
IBM WebSphere Application Server for z/OS, Version 8.0

Tuning guide

SA23-1360-01

���

Note
Before using this information, be sure to read the general information under “Notices” on page 73.

Compilation date: July 15, 2011

© Copyright IBM Corporation 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

How to send your comments . v

Changes to serve you more quickly . vii

Chapter 1. Planning for performance . 1
Application design consideration . 1

Chapter 2. Taking advantage of performance functions. 5

Chapter 3. Obtaining advice from the advisors . 7
Why you want to use the performance advisors . 7

Performance advisor types and purposes . 8
Using the Performance and Diagnostic Advisor . 11

Performance and Diagnostic Advisor configuration settings 13
Advice configuration settings . 15
Viewing the Performance and Diagnostic Advisor recommendations 16
Starting the lightweight memory leak detection . 16
Enabling automated heap dump generation . 18

Using the performance advisor in Tivoli Performance Viewer 21

Chapter 4. Tuning the application serving environment 23
Tuning parameter hot list. 24
Directory conventions . 27
Tuning TCP/IP buffer sizes . 28
Tuning the JVM . 29

Tuning the IBM virtual machine for Java . 29
Directory conventions . 40
Tuning transport channel services . 41
Checking hardware configuration and settings . 44
Tuning operating systems . 46
Tuning on z/OS . 47

Tuning the z/OS operating system . 47
Tuning the WebSphere Application Server for z/OS runtime 54
Tuning message-driven bean processing on z/OS by using WebSphere MQ as the messaging

provider in ASF mode . 57
Tuning storage . 60
Directory conventions . 60
Using PassByReference optimization in SCA applications. 61
Tuning the application server using pre-defined tuning templates 63

Chapter 5. Troubleshooting performance problems 67

Appendix. Directory conventions . 71

Notices . 73

Trademarks and service marks. 75

Index . 77

© Copyright IBM Corp. 2011 iii

iv Tuning guide

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.

v To send comments on articles in the WebSphere Application Server Information Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail
form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

v To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax
them to 919-254-5250.

Be sure to include the document name and number, the WebSphere Application Server version you are
using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2011 v

vi Tuning guide

Changes to serve you more quickly

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The
information center is the official delivery format for IBM WebSphere Application Server documentation. If
you use the PDF books primarily for convenient printing, it is now easier to print various parts of the
information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon
is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation
tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a
separate browser window as one HTML file. The HTML file includes each of the topics in the section,
with a table of contents at the top.

4. Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your
selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a
preferable limit. The feedback link is available at the end of most information center pages.

Under construction!

The Information Development Team for IBM WebSphere Application Server is changing its PDF book
delivery strategy to respond better to user needs. The intention is to deliver the content to you in PDF
format more frequently. During a temporary transition phase, you might experience broken links. During
the transition phase, expect the following link behavior:

v Links to Web addresses beginning with http:// work

v Links that refer to specific page numbers within the same PDF book work

v The remaining links will not work. You receive an error message when you click them

Thanks for your patience, in the short term, to facilitate the transition to more frequent PDF book updates.

© Copyright IBM Corp. 2011 vii

viii Tuning guide

Chapter 1. Planning for performance

How well a website performs while receiving heavy user traffic is an essential factor in the overall success
of an organization. This section provides online resources that you can consult to ensure that your site
performs well under pressure.

Procedure
v Consult the following web resources for learning.

IBM® Patterns for e-Business

IBM Patterns for e-business is a group of reusable assets that can help speed the process of
developing Web-based applications. The patterns leverage the experience of IBM architects to
create solutions quickly, whether for a small local business or a large multinational enterprise.

Planning for availability in the enterprise

Availability is an achievable service-level characteristic that every enterprise struggles with. The
worst case scenario is realized when load is underestimated or bandwidth is overloaded
because availability planning was not carefully conducted. Applying the information in this article
and the accompanying spreadsheet to your planning exercises can help you avoid such a
scenario.

Hardware configurations for WebSphere® Application Server production environments
This article describes the most common production hardware configurations, and provides the
reasons for choosing each one. It begins with a single machine configuration, and then
proceeds with additional configurations that have higher fault tolerance, horizontal scaling, and a
separation of web and enterprise bean servers.

v Take advantage of performance functions to improve performance. You can use functions such as
balancing workloads with clusters and using the dynamic cache to improve performance.

Application design consideration
This topic describes architectural suggestions for the design and tuning of applications.

The designing applications information contains the architectural suggestions and the implementation of
applications. For existing applications, the suggestions might require changing the existing
implementations. Tuning the application server and resource parameters can have the greatest effect on
performance of the applications that are well designed.

Use designing applications considerations in this topic for tips to ensure your applications are thoughtfully
designed and tuned. These considerations include websites and other ideas for finding best practices for
designing WebSphere applications, particularly in the realm of WebSphere extensions to the Java
Platform, Enterprise Edition (Java EE) specification.

best-practices: Use the following information as an architectural guide when implementing applications:

v Persistence

v Model-view-controller pattern

v Statelessness

v Caching

v Asynchronous considerations

v Third-party libraries

Persistence

© IBM Corporation 2004 1

http://www.ibm.com/developerworks/patterns/
http://www.ibm.com/developerworks/websphere/techjournal/0312_polozoff/polozoff.html
http://www-106.ibm.com/developerworks/websphere/library/techarticles/0212_vansickel/0212_vansickel.html

Java EE applications load, store, create, and remove data from relational databases, a process commonly
referred to as persistence. Most enterprise applications have significant database access. The architecture
and performance of the persistence layer is critical to the performance of an application. Therefore,
persistence is a very important area to consider when making architectural choices that require trade-offs
related to performance. This guide recommends first focusing on a solution that has clean architecture.
The clean architecture considers data consistency, security, maintenance, portability, and the performance
of that solution. Although this approach might not yield the absolute peak performance obtainable from
manual coding a solution that ignores the mentioned qualities of service, this approach can achieve the
appropriate balance of data consistency, maintainability, portability, security, and performance.

Multiple options are available in Java EE for persistence: Session beans using entity beans including
container-managed persistence (CMP) or bean-managed persistence (BMP), session beans using Java
Database Connectivity (JDBC), and Java beans using JDBC. For the reasons previously mentioned,
consider CMP entity persistence because it provides maximum security, maintenance, and portability. CMP
is also recommended for good performance. Refer to the Tune the EJB container section of the tuning
application servers topic on tuning enterprise beans and more specifically, CMP.

If an application requires using enterprise beans not using EJB entities, the persistence mechanism
usually involves the JDBC API. Because JDBC requires manual coding, the Structured Query Language
(SQL) that runs against a database instance, it is critical to optimize the SQL statements that are used
within the application. Also, configure the database server to support the optimal performance of these
SQL statements. Finally, usage of specific JDBC APIs must be considered including prepared statements
and batching.

Regardless of which persistence mechanism is considered, use container-managed transactions where the
bean delegates management of transactions to the container. For applications that use JDBC, this is easily
achieved by using the session façade pattern, which wraps all JDBC functions with a stateless session
bean.

Finally, information about tuning the connection over which the EJB entity beans or JDBC communicates
can be found in the Tune the data sources section of the tuning application servers topic.

Model-view-controller pattern

One of the standard Java EE programming architectures is the model-view-controller (MVC) architecture,
where a call to a controller servlet might include one or more child JavaServer Pages (JSP) files to
construct the view. The MVC pattern is a recommended pattern for application architecture. This pattern
requires distinct separation of the view (JSP files or presentation logic), the controller (servlets), and the
model (business logic). Using the MVC pattern enables optimization of the performance and scalability of
each layer separately.

Statelessness

Implementations that avoid storing the client user state scale and perform the best. Design
implementations to avoid storing state. If state storage is needed, ensure that the size of the state data
and the time that the state is stored are kept to the smallest possible values. Also, if state storage is
needed, consider the possibility of reconstructing the state if a failure occurs, instead of guaranteeing state
failover through replication.

Specific tuning of state affects HTTP session state, dynamic caching, and enterprise beans. Refer to the
follow tuning guides for tuning the size, replication, and timing of the state storage:
v Session management tuning
v EJB tuning tips
v Tuning dynamic cache with the cache monitor

Caching

2 Tuning guide

Most Java EE application workloads have more read operations than write operations. Read operations
require passing a request through several topology levels that consist of a front-end web server, the web
container of an application server, the EJB container of an application server, and a database. WebSphere
Application Server provides the ability to cache results at all levels of the network topology and Java EE
programming model that include web services.

Application designers must consider caching when the application architecture is designed because
caching integrates at most levels of the programming model. Caching is another reason to enforce the
MVC pattern in applications. Combining caching and MVC can provide caching independent of the
presentation technology and in cases where there is no presentation to the clients of the application.

Network designers must consider caching when network planning is performed because caching also
integrates at most levels of the network topology. For applications that are available on the public Internet,
network designers might want to consider Edge Side Include (ESI) caching when WebSphere Application
Server caching extends into the public Internet. Network caching services are available in the proxy server
for WebSphere Application Server, WebSphere Edge Component Caching Proxy, and the WebSphere
plug-in.

Asynchronous considerations

Java EE workloads typically consist of two types of operations. You must perform the first type of operation
to respond to a system request. You can perform the second type of operation asynchronously after the
user request that initiated the operation is fulfilled.

An example of this difference is an application that enables you to submit a purchase order, enables you
to continue while the system validates the order, queries remote systems, and in the future informs you of
the purchase order status. This example can be implemented synchronously with the client waiting for the
response. The synchronous implementation requires application server resources and you wait until the
entire operations complete. If the process enables you to continue, while the result is computed
asynchronously, the application server can schedule the processing to occur when it is optimal in relation
to other requests. The notification to you can be triggered through email or some other interface within the
application.

Because the asynchronous approach supports optimal scheduling of workloads and minimal server
resource, consider asynchronous architectures. WebSphere Application Server supports asynchronous
programming through Java EE Java Message Service (JMS) and message-driven beans (MDB) as well as
asynchronous beans that are explained in the Tuning Java Message Service and Tuning MDB topics.

Third-party libraries

Verify that all the libraries that applications use are also designed for server-side performance. Some
libraries are designed to work well within a client application and fail to consider server-side performance
concerns, for example, memory utilization, synchronization, and pooling. It is suggested that all libraries
that are not developed as part of an application undergo performance testing using the same test
methodologies as used for the application.

Additional reference:

IBM WebSphere Developer Technical Journal: The top 10 (more or less) Java EE best practices

Improve performance in your XML applications, Part 2

Chapter 1. Planning for performance 3

http://www-106.ibm.com/developerworks/websphere/techjournal/0405_brown/0405_brown.html
http://www-106.ibm.com/developerworks/xml/library/x-perfap2.html

4 Tuning guide

Chapter 2. Taking advantage of performance functions

This topic highlights a few main ways you can improve performance through a combination of product
features and application development considerations.

Procedure
v Use one of the following considerations to improve performance.

Balancing workloads with clusters

Clusters are sets of servers that are managed together and participate in workload
management. The servers that are members of a cluster can be on different host machines, as
opposed to the servers that are part of the same node and must be located on the same host
machine. A cell can have no clusters, one cluster, or multiple clusters.

Using the dynamic cache service to improve performance

The dynamic cache service improves performance by caching the output of servlets,
commands, and JavaServer Pages (JSP) files. Dynamic caching features include cache
replication among clusters, cache disk offload, Edge-side include caching, and external caching,
which is the ability to control caches outside of the application server, such as that of your web
server.

v Ensure your applications perform well.

Take advantage of architectural suggestions and coding best practices to ensure that your applications
perform well. See the information about application design considerations and the information on
designing applications to learn more about ways you can improve performance of your applications.

© IBM Corporation 2004 5

6 Tuning guide

Chapter 3. Obtaining advice from the advisors

Advisors provide a variety of recommendations that help improve the performance of your application
server.

Before you begin

The advisors provide helpful performance as well as diagnostic advice about the state of the application
server.

About this task

Tuning WebSphere Application Server is a critical part of getting the best performance from your website.
However, tuning WebSphere Application Server involves analyzing performance data and determining the
optimal server configuration. This determination requires considerable knowledge about the various
components in the application server and their performance characteristics. The performance advisors
encapsulate this knowledge, analyze the performance data, and provide configuration recommendations to
improve the application server performance. Therefore, the performance advisors provide a starting point
to the application server tuning process and help you without requiring that you become an expert.

The Runtime Performance Advisor is extended to also provide diagnostic advice and is now called the
Performance and Diagnostic Advisor. Diagnostic advice provides useful information regarding the state of
the application server. Diagnostic advice is especially useful when an application is not functioning as
expected, or simply as a means of monitoring the health of application server.

Procedure
v Decide which performance advisor is right for the purpose, Performance and Diagnostic Advisor or

Tivoli® Performance Viewer advisor.

v Use the chosen advisor to periodically check for inefficient settings, and to view recommendations.

v Analyze Performance Monitoring Infrastructure data with performance advisors.

Why you want to use the performance advisors
The advisors analyze the Performance Monitoring Infrastructure (PMI) data of WebSphere Application
Server using general performance principles, best practices, and WebSphere Application Server-specific
rules for tuning. The advisors that are based on this information provide advice on how to set some of
your configuration parameters to better tune WebSphere Application Server.

The advisors provide a variety of advice on the following application server resources:

v Object Request Broker service thread pools

v Web container thread pools

v Connection pool size

v Persisted session size and time

v Data source statement cache size

v Session cache size

v Dynamic cache size

v Java virtual machine heap size

v DB2® Performance Configuration wizard

v Connection use violations

© Copyright IBM Corp. 2011 7

For example, consider the data source statement cache. It optimizes the processing of prepared
statements and callable statements by caching those statements that are not used in an active connection.
(Both statements are SQL statements that essentially run repeatable tasks without the costs of repeated
compilation.) If the cache is full, an old entry in the cache is discarded to make room for the new one. The
best performance is generally obtained when the cache is large enough to hold all of the statements that
are used in the application. The PMI counter, prepared statement cache discards, indicates the number of
statements that are discarded from the cache. The performance advisors check this counter and provide
recommendations to minimize the cache discards.

Another example is thread or connection pooling. The idea behind pooling is to use an existing thread or
connection from the pool instead of creating a new instance for each request. Because each thread or
connection in the pool consumes memory and increases the context-switching cost, the pool size is an
important configuration parameter. A pool that is too large can hurt performance as much as a pool that is
too small. The performance advisors use PMI information about current pool usage, minimum or maximum
pool size, and the application server CPU utilization to recommend efficient values for the pool sizes.

The advisors can also issue diagnostic advice to help in problem determination and health monitoring. For
example, if your application requires more memory than is available, the diagnostic adviser tells you to
increase the size or the heap for application server.

Performance advisor types and purposes
Two performance advisors are available: the Performance and Diagnostic Advisor and the performance
advisor in Tivoli Performance Viewer.

The Performance and Diagnostic Advisor runs in the Java virtual machine (JVM) process of application
server; therefore, it does not provide expensive advice. In a stand-alone application server environment,
the performance advisor in Tivoli Performance Viewer runs within the application server JVM.

The performance advisor in Tivoli Performance Viewer provides advice to help tune systems for optimal
performance and provide recommendations on inefficient settings by using collected Performance
Monitoring Infrastructure (PMI) data. Obtain the advice by selecting the performance advisor in Tivoli
Performance Viewer.

In a WebSphere Application Server, Network Deployment environment, the performance advisor in Tivoli
Performance Viewer runs within the JVM of the node agent and can provide advice on resources that are
more expensive to monitor and analyze. The Tivoli Performance Viewer advisor requires that you enable
performance modules, counters, or both.

Table 1. Performance and Diagnostic Advisor and Tivoli Performance Viewer advisor. The following chart shows the
differences between the Performance and Diagnostic Advisor and the Tivoli Performance Viewer advisor:

Performance and Diagnostic Advisor Tivoli Performance Viewer advisor

Start location Application server Tivoli Performance Viewer client

Invocation of tool Administrative console Tivoli Performance Viewer

Output v The SystemOut.log file

v The administrative console

v JMX notifications

Tivoli Performance Viewer in the
administrative console

Frequency of operation Configurable When you select refresh in the Tivoli
Performance Viewer administrative
console

8 Tuning guide

Table 1. Performance and Diagnostic Advisor and Tivoli Performance Viewer advisor (continued). The following chart
shows the differences between the Performance and Diagnostic Advisor and the Tivoli Performance Viewer advisor:

Types of advice Performance advice:

v Object Request Broker (ORB) service
thread pools

v Web container thread pools

v Connection pool size

v Persisted session size and time

v Prepared statement cache size

v Session cache size

v Memory leak detection

Diagnostic advice:

v Connection factory diagnostics

v Data source diagnostics

Connection usage diagnostics

v Detection of connection use by
multiple threads

v Detection of connection use across
components

Performance advice:

v ORB service thread pools

v Web container thread pools

v Connection pool size

v Persisted session size and time

v Prepared statement cache size

v Session cache size

v Dynamic cache size

v Java virtual machine (JVM) heap size

v DB2 Performance Configuration wizard

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Performance and Diagnostic Advisor
Use this topic to understand the functions of the Performance and Diagnostic Advisor.

The Performance and Diagnostic Advisor provides advice to help tune systems for optimal performance
and is configured using the WebSphere Application Server administrative console or the wsadmin tool.
Running in the Java virtual machine (JVM) of the application server, the Performance and Diagnostic
Advisor periodically checks for inefficient settings and issues recommendations as standard product
warning messages. These recommendations are displayed both as warnings in the administrative console
under Runtime Messages in the WebSphere Application Server Status panel and as text in the application
server SystemOut.log file. Enabling the Performance and Diagnostic Advisor has minimal system
performance impact.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

The Performance and Diagnostic Advisor provides performance advice and diagnostic advice to help tune
systems for optimal performance, and also to help understand the health of the system. It is configured
using the WebSphere Application Server administrative console or the wsadmin tool. Running in the Java
virtual machine (JVM) of the application server, the Performance and Diagnostic Advisor periodically

Chapter 3. Obtaining advice from the advisors 9

checks for inefficient settings and issues recommendations as standard product warning messages. These
recommendations are displayed as warnings in the administrative console under Runtime Messages in the
WebSphere Application Server Status panel, as text in the application server SystemOut.log file, and as
Java Management Extensions (JMX) notifications. Enabling the Performance and Diagnostic Advisor has
minimal system performance impact.

From WebSphere Application Server, Version 6.0.2, you can use the Performance and Diagnostic Advisor
to enable the lightweight memory leak detection, which is designed to provide early detection of memory
problems in test and production environments.

The advice that the Performance and Diagnostic Advisor gives is all on the server level. The only
difference when running in a WebSphere Application Server, Network Deployment environment is that you
might receive contradictory advice on resources that are declared at the node or cell level and used at the
server level.

For example, two sets of advice are given if a data source is declared at the node level to have a
connection pool size of {10,50} and is used by two servers (server1 and server2). If server1 uses only two
connections and server2 uses all fifty connections during peak load, the optimal connection pool size is
different for the two servers. Therefore, the Performance and Diagnostic Advisor gives two sets of advice
(one for server1 and another for server2). The data source is declared at the node level and you must
make your decisions appropriately by setting one size that works for both, or by declaring two different
data sources for each server with the appropriate level.

Read the using the performance and diagnostic advisor information for startup and configuration steps.

Diagnostic alerts:

In WebSphere Application Server Version 8.0 the Performance and Diagnostic Advisors are extended to
provide more diagnostic alerts to help common troubleshoot problems.

Several alerts are made available to monitor connection factory and data sources behavior. Some of these
alerts are straightforward and easy to comprehend. Others are much more involved and are intended for
use by IBM support only.

ConnectionErrorOccured diagnostic alert

When a resource adapter or data source encounters a problem with connections such that the connection
might no longer be usable, it informs the connection manager that a connection error occurred. This
causes the destruction of the individual connection or a pool purge, which is the destruction of all
connections in the pool, depending on the pool purge policy configuration setting. An alert is sent,
indicating a potential problem with the back-end if an abnormally high number of unusable connections are
detected.

Connection low-percent efficiency diagnostic alert

If the percentage of time that a connection is used versus held for any individual connections drops below
a threshold, an alert is sent with a call stack.

