IBM WebSphere Application Server for z/0S, Version 8.0

Administering applications and their
environment

..ll

Note
FBefore using this information, be sure to read the general information under [‘Notices” on page 631

Compilation date: July 14, 2011

© Copyright IBM Corporation 2011.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

How to send your comments.

Changes to serve you more quickly .

Chapter 1. Overview and new features for administering applications and their environments
Chapter 2. How do | administer applications and their environments? .

Chapter 3. Using the administrative clients
Using the administrative console
Administrative console . .
Installing and uninstalling the adm|n|strat|ve console
Starting and logging off the administrative console
Specifying console preferences
Accessing help and product information from the adm|n|strat|ve console
Changing the console session expiration .

Changing the class loader order of the console module deployed in Integrated Solutlons Console

Getting started with wsadmin scripting .
What is new for scripted administration (wsadmln)
Overview and new features for scripting the application servmg enwronment
Using administrative programs (JMX) . .
Java Management Extensions (JMX) for WebSphere Appllcat|on Server . .
Creating a custom Java administrative client program using WebSphere Appllcat|on Server
administrative Java APIs .

Creating a Java Management ExtenS|ons cllent program usmg the Java Management ExtenS|ons

Remote application programming interface
Extending the WebSphere Application Server adm|n|strat|ve system W|th custom MBeans
Administrative programs for multiple Java Platform, Enterprise Edition application servers
Deploying and managing a custom Java administrative client program with multiple Java Platform,
Enterprise Edition application servers . .

Java Management Extensions V1.0 to Java Management Extenswns V1 2 mlgratlon .
Java Management Extensions (JMX) interoperability .
Managed object metadata .

Using command-line tools .

startServer command

stopServer command.

startManager command.

stopManager command .

startNode command .

stopNode command .

serverStatus command .

addNode command . .
addNode command best practlces.

removeNode command .

cleanupNode command.

syncNode command .

renameNode command .

registerNode command .

deregisterNode command .

backupConfig command

restoreConfig command

versionlnfo command .
Location of the command file.

© Copyright IBM Corp. 2011

. 63

. 75
.79

. 104

. 106
. 107
. 108
. 108
. 109
. 110
. 113
. 115
. 116
. 17
. 118
. 120
121
. 127
. 128
. 130
. 131
. 132
. 133
. 136
. 137
. 138
. 140
. 140

Syntax for the versioninfo command .
Parameters .
Report description.
Sample versioninfo report .
genVersionReport command .
Location of the command file.
Syntax for the genVersionReport command
Report description.
Sample genVersionReport report
historylnfo command .
Location of the command f|Ie
Syntax for the historylnfo command .
Parameters .
Report description.
Sample historylnfo report .
genHistoryReport command .
Location of the command file. .o
Syntax for the genHistoryReport command
Report description.
Sample historylInfo report .
managesdk command
GenPluginCfg command
EARExpander command
revokeCertificate command
requestCertificate command .
createCertRequest command
queryCertificate command .
restoreJobManager command .
Example: Security and the command I|ne tools .
Using MVS console commands .
START command .
STOP command
Modify command .
Display command with examples

Example: Displaying units of work (transactlons) for the Informat|on Management System

Example: Displaying the setting for trace records
Chapter 4. Using Ant to automate tasks .

Chapter 5. Starting and stopping quick reference .

Chapter 6. Backing up and recovering the application serving environment.

Chapter 7. Class loading.
Class loaders
Configuring class Ioaders of a server.
Class loader collection .

Class loader ID.

Class loader order.

Class loader settings.
Configuring application class Ioaders
Configuring web module class loaders .
Class loading: Resources for learning

Chapter 8. Deploying and administering enterprise applications .

Enterprise (Java EE) applications .

iv Administering applications and their environment

. 140
. 140
. 141
. 142
. 143
. 143
. 143
. 143
. 144
. 145
. 145
. 145
. 145
. 146
. 146
. 147
. 148
. 148
. 148
. 148
. 149
. 153
. 155
. 156
. 158
. 160
. 161
. 163
. 163
. 164
. 164
. 165
. 165
. 178
. 186
. 186

. 187

. 189

. 191

. 193
. 193
. 198
. 199
. 199
. 199
. 199
. 200
. 202
. 203

. 205
. 206

System applications . . . e e e e e e oo 208

Common deployment framework e e .. 2086
Installing enterprise application files .207
Installable enterprise module versions . . . e e e e o208
Ways to install enterprise applications or modules e e e e o210
Installing enterprise application files with the console213
Example: Installing an EAR file using the default bindings220
Example: Installing a web services sample with the console221
Preparing for application installation settings .222
Preparing for application installation binding settings223
Select installation options settings .228
Manage modules settings .Z238
Client module settings . . . =2 8
Client module property settmgs .o 2
Provide options to compile JavaServer Pages settlngs C e e e 2/
EJB JNDI names forbeans .248
Bind EJB business settings . . . C e e e e 244
Map default data sources for modules contamlng 1 X entlty beans e e e e e 244
EJBreferences.245
Resource references.246
Virtual hosts settings. -2]
Security role to user or group mappmg . e e e e eo 250
JASPI authentication enablement for appllcatlons e e e e o251
User RunAs collection . . . Coe e e oo 2B2
Ensure all unprotected 1.x methods have the correct Ievel of protect|on253
Bind listeners for message-driven beans settings2583
Map data sources forall2x CMPbeans .255
Map data sources for all 2.x CMP beans settings . . . 24 Y 4
Ensure all unprotected 2.x methods have the correct level of protectlon e e 259
Provide options to perform the EJB Deploy settings260
Shared library reference and mapping settings .262
Shared library relationship and mapping settings2683
JSP and JSF option settings . . . N ~{ o 72
Context root for web modules settmgs e e e266
Initial parameters for servlets settings .266
Environment entries for client modules settings .267
Environment entries for EJB modules settings .268
Environment entries for web modules settings .268
Environment entries for application settings .269
Resource environment references .269
Message destination reference settings. .270
Select current backend ID settings. . . - A
Provide JNDI names for JCA objects settlngs e e e e 2T
Correct use of the system identity C e e e e 272
Requirements for setting data access |soIat|on Ievels e e e e o, L2783
Metadata for module settings. . . 2 £
Provide options to perform the web services deployment settlngs -y 4
Display module build ID settings . . . Y £
Task overview: Assembling applications usmg remote request d|spatcher e e e o ... 278
Installing enterprise modules withJSR-88 .280
Customizing modules using DConfigBeans .Z282
Configuring enterprise application files .283
Application bindings . . . 22 s 7
Enterprise application coIIect|on e e e s s s 290
Configuring application startup .29
Configuring binary locationanduse .. .29

Contents V

Configuring the use of class loaders by an application
Manage modules settings .
Mapping modules to servers . .
Mapping virtual hosts for web modules . .
Mapping properties for a custom login or trusted connectlon conflguratlon .
Viewing deployment descriptors.
Metadata for module settings. .
Starting or stopping enterprise appl|cat|ons
Disabling automatic starting of applications
Target specific application status
Updating enterprise application files .
Ways to update enterprise application files.
Updating enterprise applications with the console .
Preparing for application update settings
Hot deployment and dynamic reloading .
Resolving application configuration conflicts .
Exporting enterprise applications
Exporting enterprise application files .
Exporting DDL files
Uninstalling enterprise appllcatlons usmg the console
Removing enterprise files .

Uninstalling enterprise application f|Ies by dragglng them from a monltored dlrectory .

Deploying and administering applications: Resources for learning

Chapter 9. Managing applications through programming .

Accessing the application management function.

Preparing an application for installation using programmlng

Installing an application through programming

Application management

Starting an application through programmlng

Sharing sessions for application management

Manipulating additional attributes for a deployed appllcatlon

Editing applications

Updating an application through programmmg

Adding to, updating, or deleting part of an application through programmmg
Preparing a module and adding it to an existing application through programming .
Preparing and updating a module through programming. Coe
Adding a file through programming

Updating a file through programming . .

Uninstalling an application through programmlng

Deleting a module through programming

Deleting a file through programming .

Chapter 10. Extending application management operations through programming .

Chapter 11. Deploying and administering business-level applications .
Business-level applications .
Assets .
Composition unlts
Importing assets
Upload asset settings
Asset settings
Managing assets .
Asset collection.
Updating assets
Deleting assets .

Vi Administering applications and their environment

. 301
. 305
. 307
. 309
. 312
. 312
. 315
. 316
. 318
. 319
. 320
. 321
. 324
. 326
. 330
. 340
. 342
. 344
. 344
. 345
. 346
. 347
. 349

. 351
. 352
. 353
. 378
. 381
. 382
. 383
. 384
. 386
. 388
. 390
. 392
. 394
. 397
. 399
. 400
. 402
. 404

. 407

. 411
. 412
. 414
. 415
. 416
. 418
. 418
. 422
. 422
. 423
. 427

Exporting assets .
Creating business-level appllcatlons .
Creating business-level applications with the console
Business-level application settings .
Composition unit settings . .
Example: Creating a business- Ievel appllcat|on .
SCA application package deployment
Creating SCA business-level applications .
Creating SCA business-level applications with the console
Composition unit settings . .
JMS binding settings for SCA composnes . .
Provide HTTP endpoint URL information settings for SCA comp03|tes
SCA composite component settings . Ce e
SCA component reference settings
SCA component service settings
Service provider policy sets and bindings coIIectlon for SCA composﬂes
References policy sets and bindings collection for SCA composites
SCA service provider settings
SCA service client settings
Example: Creating an SCA busmess Ievel appllcat|on W|th the console
Starting business-level applications
Stopping business-level applications .
Updating business-level applications .
Updating SCA composite artifacts .
Viewing SCA composite definitions
Viewing SCA domain information

Viewing and editing JMS bindings on references and services of SCA composnes .

Exporting WSDL and XSD documents
Deleting business-level applications .

Chapter 12. Administering business-level applications using programming .
Creating an empty business-level application using programming
Importing an asset using programming .

Listing assets using programming .

Viewing an asset using programming.

Editing an asset using programming .

Deleting an asset using programming

Exporting an asset using programming . .

Starting a business-level application using programmmg

Stopping a business-level application using programming . .
Checking the status of a business-level application using programming .
Listing business-level applications using programming .
Listing composition units using programming .

Listing control operations using programming. .

Viewing a business-level application using programming.

Viewing a composition unit using programming .

Adding a composition unit using programming

Updating an asset using programming .

Editing a business-level application using programmmg

Editing a composition unit using programming .

Deleting a business-level application using programming

Deleting a composition unit using programming .

Chapter 13. Troubleshooting deployment .
Application deployment problems .
Application deployment troubleshooting t|ps

Contents

. 428
. 428
. 429
. 439
. 441
. 444
. 445
. 447
. 449
. 457
. 460
. 465
. 465
. 466
. 467
. 467
. 470
. 472
. 476
. 479
. 481
. 482
. 482
. 484
. 485
. 486
. 487
. 488
. 489

. 493
. 495
. 498
. 503
. 507
. 51
. 515
. 519
. 522
. 526
. 529
. 533
. 536
. 540
. 544
. 548
. 552
. 558
. 562
. 566
. 572
. 575

. 581
. 581
. 587

Vii

Application startuperrors .b87

Application startup problems . . . N o1 P
Reducing annotation searches durmg appllcanon deployment. o1 2
A client program does notwork .bo
Web resource is not displayed .boe
Application uninstallation problems. .bos
Chapter 14. Troubleshooting administration . . . P 0
Administration and administrative console troubleshootlng . e e601
Administrative console does not start even though installation completes e8605
Administrative console - browser connection problems 606
When a single user that uses multiple instances of the MozHIa browser Iogs mto the admlmstratlve
console, the first user ID that logs into the administrative console is the currentuser. 606
A user on Mozilla browser Version 1.4 selects a check box on a collection table, presses Enter,
and receives an error. 607
A user on Mozilla browser Version 1 4 enters an |nvaI|d ID or password presses Enter and
receives an errormessage. 4 e 4 e607
Web server plug-in troubleshooting tips .607
Multiserver environment errors . . . N 10 1)
Workload management component troubleshootmg t|ps P o 1
Workload is not getting distributed e e e e eb613
Administrative problems with the wsadmin scrlptlng tooI e e615
Tracing and logging facilities - troubleshooting tips.621
Cannot restart the Deployment Manager monitoring policy621
Timeout condition resolutions. .62
Timer overview . . . N < 724
Timeout conditions: analyzmg d|agnost|c data O ¢ 2
Timeout conditions - possible causes and fixes .625
Timeout values: guidelines for altering timeoutvalues.626
Appendix. Directory conventions .629
Notices L L L s B3
Trademarks and servicemarks .633
Index63

viii Administering applications and their environment

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.
+ To send comments on articles in the WebSphere Application Server Information Center
1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail
form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

* To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax
them to 919-254-5250.

Be sure to include the document name and number, the WebSphere Application Server version you are
using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2011 ix

X Administering applications and their environment

Changes to serve you more quickly

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The
information center is the official delivery format for IBM WebSphere Application Server documentation. If
you use the PDF books primarily for convenient printing, it is now easier to print various parts of the
information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon
is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation
tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a
separate browser window as one HTML file. The HTML file includes each of the topics in the section,
with a table of contents at the top.

4. Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your
selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a
preferable limit. The feedback link is available at the end of most information center pages.

Under construction!

The Information Development Team for IBM WebSphere Application Server is changing its PDF book
delivery strategy to respond better to user needs. The intention is to deliver the content to you in PDF
format more frequently. During a temporary transition phase, you might experience broken links. During
the transition phase, expect the following link behavior:

» Links to Web addresses beginning with http:// work
» Links that refer to specific page numbers within the same PDF book work
* The remaining links will not work. You receive an error message when you click them

Thanks for your patience, in the short term, to facilitate the transition to more frequent PDF book updates.

© Copyright IBM Corp. 2011 Xi

xii Administering applications and their environment

Chapter 1. Overview and new features for administering
applications and their environments

Use the links provided in this topic to learn about the administrative features.

|What is new for administrators|
This topic provides an overview of new and changed features of system administration.

[Introduction: System administration|
This topic describes the administration of the product and the applications that run on it.

See also|Introduction: Environment| and |Introduction: Variables]|

© IBM Corporation 2003, 2005

2 Administering applications and their environment

Chapter 2. How do | administer applications and their
environments?

Follow these shortcuts to get started quickly with popular tasks.
When you visit a task in the information center, look for the IBM Suggests feature at the bottom of the

page. Use it to find available tutorials, demonstrations, presentations, developerWorks® articles, IBM®
Redbooks®, support documents, and more.

[Administer nodeg

[Administer node agents|

IAdminister cells|

[Register a node with the administrative agent|

IAdminister nodes using the administrative agent]

[Register a node with the job manager|

IAdminister nodes from the console using the job manager]

IAdminister nodes from the wsadmin tool using the job manager|

|[Administer configurations|

[Configure remote file services|

[Administer application servers with the console]

[Configure application servers with scripting|

[Manage application servers with scripting

I[Administer generic servers|

[Use server templates|

[Administer custom services|

[Use the console to balance workloads by clustering application serverg

[Use scripting to balance workloads by clustering application server|

[Establish high availability (HA)|

l[Administer the UDDI registry|

[Use the console to administer communication with web servers (plug-ins)

|Use scripting to administer communication with web servers (plug-ins)|

IAdminister HTTP sessions with the console]

© Copyright IBM Corp. 2011

[Administer HTTP sessions with scripting|

[Provide access to naming and directory resources (JNDI) - Name server|

[Provide access to naming and directory resources (JNDI) - Bindings|

[Provide access to relational databases (JDBC resources) with the console]

|Provide access to relational databases (JDBC resources) with scriptind

[Choose a messaging provider|

|Provide access to messaging resources (default messaging provider) with scripting|

Install applications with the console]

[Install applications with scripting

[Start and stop applications with the console|

[Start and stop applications with scripting|

[Update applications with the console]

[Update applications with scripting|

[Deploy and administer web services applications|

l[Administer business-level applications using the administrative console]

l[Administer business-level applications using programming|

[Set up business-level applications using scripting

[Manage environment configurations with properties files using wsadmin scripting|

[Choose an administrative client]

[Use the administrative console]

[Using scripting (wsadmin)|

[Troubleshoot deployment|

[Troubleshoot administration|

4 Administering applications and their environment

Chapter 3. Using the administrative clients

Using the administrative console

You can install, start, and access the administrative console. You can also specify console preferences
and access help.

About this task

The administrative console is a Web-based tool that you use to manage the product. The administrative
console supports a full range of product administrative activities.

Unfederated application servers, administrative agents, deployment managers, and job managers can
have their own administrative consoles. The steps in this task apply to these consoles. For federated
application servers, the administrative console belongs to the deployment manager.

Procedure
1. |Optiona||y install the administrative console through the wsadmin command.|
2. Start the server for the appropriate administrative console.

Issue the startServer command or the MVS™ console START command for an unfederated application
server, an administrative agent, or a job manager. Issue the StartManager command or the MVS
console START command for a deployment manager. The administrative console application starts
automatically when you start the server to which the administrative console belongs.

3. |Access the administrative console]
4. [Specify console preferences.|

5. [Access help.

Administrative console

Administrative console buttons
This page describes the button choices that are available on various pages of the administrative console,
depending on which product features you enable.

=
Select all items. Selects each resource that is listed on the administrative console panel, in
preparation for performing an action against the selected resources.

. Deselect all items. Removes all the listed resources from each selection so that no action is
performed against any of the resources.

« 7 Show filter function. Produces a dialog box for specifying the resources to view in the table on
this administrative console page.

doded
+

Hide filter function. Hides the dialog box for specifying the resources to view in the table on this
administrative console page.

When you produce the dialog box, select the column to filter and enter the filter criteria.

Column to filter
Select the column to filter from the drop-down list. When you apply the filter, only those items in
the selected column that meet the filter criteria are displayed.

For example, select Names to enter criteria by which to filter application server names.
Filter criteria
Enter a string that must be found in the name of a collection entry to qualify the entry to display

© Copyright IBM Corp. 2011 5

in the collection table. The string can contain percent sign (%), asterisk (*), or question mark (?)
symbols as wildcard characters. For example, enter *App* to find any application server whose
name contains the string App.

