a properties file to a monitored directory
is available only on distributed or z/OS operating systems. It is not supported on IBM i
operating systems.

About this task

Note: You can deploy an EAR, JAR, WAR, or SAR file to an application server by dragging or copying an
application properties file to a monitoredDeployableApps/deploymentProperties monitored directory.
The product scans a monitored directory for new properties files no more frequently than every 5
seconds, by default. After finding a new properties file in a monitored directory, the product

108 Developing and deploying applications

automatically runs the wsadmin applyConfigProperties command, installs the application or module
on the application server, and starts the application or module.

You do not need to start wsadmin or enter any commands to deploy the application or module. Simply add
a properties file to a monitored directory. The product runs the wsadmin applyConfigProperties command
for you.

You can also use a properties file to update or delete a deployed application or module. The server must
be running so that the product can detect changes to files in its monitored directory.

This topic assumes that you use a graphical file browser to drag or copy the properties file. Alternatively,
you can use operating system commands to copy a file into a monitoredDeployableApps/
deploymentProperties monitored directory.

Procedure

1.

Create a properties file that defines the deployment task you want to complete.

Theat the end of this topic provides sample application properties files for use in monitored
directories.

The properties files that you use in monitored directories are like the properties files described in the
topic about using application properties files to install, update, and delete enterprise application files.
However, properties files that are used for monitored directories differ slightly:

* You do not need to specify statements such as CreateDeleteCommandProperties=true in the header.

» To uninstall an enterprise application, you specify DELETE=true in the header of the properties
section.

Only specify application resource type operations, ImplementingResourceType=Application, in the
properties file. If the properties file contains a non-application resource type such as
ImplementingResourceType=Server, the product will return an error message and not perform the
operation on the resource type.

You can use an edited properties file to install or update an application. To extract the properties file of
a deployed enterprise application to edit or use as a template, run the extractConfigProperties
command:

» Extract application properties to a file that uses the old application output format.
AdminTask.extractConfigProperties('[-propertiesFileName myApp.props -configData Deployment=MyApplication]"')

Running this Jython example produces a file named myApp.props that lists the properties of an
Application configuration object named MyApplication. By default, the extractConfigProperties
command produces output that displays all columns, including hidden and non-hidden columns, of
install task and task data values in separate rows. The mutables row shows which columns you can
edit (true) and which you cannot edit (false).

taskName=MapModulesToServers
mutables={false false true false false false} #readonly
rowd={module uri server ModuleVersion moduletype moduletypeDisplay} # readonly

This format is shown in the example |Insta|| an enterprise application with various task options using|
{the old application output format]

» Extract application properties to a file that uses the simple output format.

AdminTask.extractConfigProperties('[-propertiesFileName myApp.props -configData Deployment=MyApplication

-option [[SimpleQutputFormat true]]]')
Running this Jython example with the SimpleQutputFormat option set to true produces a file named
myApp.props that lists the properties of an Application configuration object named MyApplication in
an easier to read format. The output displays non-hidden columns of application properties in
columnName=value pairs. Hidden columns of application properties are not included in the output.

Chapter 8. Deploying applications 109

taskName=MapModulesToServers

row0={ module="My EJB Module" #readonly
uri=MyEjbModule.jar,META-INF/ejb-jar.xml #readonly
server=WebSphere:cell=!{cel1Name},node=!{nodeName},
server=!{serverName} }

This format is shown in the example [Install an enterprise application with various task options using|
[the simple output format]

For more information about extracting application properties and the output formats, see the topic on
using application properties files to install, update, and delete enterprise application files.

Ensure that the application server on which you want to install the enterprise application file is running.
Ensure that monitored directory deployment is enabled.
See Setting monitored directory deployment values.

4. Open a file browser and create the deploymentProperties monitored directory.
For base (stand-alone) application servers, the monitored directory is under the application server
profile. After you create the deploymentProperties directory, the directory path is app_server_root/
profiles/application_server profile name/monitoredDeployableApps/deploymentProperties.

5. Copy the properties file to the deploymentProperties monitored directory.

Results

The product adds a directory having the same name as the file to the installedApps/cell name directory
of the profile.

Also, the product writes messages about the application deployment to the SystemOut.1og file in the
app_server_root/logs/server_name directory. The messages start with the CWLDD message key.

The messages indicate that the product deployed the application file and that the application is running.

Note: This topic references one or more of the application server log files. Beginning in WebSphere

Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Example

The following example properties files provide templates that you can modify to deploy your applications:

Install an enterprise application on a deployment target|

Install an enterprise application with various task options using the old application output formatl

Install an enterprise application with various task options using the simple output format]

Update a single file in a deployed enterprise application|

Remove a single file from a deployed enterprise application|

Update a single module in a deployed enterprise application|

Remove a single module from a deployed enterprise application|

Replace, add, or delete multiple files of a deployed enterprise application|

Replace the entire deployed enterprise application|

Uninstall an application from a deployment target|

Edit the deployment options of a deployed application|

Edit web module deployment properties|

Install an enterprise application on a deployment target

110 Developing and deploying applications

Table 13. Required properties. Specify the properties in this table in the properties file.

Property Description

Name Specifies the name of application to install.

TargetServer Specifies the name of server on which application to be installed

TargetNode Specifies the name of node on which application to install

EarFileLocation Specifies the location of the enterprise archive (EAR file). Provide a fully qualified path
name.

#

Header

#

ResourceType=Application
ImplementingResourceType=Application

Properties

Name=hello
TargetServer=!{serverName}
TargetNode=!{nodeName}
EarFileLocation=/temp/HelloWorld.ear
#TargetCluster=clusterl

EnvironmentVariablesSection
#

#

#Environment Variables
cel1Name=myCell
nodeName=myNode
serverName=myServer

Install an enterprise application with various task options using the old application output format

The example properties install an enterprise application with task options. The properties file displays all
columns, including hidden and non-hidden columns, of install task and task data values in separate rows.

The mutables row shows which columns you can edit (true) and which you cannot edit (false).

#

Header

#

ResourceType=Application
ImplementingResourceType=Application

Properties
Name=!{applicationName}
EarFilelLocation=c:/temp/HelloWorld.ear

#

SubSection 1.0.2 # MapModulesToServers Section. taskName
and rowQ should not be edited. rowd contains column names
for the task.

#

ResourceType=Application
ImplementingResourceType=Application
Resourceld=Deployment=!{applicationName}

#

#

Properties

#

taskName=MapModulesToServers
mutables={false false true false false false} #readonly
row0={module uri server ModuleVersion moduletype moduletypeDisplay} # readonly
rowl={"My Web Module" myWebModule.war,WEB-INF/web.xml
WebSphere:cell=!{cel1Name},node=!{nodeName},server=!{serverName} 14
moduletype.web "Web Module"}

Chapter 8. Deploying applications

111

row2={"My EJB module" MyEjbModule.jar,META-INF/ejb-jar.xml
WebSphere:cell=!{cel1Name},node=!{nodeName},server=
I{serverName} 13 moduletype.ejb "EJB Module"}

#

SubSection 1.0.3 # MapRolesToUsers Section. taskName and
row0 should not be edited. row@ contains column names for
the tasks.

#ResourceType=Application
ImplementingResourceType=Application
Resourceld=Deployment=!{applicationName}

#

#

Properties

#

taskName=MapRoTlesToUsers

rowd={role role.everyone role.all.auth.user role.user
role.group role.all.auth.realms role.user.access.ids
role.group.access.ids} #readonly

mutables={false true true true true true true true}
#readonly

rowl={administrator AppDeploymentOption.No
AppDeploymentOption.No "adminuser" "admingroup"
AppDeploymentOption.No "" ""}

#

SubSection 1.0.4 # BindJndiForEJBNonMessageBinding

Section. taskName and row® should not be edited. row0
contains column names for the task.

#

ResourceType=Application
ImplementingResourceType=Application
Resourceld=Deployment=!{applicationName}

#

#

#Properties

#

taskName=BindJndiForEJBNonMessageBinding

row0={EJBModule EJB uri JNDI ModuleVersion

TocalHomedndi remoteHomedndi} #readonly

mutables={false false false true false true true} #readonly
rowl={"My EJB module" myEjb myEjbModule.jar,META-INF/ejb-
jar.xml myEjb 20 "" ""}

#

SubSection 1.0.5 # MapEJBRefToEJB Section. taskName and

row0 should not be edited. row@ contains column names for
the task.

#

ResourceType=Application
ImplementingResourceType=Application
Resourceld=Deployment=!{applicationName}

#

#

#Properties

#

taskName=MapEJBRefToEJB

row0={module EJB uri referenceBinding class JNDI
ModuleVersion} #readonly

mutables={false false false false false true false}
#readonly

rowl={"My EJB module" myEJB MyEjbModule.jar,META-INF/ejb-
jar.xml myEJB com.ibm.defaultapplication.Increment
Increment 23}

112 Developing and deploying applications

#

SubSection 1.0.6 # DataSourceFor20EJBModules Section.
taskName and row@ should not be edited. rowO contains
column names for the task.

#

ResourceType=Application
ImplementingResourceType=Application
Resourceld=Deployment=!{applicationName}

#

#

#

#Properties

#

taskName=DataSourceFor20EJBModules

row0={AppVersion EJBModule uri JNDI resAuth
login.config.name auth.props dataSourceProps} #readonly
mutables={false false false true true true true true}
#readonly

rowl={13 "My EJB module" MyEjbModule.jar,META-INF/ejb-
jar.xml MyDataSource cmpBinding.perConnectionFactory "" ""

"

#

SubSection 1.0.7 # DataSourceFor20CMPBeans Section.

taskName and row0 should not be edited. rowO contains
column names for the task.#

ResourceType=Application
ImplementingResourceType=Application
Resourceld=Deployment=!{applicationName}

#

#

Properties

#

taskName=DataSourceFor20CMPBeans

row0={AppVersion EJBVersion EJBModule EJB uri JNDI resAuth
Togin.config.name auth.props} #readonly

mutables={false false false false false true true true
true} #readonly

rowl={13 13 "My EJB module" MyEjb MyEjbModule.jar,META-
INF/ejb-jar.xml myDataSource
cmpBinding.perConnectionFactory "" ""}

#

SubSection 1.0.8 # MapWebModToVH Section. taskName and

row0 should not be edited. rowO contains column names for
the task.

#

ResourceType=Application
ImplementingResourceType=Application
Resourceld=Deployment=!{applicationName}

#

Properties

#

taskName=MapWebModToVH

row0={webModule uri virtualHost} #readonly
mutables={false false true} #readonly

rowl={"My Web Application" MyWebModule.war,WEB-INF/web.xml
default_host}

#

#

SubSection 1.0.9 # CtxRootForWebMod Section. taskName and
row0 should not be edited. rowQ contains column names for
the task.#

ResourceType=Application
ImplementingResourceType=Application
Resourceld=Deployment=!{applicationName}

#

Chapter 8. Deploying applications

113

#

Properties

#

taskName=CtxRootForWebMod

row0={webModule uri web.contextroot} #readonly
mutables={false false true} #readonly

rowl={"My Web Application" MyWebModule.war,WEB-INF/web.xml
/}

#

SubSection 1.0.10 # MapSharedLibForMod Section. taskName
and row0 should not be edited. row® contains column names
for the task.

#

ResourceType=Application
ImplementingResourceType=Application
Resourceld=Deployment=!{applicationName}

#

#

Properties

#

taskName=MapSharedLibForMod

row0={module uri sharedLibName} #readonly

mutables={false false true} #readonly

row2={"My Web Application" MyWebModule.war,WEB-INF/web.xml
IIII}

rowl={myApp META-INF/application.xml ""}#

#

SubSection 1.0.11 # JSPReloadForWebMod Section. taskName
and row0@ should not be edited. rowd contains column names
for the task.

#

ResourceType=Application
ImplementingResourceType=Application
Resourceld=Deployment=!{applicationName}

#

#

Properties

#

taskName=JSPReloadForWebMod

row0={webModule uri jspReloadEnabled jspReloadInterval}
#readonly

mutables={false false true true} #readonly

rowl={"My Web Application" MyWebModule.war,WEB-INF/ibm-web-
ext.xmi AppDeploymentOption.Yes}

#

#

SubSection 1.0.35 # SharedLibRelationship Section.

taskName and rowO should not be edited. rowO contains
column names for the task.

#

ResourceType=Application
ImplementingResourceType=Application
Resourceld=Deployment=!{applicationName}

#

#

Properties

#

taskName=SharedLibRelationship

row0={module uri relationship compUnitName matchTarget
origRelationship} #readonly

mutables={false false true true true false} #readonly
row2={"My Web Application" MyWebModule.war,WEB-INF/web.xml

114 Developing and deploying applications

""" AppDeploymentOption.Yes ""}
rowl={myApp META-INF/application.xml "" "*"
AppDeploymentOption.Yes ""}

#

EnvironmentVariablesSection
#

Environment Variables

#

applicationName=myApp
celTName=myCell
nodeName=myNode
serverName=myServer

Install an enterprise application with various task options using the simple output format

The example properties install an enterprise application with task options. The example shows application
properties that have been extracted with the SimpleQutputFormat option. With this option, the properties
file displays non-hidden columns of application properties in columnName=value pairs. Hidden columns of
application properties are not included in the output. You might find that extracting application properties
files with the SimpleQutputFormat option produces a format that is easier to read and edit.

#
Header
#
ResourceType=Application
ImplementingResourceType=Application

Properties
Name=!{applicationName}
EarFilelLocation=c:/temp/HelloWorld.ear

#

SubSection 1.0.2 # MapModulesToServers Section. taskName
and lines marked as "#readonly" should not be edited.

#

ResourceType=Application
ImplementingResourceType=Application
Resourceld=Deployment=!{applicationName}

#

#

Properties

#

taskName=MapModulesToServers

row0={ module="My EJB Module" #readonly
uri=MyEjbModule.jar,META-INF/ejb-jar.xml #readonly
server=WebSphere:cell=!{cel1Name},node=!{nodeName},
server=!{serverName} }

rowl={ module="My Web Module" #readonly
uri=myWebModule.war,WEB-INF/web.xml #readonly
server=WebSphere:cell=!{cel1Name},node=!{nodeName},
server=!{serverName} }

#

SubSection 1.0.3 # MapRolesToUsers Section. taskName and
lines marked as "#readonly" should not be edited.

#

ResourceType=Application
ImplementingResourceType=Application
Resourceld=Deployment=!{applicationName}

#

#

Properties

#

taskName=MapRolesToUsers

rowd={ role="A11 Role" #readonly
role.everyone=AppDeploymentOption.No

Chapter 8. Deploying applications

115

role.all.auth.user=AppDeploymentOption.Yes
role.user=""

role.group=
role.all.auth.realms=AppDeploymentOption.No
role.user.access.ids=""
role.group.access.ids="" }

#

SubSection 1.0.4 # BindJdndiForEJBNonMessageBinding

Section. taskName and lines marked as "#readonly" should
not be edited.

#

ResourceType=Application
ImplementingResourceType=Application
Resourceld=Deployment=!{applicationName}

#

#

#Properties

#

taskName=BindJndiForEJBNonMessageBinding

row@={ EJBModule="My EJB Module" #readonly
EJB=myEjb #readonly
uri=myEjbModule.jar,META-INF/ejb-jar.xml #readonly
JNDI=myEjb
localHomedndi=
remoteHomeJdndi="" }

#

SubSection 1.0.5 # MapEJBRefToEJB Section. taskName and
lines marked as "#readonly" should not be edited.

#

ResourceType=Application
ImplementingResourceType=Application
Resourceld=Deployment=!{applicationName}

#

#

#Properties

#

taskName=MapEJBRefToEJB

row0={ module="My EJB Module" #readonly
EJB=myEJB #readonly
uri=MyejbModule.jar,META-INF/ejb-jar.xml #readonly
referenceBinding=myEJB #readonly
class=com.ibm.defaultapplication.Increment #readonly
JNDI=myejb }

#

SubSection 1.0.6 # DataSourceFor20EJBModules Section.
taskName and Tines marked as "#readonly" should not be
edited.

#

ResourceType=Application
ImplementingResourceType=Application
Resourceld=Deployment=!{applicationName}

#

#

#

#Properties

#

taskName=DataSourceFor20EJBModules

row0={ EJBModule="My EJB Module"
#readonly
uri=myEjbModule.jar,META-INF/ejb-jar.xml #readonly
JNDI=MyDatasource

116 Developing and deploying applications

resAuth=cmpBinding.perConnectionFactory
lTogin.config.name=""

auth.props=""

dataSourceProps="" }

#

SubSection 1.0.7 # DataSourceFor20CMPBeans Section.

taskName and Tines marked as "#readonly" should not be
edited.

#

ResourceType=Application
ImplementingResourceType=Application
Resourceld=Deployment=!{applicationName}

#

#

Properties

#

taskName=DataSourceFor20CMPBeans

row0={ EJBModule="My EJB Module" #readonly
EJB=MyEjb #readonly
uri=MyEjbModule.jar,META-INF/ejb-jar.xml #readonly
JNDI=MyDatasource
resAuth=cmpBinding.perConnectionFactory
login.config.name=""
auth.props="" }

#

SubSection 1.0.8 # MapWebModToVH Section. taskName and
lines marked as "#readonly" should not be edited.

#

ResourceType=Application
ImplementingResourceType=Application
Resourceld=Deployment=!{applicationName}

#

Properties

#

taskName=MapWebModToVH

row@={ webModule="My Web Application" #readonly
uri=myWebModule.war,WEB-INF/web.xml
#readonly
virtualHost=default_host }

#

SubSection 1.0.9 # CtxRootForWebMod Section. taskName and
lines marked as "#readonly" should not be edited.

#

ResourceType=Application
ImplementingResourceType=Application
Resourceld=Deployment=!{applicationName}

#

Properties

#

taskName=CtxRootForWebMod

row0={ webModule="My Web Application" #readonly
uri=myWebModule.war,WEB-INF/web.xml
#readonly
web.contextroot=/ }

#

SubSection 1.0.10 # MapSharedLibForMod Section.

taskName and lines marked as "#readonly" should not be
edited.

Chapter 8. Deploying applications

117

#

ResourceType=Application
ImplementingResourceType=Application
ResourceId=Deployment=!{applicationName}
#

#

Properties

#

taskName=MapSharedLibForMod

row0={ module=myApp" #readonly
uri=META-INF/application.xml #readonly
sharedLibName="" 1}

rowl={ module="My Web Application" #readonly
uri=MyWebModule.war,WEB-INF/web.xml1 #readonly
sharedLibName="" 1}

#

SubSection 1.0.11 # JSPReloadForWebMod Section. taskName
and lines marked as "#readonly" should not be

edited.

#

ResourceType=Application
ImplementingResourceType=Application
Resourceld=Deployment=!{applicationName}

#

#

Properties

#

taskName=JSPReloadForWebMod

row0={ webModule="My Web Application" #readonly
uri=MyWebModule.war,WEB-INF/web.xml

#readonly

jspReloadEnabled=AppDeploymentOption.Yes
jspReloadInterval=10 }

#

SubSection 1.0.35 # SharedLibRelationship Section.

taskName and lines marked as "#readonly" should not be
edited.