Cross-Component Use JCA Programming Model Violation Diagnostic Alert

When you enable cross-component use detection, the application server raises an alert when a connection
handle is used by a Java EE application component that is different from the component that originally
acquired the handle through a connection factory. This condition might inadvertently occur if an application
passes a connection handle in a parameter or an application obtains a handle from a cache that is shared
by multiple application components. If components use a connection handle in this manner, this might

10 Tuning guide

result in problems with application or data integrity. Enable the alert to detect the cross-component
connection use during development to identify and avoid potential application problems.

Local transaction containment (LTC) nesting threshold exceeded diagnostic alert

For LTC definition, see the Local transaction containment (LTC) and Transaction type and connection
behavior information, and Default behavior of managed connections in WebSphere Application Server
topic.

If a high number of LTCs are started on a thread before completing, an alert is raised. This alert is useful
in debugging some situations where the connection pool is unexpectedly running out of connections due to
multiple nested LTCs holding onto multiple shareable connections.

Multi-Thread Use JCA Programming Model Violation Diagnostic Alert

Multi-thread use detection raises an alert when an application component acquires a connection handle
using a connection factory, and then the component uses the handle on a different thread from which the
handle was acquired. If you use a connection in this manner, this behavior might cause data integrity
problems, especially if an application uses a connection handle on a thread that is not managed. Enable
the alert to detect multi-thread connection usage during application development.

Pool low-percent efficiency diagnostic alert

If the average time that a connection is held versus used for the all connections in the pool drops below a
threshold, an alert is sent.

Serial reuse violation diagnostic alert

For information on what serial reuse is, see the transaction type and connection behavior information.
Some legitimate scenarios exist, where a serial reuse violation is appropriate, but in most cases this
violation is not intended and might lead to data integrity problems.

If this alert is enabled, any time a serial reuse violation occurs within an LTC, an alert is sent.

Surge mode entered or exited diagnostic alert

When surge mode is configured, an alert is sent whenever surge mode engages or disengages. See the
surge mode documentation for more information.

Stuck connection block mode entered or exited diagnostic alert

When stuck connection detection is configured, an alert is sent whenever stuck connection blocking starts
or stops. See the stuck connection information.

Thread maximum connections exceeded diagnostic alert

When one or more LTCs on a thread ties too many managed connections, or poolable connections for
data sources an alert is issued.

Using the Performance and Diagnostic Advisor
The advisors analyze the Performance Monitoring Infrastructure (PMI) data of WebSphere Application
Server using general performance principles, best practices, and WebSphere Application Server-specific
rules for tuning.

Chapter 3. Obtaining advice from the advisors 11

http://www-128.ibm.com/developerworks/websphere/library/techarticles/0506_johnsen/0506_johnsen.html

Procedure
1. Ensure that PMI is enabled, which is default. If PMI is disabled, see the enabling PMI using the

administrative console information. To obtain advice, you must first enable PMI through the
administrative console and restart the server. The Performance and Diagnostic Advisor enables the
appropriate monitoring counter levels for all enabled advice when PMI is enabled. If specific counters
exist that are not wanted, or when disabling the Performance and Diagnostic Advisor, you might want
to disable PMI or the counters that the Performance and Diagnostic Advisor enabled.

2. If running WebSphere Application Server, Network Deployment, you must enable PMI on both the
server and the administrative agent, and restart the server and the administrative agent.

3. Click Servers > Application servers in the administrative console navigation tree.

4. Click server_name > Performance and Diagnostic Advisor Configuration.

5. Under the Configuration tab, specify the number of processors on the server. This setting is critical
to ensure accurate advice for the specific configuration of the system.

6. Select the Calculation Interval. PMI data is taken over time and averaged to provide advice. The
calculation interval specifies the length of time over which data is taken for this advice. Therefore,
details within the advice messages display as averages over this interval.

7. Select the Maximum Warning Sequence. The maximum warning sequence refers to the number of
consecutive warnings that are issued before the threshold is updated. For example, if the maximum
warning sequence is set to 3, then the advisor sends only three warnings, to indicate that the
prepared statement cache is overflowing. After three warnings, a new alert is issued only if the rate of
discards exceeds the new threshold setting.

8. Specify Minimum CPU for Working System. The minimum central processing unit (CPU) for a
working system refers to the CPU level that indicates a application server is under production load.
Or, if you want to tune your application server for peak production loads that range from 50-90% CPU
utilization, set this value to 50. If the CPU is below this value, some diagnostic and performance
advice are still issued. For example, regardless of the CPU level if you are discarding prepared
statements at a high rate, you are notified.

9. Specify CPU Saturated. The CPU saturated level indicates at what level the CPU is considered fully
utilized. The level determines when concurrency rules no longer increase thread pools or other
resources, even if they are fully utilized.

10. Click Apply.

11. Click Save.

12. Click server_name > Performance and Diagnostic Advisor Configuration.

13. Click the Runtime tab.

14. Click Restart. Select Restart on the Runtime tab to reinitialize the Performance and Diagnostic
Advisor using the last configuration information that is saved to disk.

This action also resets the state of the Performance and Diagnostic Advisor. For example, the current
warning count is reset to zero (0) for each message.

15. Simulate a production level load. If you use the Performance and Diagnostic Advisor in a test
environment, do any other tuning for performance, or simulate a realistic production load for your
application. The application must run this load without errors. This simulation includes numbers of
concurrent users typical of peak periods, and drives system resources, for example, CPU and
memory, to the levels that are expected in production. The Performance and Diagnostic Advisor
provides advice when CPU utilization exceeds a sufficiently high level only. For a list of IBM business
partners that provide tools to drive this type of load, see the performance: resource for learning
information.

16. Select the check box to enable the Performance and Diagnostic Advisor.

Tip: To achieve the best results for performance tuning, enable the Performance and Diagnostic
Advisor when a stable production-level load is applied.

17. Click OK.

12 Tuning guide

18. Select Runtime Warnings in the administrative console under the Runtime Messages in the Status
panel or look in the SystemOut.log file, which is located in the following directory:
profile_root/logs/server_name

Some messages are not issued immediately.

19. Update the product configuration for improved performance, based on advice. Although the
performance advisors attempt to distinguish between loaded and idle conditions, misleading advice
might be issued if the advisor is enabled while the system is ramping up or down. This result is
especially likely when running short tests. Although the advice helps in most configurations, there
might be situations where the advice hinders performance. Because of these conditions, advice is not
guaranteed. Therefore, test the environment with the updated configuration to ensure that it functions
and performs better than the previous configuration.

Over time, the advisor might issue differing advice. The differing advice is due to load fluctuations and
the runtime state. When differing advice is received, you need to look at all advice and the time
period over which it is issued. Advice is taken during the time that most closely represents the peak
production load.

Performance tuning is an iterative process. After applying advice, simulate a production load, update
the configuration that is based on the advice, and retest for improved performance. This procedure is
continued until optimal performance is achieved.

What to do next

You can enable and disable advice in the Advice Configuration panel. Some advice applies only to certain
configurations, and can be enabled only for those configurations. For example, unbounded Object Request
Broker (ORB) service thread pool advice is only relevant when the ORB service thread pool is unbounded,
and can only be enabled when the ORB thread pool is unbounded. For more information on Advice
configuration, see the advice configuration settings information.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Performance and Diagnostic Advisor configuration settings
Use this page to specify settings for the Performance and Diagnostic Advisor.

To view this administrative page, click Servers > Server Types > WebSphere application servers >
server_name > Performance and Diagnostic Advisor Configuration under the Performance section.

Enable Performance and Diagnostic Advisor Framework
Specifies whether the Performance and Diagnostic Advisor runs on the server startup.

The Performance and Diagnostic Advisor requires that the Performance Monitoring Infrastructure (PMI) be
enabled. It does not require that individual counters be enabled. When a counter that is needed by the
Performance and Diagnostic Advisor or is not enabled, the Performance and Diagnostic Advisor enables it
automatically. When disabling the Performance and Diagnostic Advisor, you might want to disable
Performance Monitoring Infrastructure (PMI) or the counters that Performance and Diagnostic Advisor
enabled. The following counters might be enabled by the Performance and Diagnostic Advisor:
v ThreadPools (module)

– Web Container (module)
- Pool Size
- Active Threads

Chapter 3. Obtaining advice from the advisors 13

– Object Request Broker (module)
- Pool Size
- Active Threads

v JDBC Connection Pools (module)
– Pool Size
– Percent used
– Prepared Statement Discards

v Servlet Session Manager (module)
– External Read Size
– External Write Size
– External Read Time
– External Write Time
– No Room For New Session

v System Data (module)
– CPU Utilization
– Free Memory

Enable automatic heap dump collection
Specifies whether the Performance and Diagnostic Advisor automatically generates heap dumps for post
analysis when suspicious memory activity is detected.

Calculation Interval
Specifies the length of time over which data is taken for this advice.

PMI data is taken over an interval of time and averaged to provide advice. The calculation interval
specifies the length of time over which data is taken for this advice. Details within the advice messages
display as averages over this interval. The default value is automatically set to four minutes.

Maximum warning sequence
The maximum warning sequence refers to the number of consecutive warnings that are issued before the
threshold is relaxed.

For example, if the maximum warning sequence is set to 3, the advisor only sends three warnings to
indicate that the prepared statement cache is overflowing. After three warnings, a new alert is only issued
if the rate of discards exceeds the new threshold setting. The default value is automatically set to one.

Number of processors
Specifies the number of processors on the server.

This setting is helpful to ensure accurate advice for the specific configuration of the system. Depending
your configuration and system, there may be only one processor utilized. The default value is automatically
set to two.

Minimum CPU For Working System
The minimum CPU for working system refers to the point at which concurrency rules do not attempt to free
resources in thread pools.

There is a set of concurrency alerts to warn you if all threads in a pool are busy. This can affect
performance, and it may be necessary for you to increase them. The CPU bounds are a mechanism to
help determine when an application server is active and tunable.

The Minimum CPU for working system sets a lower limit as to when you should consider adjusting thread
pools. For example, say you set this value to 50%. If the CPU is less than 50%, concurrency rules do not
try to free up resources by decreasing pools to get rid of unused threads. That is, if the pool size is 50-100
and only 20 threads are consistently used then concurrency rules would like to decrease the minimum
pool size to 20.

14 Tuning guide

CPU Saturated
The CPU Saturated setting determines when the CPU is deemed to be saturated.

There is a set of concurrency alerts to warn you if all threads in a pool are busy. This can affect
performance, and it may be necessary for you to increase them. The CPU bounds are a mechanism to
help determine when an application server is active and tunable.

The CPU saturated setting determines when the CPU has reached its saturation point. For example, if this
is set to 95%, when the CPU is greater than 95% the concurrency rules do not try to improve things, that
is, increase the size of a thread pool.

Advice configuration settings
Use this page to select the advice you wish to enable or disable.

To view this administrative page, click Servers > Server Types > WebSphere application servers >
server_name. Under the Performance section, click Performance and Diagnostic Advisor
Configuration > Performance and Diagnostic Advice Configuration.

Advice name
Specifies the advice that you can enable or disable.

Advice applied to component
Specifies the WebSphere Application Server component to which the advice applies.

Advice type
Categorizes the primary indent of a piece of Advice.

Use Advice type for grouping, and then enabling or disabling sets of advice that is based upon your
purpose. Advice has the following types:

v Performance: Performance advice provides tuning recommendations, or identifies problems with your
configuration from a performance perspective.

v Diagnostic: Diagnostic advice provide automated logic and analysis relating to problem identification and
analysis. These types advice are usually issued when unexpected circumstances are encountered by
the application server.

Performance impact
Generalizes the performance overhead that an alert might incur.

The performance impact of a particular piece of advice is highly dependant upon the scenario being run
and upon the conditions meet. The performance categorization of alerts is based upon worst case
scenario measurements. The performance categorizations are:

v Low: Advice has minimal performance overhead. Advice might be run in test and production
environments. Cumulative performance overhead is within run to run variance when all advice of this
type is enabled.

v Medium: Advice has measurable but low performance overhead. Advice might be run within test
environments, and might be run within production environments if deemed necessary. Cumulative
performance overhead is less than 4% when all advice of this type is enabled.

v High: Advice impact is high or unknown. Advice might be run during problem determination tests and
functional tests. It is not run in production simulation or production environments unless deemed
necessary. Cumulative performance overhead might be significant when all advice of this type is
enabled.

Chapter 3. Obtaining advice from the advisors 15

Advice status
Specifies whether the advice is stopped, started, or unavailable.

The advice status has one of three values: Started, Stopped or Unavailable.

v Started: The advice is enabled.

v Stopped: The advice is not enabled.

v Unavailable: The advice does not apply to the current configuration, for example, persisted session size
advice in a configuration without persistent sessions.

Viewing the Performance and Diagnostic Advisor recommendations
Runtime Performance Advisor uses Performance Monitoring Infrastructure (PMI) data to provide
recommendations for performance tuning.

About this task

The Performance and Diagnostic Advisor uses Performance Monitoring Infrastructure (PMI) data to provide
recommendations for performance tuning. Running in the Java virtual machine (JVM) of the application
server, this advisor periodically checks for inefficient settings, and issues recommendations as standard
product warning messages.

Procedure

The Performance and Diagnostic Advisor recommendations are displayed in two locations:

1. The WebSphere Application Server SystemOut.log log file.

2. The Runtime Messages panel in the administrative console. To view this administrative page, click
Troubleshooting > Runtime Messages > Runtime Warning.

Example

The following log file is a sample output of advice on the SystemOut.log file:
[4/2/04 15:50:26:406 EST] 6a83e321 TraceResponse W CWTUN0202W:
Increasing the web container thread pool Maximum Size to 48
might improve performance.

Additional explanatory data follows.

Average number of threads: 48.

Configured maximum pool size: 2.

This alert has been issued 1 time(s) in a row.
The threshold will be updated to reduce the
overhead of the analysis.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Starting the lightweight memory leak detection
Use this task to start the lightweight memory leak detection using the Performance and Diagnostic Advisor.

16 Tuning guide

Before you begin

If you have a memory leak and want to confirm the leak, or you want to automatically generate heap
dumps on Java virtual machines (JVM) in WebSphere Application Server, consider changing your
minimum and maximum heap sizes to be equal. This change provides the memory leak detection more
time for reliable diagnosis.

About this task

To start the lightweight memory leak detection using the Performance and Diagnostic Advisor, perform the
following steps in the administrative console:

Procedure
1. Click Servers > Application servers in the administrative console navigation tree.

2. Click server_name > Performance and Diagnostic Advisor Configuration.

3. Click the Runtime tab.

4. Enable the Performance and Diagnostic Advisor Framework.

5. Click OK.

6. From the Runtime or Configuration tab of Performance and Diagnostic Advisor Framework, click
Performance and Diagnostic Advice configuration.

7. Start the memory leak detection advice and stop any other unwanted advice.

Results

The memory leak detection advice is started.

Important: To achieve the best results for performance tuning, start the Performance and Diagnostic
Advisor when a stable production level load is running.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

What to do next

You can monitor any notifications of memory leaks by checking the SystemOut.log file or Runtime
Messages. For more information, see the “Viewing the Performance and Diagnostic Advisor
recommendations” on page 16 topic.

Lightweight memory leak detection
This topic describes memory leaks in Java applications and introduces lightweight memory leak detection.

Memory leaks in Java applications

Although a Java application has a built-in garbage collection mechanism, which frees the programmer from
any explicit object deallocation responsibilities, memory leaks are still common in Java applications.
Memory leaks occur in Java applications when unintentional references are made to unused objects. This
occurrence prevents Java garbage collection from freeing memory.

Chapter 3. Obtaining advice from the advisors 17

The term memory leak is overused; a memory leak refers to a memory misuse or mismanagement. Old
unused data structures might have outstanding references but are never garbage collected. A data
structure might have unbounded growth or there might not be enough memory that is allocated to
efficiently run a set of applications.

Lightweight memory leak detection in WebSphere Application Server

Most existing memory leak technologies are based upon the idea that you know that you have a memory
leak and want to find it. Because of these analysis requirements, these technologies have significant
performance burdens and are not designed for use as a detection mechanism in production. This limitation
means that memory leaks are generally not detected until the problem is critical; the application passes all
system tests and is put in production, but it crashes and nobody knows why.

WebSphere Application Server has implemented a lightweight memory leak detection mechanism that runs
within the WebSphere Performance and Diagnostic Advisor framework. This mechanism is designed to
provide early detection of memory problems in test and production environments. This framework is not
designed to provide analysis of the source of the problem, but rather to provide notification and help
generating the information that is required to use analysis tools. The mechanism only detects memory
leaks in the Java heap and does not detect native leaks.

The lightweight memory leak detection in WebSphere Application Server does not require any additional
agents. The detection relies on algorithms that are based on information that is available from the
Performance Monitoring Infrastructure service and has minimal performance overhead.

Enabling automated heap dump generation
Use this task to enable automated heap dump generation. This function is not supported when using a
Sun Java virtual machine (JVM) which includes WebSphere Application Server running on HP-UX and
Solaris operating systems. You need to research taking heap dumps on Sun JVMs or call IBM Support.

Before you begin

Although heap dumps are only generated in response to a detected memory leak, you must understand
that generating heap dumps can have a severe performance impact on WebSphere Application Server for
several minutes.

About this task

To help you analyze memory leak problems when memory leak detection occurs, some automated heap
dump generation support is available.

To enable automated heap dump generation support, perform the following steps in the administrative
console:

Procedure
1. Click Servers > Application servers in the administrative console navigation tree.

2. Click server_name >Performance and Diagnostic Advisor Configuration.

3. Click the Runtime tab.

4. Select the Enable automatic heap dump collection check box.

5. Click OK.

Results

The automated heap dump generation support is enabled.

18 Tuning guide

Important: To preserve disk space, the Performance and Diagnostic Advisor does not take heap dumps if
more than 10 heap dumps already exist in the WebSphere Application Server home directory. Depending
on the size of the heap and the workload on the application server, taking a heap dump might be quite
expensive and might temporarily affect system performance.

The automatic heap dump generation process dynamically reacts to various memory conditions and
generates dumps only when it is needed. When the heap memory is too low, the heap dumps cannot be
taken or the heap dump generation cannot be complete.

What to do next

You can monitor any notifications of memory leaks by checking the SystemOut.log file or Runtime
Messages. For more information, see the “Viewing the Performance and Diagnostic Advisor
recommendations” on page 16 topic. If a memory leak is detected and you want to find the heap dump,
refer to the Locating and analyzing heap dumps topic.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Generating heap dumps manually
Use this task to generate heap dumps manually. This function is not supported on when using a Sun Java
virtual machine (JVM) which includes WebSphere Application Server running on HP-UX and Solaris
operating systems.

Before you begin

Although heap dumps are generated only in response to a detected memory leak, you must understand
that generating heap dumps can have a severe performance impact on WebSphere Application Server for
several minutes. When generating multiple heap dumps manually for memory leak analysis, make sure
that significant objects are leaked in between the two heap dumps. This approach enables problem
determination tools to identify the source of the memory leak.

About this task

You might want to manually generate heap dumps for the analysis of memory leaks. You might also want
to designate certain times to take heap dumps because of the overhead involved. On JVM in WebSphere
Application Server, you can manually produce heap dumps by using the generateHeapDump operation on
WebSphere Application Server managed beans (MBeans) that are special Java beans.

Procedure
1. Determine if you want to use wsadmin or the administrative console to generate your heap dump.

2. To use wsadmin to generate your heap dump, complete the following:

a. Start the wsadmin scripting client. You have several options to run scripting commands, ranging
from running them interactively to running them in a profile.

b. Invoke the generateHeapDump operation on a JVM MBean, for example:

v Find a JVM objectName:
<wsadmin> set objectName [$AdminControl queryNames
WebSphere:type=JVM,process=<servername>,node=<nodename>,*]

v Invoke the generateHeapDump operation on JVM MBean:

Chapter 3. Obtaining advice from the advisors 19

<wsadmin> $AdminControl invoke $objectName generateHeapDump

Table 2. Description of variables. The following table explains variables in the command previously mentioned.

$ is a Jacl operator for substituting a variable name with its
value

invoke is the command

generateHeapDump is the operation you are invoking

<servername> is the name of the server on which you want to generate
a heap dump

<nodename> is the node to which <servername> belongs

3. To use the administrative console to generate your heap dump, complete the following:

a. Start the administrative console.

b. In the navigation pane, click Troubleshooting > Java dumps and cores.

c. Select the server_name for which you want to generate the heap dump.

d. Click Heap dump to generate the heap dump for your specified server.