Prefix each of the following characters () ~* % { } \ + $ with a backslash (\) so that the
regular expression engine performing the search correctly matches the search criteria. For
example, to search for all Java DataBase Connectivity (JDBC) providers containing (XA) in the
provider name, specify the following string:

*\ (XA\)

W

« | Clear filter value. Clears your filter changes and restores the most recently saved values.

» Abort. Stops a transaction that is not yet in the prepared state. All operations that the transaction
completed are undone.

» Activate. Activates a group member.

* Add. Adds the selected or typed item to a list, or produces a dialog for adding an item to a list.

» Add Node. Displays the Add Node page, in which you specify the host name and SOAP connector port
for a node that you want added to a cell.

* Apply. Saves your changes to a page without exiting the page.

» Back. Displays the previous page or item in a sequence. The administrative console does not support
using the Back and Forward options of a browser, which can cause intermittent problems. Use Back or
Cancel on the administrative console panels instead.

« Balance. Balances active members in high availability groups across servers that host the high
availability groups. The administrator must first determine which groups have active members and select
those groups before selecting Balance.

+ Browse. Opens a dialog that enables you to look for a file on your system.

« Calculate groups. Calculates the number of high availability groups that are returned based on the
match set.

» Cancel. Exits the current page or dialog, discarding unsaved changes. The administrative console does
not support using the Back and Forward options of a browser, which can cause intermittent problems.
Use Cancel on the administrative console panels instead.

» Change. In the context of security, you can search the user registry for a user ID for an application to
run under. In the context of container properties, you can change the data source that the container is
using.

» Clear. Clears your changes and restores the most recently saved values.

» Clear selections. Clears any selected cells in the tables on this tabbed page.

* Close. Exits the dialog.

* Collapse all. Collapses all the expanded items.

+ Commit. Releases all locks that are held by a prepared transaction and forces the transaction to
commit.

» Copy. Creates copies of the selected application servers.

» Create. Saves your changes to all the tabbed pages in a dialog and exits the dialog.

* Create tables. Develops scheduler database tables.

» Deactivate. Deactivates a group member. The group member must be in the active state to be
deactivated. The deactivate option causes the group member to move to the idle state. The group policy
overrides which members are activated and deactivated for a group. The policy is enforced for every
member state change. If the deactivate option conflicts with the group policy, the policy resets who is
the active member of the group.

» Delete. Removes the selected instance.

» Details. Shows the details about a transaction.

» Disable.

Group or group members:
Disables a group or group member. When you disable a group or group member, the active
group or group member is first deactivated. If the deactivate option is successful, the group or
group member moves to the disable state. A disabled group or group member cannot be
activated.

6 Administering applications and their environment

Java Management Extensions (JMX) connectors:

Disables a connector.
Disable Auto Start. Requires you to start the application manually.
Discard. Discards your local changes instead of saving them to the master configuration.
Done. Saves your changes to all the tabbed pages in a dialog and exits the dialog.
Down. Moves through a list.
Drop tables. Removes scheduler database tables.
Dump. Activates a dump of a traced application server.
Edit. Lets you edit the selected item in a list, or produce a dialog box for editing the item.
Enable.
Group or group members:

Enables a group or a group member.
Java Management Extensions (JMX) connectors:

Enables a connector.
Enable Auto Start. Starts an application automatically when the server on which the application resides
starts.
Expand all. Expands all the collapsed items.
Export. Accesses a page for exporting enterprise archive (EAR) files for an enterprise application.
Export DDL. Accesses a page for exporting data definition language (DDL) files for an enterprise
application.
Export Keys. Exports Lightweight Third-Party Authentication (LTPA) keys to other domains.
Export route table. Exports the route table information for a selected cluster to a binary file in the
configuration.
Filter. Produces a dialog box for specifying the resources to view in the tables on this tabbed page.
Finish. Forces a transaction to finish, regardless of whether its outcome has been reported to all
participating applications.
First. Displays the first record in a series of records.
Force delete. Forces the removal of a node that is not removed properly from the cell in the master
repository. The Remove node action is preferred over the Force delete action to delete a node from
the configuration. If you click Force delete, but the node still exists in the configuration, uninstall the
node or run the removeNode command by using the -force parameter on that node. Force delete
action is equivalent to running the cleanupNode command at the deployment manager.
Full resynchronize. Synchronizes the user's configuration immediately. Click full resynchronize on the
Nodes page if automatic configuration synchronization is disabled, or if the synchronization interval is
set to a long time, and a configuration change is made to the cell repository that needs to be replicated
to that node. Clicking this option clears all synchronization optimization settings and performs
configuration synchronization again, so no mismatches occur between node and cell configuration after
this operation is performed. This operation can take awhile to perform.
Generate keys. Generates new LTPA keys. When security is turned on for the first time with LTPA as
the authentication mechanism, LTPA keys are automatically generated with the password entered in the
panel. To generated new keys, use this option after the server is up with security turned on. Clicking this
option generates the keys and propagates them to all active servers (cell, node, and application
servers). The new keys can be used to encrypt and decrypt the LTPA tokens. Click Save on the console
taskbar to save the new keys and the password in the repository.
Immediate stop. Stops the server, but bypasses the normal server quiesce process that supports
in-flight requests to complete before shutting down the entire server process. This shutdown mode is
faster than the normal server stop processing, but some application clients can receive exceptions.
Import keys. Imports new LTPA keys from other domains. To support single sign-on (SSO) in
WebSphere® Application Server across multiple WebSphere domains (cells), share LTPA keys and a
password among the domains. After exporting the keys from one of the cells into a file, click this option
to import the keys into all the active servers (cell, node, and application servers). The new keys can be
used to encrypt and decrypt the LTPA token. Click Save on the console taskbar to save the new keys
and the password in the repository.
Install. Displays the Preparing for application installation page, which you use to deploy an application,
an enterprise bean, or a web component onto an application server.

Chapter 3. Using the administrative clients 7

» Install RAR. Opens a dialog that is used to install a Java 2 Platform, Enterprise Edition Connector
Architecture (JCA) connector and to create a resource adapter.

* Manage state. Displays a list of MBeans that corresponds to your previous selection of data source or
connection factory configurations. You can apply JCA lifecycle management operations to these MBeans
to control the runtime status of the corresponding resources.

* Manage transactions. Displays a list of active transactions running on a server. You can forcibly finish
any transaction that has stopped processing because a transactional resource is not available.

* Modify. Opens a dialog that is used to change a specification.

* Move. Moves the selected application servers to a different location in the administrative cell. When
prompted, specify the target location.

* Move down. Moves downward through a list.

* Move up. Moves upward through a list.

* New. Displays a page that you use to define a new instance. For example, clicking New on the
Application Servers page displays a page on which you can configure a new application server.

* Next. Displays the next page, frame, or item in a sequence.

« OK. Saves your changes to the local configuration and exits the page.

* Pause. In the context of JCA lifecycle management, stops all outbound communication that is
conducted through a resource on a specified server to a backend.

* Ping. Attempts to contact selected application servers.

* Previous. Displays the previous page, frame, or item in a sequence.

* Quit. Exits a dialog box and discards any unsaved changes.

» Reference shared libraries. Opens the collection of shared library references available for use by your
application or module. If no references are available, a message is displayed stating that there are no
references.

* Refresh. Refreshes the view of data for instances that are currently listed on this tabbed page.

* Remove. Deletes the selected item.

* Remove file. Removes the specified file from the selected application or module.

* Remove node. Deletes the selected node.

» Reset. Clears your changes on the tab or page and restores the most recently saved values.

* Restart all servers on node. Stops all application servers on the node and starts them again. The
node agent for the node is also stopped and restarted.

* Resume. In the context of JCA lifecycle management, restarts the activity of a data source or a
connection factory that was paused by a previous JCA lifecycle management operation.

* Retrieve new. Retrieves a new record.

* Rollout update. Sequentially updates an application that is installed on multiple cluster members
across a cluster. After you update application files or a configuration, click Rollout update to install the
configuration or the updated files for an application on all the cluster members of a cluster on which the
application is installed. The Rollout update option applies the following steps to each cluster member in
sequence:

1. Saves an updated configuration.

2. Stops the cluster member.

3. Updates the application on the node by synchronizing the configuration.
4. Restarts the cluster member.

Use Rollout Update if the application is deployed on one or more clusters spread across multiple
nodes. This action reduces the amount of time that any single cluster member is unavailable to serve
requests to the smallest interval possible. For a single node environment, use Update and then save
and synchronize the node instead.

+ Save. Saves the changes in your local configuration to the master configuration.

» Select. For resource analysis, lets you select a scope in which to monitor resources.

+ Set. Saves your changes to settings in a dialog.

+ Settings. Displays a dialog for editing servlet-related resource settings.

« Settings in use. Displays a dialog showing the settings in use.

* Show groups. Displays a collection of high availability groups, based on the match set.

8 Administering applications and their environment

* Show servers. Displays a collection of servers that are contained in the high availability groups that
match the match set.

» Start. In the context of application servers, starts selected application servers. In the context of data
collection, starts collecting data for the tables on this tabbed page.

» Stop. In the context of server components such as application servers, stops the selected server
components. In the context of a data collection, stops collecting data for the tables on a tabbed page. In
the context of nodes, stops servers on the selected nodes. In the context of deployment managers,
stops the deployment manager server.

» Synchronize. Synchronizes the user configuration immediately. Click Synchronize on the Nodes page if
automatic configuration synchronization is disabled, or if the synchronization interval is set to a long
time, and a configuration change is made to the cell repository that needs replicating to that node. A
node synchronization operation is performed using the normal synchronization optimization algorithm.
This operation is fast, but might not fix problems from manual file edits that occur on the node. It is
possible for the node and cell configuration to be out of synchronization after this operation is
performed. If problems persist, use Full Resynchronize.

+ Terminate. Deletes the Application Server process or another process that cannot be stopped by the
Stop or Immediate Stop commands. Some application clients can receive exceptions. Always attempt
an immediate stop before using this option.

» Test connection. After you define and save a data source, you can select this option to ensure that the
parameters in the data source definition are correct. On the Collection panel, you can select multiple
data sources and test them simultaneously.

» Uninstall. Deletes a deployed application from the WebSphere Application Server configuration
repository. Also deletes application binary files from the file system.

» Update. For applications, replaces an application that is deployed on a server with an updated
application. As part of the updating, you might need to complete steps on the Preparing for application
installation and Update application pages.

For clusters, changes the configured weight or runtime weight assigned to a cluster member.

» Update resource list. Updates the data on a table. Discovers and adds new instances to the table.

+ Use cell CSI. Enables Object Management Group (OMG) Common Secure Interoperability (CSI)
protocol.

» Use cell SAS. Enables IBM Secure Authentication Service (SAS).

» Use cell Security. Enables cell security.

» Verify tables. Validates the mapping between the table names, scheduler resource, and data sources.

* View. Opens a dialog on a file.

Administrative console page features
This topic provides information about the basic elements of an administrative console page, such as the
various tabs.

Administrative console pages are arranged in a few basic patterns. Understanding their layout and
behavior can help you use them more easily.

Collection pages

Use collection pages to manage a collection of existing administrative objects. A collection page typically
contains one or more of the following elements:
Scope Scope is described in Administrative console scope settings.
Preferences
Preferences are described in Administrative console preference settings.
Table of existing objects
The table displays existing administrative objects of the type specified by the collection page. The
table columns summarize the values of the key settings for these objects. If no objects exist yet,
an empty table is displayed. Use the available options to create a new object.

Chapter 3. Using the administrative clients 9

Buttons for performing actions
The available actions are described on the Administrative console buttons help panel. In most
cases, you need to select one or more of the objects in the table, then click an action. The action
is applied to the selected objects.

Sort toggle buttons
The column headings in the table are followed by icons for sort ascending () and sort descending
(v). By default, items such as names are sorted in descending order (alphabetically). To enable
another sorting order, click the icons for the column that you want to sort.

Detail pages

Use detail pages to configure specific administrative objects, such as an application server. A detail page

typically contains one or more of the following elements:

Configuration tabbed page
This tabbed page is for modifying the configuration of an administrative object. Each configuration
page has a set of general properties that is specific to the administrative object. Other sets of
properties display on the page, but vary depending on the administrative object.

Runtime tabbed page
This tabbed page displays the configuration that is currently in use for the administrative object.
The object is read-only in most cases. Some detail pages do not have runtime tabs.

If you can edit runtime properties, these properties directly affect the current runtime environment,
but are not preserved when that environment is stopped.

Local Topology tabbed page
This tabbed page displays the topology that is currently in use for the administrative object. View
the topology by expanding and collapsing the different levels of the topology. Some detail pages
do not have local topology tabs.

Buttons for performing actions
Buttons to perform specific actions display on the configuration tabbed page and the Runtime
tabbed page. The displayed buttons vary based on the administrative object. The available buttons
are described on the Administrative console buttons help panel.

Wizard pages

Use wizard pages to complete a configuration process comprised of several steps. Be aware that wizards
show or hide certain steps depending on the characteristics of the specific object that you are configuring.

Console layout
This topic describes the layout of the user interface for Integrated Solutions Console.

See |Navigating the console| for instructions on how to use the console controls.

Banner
Displays a common image across all Integrated Solutions Console installations. The banner
includes a greeting to the user who is logged in and links to log out of the console and to open
console help.

Navigation tree
Lists the tasks available in the console. Tasks are grouped into organizational nodes that represent
categories of tasks, for example, Servers, or Applications. The organizational nodes can be nested
in multiple levels.

The tasks shown are only those for which the user has access. When you click a task in the
navigation, a page is displayed in the work area containing one or more modules for completing
the task. Use the View selection list at the top of the navigation area to modify the list of tasks
according to your preferences. You can organize the tasks as follows:

10 Administering applications and their environment

All tasks
This shows all tasks in the console. Tasks are grouped into organizational nodes, for
example, Guided activities, Servers, or Applications.

My tasks
This shows only the tasks that you have added to the view. This list is initially empty, but
provides a link to the My Tasks module. Use My Tasks to add and remove from the My
Tasks list in the navigation.

Product selection
Selecting a product name shows only the tasks for that particular product, for example,
WebSphere Application Server.

Work area
When you launch a page, the content of the page is displayed in the work area. If you have not
launched any pages, the Welcome page is displayed in the work area. A page contains one or
more console modules that are used to perform operations. Each console module has its own
navigation controls. Some pages include a control to close the page and return to the Welcome

page.
Console navigation

This topic describes how to navigate pages and tasks in the Integrated Solutions Console.
« [Launching pages from the navigation tree]

+ [Filtering tasks in the navigation|

+ [Using the title bar controls|

* |Accessing help

+ [Using the console help controls]

Before reading this section, read the terms and information in Console layout.
Launching pages from the navigation tree

The console navigation provides a hierarchical view of all of the tasks available in the console. A task is a
page in the work area consisting of one or more console modules. All of the modules on the page are
provided to start and complete the task. To open a task, simply click the task name in the navigation. The
task is opened in a new page in the work area.

The following table describes the controls for the console navigation tree and entries in the tree.

Table 1. Console navigation tree control functions. The following table describes the controls for the console
navigation tree and entries in the tree.

Icon Function

Represents an organizational node in the navigation tree that contains pages or
other navigation nodes. Click the icon to expand the node.

= Closes an organizational node.

Filtering tasks in the navigation

When you first access the console, all tasks to which you have access are displayed in the navigation.
Use the view menu at the top of the navigation to filter the list of tasks by product. Or, you can create a
customized list by selecting My tasks from the View menu. For instructions on creating and managing your
custom list of tasks, see My tasks.

Chapter 3. Using the administrative clients 11

Using the title bar controls

Each page contains one or more web applications or console modules. A console module enables you to
perform an operation, such as displaying a list or stopping a managed system. The title and the controls
for the module are displayed on the title bar. Depending on the functions supported by the module, the
following icons might be displayed on the title bar:

» The . icon is displayed if the module allows you to edit settings for the portlet. For example, a module
that retrieves performance data could permit you to specify the server to be analyzed. When you click
the icon, an edit screen is displayed. Click the 4 icon to return to the previous screen.

* The 4 icon allows you to return to the previous screen.

* The 7 icon is displayed if help is available for the module. When you click the icon, the help is
displayed in a separate browser window.

* The @ icon allows you to minimize the module view. When you click the icon, only the title bar is visible
on the page. Click the & icon to return to the maximize state.

* The O icon allows you to maximize a module view. When you click the icon, the full portlet view is
visible on the page. Click the & icon to return to the minimize state.

In addition to the controls on the title bar, a module can include controls for other actions, such as a button
to submit input. Some modules have controls that launch other modules. If a module launches another
module, the newly launched module is displayed on a new page.

Accessing help
Help is available for the entire console or for a specific module in the console.

To access console help, perform the following steps:
1. Click Help on the console toolbar. The Help is displayed in a separate browser window.

2. In the help navigation tree, click the help set you want to view. For example, click Console help to
view topics that provide helpful information for new console users. Use the|console help controls as
needed.

To access help for a module on a page, perform the following steps:

1. On the title bar for the module, click the 7 icon. That icon is displayed only if help is available for the
module. The help is displayed in a separate browser window.

2. Close the help window when you are finished viewing it.

Using the console help controls

Table 2. Console help control functions. The following table describes the console help control functions.

Icon Function

P P Use these controls to navigate the list of pages you have viewed. Click 1o

return to the previous help topic that was displayed. Click = to move forward in
the history list.

E&. Click either of these icons to synchronize the navigation tree with the current topic.
The current topic will be highlighted in the navigation tree. This function is useful if

A you followed links from one help topic to other topics and you want to determine

- where the current topic is listed in the help navigation tree.

,}D Permits you to add the current page to your browser favorites list or bookmarks.

& Displays a window for printing the help topic that is displayed.

12 Administering applications and their environment

Table 2. Console help control functions (continued). The following table describes the console help control
functions.

contain the target strings are displayed in the results frame.

Icon Function

g Maximizes the target view. This control is available for the Table of Contents view,
the Search Results view, and the topic display area.

g Restores a maximized view to its normal size.

