
IBM Global Security Kit ---

GSKCapiCmd User's Guide
GSKit version 8

---IBM Global Security Kit

GSKCapiCmd User's Guide

GSKit version 8

Note
Before using this information and the product it supports, read the information in Appendix D, “Notices,” on page 87.

This edition applies to GSKCapiCmd version 8.0.14 and to all subsequent releases and modifications until otherwise
indicated in new editions.

© Copyright IBM Corporation 2005, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface v

Who should read this book v

Accessibility v

IBM and accessibility v

Contacting software support v

Conventions used in this book vi

Typeface conventions vi

Operating system differences vi

Chapter 1. Using the GSKCapiCmd

program. 1

Language support overview 1

Locale environment variables 1

LANG variable on UNIX or Linux systems . . . 1

Forcing output to a different locale 2

Using locale variants 2

Text encoding (code set) support. 3

GSKCapiCmd command-line syntax 3

Chapter 2. Key database commands . . 5

Create a key database (-create) 5

Delete a key database (-delete) 7

Change the password of an existing key database

(-changepw) 8

Stash the password of an existing key database

(-stashpw) 9

List the supported key databases (-list) 10

Convert a key database (-convert) 10

Display the expiry date associated with a key

database (-expiry) [deprecated] 12

Chapter 3. Certificate commands . . . 15

Signature algorithms 15

Certificate scripting language 15

Create a self-signed certificate in a keystore (-create) 18

Add a certificate to a keystore (-add) 20

Delete a certificate from a keystore (-delete) . . . 22

Display details of a certificate (-details) 23

Export a certificate (-export) 25

Receive a certificate into a keystore (-receive) . . . 26

Import a certificate (-import) 27

Extract a certificate from a keystore (-extract) . . . 29

List details of the default certificate (-getdefault)

[deprecated] 31

Set default certificate in a keystore (-setdefault)

[deprecated] 32

Rename a certificate in a keystore (-rename) . . . 33

List the certificates stored in a keystore (-list) . . . 34

Modify a certificate in a keystore (-modify) 36

Sign a certificate (-sign) 37

Validate a certificate (-validate) 39

Chapter 4. Certificate request

commands 41

Create a certificate request (-create) 41

Delete certificate request (-delete) 43

List certificate request details (-details) 44

Extract certificate request (-extract) 46

List all certificate requests (-list) 47

Re-create certificate requests (-recreate) 48

Chapter 5. Random commands 51

Create a random password of a specified length

(-create) 51

Chapter 6. Help commands 53

Chapter 7. Version command 55

Chapter 8. Runtime messages. 57

Chapter 9. Error codes and messages 71

Appendix A. CMS key databases . . . 77

What is a CMS key database? 77

How is a CMS key database organized? 77

How is a CMS key database protected 77

What can I put in a CMS key database? 78

What is a label? 78

How can I manipulate certificates in a CMS

keystore? 78

Appendix B. A Simple Example 81

The requirement 81

Considerations for the administrator 81

Step 1 – Obtain a company-wide intermediate

certificate 81

Step 2 – Sign all employee certificates using the

ACME intermediate 82

Step 3. Create the web server certificate 83

So do we meet the requirements? 84

Appendix C. Resources 85

Appendix D. Notices 87

Trademarks 89

© Copyright IBM Corp. 2005, 2010 iii

iv

Preface

This guide describes how to use the GSKCapiCmd utility to manage keys,
certificates, and certificate requests within a key database.

This document assumes that Global Security Kit (GSKit) is installed, configured,
and running on your network.

Who should read this book
This manual is intended for network or system security administrators who have
installed GSKit and want to use the GSKCapiCmd program to modify Certificate
Management System (CMS) or PKCS11 key databases. This manual assumes that
the reader is familiar with the GSKit product range and the functionality of the
CMS key database.

Before continuing to read this manual, ensure that you have read and understood
the following prerequisite readings. This will ensure that you understand the
required concepts and terms used throughout the manual:
v Appendix A, “CMS key databases,” on page 77.
v Appendix B, “A Simple Example,” on page 81.

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully. Standard shortcut
and accelerator keys are used by the product and are documented by the operating
system. See the documentation provided by your operating system for more
information.

IBM and accessibility
See the IBM® Human Ability and Accessibility Center (http://www.ibm.com/able)
for more information about the commitment that IBM has to accessibility.

Contacting software support
Before contacting IBM Tivoli® Software Support with a problem, see the IBM Tivoli

Software Support portal http://www.ibm.com/software/sysmgmt/products/

support/.

If you need additional help, contact software support by using the methods

described in the Software Support Handbook http://www14.software.ibm.com/

webapp/set2/sas/f/handbook/home.html.

The guide provides the following information:

v Registration and eligibility requirements for receiving support.

v Telephone numbers, depending on the country in which you are located.

v A list of information you should gather before contacting customer support.

© Copyright IBM Corp. 2005, 2010 v

http://www.ibm.com/able
http://www.ibm.com/software/sysmgmt/products/support/
http://www.ibm.com/software/sysmgmt/products/support/
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http:http://www14.software.ibm.com
http://www.ibm.com/software/sysmgmt/products
http://www.ibm.com/able

Conventions used in this book
This reference uses several conventions for special terms and actions and for
operating system-dependent commands and paths.

Typeface conventions
The following typeface conventions are used in this reference:

Bold	 Lowercase commands or mixed case commands that are difficult to
distinguish from surrounding text, keywords, parameters, options, names
of Java™™ classes, and objects are in bold.

Italic	 Variables, non-specific command-line options or identifiers, and special
words are in italic.

Monospace
Code examples, command lines, screen output, file and directory names
that are difficult to distinguish from surrounding text, system messages,
text that the user must type, and values for arguments or command
options are in monospace.

Symbol conventions
[] - Identifies an option that is optional, if an option is not surrounded by this
style of brackets the option is required.

| - Indicates an “OR” relationship between the options on either side of it.

{} – Identifies mutually exclusive set of options.

Operating system differences
This book uses the UNIX®™ convention for specifying environment variables and
for directory notation. When using the Windows®™ command line, replace $variable
with %variable% for environment variables and replace each forward slash (/) with
a backslash (\) in directory paths. If you are using the bash shell on a Windows
system, you can use the UNIX conventions.

vi

Chapter 1. Using the GSKCapiCmd program

GSKCapiCmd is a tool that can be used to manage keys, certificates, and certificate
requests within a key database. The following chapters go into detail for each of
the functions supported by GSKCapiCmd.

GSKCapiCmd uses some encoding rules, and implements aspects of certain RFCs
and standards. It is not strictly necessary for users to have a full understanding of
these items in order to use this utility. However, if you want to learn more then
you can examine the resources contained in: Appendix C, “Resources,” on page 85.

Language support overview
IBM Global Security Kit (GSKit) software is built using the International
Components For Unicode toolkit (ICU) to provide Internationalization support.

Notwithstanding the lack of translated message catalogs, ICU provides other
localization functions that are independent of translation, notably the formatting of
date and time strings.

Locale environment variables
For most current operating systems, localized behavior is obtained by specifying
the desired locale in the user environment. For gsk8capicmd on UNIX like
systems, you can set the LANG environment variable to the desired locale name as
specified by POSIX, X/Open, or other open systems standards.

If you are in a Windows environment, you can modify the language setting in the
Regional Settings of the Control Panel.

LANG variable on UNIX or Linux systems
Most UNIX or Linux® systems use the LANG variable to specify the desired locale.
However, different UNIX and Linux operating systems require different locale
name values to specify the same language. Always use a value for LANG that is
supported by the UNIX or Linux operating system you are using. To obtain the
locale names for your UNIX or Linux system, enter the following command:
locale –a.

If you specify the LANG environment variable and also modify the regional
settings then the LANG environment variable will override the regional setting. As
specified by open systems standards, other environment variables override LANG
for some or all locale categories. These variables include the following:
v LC_COLLATE

v LC_CTYPE

v LC_MONETARY

v LC_NUMERIC

v LC_TIME

v LC_MESSAGES

v LC_ALL

© Copyright IBM Corp. 2005, 2010 1

If any of the previous variables are set, you must remove their setting for the
LANG variable to have full effect.

Forcing output to a different locale
You can use the -locale command-line option to select the desired display language
if:
v	 The operating system does not support the LANG environment variable, or

v	 You want to display messages in a different locale to the current environment
settings.

To do this, set the locale option to the appropriate canonical name, based on the
ISO language or territory codes.

For example, to display the help message in German issue the command:
gsk8capicmd –help –locale de

Some example ISO language codes are:

Table 1. ISO Language Codes

ISO Language Code Language

de German

en English

es Spanish

fr French

it Italian

ja Japanese

ko Korean

pt_BR Portuguese (Brazil)

zh_CN Simplified Chinese

zh_TW Traditional Chinese

Using locale variants
Although gsk8capicmd currently provides only one translated version for each
language, you can specify a preferred locale variant to find the corresponding
language translation if it is available.

If a message catalog is not found for the desired language, the English message
catalogs are used. For example, suppose you specify the AIX® locale for German in
Switzerland as follows:
LANG=De_CH.IBM-850

In this example, the catalogs are searched in the following order to locate the
specified locale:
1. de_CH

2. de

3. en

2

Since gsk8capicmd does not provide a German in Switzerland language pack,
de_CH is not found. If the German language package is available, de is used.
Otherwise, the default locale en is used, causing text to be displayed in English.

Text encoding (code set) support
Different operating systems encode text in different ways. For example, Windows
systems use SJIS (code page 932) for Japanese text, but UNIX or Linux systems
often use eucJP.

In addition, you can provide multiple locales for the same language so that
different code sets are used for the same language on the same machine. Message
catalogs are encoded using UTF-8, and the text is converted to the locale encoding
before being presented to the user. In this way, the same French message catalog
files can be used to support a variety of Latin 1 code sets, such as ISO8859-1,
Microsoft® 1252, IBM PC 850, and IBM MVS™ 1047.

Interoperability across your domain depends on code set files, which are used to
perform UTF-8 conversion and other types of encoding-specific text processing.

For messages to display correctly on some platforms, you might need to specify
the correct code set that supports your locale.

GSKCapiCmd command-line syntax
The syntax for the GSKCapiCmd program is as follows:
gsk8capicmd <modifiers> <object> <action> <options>

where:

modifiers
May include the following:

-fips [<true>|<false>]

Enable or disable Federal Information Processing Standards (FIPS)
mode. The program will run in FIPS mode by default.

In FIPS mode, the use of the BSafe cryptographic library is
disabled. Only the IBM Crypto for C (ICC) component, which must
be successfully initialized in FIPS mode, will be used. If the ICC
component does not initialize in FIPS mode then the gsk8capicmd
operation will fail.

When in FIPS mode the ICC component uses algorithms that have
been FIPS 140-2 validated.

-locale <language>
Set the display language preference.

-trace <pathname>
Enable trace logging to the named file.

object Is one of the following:

-keydb
Actions acted on a key database.

-cert	 Actions acted on a certificate stored within an identified key
database.

Chapter 1. Using the GSKCapiCmd program 3

-certreq
Actions acted on a certificate request stored within an identified
key database.

-random
Generates a random string of characters that can be used as a
password for other commands.

-version
Displays version information for GSKCapiCmd.

-help Displays help for the GSKCapiCmd commands.

action Is the specific action to be taken on the object.

options Are the options associated with the specified object and task.

The following chapters of this manual describe each particular object, its associated
actions, and what options are available.

4

Chapter 2. Key database commands

The key database commands are associated with the -keydb object. This object
supports the following actions:
v	 “Create a key database (-create).”

v	 “Delete a key database (-delete)” on page 7.
v	 “Change the password of an existing key database (-changepw)” on page 8.
v	 “Stash the password of an existing key database (-stashpw)” on page 9.
v	 “List the supported key databases (-list)” on page 10.
v	 “Convert a key database (-convert)” on page 10.
v	 “Display the expiry date associated with a key database (-expiry) [deprecated]”

on page 12.

Note:	 This feature is deprecated as CMS keystores no longer have this
capability. Keystore password management must be done outside of the
gskcapicmd utility.

Each of the following sections detail the key database commands and the options
available for each command.

After creating a key database (or keystore), it is the user's responsibility to
maintain the contents of the keystore in order to maintain security of any
application using that keystore. The trusted default CA certificates are particularly
important as they are the trust anchors for all user certificates. The presence of a
CA certificate in the keystore is enough to make it, and all valid certificates that it
signs, trusted by the application using the keystore.

Specifically, the user must:
1.	 Monitor certificates for expiry and remove any expired certificates. The

presence of expired CA certificates does not compromise security as they will
fail validation if used.

2.	 Review the default CA certificates and remove any unnecessary ones. If a CA
certificate does not need to be trusted by the application using the keystore
then it should be removed.

Create a key database (-create)
The create command creates a new key database. You can optionally create the
keystore with password protection, but note that in either case no operating
system-specific access controls are set. Setting these access controls (if required) is
the responsibility of the keystore owner.

The syntax for creating a key database with GSKCapiCmd is as follows:
gsk8capicmd -keydb -create -db <name> [-pw <passwd>]
[-type <cms|kdb|pkcs12|p12>] [-expire <days>] [-stash]
[-strong] [-empty | -populate] [-f]

where:

object -keydb

action -create

© Copyright IBM Corp. 2005, 2010 5

options
IMPORTANT: On UNIX operating systems, always encapsulate string
values associated with all tags in double quotation marks (“”). You must
also use a backslash (‘\’) character to escape the following characters if
they appear in the string values:
'!’, '\’, '”’, '’’

This will prevent some command-line shells from interpreting specific
characters within these values. For example: gsk8capicmd –keydb –create
–db “/tmp/key.kdb” –pw “j\!jj”. When prompted by gsk8capicmd for a
value (for example, a password) do not quote the string and add the
escape characters, as the shell is no longer influencing this input.

-db <filename>
Fully qualified path name of a key database. A good example of a
key database file name might be /home/<user_name>/keydb.db.

-pw <passwd>
The password for the key database identified by the –db tag. If you
want to create a keystore without a password simply leave the -pw
tag out of the command.

-type <cms | kdb | pkcs12 | p12>
The type of the key database to be created. This tool only supports
the creation of a CMS or PKCS12 format key database. If this tag is
omitted then the tool creates a CMS key database by default. The
value 'kdb' can be used as a synonym for 'cms' and 'p12' for
'pkcs12'.

A CMS key database consists of three files:
v	 The first file is the certificate key database itself. By convention,

the name of this file should include the .kdb extension (for
example, key.kdb). This extension is not required, but it is a
good idea as it makes it easy to identify the file as a key
database.

v	 The second file created is used to store certificate requests
associated with the key database. This file is created with the
same name as given to the key database, but with a .rdb
extension.

v	 The third file is used to hold the certificate revocation list used
by the key database. This file has become obsolete and is no
longer used. This file is created with the same name as the key
database, but with a .crl extension.

A PKCS12 keystore is a single file, which by convention is created
with the .p12 extension.

-expire <days>
(Deprecated). The number of days before the password for the key
database is to expire. If this tag is not used then the key database
password will never expire. If specified, the duration must be from
1 to 7300 days (20 years).

-stash	 Stash the password for the key database after creation. A stash file
is used as an automatic way of providing a password. When
accessing a key database, the system will first check for the
existence of a stash file. If one exists, the contents of the file will be
decrypted and used as input for the password. When the -stash

6

http:home/<user_name>/keydb.db

tag is specified during the create action, the password is stashed
into a file named as follows: <key_database_name>.sth.

-strong
Check that the password entered satisfies the following minimum

requirements for password strength:

v The minimum password length is 14 characters.

v	 A password must have at least one lower case character, one

uppercase character, and one digit or special character (for
example, *$#% etc.). A space is classified as a special character.

v	 Each character must not occur more than three times in a
password.

v	 No more than two consecutive characters of the password can be
identical.

v	 All characters are in the standard ASCII printable character set
within the range from 0x20 to 0x7E inclusive.

-empty | -populate
The –empty option has no action and is deprecated. A keystore is
empty when created.

The keystore can optionally be populated with a number of
predefined trusted certificate authority (CA) certificates. To load
the default CA certificates the –populate option must be given.

The CA certificates loaded should be reviewed by inspecting the
output of the list certificates command. Any or all of these CA
certificates can be removed from the key database. If you want to
remove any of the certificates, use the delete certificate command
in this manual.

-f	 The gsk8capicmd utility will not normally let you overwrite an
existing database. Use this option to force the removal of an
existing keystore before creating a new one of the same name.

Delete a key database (-delete)
The delete key database command simply deletes the identified key database. To
identify the key database, simply specify the correct file name of the key database.
The request database (.rdb) and certificate revocation list (.crl) files are removed
automatically during the process. If a stash file was created, it is not removed.

If a password was provided for this command, it is used to ensure that the user is
actually allowed to delete the key database. If the password is not correct, the key
database is not deleted.

The syntax for deleting a key database with GSKCapiCmd is as follows:
gsk8capicmd -keydb -delete -db <name> [-pw <passwd>]

where:

object -keydb

action -delete

options

IMPORTANT: On UNIX operating systems, always encapsulate string

Chapter 2. Key database commands 7

values associated with all tags in double quotation marks (“”). You must
also use a backslash (‘\’) character to escape the following characters if
they appear in the string values:
'!’, '\’, '”’, '’’

This will prevent some command-line shells from interpreting specific
characters within these values. For example: gsk8capicmd –keydb –create
–db “/tmp/key.kdb” –pw “j\!jj”. When prompted by gsk8capicmd for a
value (for example, a password) do not quote the string and add the
escape characters, as the shell is no longer influencing this input.

-db <filename>
The fully qualified path name of a key database.

-pw <passwd>
The password for the key database that has been identified by the
–db tag. The –pw tag is required if the key database was created
with a password. It is an additional check to ensure that the user
deleting the key database is authorized to do so. If the key
database does not have a password, the –pw tag is not required.

If a password is provided and it does not match the password for
the identified key database, the key database is not deleted.

Change the password of an existing key database (-changepw)
The change password command allows the user to change the password
associated with the specified key database. When changing the password for a key
database, all key records containing encrypted private key information have the
private key data re-encrypted. The new password is used as input to create the
encryption key that will be used during the encryption process.