#

ResourceType=Application
ImplementingResourceType=Application
Resourceld=Deployment=!{applicationName}

#

#

Properties

#

taskName=SharedLibRelationship

row0={ module=myApp #readonly
uri=META-INF/application.xml #readonly
relationship=""
matchTarget=AppDeploymentOption.Yes }

rowl={ module="My Web Application" #readonly
uri=MyWebModule.war,WEB-INF/web.xml
#readonly
relationship=""
matchTarget=AppDeploymentOption.Yes }

EnvironmentVariablesSection
#

Environment Variables

#

applicationName=myApp
cel1Name=myCell
nodeName=myNode
serverName=myServer

118 Developing and deploying applications

Update a single file in a deployed enterprise application

The example properties add a single file to a deployed application:

#

Header

#

ResourceType=Application
ImplementingResourceType=Application

Properties

Name=hello

Update=true

operationType=add

contentType=file
contentURI=test.war/com/ibm/addMe. jsp
contentFile=/temp/addMe.jsp

Remove a single file from a deployed enterprise application

The example properties delete a single file from a deployed application:

#

Header

#

ResourceType=Application
ImplementingResourceType=Application

Properties

Name=hello

Update=true

operationType=delete

contentType=file
contentURI=test.war/com/ibm/addMe. jsp

Update a single module in a deployed enterprise application

The example properties add a single module to a deployed application:

#

Header

#

ResourceType=Application
ImplementingResourceType=Application

Properties

Name=hello

Update=true

operationType=add

contentType=moduleFile

#contextRoot="/mywebapp" # required for web module only
contentURI=Increment.jar
contentFile=/apps/appl/Increment.jar

deployEJB=false

Remove a single module from a deployed enterprise application

The example properties delete a single module from a deployed application:

#

Header

#

ResourceType=Application
ImplementingResourceType=Application

Properties

Chapter 8. Deploying applications

119

Name=hello

Update=true
operationType=delete
contentType=moduleFile
contentURI=test.war

Replace, add, or delete multiple files of a deployed enterprise application

This option specifies to update multiple files of an installed application by uploading a compressed file.
Depending on the contents of the compressed file, a single use of this option can replace files in, add new
files to, and delete files from the installed application. Each entry in the compressed file is treated as a
single file and the path of the file from the root of the compressed file is treated as the relative path of the
file in the installed application.

To replace a file, a file in the compressed file must have the same relative path as the file to be updated in
the installed application.

To add a new file to the installed application, a file in the compressed file must have a different relative
path than the files in the installed application.

The relative path of a file in the installed application is formed by concatenation of the relative path of the
module, if the file is inside a module, and the relative path of the file from the root of the module separated
by a forward slash (/).

To remove a file from the installed application, specify metadata in the compressed file using a file named
META-INF/ibm-partialapp-delete.props at any archive scope. The ibm-partialapp-delete.props file must
be an ASCII file that lists files to be deleted in that archive with one entry for each line. The entry can
contain a string pattern such as a regular expression that identifies multiple files. The file paths for the files
to be deleted must be relative to the archive path that has the META-INF/ibm-partialapp-delete.props file.

For more information about the metadata .props file to include in compressed files, see the "Replace, add,
or delete multiple files" section in Preparing for application update settings.

The example properties use the myAppPartial.zip compressed file to update a deployed application
named hello:

#

Header

#

ResourceType=Application
ImplementingResourceType=Application

Properties

Name=hello

Update=true

operationType=update
contentType=partialapp
contentFile=/temp/MyApp/myAppPartial.zip

Replace the entire deployed enterprise application

The example properties update the entire deployed application:

#

Header

#

ResourceType=Application
ImplementingResourceType=Application

Properties
Name=hello

120 Developing and deploying applications

Update=true

operationType=update
contentType=app
contentFile=/apps/appl/newAppl.ear
useDefaultBindings=true

Uninstall an application from a deployment target

The example properties uninstall a deployed application:

#

Header

#

ResourceType=Application
ImplementingResourceType=Application
DELETE=true

Properties
Name=hello

Edit the deployment options of a deployed application

The example properties update the deployment options of a deployed application:

#

Header

#

ResourceType=Application
ImplementingResourceType=Application

Properties
Name=!{applicationName}

#

SubSection 1.0.1 # AppDeploymentOptions Section. taskName
and rowO should not be edited. row® contains column names
for the task.

#

ResourceType=Application
ImpTlementingResourceType=Application
ResourceId=Deployment=!{applicationName}

#

#

Properties

#

taskName=AppDeploymentOptions
rowl={$(APP_INSTALL_ROOT)/$(CELL)
AppDeploymentOption.Yes
AppDeploymentOption.No
AppDepTloymentOption.No
AppDepTloymentOption.No

off .*\.d11=755#.%\.s0=755#.%\.a=755#.%\.s1=755
"WASX.SERV1 [x0617.27]"
AppDeploymentOption.No
AppDeploymentOption.No}
mutables={true true true true true true true true false true true}
row0={installed.ear.destination
distributeApp

useMetaDataFromBinary
createMBeansForResources
reloadEnabTled

reloadInterval

validateinstall

filepermission

buildVersion
allowDispatchRemotelnclude
allowServiceRemoteInclude} #readonly

#

Chapter 8. Deploying applications

121

EnvironmentVariablesSection
#

#

#Environment Variables
applicationName=newhello

Edit web module deployment properties

The example properties edit the deployment properties of a web module:

#

WebModuleDeployment

#

ResourceType=WebModuleDeployment

ImplementingResourceType=Application
Resourceld=Cell=!{cel1Name}:Deployment=!{applicationName}:ApplicationDeployment=
:WebModuleDeployment=uri#web.war

#

#Properties

#

startingWeight=90000 #integer,required,default(1)

deploymentId=1 #required

classloaderMode=PARENT_FIRST ENUM(PARENT_FIRST|PARENT_LAST),defau]t(PARENT_FIRST)

altDD=null

uri=web.war #required
#applicationDeployment=Cel1=!{cel1Name}:Deployment=!{applicationName}:ApplicationDeployment=
#0bjectName (ApplicationDeployment)

EnvironmentVariablesSection
#

#

#Environment Variables
cellName=myCell
applicationName=myApp

What to do next

If the properties file deploys an application or module, test the deployed application or module. For
example, enter the URL for a deployed application in a web browser and examine the performance of the
application.

If the deployment is not successful, read messages in the SystemOut.Tog file, fix the error condition, and
add the properties file to the monitored directory again.

Installing enterprise modules with JSR-88

You can install Java Platform, Enterprise Edition (Java EE) modules on an application server provided by
a WebSphere Application Server product using the Java EE Application Deployment API specification
(JSR-88).

Before you begin

Note: Application installation using the Java EE Application Deployment API specification (JSR-88) has
been deprecated in WebSphere Application Server Version 8.0. Use another option to deploy
applications to a server. The closest option to using the Java EE Deployment API is using Java
Management Extensions (JMX) MBean programming. For information on deployment options, see
"Ways to install enterprise applications or modules."

JSR-88 defines standard application programming interfaces (APIs) to enable deployment of Java EE
applications and stand-alone modules to Java EE product platforms. The Java EE Application Deployment

122 Developing and deploying applications

specification Version 1.1 is available at http://java.sun.com/j2ee/tools/deployment/reference/docs/
index.html as part of the Java 2 Platform, Enterprise Edition (J2EE) 1.4 Application Server Developer
Release.

Read about JSR-88 and APIs used to manage applications at http://java.sun.com/j2ee/tools/
deployment/.

About this task

JSR-88 defines a contract between a tool provider and a platform that enables tools from multiple vendors
to configure, deploy and manage applications on any Java EE product platform. The tool provider typically
supplies software tools and an integrated development environment (IDE) for developing and assembly of
Java EE application modules. The Java EE platform provides application management functions that
deploy, undeploy, start, stop, and otherwise manage Java EE applications.

WebSphere Application Server is a Java EE specification-compliant platform that implements the JSR-88
APIls. Complete the following steps to deploy (install) Java EE modules on an application server provided
by the WebSphere Application Server platform.

Procedure
1. Code a Java program that can access the JSR-88 DeploymentManager class for the product.
a. Write code that finds the JAR manifest attribute J2EE-DeploymentFactory-Implementation-Class.

Under JSR-88, your code finds the DeploymentFactory using the JAR manifest attribute
J2EE-DeploymentFactory-Implementation-Class. The following product application management
JAR files contain this attribute and provide support.

Table 14. JAR files that contain the manifest attribute. Enable your code to find the DeploymentFactory using the
JAR manifest attribute.

Environment JAR file containing the manifest attribute

Application server app_server_root/plugins/com.ibm.ws.admin.services.jar
Application client app_client_root/plugins/com.ibm.ws.j2ee.client.jar

Thin application client app_client_root/runtimes/com.ibm.ws.admin.client_8.0.0.jar

After your code finds the DeploymentFactory, the deployment tool can create an instance of the
WebSphere DeploymentFactory and register the instance with its DeploymentFactoryManager.

Example code for the application server environment follows. The example code requires that you
use the development kit shipped with the product or use the pluggable client for deployment of
stand-alone modules. See WebSphere Application Server detailed system requirements at
http://www.ibm.com/support/docview.wss?rs=1808&uid=swg27006921 for information on supported
development kits.

import javax.enterprise.deploy.shared.factories.DeploymentFactoryManager;
import javax.enterprise.deploy.spi.DeploymentManager;

import javax.enterprise.deploy.spi.factories.DeploymentFactory;

import java.util.jar.JarFile;

import java.util.jar.Manifest;

// Get the DeploymentFactory implementation class from the MANIFEST.MF file.
File jsr88Jar = new File(wasHome + "/plugins/com.ibm.ws.admin.services.jar");
JarFile jarFile = new JarFile(jsr88Jar);

Manifest manifest = jarFile.getManifest();

Attributes attributes = manifest.getMainAttributes();

String key = "J2EE-DeploymentFactory-Implementation-Class";

String className = attributes.getValue(key);

// Get an instance of the DeploymentFactoryManager

DeploymentFactoryManager dfm = DeploymentFactoryManager.getInstance();

// Create an instance of the WebSphere Application Server DeploymentFactory.
Class deploymentFactory = Class.forName(className);
DeploymentFactory deploymentFactoryInstance =

(DeploymentFactory) deploymentFactory.newInstance();

// Register the DeploymentFactory instance with the DeploymentFactoryManager.

Chapter 8. Deploying applications 123

dfm.registerDeploymentFactory(deploymentFactoryInstance);

// Provide WebSphere Application Server URI, user ID, and password.

// For more information, see the step that follows.

wsDM = dfm.getDeploymentManager (
"deployer:WebSphere:myserver:8880", null, null);

b. Write code that accesses the DeploymentManager instance for the product.

The product URI for deployment has the following format:
"deployer:WebSphere:host:port"

The example in the previous step, "deployer:WebSphere:myserver:8880", tries to connect to host
myserver at port 8880 using the SOAP connector, which is the default.
You can specify an Internet Protocol Version 6 (IPv6) address for the host element in the URI for
deployment. Enclose the IPv6 address in square brackets ([]); for example:
"deployer:WebSphere: [IPv6_address] :port"
Also, you can add an optional parameter, connectorType, to the URI for deployment. For example,
to use the RMI connector to access myserver, code the URI as follows:
"deployer:WebSphere:myserver:2809?connectorType=RMI"
2. Optional: Code a Java program that can |customize or deploy Java EE applications or modules usind
the JSR-88 support|provided by the product.

3. Start the deployed Java EE applications or stand-alone Java EE modules using the JSR-88 API used
to start applications or modules.

What to do next

Test the deployed applications or modules. For example, point a web browser at the URL for a deployed
application and examine the performance of the application. If necessary, update the application.

Customizing modules using DConfigBeans

You can configure Java Platform, Enterprise Edition (Java EE) applications or stand-alone modules during
deployment using the DConfigBean class in the Java EE Application Deployment API specification
(JSR-88).

Before you begin

Note: Application installation using the Java EE Application Deployment API specification (JSR-88) has
been deprecated in WebSphere Application Server Version 8.0. Use another option to deploy
applications to a server. The closest option to using the Java EE Deployment API is using Java
Management Extensions (JMX) MBean programming. For information on deployment options, see
"Ways to install enterprise applications or modules."

This topic assumes that you are deploying (installing) Java EE modules on an application server provided
by the product using the [WebSphere Application Server support for JSR-88|

Read about the JSR-88 specification and using the DConfigBean class at |http://java.sun.com/j2ee/tools/|

About this task

The DConfigBean class in JSR-88 provides JavaBeans-based support for platform-specific configuration of
J2EE applications and modules during deployment. Your code can inspect DConfigBean instances to get
platform-specific configuration attributes. The DConfigBean instances provided by WebSphere Application
Server contain a single attribute which has an array of java.util.Map objects. The map entries contain
configuration attributes, for which your code can get and set values.

124 Developing and deploying applications

http://java.sun.com/j2ee/tools/deployment/
http://java.sun.com/j2ee/tools/deployment/

Procedure

1. Write code thatfinstalls Java EE modules on an application server using JSR-88}

2. Write code that accesses DConfigBeans generated by the product during JSR-88 deployment. You (or
a deployer) can then customize the accessed DConfigBeans instances.

The following pseudocode shows how a Java EE tool provider can get DConfigBean instance
attributes generated by the product during JSR-88 deployment and set values for the attributes.

import javax.enterprise.deploy.model.*;
import javax.enterprise.deploy.spi.*;

DeploymentConfiguration dConfig = ___; // Get from DeploymentManager

DDBeanRoot ddRoot = __; // Provided by J2EE too

// Obtain root bean.
DConfigBeanRoot dcRoot = dConfig.getDConfigBeanRoot (dr);

// Configure DConfigBean.
configureDCBean (dcRoot);

// Get children from DConfigBeanRoot and configure each child.
method configureDCBean (DConfigBean dcBean)

// Get DConfigBean attributes for a given archive.

BeanInfo bInfo = Introspector.getBeanInfo(dcBean.getClass());

IndexedPropertyDescriptor ipDesc =
(IndexedPropertyDescriptor)bInfo.getPropertyDescriptors()[0];

// Get the Oth map.
int index = 03
Map map = (Map)
ipDesc.getIndexedReadMethod().invoke
(dcBean, new Object[]{new Integer(index)});

while (map != null)
// Tterate over the map and set values for attributes.

// Set the map back into the DCBean.
ipDesc.getIndexedWriteMethod().invoke
(dcBean, new Object[]{new Integer(index), map});

// Get the next entry in the indexed property
map = (Map)
ipDesc.getIndexedReadMethod().1invoke
(dcBean, new Object[]{new Integer(++index)});

Chapter 8. Deploying applications

125

126 Developing and deploying applications

Chapter 9. Deploying and administering business-level
applications

Deploying a business-level application consists of creating the business-level application on a Version 7.0
or later server.

Before you begin

A business-level application is an administration model that provides the entire definition of an application
as it makes sense to the business. It is a WebSphere configuration artifact, similar to a server, that is
stored in the product configuration repository. A business-level application can contain artifacts such as
Java Platform, Enterprise Edition (Java EE) applications or modules, shared libraries, data files, and other
business-level applications. You might use a business-level application to group related artifacts or to add
capability to an existing application. For example, suppose you want to add capability provided in a Java
archive (JAR) to a Java EE application already deployed on a product server. You can add that capability
by creating a new business-level application and adding the JAR file and the deployed Java EE application
to the business-level application. In some cases, you do not even need to change the deployed Java EE
application configuration to add the capability.

Before creating a business-level application, you must develop the artifacts to go in the application and
configure the target server. Before choosing a deployment target for the application, ensure that the target
version is 7.0 or later.

About this task

When creating a business-level application, you can configure the application enough to enable it to run on
the server. Later, you can configure the application and its contents further, start or stop the application,
and otherwise manage its activity.

The topics in this section describe how to deploy and administer a business-level application or its
contents using the administrative console. You can also use programming or wsadmin scripting.

Procedure

. to a repository.

+ [View, delete, update, or export assets,
« [Create a business-level application|

+ [Create a Service Component Architecture (SCA) business-level application|that has SCA assets, shared
libraries, or business-level applications.

[Start the application}

« [Stop the application]

[Update the application|and its configuration units.

[Update SCA composite artifacts}

[View the composite definition of an SCA asset composition unit}

[View SCA domain information|

« [“Viewing and editing JMS bindings on references and services of SCA composites” on page 202
[Delete the application]

What to do next

After making changes to administrative configurations of your applications in the administrative console,
ensure that you save the changes.

© Copyright IBM Corp. 2011 127

Business-level applications

A business-level application is an administration model that provides the entire definition of an application
as it makes sense to the business. A business-level application is a WebSphere configuration artifact,
similar to a server or cluster, that is stored in the product configuration repository.

Business-level application characteristics
Comparisons to Java EE applications|

Business-level application characteristics

A business-level application has the following characteristics:

A business-level application is an administration model of the definition of an enterprise-level application
that consists of WebSphere and non-WebSphere artifacts. The business-level application might not
explicitly manage the lifecycle of every artifact. It is a model for defining an application.

A business-level application does not represent or contain application binary files. It is a configuration
that lists one or more composition units, which represent the application binary files. A business-level
application uses the binary files to run the application business logic. Administration of binary files is
separate from administration of the application definition.

A business-level application supports recursive composition by reference that facilitates hierarchical
assembly of business-level applications and individual deployed artifacts within or outside a WebSphere
product. The composition at its lowest level consists of configured instances of application binary files
that run in a specific runtime environment such as an application server. Installable packages or
archives, such as Java archives (JAR) or enterprise archive (EAR) files, typically deliver the business
logic that these configured instances represent to corresponding runtime platforms.

The following diagram shows the composition model for business-level applications:

Composition Application
ST Application
P Application
Configuration i -
» : : ;
EJB 4
module . Y
Library Web Enterprise
module application
Business Logic | : ;
Java
library -
EJB JAR WAR
"

128 Developing and deploying applications

A business-level application does not introduce new programming, runtime, or packaging models:

* You do not need to change your application business logic. The business-level application function does
not introduce new application programming interfaces (APIs).

* You do not need to change your application runtime settings. The product supports all of the runtime
characteristics, such as security, class loading and isolation, required by individual programming models
to which business components are written.

* You do not need to change your application packaging. There is no specific unique packaging model
that provides a business-level application definition.

Typically, you first create an empty business-level application and then add composition units to it. The
business-level application name must be unique within a cell. The business level application itself has
minimal configuration data associated with it, solely the list of composition units, but individual composition
units might save application-specific configuration data.

A business-level application is defined in the product configuration repository under profile_root/config/
cells/cell_name/blas/business level application_name/bver/BASE/bla.xml.

Comparisons to Java EE applications

Business-level applications can consist of or aggregate Java Platform, Enterprise Edition (Java EE)
applications and modules with non-Java EE artifacts. The contents of Java EE applications integrate with
business-level application concepts for deployment and management of applications. Existing Java EE
application management APIs continue to work after you add Java EE application or modules to a
business-level application. The business-level application management API accepts Java EE contents and
configurations and delegates to existing Java EE management APls. Control operations such as starting
and stopping a Java EE composition unit are delegated to ApplicationManager MBean on application
servers that start and stop Java EE applications.

Table 15. Java EE concepts compared to business-level application concepts. Business-level application concepts
include assets, composition units, and deployable units.