%_‘) Changes the view to the Search Results view. To search all of the help topics, type

a word or words in the Search field. Enclose a phrase within double quotes. You
can use Boolean operators (such as OR) in the search string. To limit the scope of
the search, click Search scope. Click GO to start the search. A list of topics that

Eﬂ] Changes from the Search Results view to the Table of Contents view.

Administrative console browser support
Several web browsers are supported for use with Integrated Solutions Console.

The following web browsers are supported for use with Integrated Solutions Console:
» Firefox Versions 2.0, 3.0, 3.5, and 3.6

» Firefox Version 1.5, for AIX V6.1 only

* Microsoft Internet Explorer Versions 7.0 and 8.0

Note: Using the browser's back button with the console can produce unexpected results and is not
supported. Use the controls and links provided in the console to navigate between pages and
applications.

Console accessibility
There are many accessibility features built into Integrated Solutions Console.

* |Accessibility features|
« |Navigating the console by using the keyboard|
« |Navigating help by using the keyboard

Accessibility features

The Integrated Solutions Console has the following accessibility features:
» The following features are for vision-impaired users:
— Can be operated by using only the keyboard
— Communicates all information independent of color
— Supports the attachment of alternate output devices
— Provides help information in an accessible format
» The following features are for users who have mobility impairments or limited use of their hands:
— Allows the user to request more time to complete timed responses
— Can be operated by using only the keyboard
— Supports the attachment of alternative input and output devices
» The following features are for the deaf and hard of hearing users:
— Supports alternatives to audio information
— Supports adjustable volume control
* The console does not flash the screen at rates that could induce epileptic seizures.

Chapter 3. Using the administrative clients

13

The help system for Integrated Solutions Console has the following accessibility features:
» Uses the accessibility support enabled by the browser that is used to display the help
* Enables navigation by using the keyboard

Navigating the console by using the keyboard
To move through the controls on a particular page, use the Tab key.
To click a link or control on a page using the keyboard, navigate to the link or control and press Enter.

To change the navigation view using the keyboard, follow these steps.

1. Navigate to the View selection list using the Tab key.

2. Use the up and down arrows to change the value of the selection list.

3. Press Enter. The tasks displayed in the navigation are changed according to your selection.

Navigating help by using the keyboard

Use the following key combinations to navigate the help system by keyboard:
» To bring the Topic pane (the right hand side) into focus, press Alt+K, and then press Tab.
* In the Topic pane, to go to the next link, press Tab. To go to the previous link, press Shift+Tab.

« To go directly to the Search Results view in the left hand side, press Alt+R, and then press Enter or Up
arrow to enter the view.

» To go directly to the Navigation (Table of Contents) view in the left hand side, press Alt+C, and then
press Enter or Up arrow to enter the view.

» To navigate your browser history, press Alt+Left arrow to go back. If you have navigated back to a
previously view page, you can use Alt+Right arrow to navigate forward again.

» To expand and collapse a node in the navigation tree, tab to the + or - image next to it to bring the
image into focus, and then press the Right or Left arrows.

» To go to the next frame in the help system, press F6. To go to the previous frame in the help system,
press Shift+F6.

* In the navigation, to move to the next topic node, press the Down arrow or Tab. To move to the
previous topic node, press the Up arrow or Shift+Tab.

» To go to the next link, button, or topic node from inside a view, press Tab.

» To scroll all the way up or down in a frame, press Home or End, respectively.
» To print the active pane, press Ctrl+P.

* To move to the search entry field, press Alt+S.

Welcome
Display products that are installed that use the Integrated Solutions Console for administrative tasks.

The Welcome page displays the products that are installed that use the Integrated Solutions Console for
administrative tasks. The page lists the product name and version number. If provided by the product, you
can click the product name to display a page that provides more information about the product.

My tasks
Create and edit a task view in the console navigation.

Use My tasks to create and edit a list of tasks to view in the console navigation. A task includes a page
that contains one or more web applications, or console modules, that are used to complete that task.
When you first access the console, all tasks to which you have access are displayed in the navigation. My
tasks is especially useful to customize the navigation to show only the tasks you use most often. After you
customize your tasks, My Tasks is initially displayed each time you log in to the console.

14 Administering applications and their environment

Follow these general steps to customize your task list in the navigation.

1. Select My tasks from the View selection list in the navigation. If you have never used My tasks before,
you must click Add tasks to open it.

2. Use the checkboxes to select and deselect tasks from the My tasks navigation.
3. To save your changes, click Apply.
4. To cancel your changes, click Reset.

After applying your selections, your customized task list is displayed in the navigation.

Use the following buttons to customize your task selections.
Apply Saves the current selections.

Reset Backtracks all changes to the selections that were set since the last time My tasks was applied.
This is useful if you need to cancel your changes.

Select All
Checks every task.

Deselect All
Unchecks every task.

Expand All
Expands each node in the display and reveals all subtasks in the navigation.

Collapse All
Collapses each node in the display so that only the top level nodes are displayed.

Console identity
Use Console Identity to define a string (keyword, name, or phrase) to be displayed in the console banner.
This string can be used to distinguish this console from other console instances.

To access this page, click System administration > Console Identity in the console navigation.

The console identity string is rendered differently in the banner and browser title bar.
+ Console identity in the banner

The console identity string is displayed in the console banner after the greeting to the console user,
separated by a dash. For example, if the identity string is set to Jupiter and the user is logged in as
consoleadmin, the banner displays the following greeting.

Welcome consoleadmin - Jupiter

On the login page, the console identity is displayed without the greeting.
+ Console identity in the browser title bar

The console identity string is displayed in the title bar after the console brand name, separated by a
space. For example, if the identity string is set to Saturn, the title bar displays the following information.

Integrated Solutions Console Saturn

Chapter 3. Using the administrative clients 15

Note: After saving these changes, the console identity settings are applied across the console. For an
administrative agent configuration, this means that the changes are applied to the administrative
agent and all of its registered application servers, regardless of where the changes were actually
saved.

Console identity:

Specifies whether a custom string is used to identify this console.

none Select this option if a custom string should not be
displayed.
custom Select this option to display a custom string in the banner

and browser. When this option is selected, Custom
identity string is enabled.

Custom identity string:
Specifies the text string that you want to display in the banner and browser title bar.
Truncate string at (Characters):

Specifies how many characters of the string should be displayed. Input for this field must be an integer.
Minimum value is 4, maximum value is 99. When the string is truncated, 3 of the characters are used for
an ellipsis (...) to indicate that it has been truncated.

Console identity preview:
Click Preview to see how the custom string will be displayed in the banner.

Console identity string

You can define a console identity string to be displayed in the console banner and in the browser's title
bar. This string can be fixed or you can use a variable that is resolved at run time with a Java system
property or environment variable.

The console identity string is rendered differently in the banner and browser title bar.
+ Console identity in the banner

The console identity string is displayed in the console banner after the greeting to the console user,
separated by a dash. For example, if the identity string is set to Jupiter and the user is logged in as
consoleadmin, the banner displays the following greeting.

Welcome consoleadmin - Jupiter

On the login page, the console identity is displayed without the greeting.
* Console identity in the browser title bar

The console identity string is displayed in the title bar after the console brand name, separated by a
space. For example, if the identity string is set to Saturn, the title bar displays the following information.

Integrated Solutions Console Saturn

After installation, there are two ways provided to customize the identity string.

16 Administering applications and their environment

» Use Console Identity in the administrative console. To open, log in to the administrative console and
click System administration > Console ldentity.

» Set the value for the string in an XML file, consoleProperties.xml, which is located in
app_server_root/profiles/profile name/config/cell/cell name/applications/isclite.ear/
deployments/isclite/isclite.war/WEB-INF. You should keep a backup copy of the most recent working
consoleProperties.xml before making changes to this file.

The keys that are used to set the console identity string to be displayed in the banner and title bar are
defined in an XML <console-property/> element. The required attributes id and value for this element
determine the key name and value pairs. The following initial settings are provided in
consoleProperties.xml.

(Some keys are split on multiple lines for printing purposes.)

Table 3. Console identity key values. The following table describes the console identity key values.

Key (id) Initial setting (value) Description

ISC.CONSOLE.ID ISC.CONSOLE.ID.CUSTOM Specifies the ID attribute of another
<console-property/> element that
contains the actual console identity
string

ISC.CONSOLE.ID.MAXLEN 27 Specifies the maximum length of the
resolved console identity string. The
string will be truncated to this length if

necessary.
ISC.CONSOLE.ID.CUSTOM empty string A custom string to be displayed in the

banner and title bar.
ISC.CONSOLE.ID.DEPLOYER. None Specifies a custom string that can be
unique_suffix selected using the Console Identity

application under System
Administration. By providing multiple
<console-property/> entries with the

ISC.CONSOLE.ID.DEPLOYER.
unique_suffix

id attribute, you can provide multiple
identity strings for console users to
select from. Each entry of this type
should have a distinct unique_suffix
from the other entries. If multiple
entries are provided with the same
unique_suffix, then only the first value
with this suffix is displayed in the
selection list for the console user.

Examples:

— In the following example, the deployer wants to create custom strings that indicate
different departments served by their respective host consoles. Console users will be
able to select which identity is displayed in each department's console interface. To
achieve this goal, the deployer provides the following custom keys in the installation
package. Out of the box, the blank value for ISC.CONSOLE.ID.CUSTOM is used.

<?xml version="1.0" encoding="UTF-8"?>
<consoleproperties:ibm-portal-consoleproperties xmIns:consoleproperties=
"http://www.ibm.com/websphere/appserver/schemas/6.0/ibm-portal-consoleproperties.xsd"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"http://www.ibm.com/websphere/appserver/schemas/6.0/ibm-portal-consoleproperties.xsd
ibm-portal-consoleproperties.xsd">

Chapter 3. Using the administrative clients 17

<consoleproperties:console-property id="ISC.CONSOLE.ID"
value="ISC.CONSOLE.ID.CUSTOM" />

<consoleproperties:console-property id="ISC.CONSOLE.ID.MAXLEN" value="27"/>
<consoleproperties:console-property id="ISC.CONSOLE.ID.CUSTOM" value=""/>
<consoleproperties:console-property

id="ISC.CONSOLE.ID.DEPLOYER.sales" value="Sales & Marketing"/>
<consoleproperties:console-property

id="ISC.CONSOLE.ID.DEPLOYER.finance" value="Finance"/>
<consoleproperties:console-property

id="ISC.CONSOLE.ID.DEPLOYER.research" value="Research & Development"/>
<consoleproperties:console-property

id="ISC.CONSOLE.ID.DEPLOYER.dist" value="Distribution"/>

</consoleproperties:ibm-portal-consoleproperties>

— The administrator wants to append information about the host console to the banner and
title bar. This can be accomplished by updating the ISC.CONSOLE.ID.CUSTOM key to
include the PROCESSOR_ARCHITECTURE environment variable (which works on
Windows machines) along with the os.name Java system property. The other keys are
left unchanged.

<?xml version="1.0" encoding="UTF-8"?>
<consoleproperties:ibm-portal-consoleproperties
xmlns:consoleproperties=
"http://www.ibm.com/websphere/appserver/schemas/6.0/ibm-portal-consoleproperties.xsd"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"http://www.ibm.com/websphere/appserver/schemas/6.0/ibm-portal-consoleproperties.xsd
ibm-portal-consoleproperties.xsd">
<consoleproperties:console-property id="ISC.CONSOLE.ID"
value="ISC.CONSOLE.ID.CUSTOM" />
<consoleproperties:console-property id="ISC.CONSOLE.ID.MAXLEN" value="27"/>
<consoleproperties:console-property id="ISC.CONSOLE.ID.CUSTOM"
value="Platform: %PROCESSOR_ARCHITECTURE% 0S: %os.name%"/>
</consoleproperties:ibm-portal-consoleproperties>

Since the ISC.CONSOLE.ID.MAXLEN key indicates a maximum display of 27
characters, the resulting string, which is resolved at run time, is rendered in the banner
as follows for a Windows 2003 Server environment.

Platform: x86 OS: Window...

Note: After the console identity string is saved, the settings are applied across the console. For an
administrative agent configuration, this means that the changes are applied to the administrative
agent and all of its registered application servers, regardless of where the changes were actually
saved.

Administrative console: Resources for learning

Use the following links to find relevant supplemental information about the IBM WebSphere Application
Server administrative console. The information resides on IBM and non-IBM Internet sites, whose
sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere
Application Server product, but is useful all or in part for understanding the product. When possible, links
are provided to technical papers and IBM Redbooks that supplement the broad coverage of the release
documentation with in-depth examinations of particular product areas.

View links to additional information:

18 Administering applications and their environment

Administration
« [IBM WebSphere Application Server Redbooks]

This site contains a listing of all WebSphere Application Server Redbooks.
+ [IBM WebSphere developerWorks|

This site is the home of technical information for developers working with WebSphere products. You can
download WebSphere software, take a fast path to developerWorks zones, such as VisualAge® Java or
WebSphere Application Server, learn about WebSphere products through a newcomers page, tutorials,
technology previews, training, and Redbooks, get answers to questions about WebSphere products, and
join the WebSphere community, where you can keep up with the latest developments and technical
papers.

WebSphere Application Server Support page|

Take advantage of the Web-based Support and Service resources from IBM to quickly find answers to
your technical questions. You can easily access this extensive Web-based support through the IBM
Software Support portal at web address http://www.ibm.com/software/support/ and search by product
category, or by product name. For example, if you are experiencing problems specific to WebSphere
Application Server, click WebSphere Application Server in the product list. The WebSphere Application
Server Support page appears.

Installing and uninstalling the administrative console

You can install the administrative console during profile creation or after you create a profile. You can
uninstall any administrative console that you install. To install an administrative console after profile
creation, or to uninstall the administrative console, use the wsadmin command. This topic discusses how
to use the wsadmin command to install and uninstall the administrative console.

Before you begin

If you install the administrative console through the wsadmin command, a profile that does not have an
administrative console installed must exist.

About this task

Run the deployConsole script on the wsadmin command whenever you want to uninstall the
administrative console, or whenever you want to install the administrative console to a profile that does not
have an administrative console installed.

You can run the script in either connected or disconnected mode.

Unfederated application servers, administrative agents, deployment managers, and job managers can
have their own administrative consoles. The steps in this task apply to these consoles.

The usual security restrictions for the wsadmin command apply to this script. In connected mode, the user
must authenticate if security is enabled.

To install or uninstall the deployment manager administrative console, the wsadmin command attempts to
remotely connect to the deployment manager. However, various situations can keep the wsadmin
command from connecting to the deployment manager, and an error message results. The command
cannot connect if:

* The deployment manager is not running.

* The deployment manager is running, but the script was run somewhere other than on the deployment
manager. You are most likely running the script on a federated node.

The deployConsole.py script is located in the profile_root/bin directory.

Chapter 3. Using the administrative clients 19

http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere
http://www.software.ibm.com/wsdd/
http://www.ibm.com/software/webservers/appserv/support.html

Procedure

» To install the administrative console, issue the following command:
wsadmin.sh —f deployConsole.py install

» To uninstall the administrative console, issue the following command:

wsadmin.sh —f deployConsole.py remove
Results

The administrative console is installed or uninstalled, depending on whether you specified the install or
remove option.

Starting and logging off the administrative console

This topic describes how to set up the administrative console environment, to access the administrative
console, and to log out of the administrative console.

Before you begin

To access the administrative console, you must first install WebSphere Application Server and the
administrative console.

About this task

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.Tlog ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

The administrative console application is installed during the initial installation process.

You start the administrative console, access the console through a web browser, and then log into the
administrative console. After you finish working in the administrative console, save your work and log out.

Procedure
1. Start the desired administrative console by starting the server process that runs the console
application.

You can start an unfederated application server, an administrative agent server, a deployment manager
server , or a job manager server.

Check the SystemQut.1og file of the server that runs the console application to verify that the console
application starts successfully. If the console application starts successfully, you see the WSVR02211:
Application started: isclite message.

2. Access the administrative console.
a. Enable cookies in the web browser that you use to access the administrative console.
b. Enable JavaScript.

Enablement of JavaScript is required. You must enable JavaScript so that all the features of the
administrative console are available.

c. Inthe same web browser, type http://your fully qualified server_name:port_number/ibm/
console.

The your_fully_qualified_server_name string is the fully qualified host name for the machine that
contains the administrative console. The administrative console can be for an unfederated

20 Administering applications and their environment

application server, a deployment manager, an administrative agent, or a job manager. The port
number for the port_number string is 9060 by default for the unfederated application server, the
deployment manager, and the administrative agent. For the job manager, the port number for the
port_number string is 9960 by default.

If you cannot start the administrative console because the console port conflicts with an application
that is already running on the machine, do one of the following actions:

* Change the port number and propagate the number to the appropriate files:

1) Change all the occurrences of the console port to a new port number. Make the port
changes in the installation root/profiles/profile name/config/cells/cell name/nodes/
node_name/servers/server_name/serverindex.xml file and the installation
root/profiles/profile name/config/cells/cell _name/virtualhosts.xml files.

2) Run the ./wsc2n.sh script from the installation root/WebSphere/AppServer/bin directory.
The ./wsc2n.sh script generates the was.env file, the control.jvm.options file, the
servant.jvm.options file, and the adjunct.jvm.options file for each server and the was.env
file for the location service daemon. These generated files will contain the updated
administrative console port number.

« Shut down the other application that uses the conflicting port before starting the WebSphere
Application Server product.

For a listing of supported web browsers, see |WebSphere Application Server system requirements|

at

http://www.ibm.com/support/docview.wss?
rs=180&uid=swg27006921

The web address displays on two lines for printing purposes. Enter the web address on one line in
your browser.

Wait for the administrative console to load into the browser.
A login page displays after the administrative console starts.

3. Log into the administrative console.

The administrative console can be for an unfederated application server, a deployment manager, an
administrative agent, or a job manager.

a.

If you are logging into the administrative console for the administrative agent, and you have
registered at least one node with the administrative agent, select the node to administer, and click
Continue.

The node can be the administrative agent node or a node for one of the application servers
registered to the administrative agent. After you select a node, the login procedure is the same as
that for the other server types, and for administrative agents with no nodes registered.