The syntax for changing the password of an existing key database with
GSKCapiCmd is as follows:
gsk8capicmd -keydb -changepw {-db <name>|-crypto <module_name> -tokenlabel
<token_label>} [-type <cms|kdb|pkcs12|p12>] [-pw <passwd>] -new_pw
<new_passwd> [-expire <days>] [-stash] [-strong]

where:

object -keydb

action -changepw

options
IMPORTANT: On UNIX operating systems, always encapsulate string
values associated with all tags in double quotation marks (“”). You must
also use a backslash (‘\’) character to escape the following characters if
they appear in the string values:
'!’, '\’, '”’, '’’

This will prevent some command-line shells from interpreting specific
characters within these values. For example: gsk8capicmd –keydb –create
–db “/tmp/key.kdb” –pw “j\!jj”. When prompted by gsk8capicmd for a
value (for example, a password) do not quote the string and add the
escape characters, as the shell is no longer influencing this input.

-db <filename>
The fully qualified path name of a key database.

8

-type <cms | kdb | pkcs12 | p12>
The keystore type. If not specified, the program uses the file
extension of the database path name to determine the keystore
type.

-crypto <module_name>
Indicates a PKCS11 cryptographic device operation, where
<module_name> is the path to the module to manage the crypto
device.

-tokenlabel <token_label>
The PKCS11 cryptographic device token label.

-pw <passwd>
The password for the key database identified by the –db tag.

-new_pw <new_passwd>
The new password for the key database.

-expire <days>
(Deprecated.) The number of days before the new password is to
expire. If this tag is not specified the key databases password never
expires. If specified the duration must be within the range of 1 to
7300 days (20 years).

-stash	 Stash the password for the key database. When –stash is specified,
the new password is stashed in a file with the following file name:
<key_database_name>.sth.

-strong
Check that the password entered satisfies the following minimum

requirements for password strength:

v The minimum password length is 14 characters.

v	 A password must have at least one lower case character, one

uppercase character, and one digit or special character (for
example, *$#% etc.). A space is classified as a special character.

v	 Each character must not occur more than three times in a
password.

v	 No more than two consecutive characters of the password can be
identical.

v	 All characters are in the standard ASCII printable character set
within the range from 0x20 to 0x7E inclusive.

Stash the password of an existing key database (-stashpw)
The stash password command takes an existing key databases password and
stashes it to a specified file. Stashing the password for a key database allows the
password to be recovered from the file when automatic login is required. The
output of the command is a single file with the following name:
<key_database_name>.sth.

The syntax for stashing the password of an existing key database with
GSKCapiCmd is as follows:
gsk8capicmd -keydb -stashpw -db <name> [-pw <passwd>]

where:

object -keydb

Chapter 2. Key database commands 9

action -stashpw

options
IMPORTANT: On UNIX operating systems, always encapsulate string
values associated with all tags in double quotation marks (“”). You must
also use a backslash (‘\’) character to escape the following characters if
they appear in the string values:
'!’, '\’, '”’, '’’

This will prevent some command-line shells from interpreting specific
characters within these values. For example: gsk8capicmd –keydb –create
–db “/tmp/key.kdb” –pw “j\!jj”. When prompted by gsk8capicmd for a
value (for example, a password) do not quote the string and add the
escape characters, as the shell is no longer influencing this input.

-db <filename>
The fully qualified path name of a key database.

-pw <passwd>
The password for the key database identified by the –db tag.

List the supported key databases (-list)
The list supported key databases command performs one of the following
functions depending on the options that you specify:
v Lists all of the key database types that the GSKCapiCmd supports. For example,

CMS and PKCS11.
v Lists the token labels associated with a specified PKCS11 cryptographic driver.
v Verifies that a specified keystore is in a usable format.

The syntax for listing the key databases supported by GSKCapiCmd is as follows:
gsk8capicmd -keydb –list [-crypto <driver_name> | -db <name>]

where:

object -keydb

action -list

options

-crypto <driver_name>
Lists the token labels for the named PKCS11 cryptographic device.

-db <name>
Keystore name for format validation. The program checks that the
named keystore is usable.

Convert a key database (-convert)
The convert key database command converts an old version CMS key database to
the new version of CMS key database. The latest version of CMS is more secure
because it uses more secure algorithms to protect the contents of the key databases
during creation.

This command requires that you assign a name to the new key database that is
different to the existing old key database. That is, the name cannot be the same as
the existing one. This requirement is to ensure that the old key database is not
destroyed until the user destroys it. Once all testing of the new version key

10

database has been completed, the user can remove the old key database and
rename the new key database to the old key databases name (if required).

The syntax for converting a key database to the latest CMS version by
GSKCapiCmd is as follows:
gsk8capicmd -keydb –convert –db <name> [-pw <passwd>] [{-type|-old_format}
<cms|kdb|pkcs12|p12>] [{–new_db|-target} <name>][-new_pw <passwd>]
[-new_format <cms|kdb|pkcs12|p12>] [-preserve|-populate] [-expire <days>]
[-strong] [-stash]

where:

object -keydb

action -convert

options
IMPORTANT: On UNIX operating systems, always encapsulate string
values associated with all tags in double quotation marks (“”). You must
also use a backslash (‘\’) character to escape the following characters if
they appear in the string values:
'!’, '\’, '”’, '’’

This will prevent some command-line shells from interpreting specific
characters within these values. For example: gsk8capicmd –keydb –create
–db “/tmp/key.kdb” –pw “j\!jj”. When prompted by gsk8capicmd for a
value (for example, a password) do not quote the string and add the
escape characters, as the shell is no longer influencing this input.

-db <filename>
The fully qualified path name of a key database.

-type | -old_format <cms | kdb | pkcs12 | p12>
The keystore type. If this option is not specified, the program uses
the file extension of the database path name to determine the
keystore type.

-pw <passwd>
The password for the key database identified by the –db tag.

-new_db | -target <filename>
Fully qualified path name of a new key database to be created
during the conversion.

-new_pw <passwd>
The password for the key database identified by the –new_db tag.

-new_format <cms | kdb | pkcs12 | p12>
The type of the new keystore. If this option is not specified, the
program uses the file name suffix of the new database path name
to determine the keystore type.

-preserve | -populate
The preserve option has no action and is deprecated. The newly
created key database will include the same certificates as the old
key database, unless the populate option is selected.

The populate option adds a number of predefined trusted
certificate authority (CA) certificates to the newly created key
database. The CA certificates loaded should be reviewed by
inspecting the output of the list certificates command. Any or all of

Chapter 2. Key database commands 11

the added CA certificates can be removed from the key database. If
you want to remove any of the certificates, use the delete certificate
command in this manual.

-expire <days>
(Deprecated.) The number of days before the password is to
expire. If this tag is not specified the key databases password never
expires. If specified the duration must be within the range of 1 to
7300 days (20 years).

-strong
Check that the password entered satisfies the following minimum

requirements for the password strength:

v The minimum password length is 14 characters.

v	 A password must have at least one lower case character, one

uppercase character, and one digit or special character (for
example, *$#% etc.). A space is classified as a special character.

v	 Each character must not occur more than three times in a
password.

v	 No more than two consecutive characters of the password can be
identical.

v	 All characters are in the standard ASCII printable character set
within the range from 0x20 to 0x7E inclusive.

-stash	 Stash the password for the new key database. When specified, the
new password will be stashed in a file with the following file
name: <key_database_path>.sth.

Display the expiry date associated with a key database (-expiry)
[deprecated]

This command is deprecated. The expiry key database command simply displays
the date that the password associated with the identified key database will expire.
When identifying the key database you need to specify the file name of the key
database.

The syntax for displaying the expiry of the password associated with a key
database with GSKCapiCmd is as follows:
gsk8capicmd -keydb -expiry -db <name> -type <cms | kdb| pkcs12 | p12>
[-pw <passwd>]

where:

object	 -keydb

action	 -expiry (Deprecated.)

options
IMPORTANT: On UNIX operating systems, always encapsulate string
values associated with all tags in double quotation marks (“”). You must
also use a backslash (‘\’) character to escape the following characters if
they appear in the string values:
'!’, '\’, '”’, '’’

This will prevent some command-line shells from interpreting specific
characters within these values. For example: gsk8capicmd –keydb –create
–db “/tmp/key.kdb” –pw “j\!jj”. When prompted by gsk8capicmd for a

12

value (for example, a password) do not quote the string and add the
escape characters, as the shell is no longer influencing this input.

-db <filename>
The fully qualified path name of a key database.

-pw <passwd>
The password for the key database identified by the –db tag. The
–pw tag is required if the key database was created with a
password. If the key database does not have a password the –pw
tag is not required.

-type <cms | kdb| pkcs12 | p12>
The keystore type. If this option is not specified, the program uses
the file name suffix of the database path name to determine the
keystore type.

IMPORTANT: An expiry of 0 means that the password associated with the key
database does not expire.

Chapter 2. Key database commands 13

14

Chapter 3. Certificate commands

The certificate commands are associated with the -cert object. This object supports

the following actions:

v “Create a self-signed certificate in a keystore (-create)” on page 18

v “Add a certificate to a keystore (-add)” on page 20

v “Delete a certificate from a keystore (-delete)” on page 22

v “Display details of a certificate (-details)” on page 23

v “Export a certificate (-export)” on page 25

v “Receive a certificate into a keystore (-receive)” on page 26

v “Import a certificate (-import)” on page 27

v “Extract a certificate from a keystore (-extract)” on page 29

v “List details of the default certificate (-getdefault) [deprecated]” on page 31

v “Set default certificate in a keystore (-setdefault) [deprecated]” on page 32

v “Rename a certificate in a keystore (-rename)” on page 33

v “List the certificates stored in a keystore (-list)” on page 34

v “Modify a certificate in a keystore (-modify)” on page 36

v “Sign a certificate (-sign)” on page 37

v “Validate a certificate (-validate)” on page 39

The following sections describe how to use each of the identified certificate actions
and what options are available. Supporting information to assist with generating
and manipulating certificates is also included:
v Signature algorithms

v Certificate scripting language

Signature algorithms
The following signature algorithms are supported for use with commands that
accept the -sigalg parameter:
md5 | MD5_WITH_RSA | MD5WithRSA | sha1 | SHA_WITH_RSA | SHAWithRSA | SHA1WithRSA |
sha224 | SHA224_WITH_RSA | SHA224WithRSA | sha256 | SHA256_WITH_RSA |
SHA256WithRSA | SHA2WithRSA | sha384 | SHA384_WITH_RSA | SHA384WithRSA |
SHA3WithRSA | sha512 | SHA512_WITH_RSA | SHA512WithRSA | SHA5WithRSA |
SHA_WITH_DSA | SHA1WithDSA | SHAWithDSA | SHA224WithDSA | SHA256WithDSA |
SHA1WithECDSA | EC_ecdsa_with_SHA1 | SHA224WithECDSA | EC_ecdsa_with_SHA224 |
SHA256WithECDSA | EC_ecdsa_with_SHA256 | SHA384WithECDSA | EC_ecdsa_with_SHA384 |
SHA512WithECDSA | EC_ecdsa_with_SHA512

Certificate scripting language
A scripting language has been provided to generate certificates so that it is easier
to manage the creation of complex certificates.

A certificate is specified with the following syntax:
Certificate=

{

<certificate item definitions>

}

© Copyright IBM Corp. 2005, 2010 15

Note: See rfc 3280 for complete details on all of the available certificate fields.

You can create the certificate using multiple certificate item definitions from the
following list:

Table 2. Certificate item definitions

Item Name Description

Label Id Used as the keystore label. This ID can be
used to reference this certificate from other
certificate definitions in the same file.

IssuerID ID of another certificate in this script.

SubjectName Subject name

Issuer Issuer name

KeySize Key size

KeyPairAlgID Object Identifier (OID)

OuterSigAlgID, InnerSigAlgID OID

SerialNumber Serial number

Version Certificate version

Validity NotBefore NotAfter

IssuerUniqueID Issuer unique ID

SubjectUniqueID Subject unique ID

SubjectKeyID Subject key ID

OCSPNoCheck OCSP no revocation check

SubjectAltName Subject alternative name

KeyUsage Value: USAGE_none
USAGE_digitalSignature
USAGE_nonRepudiation
USAGE_keyEncipherment
USAGE_dataEncipherment
USAGE_keyAgreement
USAGE_keyCertSign
USAGE_cRLSign
USAGE_encipherOnly
USAGE_decipherOnly

ExtKeyUsage Value: USAGE_OCSPSigning
USAGE_ANY
USAGE_serverAuth
USAGE_clientAuth

BasicConstraints IsCA PathLen

PrivateKeyUsagePeriod NotBefore NotAfter

CRLDistributionPoints DistributionPoint: DistributionPointName:
Reasons CRLIssuer

AuthorityInfoAcccess AccessDescription: accessLocation
accessMethod

NameConstraints PermittedSubtrees ExcludedSubtrees

CertificatePolicies PolicyInformation: PolicyIdentifier
PolicyQualifiers

PolicyMappings PolicyMapping: IssuerDomainPolicy
SubjectDomainPolicy

16

Table 2. Certificate item definitions (continued)

Item Name Description

PolicyConstraints RequireExplicitPolicy InhibitPolicyMapping

For example, the following certificate definition uses the available scripting
language (as detailed in rfc 3280):
Certificate=
{

ID= 1000
OuterSigAlgID= SHA1WithRSASignature
SerialNumber= 1001
Validity=
{

NotBefore= 1999 1 1 0 0 0
NotAfter= 2030 1 1 0 0 0

}
SubjectName=
{

Type= C
Value= CN=End Entity, O=GSKit, OU=GSKitTest

}
SubjectAltName=
{

GeneralName=
{

Choice= DNSName
Type= C
Value= end.entity.com

}
Critical= n

}
BasicConstraints=
{

IsCA= n
PathLen= 0
Critical= n

}
CRLDistributionPoints=
{

DistributionPoint=
{

DistributionPointName=
{

FullName=
{

GeneralName=
{

Choice= UniformResID
Type= IA5
Value= file://../data/uricdptest.crl

}
GeneralName=
{

Choice= UniformResID
Type= IA5
Value= ftp://../data/uricdptest.crl

}
}

}
}
Critical= n

}
NameConstraints=
{

Chapter 3. Certificate commands 17

file://../data/uricdptest
http:end.entity.com

PermittedSubtrees=
{

GeneralSubtree=
{

GeneralName=
{

Choice= RFC822Name
Type= C
Value= ibm.GSKitTest.com

}
}

}
}

}

Create a self-signed certificate in a keystore (-create)
A self-signed certificate provides a certificate that can be used for testing while
waiting for the officially signed certificate to be returned from the CA. Both a
private and public key are created during this process.

The create self-signed certificate command creates a self-signed X509 certificate in
the identified key database. A self-signed certificate has the same issuer name as its
subject name.

The syntax for creating a certificate in an existing key database with GSKCapiCmd
is as follows:
gsk8capicmd -cert -create {-db <name> [-type <cms | kdb| pkcs12 | p12>] |
-crypto <module_name> -tokenlabel <token_label> [-secondarydb <name>]
[-secondarydbpw <passwd>] [-secondarydbtype <cms | kdb| pkcs12 | p12>]}
[-pw <passwd> | -stashed] -label <label> -dn <dist_name> [-size <key_size>]
[-x509version <1 | 2 | 3>] [-default_cert <yes | no>] [-expire <days>]
[-ca <true | false>] [{-sigalg | -sig_alg} <algorithm_name>] [-ca_label
<label>] [-san_dns_name <name>] [-san_emailaddr <address>] [-san_ipaddr
<address>] [-certpolicy <policy>] [-eku <name>]

where:

object -cert

action -create

options
IMPORTANT: On UNIX operating systems, always encapsulate string
values associated with all tags in double quotation marks (“”). You must
also use a backslash (‘\’) character to escape the following characters if
they appear in the string values:
'!’, '\’, '”’, '’’

This will prevent some command-line shells from interpreting specific
characters within these values. For example: gsk8capicmd –keydb –create
–db “/tmp/key.kdb” –pw “j\!jj”. When prompted by gsk8capicmd for a
value (for example, a password) do not quote the string and add the
escape characters, as the shell is no longer influencing this input.

-db <filename>
Fully qualified path name of a key database to store the self-signed
certificate.

-type <cms | kdb| pkcs12 | p12>
Type of the keystore.

18

-crypto <module_name>
Indicates a PKCS11 cryptographic device operation, where
<module_name> is the path to the module to manage the crypto
device.

-tokenlabel <token_label>
The PKCS11 cryptographic device token label.

-pw <passwd>
The password for the key database identified by the –db or
–tokenlabel tags. Specify a hyphen (-) as the password to cause the
program to read the password from stdin. This allows you to pipe
in the password.

-stashed
The password for the key database will be recovered from the
stash file.

-label <label>
Label attached to the certificate. The label is used to uniquely
identify the certificate by a human user.

-dn <dist_name>
The X.500 distinguished name that uniquely identifies the
certificate. The input must be a quoted string of the following
format (only CN is required):
CN=common name

O=organization

OU=organization unit

L=location

ST=state, province

C=country

DC=domain component

EMAIL=email address

For Example: “CN=weblinux.Raleigh.ibm.com,O=ibm,OU=IBM HTTP
Server,L=RTP,ST=NC,C=US”

Multiple OU values are now supported. Simply add additional OU
key\value pairs to the specified distinguished name. If the OU
value requires a comma (‘,’) then you must escape it with ‘\\’

For Example: “CN=weblinux.Raleigh.ibm.com,O=ibm,OU=IBM HTTP
Server,OU=GSKit\\, Gold Coast,L=RTP,ST=NC,C=US”

-size <key_size>
The size of the new key pair to be created. Key size from 512 to
4096. The default is 1024.

-x509version <1 | 2 | 3>
The version of X.509 certificate to create, default is 3.

-default_cert <yes | no>
(Deprecated.). Sets the newly created certificate as the default
certificate for the key database. By default the newly created
self-signed certificate is not set as the default (no). A default
certificate in the key database is used when a specific certificate is
not specified for an operation.

-expire <days>
Expiration time of the certificate in days, default 365 days. The
duration is 1 to 7300 days (20 years).

Chapter 3. Certificate commands 19

Note:	 To avoid possible timezone issues, the actual valid-from
time for the certificate will be set one day in the past.

-secondaryDB <filename>
A CMS key database used to support the PKCS11 device. A
PKCS11 device does not normally have a large amount of space
available to store a lot of signer certificates. The signer certificates
are used for the validation of certificates when they are added to
the PCKS11 device.

-secondaryDBpw <password>
Password for the secondary CMS key database supporting the
PKCS11 device.

-secondaryDBtype <cms | kdb| pkcs12 | p12>
The type of the secondary key database.

-ca <true | false>
This tag adds the Basic Constraint extension to the self-signed
certificate. The Basic Constraint extension value is set to true or
false depending on what value is associated with the tag.

-san_dns_name <name>
The SAN DNS name(s) for the entry being created.