What to do next

After running the wsadmin command, the file name of the heap dump is returned. For more information
on finding heap dumps, refer to the Locating and analyzing heap dumps topic. When you have a couple of
heap dumps, use a number of memory leak problem determination tools to analyze your problem. Memory
Dump Diagnostic for Java™ is an offline tool for diagnosing root causes behind memory leaks in the Java
heap. See the diagnosing out-of-memory errors and Java heap memory leaks information.

Locating and analyzing heap dumps
Use this task to locate and analyze heap dumps.

Before you begin

Do not analyze heap dumps on the WebSphere Application Server machine because analysis is very
expensive. For analysis, transfer heap dumps to a dedicated problem determination machine.

About this task

When a memory leak is detected and heap dumps are generated, you must analyze heap dumps on a
problem determination machine and not on the application server because the analysis is very central
processing unit (CPU) and disk I/O intensive.

Perform the following procedure to locate the heap dump files.

Procedure
1. On the physical application server where a memory leak is detected, go to the WebSphere Application

Server home directory. For example, on the Windows operating system, the directory is:
profile_root\myProfile

2. IBM heap dump files are usually named in the following way:
heapdump.<date>..<timestamp><pid>.phd

3. Gather all the .phd files and transfer them to your problem determination machine for analysis.

4. Many tools are available to analyze heap dumps that include Rational® Application Developer 6.0.
WebSphere Application Server serviceability released a technology preview called Memory Dump
Diagnostic For Java. You can download this preview from the product download website.

20 Tuning guide

What to do next

When you have a couple of heap dumps, use a number of memory leak problem determination tools to
analyze your problem.

Using the performance advisor in Tivoli Performance Viewer
The performance advisor in Tivoli Performance Viewer provides advice to help tune systems for optimal
performance and provides recommendations on inefficient settings by using the collected Performance
Monitoring Infrastructure (PMI) data.

About this task

Obtain advice by clicking Performance Advisor in Tivoli Performance Viewer. The performance advisor in
Tivoli Performance Viewer provides more extensive advice than the Performance and Diagnostic Advisor.
For example, Tivoli Performance Viewer provides advice on setting the dynamic cache size, setting the
Java virtual machine (JVM) heap size and using the DB2 Performance Configuration wizard.

Procedure
1. Enable PMI in the application server.

To monitor performance data through the PMI interfaces, you must first enable PMI through the
administrative console before restarting the server.

If running in a WebSphere Application Server, Network Deployment environment, you must enable PMI
on both the server and on the administrative agent before restarting the server and the administrative
agent.

2. Enable data collection and set the PMI monitoring level to Extended.

The monitoring levels that determine which data counters are enabled can be set dynamically, without
restarting the server. These monitoring levels and the data selected determine the type of advice you
obtain. The performance advisor in Tivoli Performance Viewer uses the extended monitoring level;
however, the performance advisor in Tivoli Performance Viewer can use a few of the more expensive
counters (to provide additional advice) and provide advice on which counters can be enabled.

For example, the advice pertaining to session size needs the PMI statistic set to All. Or, you can use
the PMI Custom Monitoring Level to enable the Servlet Session Manager SessionObjectSize counter.
The monitoring of the SessionSize PMI counter is expensive, and is not in the Extended PMI statistic
set. Complete this action in one of the following ways:

a. PMI settings.

b. Enabling Performance Monitoring Infrastructure using the wsadmin tool.

3. In the administrative console, click Monitoring and Tuning > Performance Viewer > Current
Activity.

4. Simulate a production level load. Simulate a realistic production load for your application, if you use the
performance advisor in a test environment, or do any other performance tuning. The application must
run this load without errors. This simulation includes numbers of concurrent users typical of peak
periods, and drives system resources, for example, CPU and memory to the levels that are expected
in production. The performance advisor only provides advice when CPU utilization exceeds a
sufficiently high level. For a list of IBM business partners providing tools to drive this type of load, see
the performance: resource for learning information.

5. Log performance data with Tivoli Performance Viewer.

6. Clicking Refresh on top of the table of advice causes the advisor to recalculate the advice based on
the current data in the buffer.

7. Tuning advice displays when the Advisor icon is chosen in the Tivoli Performance Viewer Performance
Advisor. Double-click an individual message for details. Because PMI data is taken over an interval of
time and averaged to provide advice, details within the advice message display as averages.

Chapter 3. Obtaining advice from the advisors 21

Note: If the Refresh Rate is adjusted, the Buffer Size must also be adjusted to enable sufficient data
to be collected for performing average calculations. Currently 5 minutes of data is required.
Hence, the following guidelines intend to help you use the Tivoli Performance Advisor:

a. You cannot have a Refresh Rate of more than 300 seconds.

b. RefreshRate * BufferSize > 300 seconds. Buffer Size * Refresh Rate is the amount of PMI
data available in memory and it must be greater than 300 seconds.

c. For the Tivoli Performance Advisor to work properly with Tivoli Performance Viewer logs, the
logs must be at least 300 seconds of duration.

For more information about configuring user and logging settings of Tivoli Performance Viewer,
refer to the configuring Tivoli Performance Viewer settings information.

8. Update the product configuration for improved performance, based on advice. Because Tivoli
Performance Viewer refreshes advice at a single instant in time, take the advice from the peak load
time. Although the performance advisors attempt to distinguish between loaded and idle conditions,
misleading advice might be issued if the advisor is enabled while the system is ramping up or down.
This result is especially likely when running short tests. Although the advice helps in most
configurations, there might be situations where the advice hinders performance. Because of these
conditions, advice is not guaranteed. Therefore, test the environment with the updated configuration to
ensure it functions and performs well.

Over a period of time the advisor might issue differing advice. The differing advice is due to load
fluctuations and run-time state. When differing advice is received, you need to look at all advice and
the time period over which it was issued. You must take advice during the time that most closely
represents the peak production load.

Performance tuning is an iterative process. After applying advice, simulate a production load, update
the configuration that is based on the advice, and retest for improved performance. This procedure is
continued until optimal performance is achieved.

22 Tuning guide

Chapter 4. Tuning the application serving environment

Use this topic to understand the benefits of tuning for optimal performance. Learn about about the tunable
parameters of the major WebSphere Application Server components and how these parameters affect
performance.

Before you begin

WebSphere Application Server provides tunable settings for its major components so that you can adjust
the runtime environment to match the characteristics of your application. Applications can run successfully
without changing the default values for these tuning parameters. Other applications might need changes,
for example, a larger heap size, to achieve optimal performance.

Performance tuning can yield significant gains in performance even if an application is not optimized for
performance. However, correcting shortcomings of an application typically results in higher performance
gains than are possible with just altering tuning parameters. Many factors contribute to a high performing
application.

About this task
v For your convenience, procedures for tuning parameters in other products, such as DB2, web servers

and operating systems are included. Because these products might change, consider these descriptions
as suggestions.

Each WebSphere Application Server process has parameters that influence application performance.
You can use the WebSphere Application Server administrative console to configure and tune
applications, web containers, Enterprise JavaBeans (EJB) containers, application servers, and nodes in
the administrative domain.

Procedure
1. Run the applyPerfTuningTemplate.py script as the starting point for improving the performance of a

specific application server. This python-based tuning script, along with one of its template files, applies
the recommended performance tuning settings for a typical development, production, or environment
that is ready for immediate use. The applyPerfTuningTemplate.py script is located in the
app_server_root/bin directory. The associated templates and properties files are located in the
app_server_root/scriptLibraries/perfTuning/V70 directory.

2. Use the performance advisors, the suggested procedures or parameters in the tuning parameter hot
list, and the information on troubleshooting performance problems to optimize your WebSphere
Application Server instances to their fullest extent.

Performance advisors
The performance advisors use the Performance Monitoring Infrastructure (PMI) data to suggest
configuration changes to Object Request Broker (ORB) service thread pools, web container
thread pools, connection pool size, persisted session size and time, prepared statement cache
size, and session cache size. The Runtime Performance Advisor runs in the application server
process, while the other advisor runs in the Tivoli Performance Viewer. For more information,
see the documentation about using the Performance and Diagnostic Advisor and use the
performance advisor in Tivoli Performance Viewer.

Tuning parameter hot list
Review the documentation about the tuning parameter hot list. These parameters have an
important impact on performance. Because these parameters are application-dependent, the
parameter settings for specific applications and environments can vary.

© Copyright IBM Corp. 2011 23

Tuning parameter index for z/OS®

Performance tuning for WebSphere Application Server for z/OS operating systems becomes
complex because the nature of the runtime environment involves many different components of
the operating system and middleware.

To find information and parameters for tuning the z/OS operating system, subsystems, the
WebSphere Application Server for z/OS runtime environment, and some Java 2 Platform,
Enterprise Edition (Java EE) application tuning tips, see the documentation about the tuning
parameter hot list.

Note: You can read the WebSphere Application Server for z/OS tuning guidelines, which will
explain how to tune the middleware. However, it is important that you ensure that your
application is optimally designed to improve performance. Often, poorly written or
designed application code changes can have a significant effect on overall performance.

If you are a WebSphere Application Server administrator or system programmer on
WebSphere Application Server for z/OS, see the documentation about the tuning index for
WebSphere Application Server for z/OS. Each parameter description explains the parameter;
provides reasons to adjust the parameter; describes how to view or set the parameter; and
indicates default and recommended values.

Troubleshooting performance
To save you time detecting problems and help you troubleshoot performance problems, see
the documentation about troubleshooting performance.

Tuning parameter hot list
The following hot list contains recommendations that have improved performance or scalability, or both, for
many applications.

WebSphere Application Server provides several tunable parameters and options to match the application
server environment to the requirements of your application.
v Review the hardware and software requirements

It is critical for proper functionality and performance to satisfy the minimum hardware and software
requirements. Refer to IBM WebSphere Application Server supported hardware, software, and APIs
website which details hardware and software requirements.

v Check hardware configuration and settings

Verify network interconnections and hardware configuration is setup for peak performance.
v Tune the operating systems

Operating system configuration plays a key role in performance. For example, adjustments such as
TCP/IP parameters might be necessary for your application

v Set the minimum and maximum Java virtual machine (JVM) heap sizes

Many applications need a larger heap size then the default for best performance. It is also advised to
select an appropriate GC policy based on the application's characteristics.

v Use a type 4 (or pure Java) JDBC driver

In general, the type 2 JDBC driver is recommended if the database exists on the same physical
machine as the WebSphere instance. However, in the case where the database is in a different tier, the
type 4 JDBC driver offers the fastest performance since they are pure Java not requiring native
implementation. Use the link above to view a list of database vendor-specific requirements, which can
tell you if a type 4 JDBC driver is supported for your database.

See the Administering applications and their environment PDF for more information.
v Tune WebSphere Application Server JDBC data sources and associated connection pools

The JDBC data source configuration might have a significant performance impact. For example, the
connection pool size and prepared statement cache need to be sized based on the number of
concurrent requests being processed and the design of the application.

24 Tuning guide

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

See the Administering applications and their environment PDF for more information.
v Ensure that the transaction log is assigned to a fast disk

Some applications generate a high rate of writes to the WebSphere Application Server transaction log.
Locating the transaction log on a fast disk or disk array can improve response time

See the Administering applications and their environment PDF for more information.
v Tune related components, for example, database

In many cases, some other component, for example, a database, needs adjustments to achieve higher
throughput for your entire configuration.

For more information, see the Administering applications and their environment PDF for more
information.

v Disable functions that are not required

For example, if your application does not use the web services addressing (WS-Addressing) support,
disabling this function can improve performance.

Attention: Use this property with care because applications might require WS-Addressing MAPs to
function correctly. Setting this property also disables WebSphere Application Server support for the
following specifications, which depend on the WS-Addressing support: Web Services Atomic
Transactions, Web Services Business Agreement and Web Services Notification.

To disable the support for WS-Addressing, refer to Enabling Web Services Addressing support for
JAX-RPC applications

v Tuning index

One of the goals of the product programming model and runtime is to significantly simplify the work
required for application developers to write and deploy applications. Sometimes we say that the product
relieves the application programmer of many of the plumbing tasks involved in developing applications.
For example, application code in the product does not concern itself directly with remote
communication--it locates objects which may be local or remote and drives methods. Therefore, you
won't see any direct use of socket calls or TCP/IP programming in this application code.

This separation of what you want to do from where you do it is one aspect of removing the application
programmers from plumbing tasks. Other considerations are not having to deal with data calls for some
types of beans, potentially user authentication, and threading. There are generally no calls from the
application code to touch sockets, RACF® calls, or management of threading. Removing this from the
application programmer doesn't mean this work won't get done. Rather, it means that there may be
more work for the DBA, the network administrator, the security administrator, and the performance
analyst.

There are four layers of tuning that need to be addressed:
– “Tuning the z/OS operating system” on page 47
– Tuning the subsystems
– Tuning the product runtime
– Tuning for J2EE applications

We deal with the first three in separate sections under this article and briefly touch on the fourth. For
more information on tuning applications, refer to Using application clients.

v Tuning the subsystems

Steps involved in tuning the z/OS subsystems to optimize product performance include:
– DB2 tuning tips for z/OS
– Security tuning tips
– “Tuning TCP/IP buffer sizes” on page 28
– GRS tuning tips for z/OS
– “Tuning the IBM virtual machine for Java” on page 29
– CICS® tuning tips for z/OS

v Tuning the product runtime

Steps involved in tuning the product runtime to optimize performance include reviewing the:
– Review the product configuration
– Internal tracing tips for the product
– Location of executable programs tips for z/OS

Chapter 4. Tuning the application serving environment 25

– Security tuning tips
v Review the product configuration

The first thing to do is review the product configuration. One simple way to do this is to look in your
application control and server regions in SDSF. When each server starts, the runtime prints out the
current configuration data in the joblog.

v Internal tracing tips for the product

Product traces can be extremely helpful in detecting and diagnosing problems. By properly setting trace
options, you can capture the information needed to detect problems without significant performance
overhead.
– Verify that you are not collecting more diagnostic data than you need.

You should check your tracing options to verify that the ras_trace_defaultTracingLevel property is set
to 0 or 1, and that the ras_trace_basic, and ras_trace_detail properties are not set.

How to view or set: In the administrative console:
1. Click Environment > WebSphere variables.
2. On the Configuration Tab check for any of these properties in the name field and observe their

settings in the value field.
3. To change the setting for one of these properties, click the property name the name field, and

then specify the new setting in the value field. You can also describe the setting in the description
field on this tab.

4. To add one of these properties, click New, and then specify the property name the name field,
and the property setting in the value field.

– If you use any level of tracing, including ras_trace_defaultTracingLevel=1, verify that the
ras_trace_outputLocation property is set to BUFFER.

When the ras_trace_defaultTracingLevel property is set to 1 exceptions are written to the trace log
as well as to the ERROR log.
- It is best to trace to CTRACE.

If you are tracing to SYSPRINT with ras_trace_defaultTracingLeve set to 3, you might experience
an almost 100% throughput degradation. If you are tracing to CTRACE, however, you might only
experience a 15% degradation in throughput.

– Set the ras_trace_BufferCount property to 4 and the ras_trace_BufferSize property to 128.

This setting reserves 512 KB of storage for the trace buffers, which is the minimum amount of
storage that is allowed, and reduces memory requirements.

– Disable JRAS tracing.

To disable JRAS tracing, look for the following lines in the trace.dat file that is pointed to by the JVM
properties file:
com.ibm.ejs.*=all=disable

com.ibm.ws390.orb=all=disable

Verify that both lines are set to disable, or delete the two lines.

Note: If a value is specified for the ras_trace_outputLocation property, you might be tracing and not
know it.

v Location of executable programs tips

The next thing to review in the configuration is where your program code is located. IBM recommends
that you install as much of the product code in LPA as is reasonable. This ensures that you have
eliminated any unnecessary steplibs which can adversely affect performance. If you must use
STEPLIBs, verify that any STEPLIB DD in the controller and servant procs do not point to any
unnecessary libraries. Refer to “UNIX System Services (USS) tuning tips for z/OS” on page 51 for USS
shared file system tuning considerations.

If you choose to not put most of the runtime in LPA, you might find that your processor storage gets a
bigger workout as the load increases. At a minimum, the product starts three address spaces, so that
any code that is not shared loads three copies rather than one. As the load increases, many more
servants might start and contribute additional load on processor storage.

26 Tuning guide

Review the PATH statement to ensure that only required programs are in the PATH and that the order of
the PATH places frequently-referenced programs in the front.

v Tuning for J2EE applications

Steps involved in tuning the J2EE applications performance include:
–
– “Tuning TCP/IP buffer sizes” on page 28
– Tuning for SOAP
– “Tuning message-driven bean processing on z/OS by using WebSphere MQ as the messaging

provider in ASF mode” on page 57
v Review your application design

You can track many performance problems back to the application design. Review the design to
determine if it causes performance problems.

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This topic describes the conventions in use for WebSphere Application Server.

Default product locations - z/OS

app_server_root
Refers to the top directory for a WebSphere Application Server node.

The node may be of any type—application server, deployment manager, or unmanaged for
example. Each node has its own app_server_root. Corresponding product variables are
was.install.root and WAS_HOME.

The default varies based on node type. Common defaults are configuration_root/AppServer and
configuration_root/DeploymentManager.

configuration_root
Refers to the mount point for the configuration file system (formerly, the configuration HFS) in
WebSphere Application Server for z/OS.

The configuration_root contains the various app_server_root directories and certain symbolic links
associated with them. Each different node type under the configuration_root requires its own
cataloged procedures under z/OS.

The default is /wasv8config/cell_name/node_name.

plug-ins_root
Refers to the installation root directory for Web Server Plug-ins.

profile_root
Refers to the home directory for a particular instantiated WebSphere Application Server profile.

Corresponding product variables are server.root and user.install.root.

In general, this is the same as app_server_root/profiles/profile_name. On z/OS, this will always
be app_server_root/profiles/default because only the profile name "default" is used in
WebSphere Application Server for z/OS.

smpe_root
Refers to the root directory for product code installed with SMP/E or IBM Installation Manager.

The corresponding product variable is smpe.install.root.

The default is /usr/lpp/zWebSphere/V8R0.

Chapter 4. Tuning the application serving environment 27

Tuning TCP/IP buffer sizes
WebSphere Application Server uses the TCP/IP sockets communication mechanism extensively. For a
TCP/IP socket connection, the send and receive buffer sizes define the receive window. The receive
window specifies the amount of data that can be sent and not received before the send is interrupted. If
too much data is sent, it overruns the buffer and interrupts the transfer. The mechanism that controls data
transfer interruptions is referred to as flow control. If the receive window size for TCP/IP buffers is too
small, the receive window buffer is frequently overrun, and the flow control mechanism stops the data
transfer until the receive buffer is empty.

About this task

TCP/IP can be the source of some significant remote method delays.

To change the system wide value, perform the following steps:

Procedure

Tune the TCP/IP buffer sizes.

1. First, ensure that you have defined enough sockets to your system and that the default socket timeout
of 180 seconds is not too high. To allow enough sockets, update the BPXPRMxx parmlib member:

a. Set MAXSOCKETS for the AF_INET filesystem high enough.

b. Set MAXFILEPROC high enough.

Note:

You should set MAXSOCKETS and MAXFILEPROC to at least 5000 for low-throughput, 10000
for medium-throughput, and 35000 for high-throughput WebSphere transaction environments.
Setting high values for these parameters should not cause excessive use of resources unless
the sockets or files are actually allocated.

Example:
/* Open/MVS Parmlib Member */
/* CHANGE HISTORY: */
/* 01/31/02 AEK Increased MAXSOCKETS on AF_UNIX from 10000 to 50000*/
/* per request from My Developer */
/* 10/02/01 JAB Set up shared HFS */

/* KERNEL RESOURCES DEFAULT MIN MAX */
/* ======================== =================== === =========== */

.

.
MAXFILEPROC(65535) /* 64 3 65535 */

.

.
NETWORK DOMAINNAME(AF_INET) DOMAINNUMBER(2) MAXSOCKETS(30000)

.

2. Next check the specification of the port in TCPIP profile dataset to ensure that NODELAYACKS is
specified as follows:
PORT 8082 TCP NODELAYACKS

In your runs, changing this could improve throughput by as much as 50% (this is particularly useful
when dealing with trivial workloads). This setting is important for good performance when running SSL.

3. You should ensure that your DNS configuration is optimized so that lookups for frequently-used servers
and clients are being cached.