Enter your user name or user ID.
The user ID lasts only for the duration of the session for which it is used to log in.

Changes made to server configurations are saved to the user ID. Server configurations also are

saved to the user ID if a session timeout occurs.

See the Administering applications and their environment PDF for more information on server

configurations.

If you enter an ID that is already in use and in session, you are prompted to do one of the

following actions:

* Log out the other user with the same user ID. You can recover changes made during the other
user's session.

* Return to the login page and enter a different user ID.

If the console is secure, you must also enter a password for the user name. The console is secure

if someone has taken the following actions for the console:

» Specified security user IDs and passwords
» Enabled global security

Chapter 3. Using the administrative clients 21

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

See the Securing applications and their environment PDF for more information.
d. Click OK.

4. Log off the administrative console. Click System administration > Save changes to master
repository > Save to save work. Then click Logout to exit the console.

If you close the browser before saving your work, you can recover any unsaved changes the next time
that you log in under the same user ID.

Results

You have set up the administrative console environment, accessed the administrative console, and logged
out of the administrative console.

What to do next

Use the administrative console to manage the product.

Logging in

Enter your user ID and password to access the console.

To access the console, enter your User ID and Password and then click Log in. The password is
required only if security is enabled. In environments that use the administrative agent to administer
multiple application server nodes, select whether to log in to the administrative agent or one of its
registered profiles.

After you are logged in, be sure to use the Logout link in the console toolbar when you are finished using
the console and to prevent unauthorized access. If there is no activity during this login session for an
extended period of time, the session expires and you must login again to access the console. The
administrator can change the session timeout. The default is set to 30 minutes.

If the user ID that you provide is already logged in at a different location, you are prompted to choose
between logging out from the other location or returning to the login page. If you log out the user from the
other location, you might be prompted to recover unsaved changes made by that user.

If you have one or more different stand-alone servers running on the same machine and wish to
administer them concurrently from the same or a different machine then you must:

1. Ensure that each server uses a unique value for its admin console port.
2. Run a separate web browser process for each admin console that you wish to access concurrently.

Save changes to the master repository

Use this topic to update the master repository with your administrative console changes, to discard your
administrative console changes and continue working with the master repository, or to continue working
with your administrative console changes that are not saved to the master repository.

Until you save changes to the master repository, the administrative console uses a local workspace to
track your changes.

Total changed documents: Specifies the total number of documents that you changed for your session,
but that are not saved to the master repository. By clicking the +/- toggle key, you can see additional
information about the changed documents:

* Changed items

When you change your local configuration, each path and configuration file that you can apply the
update to in the master repository is displayed in the list.

+ Status
The status can contain the following options:

22 Administering applications and their environment

— Added: If you save your changes to the master repository, a new configuration file is created on the
indicated path.

— Updated: If you save your changes to the master repository, an existing configuration file is updated
on the indicated path.

— Deleted: If you save your changes to the master repository, an existing configuration file is deleted
on the indicated path.

Synchronize changes with nodes: Specifies whether you want to force node synchronization at the
time that you save your changes to the master repository, rather than when node synchronization normally
occurs.

Save conflict: Specifies that another user changed some configuration information since you began
making changes. You can either click Save to overwrite the other user information, or Discard to discard
your changes and keep the changes that the other user made.

Specifying console preferences
Use this topic to customize how much data displays on an administrative console panel.

About this task

Throughout the administrative console are pages that have Preferences fields, Scope fields, and Filter
radio buttons. By selecting these fields and radio buttons you can customize how much data is shown.

For example, examine the Preferences field for the Administrative authorization groups page:

Procedure

1. Go to the navigation tree of the administrative console and click Security > Administrative
authorization groups.

2. Expand Preferences.

3. For the Maximum rows field, specify the maximum number of rows to display when the collection is
large. The default is 20. Rows that exceed the maximum number display on subsequent pages.

4. Select Retain filter criteria if you want to retain the last filter criteria that is entered in the filter
function. When you return to the Applications page, the page initially uses the retained filter criteria to
display the collection of applications in the table following the preferences. Otherwise, clear Retain
filter criteria and the last filter criteria is not retained.

5. Click Apply to apply your selections or click Reset to return to the default values. The default is not to
enable (not have a check mark beside) Retain filter criteria.

Results

Other pages have similar fields and radio buttons that you can use to specify console preferences. While
Preferences fields, Scope fields, and Filter buttons control how much data is shown in the console, the
Preferences option controls general behavior of the console. Click System Administration > Console
preferences to view the [Preferences pagel

Console preferences settings

Use the Console Preferences page to specify how you want features of the administrative console
workspace to behave.

To view this administrative console page, click System administration > Console preferences.

Turn on workspace automatic refresh:

Chapter 3. Using the administrative clients 23

Specifies whether you want the administrative console workspace to refresh automatically after the
administrative configuration changes.

The default is for the workspace to refresh automatically. If you delete a WebSphere variable, for example,
the WebSphere variables page refreshes automatically and shows the updated list of WebSphere
variables in the WebSphere variables collection.

Specifying that the workspace not refresh automatically means that you must access a page again by
clicking the console navigation tree or links on collection pages to see the changes that are made to the
administrative configuration.

Default true (selected)

No confirmation on workspace discard:

Specifies whether the confirmation dialog is displayed after a request is received to discard the workspace.
The default is to display confirmation dialogs.

Default false (cleared)

Use default scope:
Specifies whether the default scope is the administrative console node.

All scopes is the default unless you enable the Use default scope setting to make the administrative
console node the default. Whatever the default is the first time that you view a console panel that has
scope settings, that is the default for the panel on subsequent visits that you make to the panel. The
default for the panel does not change even if you modify the Use default scope setting.

Default false (cleared)

Show the help portlet: Specifies whether the help portlet on the right of the console displays.

Default true (selected)

Enable command assistance notifications: Specifies whether to send Java Management Extensions
(JMX) notifications that contain command assistance data from the administrative console. Enablement of
the notifications allows integration with product tools such as the Toolkit Jython editor for WebSphere
Application Server. Enablement of this option is recommended for non-production environments only.

Default false (cleared)

Log command assistance commands: Specifies whether to log all the command assistance wsadmin
data to a file. This file is saved to ${L0G_R00T}/server/commandAssistanceJythonCommands_user name.10g:

* serveris the server process where the console runs, such as dmgr, serverl, adminagent, or jobmgr.
e user name is the administrative console user name.

* When you manage a profile using an administrative agent, the command assistance log is put in the
location of the profile that the administrative agent is managing. The ${LOG_ROQT} variable defines the
profile location.

Occasionally clean out the file to manage its growth.

Default false (cleared)

24 Administering applications and their environment

Synchronize changes with nodes: Specifies whether to synchronize changes that are saved to the
deployment manager profile with all the nodes that are running.

Default false (cleared)

Bidirectional support options: Specifies bidirectional (Bidi) text preferences for the administrative
console.

Default false (cleared)

Bidirectional support options
Use the Bidirectional support options page to specify bidirectional (Bidi) text preferences for the
administrative console.

Bidirectional support means that text is supported going in both directions for different types of alphabets.
WebSphere Application Server presents Bidi text using left-to-right (LTR) orientation in most languages.
However, when Bidi text is used as part of mixed Bidi and Latin text, for example, the preferred orientation
is right-to-left (RTL).

For text entry fields, this means that the cursor is placed at the right side and moves to the left as
characters are typed in an RTL alphabet, such as Hebrew or Arabic.

Bidi support helps to maintain visual structure in complex fields, such as file paths, emails, URLs and
Xpaths.

If you select Enable bidirectional support for all users under Global Preferences, any change made
affects all users. Note that if you select this option that Enable bidirectional support for this user under
Current® User Preferences is automatically selected also. However, if you only select Enable bidirectional
support for this user, any changes made only affect the user that is currently logged in.

To view this administrative console page, click Environment > Console preferences > Bidirectional
support options.

Enable bidirectional support for all users:

Select this choice to enable bidirectional support for all users.

Default false

Default text direction for all users:
Select one of the options on this menu to indicate which direction the text should go for all users.

The default text direction is left to right. This is the natural base text direction for most languages, including
European, Asian and Indic languages

If you select right to left, this is the natural base text direction for languages such as Arabic, Hebrew, Urdu
and Farsi.

If you select contextual, the base text direction is set according to the first strong character. This is an
appropriate choice when at the time of setting the base direction, the main language of the string is not yet
known.

Default LTR

Chapter 3. Using the administrative clients 25

Enable bidirectional support for this user:

Select one of the options in this menu to indicate which direction the text should go for only the user
currently logged in.

Default false

Text direction for this user: The default text direction is left to right. This is the natural base text
direction for most languages, including European, Asian and Indic languages

If you select right to left, this is the natural base text direction for languages such as Arabic, Hebrew, Urdu
and Farsi.

If you select contextual, the base text direction is set according to the first strong character. This is an
appropriate choice when at the time of setting the base direction, the main language of the string is not yet
known.

Default LTR

Administrative console preference settings
Use the preference settings to specify how you want information to display on an administrative console
panel. The preference settings vary from one administrative console panel to another.

Maximum rows: Indicates the maximum number of rows to display per page when the collection is large.

Filter history: Indicates whether to use the same filter criteria to display this page the next time that you
visit.

Select the Retain filter criteria check box to retain the last filter criteria entered. When you return to the
page, retained filter criteria control the application collection that is displayed in the table.

Show resources in the scope hierarchy: Select the check box if you want to display the resources in
the hierarchy for a particular scope.

The hierarchy is:
e cell > node > server
e cell > cluster

For example, if you select a node scope, all node scope resources and all cell scope resources display for
the node.

This preference is available for resource factory panels only.

Show built-in resources: Select the check box if you want to display resources that are pre-defined to
support certain internal components of the product. For example, the product includes built-in
configurations of a Cloudscape JDBC provider and a data source to support the Universal Description,
Discovery and Integration Protocol (UDDI) registry for web services.

Show confirmation for stop command: Select the check box if you want a confirmation that the stop
command is successful.

Show confirmation for immediate stop command: Select the check box if you want a confirmation that
the immediate stop command is successful.

26 Administering applications and their environment

Display inherit policy set attachments confirmation: Select the check box if you want to enable the
inherit policy set attachments confirmation.

Show confirmation for terminate command: Select the check box if you want a confirmation that the
terminate command is successful.

Show resources at one authorizing group level only: Specifies the authorization group level used to
filter the resources in the table. Only those roles that apply to your ID can display in the table. Valid values
are A11 Roles, Administrator, Deployer (for application collection panels only), Operator, Configurator,
and Monitor. If A11 Roles is selected, then all the resources that you are authorized to view are displayed
in the table grouped by role. Otherwise, the resources for the role selected display in the table.

Hide system queues: Select the box to hide messaging engine system queue points.

Include cluster members in the collection: Select the check box if you want the collection to include
application servers that belong to a server cluster.

Show confirmation for update runtime command: Select the check box to enable the confirmation
panel for the update runtime command button.

Show items at the following authorization group level: Select from the list the authorization group
level that will be used to filter the items in the table.

Show all data source properties: By default, this panel does not list the custom properties that are
configurable by different administrative console pages. Select the check box to show all data source
custom properties, including properties required by the data source and configuration properties. Selecting
this option does not affect what is displayed on other panels.

Administrative console scope settings

Use this page to specify the level at which a resource is visible on the administrative console panel. By
changing the value for Scope, you see only the resources that are defined at that scope. The contents of
the collection table might change. For WebSphere Application Server, Network Deployment, a resource
can be visible in the administrative console collection table at the cell, node, cluster, or server scope.

For WebSphere Application Server, Network Deployment, if you select Show scope selection drop-down
list with the all scopes option, the console displays a drop-down list of all the scopes available. To
change the scope, select any item from the drop-down list. The drop-down list contains only those scopes
that you have the authority to view.

For WebSphere Application Server, Network Deployment, if you clear Show scope selection drop-down
list with the all scopes option, you do not receive the drop-down list. Instead, click Browse next to a
field to see choices for changing the scope of the field. If a field is read-only, you cannot change the
scope. For example, if only one server exists, you cannot switch the scope to a different server.

The value for the Show scope selection drop-down list with the all scopes option checkbox is saved
on a per-user and per-resource basis. For example, user 1 might select the checkbox while user 2 clears
the checkbox. The values for the checkbox are saved for each user separately. Different resources, for
example Java Database Connectivity (JDBC) Providers and data sources, can have different values for the
checkbox.

All scopes is the default unless you enable the Use default scope setting on the Console preferences
panel to make the administrative console node the default. Whatever the default is the first time that you
view a console panel that has scope settings, that is the default for the panel on subsequent visits that you
make to the panel. The default for the panel does not change even if you modify the Use default scope
setting.

Chapter 3. Using the administrative clients 27

You cannot select All scopes to create a new resource. You must select one of the available scopes from
the drop down list to create a new resource.

You always create resources at the current scope that is selected in the administrative console panel,
even though the resources might be visible at more than one scope.

Resources such as Java Database Connectivity (JDBC) providers, namespace bindings, or shared
libraries can be defined at multiple scopes. Resources that are defined at more specific scopes override
duplicate resources that are defined at more general scopes:

* The application scope has precedence over all the scopes.

» For WebSphere Application Server, Network Deployment, the server scope has precedence over the
node, cell, and cluster scopes.

» For WebSphere Application Server, Network Deployment, the cluster scope has precedence over the
node and cell scopes.

* The node scope has precedence over the cell scope.

Despite the scope of a defined resource, the resource properties apply at an individual server level only.
For example, if you define the scope of a data source at the cell level, all the users in that cell can look up
and use that data source, which is unique within that cell. However, resource property settings are local to
each server in the cell. For example, if you define the maximum connections as 10, then each server in
that cell can have 10 connections.

The cell scope is the most general scope and does not override any other scope. The recommendation is
that you generally specify a more specific scope than the cell scope. When you define a resource at a
more specific scope, you provide greater isolation for the resource. When you define a resource at a more
general scope, you provide less isolation. Greater exposure to cross-application conflicts occur for a
resource that you define at a more general scope.
Cell Limits the visibility to all servers on the named cell. The resource factories within the cell scope
are:
» Defined for all servers within this cell
» For WebSphere Application Server, Network Deployment, overridden by any resource factories
that are defined within application, server, cluster, and node scopes that are in this cell and
have the same Java Naming and Directory Interface (JNDI) name

The resource providers that are required by the resource factories must be installed on every node
within the cell before applications can bind or use them.

Cluster
Clusters are used in WebSphere Application Server, Network Deployment. This scope limits the
visibility to all the servers on the named cluster. All cluster members must at least be at Version 6
to use cluster scope for the cluster. The resource factories that are defined within the cluster
scope:
» Are available for all the members of this cluster to use
» Override any resource factories that have the same JNDI name that is defined within the cell

scope

The resource factories that are defined within the cell scope are available for this cluster to use, in
addition to the resource factories, that are defined within this cluster scope.

Node Limits the visibility to all the servers on the named node. The node scope is the default scope for
most resource types. The resource factories that are defined within the node scope:
» Are available for servers on this node to use
» Override any resource factories that have the same JNDI name defined within the cell scope

The resource factories that are defined within the cell scope are available for servers on this node
to use, in addition to the resource factories that are defined within this node scope.

28 Administering applications and their environment

Server
Limits the visibility to the named server. The server scope is the most specific scope for defining
resources. The resource factories that are defined within the server scope:
« Are available for applications that are deployed on this server
» Override any resource factories that have the same JNDI name defined within the node and cell
scopes

The resource factories that are defined within the node and cell scopes are available for this
server to use, in addition to the resource factories that are defined within this server scope.
Application
Limits the visibility to the named application. Application scope resources can be viewed and
edited from the console, but not created. You can additionally use the Rational® Application
Developer or the wsadmin tool to view or edit the application scope resource configuration. The
resource factories that are defined within the application scope are available for this application to
use only. The application scope overrides all other scopes.

You can view the application scope resources from the console by selecting Applications from
the console navigation, and then navigating to the appropriate application. The application scope
resources are unavailable from the Resources section of the console navigation.

You can configure namespace bindings and shared libraries under cell, node, and server scopes only. For
WebSphere Application Server, Network Deployment, you can configure resources and the product
variables under all five scopes.

Accessing help and product information from the administrative
console

This topic describes how to use administrative console help and how to link to product documentation from
the administrative console.

Before you begin

You must have a connection to the Internet to access information about WebSphere Application Server
from the Welcome page of the administrative console.

About this task

All of the helps panels that you can access from the administrative console, you can access from the
WebSphere Application Server Information Center. This topic describes how to access the help panels, the
information center, and other product documentation from the administrative console.

Procedure

» Click Welcome on the administrative console navigation tree. In the workspace to the right of the
navigation tree, click the link, which takes you to a page that has links to various documentation. The
documentation that is linked includes the WebSphere Application Server Information Center, the
WebSphere Application Server product information, and the WebSphere Application Server technical
information on developerWorks.

» Access help in the following ways:

— Click either of the following tabs of an online help page:
- Click the Help index tab and select from the list of help panels to view administrative console help
information.
- Click the Search tab, provide search terms, and then click Search. Under Results, select a help
panel that contains the search information.
— In the help portal that is on the right side of the administrative console panel, do one or all of the
following tasks:

Chapter 3. Using the administrative clients 29

- Click a field label or a list marker in the administrative console panel for the help to display under
Field help. Alternatively, place the cursor over the field label or the list marker for the
corresponding help to display at the cursor.

Attention: When you place the cursor over the field label or list marker, the help might be
truncated in a Firefox browser. Click the field label or list marker so that the full help displays
under Field help.

- Click the link under Page help to access the help panel for the administrative console panel. The
help panel is the same help panel that displays when you click the ? icon.

- If Command assistance is listed, click the link under Command assistance to view wsadmin
scripting commands for the last action run for this console panel.

What to do next

You can continue to access help information from the administrative console. Alternatively, you can access
the help information from the WebSphere Application Server Information Center.

You can continue to access the WebSphere Application Server Information Center, the WebSphere
Application Server product information, and the WebSphere Application Server technical information on
develoierWorks from the administrative console. Alternatively you can access the information from the

IBM website.