-san_emailaddr <address>
The SAN email address(es) for the entry being created.

-san_ipaddr <address>
The SAN IP address(es) for the entry being created.

-certpolicy <policy>
The certificate policy. A named set of rules limiting the
applicability of the certificate.

-eku <list>
Extended key usage property list. Specifies the valid uses for the
certificate.

-sigalg | -sig_alg <signature_algorithm>
The signing algorithm to be used during the creation of the
self-signed certificate. This algorithm is used to create the signature
associated with the new self-signed certificate. The generated key
type is chosen to match this signing algorithm.

-ca_label <label>
The label of the CA key to use to sign the certificate.

Add a certificate to a keystore (-add)
The add certificate command stores a CA certificate in the identified key database.
The CA certificate is received as a file with the data encoded as either Base64
(ascii) or binary. It is important to identify the correct format of the file otherwise
the operation will fail.

The syntax for adding a certificate in an existing key database with GSKCapiCmd
is as follows:
gsk8capicmd -cert -add {-db <name> -type <cms | kdb| pkcs12 | p12> |
-crypto <module_name> -tokenlabel <token_label>} [-pw <passwd> |
-stashed] -label <label> -file <name> [-format <ascii | binary>]
[-trust <enable | disable>] [-secondaryDB <filename> -secondaryDBpw
<password> -secondaryDBtype <cms | kdb| pkcs12 | p12>]

20

where:

object -cert

action -add

options
IMPORTANT: On UNIX operating systems, always encapsulate string
values associated with all tags in double quotation marks (“”). You must
also use a backslash (‘\’) character to escape the following characters if
they appear in the string values:
'!’, '\’, '”’, '’’

This will prevent some command-line shells from interpreting specific
characters within these values. For example: gsk8capicmd –keydb –create
–db “/tmp/key.kdb” –pw “j\!jj”. When prompted by gsk8capicmd for a
value (for example, a password) do not quote the string and add the
escape characters, as the shell is no longer influencing this input.

-db <filename>
The fully qualified path name of a key database.

-type <cms | kdb | pkcs12 | p12 | pkcs7>
Type of the key database. If this option is not present, the type is
implied by the file extension of database path name.

-crypto <module_name>
Indicates a PKCS11 cryptographic device operation, where
<module_name> is the path to the module to manage the crypto
device.

-tokenlabel <token_label>
The PKCS11 cryptographic device token label.

-pw <passwd>
The password for the key database identified by the –db or
–tokenlabel tags. Specify a hyphen (-) as the password to cause the
program to read the password from stdin. This allows you to pipe
in the password.

-stashed
The password for the key database will be recovered from the
stash file.

-label <label>
Label attached to the certificate.

-file <name>
File name of the certificate to add. If the extension is “.p7”,
“.smime” or “.eml” then it is assumed to be a pkcs7 encoding. The
first certificate will take the ‘label’ given and all other certificates
that are present, will be labeled with their subject name.

-format <ascii | binary>
Format of a certificate The default is Base64 encoded ascii.
Additional information about base64 encoding can be found in
rfc2045 and rfc3548. The binary format is a binary dump of the
DER encoded certificate structure. For additional information, see
ITU-T Rec. X.690 (2002) | ISO/IEC 8825-1:2002.

-trust <enable | disable>
(Deprecated). Trust status of a CA certificate, where the default is

Chapter 3. Certificate commands 21

‘enable’. When a CA’s certificate trust status is enabled then that
CA certificate is permitted to be involved in a certificate chain
validation. If the CA’s certificate trust status is disabled then it
cannot be used to validate any certificates. For example if
certificate “ABC” is signed by the CA certificate “VeriSign CA” and
“VeriSign CA” is not marked as trusted then the validation of
“ABC” will fail.

-secondaryDB <filename>
A CMS key database used to support the PKCS11 device. A
PKCS11 device does not normally have a large amount of space
available to store a lot of signer certificates. The signer certificates
are used for the validation of certificates when they are added to
the PCKS11 device.

-secondaryDBpw <password>
Password for the secondary CMS key database supporting the
PKCS11 device.

-secondaryDBtype <cms | kdb| pkcs12 | p12>
Keystore type of the secondary key database.

Delete a certificate from a keystore (-delete)
The delete certificate command removes the certificate with the identified label.
Once the delete operation is complete, there is no way of recovering the certificate
unless you add the certificate back into the key database.

The syntax for deleting a certificate in an existing key database with GSKCapiCmd
is as follows:
gsk8capicmd -cert -delete {-db <name> -type <cms | kdb| pkcs12 | p12> |
-crypto <module_name> -tokenlabel <token_label>} [-pw <passwd> | -stashed]
-label <label> [-secondaryDB <filename> -secondaryDBpw <password>
-secondaryDBtype <cms | kdb| pkcs12 | p12>]

where:

object -cert

action -delete

options
IMPORTANT: On UNIX operating systems, always encapsulate string
values associated with all tags in double quotation marks (“”). You must
also use a backslash (‘\’) character to escape the following characters if
they appear in the string values:
'!’, '\’, '”’, '’’

This will prevent some command-line shells from interpreting specific
characters within these values. For example: gsk8capicmd –keydb –create
–db “/tmp/key.kdb” –pw “j\!jj”. When prompted by gsk8capicmd for a
value (for example, a password) do not quote the string and add the
escape characters, as the shell is no longer influencing this input.

-db <filename>
The fully qualified path name of a key database.

-type <cms | kdb | p12 | pkcs12>
Type of the key database. If this option is not present, the type is
implied by the database file extension.

22

-crypto <module_name>
Indicates a PKCS11 cryptographic device operation, where
<module_name> is the path to the module to manage the crypto
device.

-tokenlabel <token_label>
The PKCS11 cryptographic device token label.

-pw <passwd>
The password for the key database identified by the –db or
–tokenlabel tags. Specify a hyphen (-) as the password to cause the
program to read the password from stdin. This allows you to pipe
in the password.

-stashed
The password for the key database will be recovered from the
stash file.

-label <label>
Label attached to the certificate that is to be deleted.

-secondaryDB <filename>
A CMS key database used to support the PKCS11 device. A
PKCS11 device does not normally have a large amount of space
available to store a lot of signer certificates. The signer certificates
are used for the validation of certificates when they are added to
the PCKS11 device.

-secondaryDBpw <password>
Password for the secondary CMS key database supporting the
PKCS11 device.

-secondaryDBtype <cms | kdb| pkcs12 | p12>
Keystore type of the secondary key database.

Display details of a certificate (-details)
The display certificate details command displays the different details associated

with the identified certificate. The details displayed include:

v The label of the certificate.

v The size of the key associated with the certificate.

v The X509 version that the certificate was created.

v The serial number for the certificate.

v The issuer and subject distinguished names.

v The certificate’s validity period.

v The fingerprint of the certificate.

v The signature of the algorithm used during creation of the certificate.

v An indication of the certificates trust status.

If more details for the certificate are required, use the –showOID option. This

option displays a more detailed listing of the certificate details.

The syntax for displaying the details for a certificate in an existing key database

with GSKCapiCmd is as follows:

Chapter 3. Certificate commands 23

gsk8capicmd -cert -details [-showOID] {-db <name> -type
<cms | kdb| pkcs12 | p12> | -crypto <module_name> -tokenlabel
<token_label>} [-pw <passwd> | -stashed] -label <label>
[-secondaryDB <filename> -secondaryDBpw <password>
-secondaryDBtype <cms | kdb| pkcs12 | p12>]

where:

object -cert

action -details

options
IMPORTANT: On UNIX operating systems, always encapsulate string
values associated with all tags in double quotation marks (“”). You must
also use a backslash (‘\’) character to escape the following characters if
they appear in the string values:
'!’, '\’, '”’, '’’

This will prevent some command-line shells from interpreting specific
characters within these values. For example: gsk8capicmd –keydb –create
–db “/tmp/key.kdb” –pw “j\!jj”. When prompted by gsk8capicmd for a
value (for example, a password) do not quote the string and add the
escape characters, as the shell is no longer influencing this input.

-showOID
Display a more in-depth listing of the certificate.

-db <filename>
The fully qualified path name of a key database.

-type <cms | kdb | pkcs12 | p12 | pkcs7>
Type of the key database. If this option is not present, the type is
implied by the file extension of the database path name.

-crypto <module_name>
Indicates a PKCS11 cryptographic device operation, where
<module_name> is the path to the module to manage the crypto
device.

-tokenlabel <token_label>
The PKCS11 cryptographic device token label.

-pw <passwd>
The password for the key database identified by the –db or
–tokenlabel tags. Specify a hyphen (-) as the password to cause the
program to read the password from stdin. This allows you to pipe
in the password.

-stashed
The password for the key database will be recovered from the
stash file.

-label <label>
Label attached to the certificate that is to be displayed.

-secondaryDB <filename>
A CMS key database used to support the PKCS11 device. A
PKCS11 device does not normally have a large amount of space
available to store a lot of signer certificates. The signer certificates
are used for the validation of certificates when they are added to
the PCKS11 device.

24

-secondaryDBpw <password>
Password for the secondary CMS key database supporting the
PKCS11 device.

-secondaryDBtype <cms | kdb| pkcs12 | p12>
Keystore type of the secondary key database.

Export a certificate (-export)
The export certificate command exports a single certificate and its private key (if
one exists) from one key database to another key database. Use the label to
identify the certificate that you want to export.

During this process no key generation occurs. On successful completion, the
identified certificate will be in both the source and destination key databases.

The syntax to export a certificate from an existing key database to another key
database with GSKCapiCmd is as follows:
gsk8capicmd -cert -export -db <name> [-pw <passwd> | -stashed] -label <label>
[-type <cms | kdb| pkcs12 | p12>] -target <name> [-target_pw <passwd>]
[-target_type <cms | kdb| pkcs12 | p12>] [-encryption <strong | weak>]

where:

object -cert

action -export

options
IMPORTANT: On UNIX operating systems, always encapsulate string
values associated with all tags in double quotation marks (“”). You must
also use a backslash (‘\’) character to escape the following characters if
they appear in the string values:
'!’, '\’, '”’, '’’

This will prevent some command-line shells from interpreting specific
characters within these values. For example: gsk8capicmd –keydb –create
–db “/tmp/key.kdb” –pw “j\!jj”. When prompted by gsk8capicmd for a
value (for example, a password) do not quote the string and add the
escape characters, as the shell is no longer influencing this input.

-db <filename>
The fully qualified file name of the key database that contains the
certificate to export. If the supplied file name has an extension of
either ".p12"or ".pfx"then it is assumed that it is in PKCS12 format.
If it is “.p7”, “.smime” or “.eml” then it is assumed to be a pkcs7
encoding.

-pw <passwd>
The password for the key database identified by the –db or
–tokenlabel tags. Specify a hyphen (-) as the password to cause the
program to read the password from stdin. This allows you to pipe
in the password.

-stashed
The password for the key database will be recovered from the
stash file.

-label <label>
Label attached to the certificate that is to be exported.

Chapter 3. Certificate commands 25

-type <cms |kdb | pkcs12 | p12>
The type of the key database that contains the certificate to export.
The default is cms.

-target <name>
Destination key database or file where the certificate is to be
exported. If the supplied file name has an extension of either
“.p12” or .pfx” then it is assumed that it is in PKCS12 format. If
the target keystore does not exist, it will be created.

-target_pw <passwd>
The password of the destination key database or file.

-target_type <cms | kdb| pkcs12 | p12>
The type of the destination key database or file where the
certificate is to be exported. The default is cms.

-encryption <strong | weak>
The strength of encryption used during the export. The default is
strong. This tag is no longer used as the export restrictions in the
USA have eased. This tag is simply added to this command-line
tool for backward compatibility reasons. It has no effect on the
operation. Strong is always used.

Receive a certificate into a keystore (-receive)
The receive certificate command stores a certificate received from a CA that was
requested to sign a certificate request. The certificate being received can be in
either binary or Base64 encoded ascii. Additional information about base64
encoding can be found in rfc2045 and rfc3548. The binary format is a binary dump
of the DER encoded certificate structure. For additional information, see ITU-T Rec.
X.690 (2002) | ISO/IEC 8825-1:2002. During the receive process, the certificate is
matched to its corresponding certificate request. This certificate request is removed
from the key database as it is no longer needed.

If the certificate request is required after receiving the certificate, you will need to
use the recreate certificate request command: “Re-create certificate requests
(-recreate)” on page 48.

The syntax for receiving a certificate to an existing key database with
GSKCapiCmd is as follows:
gsk8capicmd -cert -receive -file <name> [-format <ascii | binary>] { -db <name>
-type <cms | kdb| pkcs12 | p12> | -crypto <module_name> -tokenlabel <token_label>}
[-pw <passwd> | -stashed] [-default_cert <yes | no>] [-t61]

where:

object -cert

action -receive

options
IMPORTANT: On UNIX operating systems, always encapsulate string
values associated with all tags in double quotation marks (“”). You must
also use a backslash (‘\’) character to escape the following characters if
they appear in the string values:
'!’, '\’, '”’, '’’

26

This will prevent some command-line shells from interpreting specific
characters within these values. For example: gsk8capicmd –keydb –create
–db “/tmp/key.kdb” –pw “j\!jj”. When prompted by gsk8capicmd for a
value (for example, a password) do not quote the string and add the
escape characters, as the shell is no longer influencing this input.

-file <name>
The file name of the certificate that is to be received. This file can
be either binary or base64 encoded.

-format <ascii | binary>
Format of a certificate. The default is Base64 encoded ascii.
Additional information about base64 encoding can be found in
rfc2045 and rfc3548. The binary format is a binary dump of the
DER encoded certificate structure. For additional information, see
ITU-T Rec. X.690 (2002) | ISO/IEC 8825-1:2002

-db <filename>
The fully qualified path name of a key database.

-type <cms | kdb | pkcs12 | p12>
The keystore type. If this option is not specified, the program will
use the database path name extension to determine the keystore
type.

-crypto <module_name>
Indicates a PKCS11 cryptographic device operation, where
<module_name> is the path to the module to manage the crypto
device.

-tokenlabel <token_label>
The PKCS11 cryptographic device token label.

-pw <passwd>
The password for the key database identified by the –db or
–tokenlabel tags. Specify a hyphen (-) as the password to cause the
program to read the password from stdin. This allows you to pipe
in the password.

-stashed
The password for the key database will be recovered from the
stash file.

-default_cert <yes|no>
(Deprecated). Sets the newly created certificate as the default
certificate for the key database. By default the newly created
self-signed certificate is not set as the default (no). A default
certificate in a key database is used during operations where a
specific certificate is not specified.

-t61	 Substitute ISO8859-1 character set encodings for malformed
TELETEX strings.

Import a certificate (-import)
The import certificate command imports certificates from either one key database
(CMS or PKCS12) to another key database (CMS, PCKS12 or PCKS11). During this
process no key generation occurs. On successful completion, the identified
certificates will be in both the source and destination key databases.

Chapter 3. Certificate commands 27

The syntax for importing a certificate from an existing key database to another key
database with GSKCapiCmd is as follows:
gsk8capicmd -cert -import { -db <name> | -file <name> } [-pw <passwd> | -stashed]

[-label <label>] [-type <cms | kdb| pkcs7 | pkcs12 | p12>] [-pfx]

{ -target <name> | -crypto <module_name> -tokenlabel <token_label>} [-secondaryDB

<filename> -secondaryDBpw <password> -secondaryDBtype <cms | kdb| pkcs12 | p12>]

[-target_pw <passwd>] [-target_type <cms | kdb| pkcs11 | pkcs12 | p12>]

[-new_label <label>] [-t61]

where:

object -cert

action -import

options
IMPORTANT: On UNIX operating systems, always encapsulate string
values associated with all tags in double quotation marks (“”). You must
also use a backslash (‘\’) character to escape the following characters if
they appear in the string values:
'!’, '\’, '”’, '’’

This will prevent some command-line shells from interpreting specific
characters within these values. For example: gsk8capicmd –keydb –create
–db “/tmp/key.kdb” –pw “j\!jj”. When prompted by gsk8capicmd for a
value (for example, a password) do not quote the string and add the
escape characters, as the shell is no longer influencing this input.

-db <filename>
The fully qualified path name of the source key database that
contains the certificate to be imported. If the supplied file name
has an extension of either “.p12” or .pfx” then it is assumed that it
is in PKCS12 format. If it is “.p7”, “.smime” or “.eml” then it is
assumed to be a pkcs7 encoding.

-file <filename>
The fully qualified path name of a PKCS12, PKCS7 or PFX format
file of:
v The certificate to be imported, or

v An import script (.txt file).

-pw <passwd>
The password for the key database or PKCS11 cryptographic
device identified by either the -db or -crypto tags respectively.
Specify a hyphen (-) as the password to cause the program to read
the password from stdin. This allows you to pipe in the password.

-stashed
The password for the key database will be recovered from the
stash file.

-label <label>
Label attached to the certificate that is to be imported. If the label
tag is missing from the command line then the operation will
transfer all certificates from the source key database to the target
key database. If a certificate in the source key database already
exists in the target key database then that certificate is not
imported.

28

-type <cms | kdb| pkcs12 | p12 | pkcs7>
The type of the source key database. The default is cms.

-pfx	 A switch indicating whether the import file is a .pfx file. Use of
this option is unnecessary if the file extension of the file name is
.pfx.

-target <name>
Destination key database to which the certificate is to be imported.
If the supplied file name has an extension of either “.p12” or .pfx”
then it is assumed that it is in PKCS12 format.

-crypto <module_name>
Indicates a PKCS11 cryptographic device operation, where
<module_name> is the path to the module to manage the crypto
device.

-tokenlabel <token_label>
The PKCS11 cryptographic device token label.

-secondaryDB <filename>
A CMS key database used to support the PKCS11 device. A
PKCS11 device does not normally have a large amount of space
available to store a lot of signer certificates. The signer certificates
are used for the validation of certificates when they are added to
the PCKS11 device.

-secondaryDBpw <password>
Password for the secondary CMS key database supporting the
PKCS11 device.

-secondaryDBtype <cms | kdb| pkcs12 | p12>
Keystore type of the secondary key database.

-target_pw <passwd>
The password of the destination key database.

-target_type <cms | kdb| pkcs11 | pkcs12 | p12>
The type of the destination key database. The default is cms.

-new_label <label>
The label to be used in the destination key database to identify the
imported certificate.

-t61	 Substitute ISO8859-1 character set encodings for malformed
TELETEX strings.