28 Tuning guide

Caching is sometimes related to the name server's Time To Live (TTL) value. On the one hand, setting
the TTL high will ensure good cache hits. However, setting it high also means that, if the Daemon goes
down, it will take a while for everyone in the network to be aware of it.

A good way to verify that your DNS configuration is optimized is to issue the oping and onslookup USS
commands. Make sure they respond in a reasonable amount of time. Often a misconfigured DNS or
DNS server name will cause delays of 10 seconds or more.

4. Increase the size of the TCPIP send and receive buffers from the default of 16K to at least 64K. This is
the size of the buffers including control information beyond what is present in the data that you are
sending in your application. To do this specify the following:

TCPCONFIG TCPSENDBFRSIZE 65535
TCPRCVBUFRSIZE 65535

gotcha: It is unreasonable, in some cases, to specify 256 KB buffers.

5. Increase the default listen backlog.

Note:

The default listen backlog is used to buffer spikes in new connections which come with a
protocol like HTTP. The default listen backlog is 10 requests. You should use the TCP transport
channel listenBacklog custom property to increase this value to something larger. For example:
listenBacklog=100

6. Reduce the finwait2 time.

In the most demanding benchmarks you may find that even defining 65K sockets and file descriptors
does not give you enough 'free' sockets to run 100%. When a socket is closed abnormally (for
example, no longer needed) it is not made available immediately. Instead it is placed into a state called
finwait2 (this is what shows up in the netstat -s command). It waits there for a period of time before it
is made available in the free pool. The default for this is 600 seconds.

gotcha: Unless you have trouble using up sockets, you should leave this set to the default value.
If you are using z/OS Version 1.2 or above, you can control the amount of time the socket stays in
finwait2 state by specifying the following in the configuration file:

FINWAIT2TIME 60

Results

Repeat this process until you determine the ideal buffer size.

What to do next

The TCP/IP buffer sizes are changed. Repeat this process until you determine the ideal buffer size.

Tuning the JVM

Tuning the IBM virtual machine for Java
An application server is a Java based server and requires a Java virtual machine (JVM) environment to
run and support the enterprise applications that run on it. As part of configuring your application server,
you can configure the Java SE Runtime Environment to tune performance and system resource usage.
This topic applies to IBM virtual machines for Java.

Chapter 4. Tuning the application serving environment 29

Before you begin

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

v Determine the type of JVM on which your application server is running.

Issue the java –fullversion command from within your application server app_server_root/java/bin
directory.

In response to this command, the Java writes information about the JVM, including the JVM provider
information, to stderr.

v Verify that the most recent service update is installed on your system. Almost every new service level
includes JVM performance improvements.

About this task

Each JVM vendor provides detailed information on performance and tuning for their JVM. Use the
information provided in this topic in conjunction with the information that is provided with the JVM that is
running on your system.

Both the controller and the servant contain a JVM. The information contained in this topic applies only to
the JVM in the servant. Typically, the JVM in the controller does not need to be tuned.

A Java SE Runtime Environment provides the environment for running enterprise applications and
application servers. Therefore the Java configuration plays a significant role in determining performance
and system resource consumption for an application server and the applications that run on it.

The IBM virtual machine for Java Version 6.0 includes the latest in Java Platform, Enterprise Edition (Java
EE) specifications, and provides performance and stability improvements over previous versions of Java.

Even though JVM tuning is dependent on the JVM provider you use, there are some general tuning
concepts that apply to all JVMs. These general concepts include:

v Compiler tuning. All JVMs use Just-In-Time (JIT) compilers to compile Java byte codes into native
instructions during server runtime.

v Java memory or heap tuning. Tuning the JVM memory management function, or garbage collection, is a
good starting point for improving JVM performance.

v Class loading tuning.

v Start up versus runtime performance optimization

The following steps provide specific instructions on how to perform the following types of tuning for each
JVM. The steps do not have to be performed in any specific order.

Procedure
1. Limit the number of dumps that are taken in specific situations.

In certain error conditions, multiple application server threads might fail and the JVM requests a
TDUMP for each of those threads. If a significant number of threads fail at the same time, the resulting
number of TDUMPs that are taken concurrently might lead to other system problems, such. as a
shortage of auxiliary storage. Use the JAVA_DUMP_OPTS environment variable to specify the number
of dumps that you want the JVM to produce in certain situations. The value specified for this variable

30 Tuning guide

does not affect the number of TDUMPS that are generated because of
com.ibm.jvm.Dump.SystemDump() calls from applications that are running on the application server.

For example, if you want to configure JVM such that it:

v Limits the number of TDUMPs that are taken to one

v Limits the number of JAVADUMPs taken to a maximum of three

v Does not capture any documentation if an INTERRUPT occurs

Then, set the JAVA_DUMP_OPTS variable to the following value:
JAVA_DUMP_OPTS=ONANYSIGNAL(JAVADUMP[3],SYSDUMP[1]),ONINTERRUPT(NONE)

2. Optimize the startup and runtime performance.

In some environments, such as a development environment, it is more important to optimize the
startup performance of your application server rather than the runtime performance. In other
environments, it is more important to optimize the runtime performance. By default, IBM virtual
machines for Java are optimized for runtime performance, while HotSpot-based JVMs are optimized for
startup performance.

The Java Just-in-Time (JIT) compiler impacts whether startup or runtime performance is optimized. The
initial optimization level that the compiler uses influences the length of time that is required to compile
a class method, and the length of time that is required to start the server. For faster startups, reduce
the initial optimization level that the compiler uses. However if you reduce the initial optimization level,
the runtime performance of your applications might decrease because the class methods are now
compiled at a lower optimization level.

v -Xquickstart

This setting influences how the IBM virtual machine for Java uses a lower optimization level for
class method compiles. A lower optimization level provides for faster server startups, but lowers
runtime performance. If this parameter is not specified, the IBM virtual machine for Java defaults to
starting with a high initial optimization level for compiles, which results in faster runtime
performance, but slower server starts.

You can set this property on the Java virtual machine panel using the administrative console. For
details, read the information about Java virtual machine settings.

Default High initial compiler optimization level

Recommended High initial compiler optimization level

Usage Specifying -Xquickstart improves server startup time.

To speed up JVM initialization and improve server startup time, specify the following command-line
arguments in the General JVM arguments field in the General Properties section of the Configuration
Tab.
-Xquickstart
-Xverify:none

3. Verify the classpath as part of the Java configuration.

In the General Properties section of the Configuration Tab, enter the classpath in the text box of the
Classpath option. Make sure that the classpath points to only the classes you need. If possible, the
classes that are referenced most frequently should be located near the front of the path.

Sometimes poor performance is caused by a missing class. The class loader looks in its tables of
already loaded classes and if the class is not found to be already loaded it will search for it. This
search process can cause a high amount of I/O activity to the HFS volumes. To determine if this is the
problem you can collect CTRACE records from the file system. Once you determine which class is not
being found you can repair the problem by providing the class or by removing the need for it.

4. Configure the heap size.

Chapter 4. Tuning the application serving environment 31

The Java heap parameters influence the behavior of garbage collection. Increasing the heap size
supports more object creation. Because a large heap takes longer to fill, the application runs longer
before a garbage collection occurs. However, a larger heap also takes longer to compact and causes
garbage collection to take longer.

The JVM uses defined thresholds to manage the storage that it is allocated. When the thresholds are
reached, the garbage collector is invoked to free up unused storage. Therefore, garbage collection can
cause significant degradation of Java performance. Before changing the initial and maximum heap
sizes, you should consider the following information:

v In the majority of cases you should set the maximum JVM heap size to a value that is higher than
the initial JVM heap size. This setting allows for the JVM to operate efficiently during normal, steady
state periods within the confines of the initial heap. This setting also allows the JVM to operate
effectively during periods of high transaction volume because the JVM can expand the heap up to
the value specified for the maximum JVM heap size. In some rare cases, where absolute optimal
performance is required, you might want to specify the same value for both the initial and maximum
heap size. This setting eliminates some overhead that occurs when the JVM expands or contracts
the size of the JVM heap. Before changing any of the JVM heap sizes, verify that the JVM storage
allocation is large enough to accommodate the new heap size.

v Do not make the size of the initial heap so large that while it initially improves performance by
delaying garbage collection, when garbage collection does occur, the collection process affects
response time because the process has to run longer.

Java heap information is contained in SMF records and can be viewed dynamically using the
DISPLAY,JVMHEAP console command.

To use the administrative console to configure the heap size:

a. In the administrative console, click Servers > Server Types > WebSphere application servers >
server_name.

b. In the Server Infrastructure section, click Java and process management > Process definition.

c. Select either Control or Servant, and then select Java virtual machine.

d. Specify a new value in either the Initial heap size or the Maximum heap size field.

You can also specify values for both fields if you need to adjust both settings.

For performance analysis, the initial and maximum heap sizes should be equal.

The Initial heap size setting specifies, in megabytes, the amount of storage that is allocated for the
JVM heap when the JVM starts. The Maximum heap size setting specifies, in megabytes, the
maximum amount of storage that can be allocated to the JVM heap. Both of these settings have a
significant effect on performance.

If you are tuning a production system where you do not know the working set size of the enterprise
applications that are running on that system, an appropriate starting value for the initial heap size is
25 percent of the maximum heap size. The JVM then tries to adapt the size of the heap to the
working set size of the application.

The following illustration represents three CPU profiles, each running a fixed workload with varying
Java heap settings. In the middle profile, the initial and maximum heap sizes are set to 128 MB.
Four garbage collections occur. The total time in garbage collection is about 15 percent of the total
run. When the heap parameters are doubled to 256 MB, as in the top profile, the length of the work
time increases between garbage collections. Only three garbage collections occur, but the length of
each garbage collection is also increased. In the third profile, the heap size is reduced to 64 MB
and exhibits the opposite effect. With a smaller heap size, both the time between garbage
collections and the time for each garbage collection are shorter. For all three configurations, the
total time in garbage collection is approximately 15 percent. This example illustrates an important
concept about the Java heap and its relationship to object utilization. A cost for garbage collection
always exists when running enterprise applications.

32 Tuning guide

Run a series of tests that vary the Java heap settings. For example, run experiments with 128 MB,
192 MB, 256 MB, and 320 MB. During each experiment, monitor the total memory usage. If you
expand the heap too aggressively, paging can occur.

If paging occurs, reduce the size of the heap or add more memory to the system.

When all the runs are finished, compare the following statistics:
v Number of garbage collection calls
v Average duration of a single garbage collection call
v Ratio between the length of a single garbage collection call and the average time between calls

If the application is not over utilizing objects and has no memory leaks, the state of steady memory
utilization is reached. Garbage collection also occurs less frequently and for short duration.

If the heap free space settles at 85 percent or more, consider decreasing the maximum heap size
values because the application server and the application are under-utilizing the memory allocated
for heap.

If you have servers configured to run in 64-bit mode, you can specify a JVM maximum heap size
for those servers that is significantly larger than the default setting. For example, you can specify
an initial maximum heap size of 1844 MB for the controller and the servant if the server is
configured to run in 64-bit mode.

e. Click Apply.

f. Click Save to save your changes to the master configuration.

g. Stop and restart the application server.

You can also use the following command-line parameters to adjust these settings. These parameters
apply to all supported JVMs and are used to adjust the minimum and maximum heap size for each
application server or application server instance.

v -Xms

This parameter controls the initial size of the Java heap. Tuning this parameter reduces the
overhead of garbage collection, which improves server response time and throughput. For some
applications, the default setting for this option might be too low, which causes a high number of
minor garbage collections.

Default 50 MB

Recommended Workload specific, but higher than the default.

Usage Specifying -Xms256m sets the initial heap size to 256 MB.

v -Xmx

Chapter 4. Tuning the application serving environment 33

This parameter controls the maximum size of the Java heap. Increasing this parameter increases
the memory available to the application server, and reduces the frequency of garbage collection.
Increasing this setting can improve server response time and throughput. However, increasing this
setting also increases the duration of a garbage collection when it does occur. This setting should
never be increased above the system memory available for the application server instance.
Increasing the setting above the available system memory can cause system paging and a
significant decrease in performance.

Default By default, the JVM dynamically calculates the Java heap
size based on the available memory in the system.

Recommended Workload specific, but higher than the default value,
depending on the amount of available physical memory.

Usage Specifying -Xmx512m sets the maximum heap size to 512
MB.

Note: Specify a value for the -Xmx parameter to reduce possible out-of-memory issues.

5. Tune Java memory.

Enterprise applications written in the Java language involve complex object relationships and use large
numbers of objects. Although, the Java language automatically manages memory associated with
object life cycles, understanding the application usage patterns for objects is important. In particular,
verify that the following conditions exist:
v The application is not over utilizing objects
v The application is not leaking objects
v The Java heap parameters are set properly to handle a given object usage pattern

a. Check for over-utilization of objects.

You can check if the application is overusing objects, by observing the counters for the JVM
runtime. You have to specify the -XrunpmiJvmtiProfiler command-line option, as well as the JVM
module maximum level in order to enable the Java virtual machine profiler interface, JVMTI,
counters. The optimal result for the average time between garbage collections is at least five to six
times the average duration of a single garbage collection. If you do not achieve this number, the
application is spending more than 15 percent of its time in garbage collection.

If the information indicates a garbage collection bottleneck, there are two ways to clear the
bottleneck. The most cost-effective way to optimize the application is to implement object caches
and pools. Use a Java profiler to determine which objects to target. If you can not optimize the
application, try adding memory, processors and clones. Additional memory allows each clone to
maintain a reasonable heap size. Additional processors allow the clones to run in parallel.

b. Test for memory leaks.

Memory leaks in the Java language are a dangerous contributor to garbage collection bottlenecks.
Memory leaks are more damaging than memory overuse, because a memory leak ultimately leads
to system instability. Over time, garbage collection occurs more frequently until the heap is
exhausted and the Java code fails with a fatal out-of-memory exception. Memory leaks occur when
an unused object has references that are never freed. Memory leaks most commonly occur in
collection classes, such as Hashtable because the table always has a reference to the object, even
after real references are deleted.

High workload often causes applications to crash immediately after deployment in the production
environment. If an application has memory leaks, a high workload can accelerate the magnification
of the leakage and cause memory allocation failures to occur.

The goal of memory leak testing is to magnify numbers. Memory leaks are measured in terms of
the amount of bytes or kilobytes that cannot be garbage collected. The delicate task is to
differentiate these amounts between expected sizes of useful and unusable memory. This task is
achieved more easily if the numbers are magnified, resulting in larger gaps and easier identification
of inconsistencies. The following list provides insight on how to interpret the results of your memory
leak testing:

34 Tuning guide

v Long-running test

Memory leak problems can manifest only after a period of time, therefore, memory leaks are
found easily during long-running tests. Short running tests might provide invalid indications of
where the memory leaks are occurring. It is sometimes difficult to know when a memory leak is
occurring in the Java language, especially when memory usage has seemingly increased either
abruptly or monotonically in a given period of time. The reason it is hard to detect a memory
leak is that these kinds of increases can be valid or might be the intention of the developer. You
can learn how to differentiate the delayed use of objects from completely unused objects by
running applications for a longer period of time. Long-running application testing gives you
higher confidence for whether the delayed use of objects is actually occurring.

v Repetitive test

In many cases, memory leak problems occur by successive repetitions of the same test case.
The goal of memory leak testing is to establish a big gap between unusable memory and used
memory in terms of their relative sizes. By repeating the same scenario over and over again, the
gap is multiplied in a very progressive way. This testing helps if the number of leaks caused by
the execution of a test case is so minimal that it is hardly noticeable in one run.

You can use repetitive tests at the system level or module level. The advantage with modular
testing is better control. When a module is designed to keep the private module without creating
external side effects such as memory usage, testing for memory leaks is easier. First, the
memory usage before running the module is recorded. Then, a fixed set of test cases are run
repeatedly. At the end of the test run, the current memory usage is recorded and checked for
significant changes. Remember, garbage collection must be suggested when recording the
actual memory usage by inserting System.gc() in the module where you want garbage collection
to occur, or using a profiling tool, to force the event to occur.

v Concurrency test

Some memory leak problems can occur only when there are several threads running in the
application. Unfortunately, synchronization points are very susceptible to memory leaks because
of the added complication in the program logic. Careless programming can lead to kept or
not-released references. The incident of memory leaks is often facilitated or accelerated by
increased concurrency in the system. The most common way to increase concurrency is to
increase the number of clients in the test driver.

Consider the following points when choosing which test cases to use for memory leak testing:
– A good test case exercises areas of the application where objects are created. Most of the

time, knowledge of the application is required. A description of the scenario can suggest
creation of data spaces, such as adding a new record, creating an HTTP session, performing
a transaction and searching a record.

– Look at areas where collections of objects are used. Typically, memory leaks are composed
of objects within the same class. Also, collection classes such as Vector and Hashtable are
common places where references to objects are implicitly stored by calling corresponding
insertion methods. For example, the get method of a Hashtable object does not remove its
reference to the retrieved object.

Heap consumption that indicates a possible leak during periods when the application server is
consistently near 100 percent CPU utilization, but disappears when the workload becomes lighter
or near-idle, is an indication of heap fragmentation. Heap fragmentation can occur when the JVM
can free sufficient objects to satisfy memory allocation requests during garbage collection cycles,
but the JVM does not have the time to compact small free memory areas in the heap to larger
contiguous spaces.

Another form of heap fragmentation occurs when objects that are less than 512 bytes are freed.
The objects are freed, but the storage is not recovered, resulting in memory fragmentation until a
heap compaction occurs.

Heap fragmentation can be reduced by forcing compactions to occur. However, there is a
performance penalty for forcing compactions. Use the Java -X command to see the list of memory
options.

6. Tune garbage collection

Chapter 4. Tuning the application serving environment 35

The JVM uses a parallel garbage collector to fully exploit an SMP during most garbage collection
cycles.

Examining Java garbage collection gives insight to how the application is utilizing memory. Garbage
collection is a Java strength. By taking the burden of memory management away from the application
writer, Java applications are more robust than applications written in languages that do not provide
garbage collection. This robustness applies as long as the application is not abusing objects. Garbage
collection typically consumes from 5 to 20 percent of total run time of a properly functioning
application. If not managed, garbage collection is one of the biggest bottlenecks for an application.

Monitoring garbage collection while a fixed workload is running, provides you with insight as to whether
the application is over using objects. Garbage collection can even detect the presence of memory
leaks.

You can use JVM settings to configure the type and behavior of garbage collection. When the JVM
cannot allocate an object from the current heap because of lack of contiguous space, the garbage
collector is invoked to reclaim memory from Java objects that are no longer being used. Each JVM
vendor provides unique garbage collector policies and tuning parameters.

You can use the Verbose garbage collection setting in the administrative console to enable garbage
collection monitoring. The output from this setting includes class garbage collection statistics. The
format of the generated report is not standardized between different JVMs or release levels.

To adjust your JVM garbage collection settings:

a. In the administrative console, click Servers > Server Types > WebSphere application servers >
server_name.

b. In the Server Infrastructure section, click Java and process management > Process definition >
servant.

c. Under additional properties, click Environment entries.

d. Add or update the environment entry for IBM_JAVA_OPTIONS as follows.

1) If you see an existing environment entry named IBM_JAVA_OPTIONS, edit it to append the –X
Java option you want to add to the existing value.

2) Otherwise, click New to create a new environment entry. Fill in the following values in their
respective fields of the form:

Name: IBM_JAVA_OPTIONS

Value: The –X Java option you want to add

Description: A description of that option

This procedure updates the was.env file in the WebSphereApplication Server configuration
directory. The change will apply the settings to all servant, control, and adjunct regions.

e. Click Apply.

f. Click Save to save your changes to the master configuration.

g. Stop and restart the application server.

The following list describes the –X options for the different JVM garbage collectors.

The IBM virtual machine for Java garbage collector.
A complete guide to the IBM implementation of the Java garbage collector is provided in the
IBM Developer Kit and Runtime Environment, Java2 Technology Edition, Version 5.0
Diagnostics Guide. This document is available on the developerWorks® website.

Use the Java -X option to view a list of memory options.

v -Xgcpolicy

The IBM virtual machine for Java provides four policies for garbage collection. Each policy
provides unique benefits.

36 Tuning guide

|

|
|

Note: While each policy provides unique benefits, for WebSphere Application Server V8,
gencon is the default garbage collection policy. Previous versions of the application
server specify that optthruput is the default garbage collection policy.