Accessing command assistance from the administrative console

Using command assistance, you can view wsadmin scripting commands in the Jython language for the
last action run in the administrative console. This topic discusses how to access command assistance from
the administrative console.

Before you begin

You must have WebSphere Application Server and the administrative console running to access command
assistance.

About this task

Use command assistance to see wsadmin scripting commands that correspond to actions in the
administrative console. Seeing these commands might help you develop the commands necessary to
administer WebSphere Application Server from the wsadmin utility.

If a command assistance link is listed in the help portlet, wsadmin commands exist for the last console
action that you completed, and command assistance is available for that action.

When command assistance is unavailable in the help portlet: Some console actions do not have
wsadmin commands directly associated with them. When the help portlet on the right side of the
administrative console panel does not have a command assistance link in it, no command assistance data
is available for the last console action.

Procedure

1. Click the link under Command assistance to view wsadmin scripting commands for the last action run
for this administrative console panel.

After the Command assistance window opens, it refreshes automatically when new command
assistance data is available.

Examples of actions include a click on a button or a click on a link in the navigation bar, a collection
panel, or a detail panel. The editing of forms is not a user action.

The wsadmin scripting commands display in the Jython language in a secondary window that you can
view by clicking on the Command assistance link in the help portlet.

30 Administering applications and their environment

http://www.ibm.com/

If you perform an administrative console action after you launch the Command assistance window,
whether or not the scripting commands display in the window depends on whether your browser
supports Javascript. If your browser supports Javascript, the Command assistance window
automatically refreshes the command list to reflect the most recent console action. If the browser does
not support Javascript, click the link again under Command assistance in the help portal to refresh
the command list.

2. To view the description of a specific wsadmin command, place your cursor over the command.
Hover text is displayed.

3. Optionally, log the command assistance data to a file by selecting the Log command assistance
commands setting on the Preferences page of the administrative console.
A timestamp and the breadcrumb trail of the panel that produced the command assistance data are
provided with the wsadmin data.

4. Optionally, allow command assistance to emit Java Management Extensions (JMX) notifications by
selecting the Enable command assistance notifications setting on the Preferences page of the
administrative console.

Enablement of the notifications allows integration with product tools such as the Rational Application
Developer Jython editor to assist you in writing scripts.

The notification type is websphere.command.assistance.jython.user_name where user_name is the
name of the administrative console user.

Results

You have viewed wsadmin scripting commands from the administrative console, optionally logged the
commands to a file, and optionally allowed command assistance to emit JMX notifications.

What to do next
You can continue your administration of the administrative console.
Administrative console actions with command assistance:

Using command assistance, you can view wsadmin scripting commands in the Jython language for the
last action that runs in the administrative console. This topic lists the administrative console actions that
have wsadmin commands available in the command assistance option of the Help portlet.

The table lists the components and the actions in the administrative console that have command
assistance for a particular component. The administrative console can be an unfederated application
server administrative console, a deployment manager administrative console, an administrative agent
administrative console, or a job manager administrative console. Listed actions might apply to one, some,
or all of the administrative consoles.

Chapter 3. Using the administrative clients 31

Table 4. Console component actions. The following table lists the components and the actions in the administrative
console that have command assistance for a particular component.

Component Action

Applications « List the applications.

 Install the application.

» Update the complete application.

« Start the application.

» Stop the application.

» Edit the deployment target mapping.

» List Structured Query Language in Java (SQLJ) profiles.
» Customize and bind SQLJ profiles.

+ List IBM Optim™ pureQuery Runtime bind files (*).
* Bind IBM Optim pureQuery Runtime bind files (*).
» Uninstall the application.

(*) Command assistance in the administrative console produces wsadmin commands for
SQLJ. These commands work with IBM Optim pureQuery Runtime bind files. Command
assistance does not produce separate commands for the IBM Optim pureQuery Runtime
bind files. However, in the wsadmin environment separate commands exists for you to use
when working with IBM Optim pureQuery Runtime bind files.

Web servers + Create a web server.

» Delete a web server.

* Generate a plug-in configuration.

» Propagate the plug-in configuration.

* Propagate the key ring for the plug-in configuration.
« Start the web server.

« Stop the web server.

» Terminate the web server.

Channel framework « List the SSL repertoires.

« List the Transmission Control Protocol (TCP) endpoints.
 List the TCP thread pools.

» Delete a chain.

* Get the TCP endpoint.

* Create a TCP endpoint.

» Create a chain.

Node groups Create a node group.

* Remove a node group.

¢ Add a node group member.

* Remove a node group member.

Core group bridge - List eligible bridge interfaces.

» List tunnel access point groups.

* Modify a tunnel access point group.
« List tunnel access points.

* Modify a tunnel access point.

» Modify a peer core group.

e List tunnel templates.

* Modify a tunnel template.

32 Administering applications and their environment

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component

Action

Core group

Create a core group.

Modify a core group.

List the core groups.

Delete a core group.

List the core group servers.

Move a core group server.

Move a core group cluster.

List the core group policies.

Create a core group policy.

Modify a core group policy.

Delete a core group policy.

Create a core group policy match criteria.
Modify a core group policy match criteria.
Delete a core group policy match criteria.

Clusters

List the clusters.

Create a cluster.

Modify the cluster configuration properties.
Modify the cluster runtime properties.
Delete a cluster.

Modify the configuration properties of the domain bootstrap address of a backup cluster.
Modify the runtime properties of the domain bootstrap address of a backup cluster.

List the cluster members.
Create a cluster member.

Modify the cluster member configuration properties.

Delete a cluster member.

List the cluster member templates.
Start a cluster.

Stop a cluster.

Stop a cluster immediately.

Ripple start a cluster.

Start a cluster member.

Restart a cluster member.

Stop a cluster member.

Stop a cluster member immediately.
Terminate a cluster member.
Update the cluster member configuration weight.

Topology

Create an unmanaged node.
Remove an unmanaged node.
Synchronize the nodes.

Stop a node.

Stop a node agent.

Restart a node.

Chapter 3. Using the administrative clients

33

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component Action

Servers + Create an application server.
« Delete an application server.
* Modify an application server.
» List application servers.
* Remove application servers.
« Start an application server.
« Stop an application server.
« Create a custom property for an application server.
The action is supported for an application server, but not its template.
* Modify an existing custom property for an application server.
» List custom properties for an application server.
The action is supported for an application server, but not its template.
* Remove custom properties for an application server.
« Create a custom service for an application server.
The action is supported for an application server, but not its template.
* Modify an existing custom service for an application server.
« List custom services for an application server.
The action is supported for an application server, but not its template.
* Remove custom services for an application server.
* Modify application server components.
* Modify the Object Request Broker (ORB) service.
* Modify the ORB.thread.pool properties for an ORB service.
* Modify the thread pool detail for an ORB service.

Servers (continued) |+ Create a new class loader.

The action is supported for an application server, but not its template.
* Modify an existing class loader.
» List class loaders.

The action is supported for an application server, but not its template.
* Remove class loaders.
* Modify a process definition detail.
» Create a new environment entry for an application server.

The action is supported for an application server, but not its template.
* Modify an existing environment entry for an application server.
« List environment entries for an application server.

The action is supported for an application server, but not its template.
* Remove environment entries for an application server.
* Modify Java virtual machine (JVM) configuration properties.
e Modify JVM runtime properties.

34 Administering applications and their environment

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component

Action

Servers (continued)

Modify process execution properties.

Modify process logs configuration properties.

Modify process logs runtime properties.

Create a new port property for the application server.
Modify an existing port property for the application server.
List ports for the application server.

Remove ports from the application server.

Modify session management properties.

Modify cookie properties.

Modify distributed environment settings.

Modify custom tuning parameters.

Modify custom settings for custom tuning parameters.
Modify database settings.

Create a new thread pool.

The action is supported for an application server, but not its template.
Modify an existing thread pool.

List thread pools.

The action is supported for an application server, but not its template.
Remove thread pools.

Create an application server template.

Delete an application server template.

List the application server templates.

Servers (continued)

Create a generic server.

Delete a generic server.

Create a new environment entry for a generic server.

The action is supported for a generic server, but not its template.
List environment entries for a generic server.

The action is supported for a generic server, but not its template.
Modify the Enterprise JavaBeans (EJB) container settings.
Modify the EJB cache settings.

Modify the EJB timer service settings.

Modify the application profiling service.

Modify the internationalization service.

Modify the compensation service.

Modify the object pool service.

Modify the startup beans service.

Modify the ActivitySession service.

Modify the work area service.

Modify the core group service.

Create a work area partition.

Modify a work area partition.

Delete a work area partition.

Chapter 3. Using the administrative clients

35

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component Action

Servers (continued) |. Modify web container properties.
« Create a custom property.
The action is supported for a server, but not its template.
* Modify an existing custom property.
e List custom properties.
The action is supported for a server, but not its template.
* Remove custom properties.
» Create a new web container transport chain.
* Modify an existing web container transport chain.
* Remove web container transport chains.
« Create an external cache group.
- Edit an external cache group.
» Edit a denial of service protection.
» Modify the default Java persistence application programming interface (API) settings.
* View product information.
¢ View installed components.
» View installed extensions.
* Modify administrative services.
* Modify a repository service.
* Modify a generic server.
» Create a generic server endpoint.
* Modify a generic server endpoint.
* Remove a generic server endpoint.

Proxy Server « Create a proxy server.

* Delete a proxy server.

* Modify proxy server security settings.
» List proxy server security settings.
 List proxy virtual hosts.

* Modify a proxy virtual host.

* Modify proxy virtual host settings.
e List proxy rule expressions.

* Modify a proxy rule expression.

e List proxy actions.

* Modify a caching action.

* Modify a compression action.

* Modify a header action.

* Modify a rewriting action.

* Modify a routing action.

* Modify a time mapping.

» List custom advisors.

* Modify a custom advisor.

* Modify a custom advisor mapping.

36 Administering applications and their environment

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component Action

Session Initiation + Modify the Session Initiation Protocol (SIP) container.
CPc:‘r’]ttZiC:;r(S'P) - Modify the SIP stack.
* Modify SIP timers.
* Modify the SIP digest authentication.
» List SIP application routers.
* Modify a SIP application router.

Environment + Create a name space binding for different types.

» Edit an EJB name space binding.

» Edit a name space binding of indirect lookup.

» Edit a name space binding of other context property.
» Edit a string name space binding.

» Create bootstrap properties.

« Edit bootstrap properties.

» Create a group of Universal Resource Identifier (URI) patterns.
» Edit a group of URI patterns.

» Create a shared library.

» Edit a shared library.

» Modify a shared library.

 List shared libraries.

* Remove shared libraries.

» Create a virtual host.

« Edit a virtual host.

* Modify a virtual host.

Environment « List virtual hosts.
(continued) * Remove virtual hosts.

» Create a host alias for a virtual host.

» Edit a host alias for a virtual host.

* Modify host aliases for a virtual host.

= List host aliases for a virtual host.

* Remove host aliases for a virtual host.

» Create a multi-purpose internet mail extensions (MIME) type.
« Edit a MIME type.

* Modify a MIME type.

» List MIME types.

* Remove MIME types.

* Create a WebSphere variable.

« Edit a WebSphere variable.

* Modify a WebSphere variable.

» List WebSphere variables.

* Remove WebSphere variables.

Chapter 3. Using the administrative clients

37

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component

Action

Resources

Create a Java Database Connector (JDBC) provider.

List the JDBC providers.

Modify a JDBC provider.

Delete a JDBC provider.

List the resource adapters.

Install a resource adapter.

Copy a resource adapter.

Upgrade a resource adapter.

Modify a resource adapter.

Delete a resource adapter.

Modify the advanced resource adapter properties of a resource adapter.
Create a custom property.

Modify a custom property.

Delete a custom property.

List the data sources.

Create a data source.

Modify a data source.

Remove a data source.

Modify the connection pool properties of a data source.

Modify the advanced connection pool properties of a data source.
Modify the Websphere Application Server data source properties of a data source.

Resources (continued)

List the WebSphere Application Server Version 4 data sources.
Create a WebSphere Application Server Version 4 data source.
Modify a WebSphere Application Server Version 4 data source.
Delete a Websphere Application Server Version 4 data source.

Modify the connection pool properties of a Websphere Application Server Version 4 data
source.

List the Java 2 Connector (J2C) connection factories.

Create a J2C connection factory.

Modify a J2C connection factory.

Delete a J2C connection factory.

Modify the connection pool properties of a J2C connection factory.
Modify the advanced connection pool properties of a J2C connection factory.
Modify the advanced connection factory properties.

List the J2C activation specifications.

Create a J2C activation specification.

Modify a J2C activation specification.

Delete a J2C activation specification.

List the J2C administered objects.

Create a J2C administered object.

Modify a J2C administered object.

Delete a J2C administered object.

38 Administering applications and their environment

Table 4. Console component actions (continued). The following table lists the components and the actions in the

administrative console that have command assistance for a particular component.

Component

Action

Resources (continued)

List the schedulers.

Create a scheduler.

Modify a scheduler.

Delete a scheduler.

Create the tables of a scheduler.
Verify the tables of a scheduler.
Drop the tables of a scheduler.
List the object pool managers.
Create an object pool manager.
Modify an object pool manager.
Delete an object pool manager.
Create a custom object pool.
Modify a custom object pool.
Delete a custom object pool.
List the work managers.

Create a work manager.

Modify a work manager.

Delete a work manager.

List the timer managers.
Create a timer manager.
Modify a timer manager.

Delete a timer manager.
Create a mail provider.

Modify a mail provider.

Create a mail session.

Edit a mail session.

Create a protocol provider.
Modify a protocol provider.

Resources (continued)

Create a referenceable.

Modify a referenceable.

Create resource environment entries.
Edit resource environment entries.

Create a resource environment provider.

Edit a resource environment provider.
Create a URL.

Modify a URL.

Create a URL provider.

Modify a URL provider.

Modify an object cache instance.
Modify a servlet cache instance.

Chapter 3. Using the administrative clients

39

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component Action

Transaction services |+ | st the manual transactions.

 List the retry transactions.

 List the heuristic transactions.

e List the imported prepared transactions.

» Set the total transaction lifetime timeout.

» Set the asynchronous response timeout.

» Enable file locking.

» Enable transaction coordination authorization.
« Set the client inactivity timeout.

» Set the maximum transaction timeout.

Security + Enable security.

» Validate Lightweight Directory Access Protocol (LDAP) connections.
e List SSL configurations.

» Get the SSL configuration.

» Create an SSL configuration.

* Modify the SSL configuration.

» Delete an SSL configuration.

« List the SSL ciphers.

» List the SSL configuration groups.

» Create an SSL configuration group.

» Delete an SSL configuration group.

* Modify an SSL configuration group.

* Get the inherited SSL configuration.

 List dynamic outbound endpoint SSL configurations.

» Create a dynamic outbound endpoint SSL configuration.
» Delete a dynamic outbound endpoint SSL configuration.
e List the key sets.

» Generate a key for a key set.

« Create a key set.

* Delete a key set.

« List the key set groups.

» Create a key set group.

» Delete a key set group.

» Generate keys for the key set group.

40 Administering applications and their environment

Table 4. Console component actions (continued). The following table lists the components and the actions in the

administrative console that have command assistance for a particular component.

Component

Action

Security (continued)

List the keystores.
Create a keystore.
Modify a keystore.

Delete a keystore.
Change the keystore password.
Exchange signers.

List the key managers.
Create a key manager.
Delete a key manager.
List the key file aliases.
Create the key reference.
List the trust managers.
Create a trust manager.
Delete a trust manager.

List the certificate authority clients.
Create a certificate authority client.
Modify a certificate authority client.
Delete a certificate authority client.

List the personal certificates.

Get the attributes of a personal certificate.

Get a certificate chain.
Receive a personal certificate.
Create a self-signed certificate.
Create a chained certificate.

Create a certificate authority signed certificate.

Chapter 3. Using the administrative clients

41

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component Action

Security (continued) |+ Renew a personal certificate.

* Revoke a personal certificate.

* Replace a personal certificate.

« Extract a personal certificate.

* Import a personal certificate.

» Export a personal certificate.

» Delete a personal certificate.

* Add a signer certificate.

« Extract a signer certificate.

* Retrieve signer information from a port.
» Retrieve a signer certificate from a port.
* Get the properties of a signer certificate.
» Delete a signer certificate.

« List the signer certificates.

« Create a certificate request.

* Get a certificate request.

« List the certificate requests.

* Delete a certificate request.

« Extract a certificate request.

* Query a certificate request.

 List the notifiers.

» Create a notifier.

» Delete a notifier.

« Start the certificate expiration monitor.

* Validate the administrative name.

* Add a base entry to the realm.

* Modify the base entry details.

» Configure a new LDAP repository.

* Modify an existing LDAP repository configuration.

* Delete an existing LDAP repository configuration.

42 Administering applications and their environment

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component Action

Security (continued) » View performance data for the LDAP repository under an LDAP configuration.

* Modify the LDAP performance data.

» View the LDAP entity types under the LDAP configuration.

» Modify the existing LDAP entity types.

» View the group attribute definition under the LDAP configuration.

* Modify the group attribute definition under the LDAP configuration.

* View the member attributes under the LDAP group attribute definitions.

» Configure the member attribute details under the LDAP group attribute definitions.

» Delete an existing member attribute detail.

» View the dynamic member attributes under the LDAP group attribute definitions.

« Configure the dynamic member attributes under the LDAP group attribute definitions.

* Delete an existing dynamic member attribute detail.

» View the list of repositories to manage.

» Configure the federated repositories to use a built-in repository.

* Remove the built-in repository from the federated repository configuration.

» View the federated repository property extension.

= Configure the federated repository property extension.

» View the federated repository entry mapping repository.

» Configure the federated repository entry mapping repository.

* View the federated repository supported entity types list.

* View the details of a supported entity type.

» Modify an existing supported entity type.

» View the authentication mechanism and expiration policy for the federated repository user
identity.

* Get an audit policy.

* Modify an audit policy.

» List the audit event type filters.

* Get an audit event type filter.