Extract a certificate from a keystore (-extract)
The extract certificate command simply extracts the certificate data from the key
database and places it into the identified file. If the file does not exist then it will
be created. If the file already exists, an error indicating this will be returned. The
data will be saved as either base64 encoding or binary. No private key components
are extracted.

The syntax to extract a certificate from an existing key database with GSKCapiCmd
is as follows:
gsk8capicmd -cert -extract {-db <name> | -crypto <module_name> -tokenlabel
<token_label>} [-pw <passwd> | -stashed] -label <label> -target <name> [-format
<ascii | binary>] [-secondaryDB <filename> -secondaryDBpw <password>
-secondaryDBtype <cms | kdb| pkcs12 | p12>]

Chapter 3. Certificate commands 29

where:

object

action

options

-cert

-extract

IMPORTANT: On UNIX operating systems, always encapsulate string
values associated with all tags in double quotation marks (“”). You must
also use a backslash (‘\’) character to escape the following characters if
they appear in the string values:
'!’, '\’, '”’, '’’

This will prevent some command-line shells from interpreting specific
characters within these values. For example: gsk8capicmd –keydb –create
–db “/tmp/key.kdb” –pw “j\!jj”. When prompted by gsk8capicmd for a
value (for example, a password) do not quote the string and add the
escape characters, as the shell is no longer influencing this input.

-db <filename>
The fully qualified path name of a key database.

-crypto <module_name>
Indicates a PKCS11 cryptographic device operation, where
<module_name> is the path to the module to manage the crypto
device.

tokenlabel <token_label>
The PKCS11 cryptographic device token label.

-pw <passwd>
The password for the key database identified by the –db or
–tokenlabel tags. Specify a hyphen (-) as the password to cause the
program to read the password from stdin. This allows you to pipe
in the password.

-stashed
The password for the key database will be recovered from the
stash file.

-label <label>
Label attached to the certificate that is to be extracted.

-target <name>
Destination file to which the certificate is to be extracted.

-format <ascii | binary>
Format of a certificate. The default is Base64 encoded ascii.
Additional information about base64 encoding can be found in
rfc2045 and rfc3548. The binary format is a binary dump of the
DER encoded certificate structure. For additional information, see
ITU-T Rec. X.690 (2002) | ISO/IEC 8825-1:2002

-secondaryDB <filename>
A CMS key database used to support the PKCS11 device. A
PKCS11 device does not normally have a large amount of space
available to store a lot of signer certificates. The signer certificates
are used for the validation of certificates when they are added to
the PCKS11 device.

30

-secondaryDBpw <password>
Password for the secondary CMS key database supporting the
PKCS11 device.

-secondaryDBtype <cms | kdb| pkcs12 | p12>
Keystore type of the secondary key database.

List details of the default certificate (-getdefault) [deprecated]
This feature is deprecated. Use the explicit label of the desired certificate/key

instead.

The list default certificate details command lists the following details for the

default certificate of the identified key database:

v The label of the default certificate.

v The size of the key associated with the default certificate.

v The X509 version that the default certificate was created.

v The serial number for the default certificate.

v The issuer and subject distinguished names.

v The default certificates validity period.

v The fingerprint of the default certificate.

v The signature of the algorithm used during creation of the default certificate.

v An indication of the default certificate’s trust status.

The syntax for listing the details for the default certificate in an existing key

database with GSKCapiCmd is as follows:

gsk8capicmd -cert -getdefault -db <name> [-type <cms | kdb| pkcs12 | p12>]
[-pw <passwd> | -stashed]

where:

object -cert

action -getdefault (deprecated)

options
IMPORTANT: On UNIX operating systems, always encapsulate string
values associated with all tags in double quotation marks (“”). You must
also use a backslash (‘\’) character to escape the following characters if
they appear in the string values:
'!’, '\’, '”’, '’’

This will prevent some command-line shells from interpreting specific
characters within these values. For example: gsk8capicmd –keydb –create
–db “/tmp/key.kdb” –pw “j\!jj”. When prompted by gsk8capicmd for a
value (for example, a password) do not quote the string and add the
escape characters, as the shell is no longer influencing this input.

-db <filename>
The fully qualified path name of a key database.

-pw <passwd>
The password for the key database identified by the –db tag.
Specify a hyphen (-) as the password to cause the program to read
the password from stdin. This allows you to pipe in the password.

Chapter 3. Certificate commands 31

-stashed
The password for the key database will be recovered from the
stash file.

-type <cms | kdb | pkcs12 | p12>
The keystore type. If this option is not specified, the program uses
the file extension of the database file name to determine the
keystore type.

Set default certificate in a keystore (-setdefault) [deprecated]
This feature is deprecated. Use the explicit label of the desired certificate/key
instead.

The set default certificate command sets a certificate to be used as the default
certificate for the identified key database. During this command the current default
certificate, if there is one, has its default setting removed. The new certificate is
then set as the default certificate. There can only ever be one default certificate in a
key database.

The syntax for setting the default certificate in an existing key database with
GSKCapiCmd is as follows:
gsk8capicmd -cert -setdefault -db <name> [-pw <passwd> | -stashed] -label
<label> [-type <cms | kdb| pkcs12 | p12>]

where:

object -cert

action -setdefault (deprecated)

options
IMPORTANT: On UNIX operating systems, always encapsulate string
values associated with all tags in double quotation marks (“”). You must
also use a backslash (‘\’) character to escape the following characters if
they appear in the string values:
'!’, '\’, '”’, '’’

This will prevent some command-line shells from interpreting specific
characters within these values. For example: gsk8capicmd –keydb –create
–db “/tmp/key.kdb” –pw “j\!jj”. When prompted by gsk8capicmd for a
value (for example, a password) do not quote the string and add the
escape characters, as the shell is no longer influencing this input.

-db <filename>
The fully qualified path name of a key database.

-pw <passwd>
The password for the key database identified by the –db tag.
Specify a hyphen (-) as the password to cause the program to read
the password from stdin. This allows you to pipe in the password.

-stashed
The password for the key database will be recovered from the
stash file.

-label <label>
Label that uniquely identifies the certificate that is to be set as the
default certificate in the identified key database.

32

-type <cms | kdb | pkcs12 | p12>

The keystore type. If this option is not specified, the program uses

the file extension of the database file name to determine the

keystore type.

Rename a certificate in a keystore (-rename)
The rename certificate command changes the label attached to a certificate
contained in a CMS keystore.

The syntax for changing a certificate label name in an existing key database with
GSKCapiCmd is as follows:
gsk8capicmd -cert -rename {-db <filename> | -crypto <module_name> -tokenlabel
<token_label>} [-pw <passwd> | -stashed] [-type <cms | kdb| pkcs12 | p12>]
-label <label> -new_label <name> [-secondaryDB <filename> -secondaryDBpw
<password> -secondaryDBtype <cms | kdb| pkcs12 | p12>]

where:

object -cert

action -rename

options
IMPORTANT: On UNIX operating systems, always encapsulate string
values associated with all tags in double quotation marks (“”). You must
also use a backslash (‘\’) character to escape the following characters if
they appear in the string values:
'!’, '\’, '”’, '’’

This will prevent some command-line shells from interpreting specific
characters within these values. For example: gsk8capicmd –keydb –create
–db “/tmp/key.kdb” –pw “j\!jj”. When prompted by gsk8capicmd for a
value (for example, a password) do not quote the string and add the
escape characters, as the shell is no longer influencing this input.

-db <filename>
The fully qualified path name of a key database.

-crypto <module_name>
Indicates a PKCS11 cryptographic device operation, where
<module_name> is the path to the module to manage the crypto
device.

-tokenlabel <token_label>
The PKCS11 cryptographic device token label.

-pw <passwd>
The password for the key database identified by the –db tag.
Specify a hyphen (-) as the password to cause the program to read
the password from stdin. This allows you to pipe in the password.

-stashed
The password for the key database will be recovered from the
stash file.

-label <label>
Label attached to the certificate that is to be renamed.

Chapter 3. Certificate commands 33

-new_label <new_name>
A new label name to uniquely identify the certificate in the key
database.

-type <cms | kdb | pkcs12 | p12>
The keystore type. If this option is not specified, the program uses
the file extension of the database file name to determine the
keystore type.

-secondaryDB <filename>
A CMS key database used to support the PKCS11 device. A
PKCS11 device does not normally have a large amount of space
available to store a lot of signer certificates. The signer certificates
are used for the validation of certificates when they are added to
the PCKS11 device.

-secondaryDBpw <password>
Password for the secondary CMS key database supporting the
PKCS11 device.

-secondaryDBtype <cms | kdb| pkcs12 | p12>
Keystore type of the secondary key database.

List the certificates stored in a keystore (-list)
The list certificate command lists all of the certificates stored within the identified
key database.

The syntax to list the certificates in an existing key database is as follows:
gsk8capicmd -cert -list [<all | personal | CA>] [-expiry [<number of days>]
{-db <name> | -crypto <module_name> -tokenlabel <token_label>}[-pw <passwd> |
-stashed] [-type <cms | kdb| pkcs12 | p12>] [-secondaryDB <filename> -secondaryDBpw
<password> secondaryDBtype <cms | kdb| pkcs12 | p12>]

where:

object	 -cert

action	 -list

The list command has optional special tags that can be associated with it.
These tags are used to identify what type of certificates you are requesting
to be displayed. The tags are not required. By default all certificate stored
within the key database will be displayed. The following list describes
these tags:

all	 List the labels of all certificates in the identified key database. This
is the default for the list command.

personal
List all personal certificates in the identified key database.

CA	 List all of the certificate authority (CA) certificates in the identified
key database.

options
IMPORTANT: On UNIX operating systems, always encapsulate string
values associated with all tags in double quotation marks (“”). You must
also use a backslash (‘\’) character to escape the following characters if
they appear in the string values:
'!’, '\’, '”’, '’’

34

This will prevent some command-line shells from interpreting specific
characters within these values. For example: gsk8capicmd –keydb –create
–db “/tmp/key.kdb” –pw “j\!jj”. When prompted by gsk8capicmd for a
value (for example, a password) do not quote the string and add the
escape characters, as the shell is no longer influencing this input.

-expiry <number of days>
The expiry tag identifies the number of days from today that a
certificate remains valid. If the certificate's validity falls within this
time then it is displayed. To list certificates that have already
expired, enter the value 0. If you do not specify this tag it is not
applied during the execution of the command.

-db <filename>
The fully qualified path name of a key database. If the supplied
file name has an extension of either “.p12” or .pfx” then it is
assumed that it is in PKCS12 format. If it is “.p7”, “.smime” or
“.eml” then it is assumed to be a pkcs7 encoding.

-crypto <module_name>
Indicates a PKCS11 cryptographic device operation, where
<module_name> is the path to the module to manage the crypto
device.

-tokenlabel <token_label>
The PKCS11 cryptographic device token label.

-pw <passwd>
The password for the key database identified by the –db or
–tokenlabel tags. Specify a hyphen (-) as the password to cause the
program to read the password from stdin. This allows you to pipe
in the password.

-stashed
The password for the key database will be recovered from the
stash file.

-type <cms | kdb | pkcs12 | p12>
The key database type. The default is cms.

-secondaryDB <filename>
A CMS key database used to support the PKCS11 device. A
PKCS11 device does not normally have a large amount of space
available to store a lot of signer certificates. The signer certificates
are used for the validation of certificates when they are added to
the PCKS11 device.

-secondaryDBpw <password>
Password for the secondary CMS key database supporting the
PKCS11 device.

-secondaryDBtype <cms | kdb| pkcs12 | p12>
Keystore type of the secondary key database.

As an example, the following certificate list is displayed for a new key
database created with the GSKCapiCmd program. The command used to
create this list is as follows:
gsk8capicmd –cert –list –db <database name> [-pw <password>]

Certificates found:
* default, - has private key, ! trusted
Entrust.net Global Secure Server Certification Authority
Entrust.net Global Client Certification Authority

Chapter 3. Certificate commands 35

http:Entrust.net
http:Entrust.net

Entrust.net Client Certification Authority
Entrust.net Certification Authority (2048)
Entrust.net Secure Server Certification Authority
VeriSign Class 3 Public Primary Certification Authority
VeriSign Class 2 Public Primary Certification Authority
VeriSign Class 1 Public Primary Certification Authority
VeriSign Class 4 Public Primary Certification Authority - G2
VeriSign Class 3 Public Primary Certification Authority - G2
VeriSign Class 2 Public Primary Certification Authority - G2
VeriSign Class 1 Public Primary Certification Authority - G2
VeriSign Class 4 Public Primary Certification Authority - G3
VeriSign Class 3 Public Primary Certification Authority - G3
VeriSign Class 2 Public Primary Certification Authority - G3
VeriSign Class 1 Public Primary Certification Authority - G3
Thawte Personal Premium CA
Thawte Personal Freemail CA
Thawte Personal Basic CA
Thawte Premium Server CA
Thawte Server CA
RSA Secure Server Certification Authority

The default key is marked with the ‘*’ symbol (deprecated) and all trusted
self-signed (root) certs are listed with a ‘!’ symbol. (deprecated) The ‘-‘
symbol is used to show where a private key is present.

Modify a certificate in a keystore (-modify)
The modify certificate command allows a CA’s certificate trust status to be
enabled or disabled. When a CA’s certificate trust status is enabled then that CA
certificate is permitted to be involved in a certificate chain validation. If the CA’s
certificate trust status is disabled then it cannot be used to validate any certificates.
For example if certificate “ABC” is signed by the CA certificate “VeriSign CA” and
“VeriSign CA” is not marked as trusted then the validation of “ABC” will fail. You
are able to have any number of trusted CA certificates in the single key database.

The syntax for modifying the trust status of a certificate in an existing key
database with GSKCapiCmd is as follows:
gsk8capicmd -cert -modify -db <name> [-pw <passwd> | -stashed] -label <label>
-trust <enable | disable>

where:

object -cert

action -modify

options
IMPORTANT: On UNIX operating systems, always encapsulate string
values associated with all tags in double quotation marks (“”). You must
also use a backslash (‘\’) character to escape the following characters if
they appear in the string values:
'!’, '\’, '”’, '’’

This will prevent some command-line shells from interpreting specific
characters within these values. For example: gsk8capicmd –keydb –create
–db “/tmp/key.kdb” –pw “j\!jj”. When prompted by gsk8capicmd for a
value (for example, a password) do not quote the string and add the
escape characters, as the shell is no longer influencing this input.

-db <filename>
The fully qualified path name of a key database.

36

http:Entrust.net
http:Entrust.net
http:Entrust.net

-pw <passwd>
The password for the key database identified by the –db tag.
Specify a hyphen (-) as the password to cause the program to read
the password from stdin. This allows you to pipe in the password.

-stashed
The password for the key database will be recovered from the
stash file.

-label <label>
Label attached to the certificate.

-trust <enable | disable>
(Deprecated). Trust status of a CA certificate. The default is enable.
When a CA’s certificate trust status is enabled then that CA
certificate is permitted to be involved in a certificate chain
validation. If the CA’s certificate trust status is disabled then it
cannot be used to validate any certificates. For example if
certificate “ABC” is signed by the CA certificate “VeriSign CA” and
“VeriSign CA” is not marked as trusted then the validation of
“ABC” will fail.

Sign a certificate (-sign)
The sign certificate command allows the signing of a certificate request by an
existing certificate stored within a key database. The command accepts a certificate
request in a specified file format and details of the certificate that contains the
private key to be used during the signing process.

If a certificate is not identified, the private key of the default certificate in the key
database is used during the signing process. (deprecated)

The syntax for signing a certificate with GSKCapiCmd is as follows:
gsk8capicmd -cert -sign {-db <name> -type <cms | kdb| pkcs12 | p12> |

-crypto <module_name> -tokenlabel <label>} [-pw <passwd> | -stashed]

-label <label> -target <name> [-format <ascii | binary>] [-expire

<number of days>] -file <name> [-secondaryDB <filename> -secondaryDBpw

<password> -secondaryDBtype <cms | kdb| pkcs12 | p12>]

[{-sigalg | -sig_alg} <algorithm>] [-sernum <serial_number>]

where:

object -cert

action -sign

options
IMPORTANT: On UNIX operating systems, always encapsulate string
values associated with all tags in double quotation marks (“”). You must
also use a backslash (‘\’) character to escape the following characters if
they appear in the string values:
'!’, '\’, '”’, '’’

This will prevent some command-line shells from interpreting specific
characters within these values. For example: gsk8capicmd –keydb –create
–db “/tmp/key.kdb” –pw “j\!jj”. When prompted by gsk8capicmd for a
value (for example, a password) do not quote the string and add the
escape characters, as the shell is no longer influencing this input.

Chapter 3. Certificate commands 37

-db <filename>
The fully qualified path name of a key database.

-type <cms | kdb | pkcs12 | p12>
The keystore type. If this option is not specified, the program uses
the file name extension to determine the keystore type.

-crypto <module_name>
Indicates a PKCS11 cryptographic device operation, where
<module_name> is the path to the module to manage the crypto
device.

-tokenlabel <token_label>
The PKCS11 cryptographic device token label.

-pw <passwd>
The password for the key database identified by the –db tag.
Specify a hyphen (-) as the password to cause the program to read
the password from stdin. This allows you to pipe in the password.

-stashed
The password for the key database will be recovered from the
stash file.

-label <label>
Label of the certificate that has the private key to use for the
signing operation.

-target <name>
The name of the file that will contain the signed certificate.

-format <acsii | binary>
The format of the signed certificate. The default is Base64 encoded
ascii. Additional information about base64 encoding can be found
in rfc2045 and rfc3548. The binary format is a binary dump of the
DER encoded certificate structure. For additional information, see
ITU-T Rec. X.690 (2002) | ISO/IEC 8825-1:2002

-expire <number of days>
The expiry tag identifies the number of days from today that a
certificate is valid. The default is 365 days.

Note:	 To avoid possible timezone issues the actual valid-from time
for the certificate will be set one day in the past.

-file <name>
The name and location of the certificate request to be signed.

-secondaryDB <filename>
A CMS key database used to support the PKCS11 device. A
PKCS11 device does not normally have a large amount of space
available to store a lot of signer certificates. The signer certificates
are used for the validation of certificates when they are added to
the PCKS11 device.

-secondaryDBpw <password>
Password for the secondary CMS key database supporting the
PKCS11 device.

-secondaryDBtype <cms | kdb| pkcs12 | p12>
Keystore type of the secondary key database.

38

-sigalg | -sig_alg <signature_algorithm>
The signing algorithm to be used during the signing of the
certificate. This algorithm is used to create the signature associated
with the new signed certificate. This algorithm must match the
keytype of the key being used for signing. That is, the key
contained in the certificate that is specified by the –label parameter.