– gencon is the default policy. This policy works with the generational garbage collector.
The generational scheme attempts to achieve high throughput along with reduced
garbage collection pause times. To accomplish this goal, the heap is split into new and
old segments. Long lived objects are promoted to the old space while short-lived objects
are garbage collected quickly in the new space. The gencon policy provides significant
benefits for many applications. However, it is not suited for all applications, and is
typically more difficult to tune.

– optthruput provides high throughput but with longer garbage collection pause times.
During a garbage collection, all application threads are stopped for mark, sweep and
compaction, when compaction is needed. The gencon policy is sufficient for most
applications.

– optavgpause is the policy that reduces garbage collection pause time by performing the
mark and sweep phases of garbage collection while an application is running. This policy
causes a small performance impact to overall throughput.

– subpool is a policy that increases performance on multiprocessor systems, that
commonly use more then 8 processors. This policy is only available on IBM System i®

System p® and System z® processors. The subpool policy is similar to the gencon policy
except that the heap is divided into subpools that provide improved scalability for object
allocation.

Default gencon

Recommended gencon

Usage Specifying Xgcpolicy:gencon sets the garbage collection
policy to gencon.

Setting gcpolicy to gencon disables concurrent mark. You should get optimal throughput
results when you use the gencon policy unless you are experiencing erratic application
response times, which is an indication that you might have pause time problems

Setting gcpolicy to optavgpause enables concurrent mark with its default values. This
setting alleviates erratic application response times that normal garbage collection causes.
However, this option might decrease overall throughput.

v -Xnoclassgc

By default, the JVM unloads a class from memory whenever there are no live instances of
that class left. The overhead of loading and unloading the same class multiple times, can
decrease performance.

gotcha: You can use the -Xnoclassgc argument to disable class garbage collection.
However, the performance impact of class garbage collection is typically minimal,
and turning off class garbage collection in a Java Platform, Enterprise Edition
(Java EE) based system, with its heavy use of application class loaders, might
effectively create a memory leak of class data, and cause the JVM to throw an
Out-of-Memory Exception.

If you use this option, whenever you redeploy an application, you should always
restart the application server to clear the classes and static data from the pervious
version of the application.

Default Class garbage collection is enabled.

Recommended Do not disable class garbage collection.

Usage Specify Xnoclassgc to disable class garbage collection.

Chapter 4. Tuning the application serving environment 37

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|||

||

||
|
|

|
|
|

|
|
|

7. Enable class sharing in a cache.

The share classes option of the IBM implementation of the Java 2 Runtime Environment (J2RE)
Version 1.5.0 lets you share classes in a cache. Sharing classes in a cache can improve startup time
and reduce memory footprint. Processes, such as application servers, node agents, and deployment
managers, can use the share classes option.

If you use this option, you should clear the cache when the process is not in use. To clear the cache,
either call the app_server_root/bin/clearClassCache.bat/sh utility or stop the process and then restart
the process.

If you need to disable the share classes option for a process, specify the generic JVM argument
-Xshareclasses:none for that process:

a. In the administrative console, click Servers > Server Types > WebSphere application servers >
server_name.

b. In the Server Infrastructure section, click Java and process management > Process definition

c. Select either Control or Servant, and then select Java virtual machine.

d. Enter -Xshareclasses:none in the Generic JVM arguments field.

e. Click OK.

f. Click Save to save your changes to the master configuration.

g. Stop and restart the application server.

Default The Share classes in a cache option are enabled.

Recommended Leave the share classes in a cache option enabled.

Usage Specifying -Xshareclasses:none disables the share
classes in a cache option.

8. Enable compressed references on 64-bit environments.

You can enable compressed references on 64-bit environments, such as AIX® 64, Linux PPC 64,
zLinux 64, and Microsoft Windows AMD64, Linux AMD64.

The compressed references option of the IBM implementation of the 64-bit Java SE Runtime
Environment (JRE) Version 6.0 lets you limit all of the memory references to 32-bit size. Typically, the
64-bit JVMs use more heap space than the 32-bit JVMs because they use 64-bit wide memory
references to address memory. The heap that is addressable by the 64-bit reference is orders of
magnitude larger than the 32-bit heap, but in the real world, a heap that requires all 64-bits for
addressing is typically not required. Compressing the references reduces the size of the addresses
and makes more efficient use of the heap. Compressing these references also improves the processor
cache and bus utilization, thereby improving performance.

gotcha:

The compressed references feature is not supported on:

v HP-UX 64-bit JVM

v iSeries® Classic 64-bit JVM

To enable a 64-bit JVM to run in the compressed references mode, you need to specify a new
environment variable in WebSphereApplication Server configuration. In the administrative console:

a. Click: Servers > Server Types > WebSphere application servers > server_name.

b. Click the Configuration tab. Under Server Infrastructure, click Java and process management >
ProcessDefinition > servant.

c. Under additional properties, click Environment entries.

Add or update the environment entry for IBM_JAVA_OPTIONS as follows:

1) If you see an existing environment entry named IBM_JAVA_OPTIONS, edit it to append the
Java option –Xcompressedrefs to the existing value.

38 Tuning guide

2) Otherwise, click New to create a new environment entry. Fill in following values in their
respective fields of the form:

Name: IBM_JAVA_OPTIONS

Value: -Xcompressedrefs

Description: Enable 64-bit compressed references mode

This procedure updates the ‘was.env' file in the WebSphereApplication Server configuration directory.
The change will apply the settings to all servant, control, and adjunct regions.

gotcha: When you supply Xcompressedrefs as a generic JVM argument, WebSphereApplication
Server will fail to start because of an unsupported Java option error. If the application requires
more than a 30 GB Java heap, then 64-bit default mode should be used

The product automatically enables pointer compression on the supported platforms by default if the
heap size (controlled by the -Xmx parameter) is set under a certain heap size (around 25 GB
depending on platform), else it will default to non-compressed references. The user can override these
defaults by using the command line options below.

The following command-line options control compressed references feature:

-Xcompressedrefs
This command-line option enables the compressed references feature. When the JVM is
launched with this command line option it would use 32-bit wide memory references to address
the heap. This feature can be used up to a certain heap size (around 29GB depending on the
platform), controlled by -Xmx parameter.

-Xnocompressedrefs
This command-line options explicitly disable the compressed references feature. When the
JVM is launches with this command line option it will use full 64-bit wide memory references to
address the heap. This option can be used by the user to override the default enablement of
pointer compression, if needed.

9. Tune the configuration update process for a large cell configuration.

In a large cell configuration, you might need to determine whether configuration update performance or
consistency checking is more important. The deployment manager maintains a master configuration
repository for the entire cell. By default, when the configuration changes, the product compares the
configuration in the workspace with the master repository to maintain workspace consistency. However,
the consistency verification process can cause an increase in the amount of time to save a
configuration change or to deploy a large number of applications. The following factors influence how
much time is required:

v The more application servers or clusters that are defined in a cell, the longer it takes to save a
configuration change.

v The more applications that are deployed in a cell, the longer it takes to save a configuration change.

If the amount of time required to change a configuration change is unsatisfactory, you can add the
config_consistency_check custom property to your JVM settings and set the value of this property to
false.

a. In the administrative console, click System administration > Deployment manager.

b. Under Server Infrastructure, select Java and Process Management, and then click Process
Definition.

c. Under Additional Properties, click Java Virtual Machine > Custom Properties > New.

d. Enter config_consistency_check in the Name field and false in the Value field.

e. Click OK and then save these changes to the master configuration.

f. Restart the server.

Chapter 4. Tuning the application serving environment 39

Note: The config_consistency_check custom property affects the deployment manager process only.
It does not affect other processes including the node agent and application server processes.
The consistency check is not performed on these processes. However, within the SystemOut.log
files for these processes, you might see a note that the consistency check is disabled. For
these non-deployment manager processes, you can ignore this message.

If you are using the wsadmin command wsadmin -conntype none in local mode, you must set the
config_consistency_check property to false before issuing this command.

What to do next

Continue to gather and analyze data as you make tuning changes until you are satisfied with how the JVM
is performing.

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This topic describes the conventions in use for WebSphere Application Server.

Default product locations - z/OS

app_server_root
Refers to the top directory for a WebSphere Application Server node.

The node may be of any type—application server, deployment manager, or unmanaged for
example. Each node has its own app_server_root. Corresponding product variables are
was.install.root and WAS_HOME.

The default varies based on node type. Common defaults are configuration_root/AppServer and
configuration_root/DeploymentManager.

configuration_root
Refers to the mount point for the configuration file system (formerly, the configuration HFS) in
WebSphere Application Server for z/OS.

The configuration_root contains the various app_server_root directories and certain symbolic links
associated with them. Each different node type under the configuration_root requires its own
cataloged procedures under z/OS.

The default is /wasv8config/cell_name/node_name.

plug-ins_root
Refers to the installation root directory for Web Server Plug-ins.

profile_root
Refers to the home directory for a particular instantiated WebSphere Application Server profile.

Corresponding product variables are server.root and user.install.root.

In general, this is the same as app_server_root/profiles/profile_name. On z/OS, this will always
be app_server_root/profiles/default because only the profile name "default" is used in
WebSphere Application Server for z/OS.

smpe_root
Refers to the root directory for product code installed with SMP/E or IBM Installation Manager.

The corresponding product variable is smpe.install.root.

The default is /usr/lpp/zWebSphere/V8R0.

40 Tuning guide

Tuning transport channel services
The transport channel services manage client connections and I/O processing for HTTP and JMS
requests. These I/O services are based on the non-blocking I/O (NIO) features that are available in Java.
These services provide a highly scalable foundation to WebSphere Application Server request processing.
Java NIO-based architecture has limitations in terms of performance, scalability, and user usability.
Therefore, integration of true asynchronous I/O is implemented. This implementation provides significant
benefits in usability, reduces the complexity of I/O processing, and reduces that amount of performance
tuning you must perform.

About this task

Key features of the new transport channel services include:

v Scalability, which enables the product to handle many concurrent requests

v Asynchronous request processing, which provides a many-to-one mapping of client requests to web
container threads

v Resource sharing and segregation, which enables thread pools to be shared between the web container
and a messaging service

v Improved usability

v Incorporation of autonomic tuning and configuration functions

Changing the default values for settings on one or more of the transport channels associated with a
transport chain can improve the performance of that chain.

Figure 1. Transport Channel Service

Chapter 4. Tuning the application serving environment 41

Procedure
v Adjust TCP transport channel settings. In the administration console, click Servers > Server Types >

WebSphere application servers > server_name > Ports. Then click View associated transports for
the appropriate port.

1. Select the transport chain whose properties you are changing.

2. Click the TCP transport channel defined for that chain.

3. Lower the value specified for the Maximum open connections property. This parameter controls the
maximum number of connections that are available for a server to use. Leaving this parameter at
the default value of 20000, which is the maximum number of connections, might lead to stalled
websites under failure conditions, because the product continues to accept connections, thereby
increasing the connection, and associated work, backlog. The default should be changed to a
significantly lower number, such as 500, and then additional tuning and testing should be performed
to determine the optimal value that you should specify for a specific website or application
deployment.

4. If client connections are being closed without data being written back to the client, change the value
specified for the Inactivity timeout parameter. This parameter controls the maximum number of
connections available for a server use. After receiving a new connection, the TCP transport channel
waits for enough data to arrive to dispatch the connection to the protocol-specific channels above
the TCP transport channel. If not enough data is received during the time period specified for the
Inactivity timeout parameter, the TCP transport channel closes the connection.

The default value for this parameter is 60 seconds. This value is adequate for most applications.
Increase the value specified for this parameter if your workload involves many connections and all of
these connections cannot be serviced in 60 seconds.

v Adjust HTTP transport channel settings. In the administration console, click Servers > Server Types >
WebSphere application servers > server_name > Ports. Then click View associated transports for
the appropriate port.

1. Select the transport chain whose properties you are changing.

2. Click the HTTP transport channel defined for that chain.

3. Tune HTTP keep-alive.

The Use persistent (keep-alive) connections setting controls whether connections are left open
between requests. Leaving the connections open can save setup and teardown costs of sockets if
your workload has clients that send multiple requests. The default value is true, which is typically the
optimal setting.

If your clients only send single requests over substantially long periods of time, it is probably better
to disable this option and close the connections right away rather than to have the HTTP transport
channel setup the timeouts to close the connection at some later time.

4. Change the value specified for the Maximum persistent requests parameter to increase the number
of requests that can flow over a connection before it is closed.

When the Use persistent connections option is enabled, the Maximum persistent requests
parameter controls the number of requests that can flow over a connection before it is closed. The
default value is 100. This value should be set to a value such that most, if not all, clients always
have an open connection when they make multiple requests during the same session. A proper
setting for this parameter helps to eliminate unnecessary setting up and tearing down of sockets.

For test scenarios in which the client is never closed, a value of -1 disables the processing which
limits the number of requests over a single connection. The persistent timeout shuts down some idle
sockets and protects your server from running out of open sockets.

5. Change the value specified for the Persistent timeout parameter to increase the length of time that a
connection is held open before being closed due to inactivity. The Persistent timeout parameter
controls the length of time that a connection is held open before being closed because there is no
activity on that connection. The default value is 30 seconds This parameter is set to a value that
keeps enough connections open so that most clients can obtain a connection available when they
must make a request.

42 Tuning guide

6. If clients are having trouble completing a request because it takes them more than 60 seconds to
send their data, change the value specified for the Read timeout parameter. Some clients pause
more than 60 seconds while sending data as part of a request. To ensure that they are able to
complete their requests, change the value specified for this parameter to a length of time in seconds
that is sufficient for the clients to complete the transfer of data. Be careful when changing this value
that you still protect the server from clients who send incomplete data and thereby use resources
(sockets) for an excessive amount of time.

7. If some of your clients require more than 60 seconds to receive data being written to them, change
the value specified for the Write timeout parameter. Some clients are slow and require more than 60
seconds to receive data that is sent to them. To ensure that they are able to obtain all of their data,
change the value specified for this parameter to a length of time in seconds that is sufficient for all
of the data to be received. Be careful when changing this value that you still protect the server from
malicious clients.

v Adjust the web container transport channel settings. In the administration console, click Servers >
Server Types > WebSphere application servers > server_name > Ports. Then click View associated
transports for the appropriate port.

1. Select the transport chain whose properties must be changed.

2. Click the web container transport channel defined for that chain.

3. If multiple writes are required to handle responses to the client, change the value specified for the
Write buffer size parameter to a value that is more appropriate for your clients. The Write buffer size
parameter controls the maximum amount of data per thread that the web container buffers before
sending the request on for processing. The default value is 32768 bytes, which are sufficient for
most applications. If the size of a response is greater than the size of the write buffer, the response
is chunked and written back in multiple TCP writes.

If you must change the value specified for this parameter, make sure that the new value enables
most requests to be written out in a single write. To determine an appropriate value for this
parameter, look at the size of the pages that are returned and add some additional bytes to account
for the HTTP headers.

v Adjust the settings for the bounded buffer.

Even though the default bounded buffer parameters are optimal for most of the environments, you might
want to change the default values in certain situations and for some operating systems to enhance
performance. Changing the bounded buffer parameters can degrade performance. Therefore, make
sure that you tune the other related areas, such as the web container and ORB thread pools, before
deciding to change the bounded buffer parameters.

To change the bounded buffer parameters:

1. In the administrative console, click Servers > Server Types > WebSphere application servers >
server_name.

2. In the Server Infrastructure section, click Java and process management > Process definition >
Java virtual machine.

3. Click Custom properties.

4. Enter one of the following custom properties in the Name field and an appropriate value in the Value
field, and then click Apply to save the custom property and its setting.

– com.ibm.ws.util.BoundedBuffer.spins_take=value

Specifies the number of times a web container thread can attempt to retrieve a request from the
buffer before the thread is suspended and enqueued. This parameter enables you to trade off the
cost of performing possibly unsuccessful retrieval attempts, with the cost to suspending a thread
and activating it again in response to a put operation.

Default: The number of processors available to the operating
system minus 1.

Recommended: Use any non-negative integer value. In practice, using an
integer from 2 to 8 yields the best performance results.

Chapter 4. Tuning the application serving environment 43

Usage: com.ibm.ws.util.BoundedBuffer.spins_take=6. Six
attempts are made before the thread is suspended.

– com.ibm.ws.util.BoundedBuffer.yield_take=true or false

Specifies that a thread yields the processor to other threads after a set number of attempts to
take a request from the buffer. Typically a lower number of attempts is preferable.

Default: false

Recommended: The effect of yield is implementation-specific for individual
platforms.

Usage: com.ibm.ws.util.BoundedBuffer.spins_take=boolean value

– com.ibm.ws.util.BoundedBuffer.spins_put=value

Specifies the number of attempts an InboundReader thread makes to put a request into the
buffer before the thread is suspended and enqueued. Use this value to trade off between the
cost of repeated, possibly unsuccessful, attempts to put a request into the buffer with the cost to
suspend a thread and reactivate it in response to a take operation.

Default: The value of com.ibm.ws.util.BoundedBuffer.spins_take
divided by 4.

Recommended: Use any non-negative integer value. In practice an integer
2 - 8 have shown the best performance results.

Usage: com.ibm.ws.util.BoundedBuffer.spins_put=6. Six attempts
are made before the thread is suspended.

– com.ibm.ws.util.BoundedBuffer.yield_put=true or false

Specifies that a thread yields the processor to other threads after a set number of attempts to put
a request into the buffer. Typically a lower number of attempts is preferable.

Default: false

Recommended: The effect of yield is implementation-specific for individual
platforms.

Usage: com.ibm.ws.util.BoundedBuffer.yield_put=boolean value

– com.ibm.ws.util.BoundedBuffer.wait=number of milliseconds

Specifies the maximum length of time, in milliseconds, that a request might unnecessarily be
delayed if the buffer is completely full or if the buffer is empty.

Default: 10000 milliseconds

Recommended: A value of 10000 milliseconds usually works well. In rare
instances when the buffer becomes either full or empty, a
smaller value guarantee a more timely handling of
requests, but there is usually a performance impact to
using a smaller value.

Usage: com.ibm.ws.util.BoundedBuffer.wait=8000. A request
might unnecessarily be delayed up to 8000 milliseconds.

v Click Apply and then click Save to save these changes.

Checking hardware configuration and settings
An optimal hardware configuration enables applications to get the greatest benefit from performance
tuning. The hardware speed impacts all types of applications and is critical to overall performance.

44 Tuning guide

About this task

You can check hardware configuration and settings such as disk speed, system memory and processor
speed to gain performance benefits.

Procedure
v Use the following considerations for selecting and configuring the hardware on which the application

servers run:

1. Optimize disk speed
– Description: Disk speed and configuration have a dramatic effect on the performance of

application servers running applications that are heavily dependent on the database support,
using extensive messaging, or processing workflow. The disk input or output subsystems that are
optimized for performance, for example Redundant Array of Independent Disks (RAID) array,
high-speed drives, and dedicated caches, are essential components for optimum application
server performance in these environments.

Application servers with fewer disk requirements can benefit from a mirrored disk drive
configuration that improves reliability and has good performance.

– Recommendation: Spread the disk processing across as many disks as possible to avoid
contention issues that typically occur with 1- or 2-disk systems. Placing the database tables on
disks that are separate from the disks that are used for the database log files reduces disk
contention and improve throughput.

2. Increase processor speed and processor cache
– Description: In the absence of other bottlenecks, increasing the processor speed often helps

throughput and response times. A processor with a larger L2 or L3 cache yields higher
throughput, even if the processor speed is the same as a CPU with a smaller L2 or L3 cache.

3. Increase system memory
– Description: Increase memory to prevent the system from paging memory to the disk to improve

performance. Allow a minimum of 256 MB of memory for each processor and 512 MB per
application server. Adjust the available memory when the system pages and the processor
utilization is low because of the paging. The memory access speed might depend on the number
and placement of the memory modules. Check the hardware manual to make sure that your
configuration is optimal.

– Recommendation: Use 256 MB of memory for each processor and 512 MB per application
server. Some applications might require more memory.

– Description: The amount of storage required for z/OS is mostly dependent on the number of
servers and the size of the Java Virtual Machine (JVM) heap for each server.

– Recommendation: For a single server with 1 GB JVM heap, allocate a minimum of 1GB of
memory.