Business-level application

Java EE concept concept Description

EAR or stand-alone Asset Java EE application contents are assets.

module for

deployment

Java EE application Composition unit A Java EE application is in an enterprise archive (EAR)

created at the end of file. The product saves the EAR file in the product

application install repository as a composition unit.

Java EE modules Deployable units in the asset Each module in the EAR file is a deployable unit that you

within the EAR file can install on independent deployment targets. The EAR
file is still managed as a single asset in its entirety.

Chapter 9. Deploying and administering business-level applications 129

Table 15. Java EE concepts compared to business-level application concepts (continued). Business-level application
concepts include assets, composition units, and deployable units.

Java EE concept

Business-level application
concept

Description

Java EE application
installation using the
administrative
console,
programming, or
wsadmin commands

Multiple business-level
application management
commands

During Java EE application
deployment, you can specify the
name of the business-level
application to include the Java
EE application. If the
business-level application name
is not set, the product creates a
default business-level
application with the same name
as the Java EE application
name. The product adds a
composition unit with the same
name as the Java EE
application name under the
business-level application. You
can deploy multiple Java EE
applications under a single
business-level application.

You can make a Java EE application a business-level
application and add it to another business-level application:

1. Install the Java EE application (EAR file) using the
enterprise application installation console wizard,
programming, or wsadmin. Keep the default selection
to create a business-level application that has the
same name as the Java EE application.

2. Create an empty business-level application.

3. Add the EAR file business-level application to the
empty business-level application. The EAR file
business-level application is a composition unit of the
containing business-level application.

Or, you can make a Java EE application an asset and add

it to another business-level application:

1. Import an EAR file as an asset. It has an asset type
aspect of Java EE ear.

2. Create an empty business-level application.

3. Add the Java EE application asset to the business-level
application. The EAR file asset is a composition unit of
the containing business-level application.

4. Collect targets for each deployable unit (Java EE
module).

Uninstall Java EE
application

Multiple business-level
application management
commands

You delete the Java EE application composition unit from
the business-level application:

1. Remove the composition unit for the Java EE
application from the business-level application.

2. If the EAR file is an asset, delete the asset.

Start the Java EE

Start the composition unit.

Starting a business-level application starts any Java EE

application. application in it.

Stop the Java EE Stop the composition unit. Stopping a business-level application stops any Java EE
application. application in it.

Assets

An asset represents one or more application binary files that are stored in an asset repository. Typical
assets include application business logic such as Java Platform, Enterprise Edition (Java EE) archives,
library files, and other resource files.

An asset repository stores the binary files for the asset. The product configuration repository provides a
default asset repository.

Assets in the configuration repository are managed by the product management domain. The configuration
repository stores asset binary files in app_server_root/config/cells/cell_name/assets/asset_name/aver/

BASE/bin/.

An asset name must be unique within a cell, the product administrative domain.

130 Developing and deploying applications

The product creates an asset.xml file when an asset is registered with the product configuration. The file
contains information about the asset such as its name, destination location, and dependencies on other
assets.

You must register files as assets before you can add them to one or more business-level applications. At
the time of asset registration, you can import the physical application files into the product configuration
repository or you can specify an external location where the asset resides.

Composition units

A composition unit represents a configured asset in a business-level application. A composition unit
enables the asset contents to interact with other assets in the application. It also enables the product run
time to load and run asset contents.

The product supports three types of composition units:

Asset composition units
Composition units created from assets by configuring each deployable unit of the asset to run on
deployment targets.

Shared library composition units
Composition units created from JAR-based assets by ignoring all the deployable objects from the
asset and treating the asset JAR file as a library of classes.

Business-level application composition units
Composition units created from business-level applications that are added to existing
business-level applications.

A composition unit contains the following information:

» Configuration information that binds contents of an asset with a specific hosting run time and adds the
configuration necessary for the run time to load and run the asset

» References to external services, components, or other resources that the asset uses
» Customized configurations for service definitions, references and other relevant configuration data

» Alist of deployment targets or runtime environments along with the runtime environment-specific
configuration where the composition unit runs.

For example, a composition unit for an enterprise bean (EJB) Java archive (JAR) asset is an EJB module
instance that contains necessary EJB binding information, such as EJB Java Naming and Directory
Interface (JNDI) names and ejb-ref resolutions, along with a list of application servers where the EJB
JAR runs.

The product creates a composition unit from only one asset. However, multiple composition units can
share a single asset. This is particularly useful in scenarios where different configurations use the same
application binary files to provide different runtime behavior.

The following rules apply to a composition unit:
» A composition unit can exist only in a business-level application.

» Because a composition unit contains application-specific configuration and wiring information, multiple
business-level applications cannot share an asset or shared library composition unit.

The following graphic shows the use of composition units in business-level applications. Assume that you
have unprocessed files, such as archives, that you want to use in business-level applications. Before you
can add the files to business-level applications, you must first import the files as assets, which adds the
files to the product repository. Next, you add the assets to business-level applications, which creates
composition units for the assets. Business-level applications can contain asset composition units, shared

Chapter 9. Deploying and administering business-level applications 131

library composition units, or business-level composition units.

LpIo0s ol Assel Composition Business level application
flcest repository unit composition
Composition unit
Axis2 archive Assel — —
level
JAX-WS instance application
Axis?
archive

EJE JAR file

Business
level

Asset t—1p Composition unit \

) application
EJB module instance:
JAR file
Assat — Composition unit
: Business
level
Shared library instance application
JAR file ’
Compaosition
| unit

Importing assets

You must register application business logic such as Java Platform, Enterprise Edition (Java EE) archives,
libraries, and other resource files with the product configuration as assets before you can add the assets
to one or more business-level applications. Importing an asset registers it with the product configuration.

Before you begin

This topic assumes that you have one or more application binary files that you want to add to a
business-level application. You must register those binary files as assets before you can add them to the
business-level application.

About this task

Before a business-level application that uses an asset can be started on the target run time, the asset
binaries must be extracted to a deployer-defined location on the file system that is local to the target run
time. Importing an asset extracts binaries to a location that is local to the target run time.

The application server run time that reads the asset binaries either at application start time or while
serving an incoming client request determines the extraction format of the asset binaries. The extraction
format might include unzipping of Java archive (JAR) or compressed (zip) files.

This topic describes how to import an asset using the administrative console. Alternatively, you can use
the wsadmin tool or programming.

132 Developing and deploying applications

Procedure
1. Click Applications > New Application > New Asset in the console navigation tree.
2. On the Upload asset page, specify the asset package to import.

a.
b.

Specify the full path name of the asset.
Click Next.

3. Onthe |Select options for importing an asset page|, specify asset settings.
You typically can click Next and use the default values.

a.
b.

g.

Optional: For Asset description, specify a brief description of the asset.
Optional: For Asset binaries destination URL, specify the target location of the asset.

This setting specifies the location to which the product extracts the asset. After an asset is
imported, the product looks for the asset in this location when a running application uses the asset.

If you do not specify a value, the product installs the asset to the default location,
${profile_root} /installedAssets/asset _name/BASE/.

Optional: For Asset type aspects, examine the asset content type and version specified by the
product. You cannot change this setting value.

The type aspect typically denotes the type of application contents, such as a specification to which
the application is written. For example, an enterprise bean (EJB) that supports the EJB Version 2.0
specification has the aspects type=EJB,version=2.0.

If the type aspect is none and if the asset is a JAR file, then the product associates a javarchive
type aspect with the asset by default.

For File permissions, specify any file permissions that are set on asset binary files so the target
run time can read or run the asset. Importing the asset extracts its binary files on the disk local to
the target runtime environment.

Try importing the asset using the default value. For detailed information on the File permissions
setting, refer to the Select options for importing an asset page online help.

For Current asset relationships, add assets that the asset you are importing needs to run or
remove assets that are not needed.

When the product imports a JAR asset, the product detects asset relationships automatically by
matching the dependencies defined in the JAR manifest with the assets that are already imported
into the administrative domain.

For Validate asset, specify whether the product validates the asset.

The setting is deselected by default. This false (no) value is appropriate for most assets. Only
select true (yes) to validate an asset when needed.

The product does not save the value specified for Validate asset. Thus, if you select to validate the
asset (yes) now and later update the asset, when you update the asset you must enable this
setting again for the product to validate the updated files.

Click Next.

4. On the Summary page, click Finish.

Results

Several messages are displayed, indicating whether your asset is imported successfully.

An asset can contain multiple deployable objects as defined by the application contents of that asset. A

deployable object is a part of the asset that you can map to a deployment target such as an application

server. If the product imports the asset successfully, then appropriate deployable objects are identified in
the asset and are further used when a composition unit is created from that asset.

If the asset importing is not successful, read the messages and try importing the asset again. Correct the
values noted in the messages.

Chapter 9. Deploying and administering business-level applications 133

What to do next

If the product imports the asset successfully and displays the list of assets on the Assets page, then click
Save.

Add a composition unit to a business-level application using the asset that you imported. An asset included
in a business-level application is represented by a composition unit.

Upload asset settings

Use this page to specify the asset to register with the asset repository. You can add registered assets to a
business-level application.

To view this administrative console page, click Applications > New application > New Asset.
Importing an asset registers the asset with the asset repository.

The product manages the contents of a registered asset as a single entity. The contents of a registered
asset must be accessible to application servers, web servers and other runtime environments that use the
asset.

During asset importing, asset files typically are uploaded from a client workstation running the browser to
the server running the administrative console, where they are registered. In such cases, use the web
browser running the administrative console to select files to upload to the server.

Path to the asset
Specifies the fully qualified path to the asset.

Specify one of the following supported assets:

* Asingle file, such as an enterprise bean (EJB) file

* An archive of files, such as a Java archive (JAR) or a compressed .zip file

* An archive of archives, such as an enterprise archive (EAR) or shared library file

Use Local file system if the browser and asset files are on the same machine (whether or not the server
is on that machine, too).

Use Remote file system if the asset file resides on any node in the current cell context. Only supported
assets are shown during the browsing. Also use Remote file system to specify an asset file that is
already residing on the machine running the application server. For example, the field value might be
profile root/installableApps/my_bean.ejb. After the asset file is transferred, the Remote file system
value shows the path of the temporary location on the server.

Asset settings
Use this page to specify options for the registration of an asset with the asset repository. Default values for

the options are used if you do not specify a value. If the asset is an OSGi application, additional
information about bundle download status is displayed.

To view this administrative console page, click Applications > Application Types > Assets >
asset_name. This page is similar to the Select options for importing an asset page on the asset import
and update wizards.

Asset name
Specifies a logical name for the asset. An asset name must be unique within a cell and cannot contain an
unsupported character.

134 Developing and deploying applications

An asset name cannot begin with a period (.), cannot contain leading or trailing spaces, and cannot
contain any of the following characters:

Table 16. Characters that you cannot use in a name. The product does not support these characters in a name.

Unsupported characters

| forward slash $ dollar sign ' single quote mark

\ backslash = equal sign " double quote mark

* asterisk % percent sign I vertical bar

, comma + plus sign < left angle bracket
colon @ at sign > right angle bracket

; semi-colon # hash mark & ampersand (and sign)

? question mark 11> No specific name exists for this character combination

This Asset name field is the same as the Name setting on an Assets page.

Data type String

Asset description
Specifies a description for the asset.

Asset binaries destination URL
Specifies the directory to which the product imports the asset file.

Data type String
Units Full path name

Asset type aspects

Specifies the type of asset content. Examples of asset type include Java archive (JAR) files, shared
libraries, enterprise application archive (EAR) files, and enterprise bundle archive (EBA) files.

The asset type suggests the content of the asset. For example an asset packaged as a JAR file might
contain a web module, portlet and web service, and an asset packaged as an EBA file contains an OSGi
application.

This setting is read-only. You cannot edit this setting.

Data type String
Units File type
Default none

File permissions

Specifies access permissions for asset binaries that the product expands to the asset binaries destination
URL.

You can specify file permissions in the text field. You can also set some of the commonly used file
permissions by selecting them from the list. List selections overwrite file permissions set in the text field.

You can set one or more of the following file permission strings in the list. Selecting multiple options
combines the file permission strings.

Chapter 9. Deploying and administering business-level applications 135

Table 17. File permission string sets for list options. Select a list option or specify a file permission string in the text
field.

Multiple-selection list option File permission string set
Allow all files to be read but not written to .x=755
Allow executables to execute .*\.d11=755#.%\.s0=755#.*\.a=755#.*\.s1=755

Allow HTML and image files to be read by *\ . htm=755#.%\.htm1=755#.%\.gif=755#.%\.jpg=755
everyone

Instead of using the multiple-selection list to specify file permissions, you can specify a file permission
string in the text field. File permissions use a string that has the following format:

file_name_pattern=permission#file_name_pattern=permission

where file_name_pattern is a regular expression file name filter (for example, .*\\.jsp for all JSP files),
permission provides the file access control lists (ACLs), and # is the separator between multiple entries of
file_name_pattern and permission. If # is a character in a file_name_pattern string, use \# instead.

If multiple file name patterns and file permissions in the string match a uniform resource identifier (URI)
within the asset, then the product uses the most stringent applicable file permission for the file. For
example, if the file permission string is .*\\.jsp=775#a.*\\.jsp=754, then the abc.jsp file has file
permission 754.

Tip: Using regular expressions for file matching pattern compares an entire string URI against the
specified file permission pattern. You must provide more precise matching patterns using regular
expressions as defined by Java programming API. For example, suppose the product processes the
following directory and file URIs during a file permission operation:

Table 18. Example URiIs for file permission operations. Results are shown following this table.

1 /opt/WebSphere/profiles/AppSrv01l/installedApps/MyCel1/MyApp.ear/MyWarModule.war

/opt/WebSphere/profiles/AppSrv01l/installedApps/MyCell/MyApp.ear/MyWarModule.war/Mydsp.jsp

/opt/WebSphere/profiles/AppSrv01l/installedApps/MyCell/MyApp.ear/MyWarModule.war/META-INF/
MANIFEST.MF

4 /opt/WebSphere/profiles/AppSrv0l/installedApps/MyCel1/MyApp.ear/MyWarModule.war/WEB-INF/classes/
MyClass.class

5 /opt/WebSphere/profiles/AppSrv0l/installedApps/MyCel1/MyApp.ear/MyWarModule.war/mydir/
MyClass2.class

6 /opt/WebSphere/profiles/AppSrv0l/installedApps/MyCel1/MyApp.ear/MyWarModule.war/META-INF

The file pattern matching results are:

* MyWarModule.war does not match any of the URIs

* .*MyWarModule.war.* matches all URIs

* .xMyWarModule.war$ matches only URI 1

* .*\\.jsp=755 matches only URI 2

e .*META-INF.* matches URIs 3 and 6

e .*MyWarModule.war/.*/.*\.class matches URIs 4 and 5

If you specify a directory name pattern for File permissions, then the directory permission is set based on
the value specified. Otherwise, the File permissions value set on the directory is the same as its parent.
For example, suppose you have the following file and directory structure:
/opt/WebSphere/profiles/AppSrv0l/installedApps/MyCell/MyApp.ear/MyWarModule.war/Mydsp.jsp

and you specify the following file pattern string:
.*MyApp.ear$=755#.*\.jsp=644

136 Developing and deploying applications

The file pattern matching results are:

» Directory MyApp.ear is set to 755

» Directory MyWarModule.war is set to 755
» Directory MyWarModule.war is set to 755

Important: Regardless of the operation system, always use a forward slash (/) as a file path separator in
file patterns.

T You cannot unset read permission on a file on Windows operating systems. With POSIX style
permission bits, the bit for denoting readable on a file is 4, writable is 2, and executable is 1. Thus,
permission of a file on a Windows operating system is either 5 or 7. Also, in POSIX style there are user,
group and world permissions. You can only set the user permission for a file on Windows operating
systems. The group and world permission bits are ignored.

Access permissions specified here are at the asset level. You can also specify access permissions for
asset binaries in the node-level configuration. The node-level file permissions specify the maximum (most
lenient) permissions that can be given to asset binaries. Access permissions specified here at asset level
can only be the same as or more restrictive than those specified at the node level.

Data type String

Current asset relationships
Specifies the assets to which this asset is related.

To add or remove a relationship, use the Manage relationships page:

1. Click Manage Relationships to access the Manage relationships page. The Selected list on the right
lists the current asset relationships.

2. To add a relationship, select an asset in the Available list on the left and click >>.

3. To remove a relationship, select an asset in the Selected list on the right and click <<.

4. Click OK.

Data type String
Default none

Validate asset
Specifies whether the product examines the asset references specified during asset importing or updating
and, if validation is enabled, warns you of incorrect references or fails the operation.

An asset typically refers to resources using data sources for container-managed persistence (CMP) beans
or using resource references or resource environment references defined in deployment descriptors. The
validation checks whether the resource referred to by the asset is defined in the scope of the deployment
target of that asset.

Select true (enable the check box) for resource validation and to stop operations that fail as a result of
incorrect resource references. Select false (empty check box) for no resource validation.

Data type String
Default false (empty check box)

EBA Dependencies

For an enterprise bundle archive (EBA) asset, displays the current bundle download status for all bundles
in the asset. This item is only displayed if your asset is an EBA asset, which means that it contains an
OSGi application.

Chapter 9. Deploying and administering business-level applications 137

You cannot update an EBA asset until bundle downloads are complete from any previous update, and until
the business-level application that uses the asset has picked up the previous updates by being restarted.
Before you try and update bundle versions, you can use the EBA dependency information to check the
bundle download status of the asset. The status displayed is one of the following values:

* Bundles downloading...
* Bundle downloads are complete.
* No bundles downloads are required.

Note: In addition to the information given here, you can also check the bundle download status indirectly,
by checking the status of the associated EBA composition unit as described in Checking and
updating the EBA asset version used by a business-level application.

If bundle downloads for the asset are complete, or no bundle downloads are required, you can update the
asset using either of the methods described in Maintaining bundle versions for an EBA asset.

If bundle downloads for the asset are complete, and a new version of the EBA asset is available, restart
the business-level application to bring the EBA composition unit up-to-date and to run the newer
configuration.

Managing assets

After application binary files are imported and registered with the product management domain as assets,
you can view, update and export those assets.

Before you begin

Import one or more assets. The name of each imported assets is shown on the list of assets on the

administrative console .
About this task

You can view the contents of assets, update assets, remove assets from the product management
domain, or export copies of assets to a target location. This topic describes how to perform these asset
management operations from the administrative console Assets page. Alternatively, you can use
programming or the wsadmin tool.

Procedure
* View or edit asset settings.
1. Go to the administrative console Assets page.
Click Applications > Application Types > Assets.

2. Click the asset name in the list of assets. The|Asset settings page| displays the values that are
specified for the asset.

3. Optional: Change the asset settings as needed and click OK to save the changes.
+ |[Remove one or more assets| from the product management domain.
+ |Update the contents of an asset|
Export an asset| to a target location.

What to do next

Create a business level application and add the asset to the business-level application.

138 Developing and deploying applications

Asset collection

Use this page to view a list of assets in the asset repository and to manage those assets. After importing
an asset, you can add the asset to a business-level application.

Assets include Java archive (JAR) and compressed files that are used by applications installed on a
server.

To view this administrative console page, click Applications > Application Types > Assets.

To view the values specified for an asset, click the asset name in the list. The displayed asset settings
page shows the values specified. On the settings page, you can change existing asset values.

To manage an asset, enable the Select check box beside the asset name in the list and click a button:

Table 19. Button descriptions. Use the buttons to manage assets.