-sernum
The serial number in conjunction with the issuers name uniquely
identifies a certificate. A serial number is normally assigned to a
certificate by the certificate authority (CA) that signed the
certificate request. This tag has been included to allow the
emulation of this process. The -sernum tag accepts two types of
values:
1.	 Hexadecimal - A hexadecimal value can be passed as the

-sernum tags value by pre-pending a “0x” to the front of the
serial number.

2.	 String - A string representation of the serial number. The string
representation of the serial number is normally displayed in
ASCII format.

If the –sernum tag is not passed, a random serial number is
assigned to the signed certificate.

Validate a certificate (-validate)
The validate certificate command is used to validate a certificate held in the
keystore. The validation includes ensuring that:
v	 All necessary intermediate and root certificates used to validate the certificate

are present, and

v	 These certificates have not expired.

The syntax for validating a certificate in an existing key database with
GSKCapiCmd is as follows:
gsk8capicmd -cert -validate {-db <filename> | -crypto <module_name> -tokenlabel

<token_label>} [-pw <passwd> | -stashed] [-type <cms | kdb| pkcs12 | p12>]

-label <label> -ldap <location> [-secondaryDB <filename>

-secondaryDBpw <password> -secondaryDBtype <cms | kdb| pkcs12 | p12>]

where:

object -cert

action -validate

options
IMPORTANT: On UNIX operating systems, always encapsulate string
values associated with all tags in double quotation marks (“”). You must
also use a backslash (‘\’) character to escape the following characters if
they appear in the string values:
'!’, '\’, '”’, '’’

This will prevent some command-line shells from interpreting specific
characters within these values. For example: gsk8capicmd –keydb –create
–db “/tmp/key.kdb” –pw “j\!jj”. When prompted by gsk8capicmd for a
value (for example, a password) do not quote the string and add the
escape characters, as the shell is no longer influencing this input.

Chapter 3. Certificate commands 39

-db <filename>
The fully qualified path name of a key database.

-crypto <module_name>
Indicates a PKCS11 cryptographic device operation, where
<module_name> is the path to the module to manage the crypto
device.

-tokenlabel <token_label>
The PKCS11 cryptographic device token label.

-pw <passwd>
The password for the key database identified by the –db tag.
Specify a hyphen (-) as the password to cause the program to read
the password from stdin. This allows you to pipe in the password.

-stashed
The password for the key database will be recovered from the
stash file.

-label <label>
Label attached to the certificate that is to be validated.

-type <cms | kdb | pkcs12 | p12>
The keystore type. If this option is not specified, the program uses
the file extension of the database file name to determine the
keystore type.

-ldap <location>
TCP/IP name or address of the LDAP server that is to be used for
certificate revocation checking.

-secondaryDB <filename>
A CMS key database used to support the PKCS11 device. A
PKCS11 device does not normally have a large amount of space
available to store a lot of signer certificates. The signer certificates
are used for the validation of certificates when they are added to
the PCKS11 device.

-secondaryDBpw <password>
Password for the secondary CMS key database supporting the
PKCS11 device.

-secondaryDBtype <cms | kdb| pkcs12 | p12>
Keystore type of the secondary key database.

40

Chapter 4. Certificate request commands

The certificate request commands are associated with the -certreq object. This object
supports the following actions:
v “Create a certificate request (-create)”

v “Delete certificate request (-delete)” on page 43

v “List certificate request details (-details)” on page 44

v “Extract certificate request (-extract)” on page 46

v “List all certificate requests (-list)” on page 47

v “Re-create certificate requests (-recreate)” on page 48

The following sections provide details on how to use each of the identified
certificate request actions and what options are available.

Create a certificate request (-create)
The create certificate request command creates a new RSA private-public key pair
and a PKCS10 certificate request in the specified key database. For CMS key
databases, the certificate request information is stored in the file with the “.rdb”
extension that is associated with the key database. During the creation process, the
certificate request is also extracted to a file that can be used to send the certificate
request to a CA for signing.

The syntax for creating a certificate request in an existing key database with
GSKCapiCmd is as follows:
gsk8capicmd -certreq -create {-db <name> | -crypto <module_name> -tokenlabel
<token_label>} [-pw <passwd> | -stashed] [-type <cms | kdb| pkcs12 | p12>]
-label <label> -dn <dist_name> [-size <key_size>] {-target | -file} <name>
[{-sigalg | -sig_alg} <algorithm>] [-secondaryDB <filename> -secondaryDBpw
<password> -secondaryDBtype <cms | kdb| pkcs12 | p12>] [-san_dns_name <name>]
[-san_emailaddr <address>] [-san_ipaddr <address>] [-certpolicy <policy>]
[-eku <name>]

where:

object -certreq

action -create

options
IMPORTANT: On UNIX operating systems, always encapsulate string
values associated with all tags in double quotation marks (“”). You must
also use a backslash (‘\’) character to escape the following characters if
they appear in the string values:
'!’, '\’, '”’, '’’

This will prevent some command-line shells from interpreting specific
characters within these values. For example: gsk8capicmd –keydb –create
–db “/tmp/key.kdb” –pw “j\!jj”. When prompted by gsk8capicmd for a
value (for example, a password) do not quote the string and add the
escape characters, as the shell is no longer influencing this input.

-db <filename>
The fully qualified path name of a key database.

© Copyright IBM Corp. 2005, 2010 41

-crypto <module_name>
Indicates a PKCS11 cryptographic device operation, where
<module_name> is the path to the module to manage the crypto
device.

-tokenlabel <token_label>
The PKCS11 cryptographic device token label.

-pw <passwd>
The password for the key database identified by the –db or
–tokenlabel tags. Specify a hyphen (-) as the password to cause the
program to read the password from stdin. This allows you to pipe
in the password.

-stashed
The password for the key database will be recovered from the
stash file.

-type <cms | kdb | pkcs12 | p12>
The keystore type. If this option is not specified, the program will
use the database path name suffix to determine the keystore type.

-label <label>
Label to be attached to the certificate request on creation. The user
uses this label to uniquely identify the certificate request.

-dn <dist_name>
The X.500 distinguished name that will uniquely identify the
certificate. The input must be a quoted string of the following
format (only CN is required):
CN=common name

O=organization

OU=organization unit

L=location

ST=state, province

C=country

DC=domain component

EMAIL=email address

For example: “CN=weblinux.Raleigh.ibm.com,O=ibm,OU=IBM HTTP
Server,L=RTP,ST=NC,C=US”

Multiple OU values are now supported. Simply add additional OU
key\value pairs to the specified distinguished name. If the OU
value requires a comma (‘,’) then you must escape it with ‘\\’.

For example: “CN=weblinux.Raleigh.ibm.com,O=ibm,OU=IBM HTTP
Server,OU=GSKit\\, Gold Coast,L=RTP,ST=NC,C=US”

-size <key_size>
The size of the new key pair to be created. Key size from 512 to
4096. The default is 1024.

-target | -file <name>
The file name that the certificate request will be extracted to during
the certificate request creation process.

Note:	 "-file <name> continues to operate for this command for
backwards compatibility.

-secondaryDB <filename>
A CMS key database used to support the PKCS11 device. A

42

PKCS11 device does not normally have a large amount of space
available to store a lot of signer certificates. The signer certificates
are used for the validation of certificates when they are added to
the PCKS11 device.

-secondaryDBpw <password>
Password for the secondary CMS key database supporting the
PKCS11 device.

-secondaryDBtype <cms | kdb| pkcs12 | p12>
Keystore type of the secondary key database.

-san_dns_name <name>
The SAN DNS name(s) for the entry being created.

-san_emailaddr <address>
The SAN email address(es) for the entry being created.

-san_ipaddr <address>
The SAN IP address(es) for the entry being created.

-certpolicy <policy>
The certificate policy. A named set of rules limiting the
applicability of the certificate.

-eku <list>
Extended key usage property list. Specifies the valid uses for the
certificate.

-sigalg | -sig_alg <signature_algorithm>
The signing algorithm to be used during the creation of the
certificate request. This algorithm is used to create the signature
associated with the new certificate request. The generated key type
will be chosen to match this signing algorithm.

Delete certificate request (-delete)
The delete certificate request removes the certificate request from the identified
key database. This means that the entry in the “.rdb” associated with the certificate
request is deleted.

The syntax for deleting a certificate request in an existing key database with
GSKCapiCmd is as follows:
gsk8capicmd -certreq -delete {-db <name> | -crypto <module_name> -tokenlabel
<token_label>} [-pw <passwd> | -stashed] [-type <cms | kdb| pkcs12 | p12>]
-label <label> [-secondaryDB <filename> -secondaryDBpw <password>
-secondaryDBtype <cms | kdb| pkcs12 | p12>]

where:

object -certreq

action -delete

options
IMPORTANT: On UNIX operating systems, always encapsulate string
values associated with all tags in double quotation marks (“”). You must
also use a backslash (‘\’) character to escape the following characters if
they appear in the string values:
'!’, '\’, '”’, '’’

Chapter 4. Certificate request commands 43

This will prevent some command-line shells from interpreting specific
characters within these values. For example: gsk8capicmd –keydb –create
–db “/tmp/key.kdb” –pw “j\!jj”. When prompted by gsk8capicmd for a
value (for example, a password) do not quote the string and add the
escape characters, as the shell is no longer influencing this input.

-db <filename>
The fully qualified path name of a key database.

-crypto <module_name>
Indicates a PKCS11 cryptographic device operation, where
<module_name> is the path to the module to manage the crypto
device.

-tokenlabel <token_label>
The PKCS11 cryptographic device token label.

-pw <passwd>
The password for the key database identified by the –db or
–tokenlabel tags. Specify a hyphen (-) as the password to cause the
program to read the password from stdin. This allows you to pipe
in the password.

-stashed
The password for the key database will be recovered from the
stash file.

-type <cms | kdb | pkcs12 | p12>
The keystore type. If this option is not specified, the program will
use the database path name suffix to determine the keystore type.

-label <label>
Label attached to the certificate request that is to be deleted.

-secondaryDB <filename>
A CMS key database used to support the PKCS11 device. A
PKCS11 device does not normally have a large amount of space
available to store a lot of signer certificates. The signer certificates
are used for the validation of certificates when they are added to
the PCKS11 device.

-secondaryDBpw <password>
Password for the secondary CMS key database supporting the
PKCS11 device.

-secondaryDBtype <cms | kdb| pkcs12 | p12>
Keystore type of the secondary key database.

List certificate request details (-details)
The list certificate request details command simple lists the identified certificate

requests details. These details include:

v The label of the certificate request.

v The size of the key associated with the certificate request.

v The subject distinguished name.

v The fingerprint of the certificate.

v The signature of the algorithm used during creation of the certificate.

For a more detailed listing of the certificate request details use the -showOID

option in the command.

44

The syntax for listing a certificate requests details in an existing key database with
GSKCapiCmd is as follows:
gsk8capicmd -certreq -details [-showOID] {-db <name> | -crypto <module_name>

-tokenlabel <token_label>} [-pw <passwd> | -stashed] [-type

<cms | kdb| pkcs12 | p12>] -label <label> [-secondaryDB <filename>

-secondaryDBpw <password> -secondaryDBtype <cms | kdb| pkcs12 | p12>]

where:

object -certreq

action -details

options
IMPORTANT: On UNIX operating systems, always encapsulate string
values associated with all tags in double quotation marks (“”). You must
also use a backslash (‘\’) character to escape the following characters if
they appear in the string values:
'!’, '\’, '”’, '’’

This will prevent some command-line shells from interpreting specific
characters within these values. For example: gsk8capicmd –keydb –create
–db “/tmp/key.kdb” –pw “j\!jj”. When prompted by gsk8capicmd for a
value (for example, a password) do not quote the string and add the
escape characters, as the shell is no longer influencing this input.

-showOID
Display a more in-depth listing of the certificate requests.

-db <filename>
The fully qualified path name of a key database.

-crypto <module_name>
Indicates a PKCS11 cryptographic device operation, where
<module_name> is the path to the module to manage the crypto
device.

-tokenlabel <token_label>
The PKCS11 cryptographic device token label.

-pw <passwd>
The password for the key database identified by the –db or
–tokenlabel tags. Specify a hyphen (-) as the password to cause the
program to read the password from stdin. This allows you to pipe
in the password.

-stashed
The password for the key database will be recovered from the
stash file.

-type <cms | kdb | pkcs12 | p12>
The keystore type. If this option is not specified, the program will
use the database path name suffix to determine the keystore type.

-label <label>
Label attached to the certificate request that is to be displayed.

-secondaryDB <filename>
A CMS key database used to support the PKCS11 device. A
PKCS11 device does not normally have a large amount of space

Chapter 4. Certificate request commands 45

available to store a lot of signer certificates. The signer certificates
are used for the validation of certificates when they are added to
the PCKS11 device.

-secondaryDBpw <password>
Password for the secondary CMS key database supporting the
PKCS11 device.

-secondaryDBtype <cms | kdb| pkcs12 | p12>
Keystore type of the secondary key database.

Extract certificate request (-extract)
The extract certificate request command extracts an existing certificate request
stored in the specified key database to the identified file in base64 format. The
certificate request will still exist within the key database so you are able to extract
it as many times as needed. The file that is extracted is the file that is dispatched
to a CA for signing.

The syntax for extracting a certificate request from an existing key database with
GSKCapiCmd is as follows:
gsk8capicmd -certreq -extract {-db <name> | -crypto <module_name> -tokenlabel

<token_label>} [-pw <passwd> | -stashed] [-type <cms | kdb| pkcs12 | p12>]

-label <label> -target <name> [-secondaryDB <filename>

-secondaryDBpw <password> -secondaryDBtype <cms | kdb| pkcs12 | p12>]

where:

object -certreq

action -extract

options
IMPORTANT: On UNIX operating systems, always encapsulate string
values associated with all tags in double quotation marks (“”). You must
also use a backslash (‘\’) character to escape the following characters if
they appear in the string values:
'!’, '\’, '”’, '’’

This will prevent some command-line shells from interpreting specific
characters within these values. For example: gsk8capicmd –keydb –create
–db “/tmp/key.kdb” –pw “j\!jj”. When prompted by gsk8capicmd for a
value (for example, a password) do not quote the string and add the
escape characters, as the shell is no longer influencing this input.

-db <filename>
The fully qualified path name of a key database.

-crypto <module_name>
Indicates a PKCS11 cryptographic device operation, where
<module_name> is the path to the module to manage the crypto
device.

-token_label <token_label>
The PKCS11 cryptographic device token label.

-pw <passwd>
The password for the key database identified by the –db or
–tokenlabel tags. Specify a hyphen (-) as the password to cause the
program to read the password from stdin. This allows you to pipe
in the password.

46

-stashed
The password for the key database will be recovered from the
stash file.

-type <cms | kdb | pkcs12 | p12>
The keystore type. If this option is not specified, the program will
use the database path name suffix to determine the keystore type.

-label <label>
Label attached to the certificate request that is to be extracted.

-target <name>
Destination file to which the certificate request is to be extracted.

-secondaryDB <filename>
A CMS key database used to support the PKCS11 device. A
PKCS11 device does not normally have a large amount of space
available to store a lot of signer certificates. The signer certificates
are used for the validation of certificates when they are added to
the PCKS11 device.

-secondaryDBpw <password>
Password for the secondary CMS key database supporting the
PKCS11 device.

-secondaryDBtype <cms | kdb| pkcs12 | p12>
Keystore type of the secondary key database.

List all certificate requests (-list)
The list certificate request command lists all of the certificate request labels stored
within the identified key database.

The syntax for listing the certificate requests stored within an existing key database
with GSKCapiCmd is as follows:
gsk8capicmd -certreq -list { -db <name> | -crypto <module_name> -tokenlabel
<token_label>} [-pw <passwd> | -stashed] [-type <cms | kdb| pkcs12 | p12>]
[-secondaryDB <filename> -secondaryDBpw <password> -secondaryDBtype
<cms | kdb| pkcs12 | p12>]

where:

object -certreq

action -list

options
IMPORTANT: On UNIX operating systems, always encapsulate string
values associated with all tags in double quotation marks (“”). You must
also use a backslash (‘\’) character to escape the following characters if
they appear in the string values:
'!’, '\’, '”’, '’’

This will prevent some command-line shells from interpreting specific
characters within these values. For example: gsk8capicmd –keydb –create
–db “/tmp/key.kdb” –pw “j\!jj”. When prompted by gsk8capicmd for a
value (for example, a password) do not quote the string and add the
escape characters, as the shell is no longer influencing this input.

-db <filename>
The fully qualified path name of a key database.

Chapter 4. Certificate request commands 47

-crypto <module_name>
Indicates a PKCS11 cryptographic device operation, where
<module_name> is the path to the module to manage the crypto
device.

-tokenlabel <token_label>
The PKCS11 cryptographic device token label.

-pw <passwd>
The password for the key database identified by the –db tag or the
-crypto tag. Specify a hyphen (-) as the password to cause the
program to read the password from stdin. This allows you to pipe
in the password.

-stashed
The password for the key database will be recovered from the
stash file.

-type <cms | kdb | pkcs12 | p12>
The keystore type. If this option is not specified, the program will
use the database path name suffix to determine the keystore type.

-secondaryDB <filename>
A CMS key database used to support the PKCS11 device. A
PKCS11 device does not normally have a large amount of space
available to store a lot of signer certificates. The signer certificates
are used for the validation of certificates when they are added to
the PCKS11 device.

-secondaryDBpw <password>
Password for the secondary CMS key database supporting the
PKCS11 device.

-secondaryDBtype <cms | kdb| pkcs12 | p12>
Keystore type of the secondary key database.

Re-create certificate requests (-recreate)
The re-create certificate request command recreates a certificate request from an
existing certificate stored within the specified key database. The recreation of a
certificate may be required to allow a certificate to be signed by another CA if
there was a problem with the CA that originally signed it.

The syntax to recreate a certificate request in an existing key database with
GSKCapiCmd is as follows:
gsk8capicmd -certreq -recreate { -db <name> | -crypto <module_name> -tokenlabel

<token_label>} [-pw <passwd> | -stashed] [-type <cms | kdb| pkcs12 | p12>] -label

<label> -target <name> [-secondaryDB <filename> -secondaryDBpw <password>

-secondaryDBtype <cms | kdb| pkcs12 | p12>] [-san_dns_name <name>] [-san_emailaddr

<address>] [-san_ipaddr <address>] [-certpolicy <policy>] [-eku <list>]

[-sigalg | -sig_alg <signature_algorithm>]

where:

object -certreq

action -recreate

options
IMPORTANT: On UNIX operating systems, always encapsulate string

48

values associated with all tags in double quotation marks (“”). You must
also use a backslash (‘\’) character to escape the following characters if
they appear in the string values:
'!’, '\’, '”’, '’’

This will prevent some command-line shells from interpreting specific
characters within these values. For example: gsk8capicmd –keydb –create
–db “/tmp/key.kdb” –pw “j\!jj”. When prompted by gsk8capicmd for a
value (for example, a password) do not quote the string and add the
escape characters, as the shell is no longer influencing this input.