4. Increase system memory
– Description: Increase memory to prevent the system from paging memory to the disk to improve

performance. Allow a minimum of 256 MB of memory for each processor and 512 MB per
application server. Adjust the available memory when the system pages and the processor
utilization is low because of the paging. The memory access speed might depend on the number
and placement of the memory modules. Check the hardware manual to make sure that your
configuration is optimal.

– Recommendation: Use 256 MB of memory for each processor and 512 MB per application
server. Some applications might require more memory.

– Description: The amount of storage required for z/OS is mostly dependent on the number of
servers and the size of the Java Virtual Machine (JVM) heap for each server.

– Recommendation: For a single server with 1 GB JVM heap, allocate a minimum of 1GB of
memory.

5. Run network cards and network switches at full duplex

Chapter 4. Tuning the application serving environment 45

– Description: Run network cards and network switches at full duplex and use the highest
supported speed. Full duplex is much faster than half duplex. Verify that the network speed of
adapters, cables, switches, and other devices can accommodate the required throughput. Some
websites might require multiple gigabit links.

– Recommendation Make sure that the highest speed is in use on 10/100/1000 Ethernet
networks.

6. An IBM S/390® or zSeries® Model that supports the software requirement of z/OS V1R2.

7. Storage
– Storage requirements are higher than for traditional workloads
– Recommendation

- Virtual storage default should be about 370 MB per servant, which includes a 256 MB default
heap size and a default initial LE heap size of 80 MB.

-

Note: Real storage minimum is 512 MB per LPAR for a light load such as the IVP. For most
real-world applications, you should use 2 GB or higher. We have seen applications that
require as much as 8 GB of real to operate at peak load.

v DASD

– Recommendation

-

Note: To maximize your performance, you should use a fast DASD subsystem (for example, IBM
Shark), running with a high cache read/write hit rate.

v Networking

– Recommendation

-

Note: For high bandwidth applications, you should use at least a 1 Gb Ethernet connection. If
your applications have extremely high bandwidth requirements, you may need additional
Ethernet connections.

v Cryptography

– Recommendation

-

Note: For applications that make heavy use of cryptography, you should use the zSeries or S/390
cryptographic hardware and the Integrated Cryptographic Service Facility. For more
information, refer to the zSeries and S/390 Cryptography website.

Tuning operating systems
You can tune your operating system to optimize the performance of WebSphere Application Server.

About this task

Tuning parameters are specific to operating systems. Because these operating systems are not
WebSphere Application Server products, be aware that the products can change and results can vary.

Note: Check your operating system documentation to determine how to make the tuning parameters
changes permanent and if a reboot is required.

Procedure

Tune z/OS operating systems

46 Tuning guide

http://www.ibm.com/servers/eserver/zseries/zos/security/cryptography.html

Tuning on z/OS
This page provides a starting point to tune your z/OS operating system to optimize WebSphere Application
Server performance.

About this task

One of the goals of the WebSphere Application Server for z/OS programming model and runtime
environment is to significantly simplify the work required for application developers to write and deploy
applications. WebSphere Application Server for z/OS can help to relieve the application programmer of
many of the plumbing tasks involved in developing applications. For example, application code in
WebSphere Application Server for z/OS does not concern itself directly with remote communication, it
locates objects which might be local or remote, and drives methods. As a result, there is no direct use of
socket calls or TCP/IP programming in a WebSphere Application Server for z/OS application.

Separating application development tasks from determining where to run the application is one aspect of
relieving plumbing tasks. Other aspects to consider include assistance with data calls for multiple types of
beans, assistance with user authentication, and threading.

Removing tuning work from the application programmer does not mean that the work is complete. There
might also be tuning work for database administrators, network administrators, security administrators, and
performance analysts.

Use the following topics to tune your z/OS operating system to optimize WebSphere Application Server
performance.

Procedure
v Tune the z/OS operating system

v Tune the WebSphere Application Server for z/OS runtime

v Tune the message-driven bean processing on z/OS by using WebSphere MQ as the messaging
provider in ASF mode

What to do next

For more information about tuning applications, see the using application clients information.

Tuning the z/OS operating system
Use these steps to tune your z/OS operating system to optimize WebSphere Application Server
performance.

Procedure
1. Tuning storage

2. “z/OS operating system tuning tips”

3. “UNIX System Services (USS) tuning tips for z/OS” on page 51

4. “Workload management (WLM) tuning tips for z/OS” on page 56

5. “Resource Recovery Service (RRS) tuning tips for z/OS” on page 49

6. “Fine tuning the LE heap” on page 52

z/OS operating system tuning tips
There are several configuration changes you can make to z/OS system components that might improve
product performance.

You might want to make one or more of the following changes to the indicated z/OS components:

Chapter 4. Tuning the application serving environment 47

v CTRACE

The first place to review is your CTRACE configuration. Ensure that all components are either set to
MIN or OFF. To display the CTRACE options for all components on your system, issue the following
command from the operator console:
D TRACE,COMP=ALL

To change the setting for an individual component to its minimum tracing value, use the following
command, where xxx is the component ID.
TRACE CT,OFF,COMP=xxx

This configuration change eliminates the unnecessary overhead of collecting trace information that is
not needed. Often during debug, CTRACE is turned on for a component and not shut off when the
problem is resolved.

v SMF

Ensure that you are not collecting more SMF data than you need. Review the SMFPRMxx settings to
ensure that only the minimum number of records are collected.

Use SMF 92 or 120 only for diagnostics.
– SMF Type 92

SMF Type 92 records are created each time an HFS file is opened, closed, deleted, and so forth.
Almost every web server request references HFS files, so thousands of SMF Type 92 records are
created. Unless you specifically need this information, turn off SMF Type 92 records. In the following
example, we have disabled the collection of SMF type 92 records:

Example:
ACTIVE,
DSNAME(SYS1.&.SYSNAME..SMF.MAN1;SYS1.&SYSNAME..SMF.MAN2;),
NOPROMPT,
REC(PERM),
MAXDORM(3000),
STATUS(010000),
JWT(0510),
SID(&SYSNAME;(1:4)),
LISTDSN,
SYS(NOTYPE(19,40,92)),
INTVAL(30),
SYNCVAL(00),
SYS(DETAIL,INTERVAL(SMF,SYNC)),
SYS(EXITS(IEFACTRT,IEFUJI,IEFU29,IEFU83,IEFU84,IEFU85,IEFUJV,IEFUSI))

– SMF Type 120

Note:

You might find that running with SMF 120 records in production is appropriate, because these
records give information specific to applications that are running on the product, such as
response time for Enterprise Edition (Java EE) artifacts, bytes transferred, and so forth. If you
do choose to run with SMF 120 records enabled, you should use server interval SMF records
and container interval SMF records rather than server activity records and container activity
records. See the Troubleshooting and support PDF for a description of the SMF 120 record.

The Troubleshooting and support PDF also describes the steps involved in controlling collection of
SMF 120 records. To enable specific record types, specify the following properties:
- server_SMF_server_activity_enabled=0 (or server_SMF_server_activity_enabled = false)
- server_SMF_server_interval_enabled=1 (or server_SMF_server_interval_enabled = true)
- server_SMF_container_activity_enabled=0 (or false)
- server_SMF_container_interval_enabled=1 (or true)
- server_SMF_interval_length=1800
- server_SMF_outbound_enabled=1 (or true)

48 Tuning guide

v You might also want to review your DB2 records and the standard RMF™ written SMF records, and
ensure that the SMF data sets are allocated optimally. DB2 SMF records 100, 101 and 102 affect
performance and should be used only for monitoring DB2 performance with the DB2 PM tool. If you are
not monitoring DB2 performance, you should consider not collecting those SMF records.

Resource Recovery Service (RRS) tuning tips for z/OS
Use these tips to tune your z/OS operating system to optimize WebSphere Application Server
performance.

v For best throughput, use coupling facility (CF) logger for the RRS log.

DASD logger can limit your throughput because it is I/O-sensitive. The CF logger has much more
throughput (in one measurement, the CF logger was six times faster than the DASD logger).
Throughput will benefit from moving the RRS logs in logger to a coupling facility (CF) logstream. Doing
so will help transactions complete quickly and not require any DASD I/O. If it's not possible to use CF
logs, use well performing DASD and make sure the logs are allocated with large CI sizes.

v Ensure that your CF logger configuration is optimal by using SMF 88 records.

See the tuning section of z/OS MVS™ Setting Up a Sysplex or the chapter on System Logger
Accounting in z/OS MVS System Management Facilities (SMF) for details. In any case, you should
monitor the logger to ensure that there is a sufficient size in the CF and that offloading is not impacting
the overall throughput. The transaction logs are shared I/O-intensive resources in the mainline and can
affect throughput dramatically if mistuned.

v Set adequate default values for the LOGR policy.

bprac: Default values of LOGR policy may have an impact on performance. You might want to use the
default settings in the table below.

Table 3. Recommended default setting for LOGR

Log Stream Initial Size Size

RM.DATA 1 MB 1MB

MAIN.UR 5 MB 50 MB

DELAYED .UR 5 MB 50 MB

RESTART 1 MB 5 MB

ARCHIVE 5 MB 50 MB

v Review XA Resource Managers log sizes.

If you are using XA Resource Managers and you have chosen to put the logs in the logger, you may
have to review the log sizes. As of this writing, we cannot give specific recommendations.

Note: You can configure the XA logs in the install dialog to live either in the HFS or in logstreams. If
you are not using global transactions involving XA resources, there is no point in putting the log
in a logstream. If the XA logs are placed in logstreams, they should be in the Coupling Facility
instead of DASD. The default names are 'HLQ.server.M' and 'HLQ.server.D' where HLQ is a
user-defined value between 1-8 characters specified in the install dialog, and 'server' is the
server short name. It is the installer's responsibility to ensure that the HLQ + server name is
unique across the configuration. If it is not, the server will fail to start because the user data in
the existing logstream will not match that of the new server. The logs (and structures, if
applicable) are created in job 'BBOLOGSA' in the install dialog. If structures need to be allocated,
there is also a step indicating what structure names need to be added to the CFRM policy. 5MB
initial and 20MB max sizes should be used for both of these logstreams.

Note: Set AUTODELETE(NO) for all logstreams.

v Eliminate archive log if not needed.

Chapter 4. Tuning the application serving environment 49

Note: If you don't need the archive log, you should eliminate it since it can introduce extra DASD I/Os.
The archive log contains the results of completed transactions. Normally, the archive log is not
needed. Following is an example of disabling archive logging.

Example:

//STEP1 EXEC PGM=IXCMIAPU
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DATA TYPE(LOGR)
DELETE LOGSTREAM NAME(ATR.WITPLEX.ARCHIVE)

DELETE LOGSTREAM NAME(ATR.WITPLEX.MAIN.UR)
DELETE LOGSTREAM NAME(ATR.WITPLEX.RESTART)
DELETE LOGSTREAM NAME(ATR.WITPLEX.RM.DATA)
DELETE LOGSTREAM NAME(ATR.WITPLEX.DELAYED.UR)
DELETE STRUCTURE NAME(RRSSTRUCT1)

/*
//STEP2 EXEC PGM=IXCMIAPU
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DATA TYPE(LOGR)
DEFINE STRUCTURE NAME(RRSSTRUCT1)

LOGSNUM(9)

DEFINE LOGSTREAM NAME(ATR.WITPLEX.MAIN.UR)
STRUCTNAME(RRSSTRUCT1)
STG_DUPLEX(YES)
DUPLEXMODE(UNCOND)
LS_DATACLAS(SYSPLEX)
LS_STORCLAS(LOGGER)
HLQ(IXGLOGR)
AUTODELETE(NO)
RETPD(3)

DEFINE LOGSTREAM NAME(ATR.WITPLEX.RESTART)
STRUCTNAME(RRSSTRUCT1)
STG_DUPLEX(YES)
DUPLEXMODE(UNCOND)
LS_DATACLAS(SYSPLEX)
LS_STORCLAS(LOGGER)
HLQ(IXGLOGR)
AUTODELETE(NO)
RETPD(3)

DEFINE LOGSTREAM NAME(ATR.WITPLEX.RM.DATA)
STRUCTNAME(RRSSTRUCT1)
STG_DUPLEX(YES)
DUPLEXMODE(UNCOND)
LS_DATACLAS(SYSPLEX)
LS_STORCLAS(LOGGER)
HLQ(IXGLOGR)
AUTODELETE(NO)
RETPD(3)

DEFINE LOGSTREAM NAME(ATR.WITPLEX.DELAYED.UR)
STRUCTNAME(RRSSTRUCT1)
STG_DUPLEX(YES)
DUPLEXMODE(UNCOND)
LS_DATACLAS(SYSPLEX)
LS_STORCLAS(LOGGER)
HLQ(IXGLOGR)
AUTODELETE(NO)
RETPD(3)

/*

//* DEFINE LOGSTREAM NAME(ATR.WITPLEX.ARCHIVE)
//* STRUCTNAME(RRSSTRUCT1)
//* STG_DUPLEX(YES)

50 Tuning guide

//* DUPLEXMODE(UNCOND)
//* LS_DATACLAS(SYSPLEX)
//* LS_STORCLAS(LOGGER)
//* HLQ(IXGLOGR)
//* AUTODELETE(NO)
//* RETPD(3)

Note: RRS manual recommends creating one structure per log stream.

LE tuning tips for z/OS
Enabling xplink in the runtime environment and compiling applications with xplink enabled improves
performance in z/OS V1R2.

v For best performance, use the LPALSTxx parmlib member to ensure that LE and C++ runtimes are
loaded into LPA, as shown in the following example:

Example: sys1.parmlib(LPALSTxx):

********************************* Top of Data ********************
USER.LPALIB,
ISF.SISFLPA, SDSF
CEE.SCEELPA,

LANGUAGE ENVIRONMENT
CBC.SCLBDLL, C++ RUNTIME
.
.
.

******************************** Bottom of Data ******************

v Ensure that the Language Environment® data sets, SCEERUN and SCEERUN2, are authorized to
enable xplink.

For processes that run the client ORB, since they start the JVM, must run with xplink (on). For best
performance, compile applications that use JNI services with xplink enabled. Compiling applications with
xplink enabled improves performance in z/OS V1R2. As you move from z/OS V1R2 to z/OS V1R6 you
should experience additional performance improvements when all of the LE services calls are xplink
enabled.

v Ensure that you are NOT using the following options during production:
– RPTSTG(ON)
– RPTOPTS(ON)
– HEAPCHK(ON)

v Turn LE heappools on.

If you are running a client on z/OS, setting the following: SET LEPARM='HEAPP(ON)' in a shell script,
turns on LE heappools, which should improve the performance of the client.

v Refer to “Fine tuning the LE heap” on page 52

Customization Note: Do not modify LE parameters without consulting IBM support. The LE parameters
are set internally to ensure the best possible performance of the WebSphere
Application Server, which is the main LE application running in the address space.
If you need to add or change LE parameters, make sure that you work with the IBM
WebSphere support team to ensure that the internally set parameters are not
compromised. The appropriate interface for making these changes is through the
PARM= parameter of the EXEC PGM=BPXBATSL statement in the startup JCL.

UNIX System Services (USS) tuning tips for z/OS
Use these tips to tune your z/OS operating system to optimize WebSphere Application Server
performance.

WebSphere Application Server for z/OS no longer requires or recommends the shared file system for the
configuration files, since it maintains its own mechanism for managing this data in a cluster. However,

Chapter 4. Tuning the application serving environment 51

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IEA2N160/8.6.2?SHELF=EZ2ZO10H&DT=20060619112554&CASE=

WebSphere for z/OS does require the shared files system for XA partner logs. Your application may also
use the shared file system. This article provides some basic tuning information for the shared file system.

For basic z/OS UNIX System Services performance information, refer to the following website:
http://www.ibm.com/servers/eserver/zseries/ebusiness/perform.html

v Mount the shared file system R/O.

Special consideration needs to be made to file system access when you run in a sysplex. If you mount
the file system R/W in a shared file system environment, only one system will have local access to the
files. All other systems have remote access to the files which negatively affects performance. You may
choose to put all of the files for WebSphere in their own mountable file system and mount it R/O to
improve performance. However, to change your current application or install new applications, the file
system must be mounted R/W. You will need to put operational procedures in place to ensure that the
file system is mounted R/W when updating or installing applications.

v HFS files caching.

HFS Files Caching Read/Write files are cached in kernel data spaces. In order to determine what files
would be good candidates for file caching you can use SMF 92 records.

Initial cache size is defined in BPXPRMxx.

v Consider using zFS.

z/OS has introduced a new file system called zFS which should provide improved file system access.
You may benefit from using the zFS for your UNIX file system. See z/OS UNIX System Services
Planning for more information.

v Use the filecache command.

High activity, read-only files can be cached in the USS kernel using the filecache command. Access to
files in the filecache can be much more efficient than access to files in the shared file system, even if
the shared file system files are cached in dataspaces. GRS latch contention, which sometimes is an
issue for frequently accessed files shared file system, will not affect files in the filecache.

To filecache important files at startup, you can add filecache command to your /etc/rc file. Unfortunately,
files which are modified after being added to the filecache may not be eligible for caching until the file
system is unmounted and remounted, or until the system is re-IPLed. Refer to z/OS UNIX System
Services Command Reference for more information about the filecache command.

Example of using the filecache command:
/usr/sbin/filecache -a /usr/lpp/WebSphere/V5R0M0/
MQSeries/java/samples/base/de_DE/mqsample.html

v Do not enable global audit ALWAYS on the RACF (SAF) classes that control access to objects in the
UNIX file system. If audit ALWAYS is specified in the SETR LOGOPTIONS for DIRACC, DIRSRCH,
FSOBJ or FSSEC very severe performance degradation might occur. If auditing is required, audit only
failures using SETR LOGOPTIONS, and audit successes for only selected objects that require it. After
enabling any auditing on these classes, verify that the change did not cause an unacceptable impact on
response times and CPU usage.

Fine tuning the LE heap
Use these steps to tune your z/OS operating system to optimize WebSphere Application Server
performance.

About this task

The LE Heap is an area of storage management to be concerned with. For servers, IBM has compiled
default values for HEAP and HEAPPOOL into the server main programs. These are good starting points
for simple applications. To fine tune the LE Heap settings, use the following procedure:

Procedure
1. Use the LE RPTSTG(ON) function to generate a report on storage utilization for your application

servers. Perform the following actions to enable this function. The results appear in the servant joblog.

52 Tuning guide

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1tun.html

a. In the administrative console, click Environment > WebSphere variables > New.

b. Specify _CEE_RUNOPTS in the Name field, and RPTSTG(ON),RPTOPTS(ON) in the Value field.

c. Click Save to save your changes

2. To bring the server down cleanly, use the following VARY command:
VARY WLM,APPLENV=xxxx,QUIESCE

The following example shows the servant SYSPRINT DD output from the RPTSTG(ON) function.

Example:
. . .
0 HEAP statistics:

Initial size: 83886080

Increment size: 5242880
Total heap storage used (sugg. initial size): 184809328

Successful Get Heap requests: 426551
Successful Free Heap requests: 424262
Number of segments allocated: 1
Number of segments freed: 0

. . .

Suggested Percentages for current Cell Sizes:
HEAPP(ON,8,6,16,4,80,42,808,45,960,5,2048,20)

Suggested Cell Sizes:
HEAPP(ON,32,,80,,192,,520,,1232,,2048,)

. . .

3. Take the heap values from the "Suggested Cell Sizes" line in the storage utilization report and use
them in another RPTSTG(ON) function to get another report on storage utilization.

a. In the administrative console, click Environment > WebSphere variables > New.

b. Specify _CEE_RUNOPTS in the Name field, and
RPTOPTS(ON),RPTSTG(ON),HEAPPOOLS(ON,32,,80,,192,,520,,1232,,2048,) or
RPTOPTS(ON),RPTSTG(ON),HEAPP(ON,32,,80,,192,,520,,1232,,2048,) in the Value field.

c. Click Save to save your changes

The following example shows the servant joblog output from specifying one of these values.

Example:
. .

0 HEAP statistics:
Initial size: 83886080

Increment size: 5242880
Total heap storage used (sugg. initial size): 195803218

Successful Get Heap requests: 426551
Successful Free Heap requests: 424262
Number of segments allocated: 1
Number of segments freed: 0

. . .

Suggested Percentages for current Cell Sizes:
HEAPP(ON,32,8,80,43,192,48,520,20,1232,5,2048,20)

Suggested Cell Sizes:
HEAPP(ON,32,,80,,192,,520,,1232,,2048,)

. . .