» Create an audit event type filter.

* Modify an audit event type filter.

Chapter 3. Using the administrative clients 43

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component Action

Security (continued) | pelete an audit event type filter.

e List the audit service providers.

* Get an audit service provider.

« Create an audit service provider.

* Modify an audit service provider.

» Delete an audit service provider.

« List the audit factories.

* Get an audit factory.

» Create an audit factory.

* Modify an audit factory.

» Delete an audit factory.

« List the audit encryption keystores.

« Get an audit encryption keystore.

» Create an audit encryption keystore.

* Modify an audit encryption keystore.

* Delete an audit encryption keystore.

* Get an audit encryption configuration.

« Create an audit encryption configuration.
* Modify an audit encryption configuration.
» Delete an audit encryption configuration.
* Get an audit signing configuration.

* Create an audit signing configuration.

* Modify an audit signing configuration.

» Delete an audit signing configuration.

» List the audit notification monitors.

« Create an audit notification monitor.

* Modify an audit notification monitor,
 List the audit notifications.

» Create an audit notification

* Modify an audit notification.

¢ Delete an audit notification.

44 Administering applications and their environment

Table 4. Console component actions (continued). The following table lists the components and the actions in the

administrative console that have command assistance for a particular component.

Component

Action

Security (continued)

List the active security settings.
Set the active administrative security settings.

List the active Rivest Shamir Adleman (RSA) token authorization settings.
Set the active Rivest Shamir Adleman (RSA) token authorization settings.

List all authorization groups.
Create a new authorization group.
Delete an authorization group.
Edit an authorization group.

Get user realm information.
Configure a local OS user realm.
Configure an LDAP user realm.
Configure a custom user realm.
Unconfigure the user realm.

List trusted realms.

Add trusted realms.

Remove trusted realms.
Unconfigure the trusted realm.

Get external authorization provider information.
Set external authorization provider information.

Unconfigure external authorization provider.
List trust association interceptors.

Create a trust association interceptor.
Modify a trust association interceptor.
Delete a trust association interceptor.
Unconfigure the trust association.

Get Common Secure Interoperability (CSl) inbound information.

Set CSlI inbound information.
Unconfigure CSI inbound information.
Get CSI outbound information.

Set CSI outbound information.
Unconfigure CSI outbound information.

Chapter 3. Using the administrative clients

45

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component

Action

Security (continued)

List Java Authentication and Authorization Service (JAAS) login configurations.
Create JAAS login configurations.

Modify JAAS login configurations.

Delete JAAS login configurations.

Unconfigure JAAS login information.

Configure a JAAS login module.

Delete a JAAS login module.

List JAAS authorization data entries.

Create a JAAS authorization data entry.

Modify the JAAS authorization data entry.

Delete a JAAS authorization data entry.

Get Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) information.
Configure SPNEGO information.

List SPNEGO filters.

Create a SPNEGO filter.

Modify the SPNEGO filter.

Delete a SPNEGO filter.

Create a Kerberos authentication mechanism.

Modify the Kerberos authentication mechanism.

List security domains.

Create a security domain.

Copy the security domain.

Modify the security domain.

Delete the security domain.

Set active security settings.

Unset active security settings.

Set the Lightweight Third-Party Authentication (LTPA) timeout.
Configure programmatic session cookies.

46 Administering applications and their environment

Table 4. Console component actions (continued). The following table lists the components and the actions in the

administrative console that have command assistance for a particular component.

Component

Action

Service integration

Create a bus.

Delete a bus.

Add a bus member.

Delete a bus member.

List the bus members.

Delete the messaging engine.
Create a queue.

Create a topic space.

Create an alias destination.
Delete an alias destination.
Create an MQ queue type destination.
Create a foreign destination.
Mediate a destination.
Unmediate a destination.
Delete a destination.

Create a mediation.

Delete a mediation.

Modify a mediation.

Delete a foreign bus.

Create a Java Message Service (JMS) activation specification.

Modify a JMS activation specification.
Create a JMS connection factory.
Modify a JMS connection factory.
Create a JMS queue connection factory.
Modify a JMS queue connection factory.
Create a JMS topic connection factory.
Modify a JMS topic connection factory.

Chapter 3. Using the administrative clients

47

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component Action

Servipe integration « Create a JMS queue.

(continued) * Modify a JMS queue.

» Create a JMS topic.

* Modify a JMS topic.

» Create a JMS provider.

» Create a WebSphere MQ server.

¢ Modify a WebSphere MQ server.

* Modify a WebSphere MQ server bus member.

¢ Add a permitted transport.

* Add a user to a bus connector role.

* Add a group to a bus connector role.

¢ Add an inbound port to an inbound service.

* Add an outbound port to an outbound service.

» Connect an endpoint listener to a service integration bus.

* Create an endpoint listener.

» Create an inbound service.

» Create an outbound service.

» Delete an endpoint listener.

* Delete an inbound service.

* Delete an outbound service.

» Disconnect an endpoint listener from a service integration bus.

= Publish an inbound service to a Universal Description, Discovery, and Integration (UDDI)
registry.

» Refresh the Web Services Description Language (WSDL) definition for an inbound service.

* Refresh the WSDL definition for an outbound service.

¢ Remove an inbound port.

* Remove an outbound port.

» Set the default outbound port for an outbound service.

* Remove an inbound service from a UDDI registry.

» Add a target service for routing from a gateway service.

» Create a gateway service.

« Create a proxy service deployed to a gateway instance.

» Delete a gateway service.

» Delete a gateway instance.

* Delete a proxy service.

* Remove a target service.

» Create a WS-Noatification (WSN) service.

48 Administering applications and their environment

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component Action

Service integration + Modify a bus.

(continued) » Modify a foreign bus connection.

« List foreign bus connections.

» List bus messaging engines.

» List messaging engines on a particular server.

» List bus mediations.

* Modify a messaging engine.

» Create a service integration bus (SIB) link on a messaging engine.
* Modify a foreign bus connection (an indirect link).

* Modify a foreign bus connection (a SIB link).

» List bus destinations.

= List queue points (point-to-point messaging) for a destination.
» List queue mediation points for a destination.

 List topic mediation points for a destination.

» Create a new context property.

» Edit a bus.

» Create a replication domain.

« Edit a replication domain.

System administration |. Egit the file synchronization service.

» Edit the file transfer service.

* Modify a cell.

* Modify the deployment manager.

* Modify a node.

* Modify a node agent.

* Modify a Java Management Extensions (JMX) connector.
* Modify extension MBean providers.

* Modify node groups.

Web services - List the service clients in a cell.

« List the service clients in an application.

» List the service providers in a cell.

» List the service providers in an application.
« Start the service provider listener.

» Stop the service provider listener.

Chapter 3. Using the administrative clients

49

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component

Action

Web services policy
sets

» List the policy sets in the system.

* Get the attributes for a policy set.

» Set the attributes of a specified policy set.

» Create a new policy set.

» Copy a policy set to create a new policy set.

» Delete a policy set.

» Update the attributes of a policy set.

» Export a policy set from an archive for use in a client environment or a server.
» Get the policy set attachments for a given resource.

» List the policy set attachments for services providers.

» List the policy set attachments for services clients in an application.
« Create a new policy set attachment for a resource.

» Delete a policy set attachment from a resource.

» List the applications to which a given policy set is attached.

» Delete all attachments for a policy set.

» Transfer all attachments from one policy set to another.

Web services policies

Attention: Before you use the generated wsadmin command for policies, see the
documentation for the PolicySetManagement command group for the AdminTask object.

» Create a policy.

* Add a policy to a policy set.

* Delete a policy from a policy set.

« List the names of existing policies.

* Get the attributes for a policy.

» Update the configuration of a policy.

* Get the value for a named policy attribute.
» Set the value for a named policy attribute.

Web services bindings

» Get the binding configuration for a specified policy for a policy set attachment.
» Set the binding for a policy set attachment.
» Set and update the binding configuration for a specified policy for a policy set attachment.

Web services trust
service

« List the local names of all the configured token providers.

* Query the trust service for the local name of the default token provider.

» Update configuration data for a token provider.

» Delete custom properties from a token provider configuration.

* Assign a token that is issued when requesting access to a specific end point.
 List the assigned endpoints for a token provider.

* Query the trust service for the token provider assigned to a specified endpoint.
» Unassign an endpoint from its token provider.

* Refresh trust service.

* Query the trust service for a list of assigned endpoints.

50 Administering applications and their environment

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component

Action

Web Services Security
distributed cache

Get the Web Services Security distributed cache configuration.

Get the Web Services Security distributed cache configuration custom properties.
Get the defined cell level data sources.

Set the Web Services Security distributed cache configuration.

Set the Web Services Security distributed cache configuration custom properties.

Business-level
applications

List the assets.

Add an asset to the repository.

Export an asset.

Delete an asset .

List the business-level applications.
Create a new business-level application.
Add an asset to a business-level application.
Delete a business-level application.

Edit a business-level application.

Start a business-level application.

Stop a business-level application.

Edit a composition unit.

Performance
Monitoring
Infrastructure (PMI)
and Request metrics

List the PMI configuration.

Modify the PMI configuration.

Modify the PMI parameters at run time.
Edit the request metrics filter.

Edit the request metrics.

Create a request metrics filter value.
Edit a request metrics filter value.
Delete the request metrics filter.

Performance advisors

Re-initialize the Runtime Performance Advisor tool.
Set the Runtime Performance Advisor tool attributes.

Portlets and portlet
containers

View the portlet deployment descriptor.
Modify portlet container settings.
Create a custom property.

Modify an existing custom property.
List custom properties.

Remove custom properties.

Enable PMI for portlets.

Enable request metrics for portlets.

Chapter 3. Using the administrative clients

51

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component

Action

DataPower®

Add an appliance to the DataPower appliance manager.

Add a firmware version to the DataPower appliance manager.

Add a managed set to the DataPower appliance manager.

Copy a DataPower appliance manager managed domain version to a new managed set.
Copy a DataPower appliance manager managed settings version to a new managed set.
Export the configuration and versions of a DataPower appliance manager.

Get the IDs of all the DataPower appliance manager appliances.

Get the names of all the domains on a DataPower appliance.

Get the IDs of all the DataPower appliance manager firmware.

Get the IDs of all the DataPower appliance manager firmware versions.

Get the IDs of all the appliances in a DataPower appliance manager managed set.

Get the IDs of all the domains in a DataPower appliance manager managed set.

Get the IDs of all the domain versions in a DataPower appliance manager managed set.
Get the IDs of the managed sets using a firmware version.

Get the IDs of all the settings versions in a DataPower appliance manager managed set.
Get the IDs of all the DataPower appliance manager managed sets.

Get the IDs of all the DataPower appliance manager tasks.

Get the firmware that best matches the parameters.

Get a DataPower appliance manager appliance.

Get a DataPower appliance manager firmware.

Get a DataPower appliance manager firmware version.

Get a DataPower appliance manager managed domain.

52 Administering applications and their environment

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component

Action

DataPower
(continued)

Get a DataPower appliance manager managed domain version.

Get a DataPower appliance manager managed settings.

Get a DataPower appliance manager managed settings version.

Get a DataPower appliance manager managed set.

Get the properties of the DataPower appliance manager.

Get a DataPower appliance manager task.

Import the configuration and versions of the DataPower appliance manager.

Tell the DataPower appliance manager to add the appliance to a managed set and start
managing the appliance.

Tell the DataPower appliance manager to add the domain to a managed set and start
managing the appliance.

Purge a DataPower appliance manager task.

Remove an appliance from the DataPower appliance manager.

Remove a firmware version from the DataPower appliance manager.
Remove a managed domain version from the DataPower appliance manager.
Remove a managed settings version from the DataPower appliance manager.
Remove a managed set from the DataPower appliance manager.

Modify a DataPower appliance manager appliance.

Modify a DataPower appliance manager firmware version.

Modify a DataPower appliance manager managed domain.

Modify a DataPower appliance manager managed domain version.

Modify a DataPower appliance manager managed settings.

Modify a DataPower appliance manager managed settings version.

Modify a DataPower appliance manager managed set.

Modify the DataPower appliance manager.

DataPower
(continued)

Manually synchronize a DataPower appliance manager managed set.

Tell the DataPower appliance manager to remove the appliance from its managed set and
stop managing the appliance.

Tell the DataPower appliance manager to remove the domain from its managed set and
stop managing the appliance.

Get the status of the DataPower appliance manager.
Shut down the DataPower appliance manager.

Replication Domains

List data replication domain members.

Chapter 3. Using the administrative clients 53

Table 4. Console component actions (continued). The following table lists the components and the actions in the
administrative console that have command assistance for a particular component.

Component Action

Job manager * Query targets.

» Get target properties.

* Query target resources.

» Get target resource properties.

» List groups of targets.

» Create a group of targets.

* Delete a group of targets.

» Get information about groups of targets.

* Modify information about groups of targets.
» List members of a group of targets.

* Add a member to a group of targets.

* Delete a member from a group of targets.
* Query jobs.

* Get job status.

» Get job target status.

* Get job target history.

e Delete a job.

e Suspend a job.

* Resume a job.

Users and groups « Add a new user.

* Modify an existing user.
» List users.

* Remove users.

* Add a new group.

* Modify an existing group.
» List groups.

* Remove groups.

 List registry users.

» List registry groups.

Changing the console session expiration

Run this JACL script to set how long Integrated Solutions Console can be used until the login session
expires.

About this task

The following JACL script serves as an example of how to set the duration that an Integrated Solutions
Console can be used until the login session expires. Other scripting types, such as JYTHON, could be
used.

Procedure
1. Copy the following script into a file.

set dep [$AdminConfig getid /Deployment:isclite/]
set appDep [$AdminConfig Tist ApplicationDeployment $dep]
set sesMgmt [$AdminConfig Tist SessionManager $appDep]

54 Administering applications and their environment

check if existing sesMgmt there or not, if not then create a new one, if exist then modify it
if {§sesMgmt == ""} {
get applicationConfig to create new SessionManager
set appConfig [$AdminConfig T1ist ApplicationConfig $appDep]
if {$appConfig == ""} {
create a new one
set appConfig [$AdminConfig create ApplicationConfig $appDep {}]
then create a new SessionManager using new Application Config just created
set sesMgmt [$AdminConfig create SessionManager $appConfig {}]
} else {
create new SessionManager using the existing ApplicationConfig
set sesMgmt [$§AdminConfig create SessionManager $appConfig {}]

}

get tuningParams config id
set tuningParams [$AdminConfig showAttribute $sesMgmt tuningParams]
if {$tuningParams == ""} {
create a new tuningParams
$AdminConfig create TuningParams $sesMgmt {{invalidationTimeout <timeout value>}}

} else {
#modify the existing one
$AdminConfig modify $tuningParams {{invalidationTimeout <timeout value>}}

}

saving the configuration changes
$AdminConfig save

2. Change the <timeout value> on the two lines of this sample to the new session expiration value. This
number specifies the number of minutes the console preserves the session during inactivity.

3. Save the file to any directory using, for example, the filename timeout.jacl.

4. [Start the wsadmin scripting clienf| from the <WAS-install>/profiles/<profile_name>/bin directory.

5. Issue the following command.

wsadmin -f <path to jacl file>/timeout.jacl

Changing the class loader order of the console module deployed in
Integrated Solutions Console

Run this JACL script to change the class loader order of the console module deployed in the Integrated
Solutions Console.

About this task

The following JACL script serves as an example of how to change the class loader order of the console
module deployed in the Integrated Solutions Console. Other scripting types, such as JYTHON, could be
used.

Procedure
1. Copy the following script into a file.

set app [$AdminConfig getid /Deployment:isclite/]
set webModules [$AdminConfig 1list WebModuleDeployment $app]

foreach webModule $webModules {
set uri [$AdminConfig showAttribute $webModule uri]
if {$uri == "<WAR_NAME>"} {
#modify the classloader for <WAR_NAME>
set ¢l [$AdminConfig 1list Classloader $webModule]
check if the classloader exist

if {$cl == "} {

Chapter 3. Using the administrative clients 55

create a new one with the appropriate mode
$AdminConfig create Classloader $webModule {{mode <MODE>}}
} else {
modify the existing one
$AdminConfig modify $c1 {{mode <MODE>}}

}
save the configuration change
$AdminConfig save

2. Change the <WAR_NAME> on the two lines of this sample to the name of the console module file
deployed in the Integrated Solutions Console which class loader order you want to change.

3. Change the <MODE> on the two lines of this sample to PARENT_LAST or PARENT_FIRST as
required.

4. Save the file to any directory using, for example, the file name classloaderorder. jacl.
5. |Start the wsadmin scripting cliend from the <WAS-install>/profiles/<profile_name>/bin directory.
6. Issue the following command.

wsadmin -f <path to jacl file>/classloader.jacl

Getting started with wsadmin scripting

Scripting is a non-graphical alternative that you can use to configure and manage WebSphere Application
Server.

Before you begin

Verify that user IDs that run WebSphere Application Server for z/OS® scripts, including server,
administrator and client user IDs, run with the LANG and LC_ALL environment variables set to the same
locale based on code page IBM-1047. Settings based on any other code page might cause the scripts to
fail. See the "Changing the Locale in the Shell" topic in UNIX System Services User's Guide for more
information.

About this task

The WebSphere Application Server wsadmin tool provides the ability to run scripts. The wsadmin tool
supports a full range of product administrative activities.

The following figure illustrates the major components involved in a wsadmin scripting solution:

Java virtual machine
Resources

External tools b e : i &

Figure 1: A WebSphere Application Server scripting solution

The wsadmin tool supports two scripting languages: Jacl and Jython. Five objects are available when you
use scripts:

* AdminControl: Use to run operational commands.

56 Administering applications and their environment

AdminConfig: Use to run configurational commands to create or modify WebSphere Application Server
configurational elements.

AdminApp: Use to administer applications.
AdminTask: Use to run administrative commands.
Help: Use to obtain general help.

The scripts use these objects to communicate with MBeans that run in WebSphere Application Server
processes. MBeans are Java objects that represent Java Management Extensions (JMX) resources. JMX
is an optional package addition to Java 2 Platform Standard Edition (J2SE). JMX is a technology that
provides a simple and standard way to manage Java objects.