Button Resulting action
Import Opens a wizard that helps you add an asset to the asset repository.
Delete Removes the asset from the asset repository and deletes the asset binaries from the file

system of all nodes where the assets are installed.

On single-server installations, deletion occurs after the configuration is saved.

Update Opens a wizard that helps you update asset files. You can replace a file or module that
exists on the server with a file or module that has the same name. Or you can add a
new file or module, provided the new file or module does not have the same name as an
asset that already exists on the server.

Export Accesses the Export asset page, which you use to export an asset to a file at a location
of your choice. Use the Export action to back up an asset.

Name
Specifies the name of the asset. Asset names must be unique within a cell and cannot contain an
unsupported character.

Description
Specifies a description for the asset.

Updating assets
You can use the Update asset wizard to update classes, composites, wsdl, xsd, and definitions.xml files
in an asset.

Before you begin

Import one or more assets. The file name of each deployable object in the imported assets is shown on
the list of assets on the administrative console Assets page.

About this task
You can update all or part of the contents of assets that are in the product management domain. Complete
the steps in the Procedure to update an asset using the administrative console Update asset wizard.

Alternatively, you can update assets using programming or the wsadmin tool.

The following update limitations exist if the asset you are updating is a Service Component Architecture
(SCA) asset:

Chapter 9. Deploying and administering business-level applications 139

* You cannot delete a composite file that a composition unit is using. If a delete is attempted, a warning
message is sent to the Update asset log.

* You cannot update an sca-contribution.xml file.

— SCA cannot detect deployable composites that are either added or deleted. Therefore, during
deployment of a new composition unit, you do not see the new deployable composite in the
deployables option list.

— SCA cannot detect dependencies that are added/removed during the Update asset process.

- If a new import package is added and if a class in an existing composition unit is updated to
require this new package, then the Update asset wizard fails with a ClassNotFoundException.
Deployment of any new composition units from the updated asset are successful as the
dependencies are detected during deployment operation.

- If a new export package/namespace is added, then it has no affect on the existing composition
unit and the Update asset wizard completes successfully.

» Because the Update asset wizard uses the new composite definition file provided in the asset for the
existing composition unit, the following post deployment related changes to the composite configuration
are not saved.

— Binding resources: If you want to save this information, export all the data to the composite definition
file in the new asset before you do the update.

— Component reference target URIs: If you want to save this information, export all the data to the
composite definition file in the new asset before you do the update.

— Component properties: If you want to save this information, export all the data to the composite
definition file in the new asset before you do the update.

— HTTP Endpoint URL information: You need to reconfigure this information after the Update asset
wizard finishes.

* For web services policy set attachments, during Update asset processing:

— |If there is a policy set specified for an endpoint in the updated composite definition file, SCA checks
to see if a policy set has already been attached to that endpoint in the deployed composition unit. If
an attachment already exists for that endpoint, the attachment is removed, and the policy set listed in
the new composite file for that endpoint is attached. In this situation, if you have made any post
deployment policy set configuration changes, these changes are lost.

— If there is no policy set defined for an endpoint in the update composite definition file, then any
existing attachments to that endpoint are removed.

Policy set bindings follow these same rules.
* For RunAs and RoleToUser mapping definitions, during Update asset processing:

— For implementation.java, implementation.spring and implementation.osgiapp, any new roles defined
in the definition.xml file in the asset are picked up and users can be mapped to these roles using
either the editCompositionUnit command or the administrative console. Any existing role mappings
for the original roles are preserved.

— For implementation.jee, the runAs and RoleToUser mappings are defined in the JEE application
instead of in the SCA asset or SCA composition unit. Therefore, SCA does not do anything with
these mappings during Update asset processing.

* The user defined virtual host that hosts web content for binding.ws, binding.atom, binding.http with
wireformat.jsonrpc and implementation.widget is not supported. A virtual host mapping of default_host
is used during Update asset processing.

Procedure

1. Go to the Update asset wizard.
a. Click Applications > Application Types > Assets to access the Assets page.
b. Select the check box beside the asset that you want to update.
c. Click Update.

140 Developing and deploying applications

2. On the Update asset page, specify whether you want replace an entire asset or update its contents
and, as needed, the replacement file or module.
a. Select an update option.
You can update asset contents by adding, deleting, or updating a single file or module in the asset,
or by merging multiple files or modules. Update options include the following:
* Replace entire asset
» Replace specific asset contents
* Add module or file to asset
* Remove file or module from asset
* Merge asset contents
The online help for the |Update asset page| describes the options.

b. If you are updating specific asset contents or removing a file or module, specify the path beginning
with the asset archive file.

For Specify the path beginning with the asset archive file, specify a relative path to the file that
starts from the root of the asset file. For example, if the file is located at com/company/
greeting.class in module hello. jar, specify a relative path of hello.jar/com/company/
greeting.class.

c. If you are updating the entire asset, updating an asset file or module, or merging asset contents,
specify the full path name of the new file or module.

d. Click Next.
3. On the Select options for updating an asset page, specify asset settings and click Next.
The online help for the [Select options for importing an asset page| describes the settings.
4. On the Summary page, click Finish.

Results

If you update an asset packaged as a library JAR file that is not a Java Platform, Enterprise Edition (Java
EE) archive, then the product automatically distributes the updated asset to all of the composition units
that use the asset.

However, if you update a Java EE asset, then the product does not automatically distribute the updated
Java EE archive to composition units created from that asset, which are Java EE applications. You must
select every Java EE application created from that asset and use the Update button to update the Java
EE application individually by specifying the update contents.

What to do next

Create a business-level application and add the asset to the business-level application.

Update asset settings

Use this page to select whether you want replace an entire asset or update its contents. You can update
asset contents by adding, deleting, or updating a single file or module in the asset, or by merging multiple
files or modules into an asset. Updating an asset registers the updated files with the product management
domain.

To view this administrative console page, click Applications > Application Types > Assets, select the
asset to update, and then click Update.

The product manages the contents of a registered asset as a single entity. The contents of a registered
asset must be accessible to application servers, web servers and other runtime environments that use the
asset.

When you replace an asset or update an asset by adding a file or module, asset files typically are
uploaded from a client workstation running the browser to the server machine running the administrative

Chapter 9. Deploying and administering business-level applications 141

console, where they are registered. In such cases, use the web browser running the administrative
console to select files to upload to the server machine.

The specified asset that you are installing must be one of the following supported assets:
* Asingle file, such as an enterprise bean (EJB) file

* An archive of files, such as a Java archive (JAR) or a compressed .zip file

» An archive of archives, such as an enterprise archive (EAR) or shared library file

Replace entire asset:

Under Select the type of update to perform, specifies to replace the entire asset installed on the server
with a new (updated) asset.

After selecting this option, specify whether the asset is on a local or remote file system and the full path
name of the asset. The path provides the location of the updated asset before installation.

Use Local file system if the browser and asset files are on the same machine (whether or not the server
is on that machine, too).

Use Remote file system if the asset file resides on any node in the current cell context. Only supported
assets are shown during the browsing. Also use Remote file system to specify an asset file that is
already residing on the machine running the application server. For example, the field value might be
profile root/installableApps/my_bean.ejb. After the asset file is transferred, the Remote file system
value shows the path of the temporary location on the server.

Replace specific asset contents:

Under Select the type of update to perform, specifies to replace a file or module of the asset installed
on the server.

After selecting this option, do the following:

1. For Specify the path beginning with the asset archive file, specify a relative path to the file that
starts from the root of the asset file. For example, if the file is located at com/company/greeting.class
in module hello.jar, specify a relative path of hello.jar/com/company/greeting.class.

2. Specify whether the asset is on a local or remote file system and the full path name of the asset. The
path provides the location of the updated asset before installation.

3. Click Next.

The Replace entire asset description describes options for specifying the full path name of an asset or
file to add using Local file system and Remote file system options.

Add a module or file to an asset:
Under Select the type of update to perform, specifies to add a file to the asset installed on the server.

After selecting this option, do the following:

1. For Specify the path beginning with the asset archive file, specify a relative path to the file that
starts from the root of the asset file. For example, if the file is located at com/company/greeting.class
in module hello. jar, specify a relative path of hello.jar/com/company/greeting.class.

2. Specify whether the asset is on a local or remote file system and the full path name of the asset. The
path provides the location of the updated asset before installation.

The Replace entire asset description describes options for specifying the full path name of an asset or
file to add using Local file system and Remote file system options.

142 Developing and deploying applications

Remove a file or module from an asset:

Under Select the type of update to perform, specifies to remove a file or module from the asset installed
on the server.

After selecting this option, do the following:

1. For Specify the path beginning with the asset archive file, specify a relative path to the file to be
removed that starts from the root of the asset file. For example, if the file is located at
com/company/greeting.class in module hello. jar, specify a relative path of hello.jar/com/company/
greeting.class.

2. Click Next.
Merge asset contents:

Under Select the type of update to perform, specifies to compare the new file or module with the file or
module of the asset installed on the server. If the file or module exists, it is replaced. Otherwise, it is
added to the installed asset.

After selecting this option, specify whether the new file or module is on a local or remote file system and
the full path name of the file or module. The path provides the location of the updated asset before
installation.

The Replace entire asset description describes options for specifying the full path name of a file or
module to merge using Local file system and Remote file system options.

Update associated composition unit:

Specifies whether to update the composition units that are associated with an enterprise (Java EE) asset.
This option applies to enterprise assets only.

The default value is NONE. Specify ALL to update all of the composition units that are associated with the
enterprise asset.

Deleting assets

You can remove application binary files that are registered as assets from the product management
domain.

Before you begin

Import one or more assets. The name of each imported asset is shown on the list of assets on the
administrative console Assets page.

About this task

You can remove assets from the product management domain, provided the asset does not have an
existing composition unit. If an asset has one or more composition units defined in the management
domain, then you cannot delete that asset until those composition units are removed.

This topic describes how to delete assets using the administrative console. Alternatively, you can use
programming or the wsadmin tool.

Procedure
1. Go to the Delete asset page.
a. Click Applications > Application Types > Assets to access the Assets page.

Chapter 9. Deploying and administering business-level applications 143

b. Select the check box beside the asset that you want to delete.
c. Click Delete.

2. On the Delete asset page, click OK to confirm that you want the specified asset removed from the
product management domain.

Click Cancel to return to the Assets page and not delete the asset.
Results

The product deletes the asset from the product management domain.
What to do next

On the Assets page, verify that the deleted asset is no longer in the list of imported assets.

Exporting assets

After application binary files are imported and registered with the product management domain as assets,
you can export those assets.

Before you begin

Import one or more assets. The file name of each deployable object in the imported assets is shown on
the list of assets on the administrative console Assets page.

About this task

You can export copies of assets to a target location. Exporting stores application binary files, enabling you
to back up the files or edit them. The file resulting from exporting an asset contains configuration
information for the asset.

This topic describes how to export an asset from the administrative console Assets page. Alternatively, you
can use programming or the wsadmin tool.

Procedure
1. Go to the Export asset page.
a. Click Applications > Application Types > Assets to access the Assets page.
b. Select the check box beside the asset that you want to export.
c. Click Export.
2. On the Export asset page, click the asset name or identifier.
To cancel the export operation and return to the Assets page, click Back.
3. Specify the target location for the asset file.

What to do next

Examine the target file to verify that the asset exported correctly. You can later edit this file and import the
edited asset.

Creating business-level applications

You can create an empty business-level application and then add assets, shared libraries, business-level
applications, and other artifacts as composition units to the empty business-level application.

144 Developing and deploying applications

Before you begin

Configure each target application server as needed. You must deploy a business-level application to a
Version 7.0 server.

Optionally, determine what assets or other files that you want to add to your business-level application and
whether your application files can run on your deployment targets.

About this task

You can create business-level applications using the administrative console, programming, or the wsadmin
tool.

Procedure
1. Select a way to create your business level application.

Table 20. Ways to create business level applications. You can create business-level applications using the
administrative console, programming, or wsadmin.

Option Method

Administrative console Click Applications > New application > New Business-level Application and
business-level application creation |follow instructions in the wizard.

wizard

See|‘Creating business-level|
lapplications with the console.”|

Administrative console Java Click Applications > New application > New Enterprise Application and
Platform, Enterprise Edition (Java |follow instructions in the wizard.

EE) application installation wizard
The product creates a new business-level application with the enterprise

See[“Installing enterprise| application that you install or makes the enterprise application a composition unit
lapplication files with the console”| | of an existing business-level application. See the Business-level application
||on page 38.| name setting on the Select installation options wizard page.

2. Create your business-level application using the administrative console, programming or wsadmin.
3. Save the changes to your administrative configuration.

Results

The name of the application is shown in the list on the [Business-level applications pagel

What to do next

After you create a business-level application, you can do the following to add composition units to it:
. [Import any assets| needed by your business-level application.

2. |Add assets, shared libraries, or other business-level applications|as composition units.

3. Save the changes to your administrative configuration.

4. |[Start the business-level application]

—_

If the application does not run as desired, [edit the application configuration, then save and run it again.

Creating business-level applications with the console

You can create an empty business-level application and then add assets or business-level applications as
composition units to the empty business-level application.

Chapter 9. Deploying and administering business-level applications 145

Before you begin

Before you create a business-level application, decide upon an application name. Optionally, determine
which assets, shared libraries, or business-level applications that the new business-level application
needs.

About this task

This topic describes how to create an empty business-level application and then add assets as
composition units to the application using the administrative console. Alternatively, you can use
programming or the wsadmin tool.

You can add an asset or shared library composition unit to multiple business-level applications. However,
each composition unit for the same asset must have a unique composition unit name. You can add a
business-level application composition unit to more than one business-level application.

Procedure
1. Create an empty business-level application.
a. Click Applications > New application > New Business Level Application.

b. On the [New business-level application pagel specify a unique name for the application and a
description, and then click OK.

c. On the|business-level application settings page} click Save.

The name and description are shown in the list of applications on the [Business-level applications page.
Because the application is empty, its status is Unavailable.

2. Optional: Add one or more assets, non-Java EE shared libraries, or business-level applications to a
business-level application. The product adds these assets as composition units of your business-level
application.

« If the asset that you want to add to your business-level application is a Java Platform, Enterprise
Edition (Java EE) application or module that is not yet deployed, see

« If the asset is a Java EE shared library, see|step 4]

« If the asset is an enterprise bundle archive (EBA) asset, see[Adding an EBA asset to g
[business-level application using the administrative console}

a. [Import the assets|or create the business-level applications that you want to add to the
business-level application.

b. Go to the pusiness-level application settings page}

Click Applications > Application Types > Business-level applications > application_name.
c. On the business-level application settings page, specify the type of composition unit to add.

* To add an asset, under Deployed assets, click Add > Add Asset.

* To add a shared library, under Deployed assets, click Add > Add Shared Library.

» To add a business-level application, under Business-level applications, click Add.
d. On the Add page, select a unit from the list of available units, and then click Continue.

If you are adding one or more deployable unit assets and you have multiple imported assets
available, you can select more than one deployable unit.

e. On the |Set options pagel change the composition unit settings as needed, and then click Next.

This page is not shown when you add a Java EE asset as a shared library or if you have multiple
deployable unit assets. If the application installation or update wizard displays and you want to add
a Java EE asset as a shared library, see .

f. On the |Map composition unit to a target page|, change the deployment target as needed, and then
click Next.

This page is not shown when you add a business-level application.

146 Developing and deploying applications

g. If you are adding one or more deployable unit assets, specify composition unit relationship options.
See [‘Relationship options settings” on page 154/

h. On the Summary page, click Finish. Several messages are displayed, indicating whether the
product adds the unit to the business-level application successfully. A message having the format
Completed res=[WebSphere:cuname=unit_name,cuedition=version] indicates that the addition is
successful. Click Manage application.

If the product adds the unit successfully, the name of the unit is shown on the list of composition
units on the IAdding composition unit to the business-level application page|.

If the unit addition is not successful, read the messages and try adding the unit again. Correct the
problems noted in the messages.

i. On the Adding composition unit to the business-level application page, click Save.

The product creates composition units for the asset, shared library, or business-level application. The
unit names are shown in lists of composition units on the settings page of your business-level
application. To view the settings page, click Applications > Application Types > Business-level
applications > your_application_name.

Optional: Install a Java EE application or module, and add it as a composition unit to your
business-level application.

When installing an enterprise archive (EAR) file or a stand-alone Java EE module using the application
installation wizard, you can specify a business-level application to which to add the EAR file or module.
You can also specify relationships to any shared libraries that your Java EE application or module
uses. The product creates composition units that represent those relationships.

a. Click Applications > New application > New Enterprise Application.

b. On the first Preparing for the application installation page, specify the Java EE application or
module to install and click Next.

c. On the second Preparing for the application installation page, select Detailed - Show all
installation options and parameters, specify whether to generate default bindings and mappings
as needed for the application or module, and click Next.

d. On the Select installation options page of the wizard, select your business-level application for
Business-level application name and click Next. The product creates a composition unit that has
the same name as the Java EE application or module and adds the unit to your business-level
application.

If you do not specify a value for Business-level application name, then the product creates a
default business-level application that has the same name as the Java EE application that you are
installing. The product does not add the Java EE application as a composition unit to the
business-level application that you created in [step 1}

e. Optional: On the [Map shared library relationship page|of the wizard, specify relationship identifiers
and composition unit names for shared libraries that modules in your Java EE application use. The
product creates a composition unit for each shared library relationship in your business-level
application.

You can map shared library relationships when installing your Java EE application or module or,
after installation, return to the Map shared library relationship page and specify shared library
relationships. See

f. Complete the other application installation wizard options as needed to install the Java EE
application or module.

The product creates composition units for the application, module, or shared library relationships. The
unit names are shown in lists of composition units on the settings page of your business-level
application. To view the settings page, click Applications > Application Types > Business-level
applications > your_application_name.

Chapter 9. Deploying and administering business-level applications 147

4. Optional: After installation of a Java EE application or module, you can specify composition units for
relationships to shared libraries that are used by your business-level application. Specify relationships
to shared libraries on the Map shared library relationship page of the application installation or update
wizard.

a. If you have not done so already, |import a Java EE asset| such as an enterprise bean (EJB) or web
module (WAR) that uses a shared library file.
If the product displays javaarchive for Asset type aspects on the asset settings page, continue to
step 4b}
If the product does not display javaarchive for Asset type aspects on the asset settings page,
then the asset is not a Java EE asset. Use to add a shared library to your business-level
application.

b. Go to a settings page for your business-level application.

Click Applications > Application Types > Business-level applications >
your_application_name.

c. Under Deployed assets, click Add > Add Shared Library.

d. On the|Add composition unit page| select the Java EE asset that you imported and then click
Continue.

The Java EE application installation or update wizard displays. Select the Java EE application or
module that uses the asset, and complete the steps in the wizard.

e. On the Select installation options page of the wizard, select your business-level application for
Business-level application name.

f. On the Map shared library relationship page of the wizard, specify a relationship identifier and
composition unit name for the asset.

g. Complete the other wizard options as needed.

The product creates a composition unit for the shared library relationship. The unit name is shown in
the list of deployed asset composition units on the settings page of your business-level application.

Results

The name of your business-level application is shown on the Business-level applications page in the list of
applications.

What to do next

After you create the application, save the changes to your configuration and [start the application|as
needed.