4. Take the heap values from the "Suggested Percentages for current Cell Sizes" line of the second
storage utilization report and use them in another RPTSTG(ON) function to get a third report on
storage utilization.

a. In the administrative console, click Environment > WebSphere variables > New.

Chapter 4. Tuning the application serving environment 53

b. Specify _CEE_RUNOPTS in the Name field, and
RPTOPTS(ON),RPTSTG(ON,32,8,80,43,192,48,520,20,1232,5,2048,20) in the Value field.

c. Click Save to save your changes

The following example shows the servant joblog output from specifying this value.

Example:
. .

0 HEAP statistics:
Initial size: 83886080

Increment size: 5242880
Total heap storage used (sugg. initial size): 198372130

Successful Get Heap requests: 426551
Successful Free Heap requests: 424262
Number of segments allocated: 1
Number of segments freed: 0

. . .

Suggested Percentages for current Cell Sizes:
HEAPP(ON,32,8,80,43,192,48,520,20,1232,5,2048,20)

Suggested Cell Sizes:
HEAPP(ON,32,,80,,192,,520,,1232,,2048,)

. . .

5. On the third storage utilization report, look for the "Total heap storage used (sugg. initial size):" line and
use this value for your initial LE heap setting. For example, in the report in the third report example,
this value is 198372130.

6. Remove the RPTSTG WebSphere variable from your server settings.because a small performance
degradation occurs while you are collecting the storage use information.

a. In the administrative console, click Environment > WebSphere variables.

b. Select _CEE_RUNOPTS, and click Delete.

7. For your client programs that run on z/OS, you should specify HEAPP(ON) on the proc of your client to
get the default LE heap pools. LE provides additional pools (more than 6), and larger than 2048 MB
cell size in future releases of z/OS. You might be able to take advantage of these increased pools and
cell sizes, if you have that service on your system.

8. If you use LE HEAPCHECK, make sure to turn it off after you verify that your code does not include
any uninitialized storage. HEAPCHECK can be very expensive.

Tuning the WebSphere Application Server for z/OS runtime
To optimize performance, review the following steps involved in tuning the WebSphere Application Server
for z/OS runtime.

Procedure
v “Review the WebSphere Application Server for z/OS configuration”

v “Internal tracing tips for WebSphere for z/OS” on page 55

v “Location of executable programs tips for z/OS” on page 56

v Security tuning tips for z/OS

Review the WebSphere Application Server for z/OS configuration
WebSphere Application Server provides tunable settings for its major components to enable you to make
adjustments to better match the runtime environment to the characteristics of your application.

54 Tuning guide

Before you begin

Many applications can run successfully without any changes to the default values for these tuning
parameters. Other applications might need changes, for example, a larger heap size, to achieve optimal
performance.

About this task

Before you read a description of WebSphere Application Server for z/OS tuning guidelines, it is important
to note that, no matter how well the middleware is tuned, it cannot make up for poorly designed and coded
applications. Focusing on the application code can help improve performance. Often, poorly written or
designed application code changes will make the most dramatic improvements to overall performance.

Procedure
1. Review the WebSphere for z/OS configuration. One simple way to do this is to look in your application

control and server regions in SDSF.

2. When each server starts, the runtime prints out the current configuration data in the joblog.

Internal tracing tips for WebSphere for z/OS
WebSphere Application Server traces can be extremely helpful in detecting and diagnosing problems.

By properly setting trace options, you can capture the information needed to detect problems without
significant performance overhead.

v Ensure that you are not collecting more diagnostic data than you need.

You should check your WebSphere for z/OS tracing options to ensure that
ras_trace_defaultTracingLevel=0 or 1, and that ras_trace_basic and ras_trace_detail are not set.

How to view or set: Use the WebSphere administrative console:
1. Click Environment > Manage WebSphere Variables.
2. On the Configuration Tab check for any of these variables in the name field and observe the

variable setting in the value field.
3. To change or set a variable, specify the variable in the name field and specify the setting in the

value field. You can also describe the setting in the description field on this tab.

v For the best performance with any level of tracing, including ras_trace_defaultTracingLevel=1, set
ras_trace_outputLocation to BUFFER. This trace setting stores the trace data in memory, which is later
asynchronously written to a CTRACE data set. Setting ras_trace_outputLocation to SYSPRINT or
TRCFILE provides approximately the same level of performance, but significantly less than BUFFER.

v You can use the ras_trace_BufferCount and ras_trace_BufferSize settings to control the amount of
storage used for trace buffers. Generally, the larger the buffer allocation, the better the performance.
However, specifying a buffer allocation that is too large can cause a decrease in performance due to
system paging.

The default settings of ras_trace_BufferCount=4 and ras_trace_BufferSize=1M should perform
sufficiently for most applications.

v Make sure you disable JRAS tracing.

To do this, look for the following lines in the trace.dat file pointed to by the JVM properties file:
com.ibm.ejs.*=all=disable

com.ibm.ws390.orb=all=disable

Ensure that both lines are set to =disable or delete the two lines altogether.

Note: If ras_trace_outputLocation is set, you may be tracing and not know it.

Chapter 4. Tuning the application serving environment 55

Location of executable programs tips for z/OS
If you choose to not put most of the runtime in LPA, you might find that your processor storage gets a
bigger workout as the load increases.

IBM recommends that you install as much of the WebSphere Application Server for z/OS code in LPA as
is reasonable. Also, ensure that you have eliminated any unnecessary STEPLIBs which can affect
performance. If you must use STEPLIBs, verify that any STEPLIB DDs in the controller and servant procs do
not point to any unnecessary libraries. Refer to UNIX System Services (USS) tuning tips for z/OS for USS
shared file system tuning considerations.

At a minimum, WebSphere for z/OS will start three address spaces, so that any code that is not shared
will load three copies rather than one. As the load increases, many more servants may start and will
contribute additional load on processor storage.

Review the PATH statement to ensure that only required programs are in the PATH and that the order of
the PATH places frequently-referenced programs in the front.

Workload management (WLM) tuning tips for z/OS
If you are running z/OS Version 1.2 or higher, you can use the administrative console to provide the job
control language (JCL) PROC name for the servant and the JCL Parm for the servant and thereby set up
a dynamic application environment. Even if you set up a dynamic application environment, you must set
the WLM goals for your environment.

Proper WLM goals can significantly affect your application throughput. The WebSphere Application Server
address spaces should be given a fairly high priority. When setting the WLM goals for your z/OS system,
you might want to:

v Classify location service daemons and controllers as SYSSTC or high velocity.

v Use STC classification rules to classify velocity goals for application servers.

Java garbage collection runs under this classification. Java garbage collection is a CPU and storage
intensive process. If you set the velocity goal too high garbage collection can consume more of your
system resources than desired. If your Java heap is correctly tuned, garbage collection for each servant
should run no more than 5% of the time. Also, providing proper priority to garbage collection processing
is necessary since other work in the servant is stopped during much of the time that garbage collection
is running.

JavaServer Page file compiles run under this classification. If your system is configured to do these
compiles at runtime, setting the velocity goal too low can cause longer delays waiting for JavaServer
Page file compiles to complete.

Application work is classified under the work manager.

v Set achievable percentage response time goals.

For example, a goal that 80% of the work will complete in .25 seconds is a typical goal. Velocity goals
for application work are not meaningful and should be avoided.

v Make your goals multi-period.

This strategy might be useful if you have distinctly short and long running transactions in the same
service class. On the other hand, it is usually better to filter this work into a different service class if you
can. Being in a different service class will place the work in a different servant which allows WLM much
more latitude in managing the goals.

The high velocity default service class SYSOTHER is provided for CB subsystem transactions.

v Define unique WLM report classes for servant regions and for applications running in your application
environment. Defining unique WLM report classes enables the resource measurement facility (RMF) to
report performance information with more granularity.

v Use the wlm_maximumSRCount=x and wlm_minimumSRCount=y variables to control the maximum and
minimum number of servants, if the WLM configuration is set to no limit.

56 Tuning guide

To specify values for these variables, in the administrative console, click Servers > Server Types >
WebSphere application servers, and select the appropriate application server.

gotcha: If you specify a value for the wlm_maximumSRCount variable, the value must be greater than
or equal to the number of service classes defined for this application environment. If the value
is less than the number of defined service classes, timeouts might be caused because there is
an insufficient number of servants available.

v Periodically review the results reported in the RMF Postprocessor workload activity report:
– Transactions per second (not always the same as client tran rate)
– Average response times (and distribution of response times)
– CPU time used
– Percent response time associated with various delays

Tuning message-driven bean processing on z/OS by using WebSphere
MQ as the messaging provider in ASF mode
You can tune message-driven beans processing when you are running WebSphere Application Server on
the z/OS platform, where WebSphere MQ is the messaging provider, and the message-driven bean has
been deployed in Application Server Facilities (ASF) mode.

Before you begin

To tune message-driven bean processing, you need to consider a variety of settings together. There are a
wide range of values and possibilities to consider, because of the variety of workloads possible to run in
any given server.

When a message-driven bean is mapped (that is, listening to) a queue, or to a topic through a durable
subscription, a JMS message first enters into the application server in the controller, so we say the server
is “listening in the controller” for these messages. The “listening in the controller” term is used throughout
this description of tuning message-driven bean processing.

About this task

When you are tuning message-driven bean processing in the server, you also need to consider the tuning
the entire workload for the server, and the interaction between the two.

To tune message-driven bean processing, consider all the following settings together:

v WLM service class definitions

v WebSphere Application Server workload profile selection

v Message listener service listener port settings

v JMS Connection Factory pooling settings

v WebSphere MQ Queue Manager settings

It is difficult to recommend values to select for each of these settings, given the variety of workloads that
can be run in any given server. There are many possibilities to consider, including the following factors:

v The number of message-driven beans.

v The administrative configuration choices, such as whether to map two message-driven beans to the
same or different listener ports.

v The importance of work for message-driven beans compared with other (HTTP, IIOP) types of work
running in the server.

The following suggested settings provide a starting point, and assume that the server is configured with
only one application, which consists of a single message-driven bean that is installed and running on this
server.

Chapter 4. Tuning the application serving environment 57

More detailed discussions explain the rationale behind the suggestions, and describe the listener port
function in more detail in the “listening in the controller” case on z/OS. Together, they can help you to
make your own setting selections for your own systems and servers.

Procedure
1. Set the listener port maximum sessions property to at least twice the maximum number of servant

worker threads available to the entire server. The value of this property determines the high threshold
value (high threshold = maximum sessions), and is used by the throttle to decide when to block or
allow requests.

a. Start the administrative console.

b. In the navigation pane, click Servers > Server Types > WebSphere application
servers->server_name > [Communications] Messaging > Message listener service >
[Additional Properties] Listener Ports The Message listener port collection panel is displayed.

c. Select the name of the listener port that you want to work with. The Listener port settings panel is
displayed.

d. Set the maximum sessions property to the value you want the message-driven bean throttle to
use as its high threshold value. The suggested minimum value is computed by the formula:
2 * (maximum number of servants) * (number of worker threads in one servant)

Here “servants” means the same as “server instances” on the administrative console. To calculate
the number of worker threads in a single servant, see the description of “Workload profile”. See the
Developing and deploying applications PDF for more information.

To learn more about setting the Listener Port maximum sessions property, see the information about
message-driven beans and tuning settings on z/OS.

2. Set the WebSphere MQ queue connection factory properties.

a. To view this administrative console page, click Resources > JMS->Queue connection factories.

b. Select the queue connection factory specified for the listener port.

c. From the Additional Properties, select the Connection Pool panel.

d. Set the Max Connections property for the Connection Pool. Allow one connection for each
message-driven bean. This property value might include message-driven beans mapped onto
different listener ports, if those listener ports were each, in turn, mapped onto the same connection
factory. To learn more about this setting, see the information about message-driven beans and
tuning settings on z/OS.

e. From the Additional Properties of the queue connection factory, select the Session Pool panel.

f. Set the Max Connections property for the session pool. Allow one session for each worker thread
in a single servant. Set this property to at least the number of worker threads available to a single
servant. To learn more about this setting, see the information about message-driven beans and
tuning settings on z/OS.

3. Set the WebSphere MQ-related properties. Make sure that the backing WebSphere MQ queue
manager has been configured with enough resources to support the intended JMS workload coming
from WebSphere Application Server (and other clients). In particular, consider your queue manager
CTHREAD, IDBACK, and IDFORE parameter settings. For more information on these WebSphere MQ
settings, see the WebSphere MQ information center.

Example
1. If your server is configured with the maximum server instances value set to 3, (whatever the

minimum number might be), and if your workload profile is LONGWAIT (which means that each
servant contains 40 worker threads), set your listener port maximum sessions value to at least

240 = 2 * 3 * 40

2. Suppose that your application contains two individual message-driven beans, each of which has an
onMessage() implementation that forwards the message to another JMS destination. Therefore, each
message-driven bean needs its own JMS connection factory to complete this task. Suppose the

58 Tuning guide

Administrator has mapped each message-driven bean JMS connection factory resource reference onto
the same administratively-defined connection factory used by the listener port that each of these
message-driven beans is mapped onto.

In this case, you need to set the connection factory Connection Pool Max Connections value to 42.
One connection for each of the two message-driven beans to be used by the listener port, and one
connection potentially for each of the 40 onMessage() dispatches that night be running concurrently.
(Remember that the connection pool is a per-servant pool).

3. Set the connection factory Session Pool Max Connections to 40, the number of worker threads in a
single servant, regardless of the number of servants.

For debugging tips, refer to “MDB throttle support for z/OS debugging tips.”

MDB throttle support for z/OS debugging tips
In order to have minimal impact on performance while still collecting needed debugging information for the
MDB throttle support, use the following options:

v Trace option: com.ibm.ejs.jms.listener.MessageReferenceListenerPort=all=enabled

The above trace option does not have to be specified if the MDB trace option is already set.

v System property: com.ibm.mdb.throttle.trace.enabled

Disabled, if the property is not defined or set to 0.

Enabled, if the property is set to 1.

v Dynamic trace support for statistics gathering and presentation.

To enable, disable, or reset messaging statistics, use the following modify command:

f <server>,mdbstats,[enable | disable | reset]

The response from the console should be:
BBOO0211I MODIFY COMMAND MDBSTATS, [ENABLE | DISABLE | RESET] COMPLETED SUCCESSFULLY

The following message appears if statistics gathering is not enabled:
BBOO0284I STATISTICS GATHERING NOT ENABLED FOR <string>

To display statistics, use the following modify display command:

f <server>,display,work,mdb,stats

The displayed information per listener port includes:

NAME The name of the Listener Port for which the statistics are being displayed.

TIME The amount of time, in seconds, since the stats were enabled or reset.

TOTAL
Total number of message references browsed since the stats were enabled or reset.

IN-FLIGHT
The current number of in-flight Work Requests.

EXCS The number of exceptions while queuing the requests.

BLOCKS
The total number of instances the Throttle restricts queuing of work requests.

Chapter 4. Tuning the application serving environment 59

Tuning storage
Running application servers on your z/OS system often requires a high amount of virtual storage. Because
virtual storage uses real storage as backup, real storage usage might also be high. Therefore make sure
that you do not underestimate the amount of virtual storage that you allocate to running your application
servers.

Before you begin

Determine your application server virtual storage requirements based on the number of application servers
you are running and the number of requests that each of these servers handles.

About this task

Perform one or more of the following steps if you need to improve client request throughput.

Procedure
1. Allocate additional virtual storage. The setting of REGION on the JCL for the proc controls the amount

of virtual storage available to a z/OS address space. The default values for the WebSphere Application
Server controller and servant are set to zero, which tells the operating system to allocate all the
available region (close to 2GB). You can limit the amount of virtual storage allocated by setting the
REGION parameter to a value other than zero. The size of the JVM heap is the most important factor
when determining the setting of the REGION parameter. You should only need to set the REGION to
something other than zero when the JVM heap size is very large. The z/OS operating system allocates
user storage from the bottom of the address space, which is where the JVM heap is allocated, and
system storage from the top. System abends can occur when the system tries to obtain virtual storage
and none is available. A non-zero REGION parameter setting prevents this from occurring by
preserving storage at the top of the address space for system use. In almost all cases running with the
default REGION will be satisfactory.

Note: For more information on REGION=0M and IEFUSI, please see Installing your application
serving environment ection of the information center.

2. Convert application servers with high virtual storage usage to run in 64-bit mode. Running an
application server in 64-bit mode allows you to specify larger JVM heap sizes.

3. Convert deployment mangers, that are managing cells in which very large applications are deployed, to
run in 64-bit mode.

4. Allocate additional real storage. The total amount of real storage that your system requires depends on
the number of servers you are running and the size of the JVM heaps for each server. You should
allocate at least 512MB of real storage for a small configuration.

Recommendation: Sometimes in a heavy use environment, 2GB of central storage is not enough to
handle the real storage demands of a high volume Java application. In this situation, you might want to
configure your servers to run in 64-bit mode. Running your servers in 64-bit mode gives you the ability
to dedicate more central storage to the LPAR, and the ability to define more than 2GB of central
storage. When you configure your servers to run in 64-bit mode, all of the storage is defined as central
storage.

The z/OS operating system running on a zSeries processor always runs in 64-bit mode. If you are
using a non-zSeries processors, or are running your servers in 31-bit mode, you can minimize paging
by defining more expanded storage.

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This topic describes the conventions in use for WebSphere Application Server.

60 Tuning guide

Default product locations - z/OS

app_server_root
Refers to the top directory for a WebSphere Application Server node.

The node may be of any type—application server, deployment manager, or unmanaged for
example. Each node has its own app_server_root. Corresponding product variables are
was.install.root and WAS_HOME.

The default varies based on node type. Common defaults are configuration_root/AppServer and
configuration_root/DeploymentManager.

configuration_root
Refers to the mount point for the configuration file system (formerly, the configuration HFS) in
WebSphere Application Server for z/OS.

The configuration_root contains the various app_server_root directories and certain symbolic links
associated with them. Each different node type under the configuration_root requires its own
cataloged procedures under z/OS.

The default is /wasv8config/cell_name/node_name.

plug-ins_root
Refers to the installation root directory for Web Server Plug-ins.

profile_root
Refers to the home directory for a particular instantiated WebSphere Application Server profile.

Corresponding product variables are server.root and user.install.root.

In general, this is the same as app_server_root/profiles/profile_name. On z/OS, this will always
be app_server_root/profiles/default because only the profile name "default" is used in
WebSphere Application Server for z/OS.

smpe_root
Refers to the root directory for product code installed with SMP/E or IBM Installation Manager.

The corresponding product variable is smpe.install.root.

The default is /usr/lpp/zWebSphere/V8R0.

Using PassByReference optimization in SCA applications
Support exists for the @AllowsPassByReference annotation, which can be used to bypass marshaling and
unmarshaling when a client invokes a service located in the same JVM over a remote interface.

About this task

Typically, a performance intensive aspect of service invocations is data marshaling and unmarshaling.
Though invocation over a local interface always results in pass-by-reference semantics so that no data is
copied, an invocation over a remotable interface entails pass-by-value semantics, which typically results in
copying of the data which can be expensive.

The SCA default binding provides the @AllowsPassByReference as an optimization that you can use on
your service implementation at the class level or at the individual method level.

In placing the @AllowsPassByReference annotation on the service implementation class or methods, the
implementor agrees not to modify the data in a way that would violate the pass-by-value semantics. This
allows both client and service to assume they are working with their own copy of the data even though the
runtime environment has optimized to not perform the actual data serialization and deserialization, to save
this expense.

Chapter 4. Tuning the application serving environment 61

Parameters, return types, and business exceptions are passed by reference if the service implementation
class has the @AllowsPassByReference annotation defined at the class level or individual method level.

More specifically, the PassByReference optimization is performed when all of the following are true:

v Client and service have been targeted to the same JVM.

v The invocation is over the default binding.

v Both client and service are part of the same business-level application

v @AllowsPassByReference is present. Either the service implementation is a Java implementation with
an appropriate @AllowsPassByReference annotation, or a composite implementation, ultimately
recursively implemented in terms of such an @AllowsPassByReference-annotated Java implementation.

v All input, output, and exception types have the same package-qualified class names and can be loaded
by a class loader common to or shared by both client and service.

Procedure
1. To enable PassByReference optimization for SCA applications, ensure all classes that you want to

optimize are loaded by the same class loader. Use the SCA contribution import and export support.