Important: Some wsadmin scripts, including the AdminApp install, AdminApp update, and some

AdminTask commands, require that the user ID under which the server is running must have
read permission to the files that are created by the user that is running wsadmin scripting. For
example, if the application server is running under user1, but you are running wsadmin
scripting under user2, you might encounter exceptions involving a temporary directory. When
user2 runs wsadmin scripting to deploy an application, a temporary directory for the enterprise
application archive (EAR) file is created. However, when the application server attempts to
read and unzip the EAR file as user1, the process fails. It is not recommended that you set
the umask value of the user that is running wsadmin scripting to 022 or 023 to work around
this issue. This approach makes all of the files that are created by the user readable by other
users. To resolve this issue, consider the following approaches based on your administrative
policies:
* Run wsadmin scripting with the same user ID as the user that runs the deployment
manager or application server. A root user can switch the user ID to complete these actions.

+ Set the group ID of the user that is running the deployment manager or application server
to be the same group ID as the user that is running wsadmin scripting. Also, set the umask
value of the user that is running the wsadmin scripting to be at least a umask 027 value so
that files that are created by the wsadmin scripting can be read by members of the group.

* Run wsadmin scripting from a different machine. This approach forces files to be
transferred and bypasses the file copy permission issue.

To perform a task using scripting, you must first perform the following steps:

Procedure

1.

2.

Choose a scripting language. The wsadmin tool only supports Jacl and Jython scripting languages.
Jacl is the language specified by default. If you want to use the Jython scripting language, use the
-lang option or specify it in the wsadmin.properties file.

Start the wsadmin scripting client interactively, as an individual command, in a script, or in a profile.

What to do next

Before you perform any task using scripting, make sure that you are familiar with the following concepts:

Java Management Extensions (JMX)

WebSphere Application Server configuration model
wsadmin tool

Jacl syntax or Jython syntax

Scripting objects

Optionally, you can customize your scripting environment. For more information, see Administrative
properties for using wsadmin scripting.

Chapter 3. Using the administrative clients 57

After you become familiar with the scripting concepts, choose a scripting language, and start the scripting
client, you are ready to perform tasks using scripting.

What is new for scripted administration (wsadmin)

This topic highlights what is new or changed for users who are going to customize, administer, monitor,
and tune production server environments using the wsadmin tool.

The Deprecated, stabilized, and removed features topic describes features that are being replaced or
removed in this or future releases.

Improved administrative scripting features

Enhancements to AdminTask command support for Version 7 introduced system configuration using properties

managing configurations using properties files files. Using commands in the
PropertiesBasedConfiguration group, you can copy
configuration properties from one environment to another,
troubleshoot configuration issues, and apply one set of
configuration properties across multiple profiles, nodes,
cells, servers, or applications.

Enhancements to configuration using properties files for
Version 8.0 include the following:

» Support for web services endpoint URL fragment
properties files

For more information, see Using properties files to
manage system configuration and
PropertiesBasedConfiguration command group for the
AdminTask object using wsadmin scripting.
AdminSDKCmds command group for the AdminTask Use the commands and parameters in the
object AdminSDKCmds group for the AdminTask object to
perform the following actions:
» List software development kits that are not used by a
node.
* Get or set the default SDK for a node.
* Get or set an SDK for a server.

For more information, see AdminSDKCmds command
group for the AdminTask object.
getAvailableSDKsOnNode and getSDKPropertiesOnNode Use the getAvailableSDKsOnNode and
commands in the ManagedObjectMetadata command getSDKPropertiesOnNode commands and parameters in
group for the AdminTask object the ManagedObjectMetadata group for the AdminTask
object to perform the following actions:

» List software development kits that are installed with the
product and available for use by a node.

» List software development kit (SDK) properties.

For more information, see ManagedObjectMetadata
command group for the AdminTask object.

58 Administering applications and their environment

listServices command for information about web service Use the listServices command to learn about service

references references. You can use the serviceRef property with the
queryProps parameter with the listServices command to
query all service references or a specific service
reference. This parameter is only applicable for service
clients. If you specify an asterisk (*) as a wildcard as the
name of the service reference, all of the service
references for the matching service client are returned.
You can also query a specific service reference name by
specifying the name of the service reference that you
want. To return detailed service reference information for
endpoints and operations, specify the expandResource
property.

For more information, see Querying web services using
wsadmin scripting.
Security cookies set as HTTPOnly resist cross-site Use the HttpOnly browser attribute to prevent client side
scripting attacks applications (such as Java scripts) from accessing cookies
to prevent some cross-site scripting vulnerabilities. The
attribute specifies that LTPA and WASReqURL cookies
include the HTTPOnly field.

For more information, see Single sign-on settings.

runCommand, manageprofiles, installlM, updatelM, Use new parameters of the submitJob command for the
manageOfferings, and findIMDatalocation parameters of =~ AdminTask object to use a job manager to perform the
the submitJob command for the AdminTask object following actions:

* Run a command on a remote host.
» Create, augment, or delete a profile.

» Install Installation Manager instances, update
Installation Manager with a repository, manage
Installation Manager offerings, and install WebSphere
Application Server products.

For more information, see Administrative job types using
wsadmin scripting.

Overview and new features for scripting the application serving
environment
Use the links provided in this topic to learn about the administrative features.

[“What is new for scripted administration (wsadmin)” on page 58|

This topic provides an overview of new and changed features for administrative scripting and the
wsadmin tool.

Introduction: Administrative scripting (wsadmin)

This topic provides an introduction to administrative scripting and the wsadmin tool.

Using administrative programs (JMX)

This topic describes how to use Java application programming interfaces (APIs) to administer WebSphere
Application Server and to manage your applications.

Before you begin

You can administer WebSphere Application Server and your applications through tools that come with the
product or through programming with the Java APIs.

Chapter 3. Using the administrative clients 59

The wsadmin scripting tool, the administrative console, and the administrative command-line tools come
with the product. These administrative tools provide most of the functions that you need to manage the
product and the applications that run in WebSphere Application Server. You can use the command-line
tools from automation scripts to control the servers. Scripts that are written for the wsadmin scripting tool
offer a wide range of possible custom solutions that you can develop quickly.

Investigate these tools with the Java APIs to determine the best ways to administer WebSphere
Application Server and your applications. For information on the Java APls, view the application
programming interfaces documentation.

* No action required for WAS JMX APls: Each Java virtual machine (JVM) in WebSphere Application
Server includes an embedded implementation of Java Management Extensions (JMX). In Application
Server, Version 5, the JVMs contain an implementation of the JMX 1.0 specification. In Application
Server, Version 6.0 and later, the JVMs contain an implementation of the JMX 1.2 specification. The
JMX 1.0 implementation used in Version 5 is the TMX4J package that IBM Tivoli® products supply. The
JMX 1.2 specification used in Version 6.0 and later is the open source mx4j package. The JMX
implementation change across the releases does not affect the behavior of the JMX MBeans in the
Application Server. No Application Server administrative application programming interfaces (APIs) are
altered due to the change from the JMX V1.0 specification to the JMX V1.2 specification.

« Action might be required for custom MBeans: The JMX V1.2 specification is compatible with the
earlier JMX V1.0 specification. However, you might need to migrate custom MBeans that are supplied
by products other than the Application Server from Version 5 to Version 6.0 and later. The primary
concern for these custom MBeans is related to the values that are used in key properties of the JMX
ObjectName class for the MBean. The open source mx4j implementation more stringently enforces
property validation according to the JMX 1.2 specification. Test the custom MBeans that you deployed in
Version 5 in Version 6.0 and later, to ensure compatibility. Full details of the JMX V1.2 specification
changes from the JMX V1.0 specification are available in the JMX 1.2 specification.

About this task

WebSphere Application Server supports access to the administrative functions through a set of Java
classes and methods. You can write a Java program that performs any of the administrative features of the
WebSphere Application Server administrative tools. You can also extend the basic WebSphere Application
Server administrative system to include your own managed resources.

You can prepare, install, uninstall, edit, and update applications through programming. Preparing an
application for installation involves collecting various types of WebSphere Application Server-specific
binding information to resolve references that are defined in the application deployment descriptors. This
information can also be modified after installation by editing a deployed application. Updating consists of
adding, removing or replacing a single file or a single module in an installed application, or supplying a
partial application that manipulates an arbitrary set of files and modules in the deployed application.
Updating the entire application uninstalls the old application and installs the new one. Uninstalling an
application removes it entirely from the WebSphere Application Server configuration.

Perform any or all of the following tasks to manage WebSphere Application Server and your Java
Platform, Enterprise Edition (Java EE) applications through programming.

Procedure
Create a JMX remote client program by using the JMX remote API (JSR 160).}

This topic describes how to develop a JMX remote program that uses the JMX remote API (JSR 160) to
access the WebSphere Application Server administrative system.

Create a custom Java administrative client program using the Java administrative APIs.|

This topic describes how to develop a Java program that uses the WebSphere Application Server
administrative APIs to access the administrative system of WebSphere Application Server.

+ [Extend the WebSphere Application Server administrative system with custom MBeans.|

60 Administering applications and their environment

This topic describes how to extend the WebSphere Application Server administration system by
supplying and registering new JMX MBeans in one of the Application Server processes. In this case,
you can use the administrative classes and methods to add newly managed objects to the
administrative system.

» |Deploy and manage a custom Java administrative client program for use with multiple Java Platform,|
Enterprise Edition application servers.|

This topic describes how to connect to a Java EE server, and how to manage multiple vendor servers.

Results

Depending on which tasks you complete, you have created your own administrative program, extended the
WebSphere Application Server administrative console, connected and managed vendor servers, or
managed your applications through programming.

What to do next

You can continue to administer WebSphere Application Server and your applications through programming
or in combination with the tools that come with the WebSphere Application Server.

Java Management Extensions (JMX) for WebSphere Application Server

This topic gives an overview of Java Management Extensions (JMX) in general and how this standard
applies to WebSphere Application Server.

Java Management Extensions overview

Java Management Extensions (JMX) is the Java standard for managing application resources. The
management architecture that is defined by JMX is divided into three levels:

* The bottom level is management instrumentation. Each manageable resource is described by an
interface that specifies the attributes it has, the operations it supports, and the notifications it sends.
This resource is a managed bean (MBean).

* The middle level is the management agent. Each managed process contains a JMX agent that includes
an MBean server, which provides a registry and access point for MBeans. Management clients must
use the MBean server to access the registered MBeans.

* The top level of the architecture is defined by JMX Remote application programming interface (API)
(JSR 160). JSR 160 uses Remote Method Invocation over Internet Inter-ORB Protocol (RMI-IIOP), but
is not interoperable with the RMI connector. The RMI, SOAP/HTTP, and SOAP/HTTPS connectors were
created before the JSR160 specification and are supported. The Inter-Process Communications (IPC)
connector is also supported.

The top level of the architecture is the distributed services level, and its role is to facilitate remote
access to JMX agents. This task is accomplished through connectors, which provide a
protocol-independent, location-transparent, client-side interface to the MBean server (for example, a
Remote Method Invocation (RMI) connector), or protocol adapters, which provide protocol-specific,
server-side access to the MBean server (for example, an HTTP adapter).

Chapter 3. Using the administrative clients 61

Management programs

Java virtual E E ! ! Distributed
machine i i i i services

MBean server Agent
yd AN
pd N
MBean MBean

Instrumentation
Resource Resource

Java Management Extensions in WebSphere Application Server

Java Management Extensions (JMX) is at the core of Application Server administration capabilities. The
application server contains a JMX agent. All of the system components are defined as MBeans. The JMX
agent in Application Server supports the following connectors: JSSR160RMI, Remote Method
Invocation/Internet Inter-ORB Protocol (RMI/IIOP), Simple Object Access Protocol/Hypertext Transfer
Protocol (SOAP/HTTP), Simple Object Access Protocol/Hypertext Transfer Protocol Secure
(SOAP/HTTPS), and Inter-Process Communications (IPC), which provides remote access to the server
resources. All of the administration tools included with Application Server use these JMX facilities to
accomplish their functions.

In a stand-alone Application Server installation, servers exist and are administered individually. An
administrative client connects directly to the Application Server in this environment.

In a WebSphere Application Server, Network Deployment installation, a hierarchical topology groups
application servers within nodes and groups nodes within a cell. Administrative servers exist at the node
level (node agents) and at the cell level (the deployment manager), and act as aggregation points for the
administrative services in the subordinate servers.

MBeans in all servers on a node are visible through that node agent, and MBeans in all nodes are visible
through the deployment manager. Therefore, by connecting to the deployment manager, you can invoke

operations, can get and set attributes, and can receive notifications for any MBean in the cell. Application
Server provides an AdminService class that reflects the standard JMX MBeanServer interface, and wraps
the MBeanServer interface so that it takes part in implementing this distributed management functionality.

62 Administering applications and their environment

Cell

Deployment Manager

Node agent :

Server A Server B Server C \ Server D

Mode A Mode B

Creating a custom Java administrative client program using
WebSphere Application Server administrative Java APIs

This section describes how to develop a Java program for accessing the WebSphere Application Server
administrative system by using the product administrative application programming interfaces (APIs).

Before you begin

This task assumes a basic familiarity with Java Management Extensions (JMX) APl programming. For
information on the Java APls, view the application programming interfaces documentation.

About this task

When you develop and run administrative clients that use various JMX connectors and that have security
enabled, use the following guidelines. When you follow these guidelines, you guarantee the behavior
among different implementations of JMX connectors. Any programming model that strays from these
guidelines is unsupported.

1. Create and use a single administrative client before you create and use another administrative client.

2. Create and use an administrative client on the same thread.

3. Use one of the following ways to specify a user ID and password to create a new administrative client:
» Specify a default user ID and password in the property file.

» Specify a user ID and password other than the default. Once you create an administrative client with
a nondefault user ID and password, specify the nondefault user ID and password when you create
subsequent administrative clients.

Chapter 3. Using the administrative clients 63

Procedure

1.
2.

[Develop an administrative client program|

If your administrative client uses Simple Object Access Protocol (SOAP) as its Connector, you must
configure Java Secure Socket Extension (JSSE) as your transport layer. The product uses supports
Secure Sockets Layer (SSL) and Transport Layer Security (TLS) with the Java Secure Sockets
Extension (JSSE) and System SSL packages. Create digital certificates for the user ID used to run
your administrative client. If you want to use System Authorization Facility (SAF) to create digital
certificates and store them in a SAF keyring, refer to Defining SSL Security for Client Outbound
Requests. (You can save the name of the keyring you create for use in the next step.)

Update the soap.client.props file in the profile root/properties directory being used by your
administrative client with the name of the SAF keyring. Refer to the second step in Using System
Authorization Facility keyrings with Java Secure Sockets Extension for directions on updating the
soap.client.props file.

Build the administrative client program.

Compile it with the javac command and provide the location of the necessary JAR files in the classpath
argument.

For example, if your installation directory is /DeploymentManager a typical command would look like the
following example:

javac -extdirs "$JAVA_HOME/1ib/ext;
/DeploymentManager/classes;/DeploymentManager/1ib;
/DeploymentManager/Tib/ext" MyAdminClient.java

(The previous command is split on multiple lines for publication.)
Run the administrative client program.

Run the administrative client program by setting up the run-time environment so that the program can
find all of the prerequisites. Many of the batch or script files in the bin directory under the installation
root perform a similar function. The following is an example of a batch file that runs an administrative
client program named MyAdminClient follows:

Qecho off

binDir="dirname "$0""
. "$binDir/setupCmdLine.sh"

"$JAVA _HOME/bin/java" "$CLIENTSOAP" "-Dwas.install.root=$WAS HOME"
"-Dwas.repository.root=$CONFIG_ROOT"

-Dcom. ibm.CORBA.BootstrapHost=$COMPUTERNAME
"-Djava.ext.dirs=$JAVA_HOME/1ib/ext;$WAS_HOME/classes;
$WAS_HOME/1ib;$WAS_HOME/1ib/ext" MyAdminClient $@

(The contents of the previous batch file is split on multiple lines for publication.)

Developing an administrative client program
This topic describes how to develop an administrative client program that utilizes WebSphere Application
Server administrative application programming interfaces (APIs) and Java Management Extensions (JMX).

About this task

Product administrative APIs provide control of the operational aspects of your distributed system as well as
the ability to update your configuration. For information about the AdminClient interface, view the
application programming interfaces documentation.

This topic also demonstrates examples of MBean operations. For information on MBean programming, see
MBean Java AP| documentation.

Procedure

1.

Create an AdminClient instance.

64 Administering applications and their environment

An administrative client program needs to invoke methods on the AdminService object that is running
in the deployment manager or the application server in the base installation. The AdminClient class
provides a proxy to the remote AdminService object through one of the supported Java Management
Extensions (JMX) connectors.

* The following example shows how to create an AdminClient instance for the Simple Object Access
Protocol (SOAP) connector:

P

roperties connectProps = new Properties();

connectProps.setProperty(
AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);

connectProps.setProperty (AdminClient.CONNECTOR_HOST, "localhost");
connectProps.setProperty(AdminClient.CONNECTOR_PORT, "8879");
connectProps.setProperty(AdminClient.USERNAME, "test2");
connectProps.setProperty(AdminClient.PASSWORD, "user24test");
AdminClient adminClient = null;

try

{

adminClient = AdminClientFactory.createAdminClient(connectProps);

catch (ConnectorException e)

{
}

a.

System.out.printIn("Exception creating admin client: " + e);

Set up a Properties object.

The example sets up a Properties object with the properties that are required to get to your
server. In this case, you use the SOAP connector to reach the server; for the connector type,
use the value: AdminClient. CONNECTOR_TYPE_SOAP.

Set the port number on which the server SOAP connector is listening.

In a single server installation, the default port number for the application server SOAP connector
is 8880. In a WebSphere Application Server, Network Deployment installation, the default port
number for the deployment manager SOAP connector is 8879.

After the connection properties are set, use the AdminClientFactory class and the Properties
object to create an AdminClient object that is connected to your chosen server.