-db <filename>
The fully qualified path name of a key database.

-crypto <module_name>
Indicates a PKCS11 cryptographic device operation, where
<module_name> is the path to the module to manage the crypto
device.

-tokenlabel <token_label>
The PKCS11 cryptographic device token label.

-type <cms | kdb | pkcs12 | p12>
The keystore type. If this option is not specified, the program will
use the database path name suffix to determine the keystore type.

-pw <passwd>
The password for the key database identified by the –db tag or the
-crypto tag. Specify a hyphen (-) as the password to cause the
program to read the password from stdin. This allows you to pipe
in the password.

-stashed
The password for the key database will be recovered from the
stash file.

-label <label>
Label attached to the certificate request that is to be recreated.

-target <name>
Destination file to which the certificate request is to be recreated.

-secondaryDB <filename>
A CMS key database used to support the PKCS11 device. A
PKCS11 device does not normally have a large amount of space
available to store a lot of signer certificates. The signer certificates
are used for the validation of certificates when they are added to
the PCKS11 device.

-secondaryDBpw <password>
Password for the secondary CMS key database supporting the
PKCS11 device.

-secondaryDBtype <cms | kdb| pkcs12 | p12>
Keystore type of the secondary key database.

-san_dns_name <name>
The SAN DNS name(s) for the entry being created.

-san_emailaddr <address>
The SAN email address(es) for the entry being created.

Chapter 4. Certificate request commands 49

-san_ipaddr <address>
The SAN IP address(es) for the entry being created.

-certpolicy <policy>
The certificate policy. A named set of rules limiting the
applicability of the certificate.

-eku <list>
Extended key usage property list. Specifies the valid uses for the
certificate.

-sigalg | -sig_alg <signature_algorithm>
The signing algorithm to be used during the creation of the
self-signed certificate. This algorithm is used to create the signature
associated with the new self-signed certificate. The key type must
match this signing algorithm.

50

Chapter 5. Random commands

The GSKCapiCmd program provides its users with the ability to generate random
passwords. Users can specify the password length and whether the generated
password is required to conform to GSKit’s minimum password requirements.

The random commands are associated with the -random object. This object
supports the following action:

“Create a random password of a specified length (-create)”

The following section describes how to use and what options are available for this
random action.

Create a random password of a specified length (-create)
The create random password command creates a random string of characters that
can be used with other GSKCapiCmd commands that require a password. This
command can be used if the user is looking for a truly random password.

The syntax for creating a random password with GSKCapiCmd is as follows:
gsk8capicmd -random -create -length <password_length> -strong

where:

object -random

action -create

options

-length <password_length>
The length of the random password. There is a maximum length
when the -strong tag is used for this command. The maximum
length is 125 character.

-strong
Check that the password entered satisfies the minimum
requirements for the passwords strength. The minimum
requirements for a password are as follows:
v	 The minimum password length is 14 characters.
v	 A password must have at least one lower case character, one

uppercase character, and one digit or special character (for
example, *$#% etc). A space is classified as a special character.

v	 Each character must not occur more than three times in a
password.

v	 No more than two consecutive characters of the password can be
identical.

v	 All characters are in the standard ASCII printable character set
within the range from 0x20 to 0x7E inclusive.

© Copyright IBM Corp. 2005, 2010 51

52

Chapter 6. Help commands

GSKCapiCmd has an extensive help command system. You are able to get help on
what objects are available, what actions are associated with a particular object, and
how to use each of the actions.

The help commands are associated with the -help object. The syntax for the help
commands is as follows:
gsk8capicmd -help <object> <action>

where:

<object>
The object you want to find out information about.

<action>
The action you are wanting to find out information about. This action must
be associated with the identified object. If it is not the system will display
the help associated with the requested object.

Examples:

v Listing all of the objects and their associated actions: gsk8capicmd -help

v Listing the actions for the -keybd object: gsk8capicmd -help -keydb

v Listing the specific help for the -create action associated with the -keydb object.
gsk8capicmd -help -keydb -create

To find out the different objects and their associated actions see:
v Chapter 2, “Key database commands,” on page 5

v Chapter 3, “Certificate commands,” on page 15

v Chapter 4, “Certificate request commands,” on page 41

© Copyright IBM Corp. 2005, 2010 53

54

Chapter 7. Version command

The version command displays version information associated with the currently
installed GSKCapiCmd program.

The version command is associated with the -version object. The syntax is as
follows:
gsk8capicmd -version

The version command has no associated actions or objects.

© Copyright IBM Corp. 2005, 2010 55

56

Chapter 8. Runtime messages

This chapter describes the messages displayed by GSKCapiCmd.

Table 3. Runtime Messages

Message ID Message Details Explanation

CTGSK2000W The task completed successfully. See message.

CTGSK2001W Unknown error occurred See message.

CTGSK2002W An ASN.1 encoding/decoding error
occurred.

See message.

CTGSK2003W An error occurred while initializing
ASN.1 encoder/decoder.

See message.

CTGSK2004W An ASN.1 encoding/decoding error
occurred because of an out-of-range
index or non-existent optional field.

See message.

CTGSK2005W A database error occurred. See message.

CTGSK2006W An error occurred while opening the
database file, check for file existence and
permission.

See message.

CTGSK2007W An error occurred while re-opening the
database file.

See message.

CTGSK2008W Database creation failed. See message.

CTGSK2009W The database already exists. See message.

CTGSK2010W An error occurred while deleting the
database file.

See message.

CTGSK2011W The database could not be opened. See message.

CTGSK2012W An error occurred while reading the
database file.

See message.

CTGSK2013W An error occurred while writing data to
the database file.

See message.

CTGSK2014W A database validation error occurred. See message.

CTGSK2015W An invalid database version was
encountered.

See message.

CTGSK2016W An invalid database password was
encountered.

See message.

CTGSK2017W An invalid database file type was
encountered.

See message.

CTGSK2018W The specified database has been
corrupted.

See message.

CTGSK2019W An invalid password was provided or
the key database has been tampered or
corrupted.

See message.

CTGSK2020W A database key entry integrity error
occurred.

See message.

CTGSK2021W A duplicate certificate already exists in
the database.

See message.

© Copyright IBM Corp. 2005, 2010 57

Table 3. Runtime Messages (continued)

Message ID Message Details Explanation

CTGSK2022W A duplicate key already exists in the
database (Record ID).

See message.

CTGSK2023W A certificate with the same label already
existed in the key database.

See message.

CTGSK2024W A duplicate key already exists in the
database (Signature).

See message.

CTGSK2025W A duplicate key already exists in the
database (Unsigned Certificate).

See message.

CTGSK2026W A duplicate key already exists in the
database (Issuer and Serial Number).

See message.

CTGSK2027W A duplicate key already exists in the
database (Subject Public Key Info).

See message.

CTGSK2028W A duplicate key already exists in the
database (Unsigned Certificate
Revocation List (CRL)).

See message.

CTGSK2029W The label has been used in the database. See message.

CTGSK2030W A password encryption error occurred. See message.

CTGSK2031W An LDAP related error occurred. Reserved for future use.

CTGSK2032W A cryptographic error occurred. See message.

CTGSK2033W An encryption/decryption error
occurred.

See message.

CTGSK2034W An invalid cryptographic algorithm was
found.

See message.

CTGSK2035W An error occurred while signing data. See message.

CTGSK2036W An error occurred while verifying data. See message.

CTGSK2037W An error occurred while computing
digest of data.

See message.

CTGSK2038W An invalid cryptographic parameter was
found.

See message.

CTGSK2039W An unsupported cryptographic
algorithm was encountered.

See message.

CTGSK2040W The specified input size is greater than
the supported modulus size.

See message.

CTGSK2041W An unsupported modulus size was
found.

See message.

CTGSK2042W A database validation error occurred. See message.

CTGSK2043W Key entry validation failed. See message.

CTGSK2044W A duplicate extension field exists. See message.

CTGSK2045W The version of the key is wrong. See message.

CTGSK2046W A required extension field does not
exist.

See message.

CTGSK2047W The validity period does not include
today or does not fall within its issuer's
validity period.

See message.

58

Table 3. Runtime Messages (continued)

Message ID Message Details Explanation

CTGSK2048W The validity period does not include
today or does not fall within its issuer's
validity period.

See message.

CTGSK2049W An error occurred while validating
validity private key usage extension.

See message.

CTGSK2050W The issuer of the key was not found. See message.

CTGSK2051W A required certificate extension is
missing.

See message.

CTGSK2052W An invalid basic constraint extension
was found.

See message.

CTGSK2053W The key signature validation failed. See message.

CTGSK2054W The root key of the key is not trusted. See message.

CTGSK2055W The key has been revoked. See message.

CTGSK2056W An error occurred while validating
authority key identifier extension.

See message.

CTGSK2057W An error occurred while validating
private key usage extension.

See message.

CTGSK2058W An error occurred while validating
subject alternative name extension.

See message.

CTGSK2059W An error occurred while validating
issuer alternative name extension.

See message.

CTGSK2060W An error occurred while validating key
usage extension.

See message.

CTGSK2061W An unknown critical extension was
found.

See message.

CTGSK2062W An error occurred while validating key
pair entries.

See message.

CTGSK2063W An error occurred while validating CRL. See message.

CTGSK2064W A mutex error occurred. See message.

CTGSK2065W An invalid parameter was found. See message.

CTGSK2066W A null parameter or memory allocation
error was encountered.

See message.

CTGSK2067W Number or size is too large or too small. See message.

CTGSK2068W The old password is invalid. See message.

CTGSK2069W The new password is invalid. See message.

CTGSK2070W The password has expired. See message.

CTGSK2071W A thread related error occurred. See message.

CTGSK2072W An error occurred while creating
threads.

See message.

CTGSK2073W An error occurred while a thread was
waiting to exit.

See message.

CTGSK2074W An I/O error occurred. See message.

CTGSK2075W An error occurred while loading CMS. See message.

CTGSK2076W A cryptography hardware related error
occurred.

See message.

Chapter 8. Runtime messages 59

Table 3. Runtime Messages (continued)

Message ID Message Details Explanation

CTGSK2077W The library initialization routine was not
successfully called.

See message.

CTGSK2078W The internal database handle table is
corrupted.

See message.

CTGSK2079W A memory allocation error occurred. See message.

CTGSK2080W An unrecognized option was found. See message.

CTGSK2081W An error occurred while getting time
information.

See message.

CTGSK2082W Mutex creation error occurred. See message.

CTGSK2083W An error occurred while opening
message catalog.

See message.

CTGSK2084W An error occurred while opening error
message catalog.

See message.

CTGSK2085W An null file name was found. See message.

CTGSK2086W An error occurred while opening files,
check for file existence and permissions.

See message.

CTGSK2087W An error occurred while opening files to
read.

See message.

CTGSK2088W An error occurred while opening files to
write.

See message.

CTGSK2089W There is no such file. See message.

CTGSK2090W The file cannot be opened because of its
permission setting.

See message.

CTGSK2091W An error occurred while writing data to
files.

See message.

CTGSK2092W An error occurred while deleting files. See message.

CTGSK2093W Invalid Base64-encoded data was found. See message.

CTGSK2094W An invalid Base64 message type was
found.

See message.

CTGSK2095W An error occurred while encoding data
with Base64 encoding rule.

See message.

CTGSK2096W An error occurred while decoding
Base64-encoded data.

See message.

CTGSK2097W An error occurred while getting a
distinguished name tag.

See message.

CTGSK2098W The required common name field is
empty.

See message.

CTGSK2099W The required country or region name
field is empty.

See message.

CTGSK2100W An invalid database handle was found. See message.

CTGSK2101W The key database does not exist. See message.

CTGSK2102W The request key pair database does not
exist.

See message.

CTGSK2103W The password file does not exist. See message.

60

Table 3. Runtime Messages (continued)

Message ID Message Details Explanation

CTGSK2104W The new password is identical to the old
one.

See message.

CTGSK2105W No key was found in the key database. See message.

CTGSK2106W No request key was found. See message.

CTGSK2107W No trusted CA was found See message.

CTGSK2108W No request key was found for the
certificate.

See message.

CTGSK2109W There is no private key in the key
database

See message.

CTGSK2110W There is no default key in the key
database.

See message.

CTGSK2111W There is no private key in the key
record.

See message.

CTGSK2112W There is no certificate in the key record. See message.

CTGSK2113W There is no CRL entry. See message.

CTGSK2114W An invalid key database file name was
found.

See message.

CTGSK2115W An unrecognized private key type was
found.

See message.

CTGSK2116W An invalid distinguished name input
was found.

See message.

CTGSK2117W No key entry was found that has the
specified key label.

See message.

CTGSK2118W The key label list has been corrupted. See message.

CTGSK2119W The input data is not valid PKCS12
data.

See message.

CTGSK2120W The password is invalid or the PKCS12
data has been corrupted or been created
with a later version of PKCS12.

See message.

CTGSK2121W An unrecognized key export type was
found.

See message.

CTGSK2122W An unsupported password-based
encryption algorithm was found.

See message.

CTGSK2123W An error occurred while converting the
key ring file to a CMS key database.

See message.

CTGSK2124W An error occurred while converting the
CMS key database to a keyring file.

See message.

CTGSK2125W An error occurred while creating a
certificate for the certificate request.

See message.

CTGSK2126W A complete issuer chain cannot be built. See message.

CTGSK2127W Invalid WEBDB data was found. See message.

CTGSK2128W There is no data to be written to the key
ring file.

See message.

CTGSK2129W The number of days that you entered
extends beyond the permitted validity
period.

See message.

Chapter 8. Runtime messages 61

Table 3. Runtime Messages (continued)

Message ID Message Details Explanation

CTGSK2130W The password is too short. See message.

CTGSK2131W A password must contain at least one
numeric digit.

See message.

CTGSK2132W All characters in the password are either
alphabetic or numeric characters.

See message.

CTGSK2133W An unrecognized or unsupported
signature algorithm was specified.

See message.

CTGSK2134W An invalid database type was
encountered.

See message.

CTGSK2135W The specified secondary key database is
in use by another PKCS#11 device.

See message.

CTGSK2136W No secondary key database was
specified.

See message.

CTGSK2137W The label does not exist on the PKCS#11
device.

See message.

CTGSK2138W Password required to access the
PKCS#11 device.

See message.

CTGSK2139W Password not required to access the
PKCS#11 device.

See message.

CTGSK2140W Unable to load the cryptographic library. See message.

CTGSK2141W PKCS#11 is not supported for this
operation.

See message.

CTGSK2142W An operation on a PKCS#11 device has
failed.

See message.

CTGSK2143W The LDAP user is not a valid user. See message.

CTGSK2144W The LDAP password is incorrect. See message.

CTGSK2145W The LDAP query failed. See message.

CTGSK2146W An invalid certificate chain was found. See message.

CTGSK2147W The root certificate is not trusted. See message.

CTGSK2148W A revoked certificate was encountered. See message.

CTGSK2149W A cryptographic object function failed. See message.

CTGSK2150W There is no certificate revocation list
data source available.

See message.

CTGSK2151W There is no cryptographic token
available.

See message.

CTGSK2152W FIPS mode is not available. See message.

CTGSK2153W There is a conflict with the FIPS mode
settings.

See message.

CTGSK2154W The password entered does not meet the
minimum required strength.

See message.

CTGSK3000W An action must be specified for this
object.

An expected command line
option was missing.

Operator response: Reissue the
command and include all of the
required options.

62

Table 3. Runtime Messages (continued)

Message ID Message Details Explanation

CTGSK3001W Cannot load keystore: filename The nominated keystore cannot
be opened.

Operator response: Ensure that
the keystore is valid and of the
correct type.

CTGSK3002W Error creating certificate. An error occurred while trying
to create a certificate with the
selected options.

Operator response: Review the
command line options selected,
correct any problems and retry
the operation.

CTGSK3003W A certificate error has occurred. An error occurred trying to set
the trust state of the certificate.

Operator response: Review the
details of the certificate and
ensure the attempted action
matches the certificate details.

CTGSK3004W Error decoding certificate request for
label name.

The certificate request file may
have been corrupted.

Operator response: Ensure the
certificate request file is valid
and readable.

CTGSK3005W Error storing one or more certificates. The certificate could not be
stored.

Operator response:Ensure the
certificate data is valid and
readable.

CTGSK3006W The private key for entry "filename"
cannot be decrypted. It may have been
corrupted.

There is no private key in the
key record.

Operator response: Ensure the
certificate data is valid and
readable.

CTGSK3007W The database password has expired. The password of the key
database has expired or the
database cannot be accessed.

Operator response:The
password must be reset before
the keystore can be opened.

CTGSK3008W The entry for label "name" could not be
deleted.

An attempt to delete an object
from a database failed.

Operator response:Ensure the
database is accessible and the
correct object has been
nominated for deletion.

Chapter 8. Runtime messages 63

Table 3. Runtime Messages (continued)

Message ID Message Details Explanation

CTGSK3009W One or more certificates in the keystore
could not be loaded.

An attempt to load or renew a
certificate failed.

Operator response: Ensure the
key database is accessible and
the certificate has not been
corrupted.

CTGSK3010W Error loading entry "name" Cannot load the named
certificate from the keystore.

Operator response: Review the
command line options selected,
correct any problems and retry
the operation.

CTGSK3011W Failed to delete file "name" Cannot delete the specified file.

Operator response: Check the
file name and file permissions
are correct.

CTGSK3012W The input file "name" could not be
found.

Cannot find the specified file.

Operator response: Check the
database path.

CTGSK3013W "other" is not a valid action for this
object.

The specified action does not
apply to the selected object.

Operator response:Review the
command line options selected,
correct any problems and retry
the operation.

CTGSK3014W An invalid parameter was specified:
name

An unknown or invalid
algorithm was specified.

Operator response: Review the
command line options selected,
correct any problems and retry
the operation.

CTGSK3015W Invalid certificate details: name The certificate inspected was
not valid.

Operator response: No action
is required.

CTGSK3016W Cannot parse certificates in file "name". It
is not a valid certificate file.

The wrong file has been
specified or it has been
corrupted.

Operator response: Review the
command line options selected,
correct any problems and retry
the operation.