2. Create a Java archive (JAR) file that contains all classes that are loaded by the same class loader
during both client and service execution.

3. Add an sca-contribution.xml file to the META-INF directory in the JAR.

See the OSOA Assembly specification for information on sca-contribution.xml. The contribution
definition must contain an export.java statement that exports all packages contained in the JAR that
are accessed by either the client or service JAR file. For example:
<contribution xmlns="http://www.osoa.org/xmlns/sca/1.0"

targetNamespace="http://test.sca.scafp/pbr/shared/java">
<export.java package="com.ibm.sample.interface"/>
<export.java package="com.ibm.sample.types"/>

</contribution>

If the client and service JAR files are not already using an sca-contribution.xml file, update these files
to use a contribution definition that imports the packages that are exported by the shared library. For
example, the contribution files for the client and service that access the previous shared contribution
might look like this:
Client:
<contribution xmlns="http://www.osoa.org/xmlns/sca/1.0"

targetNamespace="http://test.sca.scafp/pbr/shared"
xmlns:pbr="http://test.sca.scafp/pbr/shared">
<deployable composite="pbr:PassByRef.SharedClient"/>
<import.java package="com.ibm.sample.interface"/>
<import.java package="com.ibm.sample.types"/>

</contribution>

Service:
<contribution xmlns="http://www.osoa.org/xmlns/sca/1.0"

targetNamespace="http://test.sca.scafp/pbr/shared"
xmlns:pbrsh="http://test.sca.scafp/pbr/shared">
<deployable composite="pbrsh:PassByRef.SharedService"/>
<import.java package="com.ibm.sample.interface"/>
<import.java package="com.ibm.sample.types"/>

</contribution>

4. Deploy the SCA application

Add the client, service, and shared contributions as an asset into the WebSphere repository. This can
occur in any order, however you must add the shared contribution as an asset before you can add
either the client or service asset as a composition unit to a business-level application. Only the client
and service assets need to be added as composition units to your business-level applications. During
the add composition unit operation for both the client and the service, the shared asset is automatically
added to the business-level application as a shared library.

62 Tuning guide

Clients that are deployed outside of a business-level application cannot use the PassByReference
optimization to invoke SCA services deployed inside a business-level application. For example, a
user-created web application archive (WAR) file using the default binding cannot be installed into a
business-level application, and therefore a WAR-hosted client might not participate in the
PassByReference optimization. The PassByReference optimization is supported only between JAR
files. You must install both service JAR files on the same business-level application.

Results

You have enabled PassByReference optimization for SCA applications.

Tuning the application server using pre-defined tuning templates
You can use the python-based tuning script, applyPerfTuningTemplate.py, along with one of its template
files, to apply pre-defined performance tuning templates to your application server or cluster. The script,
and these property-based template files are located in the <WAS_HOME>/scriptLibraries/perfTuning/
V70 directory.

Before you begin

bprac: The configuration settings applied by this script and the associated tuning templates should be
viewed as potential performance tuning options for you to explore or use as a starting point for
additional tuning. The configuration settings that each of the pre-defined templates applies are
geared towards optimizing common application server environments or scenarios. Typically, these
settings improve performance for many applications.

Because optimizing for performance often involves trade-offs with features, capabilities, or
functional behavior, some of these settings might impact application correctness, while other
settings might be inappropriate for your environment. Please review the documentation below and
consider the impact of these settings to your application inventory and infrastructure.

As with any performance tuning exercise, the settings configured by the predefined templates
should be evaluated in a controlled preproduction test environment. You can then create a
customized template to refine the tuning settings to meet the specific needs of your applications
and production environment.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Typically, when you run the applyPerfTuningTemplate.py script, you will specify either the production.props
template file or the development.props template file to apply against the target server or cluster.

v If you specify the production.props template file when you run the applyPerfTuningTemplate.py script,
the script applies configuration settings that are appropriate for a production environment where
application changes are rare and optimal runtime performance is important.

v If you specify the development.props template file when you run the applyPerfTuningTemplate.py script,
the script applies configuration settings that are appropriate for a development environment where
frequent application updates are performed and system resources are at a minimum.

In addition to these two common templates, a third template file, default.props, is provided to enable you
to revert the server configuration settings back to the out-of-the-box defaults settings.

Chapter 4. Tuning the application serving environment 63

You can also create your own custom tuning template. To create a custom tuning template, copy one of
the existing templates, modify the configuration settings to better fit the needs of your applications and
environment, and then use the applyPerfTuningTemplate.py script to apply these customized settings. The
script and properties files leverage the property file configuration management features that wsadmin
provides, and can easily be augmented to tune additional server components. See the topic Using
properties files to manage system configuration for more information.

About this task

Review the following table to see the configuration changes that occur based on the template file that you
specify when you run the applyPerfTuningTemplate.py script. A blank cell in this table indicates that the
listed parameter is not configured, or is configured back to the default settings for the server defaults.

Table 4. Tuning parameters and their template values. The table includes the tuning parameter and its value for the
default template, the production template and the development template.

Parameter

Server default
(default.props template
file)

Production environment
(production.props
template file)

Development environment
(development.props
template file)

JVM Heap Size (MB)

See the topic Tuning the
IBM virtual machine for
Java for more information
about this setting.

50 min / 256 max 512 min / 512 max 256 min / 512 max

Verbose GC

See the topic Tuning the
IBM virtual machine for
Java for more information
about this setting.

disabled enabled enabled

JVM Diagnostic Trace
(Generic JVM Arguments)

See the topic Tuning the
IBM virtual machine for
Java for more information
about this setting.

-Dcom.ibm.xml.xlxp.jaxb
.opti.level=3

-Dcom.ibm.xml.xlxp.jaxb
.opti.level=3

HTTP (9080) and HTTPS
(9443) Channel
maxKeepAliveRequests

See the topic HTTP
transport custom properties
for more information about
this setting.

100 10000 10000

TCP Channel
maxOpenConnections

20000 500 500

TCP Channel listenBacklog 511 128 128

Development Mode

See the topic Application
server settings for more
information about this
setting.

disabled enabled

64 Tuning guide

Table 4. Tuning parameters and their template values (continued). The table includes the tuning parameter and its
value for the default template, the production template and the development template.

Parameter

Server default
(default.props template
file)

Production environment
(production.props
template file)

Development environment
(development.props
template file)

Server Component
Provisioning

See the topic Application
server settings for more
information about this
setting.

disabled enabled enabled

PMI Statistic Set

See the topic Enabling PMI
data collection for more
information about this
setting.

basic none none

Authentication Cache
Timeout

See the topic Authentication
cache settings for more
information about this
setting.

10 minutes 60 minutes 60 minutes

Data Source Connection
Pool Size*

See the topic Connection
pool settings for more
information about this
setting.

1 min / 10 max 10 min / 50 max

Data Source Prepared
Statement Cache Size*

See the topic WebSphere
Application Server data
source properties for more
information about this
setting.

10 50

ORB Pass-by-Reference**

See the topic Request
Broker service settings for
more information about this
setting.

disabled enabled enabled

Web Server Plug-in
ServerIOTimeout

900 900 900

Thread Pools (Web
Container, ORB, Default)

See the topic Thread pool
settings for more
information about this
setting.

50 min / 50 max, 10 min /
50 max, 20 min / 20 max

5 min / 10 max

Chapter 4. Tuning the application serving environment 65

|
|
|||

Table 4. Tuning parameters and their template values (continued). The table includes the tuning parameter and its
value for the default template, the production template and the development template.

Parameter

Server default
(default.props template
file)

Production environment
(production.props
template file)

Development environment
(development.props
template file)

Table notes:

* Indicates items that are tuned only if they exist in the configuration. For example, a data source connection pool
typically does not exist until an application is installed on the application server. If these items are created after
your run the script, they are given the standard server default values unless you specify other settings.

** Enabling ORB Pass-By-Reference can cause incorrect application behavior in some cases, because the Java
EE standard assumes pass-by-value semantics. However, enabling this option can improve performance up to
50% or more if the EJB client and server are installed in the same instance, and your application is written to take
advantage of these feature. The topic Object Request Broker service settings can help you determine if this
setting is appropriate for your environment.

Following are a few subtle platform-specific tuning differences:

z/OS platform
The default JVM heap sizes are different than those on the other platforms:
v Default minimum heap size: 256 MB
v Default maximum heap size: 512 MB

Procedure
v Start the wsadmin tool if it is not already running, and then complete one of the following actions to tune

an application server or all of the application servers in a cluster.

v Run the applyPerfTuningTemplate.py script to tune a specific server or cluster of servers running in a
production environment.
wsadmin -f applyPerfTuningTemplate.py
[-nodeName node_name -serverName server_name][clusterName cluster_name] -templateFile production.props

v Run the applyPerfTuningTemplate.py script to tune a specific server or cluster of servers running in a
development environment.
wsadmin -f applyPerfTuningTemplate.py
[-nodeName node_name -serverName server_name][clusterName cluster_name] -templateFile development.props

v Run the applyPerfTuningTemplate.py script to change the settings for a server or a cluster back to the
standard out-of-the-box default configuration settings.
wsadmin -f applyPerfTuningTemplate.py
[-nodeName node_name -serverName server_name][clusterName cluster_name] -templateFile default.props

What to do next

Conduct a performance evaluation, and tuning exercise to determine if you should further fine tune the
server for your specific applications.

66 Tuning guide

Chapter 5. Troubleshooting performance problems

This topic illustrates that solving a performance problem is an iterative process and shows how to
troubleshoot performance problems.

About this task

Solving a performance problem is frequently an iterative process of:

v Measuring system performance and collecting performance data

v Locating a bottleneck

v Eliminating a bottleneck

This process is often iterative because when one bottleneck is removed the performance is now
constrained by some other part of the system. For example, replacing slow hard disks with faster ones
might shift the bottleneck to the CPU of a system.

Measuring system performance and collecting performance data

v Begin by choosing a benchmark, a standard set of operations to run. This benchmark exercises those
application functions experiencing performance problems. Complex systems frequently need a warm-up
period to cache objects, optimize code paths, and so on. System performance during the warm-up
period is usually much slower than after the warm-up period. The benchmark must be able to generate
work that warms up the system prior to recording the measurements that are used for performance
analysis. Depending on the system complexity, a warm-up period can range from a few thousand
transactions to longer than 30 minutes.

v If the performance problem under investigation only occurs when a large number of clients use the
system, then the benchmark must also simulate multiple users. Another key requirement is that the
benchmark must be able to produce repeatable results. If the results vary more than a few percent from
one run to another, consider the possibility that the initial state of the system might not be the same for
each run, or the measurements are made during the warm-up period, or that the system is running
additional workloads.

v Several tools facilitate benchmark development. The tools range from tools that simply invoke a URL to
script-based products that can interact with dynamic data generated by the application. IBM Rational
has tools that can generate complex interactions with the system under test and simulate thousands of
users. Producing a useful benchmark requires effort and needs to be part of the development process.
Do not wait until an application goes into production to determine how to measure performance.

v The benchmark records throughput and response time results in a form to allow graphing and other
analysis techniques. The performance data that is provided by WebSphere Application Server
Performance Monitoring Infrastructure (PMI) helps to monitor and tune the application server
performance. See the information on why use request metrics to learn more about performance data
that is provided by WebSphere Application Server. Request metrics allows a request to be timed at
WebSphere Application Server component boundaries, enabling a determination of the time that is
spent in each major component.

Locating a bottleneck

Consult the following scenarios and suggested solutions:
v Scenario: Poor performance occurs with only a single user.

Suggested solution: Utilize request metrics to determine how much each component is contributing to
the overall response time. Focus on the component accounting for the most time. Use Tivoli
Performance Viewer to check for resource consumption, including frequency of garbage collections. You
might need code profiling tools to isolate the problem to a specific method. See the Administering
applications and their environment PDF for more information.

v Scenario: Poor performance only occurs with multiple users.

© IBM Corporation 2002 67

Suggested solution: Check to determine if any systems have high CPU, network or disk utilization and
address those. For clustered configurations, check for uneven loading across cluster members.

v Scenario: None of the systems seems to have a CPU, memory, network, or disk constraint but
performance problems occur with multiple users.

Suggested solutions:
– Check that work is reaching the system under test. Ensure that some external device does not limit

the amount of work reaching the system. Tivoli Performance Viewer helps determine the number of
requests in the system.

– A thread dump might reveal a bottleneck at a synchronized method or a large number of threads
waiting for a resource.

– Make sure that enough threads are available to process the work both in IBM HTTP Server,
database, and the application servers. Conversely, too many threads can increase resource
contention and reduce throughput.

– Monitor garbage collections with Tivoli Performance Viewer or the verbosegc option of your Java
virtual machine. Excessive garbage collection can limit throughput.

Eliminating a bottleneck

Consider the following methods to eliminate a bottleneck:

v Reduce the demand

v Increase resources

v Improve workload distribution

v Reduce synchronization

Reducing the demand for resources can be accomplished in several ways. Caching can greatly reduce the
use of system resources by returning a previously cached response, thereby avoiding the work needed to
construct the original response. Caching is supported at several points in the following systems:

v IBM HTTP Server

v Command

v Enterprise bean

v Operating system

Application code profiling can lead to a reduction in the CPU demand by pointing out hot spots you can
optimize. IBM Rational and other companies have tools to perform code profiling. An analysis of the
application might reveal areas where some work might be reduced for some types of transactions.

Change tuning parameters to increase some resources, for example, the number of file handles, while
other resources might need a hardware change, for example, more or faster CPUs, or additional
application servers. Key tuning parameters are described for each major WebSphere Application Server
component to facilitate solving performance problems. Also, the performance advisors page can provide
advice on tuning a production system under a real or simulated load.

Workload distribution can affect performance when some resources are underutilized and others are
overloaded. WebSphere Application Server workload management functions provide several ways to
determine how the work is distributed. Workload distribution applies to both a single server and
configurations with multiple servers and nodes.

See the Administering applications and their environment PDF for more information.

Some critical sections of the application and server code require synchronization to prevent multiple
threads from running this code simultaneously and leading to incorrect results. Synchronization preserves
correctness, but it can also reduce throughput when several threads must wait for one thread to exit the
critical section. When several threads are waiting to enter a critical section, a thread dump shows these
threads waiting in the same procedure. Synchronization can often be reduced by: changing the code to

68 Tuning guide

only use synchronization when necessary; reducing the path length of the synchronized code; or reducing
the frequency of invoking the synchronized code.

Chapter 5. Troubleshooting performance problems 69

70 Tuning guide

Appendix. Directory conventions

References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This topic describes the conventions in use for WebSphere Application Server.

Default product locations - z/OS

app_server_root
Refers to the top directory for a WebSphere Application Server node.

The node may be of any type—application server, deployment manager, or unmanaged for
example. Each node has its own app_server_root. Corresponding product variables are
was.install.root and WAS_HOME.

The default varies based on node type. Common defaults are configuration_root/AppServer and
configuration_root/DeploymentManager.

configuration_root
Refers to the mount point for the configuration file system (formerly, the configuration HFS) in
WebSphere Application Server for z/OS.

The configuration_root contains the various app_server_root directories and certain symbolic links
associated with them. Each different node type under the configuration_root requires its own
cataloged procedures under z/OS.

The default is /wasv8config/cell_name/node_name.

plug-ins_root
Refers to the installation root directory for Web Server Plug-ins.

profile_root
Refers to the home directory for a particular instantiated WebSphere Application Server profile.

Corresponding product variables are server.root and user.install.root.

In general, this is the same as app_server_root/profiles/profile_name. On z/OS, this will always
be app_server_root/profiles/default because only the profile name "default" is used in
WebSphere Application Server for z/OS.

smpe_root
Refers to the root directory for product code installed with SMP/E or IBM Installation Manager.

The corresponding product variable is smpe.install.root.

The default is /usr/lpp/zWebSphere/V8R0.

© IBM Corporation 2005, 2009 71

72 Tuning guide

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program, or
service is not intended to state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of IBM's intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and verification of
operation in conjunction with other products, except those expressly designated by IBM, is the user's
responsibility.

APACHE INFORMATION. This information may include all or portions of information which IBM obtained
under the terms and conditions of the Apache License Version 2.0, January 2004. The information may
also consist of voluntary contributions made by many individuals to the Apache Software Foundation. For
more information on the Apache Software Foundation, please see http://www.apache.org. You may obtain
a copy of the Apache License at http://www.apache.org/licenses/LICENSE-2.0.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries,
in writing, to:

IBM Director of Intellectual Property & Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA
Attention: Information Requests

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

© Copyright IBM Corp. 2011 73

74 Tuning guide

Trademarks and service marks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked
terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries. For
a current list of IBM trademarks, visit the IBM Copyright and trademark information Web site
(www.ibm.com/legal/copytrade.shtml).

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Other company, product, or service names may be trademarks or service marks of others.

© Copyright IBM Corp. 2011 75

http://www.ibm.com/legal/copytrade.shtml

76 Tuning guide

Index

A
application server environment

tuning 23
applications

tuning 1

D
directory

installation
conventions 27, 40, 61, 71

J
JVM

tuning 30

P
performance

tuning 1, 7, 8
Performance and Diagnostic Advisor 9

R
Resource Recovery Service (RSS)

tuning
z/OS 49

S
storage

tuning 60

T
Tivoli Performance Viewer

tuning 21
troubleshooting

performance 67

tuning 12
application server environment 23
applications 1
best practices 16
buffer sizes 28
diagnostic alerts 10
heap dumps 18, 19, 20
JVM 30
LE

z/OS 51
LE heap 52
memory leaks 17
operating systems 46

z/OS 47, 54, 55, 56
parameters 24
performance 1, 5, 7, 8, 21, 67
Performance and Diagnostic Advisor 9
Resource Recovery Service (RSS)

z/OS 49
settings 13, 15, 45
storage 60
trace 55
transport channel services 41
workload management 56

U
Unix System Services (USS)

tuning
z/OS 51

W
WebSphere Application Server

operating systems
z/OS 55

workload management
tuning 56

© Copyright IBM Corp. 2011 77

	Contents
	How to send your comments
	Changes to serve you more quickly
	Chapter 1. Planning for performance
	Application design consideration

	Chapter 2. Taking advantage of performance functions
	Chapter 3. Obtaining advice from the advisors
	Why you want to use the performance advisors
	Performance advisor types and purposes
	Performance and Diagnostic Advisor

	Using the Performance and Diagnostic Advisor
	Performance and Diagnostic Advisor configuration settings
	Enable Performance and Diagnostic Advisor Framework
	Enable automatic heap dump collection
	Calculation Interval
	Maximum warning sequence
	Number of processors
	Minimum CPU For Working System
	CPU Saturated

	Advice configuration settings
	Advice name
	Advice applied to component
	Advice type
	Performance impact
	Advice status

	Viewing the Performance and Diagnostic Advisor recommendations
	Starting the lightweight memory leak detection
	Lightweight memory leak detection

	Enabling automated heap dump generation
	Generating heap dumps manually
	Locating and analyzing heap dumps

	Using the performance advisor in Tivoli Performance Viewer

	Chapter 4. Tuning the application serving environment
	Tuning parameter hot list
	Directory conventions
	Tuning TCP/IP buffer sizes
	Tuning the JVM
	Tuning the IBM virtual machine for Java

	Directory conventions
	Tuning transport channel services
	Checking hardware configuration and settings
	Tuning operating systems
	Tuning on z/OS
	Tuning the z/OS operating system
	z/OS operating system tuning tips
	Resource Recovery Service (RRS) tuning tips for z/OS
	LE tuning tips for z/OS
	UNIX System Services (USS) tuning tips for z/OS
	Fine tuning the LE heap

	Tuning the WebSphere Application Server for z/OS runtime
	Review the WebSphere Application Server for z/OS configuration
	Internal tracing tips for WebSphere for z/OS
	Location of executable programs tips for z/OS
	Workload management (WLM) tuning tips for z/OS

	Tuning message-driven bean processing on z/OS by using WebSphere MQ as the messaging provider in ASF mode
	MDB throttle support for z/OS debugging tips

	Tuning storage
	Directory conventions
	Using PassByReference optimization in SCA applications
	Tuning the application server using pre-defined tuning templates

	Chapter 5. Troubleshooting performance problems
	Appendix. Directory conventions
	Notices
	Trademarks and service marks
	Index
	A
	D
	J
	P
	R
	S
	T
	U
	W