Business-level application collection
Use this page to view and manage business-level applications.

To view this administrative console page, click Applications > Application Types > Business-level
applications.

To view the values specified for an application configuration, click the application name in the list. The
displayed application settings page shows the values specified. On the settings page, you can change
existing configuration values and link to additional console pages that assist you in configuring the
application.

To manage a business-level application, enable the Select check box beside the application name in the
list and click a button:

148 Developing and deploying applications

Table 21. Button descriptions. Use the buttons to manage business-level applications.

Button Resulting action

Start Attempts to run the application. After the application starts successfully, the state of the
application changes to Started if the application starts on all deployment targets, else the
state changes to Partial Start.

Stop Attempts to stop the processing of the application. After the application stops
successfully, the state of the application changes to Stopped if the application stops on
all deployment targets, else the state changes to Partial Stop.

New Opens a wizard that helps you add assets, shared libraries, or business-level
applications as composition units to your application.

Delete Deletes the application from the product configuration repository and deletes the
application binaries from the file system of all nodes where the application modules are
installed.

On single-server installations, deletion occurs after the configuration is saved.

Name:

Specifies the name of the business-level application. Application names must be unique within a cell and
cannot contain an unsupported character.

Description:
Specifies a description for the business-level application.
Status:

Indicates whether the application deployed on the application server is started, stopped, or unknown.

Table 22. Application status. The status indicates whether the application is running.

L Started Application is running.

e Partial start Application is in the process of changing from a Stopped state to a Started
state. Application is starting to run but is not fully running yet. Or, it cannot fully
start because a server mapped to one or more application modules is stopped.

& Stopped Application is not running.

b Partial stop Application is in the process of changing from a Started state to a Stopped
state. Application has not stopped running yet.

@ Unknown Status cannot be determined.

On single-server installations, an application with an unknown status might, in
fact, be running but have an unknown status because the server running the
administrative console cannot communicate with the server running the

application.
z Pending Status is temporarily unknown pending an event that a user did not initiate,
such as pending an asynchronous call.
Not applicable Application does not provide information as to whether it is running.

The status of an application on a web server is always Unknown.

New business-level application settings
Use this page to name and describe a new business-level application.

To view this administrative console page, click Applications > New application > New Business-level
Application.

Chapter 9. Deploying and administering business-level applications 149

Name:

Specifies a logical name for the business-level application. An application name must be unique within a
cell and cannot contain an unsupported character.

An application name cannot begin with a period (.), cannot contain leading or trailing spaces, and cannot
contain any of the following characters:

Table 23. Characters that you cannot use in a name. The product does not support these characters in a name.

Unsupported characters

| forward slash $ dollar sign ' single quote mark

\ backslash = equal sign " double quote mark

* asterisk % percent sign | vertical bar

, comma + plus sign < left angle bracket
colon @ at sign > right angle bracket

; semi-colon # hash mark & ampersand (and sign)

? question mark 11> No specific name exists for this character combination

Data type String

Description:

Specifies a description for the application.

This field is the same as the Description setting on a Business-level applications page.

Shared library relationship and mapping settings

Use the Shared library relationship and Shared library relationship mapping pages to specify relationship
identifiers and composition unit names for shared libraries that modules in your enterprise application
reference. When installing your enterprise application, the product creates a composition unit for each
shared library relationship in the business-level application that you specified on the Select installation
options page of the application installation wizard.

To view this console page in a wizard, click Applications > Install new application > New Enterprise
Application > application_path > Next > Detailed - Show all installation options and parameters >
Next > application_name > Step: Map shared library relationships.

After installation, click Applications > Application Types > WebSphere enterprise applications >
Shared library relationships.

To map library files used in a business-level application to an application or web module, use the Shared
library relationship mapping page:
1. Click Reference shared libraries.

2. Note the application or module in Map libraries to the application or module listed. You are
associating library files with that application or module.

From the Available list, select one or more libraries that the application or module uses.
Click >> to add them to the Selected list.

To remove an association, select one or more libraries in the Selected list and click <<.
Click OK.

oo~ w

Module:

150 Developing and deploying applications

Specifies the name of the module associated with the shared libraries.

URI:

Specifies the location of the module relative to the root of the application EAR file.
Relationship identifers:

Specifies an identifier for a module shared library relationship. The product assigns an identifier to the
composition unit that it creates for the shared library relationship in the business-level application.

Composition unit names:

Specifies a composition unit name for the shared library relationship. The product uses this value to name
the composition unit that it creates for the shared library relationship in the business-level application that
you specified on the Select installation options page of this wizard.

This setting is only in the application installation and update wizards.
Match target:

Specifies whether the product maps the composition unit for the shared library relationship to the same
deployment target as the business-level application.

Note: If you later change the deployment target of the business-level application or its modules, you must
manually update the shared library target to match the target of the application and modules. The
targets of shared library composition units are not automatically updated. Not updating the target of
the shared library composition unit might cause java.lang.ClassNotFoundException errors and
prevent the application or its modules from starting. To prevent these error conditions, also ensure
that shared libraries upon which other modules or applications depend have a lower starting weight
than dependent applications and modules.

Add composition unit settings
Use this page to specify options for the composition unit to be added to the business-level application. The
product assigns a default value for an option when you do not specify a value.

To view this administrative console page, click Applications > Application Types > Business-level
applications > business-level_application_name > Add > Add unit_type.

Name:

Specifies the name of the composition unit to be added to the business-level application.
The table lists available composition units. Select a unit from this list.

Description:

Specifies a description for the composition unit.

Add asset settings
Use this page to add one or more assets to a business-level application.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > Add > Add Asset.

Deployable units:

Chapter 9. Deploying and administering business-level applications 151

Specifies the imported assets available for use in a business-level application. The list of deployable units
includes only imported assets, and not shared libraries or business-level applications.

From this list, select one or more deployable units to add as composition units to your business-level
application.

Set options settings

Use this page to specify options for the composition unit to be added to the business-level application. The
product supplies default values for the options if you do not specify a value.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name. On the business-level application settings page, specify the type of
composition unit to add:

* To add an asset, under Deployed assets, click Add > Add Asset.
» To add a shared library, under Deployed assets, click Add > Add Shared Library.
» To add a business-level application, under Business-level applications, click Add.

Backing identifier:

Specifies a unique identifier for a composition unit that is registered in the application management
domain.

The identifier has the format: WebSphere:unit_typename=unit_name,unit_typeversion=version_number. For
example, for the MyApp.jar asset, the backing identifier might be WebSphere:assetname=MyApp. jar.

Data type String
Units Composition unit identifier
Name:

Specifies the name of the composition unit.
For example, for the MyApp.jar asset, the name might be MyApp. jar.

A unit name cannot begin with a period (.), cannot contain leading or trailing spaces, and cannot contain
any of the following characters:

Table 24. Characters that you cannot use in a name. The product does not support these characters in a name.

Unsupported characters

| forward slash $ dollar sign ' single quote mark

\ backslash = equal sign " double quote mark

* asterisk % percent sign | vertical bar

, comma + plus sign < left angle bracket
colon @ at sign > right angle bracket

; semi-colon # hash mark & ampersand (and sign)

? question mark 11> No specific name exists for this character combination

Data type String

Description:

152 Developing and deploying applications

Specifies a description for the composition unit.
Starting weight:

Specifies the order in which composition units are started when the server starts. The starting weight is
like the startup order. The composition unit with the lowest starting weight is started first.

The value that you set for Starting weight determines the importance or weight of a composition unit
within the business-level application. For example, for the most important composition unit within a
business-level application, specify 1 for Starting weight. For the next most important composition unit
within the business-level application, specify 2 for Starting weight, and so on.

Data type Integer
Default 1
Range 0 to 2147483647

Start composition unit upon distribution:

Specifies whether to start the composition unit after the product distributes the composition unit to other
locations.

The default is not to start the composition unit.

Data type Boolean
Default false

Restart behavior on update:

Specifies whether the product restarts deployment targets after updates to the composition unit.

Usually, a composition unit is mapped to one or more deployment targets. This setting determines whether
the product restarts those targets after editing the composition unit.

Table 25. Restart behavior on update options. Depending on your selection, the product restarts all target nodes,
the nodes controlled by sync plug-ins, or no nodes.

Option Description

ALL The product restarts each target node of the composition unit after editing the composition unit.
DEFAULT The product restarts the nodes controlled by the sync plug-ins after editing the composition unit.
NONE The product does not restart nodes after editing the composition unit.

Map target settings

Use this page to map a composition unit to a deployment target. The product assigns a default target
when you do not specify a target.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > composition_unit_name > Modify Target. The Map target page is
similar to the Map composition unit to a target page in the add composition unit wizard.

On single-server products, a deployment target can be an application server or web server.

On this page, map a composition unit to one or more desired targets.

Current targets:

Chapter 9. Deploying and administering business-level applications 153

Specifies the existing deployment targets for the composition unit.
Available:

Lists the names of available deployment targets. This list is the same for every composition unit that is
registered in the cell.

From this list, select only appropriate deployment targets for a composition unit.

If the unit calls a Version 8.x application programming interface (API) or uses a 8.x feature, then you must
map the unit to a 8.x deployment target. If the unit supports Java Platform, Enterprise Edition (Java EE) 6,
then you must map the unit to a 8.x deployment target.

If the unit calls a Version 7.x API, uses a 7.x feature, or supports Java EE 5, then you must map the unit
to an 8.x or 7.x deployment target.

If the unit supports Java 2 Platform, Enterprise Edition (J2EE) 1.4, then you must map the unit to an 8.x,
7.x or 6.x deployment target. You can map units that call a 6.x API or use a 6.x feature to an 8.x, 7.x or
6.x deployment target.

To map a composition unit to a deployment target, select a target from the Available list and click >>. The
target name is displayed in the Selected list.

Selected:
Lists the names of desired deployment targets.
When you click OK, the product maps the composition unit to the deployment targets in the Selected list.

To remove a deployment target from the Selected list, select the target and click <<.

Relationship options settings

Use this page to specify relationship options for deployable or composition units in an asset deployed as
part of a business-level application. Specifying a relationship declares a dependency relationship that a
deployable unit or composition unit has on another asset deployed as a shared library in the same
business-level application.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > deployed_asset_name > Relationship options. This help also
pertains to wizard pages that are shown when you add multiple deployable or composition unit assets to a
business-level application. These pages are shown for the Define relationship with existing
composition units and Options for creating hew composition units to satisfy asset relationships
wizard steps.

A business-level application consists of composition units. When you add an asset to a business-level
application, the product creates a composition unit for the asset. The composition unit name can be
different from the name of the asset being deployed. The list of deployed assets shown for a
business-level application consists of the composition unit names for the deployed assets. The
relationships defined in this page are composition unit relationships. The deployable units listed for a
composition unit are those you chose from the associated asset when adding the asset. Composition unit
relationships are expressed as deployable unit dependencies on other composition units belonging to the
same business-level application. Only a composition unit for an asset deployed as a shared library can be
specified as a dependency. You can map each deployable unit to a target independently from the others.
Modifying relationships in this page only affects the composition unit, not the associated asset.

To specify relationship options, select a deployable unit and click a button.

154 Developing and deploying applications

Button Resulting action

Set Relationships Displays a page through which you can add or change relationships for the deployable
unit. Specify a relationship if a deployable unit depends on another asset deployed as
a shared library in order to run.

This button is on the Set relationship options page.

Enable Match Targets If the deployable unit has a dependency relationship defined, click Enable Match
Targets to map the related deployed assets to the same deployment targets as the
dependent deployable unit.

Disable Match Targets If the deployable unit has a dependency relationship defined, click Disable Match
Targets if the related deployed assets do not need to be deployed to the same targets
as the deployable unit.

Deployable unit name or composition unit name:

Specifies the name of the deployable unit or the composition unit of the selected deployed asset.

Relationship:

Specifies the composition unit names for all relationships defined for the associated deployable unit.

This setting is on the Set relationship options page.

By default, a deployable unit has no relationships. To add or change related composition units, do the

following:

1. Select the deployable unit.

2. Click Set Relationships.

3. Select the composition units that the deployable unit requires by moving them from the Available list
to the Selected list.

4. Click OK.

Match targets:

Indicates the match targets value selected for the associated deployable unit. The default value is true.

A match targets value of true maps the composition units listed under Relationship to the same

deployment targets as the associated deployable unit. Typically, you must deploy related composition units

to the same targets as the dependent deployable unit in order for the deployable unit to run.

A false value indicates that the related composition unit can map to deployment targets which are
different from the deployment targets of the deployable unit.

To set the value to true, select the deployable unit and click Enable Match Targets. To set the value to

false, select the deployable unit and click Disable Match Targets. To set this value, the deployable unit
must have a related composition unit.

Business-level application settings
Use this page to configure a business-level application.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name.

This page is the same as the Adding composition unit to the business-level application page.

Chapter 9. Deploying and administering business-level applications 155

Name

Specifies a logical name for the application. An application name must be unique within a cell and cannot
contain an unsupported character.

An application name

cannot begin with a period (.), cannot contain leading or trailing spaces, and cannot

contain any of the following characters:

Table 26. Characters that you cannot use in a name. The product does not support these characters in a name.

Unsupported characters

| forward slash $ dollar sign ' single quote mark

\ backslash = equal sign " double quote mark

* asterisk % percent sign | vertical bar

, comma + plus sign < left angle bracket
colon @ at sign > right angle bracket

; semi-colon # hash mark & ampersand (and sign)

? question mark

11> No specific name exists for this character combination

Data type

Description

String

Specifies a description for the business-level application.

Deployed assets

Specifies the asset and shared library composition units in the business-level application. A composition
unit is a registered asset or shared library that has additional configuration information, which you specify
when adding the asset to the application.

For each composition unit, the table provides a name, description, asset type, and the runtime status of

the composition unit.

Table 27. Deployed assets button descriptions. Use the buttons to add or delete composition units.

Button

Resulting action

Add > Add Asset

For assets that contain Java Platform, Enterprise Edition (Java EE) applications or modules,
opens the application installation wizard. On the Select installation options page of this wizard,
you can specify a Business-level application name value that identifies the target
business-level application. On the Map shared library relationships page, you can identify the
shared library files that individual modules need to run and specify composition unit names for
the module-shared library relationships.

For non-Java EE assets, opens a wizard that helps you add an asset as a composition unit to
your business-level application.

Add > Add Shared
Library

Opens a wizard that helps you add a library file as a composition unit to your business-level
application.

Delete

Deletes the composition unit from the product configuration repository and deletes the
application binaries from the file system of all nodes where the application modules are
installed.

On single-server installations, deletion occurs after the configuration is saved.

Business-level applications
Specifies the business-level applications in this business-level application.

156 Developing and deploying applications

The table provides a name, description, and the runtime status of each contained business-level
application.

Table 28. Business-level applications button descriptions. Use the buttons to add or delete composition units.

Button Resulting action

Add Opens a wizard that helps you add a business-level application to your business-level
application.

Delete Deletes the business-level application from the product configuration repository and deletes
the application binaries from the file system of all nodes where the application modules are
installed.

On single-server installations, deletion occurs after the configuration is saved.

Composition unit settings

Use this page to view composition unit settings and to change the configuration properties of a
composition unit. The specific settings that are available for configuration can vary, depending upon the
contents of the composition unit. For example, there are additional configuration settings if the asset
contained in the composition unit is an SCA composite, or an OSGi application.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > deployed_asset_name. The deployed asset is a composition unit of
the business-level application.

« |“Settings that are common to all composition units’]
+ [“Additional composition unit settings for SCA composites” on page 159
+ |“Additional composition unit settings for OSGi applications” on page 159|

Settings that are common to all composition units

Name:

Specifies a logical name for the composition unit. You cannot change the name on this page.
Description:

Specifies a description for the composition unit.

Backing ID:

Specifies a unique identifier for a composition unit that is registered in the application management
domain.

The identifier has the format WebSphere:unit_typename=unit_name. For example, for the MyApp.jar asset,
the backing identifier might be WebSphere:assetname=MyApp. jar.

You cannot change the identifier on this page.

Data type String
Units Configuration unit identifier

Starting weight:
Specifies the order in which composition units are started when the server starts. The starting weight is

like the startup order. The composition unit with the lowest starting weight is started first.

Chapter 9. Deploying and administering business-level applications 157

The value that you set for Starting weight determines the importance or weight of a composition unit
within the business level application. For example, for the most important composition unit within a
business-level application, specify 1 for Starting weight. For the next most important composition unit
within the business-level application, specify 2 for Starting weight, and so on.

Note: Assign composition units upon which other composition units depend a lower starting weight than
the dependent composition units. If a composition unit is not started and running before its
dependent composition units, java.lang.ClassNotFoundException errors might result when you
attempt to start the application or its modules.

Data type Integer
Default 1
Range 0 to 2147483647

Start on distribution:

Specifies whether to start the composition unit when the product distributes the composition unit to other
locations.

The default is not to start the composition unit.

This setting applies to asset or shared library composition units. This setting does not apply when the
composition unit is a business-level application.

Data type Boolean
Default false

Recycle behavior on update:
Specifies whether the product restarts the composition unit after the composition unit is updated.
The default is to restart the composition unit after partial updating of the composition unit.

This setting applies to asset or shared library composition units. This setting does not apply when the
composition unit is a business-level application.

Table 29. Option descriptions. Specifies whether to restart an asset or shared library composition unit.

Option Description

ALL Restarts the composition unit after the entire composition unit is updated
DEFAULT Restarts the composition unit after the part of the composition unit is updated
NONE Does not restart the composition unit after the composition unit is updated
Target mapping:

Specifies the current targets for the composition unit.

To change the deployment targets, click Modify targets then select a different set of deployment targets
from the list of available clusters and servers.

For SCA, you must specify only a single server or cluster as the target. Do not map an SCA composition
unit to multiple servers or clusters.

158 Developing and deploying applications

Note: When you change the deployment target of composition units in a business-level application, the
startup order changes to the same order in which you remap composition unit targets, even if the
starting weight for all composition units is set to 1. To avoid java.lang.ClassNotFoundException
errors when attempting to start the remapped composition units, remap targets for composition units
in the same order as that used to add the composition units or, after remapping, check starting
weights to ensure that composition units upon which other composition units depend are started

first.
Additional composition unit settings for SCA composites
SCA composite components:

Specifies the component names and component implementations of SCA composites in the application.

Table 30. Column descriptions. Provides the name of each component and the name of the class or code
implementing the component.

Column Description
Component Name Specifies the name of a component associated with the SCA composite.

Component Implementation | Specifies the name of the class or code implementing the component.

None indicates that the SCA composite does not have defined components.
SCA composite properties:

Specifies the names and values of SCA composite properties in the application.

Table 31. Column descriptions. Provides the name and value of SCA composite properties.

Column Description
Property Name Specifies the name of an SCA composite property.
Property Value Specifies the value of the property.

None indicates that the SCA composite does not have defined name-value properties.
SCA composite wires:

Specifies the sources and targets of wires in the SCA composite.

Table 32. Column descriptions. Provides the source and target of wires.

Column Description
Wire Source Specifies the source of a wire in the SCA composite.
Wire Target Specifies the target of the wire.