CTGSK3017W The database type "name" is not
recognized.

The database type is not
known or not supported for
this command.

Operator response: Change the
database type and try again.

64

Table 3. Runtime Messages (continued)

Message ID Message Details Explanation

CTGSK3018W The action "name" is not supported for
database type "other".

The attempted action was not
supported for the database.

Operator response: Review the
command line options selected,
correct any problems and retry
the operation.

CTGSK3019W Invalid DN. The DN was not complete or
contained errors.

Operator response: A valid DN
consists of a comma delimited
list of attribute value pairs; e.g.
"CN=John Smith, OU=Tivoli,
O=IBM, C=US"

CTGSK3020W Invalid object: other An unknown command line
option was specified.

Operator response: Review the
command line options selected,
correct any problems and retry
the operation.

CTGSK3021W Invalid parameter: name An illegal value was specified
for a command line parameter.

Operator response: Review the
command line options selected,
correct any problems and retry
the operation.

CTGSK3022W An invalid parameter was provided for
the command: name

An invalid value was specified
for a command line parameter.

Operator response: Review the
command line options selected,
correct any problems and retry
the operation.

CTGSK3023W An invalid password was provided, the
key database has been corrupted or it is
of the wrong type.

The supplied password did not
unlock the selected database.

Operator response: Ensure that
the database is of the correct
type and that the correct
password was given.

CTGSK3024W Invalid value for parameter "other"
(other).

The supplied value is not valid
for the named parameter.

Operator response: Review the
command line options selected,
correct any problems and retry
the operation.

Chapter 8. Runtime messages 65

Table 3. Runtime Messages (continued)

Message ID Message Details Explanation

CTGSK3025W An invalid version was provided for
certificate "name".

The X509 version is not valid.
Some features are not
supported by all X509 versions.
For example, SAN extensions
are only supported by version
3 and above.

Operator response: Review the
command line options selected,
correct any problems and retry
the operation.

CTGSK3026W The key file "name" does not exist or
cannot be read.

The specified key file could not
be opened.

Operator response: Check that
the file exists and that you
have read permissions.

CTGSK3027W An error has occurred while closing the
keystore.

An error occurred accessing the
keystore file.

Operator response: Check that
the directory and file
permissions allow access to the
file.

CTGSK3028W An error has occurred while accessing
the keystore.

An unknown error occurred
while accessing the keystore
file.

Operator response: Check that
the directory and file
permissions allow access to the
file.

CTGSK3029W The database does not contain a
certificate with label "name"

No certificate exists with that
name.

Operator response: Check the
label and try again.

CTGSK3030W The database does not contain an entry
with label "name"

No certificate exists with that
name.

Operator response: Check the
label and try again.

CTGSK3031W The file name cannot be null. A legal file name must be
supplied.

Operator response: Review the
command line options selected,
correct any problems and retry
the operation.

CTGSK3032W The database does not contain a key
entry with label "name"

No certificate exists with that
name.

Operator response: Check the
label and try again.

66

Table 3. Runtime Messages (continued)

Message ID Message Details Explanation

CTGSK3033W No read permissions for file "name" The file cannot be accessed.

Operator response: Check the
file path and ensure that you
have read/write permissions to
the directory and file.

CTGSK3034W The certificate request created for the
certificate is not in the key database.

No request exists for the
named certificate.

Operator response: Check that
you are using the correct
keystore.

CTGSK3035W The database does not contain a
certificate request with label "name"

No request exists for the
named certificate.

Operator response: Check the
label and try again.

CTGSK3036W The output file "name" already exists. An existing file will not be over
written.

Operator response:Choose a
different name or delete the file
if it is no longer required.

CTGSK3037W The output file "name" could not be
created.

A file could not be created.

Operator response: Check the
file path and ensure that you
have read/write permissions to
the directory.

CTGSK3038W An error occurred while trying to
change the password of the request
database.

The changed password could
not be written to the password
stash file.

Operator response: Check the
file path to the key database
and stash files and ensure that
you have appropriate
read/write permissions to the
directory.

CTGSK3039W Certificate request "name" could not be
created.

The certificate request could
not be created.

Operator response: Review the
command line options selected,
correct any problems and retry
the operation.

CTGSK3040W A required value for the command was
not specified: name

The request action is missing a
required option.

Operator response: Review the
command line options selected,
correct any problems and retry
the operation.

Chapter 8. Runtime messages 67

Table 3. Runtime Messages (continued)

Message ID Message Details Explanation

CTGSK3041W A signature error has occurred while
signing item "name"

A problem occurred while
attempting to issue a signed
certificate.

Operator response: Review the
command line options to
ensure the selected options are
valid and compatible. Retry the
operation.

CTGSK3042W Invalid value for parameter "name" was
specified: other

An invalid value was supplied
for an option.

Operator response: Replace the
parameters that are not valid
and try again.

CTGSK3043W Unknown parameter "name" An unknown parameter was
supplied for an option.

Operator response: Review the
command line options selected,
correct any problems and retry
the operation.

CTGSK3044W No value for parameter "name" was
provided.

A value was expected but none
was found.

Operator response: Add a
valid value for the parameter
and re-run the command.

CTGSK3045W An error has occurred while reading the
keystore.

The keystore cannot be read.

Operator response: Check the
path to the key database and
ensure that you have
read/write permissions to the
file.

CTGSK3046W The key file "name" could not be
imported.

An error occurred reading the
keystore.

Operator response: Check the
path to the key database and
ensure that you have
read/write permissions to the
file.

CTGSK3047W Option "name" is not supported in FIPS
mode.

The operation is not supported
in FIPS mode.

Operator response: Review the
command line options selected,
correct any problems and retry
the operation.

CTGSK3048W The password is weak. The supplied password is too
weak.

Operator response: Try a
different password.

68

Table 3. Runtime Messages (continued)

Message ID Message Details Explanation

CTGSK3049W An attempted operation has failed: name
other : detail

An unexpected internal error
occurred.

Operator response: Contact
your support team.

CTGSK3050W An internal error occurred while
attempting to work with an ASN
extension: error

An unexpected internal error
occurred. The first parameter is
the reported GSK error code.

Operator response: Contact
your support team.

CTGSK3051W The current codepage "id" is not
supported, encoding for codepage
"name" instead.

No ICU converter exists for the
codepage the console has been
set to.

Operator response:Set the
console codepage to something
else compatible with the
locale's output.

CTGSK3052W "name" is not a supported signature
algorithm.

The chosen signature algorithm
is not supported for this
operation.

Operator response: Retry the
operation using a different
signature algorithm.

CTGSK3053W The database already contains a
certificate with label "name"

A certificate exists with that
name.

Operator response: Check the
label and try again.

CTGSK3054W An error occurred while trying to stash
the password for the database "name".

The changed password could
not be written to the password
stash file.

Operator response: Check the
file path to the key database
and stash files and ensure that
you have appropriate
read/write permissions to the
directory.

CTGSK3055W A "error" error occurred while formatting
the date and time information for locale
"name".

An error occurred formatting
the date and time information
for the locale. This is an error
reported from the ICU package.

Operator response: Retry the
command specifying a different
locale. Contact your support
team.

CTGSK3056W The file is not of the correct type. The file type is not known or
not supported for this
command.

Operator response: Change the
file type and try again.

Chapter 8. Runtime messages 69

Table 3. Runtime Messages (continued)

Message ID Message Details Explanation

CTGSK3057W Too many choices were selected, "name"
is not valid in this context.

Conflicting options have been
selected on the command line.

Operator response: Review the
command line options, correct
any problems and retry the
operation.

CTGSK3058W There is no data to write to file "name".
An empty file will not be created.

There is no data to write to the
file and an empty file is not
valid.

Operator response: No action
is required.

70

Chapter 9. Error codes and messages

GSKCapiCmd, returns GSKKM_OK (0) on success or a positive number indicating
the error that has occurred. The following table lists all of the error codes and their
associated error messages.

Table 4. Error Messages

Error Code Error Message

1 Unknown error occurred

2 An asn.1 encoding/decoding error occurred.

3 An error occurred while initializing asn.1 encoder/decoder.

4 An asn.1 encoding/decoding error occurred because of an out-of-range index
or non-existent optional field.

5 A database error occurred.

6 An error occurred while opening the database file, check for file existence and
permission.

7 An error occurred while re-opening the database file.

8 Database creation failed.

9 The database already exists.

10 An error occurred while deleting the database file.

11 The database could not be opened.

12 An error occurred while reading the database file.

13 An error occurred while writing data to the database file.

14 A database validation error occurred.

15 An invalid database version was encountered.

16 An invalid database password was encountered.

17 An invalid database file type was encountered.

18 The specified database has been corrupted.

19 An invalid password was provided or the key database has been tampered or
corrupted.

20 A database key entry integrity error occurred.

21 A duplicate certificate already exists in the database.

22 A duplicate key already exists in the database (Record ID).

23 A certificate with the same label already existed in the key database.

24 A duplicate key already exists in the database (Signature).

25 A duplicate key already exists in the database (Unsigned Certificate).

26 A duplicate key already exists in the database (Issuer and Serial Number).

27 A duplicate key already exists in the database (Subject Public Key Info).

28 A duplicate key already exists in the database (Unsigned CRL).

29 The label has been used in the database.

30 A password encryption error occurred.

31 An LDAP related error occurred.

© Copyright IBM Corp. 2005, 2010 71

Table 4. Error Messages (continued)

Error Code Error Message

32 A cryptographic error occurred.

33 An encryption/decryption error occurred.

34 An invalid cryptographic algorithm was found.

35 An error occurred while signing data.

36 An error occurred while verifying data.

37 An error occurred while computing digest of data.

38 An invalid cryptographic parameter was found.

39 An unsupported cryptographic algorithm was encountered.

40 The specified input size is greater than the supported modulus size.

41 An unsupported modulus size was found.

42 A database validation error occurred.

43 Key entry validation failed.

44 A duplicate extension field exists.

45 The version of the key is wrong.

46 A required extension field does not exist.

47 The validity period does not include today or does not fall within its issuer's
validity period.

48 The validity period does not include today or does not fall within its issuer's
validity period.

49 An error occurred while validating validity private key usage extension.

50 The issuer of the key was not found.

51 A required certificate extension is missing.

52 An invalid basic constraint extension was found.

53 The key signature validation failed.

54 The root key of the key is not trusted.

55 The key has been revoked.

56 An error occurred while validating authority key identifier extension.

57 An error occurred while validating private key usage extension.

58 An error occurred while validating subject alternative name extension.

59 An error occurred while validating issuer alternative name extension.

60 An error occurred while validating key usage extension.

61 An unknown critical extension was found.

62 An error occurred while validating key pair entries.

63 An error occurred while validating CRL.

64 A mutex error occurred.

65 An invalid parameter was found.

66 A null parameter or memory allocation error was encountered.

67 Number or size is too large or too small.

68 The old password is invalid.

69 The new password is invalid.

72

Table 4. Error Messages (continued)

Error Code Error Message

70 The password has expired. (deprecated)

71 A thread related error occurred.

72 An error occurred while creating threads.

73 An error occurred while a thread was waiting to exit.

74 An I/O error occurred.

75 An error occurred while loading CMS.

76 A cryptography hardware related error occurred.

77 The library initialization routine was not successfully called.

78 The internal database handle table is corrupted.

79 A memory allocation error occurred.

80 An unrecognized option was found.

81 An error occurred while getting time information.

82 Mutex creation error occurred.

83 An error occurred while opening message catalog.

84 An error occurred while opening error message catalog.

85 A null file name was found.

86 An error occurred while opening files, check for file existence and
permissions.

87 An error occurred while opening files to read.

88 An error occurred while opening files to write.

89 There is no such file.

90 The file cannot be opened because of its permission setting.

91 An error occurred while writing data to files.

92 An error occurred while deleting files.

93 Invalid Base64-encoded data was found.

94 An invalid Base64 message type was found.

95 An error occurred while encoding data with Base64 encoding rule.

96 An error occurred while decoding Base64-encoded data.

97 An error occurred while getting a distinguished name tag.

98 The required common name field is empty.

99 The required country or region name field is empty.

100 An invalid database handle was found.

101 The key database does not exist.

102 The request key pair database does not exist.

103 The password file does not exist.

104 The new password is identical to the old one.

105 No key was found in the key database.

106 No request key was found.

107 No trusted CA was found

108 No request key was found for the certificate.

Chapter 9. Error codes and messages 73

Table 4. Error Messages (continued)

Error Code Error Message

109 There is no private key in the key database

110 There is no default key in the key database. (deprecated)

111 There is no private key in the key record.

112 There is no certificate in the key record.

113 There is no CRL entry.

114 An invalid key database file name was found.

115 An unrecognized private key type was found.

116 An invalid distinguished name input was found.

117 No key entry was found that has the specified key label.

118 The key label list has been corrupted.

119 The input data is not valid PKCS12 data.

120 The password is invalid or the PKCS12 data has been corrupted or been
created with later version of PKCS12.

121 An unrecognized key export type was found.

122 An unsupported password-based encryption algorithm was found.

123 An error occurred while converting the key ring file to a CMS key database.

124 An error occurred while converting the CMS key database to a key ring file.

125 An error occurred while creating a certificate for the certificate request.

126 A complete issuer chain cannot be built.

127 Invalid WEBDB data was found.

128 There is no data to be written to the key ring file.

129 The number of days that you entered extends beyond the permitted validity
period.

130 The password is too short; it must consist of at least {0} characters.

131 A password must contain at least one numeric digit.

132 All characters in the password are either alphabetic or numeric characters.

133 An unrecognized or unsupported signature algorithm was specified.

134 An invalid database type was encountered.

135 The specified secondary key database is in use by another PKCS#11 device.

136 No secondary key database was specified.

137 The label does not exist on the PKCS#11 device.

138 Password required to access the PKCS#11 device.

139 Password not required to access the PKCS#11 device.

140 Unable to load the cryptographic library.

141 PKCS#11 is not supported for this operation.

142 An operation on a PKCS#11 device has failed.

143 The LDAP user is not a valid user.

144 The LDAP user password is incorrect.

145 The LDAP query failed.

146 An invalid certificate chain was found.

74

Table 4. Error Messages (continued)

Error Code Error Message

147 The root certificate is not trusted.

148 A revoked certificate was encountered.

149 A cryptographic object function failed.

150 There is no certificate revocation list data source available.

151 There is no cryptographic token available.

152 FIPS mode is not available.

153 There is a conflict with the FIPS mode settings.

154 The password entered does not meet the minimum required strength.

200 There was a failure during initialization of the program.

201 Tokenization of the arguments passed to the GSKCapiCmd Program failed.

202 The object identified in the command is not a recognized object.

203 The action passed is not a known -keydb action.

204 The action passed is not a known -cert action.

205 The action passed is not a known -certreq action.

206 There is a tag missing for the requested command.

207 The value passed with the –version tag is not a recognized value.

208 The value passed with the –size tag is not a recognized value.

209 The value passed in with the –dn tag is not in the correct format.

210 The value passed in with the –format tag is not a recognized value.

211 There was an error associated with opening the file.

212 PKCS12 is not supported at this stage.

213 The cryptographic token you are trying to change the password for is not
password protected.

214 PKCS12 is not supported at this stage.

215 The password entered does not meet the minimum required strength.

216 FIPS mode is not available.

217 The number of days you have entered as the expiry date is out of the allowed
range.

218 Password strength failed the minimum requirements.

219 No Default certificate was found in the requested key database. (deprecated)

220 An invalid trust status was encountered.

221 An unsupported signature algorithm was encountered. At this stage only MD5
and SHA1 are supported.

222 PCKS11 not supported for that particular operation.

223 The action passed is not a known –random action.

224 A length than less than zero is not allowed.

225 When using the –strong tag the minimum length password is 14 characters.

226 When using the –strong tag the maximum length password is 300 characters.

227 The MD5 algorithm is not supported when in FIPS mode.

228 The site tag is not supported for the –cert –list command. This attribute is
simply added for backward compatibility and potential future enhancement.

Chapter 9. Error codes and messages 75

Table 4. Error Messages (continued)

Error Code Error Message

229 The value associated with the -ca tag is not recognized. The value must be
either ‘true’ or ‘false’.

230 The value passed in with the –type tag is not valid.

231 The value passed in with the –expire tag is below the allowed range.

232 The encryption algorithm used or requested is not supported.

233 The target already exists.

76

Appendix A. CMS key databases

What is a CMS key database?
Certificate Management System (CMS) is the native GSKit key database (keystore)

containing:

v X.509 certificates

v Certificate requests (ones pending signing by an authority), and

v Private keys for the stored certificates where applicable.

Typically, only personal certificates contain private keys. If a certificate has an

associated private key, it is stored encrypted in the keystore with its associated

certificate. Private keys cannot be stored without an associated certificate.

How is a CMS key database organized?
A CMS keystore consists of a file with extension .kdb and optionally two other
files with extension .rdb and .crl respectively.

A key record in a .kdb file is either a certificate on its own or a certificate plus its
encrypted private key information. Private keys cannot be stored in a CMS
keystore without a corresponding certificate.

When a certificate request is created, a .rdb file with the same file stem as the key
database file is created. This file is used to store the requested key pair, along with
the PKCS#10 certificate request data. The request entry is only deleted from the
request key database when a signed certificate is obtained from a signing authority
and received into the key database. The signed certificate is matched up with the
private key in the .rdb file and together they are added to the .kdb file as a
certificate with private key information.

A .crl file is also created, purely for legacy reasons (in the past it contained
Certificate Revocation Lists (CRLs)). This file is no longer used and is always
empty.

How is a CMS key database protected
GSKit implements password protection for access control, confidentiality, and
integrity of the CMS key database. The password must be provided before any
access to the keystore database.

The access control does not limit unauthorized users from reading and writing the
file. GSKit relies on the OS for these protections, but access to sensitive data is
effectively controlled because all sensitive data in the keystore is encrypted, all
records hashed, and the index to all records is hashed. This ensures that any
modification to the file is detectable. If tampering is detected, GSKit will deny
access to the keystore (the behaviour is similar to receipt of an incorrect password).

© Copyright IBM Corp. 2005, 2010 77

What can I put in a CMS key database?
The CMS keystore contains X.509 certificates along with any associated private key
information. For example when using the GSKCapiCmd tool to maintain a CMS
keystore the following items may typically end up in the keystore:
v CA Certificates.