None indicates that the SCA composite does not have defined wires.
Additional composition unit settings for OSGi applications
OSGi application deployment status:

The deployment status shows whether updates are available for the EBA asset that is contained in the
composition unit. If a new version of an EBA asset is available, and all bundle downloads for the asset are
complete, you can update the EBA composition unit so that the business-level application uses the latest
configuration. You do not have to update the composition unit every time you update the asset.

Chapter 9. Deploying and administering business-level applications 159

There are four distinct deployment statuses for an EBA composition unit:

Using latest OSGi application deployment.
The composition unit is running the latest configuration of the backing asset and any CBA
extensions.

New OSGi application deployment not yet available because it requires bundles that are still
downloading.
The backing asset is currently undergoing a bundle version update, or bundles are downloading
for a CBA extension.

New OSGi application deployment available.
The backing asset is available at a newer configuration than the configuration that is currently
running in this composition unit, or a CBA extension has been added or replaced.

New OSGi application deployment cannot be applied because bundle downloads have failed.
The last bundle version update for the backing asset or CBA extension did not succeed, and
therefore the newer configuration is not yet available.

If the status is “New OSGi application deployment available”, the Update to latest deployment ... button
is available. Click this button to bring the EBA composition unit up-to-date and run the updated
business-level application. If any of the updates need configuration changes, a wizard prompts you to
update the configuration information.

When you save the changes to the EBA composition unit, the associated business-level application is
updated to use the new configuration. If the business-level application is running, the bundle and
configuration updates are applied immediately. If possible (that is, depending on the nature of the updates)
the system applies the updates without restarting the application. Updates that pull in new use bundles at
run time prompt a full restart of the application. Updates that pull in new provision bundles might also
prompt a full application restart.

Example: Creating a business-level application

You can add many different types of artifacts to business-level applications. For example, you can add
Java Platform, Enterprise Edition (Java EE) applications or modules, Java archives (JAR files), data in
compressed files, and other business-level applications.

About this task

An example of creating a simple business-level application follows. This example assumes that you have a
compressed file, such as a compressed file, or other archive available on your computer or on a remote
server that you can use to complete the example.

If you do not have a compressed file available, look in product directories. Installing the product samples
adds several sample files to the /samples directory. You can use these sample files in a business-level
application.

Procedure
1. Import assets.
a. Click Applications > New application > New Asset in the console navigation tree.
b. On the Upload asset page, specify the asset package to import and click Next.
For example, specify a compressed file such as a compressed file and click Next.
c. On the Select options for importing an asset page, click Next.
On the Summary page, click Finish.

On the Adding asset to repository page, if messages show that the operation completed, click
Manage assets.

160 Developing and deploying applications

f. On the Assets page, click Save.
The file name displays in the list of assets.
2. Create an empty business-level application named MySampT1eBLA.
a. Click Applications > New application > New Business Level Application.

b. On the New business-level application page, specify a unique name such as MySampleBLA and a
description, and then click OK.

c. On the business-level application settings page, click Save.

The name and description are shown in the list of applications on the Business-level applications page.
Because the application is empty, its status is Unavailable.

3. Add the asset composition unit to your business-level application.
a. On the Business-level applications page, click the application name in the list of applications.
b. On the business-level application settings page, click Add > Add Asset.

c. On the Add composition unit page, select an asset composition unit from the list of available units,
and then click Continue.

For example, select the compressed file asset and then click Continue.
On the Set options page, click Next.

On the Map composition unit to a target page, change the target server as needed, and then click
Next.

f. On the Summary page, click Finish. Several messages are displayed. A message having the
format Completed res=[WebSphere:cuname=unit_name] indicates that the addition is successful.

g. If the addition is successful, click Manage application.
h. On the business-level application settings page, click Save.

The asset name and type displays in the list of deployed assets.
4. Start the business-level application.
a. Click Applications > Application Types > Business-level applications.
b. On the Business-level applications page, select the check box beside your application.
c. Click Start.
When the business-level application is running, a green arrow displays for Status. If the business-level
application does not start, ensure that the deployment target to which the application maps is running
and try starting the application again.
What to do next

You can add other assets to your business-level application.

SCA application package deployment

The product supports deployment of many types of Service Component Architecture (SCA) artifacts as
composition units of business-level applications. Typical artifacts include Java archive (JAR) files,
compressed .zip files, and web application archive (WAR) files.

Details about deployment of SCA artifacts follow.
» |Deployment of JAR or compressed files|

+ [Deployment of WAR files|

* [Notes and limitations|

Deployment of JAR or compressed files

» The product supports one composite file for each package. The product determines which composite file
to support using the following process:

Chapter 9. Deploying and administering business-level applications 161

1. The SCA deployment extension looks for the META-INF/sca-contribution.xml file, gets the name of
each deployable composite defined in the file, and uses QName values to find the actual composite
file names under any directory for that composite. If more than one composite is found in the
sca-contribution.xml file, you can select the composite to deploy.

2. If there is no META-INF/sca-contribution.xml file defined, the SCA deployment extension looks for
a composite file in the META-INF/sca-deployables directory.

* The product validates SCA composites for inconsistencies with SCA specifications.

One specification requirement is that the names of top-level components must be unique. Thus, the
product validates top-level component name uniqueness.

Tip: Top-level components are also called domain components, with the top-level or domain typically
the cell on multiple-server installations and the server scope on single-server installations.

The product validates all composite files in a JAR or compressed file, regardless of the file location in
the archive or whether the sca-contribution.xml file references the composite file. The product does
not validate all services and references.

The product writes warning and error messages resulting from the validation tests to the SystemOut.1og
file. Read the log file to learn about inconsistencies with specifications in your SCA composites.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemQut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are
using HPEL, you can access all of your log and trace information using the LogViewer
command-line tool from your server profile bin directory. See the information about using HPEL
to troubleshoot applications for more information on using HPEL.

* The product uses the following process for QName resolution:

— The product uses the QName to resolve composite files included in the top-level composite that use
the element. For example, the <include name="mynamespace:MyService"/> statement looks for a
composite file whose composite name is MyService and whose targetNameSpace is mynamespace.
The following rules apply:

- name: Use the outer composite.

- namespace declarations: Merged into the outer composite.

- targetNamespace: Use the outer composite (must be the same).

- local: Use the composite (preferably the same but not required).

- requires(intents) and policySets: Must be compatible, and aggregated into the outer composite.

Deployable composite files must have name and targetNamespace values. The name and
targetNamespace values are combined to form the QName of a composite file.

— When a composite is used as a component implementation in the top-level composite, the composite
is also resolved using the QName. For example, the <implementation.composite
name="mynamespace:MyComposite"/> statement causes the product administration to look for a
composite file whose composite name is MyComposite and whose targetNamespace is mynamespace.

* A JAR file can contain other JAR files at the top level. The contained JAR files are available on the
classpath. However, any archives inside those JAR files are not available. The product supports one
level of embedded JAR files.

Deployment of WAR files

* A composite file in a WAR file must be named default.composite. A composite file that is not in a WAR
file can have any name.

* The default.composite composite file must be inside a WAR file in the META-INF/sca-deployables
directory.

* The META-INF/sca-deployables directory must contain no more than one composite file. If there is more
than one composite file in the META-INF/sca-deployables directory, then the product returns a validation
error and stops the WAR file deployment.

162 Developing and deploying applications

However, you can place other composite files in directories other than META-INF/sca-deployables, and
reference those composite files in the top-level composite under the META-INF/sca-deployables
directory.

* The product does not support having a sca-contribution.xml file inside the WAR file under the
META-INF directory. If the product finds a sca-contribution.xml file, then the product returns a validation
error and stops the WAR file deployment.

Notes and limitations
» The product does not provide administration console pages for configuring contributions.

+ If you import a package or namepace from a different contribution, or JAR (contribution.xml), you
might need to import that contribution as an asset before importing your own asset.

For example, suppose your Contribution A imports a JAR file from Contribution B. You might need to
import Contribution B and then Contribution A as assets. Contribution A depends on Contribution B so
you must import Contribution B before importing Contribution A.

* You cannot use a local interface across a class loader boundary. Use a remotable interface to cross a
class loader boundary.

Creating SCA business-level applications

You can create an empty business-level application and then add Service Component Architecture (SCA)
assets, shared libraries, business-level applications, and other artifacts as composition units to the empty
business-level application.

Before you begin

Configure the target application server. You must deploy SCA composite assets of a business-level
application to a Version 8.0 server (target) or to a Version 7.0 target that is enabled for the Feature Pack
for SCA.

If your SCA composite or application uses Feature Pack for SCA Version 1.0.1 functionality, you must

deploy the SCA asset or application to a Version 8.0 target or to a feature pack Version 1.0.1.0 target.

Version 1.0.1 functionality includes:

» Java Message Service (JMS) bindings

* Atom bindings

* HTTP bindings with a wire format of JSON-RPC

» Java Platform, Enterprise Edition (Java EE) integration modules (impTementation. jee,
implementation.web, or implementation.ejb components)

» SCA Spring component implementations

* OSGi applications as SCA component implementations

» Service Data Objects (SDO) composites

Optionally, determine what assets or other files that you want to add to your business-level application and
whether your application files can run on your deployment targets.

About this task

You can create business-level applications using the administrative console, the wsadmin tool, or
programming.

You create SCA business-level applications the same way as for non-SCA business-level applications.
However, when you use an SCA asset in a business-level application, function that applies only to
applications that use SCA composites becomes available. For example, you can access administrative
console pages that apply only to applications that use SCA composites.

Chapter 9. Deploying and administering business-level applications 163

Procedure
1. Select a way to create your business-level application.

Table 33. Ways to create SCA business-level applications. You can create a business-level application using the
administrative console, wsadmin scripts, or programming.

Option Method

Administrative console Click Applications > New Application > New Business Level Application and
business-level application creation |follow instructions in the wizard.

wizard

For example use of the console to create a business-level application that has
See[Creating SCA business-level] |an SCA asset, see fExample: Creating an SCA business-level application with|
[applications with the console” on[|fthe console” on page 194

||page 165,

2. Create your business-level application using the administrative console, wsadmin, or programming.
3. Save the changes to your administrative configuration.

Results

The name of the application is shown in the list on the [Business-level applications pagel

What to do next

After you create a business-level application, you can do the following to add composition units to it:
1. [Import any SCA or other assetsl needed by your business-level application.
2. |Add assets, shared libraries, or other business-level applications| as composition units.

If the asset or application uses Feature Pack for SCA Version 1.0.1 functionality, specify a Version 8.0
target or a feature pack Version 1.0.1.0 target.

For applications that use implementation.osgiapp, add the enterprise bundle archive (EBA) asset as a
composition unit to the business-level application before adding the SCA asset as a composition unit.

3. Save the changes to your administrative configuration.
4. [Start the business-level application]

If the application does not run as desired, [edit the application configuration] then save and run it again.

If the business-level application does not start, ensure that the deployment target to which the application
maps is running and try starting the application again. If SCA composite assets do not start, ensure that
each asset is mapped to a deployment target that supports SCA composites.

If an asset composition unit uses an Enterprise JavaBeans (EJB) binding and does not start because it
has a non-WebSphere target of "null", delete the asset composition unit and add it again to the
business-level application. Specify a target that supports SCA composites when you add the asset to the
business-level application. You cannot change the target after deployment.

If the META-INF/sca-deployables directory has multiple SCA composite files and the application does not
start because the product cannot obtain the CompUnitInfolLoader value, place only the file that contains

the composite in the META-INF/sca-deployables directory. You can place the other composite files
anywhere else within the archive.

If the SCA application uses security, the target must be in the global security domain.

For applications that use implementation.osgiapp in multiple-node environments, target the EBA
composition unit to the same server or cluster as the SCA composition unit.

164 Developing and deploying applications

Creating SCA business-level applications with the console

You can create an empty business-level application and then add Service Component Architecture (SCA)
assets, shared libraries, or business-level applications as composition units to the empty business-level
application.

Before you begin

Configure the target application server. You must deploy SCA composite assets of a business-level
application to a Version 8.0 server (target) or to a Version 7.0 target that is enabled for the Feature Pack
for SCA.

If your SCA composite or application uses Feature Pack for SCA Version 1.0.1 functionality, you must

deploy the SCA asset or application to a Version 8.0 target or to a feature pack Version 1.0.1.0 target.

Version 1.0.1 functionality includes:

» Java Message Service (JMS) bindings

* Atom bindings

* HTTP bindings with a wire format of JSON-RPC

» Java Platform, Enterprise Edition (Java EE) integration modules (implementation. jee,
implementation.web, or implementation.ejb components)

» SCA Spring component implementations

» OSGi applications as SCA component implementations

» Service Data Objects (SDO) composites

Also, determine an application name. Optionally, determine which assets, shared libraries, or
business-level applications that the new business-level application needs.

About this task

You can create a business-level application that has SCA assets using the administrative console.
Alternatively, you can use the wsadmin scripting tool or programming.

You can add an asset or shared library composition unit to multiple business-level applications. However,
each composition unit for the same asset must have a unique composition unit name. You can add a
business-level application composition unit to more than one business-level application.

Procedure
1. Create an empty business-level application.
a. Click Applications > New Application > New Business-level Application.

b. On the New business-level application page, specify a unique name for the application and a
description, and then click Apply.

c. On the business-level application settings page, click Save.
The name and description are shown in the list of applications on the Business-level applications page.
Because the application is empty, its status is Unknown.

2. Add one SCA asset to your business-level application. The product adds the asset as a composition
unit of your business-level application.

a. Import the SCA asset.
b. Go to the business-level application settings page.

Click Applications > Application Types > Business-level applications > application_name.
c. On the business-level application settings page, specify the type of composition unit to add.

Although you can add an asset, shared library, or business-level application to your business-level
application, the logic is in your SCA asset. Add the SCA asset as a composition unit.

Under Deployed assets, click Add > Add Asset.

Chapter 9. Deploying and administering business-level applications 165

166

On the Add page, select one unit from the list of available units, and then click Continue.

On the Add page, you might be able to select multiple deployable SCA composites. However, you
can deploy only one deployable SCA composite at a time. Select only one unit and click Continue.
If you select multiple units, the product deploys only one of those units.

For applications that use implementation.osgiapp, add the enterprise bundle archive (EBA) asset
as a composition unit to the business-level application before adding the SCA asset as a
composition unit.

On the Set options page, change the composition unit settings as needed, and then click Next.
This page is not shown if you have multiple deployable unit assets.

On the Map composition unit to a target page, specify one target server that supports SCA
composites, and then click Next.

The target server can be an existing cluster. To map the composition unit to a cluster, select the

existing cluster from the Available list, click Add, and then click Next. The cluster name is shown in
the Current targets list as WebSphere:cluster=cluster_name.

If you are adding an SCA asset that uses security, specify a target server that is in the global
security domain.

For applications that use implementation.osgiapp in multiple-node environments, target the EBA
composition unit to the same server as the SCA composition unit.

This page is not shown when you add a business-level application.

On the Relationship options page, click Next to accept the default values.

The relationships in SCA applications are set at the asset level. Either the asset must be defined
as an SCA contribution or, in the asset view, a relationship must be set to another asset. When a
relationship is set to another asset manually at the asset level, the relationship only exposes all the
packages within the asset to the other depended asset. The nhamespaces are not exposed.

This page is shown only for SCA assets that have multiple deployable or composition units.

On the [Set Java EE composition unit relationship page} associate SCA components with Java EE
applications and then click Next.

Java EE applications are also known as enterprise applications or enterprise archive (EAR) files.
An SCA composite definition can specify an EAR file to use on the archive attribute of an
implementation.jee tag. Use this page to associate SCA components in this business-level
application to the EAR files named in the composite definition. If your SCA application does not use
EAR files, take the default values and click Next.

On the Map security roles to users or groups page|, specify security roles for users or groups as
needed, and then click Next.

This page is only shown for SCA assets that use security.

On the [Map RunAs roles to users pagel, map a user identity and password to RunAs roles as
needed, and then click Next.

This page is only shown for SCA assets that use security.

On the [Map virtual host page| specify a virtual host that hosts web services for each SCA
composite, and then click Next. By default, composites map to default_host.

This page is only shown for SCA assets that contain a web service binding.

On the|Attach policy set page) attach a policy set and assign policy set bindings as needed, and
then click Next.

This page is only shown for SCA assets that use web services.

On the Summary page, click Finish. Several messages are displayed, indicating whether the
product adds the unit to the business-level application successfully. A message having the format
Completed res=[WebSphere:cuname=unit_name] indicates that the addition is successful. Click
Manage application.

If the product adds the unit successfully, the name of the unit is shown in a list of deployed assets
on the business-level application settings page.

Developing and deploying applications

If the unit addition is not successful, read the messages and add the unit again. Correct the
problems noted in the messages.

n. On the Adding composition unit to the business-level application page, click Save.

3. Optional: Add one or more assets, shared libraries, or business-level applications to your
business-level application.

Repeat Step 2 to add another asset or add a shared library or business-level application.
Results

A business-level application that contains the specified composition units.
What to do next

After you create the application, save the changes to your configuration and start the application as
needed.

If a composite asset is deployed to a target that does not support SCA composites, the SCA composite
does not start. You must deploy an SCA asset to a target that supports SCA composites.

Map virtual host settings for SCA composites
Use this page to map Service Component Architecture (SCA) composites that use a web service binding
to a virtual host. You must map the composites to the virtual host that hosts the web services.

This administrative console page displays in the business-level application creation and update wizards. To

view the Map virtual host page, the asset that you add to a business-level application must contain a web

service binding. To view this page, do the following:

1. Import an asset that contains a web service binding.

2. Create a business-level application to which to add the asset.

3. Click Applications > Application Types > Business-level applications > application_name > Add
> Add Asset.

4. On the Add composition unit page, select the asset that contains a web service binding, and click
Continue.

5. On the Set options page, change the settings as needed and click Next.

6. On the Map composition unit to a target page, specify target servers as needed and click Next.

7. On the Define relationship with existing composition units page, change the settings as needed and
click Next.

8. Continue changing settings as needed and click Next on any other pages until the Map virtual host
page is displayed in the wizard.

Composite Name:

Specifies the name of the composite that uses a web service binding in the SCA artifact.
Virtual Host:

Specifies a virtual host to associate with the composite.

Select the virtual host that hosts the web services for the composite. By default, the product associates a
component with the default_host virtual host.

Set Java EE composition unit relationships for SCA composites

Use this page to associate Service Component Architecture (SCA) components in an SCA composite with
Java Platform, Enterprise Edition (Java EE) applications, otherwise known as enterprise applications or
enterprise archive (EAR) files.

Chapter 9. Deploying and administering business-level applications 167

An SCA composite definition can define Java EE applications as component implementations. You can
define an EAR asset on an archive attribute of the implementation. jee tag for the component and use
the application deployed from the asset as its implementation. On this page, associate SCA components in
a business-level application with the EAR files named in the composite definition.

This administrative console page displays in the business-level application creation and update wizards. To
view the Set Java EE composition unit relationship page, the asset that you add to a business-level
application must contain an SCA composite. To view this page, complete the following actions:

1. Import an asset that contains an SCA composite.
2. Create a business-level application to which to add the asset.

3. Click Applications > Application Types > Business-level applications > application_name > Add
> Add Asset.

4. On the Add composition unit page, select the SCA composite asset and click Continue.

5. On the Set options page, change the settings as needed and click Next.

6. On the Map composition unit to a target page, specify target servers as needed and click Next.
7

On the Define relationship with existing composition units page, change the settings as needed and
click Next.