Each valid X.509 certificate needs to be signed. Typically, this is done by a
trusted Certificate Authority (CA). To validate a certificate signed by a CA, the
public certificate for that CA must be in the CMS keystore. The GSKCapiCmd
tool automatically populates a new CMS keystore with a number of CA
certificates. If the CMS keystore does not already contain a required CA
certificate, an administrator uses GSKCapiCmd to add it . Any valid X.509
certificate can be imported into a CMS keystore. For the import or add operation
to succeed, the incoming certificate must be validated. For this reason, the
certificate needed for the validation chain must already exist in the keystore.

v Intermediate Certificates.

A valid certificate does not necessarily need to be signed by a CA. Instead it can
be signed by what is known as an intermediate certificate that has itself been
signed by a CA. If this is the case then both the CA certificate and the
intermediate certificate must be in the CMS keystore in order to validate that
certificate. This is known as a certificate validation chain. An administrator
typically uses GSKCapiCmd to add their intermediate certificate. The keystore
treats intermediate certificates in the same way as CA certificates.

v Personal Certificates.

In a client-server relationship, the server may ask the client for its certificate.
When acting as a client, GSKit attempts to use a personal certificate from the
keystore to present to the server. Typically, GSKit picks the certificate that is
marked as the default, or another certificate indicated by the client application.
A personal certificate can also be used for signing other certificates. For example,
an Intermediate certificate together with its private key may be in a CMS
keystore and used to sign other certificates. An extracted version (without the
private key) of the intermediate certificate is then added to other CMS keystores,
to be used in a validation chain. An administrator typically uses GSKCapiCmd
to add and extract their personal certificate(s). The final use for a personal
certificate is for a server application. The server may present a personal
certificate to the client during an SSL handshake.

GSKCapiCmd supports two certificate transfer formats (for commands such as
add, import, extract, and so forth). These are referred to as ASCII and binary
throughout this document. The default is Base64 encoded ASCII. Additional
information about base64 encoding can be found in rfc2045 and rfc3548. The binary
format is a binary dump of the DER encoded certificate structure. For additional
information refer to ITU-T Rec. X.690 (2002) | ISO/IEC 8825-1:2002.

What is a label?
A label is a friendly name that an administrator can attach to a certificate that is
contained in a CMS keystore. It is simply a convenient, human readable way to
reference a certificate.

How can I manipulate certificates in a CMS keystore?
Certificates in a CMS keystore are standard X.509 certificates. X.509 entities can be:
v imported (for personal certificates),

78

v added (for a certificate needed in a validation chain such as a CA or
intermediate certificate),

v exported (from one CMS keystore to another - this takes the private key with it
if one exists), or

v extracted (extract the public certificate – the private key is not extracted).

An administrator can also change the trust status of a certificate. When a
certificate’s trust status is enabled, it is permitted to be involved in a certificate
chain validation. If the certificate’s trust status is disabled then it cannot be used to
validate any other certificates. For example, if certificate “ABC” is signed by the
CA certificate “VeriSign CA”, but “VeriSign CA” is not marked as trusted, the
validation of “ABC” will fail.

Appendix A. CMS key databases 79

80

Appendix B. A Simple Example

The example below offers an example scenario for a company setting up a web site
for its employees to access business-sensitive information. It is assumed that the
web server chosen by the company uses GSKit as its SSL provider. The example
does not cover all issues for such a scenario, but instead concentrates on what an
administrator would typically need to do to set up a CMS keystore in such an
environment.

The requirement
The ACME company wishes to set up a web site for its employees to access certain
sensitive business information across a wide geographical area. Some employees
are more senior than others and therefore will be allowed access to more resources
on the server than the junior employees. It is expected that employees can be
assured they are connecting to their company web site (not some fraudulent site
pretending to be their company site). Employees use a customized web browser
that can read CMS keystores to access certificates contained in them.

The CEO of ACME has asked the system administrator to implement this system
in a manner that is secure and cost conscious.

Considerations for the administrator
The administrator makes the following decisions based on the requirements:
v	 As the employees are located at different geographical locations, a secure

channel for the web traffic must be used. The administrator decides to use SSL.
v	 As employees will have different levels of access to web content, the

administrator decides that the server will operate in client authentication mode
where each connecting client must present a valid certificate in order to gain
access. Information from this presented certificate will be used to limit access to
authorized areas of the web server only. (This is outside the scope of this
scenario).

v	 As cost is an issue, the administrator decides that it is too costly to have every
employee certificate signed by a CA. The administrator decides to use a
company wide intermediate certificate to sign all employee certificates.

v	 Employees must be able to validate the server’s certificate thereby proving the
authenticity of the web server.

v	 The administrator notes that it is bad practice to use a certificate for more than
one purpose so decides that another certificate must be produced and signed by
the CA. This certificate will be the server certificate used for the web site. Using
the Intermediate Certificate for this purpose would be poor practice.

Step 1 – Obtain a company-wide intermediate certificate
The administrator needs to create a certificate that can be used to sign each
employee’s certificate. This intermediate certificate itself may be publicly published
so it needs to be signed by a trusted CA. To achieve this, the administrator
performs the following actions:
1.	 The administrator creates a new CMS keystore in the default FIPS mode using

the “Create a Key Database” command:

© Copyright IBM Corp. 2005, 2010 81

gsk8capicmd -keydb -create -db acme.kdb -pw offs64b

2.	 The administrator notices that the new keystore, while containing a number of
CA certificates, does not contain the certificate of the CA he would like to use
to sign his Intermediate Certificate. He obtains the CA certificate (this is usually
done by visiting a well know site that publishes these) and adds it to his CMS
keystore via the “Add a Certificate” command:
gsk8capicmd -cert -add -db acme.kdb -pw offs64b -label OurCA -file CACert.arm
-format ascii

3.	 The administrator then creates a new certificate request to be sent to the CA
that he has chosen to sign our Intermediate Certificate using the “Create a
Certificate Request” command:
gsk8capicmd -certreq -create -db acme.kdb –pw offs64b -label OurIntermediate
-dn “CN=acme.com,O=acme,C=US” -file certreq.arm -sigalg sha1

4.	 The administrator takes the request file (certreq.arm in this case) and sends it
to the CA for signing. Sometime later the signed certificate is returned by the
CA. The administrator then receives the certificate into the CMS keystore using
the “Receive a Certificate” command:
gsk8capicmd -cert -receive -file signedCert.arm -db acme.kdb -pw offs64b

5.	 Make the new certificate the default one. This means that it will be used by
default to sign other certificate request if no other certificate label is given. The
administrator makes it the default certificate using the following command:
gsk8capicmd -cert -setdefault -db acme.kdb -pw offs64b -label OurIntermediate

Step 2 – Sign all employee certificates using the ACME intermediate
The administrator now has a CMS keystore containing ACME’s intermediate
certificate and the CA certificate that signed that intermediate certificate. The
administrator now needs to use ACME’s intermediate certificate to sign all the
employee certificates. To achieve this, the administrator performs the following
actions:
1.	 The administrator asks each employee to obtain the CA certificate and add it to

their respective CMS keystores. Note that employees may first need to create
their own CMS keystore in the same manner as the administrator did in item 1
of step 1. The employee adds the CA certificate using the “Add a Certificate”
command:
gsk8capicmd -cert -add -db Dave.kdb -pw Davepwd -label OurCA -file CACert.arm
-format ascii

2.	 The administrator extracts the Intermediate Certificate (note that this does not
extract the private key of the certificate) using the “Extract a Certificate”
command:
gsk8capicmd -cert -extract -db acme.kdb -pw offs64b -label acmeCert -target
acmeCert.arm

3.	 The administrator sends the ACME intermediate certificate to each employee
asking them to add it to their keystore. Employees do this via the “Add a
Certificate” command:
gsk8capicmd -cert -add -db Dave.kdb -pw Davepwd -label acmeCert -file
acmeCert.arm –format ascii

4.	 The administrator asks each employee to create a certificate request putting
their employee email address in the CN field. The employees use the “Create a
Certificate Request” command:
gsk8capicmd -certreq -create -db Dave.kdb –pw Davepwd -label myCert -dn
“CN=dave@acme.com,O=acme,C=US” -file DavesCertReq.arm -sigalg sha1

82

5.	 Upon receipt of each employee’s certificate request the administrator signs it
and returns the signed certificate to the employee. The administrator uses the
“Sign a Certificate” command to achieve this:
gsk8capicmd -cert -sign -db acme.kdb -pw offs64b -label acmeCert -target

DavesCertReq.arm -expire 365 -file DavesSignedCert.arm -sigalg sha1

6.	 As each employee obtains their signed certificate they receive it into their CMS
keystore. Employees use the “Receive a Certificate” command:
gsk8capicmd -cert -receive -file DavesSignedCert.arm -db Dave.kdb -pw Davepwd

7.	 Make the new certificate the default one. This means that it will be the
certificate sent to the web server when it requests one via SSL for client
authentication purposes. The employee makes it the default certificate using the
following command:
gsk8capicmd -cert -setdefault -db Dave.kdb -pw Davepwd -label myCert

Step 3. Create the web server certificate
At this stage the administrator has a CMS database containing the CA certificate
and the ACME Intermediate certificate (with its corresponding private key). The
administrator puts this CMS keystore in a safe place using it only to sign new
employee certificates.

Each employee has a CMS keystore containing the CA certificate, the ACME
Intermediate Certificate (minus the corresponding private key), and their own
certificate that has been signed by the ACME Intermediate Certificate.

The remaining task for the administrator is to create a CMS keystore with a
certificate to be used by the web server. Although the administrator could have
used the ACME Intermediate Certificate for this purpose, as stated previously, it is
considered bad practice to use a certificate for more than one purpose. The
intermediate certificate is already being used to sign employees’ certificates. To
create a keystore and server certificate the administrator performs the following
actions:
1.	 The administrator creates a new CMS keystore using the “Create a Key

Database” command:
gsk8capicmd -keydb -create -db acmeWebServer.kdb -pw ejed43dA

2.	 The administrator adds the CA certificate to the keystore using the “Add a
Certificate command:
gsk8capicmd -cert -add -db acmeWebServer.kdb -pw ejed43dA -label OurCA -file
CACert.arm –format ascii

3.	 The administrator creates a new certificate request to be sent to the CA that he
has chosen to sign our web server certificate using the “Create a Certificate
Request” command:
gsk8capicmd -certreq -create -db acmeWebServer.kdb –pw ejed43dA -label
OurServerCert -dn “CN=web.acme.com,O=acme,C=US” -file serverCertReq.arm
-sigalg sha1

4.	 The administrator takes the request file (serverCertReq.arm in this case) and
sends it to the CA for signing. Sometime later the signed certificate is returned
by the CA. The administrator then receives the certificate into the CMS
keystore using the “Receive a Certificate command:
gsk8capicmd -cert -receive -file signedServerCert.arm -db acmeWebServer.kdb
-pw ejed43dA

5.	 Make the new certificate the default one. This means that when a client
connects to the web server the server will offer this certificate to the client. The
administrator makes it the default certificate using the following command:

Appendix B. A Simple Example 83

gsk8capicmd -cert -setdefault -db acmeWebServer.kdb -pw ejed43dA -label
OurServerCert

6.	 The administrator now has a CMS keystore with a server certificate ready for
use by the web server application.

So do we meet the requirements?
Let’s look at each requirement in turn:
v	 As the employees are located at different geographical locations a secure channel

for the web traffic must be used. The administrator decides to use SSL.
–	 For a web server to make use of SSL it must have a server side certificate to

offer to clients during the SSL handshake. The certificate labeled
"OurServerCert" in the keystore acmeWebServer.kdb can be used for this
purpose.

v	 As employees will have different levels of access to web content the
administrator decides that the server will operate in client authentication mode
where each connecting client must present a valid certificate to gain access.
Information from this presented certificate will be used to limit access to
authorized areas of the web server only. (This is outside the scope of this
scenario).
–	 Each employee has their own certificate to offer to the server when it requests

one during the SSL handshake. The server can first validate the client
certificate as it has the signer chain, that is, the client certificate is signed by
the ACME Intermediate Certificate, and the ACME intermediate certificate is
in turn signed by the CA certificate. The server keystore (acmeWebServer.kdb)
contains both of these certificates. Once the client certificate has been
validated the application can inspect the CN of the certificate and extract the
employee email address from it. The application can then use the employee
email address to determine the level of access allowed for the connection.

v	 As cost is an issue the administrator decides that it so too costly to have every
employee certificate signed by a CA. The administrator decides to use a
company wide intermediate certificate to sign all employee certificates.
–	 The administrator only incurred the expense of two CA signing operations.

One for the Intermediate Certificate and one for the signer certificate.
v	 Employees must be able to validate the server’s certificate to prove the

authenticity of the web server.
–	 When the client application receives (as part of the SSL handshake) the server

certificate it can verify the validity of that certificate as it has the CA
certificate that signed it.

v	 The administrator notes that it is bad practice to use a certificate for more than
one purpose so decides that another certificate must be produced and signed by
the CA. This certificate will be the server certificate used for the web site. Using
the Intermediate Certificate for this purpose would be poor practice.
–	 Two certificates have been created. “OurServerCert” for use by the ACME

web server and “OurIntermediate” for the administrator to use to sign
employee certificates.

84

Appendix C. Resources

ASN.1 Project

ASN.1 and OID project website http://asn1.elibel.tm.fr/en/standards/index.htm.

Basic Encoding Rules (BER)

BER encoding is defined in the specification ITU-T Rec. X.690 (2002).

Distinguished Encoding Rules (DER)

DER encoding is defined in the specification ITU-T Rec. X.690 (2002). See the
Internet RFC/STD/FYI/BCP Archives http://www.faqs.org/rfcs.

X.509

RFC 3280: Internet X.509 Public Key Infrastructure - Certificate and Certificate
Revocation List (CRL), obsoletes RFC 2459, April 2002. See RSA Security
http://www.rsasecurity.com/rsalabs/.

PKCS#7

PKCS 7 v1.5: Cryptographic Message Syntax, RSA Laboratories, March 1998.

PKCS#10

RFC 2986: PKCS #10: Certification Request Syntax Specification, Version 1.7,
November 2000.

PKCS#11

Cryptographic Token Interface Standard.

PKCS#12

PKCS 12 v1.0: Personal Information Exchange Syntax, RSA Laboratories, June 24,
1999.

Certificate Management System (CMS)

Appendix A, “CMS key databases,” on page 77 offers additional information
concerning the format and use of a CMS keystore.

Appendix B, “A Simple Example,” on page 81 provides a simple example of how
CMS keystores can be used to enable SSL communication between a server and
client application.

© Copyright IBM Corp. 2005, 2010 85

http://asn1.elibel.tm.fr/en/standards/index.htm
http://www.faqs.org/rfcs
http://www.rsasecurity.com/rsalabs/
http://www.rsasecurity.com/rsalabs
http://www.faqs.org/rfcs
http://asn1.elibel.tm.fr/en/standards/index.htm

86

Appendix D. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any functionally equivalent
product, program, or service that does not infringe any IBM intellectual property
right may be used instead. Any reference to an IBM product, program, or service is
not intended to state or imply that only that IBM product, program, or service may
be used. However, it is the user responsibility to evaluate and verify the operation
of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2005, 2010 87

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not

88

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM‘s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information in softcopy form, the photographs and color
illustrations might not be displayed.

Trademarks
IBM, the IBM logo, AIX, DB2®, IBMLink, Tivoli, Tivoli Enterprise Console®, and
TME are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both.

Adobe®, the Adobe logo, Acrobat, PostScript® and all Adobe-based trademarks are
either registered trademarks or trademarks of Adobe Systems Incorporated in the
United States, other countries, or both.

Cell Broadband Engine™ is a trademark of Sony Computer Entertainment, Inc., in
the United States, other countries, or both and is used under license therefrom.

Intel®, Intel logo, Intel Inside®, Intel Inside logo, Intel Centrino®, Intel Centrino
logo, Celeron®, Intel Xeon®, Intel SpeedStep®, Itanium®, and Pentium® are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

IT Infrastructure Library® is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

IT Infrastructure Library is a registered trademark, and a registered community
trademark of the Office of Government Commerce, and is registered in the U.S.
Patent and Trademark Office.

Java and all Java-based trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT®, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Appendix D. Notices 89

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

90

---®

Printed in USA

	Contents
	Preface
	Who should read this book
	Accessibility
	IBM and accessibility

	Contacting software support
	Conventions used in this book
	Typeface conventions
	Symbol conventions

	Operating system differences

	Chapter 1. Using the GSKCapiCmd program
	Language support overview
	Locale environment variables
	LANG variable on UNIX or Linux systems
	Forcing output to a different locale
	Using locale variants
	Text encoding (code set) support

	GSKCapiCmd command-line syntax

	Chapter 2. Key database commands
	Create a key database (-create)
	Delete a key database (-delete)
	Change the password of an existing key database (-changepw)
	Stash the password of an existing key database (-stashpw)
	List the supported key databases (-list)
	Convert a key database (-convert)
	Display the expiry date associated with a key database (-expiry) [deprecated]

	Chapter 3. Certificate commands
	Signature algorithms
	Certificate scripting language
	Create a self-signed certificate in a keystore (-create)
	Add a certificate to a keystore (-add)
	Delete a certificate from a keystore (-delete)
	Display details of a certificate (-details)
	Export a certificate (-export)
	Receive a certificate into a keystore (-receive)
	Import a certificate (-import)
	Extract a certificate from a keystore (-extract)
	List details of the default certificate (-getdefault) [deprecated]
	Set default certificate in a keystore (-setdefault) [deprecated]
	Rename a certificate in a keystore (-rename)
	List the certificates stored in a keystore (-list)
	Modify a certificate in a keystore (-modify)
	Sign a certificate (-sign)
	Validate a certificate (-validate)

	Chapter 4. Certificate request commands
	Create a certificate request (-create)
	Delete certificate request (-delete)
	List certificate request details (-details)
	Extract certificate request (-extract)
	List all certificate requests (-list)
	Re-create certificate requests (-recreate)

	Chapter 5. Random commands
	Create a random password of a specified length (-create)

	Chapter 6. Help commands
	Chapter 7. Version command
	Chapter 8. Runtime messages
	Chapter 9. Error codes and messages
	Appendix A. CMS key databases
	What is a CMS key database?
	How is a CMS key database organized?
	How is a CMS key database protected
	What can I put in a CMS key database?
	What is a label?
	How can I manipulate certificates in a CMS keystore?

	Appendix B. A Simple Example
	The requirement
	Considerations for the administrator
	Step 1 – Obtain a company-wide intermediate certificate
	Step 2 – Sign all employee certificates using the ACME intermediate
	Step 3. Create the web server certificate
	So do we meet the requirements?

	Appendix C. Resources
	Appendix D. Notices
	Trademarks