8. Continue changing settings as needed and click Next on any other pages until the Set Java EE
composition unit relationship page is displayed in the wizard.

Component Name:
Specifies the name of an SCA component in the SCA composite that you are deploying.

EAR Asset Name:
Specifies the name of the enterprise application, or EAR file, that the SCA component uses.

An EAR asset is an EAR file that has been imported as an asset. The EAR asset name must match the
archive attribute on the implementation.jee tag in the SCA composite definition.

Associated Java EE Composition Unit:

Specifies the composition unit name of the EAR asset. Select the Java EE composition unit that the SCA
component uses. To associate an SCA component with an EAR file, the EAR file must be a composition
unit of your SCA business-level application.

If the Java EE composition unit that you want to associate with an SCA component is not in the drop-down
list, import the EAR file that is named by the archive attribute on the implementation. jee tag of the SCA
composite definition as an asset. Then, add the EAR asset as a composition unit of this business-level
application.

You can use the Import an asset and Add an asset links on this page to add EAR files as assets and
make them composition units of your SCA business-level application.

Attach policy set settings
Use this page to attach a policy set and assign policy set bindings for the composite defined in a Service
Component Architecture (SCA) application.

This administrative console page displays in the Create new business-level application wizard. To have the
Attach policy set page in the wizard, the SCA component in the asset that you add to a business-level
application must use a web service binding, binding.ws, and the composite file or annotation must specify
the intents or policy sets. To view this page, do the following:

168 Developing and deploying applications

1. Import an asset that uses a web service binding and a composite file or annotation that specifies the
intents or policy sets.

2. Create a business-level application to which to add the asset.

3. Click Applications > Application Types > Business-level applications > application_name > Add

> Add Asset.

4. On the Add composition unit page, select the asset that uses a web service binding, and click

Continue.

5. On the Set options page, change the settings as needed and click Next.
6. On the Map composition unit to a target page, specify target servers as needed and click Next.
7. On the Define relationship with existing composition units page, change the settings as needed and

click Next.

8. Continue changing settings as needed and click Next on any other pages until the Attach policy set
page is displayed in the wizard.

To attach or detach a policy set or to assign a policy set binding, do the following:

1. Select a composite, component, service, reference, or binding from Name. The Name list is nested,
indicating parent-child relationships. When you select a parent, the children are automatically selected.

2. Click the desired button.

Table 34. Button descriptions. Use the buttons to attach or detach policy sets and to assign policy set bindings.

Button

Resulting action

Attach

Attaches a policy set to the selected composite, component, service, reference, or binding.

When the Include default policy sets option is not enabled, the options for this button
contain user-created policy sets only.

When the Include default policy sets option is not enabled and no user-created policy
sets exist, then there are no button options. You can select Include default policy sets to
display the default policy set options.

When the Include default policy sets option is enabled, the options for this button
include both default policy sets and any user-created policy sets.

To attach a policy set, select a composite, component, service, reference, or binding from
Name and click Attach > policy_set _option.

To close the menu list, click Attach.

Detach Policy Set

Detaches a policy set from the selected composite, component, service, reference, or
binding.

Assign Service Policy
Set Binding

Assigns a service policy set binding to the selected composite, component, service,
reference, or binding. There are two default options:

Default specifies to assign the default service policy set binding.

Provider Sample specifies to assign a policy set binding that is provided with the product
to the service.

If you are deploying the composition unit to a server or cluster that belongs to a security
domain, the list of policy set bindings consists of bindings that have been defined in the
security domain to which the composition unit is being deployed.

Chapter 9. Deploying and administering business-level applications 169

Table 34. Button descriptions (continued). Use the buttons to attach or detach policy sets and to assign policy set
bindings.

Button Resulting action
Assign Reference Assigns a reference policy set binding to the selected composite, component, service,
Policy Set Binding reference, or binding. There are two default options:

Default specifies to assign the default reference policy set binding.

Client Sample specifies to assign a policy set binding that is provided with the product to
the reference.

If you are deploying the composition unit to a server or cluster that belongs to a security
domain, the list of policy set bindings consists of bindings that have been defined in the
security domain to which the composition unit is being deployed.

Include default policy sets:

Specifies whether to include default policy sets. Default policy sets specify common quality of service
(QoS) behavior for generic message format.

Before selecting this option, determine whether the default policy sets provide adequate QoS
characteristics for your services.

By default, this option is not enabled.
Name:
Specifies a composite, component, service, reference, or binding in the artifact.

The Name list is nested, indicating parent-child relationships. When you select a parent, the children are
automatically selected.

Intents:

Specifies the aggregate of the intents from the composite file and the annotations. SCA intents are used to
describe the abstract policy requirements of a component.

The intents shown include any intents inherited from a parent.
Matched Policy Sets:
Specifies policy sets that potentially satisfy the intents.

You can include default policy sets by enabling the Include default policy sets check box. To exclude
default policy sets, deselect the check box.

Attached Policy Set:

Specifies attached policy sets. If no value is shown, then the composite, component, service, reference, or
binding is not attached to a policy set.

To attach a policy set, select a composite, component, service, reference, or binding and click an Attach
option.

To detach a policy set, use Detach Policy Set. You can detach any policy set, including pre-attached
policy sets.

170 Developing and deploying applications

Policy Set Binding:

Specifies service and reference policy set bindings. If no value is shown, then the composite, component,
service, reference, or binding is not assigned to a policy set binding.

To assign a policy set binding, select a composite, component, service, reference, or binding and click an
Assign Service Policy Set Binding or Assign Reference Policy Set Binding option.

To reset the bindings, select the Default option. For example, select Assign Service Policy Set Binding
> Default or Assign Reference Policy Set Binding > Default.

Map security roles to users or groups collection for SCA composites
Use this page to view and manage mappings of security roles to users and groups that are used with the
Service Component Architecture (SCA) composites.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > deployed_asset_composition_unit_name > Map security roles to
users or groups. This page is the same as the Map security roles to users or groups page in the Create
new business-level application wizard. To view this page, your composition unit must support SCA security.

Different roles can have different security authorizations. Mapping users or groups to a role authorizes
those users or groups to access applications defined by the role. Users, groups, and roles are defined
when an application is installed or configured.

To map a role to a user or group, enable the Select check box beside the role name in the list and click a
button. On the displayed page, specify one or more users or groups to map to the role.

Table 35. Button descriptions. Use the buttons to map security roles to users, groups, or special subjects.

Button Resulting action

Map Users Displays the Map users or groups page on which you can specify the users to have the
selected security role.

Map Groups Displays the Map users or groups page on which you can specify the groups to have the
selected security role.

Map Special Subjects | Maps special subjects according to the option that you select:
None specifies to map none of the special subjects to the role.

All Authenticated in Application's Realm specifies to map all of the authenticated users
to a specified role. When you map all authenticated users to a specified role, all of the
valid users in the current registry who have been authenticated can access resources that
are protected by this role.

All Authenticated in Trusted Realms specifies to map all of the authenticated users in
the trusted realms to a specified role. This option gives all authenticated users who belong
to the user registry access to the application's realm and all authenticated users who
belong to user registries access to realms which are trusted by the current security
domain.

Everyone specifies to map everyone to a specified role. When you map everyone to a
role, anyone can access the resources that are protected by this role and, essentially,
there is no security.

Role:
Specifies a security role.

Special Subjects:

Chapter 9. Deploying and administering business-level applications 171

Specifies which special subjects are mapped to the security role. This option applies only when an
application uses multiple realms.

None Specifies to map none of the special subjects to the role.

All Authenticated in Application's Realm
Specifies to map all of the authenticated users to a specified role. When you map all authenticated
users to a specified role, all of the valid users in the current registry who have been authenticated
can access resources that are protected by this role.

All Authenticated in Trusted Realms
Specifies to map all of the authenticated users in the trusted realms to a specified role. All
authenticated users who belong to the user registry that is mapped to the application's realm and
all authenticated users who belong to user registries that are mapped to realms which are trusted
by the current security domain are successfully authorized.

Everyone
Specifies to map everyone to a specified role. When you map everyone to a role, anyone can
access the resources that are protected by this role and, essentially, there is no security.

To change the value, select the role, click Map Special Subjects, and select an option.

Users:

Lists the users that are mapped to the specified role within this application.

Users from the non-default realm are displayed as user@realm.

Groups:

Lists the groups that are mapped to this specified role within this application.

Map RunAs roles to users collection for SCA composites

Use this page to map a specified user identity and password to a RunAs role for a Service Component
Architecture (SCA) composite. This page enables you to specify application-specific privileges for
individual users to run specific tasks using another user identity.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > deployed_asset_composition_unit_name > Map RunAs roles to
users. This page is the same as the Map RunAs roles to users page in the Create new business-level
application wizard.

To view this page, the components in your composition unit must contain predefined RunAs roles and
support SCA security. RunAs roles are used by components that need to run as a particular role for
recognition while interacting with another component.

Username:

Specifies a user name for the RunAs role user.

This user already maps to the role specified in the Mapping users and groups to roles page. You can map
the user to its appropriate role by either mapping the user to that role directly or mapping a group that
contains the user to that role. After you specify the user name and password for the user and select a
RunAs role, click Apply.

Password:

Specifies the password for the RunAs user.

172 Developing and deploying applications

Role:

Specifies a security role for a user within this application.

The authorization policy is only enforced when security is enabled.
User:

Lists the user that is mapped to the specified role within this application.

Composition unit settings

Use this page to view composition unit settings and to change the configuration properties of a
composition unit. The specific settings that are available for configuration can vary, depending upon the
contents of the composition unit. For example, there are additional configuration settings if the asset
contained in the composition unit is an SCA composite, or an OSGi application.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > deployed_asset_name. The deployed asset is a composition unit of
the business-level application.

+ [“Settings that are common to all composition units” on page 157]
+ [“Additional composition unit settings for SCA composites” on page 159
+ [“Additional composition unit settings for OSGi applications” on page 159

Settings that are common to all composition units

Name:

Specifies a logical name for the composition unit. You cannot change the name on this page.
Description:

Specifies a description for the composition unit.

Backing ID:

Specifies a unique identifier for a composition unit that is registered in the application management
domain.

The identifier has the format WebSphere:unit typename=unit _name. For example, for the MyApp.jar asset,
the backing identifier might be WebSphere:assetname=MyApp.jar.

You cannot change the identifier on this page.

Data type String
Units Configuration unit identifier

Starting weight:

Specifies the order in which composition units are started when the server starts. The starting weight is
like the startup order. The composition unit with the lowest starting weight is started first.

The value that you set for Starting weight determines the importance or weight of a composition unit
within the business level application. For example, for the most important composition unit within a
business-level application, specify 1 for Starting weight. For the next most important composition unit
within the business-level application, specify 2 for Starting weight, and so on.

Chapter 9. Deploying and administering business-level applications 173

Note: Assign composition units upon which other composition units depend a lower starting weight than
the dependent composition units. If a composition unit is not started and running before its
dependent composition units, java.lang.ClassNotFoundException errors might result when you
attempt to start the application or its modules.

Data type Integer
Default 1
Range 0 to 2147483647

Start on distribution:

Specifies whether to start the composition unit when the product distributes the composition unit to other
locations.

The default is not to start the composition unit.

This setting applies to asset or shared library composition units. This setting does not apply when the
composition unit is a business-level application.

Data type Boolean
Default false

Recycle behavior on update:
Specifies whether the product restarts the composition unit after the composition unit is updated.
The default is to restart the composition unit after partial updating of the composition unit.

This setting applies to asset or shared library composition units. This setting does not apply when the
composition unit is a business-level application.

Table 36. Option descriptions. Specifies whether to restart an asset or shared library composition unit.

Option Description

ALL Restarts the composition unit after the entire composition unit is updated
DEFAULT Restarts the composition unit after the part of the composition unit is updated
NONE Does not restart the composition unit after the composition unit is updated
Target mapping:

Specifies the current targets for the composition unit.

To change the deployment targets, click Modify targets then select a different set of deployment targets
from the list of available clusters and servers.

For SCA, you must specify only a single server or cluster as the target. Do not map an SCA composition
unit to multiple servers or clusters.

Note: When you change the deployment target of composition units in a business-level application, the
startup order changes to the same order in which you remap composition unit targets, even if the
starting weight for all composition units is set to 1. To avoid java.lang.ClassNotFoundException
errors when attempting to start the remapped composition units, remap targets for composition units

174 Developing and deploying applications

in the same order as that used to add the composition units or, after remapping, check starting
weights to ensure that composition units upon which other composition units depend are started

first.
Additional composition unit settings for SCA composites
SCA composite components:

Specifies the component names and component implementations of SCA composites in the application.

Table 37. Column descriptions. Provides the name of each component and the name of the class or code
implementing the component.

Column Description

Component Name Specifies the name of a component associated with the SCA composite.

Component Implementation | Specifies the name of the class or code implementing the component.

None indicates that the SCA composite does not have defined components.
SCA composite properties:

Specifies the names and values of SCA composite properties in the application.

Table 38. Column descriptions. Provides the name and value of SCA composite properties.

Column Description
Property Name Specifies the name of an SCA composite property.
Property Value Specifies the value of the property.

None indicates that the SCA composite does not have defined name-value properties.
SCA composite wires:

Specifies the sources and targets of wires in the SCA composite.

Table 39. Column descriptions. Provides the source and target of wires.

Column Description
Wire Source Specifies the source of a wire in the SCA composite.
Wire Target Specifies the target of the wire.

None indicates that the SCA composite does not have defined wires.

Additional composition unit settings for OSGi applications

OSGi application deployment status:

The deployment status shows whether updates are available for the EBA asset that is contained in the
composition unit. If a new version of an EBA asset is available, and all bundle downloads for the asset are

complete, you can update the EBA composition unit so that the business-level application uses the latest
configuration. You do not have to update the composition unit every time you update the asset.

There are four distinct deployment statuses for an EBA composition unit:

Chapter 9. Deploying and administering business-level applications 175

Using latest OSGi application deployment.
The composition unit is running the latest configuration of the backing asset and any CBA
extensions.

New OSGi application deployment not yet available because it requires bundles that are still
downloading.
The backing asset is currently undergoing a bundle version update, or bundles are downloading
for a CBA extension.

New OSGi application deployment available.
The backing asset is available at a newer configuration than the configuration that is currently
running in this composition unit, or a CBA extension has been added or replaced.

New OSGi application deployment cannot be applied because bundle downloads have failed.
The last bundle version update for the backing asset or CBA extension did not succeed, and
therefore the newer configuration is not yet available.

If the status is “New OSGi application deployment available”, the Update to latest deployment ... button
is available. Click this button to bring the EBA composition unit up-to-date and run the updated
business-level application. If any of the updates need configuration changes, a wizard prompts you to
update the configuration information.

When you save the changes to the EBA composition unit, the associated business-level application is
updated to use the new configuration. If the business-level application is running, the bundle and
configuration updates are applied immediately. If possible (that is, depending on the nature of the updates)
the system applies the updates without restarting the application. Updates that pull in new use bundles at
run time prompt a full restart of the application. Updates that pull in new provision bundles might also
prompt a full application restart.

JMS binding settings for SCA composites

Use this page to view property settings for a Java Message Service (JMS) binding that connects Service
Component Architecture (SCA) composite references or services. Also use this page to edit resources of
the JMS binding. The settings shown on this page define a binding.jms element.

To view this administrative console page, your composition unit must support a JMS binding reference or
service. In the administrative console, do the following:

1. Click Applications > Application Types > Business-level applications > application_name >
deployed_asset_composition_unit_name.

2. From the composition unit settings page for SCA composites, select to view references or services:

* For an SCA component reference, click SCA Composite Components >
SCA_component_reference_name > SCA Component References > reference_name >
Bindings > JMS binding.

* For an SCA component service, click SCA Composite Components >
SCA_component_service_name > SCA Component Services > service_name > Bindings >
JMS binding.

You can use a JMS binding to identify existing JMS resources using Java Naming and Directory Interface
(JNDI) names.

* |General properties|(read-only)

» |Resources|

+ |[Response resources|

+ [Request header properties|for a reference (read-only)

* |“Response header properties” on page 180| for a service (read-only)

176 Developing and deploying applications

General properties
Specifies property settings that apply to all binding. jms elements. The settings pertain to both services
and references. You cannot edit the settings.

JMS binding URI
Specifies a uniform resource identifier (URI) that identifies properties such as the destination,
connection factory and activation specification to be used to send or receive the JMS message.

The URI has the following format:

jms: jms_destination?
connectionFactoryName=connection_factory_name &
destinationType={queue|topic} &
deliveryMode=delivery_mode &
timeToLive=time to live &
priority=priority &
user_property=user_property value & ...
Correlation schema
Specifies the correlation scheme used when sending reply or callback messages.

Valid values are requestmsgidtocorrelid (the default), requestcorrelidtocorrelid, and none.

Initial context factory
Specifies the name of the initial context factory used to obtain a JNDI initial context.

This setting is optional. If no factory is specified, the WebSphere Application Server initial context
factory is used.

JNDI URL
Specifies the uniform resource locator (URL) for the JNDI provider.

Request connection
Specifies a binding.jms element that is present in a composite definition file.

A request is a message that is sent to an SCA service or sent by an SCA reference.

Response connection
Specifies a binding.jms element that is present in a composite definition file.

A response is a message received by a reference (that is, a reply from an invoked service) or a
message sent by a service in response to a previous request message. A response in SCA is
always a reply to a previous request.

Request wire format
Specifies the component definition element name of a wire that connects SCA composites.

For example, wireFormat.jmsObject.
A request is a message that is sent to an SCA service or sent by an SCA reference.

Response wire format
Specifies the component definition element name of a wire that connects SCA composites.

For example, wireFormat.jmsObject.

A response is a message received by a reference (that is, a reply from an invoked service) or a
message sent by a service in response to a previous request message. A response in SCA is
always a reply to a previous request.

Resources

Specifies resources for the JMS binding. You can both read and edit resource settings for Destination
JNDI name, Activation specification JNDI name, and Connection factory JNDI name. All other
resource settings are read-only.

Chapter 9. Deploying and administering business-level applications 177

Destination type
Specifies the type of the request destination. Permitted values are queue (the default value) and
topic. When topic is specified, then all the operations in the interface that correspond to the
binding must be one-way.

This setting is for both services and references and is read-only.
@type is the destination type.

Destination JNDI name
Specifies an optional parameter that gives the JNDI name of a destination to which the binding is
connected. For example, jms/InvokeService Callback.

You can set a destination name for both services and references.
@name is the JNDI name of the destination.

Destination create
Specifies whether to create a destination for the binding.

Valid values are ifnotexist (the default), always, and never. When the value is ifnotexist, the
product dynamically creates destination resources necessary for the SCA composite, if those
resources do not exist and relate to the default messaging provider. The product creates the
resources when adding the SCA composite to a business-level application.

The product validates a composite definition when adding an SCA asset to a business-level
application. If the validation results in an error, the product does not add the asset to the
application. If the value is always and the destination exists, deployment stops with an error.

Activation specification JNDI name
Specifies the activation specification that the binding uses to connect to a JMS destination to
process request messages. The value must be a JNDI name.

You can set an activation specification for services only.
The attributes of this element follow those defined for the destination element.

Activation specification create
Specifies whether to create an activation specification for the binding. You can create an activation
specification for services only.

Valid values are ifnotexist (the default), always, and never. When the value is ifnotexist, the
product dynamically creates activation specification resources necessary for the SCA composite, if
those resources do not exist and relate to the default messaging provider. If the value is always
and the activation specification exists when the SCA composite is added to a business-level
application, deployment stops with an error.

Connection factory JNDI name
Specifies the connection factory that the binding uses to process request messages. The value
must be a JNDI name.

You can set a connection factory JNDI name for references only.

The attributes of this property follow those defined for the destination element. This property is
mutually exclusive with the activationSpec property.

Connection factory create
Specifies whether to create a connection factory for the binding. You can create a connection
factory for references only.

Valid values are ifnotexist (the default), always, and never. When the value is ifnotexist, the
product dynamically creates connection factory resources necessary for the SCA composite, if
those resources do not exist and relate to the default messaging provider. If the value is always
and the connection factory exists when the SCA composite is added to a business-level
application, deployment stops with an error.

178 Developing and deploying applications

Response resources

Specifies the resources used for handling response messages, receiving responses for a reference, and
for sending responses from a service. A response element defines the destination and either the
connection factory or activation specification elements for handling response messages.

Response resources pertain to both services and references. You can both read and edit resource settings
for Response destination JNDI hame and Response connection factory JNDI name. All other resource
settings are read-only.

Response destination type
Specifies the type of the response destination. Permitted values are queue (the default value) and
topic. When topic is specified, then all the operations in the interface that corresponds to the
binding must be one-way.

This setting is for both services and references and is read-only.

Response destination JNDI name
Specifies the destination that is to be used to process responses by this binding. Attributes are the
same as for the parent destination element. For example, jms/InvokeService Response.

You can set a destination name for both services and references.

Response destination create
Specifies whether to create a response destination for the binding.

Valid values are ifnotexist (the default), always, and never. When the value is ifnotexist, the
product dynamically creates response destination resources necessary for the SCA composite, if
those resources do not exist and relate to the default messaging provider. If the value is always
and the response destination exists when the SCA composite is added to a business-level
application, deployment stops with an error.

Response connection factory JNDI name
Specifies the connection factory that the binding uses to process response messages. The value
must be a JNDI name.

You can set a response connection factory for both services and references.

The attributes of this element follow those defined for the destination element. This element is
mutually exclusive with the activationSpec element.

Response connection factory create
Specifies whether to create a response connection factory that the binding can use to process
response messages.

Valid values are ifnotexist (the default), always, and never. When the value is ifnotexist, the
product dynamically creates response connection factory resources necessary for the SCA
composite, if those resources do not exist and relate to the default messaging provider. If the
value is always and the response connection factory exists when the SCA composite is added to a
business-level application, deployment stops with an error.

Request header properties
Specifies JMS header properties that apply to requests from a reference. You cannot edit the header
properties.

If a JMS header property is specified, the property must not appear in the URI.

JMS type
Specifies a JMS type to use in the JMS header property using @JMSType.

JMS correlation ID
Specifies a JMS correlation identification to use in the JMS header property using
@JMSCorrelationlID.

Chapter 9. Deploying and administering business-level applications 179

JMS delivery mode
Specifies a JMS delivery mode to use in the JMS header property using @JMSDel1iveryMode.

JMS time to live
Specifies a JMS time to live to use in the JMS header property using @JMSTimeToLive.

JMS priority
Specifies a JMS priority to use in the JMS header property using @JMSPriority.

Header property
Specifies a value to use for the specified JMS user property.

Response header properties
Specifies JMS header properties that apply to responses from a service for outbound messages. You
cannot edit the header properties.

If a JMS header property is specified, the property must not appear in the URI.

JMS type
Specifies a JMS type to use in the JMS header property using @JMSType.

JMS correlation ID
Specifies a JMS correlation identification to use in the JMS header property using
@JMSCorrelationID.

JMS delivery mode
Specifies a JMS delivery mode to use in the JMS header property using @JMSDeliveryMode.

JMS time to live
Specifies a JMS time to live to use in the JMS header property using @JMSTimeToLive.

JMS priority
Specifies a JMS priority to use in the JMS header property using @JMSPriority.

Header property
Specifies a value to use for the specified JMS user property.

Provide HTTP endpoint URL information settings for SCA composites

Use this page to specify endpoint Universal Resource Locator (URL) prefix information for Service
Component Architecture (SCA) composites accessed by web service bindings. The information is used to
form complete endpoint addresses.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > deployed_asset composition_unit_name > Provide HTTP
endpoint URL information.

Default SCA URL prefixes

Shows the predefined default endpoint URL prefixes for SCA composites that are accessed by Hypertext
Transfer Protocol (HTTP) or Hypertext Transfer Protocol Secure (HTTPS) for service endpoints.

The field shows both unsecure and secure custom endpoint URL values separated by a space. For
example:

http://theHost:9081 https://theHost:9044

For each endpoint URL prefix, the format is protocol://host_name:port_number. The protocol is either
http or https. In this example, host_name is theHost and port_number is the port used in the endpoint
URL.

To use the default endpoint URL prefixes, deselect the Override default SCA URL prefixes check box.

180 Developing and deploying applications

Override default SCA URL prefixes

Specifies whether to use a custom endpoint URL prefix when the service has a proxied front end. The
endpoint URL prefixes are those of the proxy server. You must specify proxied endpoints when deploying
services that use the web service binding in a clustered configuration.

To specify a custom endpoint URL prefix, do the following:

Select the Override default SCA URL prefixes check box.

For HTTP host name, specify the host name of the unsecure custom endpoint. For example: myHost
For HTTP port, specify the port of the unsecure custom endpoint. For example: 9081

For HTTPS host name, specify the host name of the secure custom endpoint. For example: myHost
For HTTPS port, specify the port of the secure custom endpoint. For example: 9044

Click OK.

I

SCA composite component settings

Use this page to view and edit the attributes associated with a Service Component Architecture (SCA)
component.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > deployed_asset_name > SCA_composite_component_name.

Components are configured instances of implementations. Components provide and consume services.
More than one component can use and configure the same implementation, where each component
configures the implementation differently. For example each component might configure a reference of the
same implementation to consume a different service.

An implementation defines the aspects configurable by a component in the form of a component type. The
component type is in effect a description of the contract honored by the implementation.

A reference represents a requirement that the implementation has on a service provided by another
component.

Component name
Specifies the component name of the attribute.

Implementation
Specifies the name of the class or configuration file that contains the component implementation.

For implementation.java, the Java class is shown. For other implementations, the name of the resource
identified by the implementation is shown:

* For implementation.jee, the archive name is shown.
» For implementation.spring, the application context file is shown.
* For implementation.osgiapp, the application symbolic name and version is shown.

Type

Specifies the type of attribute. In this case, the type is Component.

SCA component services
Specifies the names of the services.

SCA component references
Specifies the names and targets of component references. You can edit the reference target for
customization.

Chapter 9. Deploying and administering business-level applications 181

SCA component properties
Specifies the Property Input Source and Property Value for each property.

Options for Property Input Source include the following:
» XPath indicates the source attribute of the property.
 File indicates the file attribute of the property.

» Value indicates the property element value.

SCA component reference settings

Use this page to view and edit the attributes associated with a Service Component Architecture (SCA)
component reference.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > deployed_asset_composition_unit_name >
SCA_composite_component_name > reference_name.

SCA component references within an implementation represent links to services the implementation uses
that must be provided by other components in the SCA system. For a composite, you can wire references
of components within the composite (component references) to references of the composite (composite
references), indicating that the component references must be resolved by services outside the composite.

References use bindings to describe the access methods used to invoke the services.

Under Additional Properties, click View domain to view a list of services available in the current cell or
domain. This can be helpful when updating the Target setting value, for example.

Reference name
Specifies the reference name of the attribute.

Type

Specifies the type of attribute. In this case, it is Reference.

Reference target URI

Specifies one or more target service uniform resource identifiers (URIs), depending on the multiplicity
setting. Each target wires the reference to a component service that resolves the reference. Targets can
contain a list of targets separated by a space, in the form target1 target2.

Bindings
Specifies the URI of the binding.

Supported bindings include the SCA default binding, enterprise bean (EJB) binding, web service binding,
Java Message Service (JMS) binding, Atom binding, and HTTP binding.

SCA component service settings

Use this page to view and edit the attributes associated with a component service.

To view this administrative console page, click Applications > Application Types > Business-level
applications > application_name > deployed_asset_composition_unit_name >
SCA_composite_component_name > service_name.

Services are used to publish services provided by implementations, so that they are addressable by other
components.

182 Developing and deploying applications

A service published by a component can be provided by a service of a component defined within the
component, or it can be provided by a component reference. The latter case allows the republication of a
service with a new address or new bindings.

Service name
Specifies the service name of the attribute.

Type

Specifies the type of attribute. In this case, Service.

Work manager JNDI name
Specifies the Java Naming and Directory Interface (JNDI) name of the work manager.

Bindings
Specifies the uniform resource identifier (URI) of the binding.

Supported bindings include the SCA default binding, enterprise bean (EJB) binding, web service binding,
Java Message Service (JMS) binding, Atom binding, and HTTP binding.

Service provider policy sets and bindings collection for SCA
composites

Use this page to attach and detach policy sets to a composition unit, a service provider, its endpoints, or
operations of a Service Component Architecture (SCA) composite. You can select the default bindings,
create new application-specific bindings, or use bindings that you created for an attached policy set. You
can view or change whether the service provider can share its current policy configuration.

To view this administrative console page, your composition unit must use web services and support SCA.
Click Applications > Application Types > Business-level applications > application_name >
deployed_asset_composition_unit_name > Service provider policy sets and bindings .

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

To attach or detach a policy set or binding, do the following:

1. Select a composition unit, service, endpoint, or operation. The Composition unit/Service/Endpoint/
Operation list is nested, indicating parent-child relationships.

2. Click the desired button.

Table 40. Button descriptions. Use the buttons to attach or detach policy sets and to assign policy set bindings.

Button Resulting action

Attach Attaches a policy set to the selected composition unit, service, endpoint, or operation. To attach a
policy set, select a unit, service, endpoint, or operation and click Attach > policy set_option.

To close the menu list, click Attach.

Detach Policy Detaches a policy set from the selected composition unit, service, endpoint, or operation.

Set
After the policy set is detached, if there is no policy set attached to an upper-level service

resource, the Attached Policy Set column displays None and the Binding column displays Not
applicable.

If there is a policy set attached to an upper-level service resource, the Attached Policy Set
column displays policy_set_name (inherited) and the binding used for the upper-level
attachment is applied. The binding name is displayed followed by (inherited).

Chapter 9. Deploying and administering business-level applications 183

Table 40. Button descriptions (continued). Use the buttons to attach or detach policy sets and to assign policy set

bindings.

Button

Resulting action

Assign Binding

Assigns a policy set binding to the selected composition unit, service, endpoint, or operation. The
options include the following:

Default Specifies the default binding for the selected service reference, endpoint, or operation.
You can specify client and provider default bindings to be used at the cell level or global
security domain level, for a particular server, or for a security domain. The default
bindings are used when an application-specific binding has not been assigned to the
attachment. When you attach a policy set to a service resource, the binding is initially set
to the default. If you do not specifically assign a binding to the attachment point using this
Assign Binding action, the default specified at the nearest scope is used.

For any policy set attachment, the run time checks to see if the attachment includes a
binding. If so, it uses that binding. If not, the run time checks in the following order and
uses the first available default binding:

1. Default general bindings for the server
2. Default general bindings for the domain in which the server resides
3. Default general bindings for the global security domain

New Application Specific Binding
Select this option to create a new application-specific binding for the policy set
attachments. The new binding you create is used for the selected resources. If you select
more than one resource, ensure that all selected resources have the same policy set
attached.

Provider sample
Select this option to use the Provider sample binding.

Provider sample V2
Select this option to use the Provider sample V2 binding when you are using either the
Kerberos V5 WSSecurity default or the TrustServiceKerberosDefault policy sets.

Saml Bearer Provider sample
Select this option to use the Saml Bearer Provider sample. The Saml Bearer Provider
sample extends the Provider sample binding to support SAML Bearer token usage
scenarios. You can use this sample with any of the SAML bearer token default policy
sets.

Saml HoK Symmetric Provider sample
Select this option to use the Saml HoK Symmetric Provider sample. The Saml HoK
Symmetric Provider sample extends the Provider sample binding to support SAML
holder-of-key (HoK) symmetric key token usage scenarios. You can use this sample with
one of the SAML HoK Symmetric key default policy sets: either SAML11 HoK Symmetric
WSSecurity default or SAML20 HoK Symmetric WSSecurity default.

Composition unit/Service/Endpoint/Operation
Specifies the name of the composition unit and the associated service providers, endpoints or operations.

The Composition unit/Service/Endpoint/Operation column lists the composition unit and the service
providers, endpoints, or operations that the composition unit contains.

Attached Policy Set
Specifies the policy set that is attached to a composition unit, service provider, endpoint, or operation.

The Attached Policy Set column can contain the following values:
* None. No policy set is attached, either directly or to a higher-level service resource.

* Policy_set_name. The name of the policy set that is attached directly to the service resource, for
example, WS-1 RSP.

184 Developing and deploying applications

* Policy_set_name (inherited). The name of the policy set that is not attached directly to a service
resource, but that is attached to a higher-level service resource.

When the value in the column is a link, click the link to view or change settings about the attached policy
set.

Binding
Specifies the binding configuration that is available for a service provider, endpoint, or operation.

The Binding column can contain the following values:
» Not applicable. No policy set is attached, either directly or to a higher-level service resource.
* Binding_name or Default. The binding name is displayed if a policy set is attached directly and an

application-specific binding or a general binding is assigned, for example, MyBindingsl. Default is
displayed if a policy set is attached directly but the service resource uses the default bindings.

* Binding_name (inherited) or Default (inherited). A service resource inherits the bindings from an
attachment to a higher-level resource.

When the value in the Binding column is a link, click the link to view or change settings about the binding.

References policy sets and bindings collection for SCA composites

Use this page to attach and detach policy sets to a composition unit, a service reference, its endpoints, or
operations of a Service Component Architecture (SCA) composite. You can select the default bindings,
create new application-specific bindings, or use bindings that you created for an attached policy set. You
can view or change whether the service reference can share its current policy configuration.

To view this administrative console page, your composition unit must use web services and support SCA.
Click Applications > Application Types > Business-level applications > application_name >
deployed_asset_composition_unit_name > References policy sets and bindings.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

To attach or detach a policy set or binding, do the following:

1. Select a composition unit, service, endpoint, or operation. The Composition unit/Service/Endpoint/
Operation list is nested, indicating parent-child relationships.

2. Click the desired button.

Table 41. Button descriptions. Use the buttons to attach or detach client policy sets and to assign policy set
bindings.

Button Resulting action
Attach Client Policy Attaches a client policy set to the selected composition unit, service, endpoint, or
Set operation. To attach a policy set, select a composition unit, service, endpoint, or operation

and click Attach Client Policy Set > policy_set option.

To close the menu list, click Attach Client Policy Set.

Chapter 9. Deploying and administering business-level applications 185

Table 41. Button descriptions (continued). Use the buttons to attach or detach client policy sets and to assign policy
set bindings.

Button Resulting action

Detach Client Policy Detaches a client policy set from the selected composition unit, service, endpoint, or
Set operation.

After the policy set is detached, if there is no policy set attached to an upper-level service
resource, the Attached Client Policy Set column displays None and the Binding column
displays Not applicable.

If there is a policy set attached to an upper-level service resource, the Attached Client
Policy Set column displays policy_set _name (inherited) and the binding used for the
upper-level attachment is applied. The binding name is displayed followed by (inherited).

Assign Binding Assigns a policy set binding to the selected composition unit, service, endpoint, or
operation. The options include the following:

Default Specifies the default binding for the selected service, endpoint, or operation. You
can specify client and provider default bindings to be used at the cell level or
global security domain level, for a particular server, or for a security domain. The
default bindings are used when an application-specific binding has not been
assigned to the attachment. When you attach a policy set to a service resource,
the binding is initially set to the default. If you do not specifically assign a binding
to the attachment point using this Assign Binding action, the default specified at
the nearest scope is used.

For any policy set attachment, the run time checks to see if the attachment
includes a binding. If so, it uses that binding. If not, the run time checks in the
following order and uses the first available default binding:

1. Default general bindings for the server
2. Default general bindings for the domain in which the server resides
3. Default general bindings for the global security domain

New Application Specific Binding
Select this option to create a new application-specific binding for the policy set
attachments. The new binding you create is used for the selected resources. If
you select more than one resource, ensure that all selected resources have the
same policy set attached.

Client sample
Select this option to use the Client sample binding.

Client sample V2
Select this option to use the Client sample V2 binding when you are using either
the Kerberos V5 WSSecurity default or the TrustServiceKerberosDefault policy
sets.

Saml Bearer Client sample
Select this option to use the Saml Bearer Client sample. The Saml Bearer Client
sample extends the Client sample binding to support SAML Bearer token usage
scenarios. You can use this sample with any of the SAML bearer token default
policy sets.

Saml HoK Symmetric Client sample
Select this option to use the Saml HoK Symmetric Client sample. The Saml HoK
Symmetric Client sample extends the Client sample binding to support SAML
holder-of-key (HoK) symmetric key token usage scenarios. You can use this
sample with one of the SAML HoK Symmetric key default policy sets: either
SAML11 HoK Symmetric WSSecurity default or SAML20 HoK Symmetric
WSSecurity default.

186 Developing and deploying applications

Composition unit/Service/Endpoint/Operation
Specifies the name of the composition unit and the associated service references, endpoints or operations.

The Composition unit/Service/Endpoint/Operation column lists the service composition unit and the service
references, endpoints, or operations that the composition unit contains.

Attached Client Policy Set
Specifies the policy set that is attached to a composition unit, service reference, endpoint, or operation.

The Attached Client Policy Set column can contain the following values:
* None. No policy set is attached, either directly or to a higher-level service resource.

* Policy_set_name. The name of the policy set that is attached directly to the service resource, for
example, WS-I RSP.

* Policy_set_name (inherited). The name of the policy set that is not attached directly to a service
resource, but that is attached to a higher-level service resource.

When the value in the column is a link, click the link to view or change settings about the attached policy
set.

Binding
Specifies the binding configuration that is available for a service reference, endpoint, or operation.

The Binding column can contain the following values:
* Not applicable. No policy set is attached, either directly or to a higher-level service resource.
* Binding_name or Default. The binding name is displayed if a policy set is attached directly and an

application-specific binding or a general binding is assigned, for example, MyBindingsl. Default is
displayed if a policy set is attached directly but the service resource uses the default bindings.

* Binding_name (inherited) or Default (inherited). A service resource inherits the bindings from an
attachment to a higher-level resource.

When the value in the Binding column is a link, click the link to view or change settings about the binding.

SCA service provider settings

Use this page to manage policy sets for a Service Component Architecture (SCA) web service provider.
You can attach and detach policy sets to a service provider, its endpoints, or operations. You can select
the default bindings, create new application-specific bindings, or use bindings that you created for an
attached policy set. You can view or change whether the service provider can share its current policy
configuration.

To view this administrative console page, your composition unit must use web services and support SCA.
Click Services > Service providers > service _provider_name.

Service provider
Specifies the full QName of the service provider. The QName must be in a format that supports the Java