Depending on factors such as your desired protocol and security environment, you might need to
set other properties. For example, if you enable security for your application client program,
include the javax.net.ssl.” properties. For more detailed information about the AdminClient
interface, the javax.net.ssl.* properties, and additional creation examples, refer to the
AdminClient interface in the application programming interfaces documentation.

» The following example shows how to create an AdminClient instance for the Remote Method
Invocation (RMI) connector. Some commands are split on multiple lines for printing purposes.

Properties connectProps

new Properties();

connectProps.setProperty(AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_RMI);
connectProps.setProperty(AdminClient.CONNECTOR HOST, "localhost");
connectProps.setProperty(AdminCl1ient.CONNECTOR_PORT, "2809");
connectProps.setProperty(AdminClient.USERNAME, "test2");
connectProps.setProperty(AdminClient.PASSWORD, "user24test");
System.setProperty("com.ibm.CORBA.ConfigURL",

"file:C:/AA/cf010839.26/profiles/AppSrv02/properties/sas.client.props");

System.setProperty("com.ibm.SSL.ConfigURL",

"file:C:/AA/cf010839.26/profiles/AppSrv02/properties/ssl.client.props");

AdminClient adminClient = null;
try

{
}

adminClient = AdminClientFactory.createAdminClient(connectProps);

catch (ConnectorException e)

{
}

System.out.printIn("Exception creating admin client: " + e);

Chapter 3. Using the administrative clients 65

2.

Note: When you use the createAdminClient method within application code that runs on an
application server, such as within servlets and JavaServer Pages (JSP) files, you must set
the CACHE_DISABLED property to true. For example:

connectProps.setProperty(AdminClient.CACHE_DISABLED, "true");
a. Set up a Properties object.

The example sets up a Properties object with the properties that are required to get to your
server. In this case, you use the Remote Method Invocation connector to reach the server; for
the connector type, use the value: AdminClient. CONNECTOR_TYPE_RMI.

b. Set the port number on which the server RMI connector is listening.

In a single server installation, the default port number for the application server RMI connector is
2809. In a WebSphere Application Server, Network Deployment installation, the default port
number for the deployment manager RMI connector is 9809.

c. After the connection properties are set, use the AdminClientFactory class and the Properties
object to create an AdminClient object that is connected to your chosen server.

Depending on factors such as your desired protocol and security environment, you might need to
set other properties. For example, if you enable security for your application client program, you
need to set a system property to point to the ssl.client.props file and the sas.client.props file. If
you run on a local machine you can point to the actual location. If you run on a remote machine,
you can copy these properties files from the server machine and put them anywhere you want,
specifying the path to where you put the files.

You can specify a user name and password inside the sas.client.props file, When you do,
specify com.ibm.CORBA.ToginSource=properties. If you want to set the user name and password
inside your client program, specify com.ibm.CORBA.ToginSource=none in the sas.client.props file.

Find an MBean.

When you obtain an AdminClient instance, you can use it to access managed resources in the
administration servers and application servers. Each managed resource registers an MBean with the
AdminService through which you can access the resource. The MBean is represented by an
ObjectName instance that identifies the MBean. An ObjectName instance consists of a domain name
followed by an unordered set of one or more key properties. The syntax for the domain name follows:

[domainName] : property=value[,property=value]*

For WebSphere Application Server, the domain name is WebSphere and the key properties defined for
administration are as follows:

Table 5. Key property descriptions. Key properties include types, name, cell, node, and process.

type The type of MBean. For example: Server, TraceService, Java virtual machine (JVM).
name The name identifier for the individual instance of the MBean.

cell The name of the cell that the MBean is running.

node The name of the node that the MBean is running.

process The name of the process that the MBean is running.

66

Some MBeans in WebSphere Application Server use additional key properties. An MBean without key
properties can be registered with the MBean server in a WebSphere Application Server process.
However, such an MBean cannot participate in the distributed enhancements that the product adds, for
example, request routing, distributed event notification, and so on.

If you know the complete set of key properties for an ObjectName instance, you can use it to find the
MBean it identifies. However, finding MBeans without having to know all of their key properties is
usually more practical and convenient. Use the wildcard character asterisk (*) for any key properties
that you do not need to match. The following table provides some examples of object names with
wildcard key properties that match single or multiple MBeans.

Administering applications and their environment

Table 6. Examples object names with wildcard key properties. Include asterisks (*) to specify wildcard key
properties.

type=Server, All MBeans of type Server

:node=Node1,type=Server, All MBeans of type Server on Node1
:type=JVM,process=server1,node=Node1, The JVM MBean in the server named server1 node Node1
:process=serveri, All MBeans in all servers named server1
*:process=serveri,node=Node1,” All MBeans in the server named server1 on Node1

You can locate an MBean by querying for it with object names that match key properties. The following
example shows how to find the MBean for the node agent of node, MyNode:
String nodeName = "MyNode";
String query = "WebSphere:type=NodeAgent,node=" + nodeName + ",*";
ObjectName queryName = new ObjectName(query);
ObjectName nodeAgent = null;
Set s = adminClient.queryNames (queryName, null);
if (!s.isEmpty())
nodeAgent = (ObjectName)s.iterator().next();
else
System.out.printin("Node agent MBean was not found");
a. Build an ObjectName instance with a query string that specifies the key properties of type and
node.

By using a wildcard for the remaining key properties, this pattern matches the object names for all
MBeans of the type NodeAgent on the node MyNode. Because only one node agent per node
exists, this information is sufficient to identify the MBean that you want.

b. Give this ObjectName instance to the queryNames method of the AdminClient interface.

The AdminClient interface performs the remote call to the AdminService interface to obtain the set
of MBean object names that match the query. The null second parameter to this method is a query
expression (QueryExp) object that you can use as an additional query over the MBeans that match
the ObjectName pattern in the first parameter.

c. Use the set iterator to get the first and, in this case, only element.
The element is the MBean ObjectName instance of the node agent.

3. Use the MBean.

What a particular MBean can do depends on the management interface of that MBean. An MBean can

declare:

» Attributes that you can obtain or set

» Operations that you can invoke

* Notifications for which you can register listeners

For the MBeans provided by WebSphere Application Server, you can find information about the

interfaces they support in the MBean APl documentation. The following example invokes one of the

operations available on the NodeAgent MBean that you located previously. The following example
starts the MyServer application server:

String opName = "TaunchProcess";

String signature[] = { "java.lang.String" };
String params[] = { "MyServer" };

try

adminClient.invoke(nodeAgent, opName, params, signature);
}

catch (Exception e)

System.out.printin("Exception invoking launchProcess: " + e);

Chapter 3. Using the administrative clients 67

The AdminClient.invoke method is a generic means of invoking any operation on any MBean. The
parameters are:

* The object name of the target MBean, nodeAgent

* The name of the operation, opName

* An object array that contains the operation parameters, params
» A string array that contains the operation signature, signature

The launchProcess operation in the example has a single parameter which is a string that identifies the
server to start.

The invoke method returns an object instance, which the calling code can use to cast to the correct
return type for the invoked operation. The launchProcess operation is declared void so that you can
ignore the return value in this example.

4. Register for events.

In addition to managing resources, the JMX API also supports application monitoring for specific
administrative events. Certain events produce notifications, for example, when a server starts.
Administrative applications can register as listeners for these notifications. The WebSphere Application
Server provides a full implementation of the JMX notification model, and provides additional function so
you can receive notifications in a distributed environment. For a complete list of the notifications
emitted from product MBeans, refer to the com.ibm.websphere.management.NotificationConstants
class in the MBean API documentation.

The following example shows how an object can register for event notifications that are emitted from
an MBean using the ObjectName node agent:

adminClient.addNotificationListener(nodeAgent, this, null, null);

In this example, the first parameter is the ObjectName for the node agent MBean. The second
parameter identifies the listener object, which must implement the NotificationListener interface. In this
case, the calling object is the listener. The third parameter is a filter that you can use to indicate which
notifications you want to receive. When you leave this value as null, you receive all notifications from
this MBean. The final parameter is a handback object that you can use to set the JMX API to return to
you when it emits a notification.

If your MBean is located on another server in the cell, you can receive its notifications even though
your administrative client program might be connected to the deployment manager server. All
notifications flow to the upstream server. For example, a notification from an application server first
flows to the local node agent and then to the deployment manager.

Another enhanced feature that Application Server provides is the ability to register as a notification
listener of multiple MBeans with one call. This registration is done through the
addNotificationListenerExtended method of the AdminClient interface, an extension of the standard
JMX addNotificationListener method. This extension method even lets you register for MBeans that are
not currently active. This registration is important in situations where you want to monitor events from
resources that can be stopped and restarted during the lifetime of your administrative client program.

5. Handle the events.

Objects receive JMX event notifications through the handleNotification method, which is defined by the
NotificationListener interface and which any event receiver must implement. The following example is
an implementation of the handleNotification method that reports the notifications that it receives:

public void handleNotification(Notification n, Object handback)

{ System.out. pr-i ntln ("***”) 5
System.out.printin("+ Notification received at " + new Date().toString());
System.out.printin("* type " + ntfyObj.getType());
System.out.printin("+ message " + ntfyObj.getMessage());
System.out.printin("* source " + ntfyObj.getSource());
System.out.printin(

"x seqNum = " + Long.toString(ntfyObj.getSequenceNumber()));

68 Administering applications and their environment

}

System.out.printIn("+ timeStamp = " + new Date(ntfyObj.getTimeStamp()));
System.out.printIn("* userData = " + ntfyObj.getUserData());

System.out.pri ntl n("-k****~k~k**") ;

Results

The administrative client can handle event notifications that are emitted from an MBean.

Note: If a client program registers a notification listener through an RMI or JSR160RMI connector and the
ORB thread does not stop running, and thus prevents the Java virtual machine from exiting, add a

System.exit() statement to the client program. The ORB starts a thread to handle notification
propagation to the client. This thread does not automatically exit with the client main thread unless
the main thread has a System.exit() statement. Place a System.exit() statement in a location in
the client program that enables the ORB thread and main thread to stop processing. For example,

place the System.exit() statement in a catch or finally clause of the client program main try

block.

Example: Administrative client program

Copy the contents to a file named AdminClientExample.java. After changing the node name and server
name to the appropriate values for your configuration, you can compile and run it using the instructions

from [Creating a custom Java administrative client program using WebSphere Application Server|

ladministrative Java APIs|

import
import
import

import
import
import
import
import

import
import
import

public
{

java.util.Date;
java.util.Properties;
java.util.Set;

javax.management.InstanceNotFoundException;
javax.management.MalformedObjectNameException;
javax.management.Notification;
javax.management.NotificationListener;
javax.management.ObjectName;

com.ibm.websphere.management.AdminClient;
com.ibm.websphere.management.AdminClientFactory;
com.ibm.websphere.management.exception.ConnectorException;

class AdminClientExample implements NotificationListener

private AdminClient adminClient;
private ObjectName nodeAgent;
private long ntfyCount = 0;

public static void main(String[] args)

{

AdminClientExample ace = new AdminClientExample();

// Create an AdminClient
ace.createAdminClient();

// Find a NodeAgent MBean
ace.getNodeAgentMBean("ellington");

// Invoke TaunchProcess
ace.invokeLaunchProcess ("serverl");

// Register for NodeAgent events
ace.registerNotificationListener();

// Run until interrupted
ace.countNotifications();

Chapter 3. Using the administrative clients

69

}

private void createAdminClient()

{
// Set up a Properties object for the JMX connector attributes
Properties connectProps = new Properties();
connectProps.setProperty(
AdminClient.CONNECTOR TYPE, AdminClient.CONNECTOR_TYPE_SOAP);
connectProps.setProperty (AdminClient.CONNECTOR_HOST, "localhost");
connectProps.setProperty(AdminClient.CONNECTOR_PORT, "8879");

// Get an AdminClient based on the connector properties

try
{
adminClient = AdminClientFactory.createAdminClient(connectProps);
1
catch (ConnectorException e)
{
System.out.printin("Exception creating admin client: " + e);
System.exit(-1);
1

System.out.printin("Connected to DeploymentManager");

private void getNodeAgentMBean(String nodeName)
{
// Query for the ObjectName of the NodeAgent MBean on the given node
try
{
String query = "WebSphere:type=NodeAgent,node=" + nodeName + ",*";
ObjectName queryName = new ObjectName(query);
Set s = adminClient.queryNames (queryName, null);
if (!'s.isEmpty())
nodeAgent = (ObjectName)s.iterator().next();
else
{
System.out.printin("Node agent MBean was not found");
System.exit(-1);
}

catch (MalformedObjectNameException e)
{
System.out.printin(e);
System.exit(-1);

catch (ConnectorException e)
{
System.out.printin(e);
System.exit(-1);
}

System.out.printin("Found NodeAgent MBean for node " + nodeName);

}

private void invokeLaunchProcess(String serverName)
{
// Use the TaunchProcess operation on the NodeAgent MBean to start
// the given server
String opName = "TaunchProcess";
String signature[] = { "java.lang.String" };
String params[] = { serverName };
boolean launched = false;
try
{

Boolean b = (Boolean)adminClient.invoke(

70 Administering applications and their environment

nodeAgent, opName, params, signature);
launched = b.booleanValue();
if (Taunched)
System.out.printin(serverName + " was launched");
else
System.out.printin(serverName + " was not Taunched");

}

catch (Exception e)

System.out.printIn("Exception invoking TaunchProcess: " + e);

}

private void registerNotificationListener()
{
// Register this object as a listener for notifications from the
// NodeAgent MBean. Don't use a filter and don't use a handback
// object.
try
{
adminClient.addNotificationListener(nodeAgent, this, null, null);
System.out.printin("Registered for event notifications");
}
catch (InstanceNotFoundException e)
{
System.out.printin(e);
e.printStackTrace();
}
catch (ConnectorException e)
{
System.out.printin(e);
e.printStackTrace();

}

public void handleNotification(Notification ntfyObj, Object handback)

{
// Each notification that the NodeAgent MBean generates will result in
// this method being called
ntfyCount++;

System,out,print]n("***");
System.out.printIn("+ Notification received at " + new Date().toString());

System.out.printIn("+ type = " + ntfyObj.getType());
System.out.printIn("+ message = " + ntfyObj.getMessage());
System.out.printIn("* source = " + ntfyObj.getSource());
System.out.printin(

"% seqNum = " + Long.toString(ntfyObj.getSequenceNumber()));
System.out.printIn("* timeStamp = " + new Date(ntfyObj.getTimeStamp()));
System.out.printin("* userData = " + ntfyObj.getUserData());

System.out,print]n("***");

}

private void countNotifications()

{
// Run until killed
try

while (true)

Thread.currentThread().s1eep(60000);
System.out.printin(ntfyCount + " notification have been received");

}
}
catch (InterruptedException e)

Chapter 3. Using the administrative clients

71

}

Example: Administrative client program:

This example is a complete administrative client program.

Copy the contents to a file named AdminClientExample.java. After changing the node name and server
name to the appropriate values for your configuration, you can compile and run it using the instructions
from [Creating a custom Java administrative client program using WebSphere Application Served

ladministrative Java APIs|

import
import
import

import
import
import
import
import

import
import
import

pubTic

{

java.util.Date;
java.util.Properties;
java.util.Set;

javax.management.InstanceNotFoundException;
javax.management.MalformedObjectNameException;
javax.management.Notification;
javax.management.NotificationListener;
javax.management.ObjectName;

com. ibm.websphere.management.AdminClient;
com.ibm.websphere.management.AdminClientFactory;
com. ibm.websphere.management.exception.ConnectorException;

class AdminClientExample implements NotificationListener

private AdminClient adminClient;
private ObjectName nodeAgent;
private long ntfyCount = 0;

public static void main(String[] args)

{

}

AdminClientExample ace = new AdminClientExample();

// Create an AdminClient
ace.createAdminClient();

// Find a NodeAgent MBean
ace.getNodeAgentMBean("ellington");

// Invoke TaunchProcess
ace.invokeLaunchProcess("serverl");

// Register for NodeAgent events
ace.registerNotificationListener();

// Run until interrupted
ace.countNotifications();

private void createAdminClient()

{

// Set up a Properties object for the JMX connector attributes
Properties connectProps = new Properties();
connectProps.setProperty(

AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);
connectProps.setProperty (AdminClient.CONNECTOR_HOST, "localhost");
connectProps.setProperty(AdminClient.CONNECTOR_PORT, "8879");

// Get an AdminClient based on the connector properties

72 Administering applications and their environment

try
{

}

catch (ConnectorException e)

{

adminClient = AdminClientFactory.createAdminClient(connectProps);

System.out.printin("Exception creating admin client: " + e);
System.exit(-1);
}

System.out.printin("Connected to DeploymentManager");

private void getNodeAgentMBean(String nodeName)
{
// Query for the ObjectName of the NodeAgent MBean on the given node
try
{
String query = "WebSphere:type=NodeAgent,node=" + nodeName + ",*";
ObjectName queryName = new ObjectName(query);
Set s = adminClient.queryNames (queryName, null);
if (!s.isEmpty())
nodeAgent = (ObjectName)s.iterator().next();
else
{
System.out.printin("Node agent MBean was not found");
System.exit(-1);
}
}
catch (MalformedObjectNameException e)
{
System.out.printin(e);
System.exit(-1);
}
catch (ConnectorException e)
{
System.out.printin(e);
System.exit(-1);
}

System.out.printin("Found NodeAgent MBean for node " + nodeName);

}

private void invokelLaunchProcess(String serverName)
{
// Use the launchProcess operation on the NodeAgent MBean to start
// the given server
String opName = "launchProcess";
String signature[] = { "java.lang.String" };
String params[] = { serverName };
boolean launched = false;
try
{

Boolean b = (Boolean)adminClient.invoke(

nodeAgent, opName, params, signature);
Taunched = b.booleanValue();
if (launched)
System.out.printIin(serverName + " was launched");
else
System.out.printin(serverName + " was not Taunched");

}

catch (Exception e)
{

System.out.printin("Exception invoking TaunchProcess: " + e);

Chapter 3. Using the administrative clients

73

}

private void registerNotificationListener()

{
// Register this object as a listener for notifications from the
// NodeAgent MBean. Don't use a filter and don't use a handback
// object.
try
{

adminClient.addNotificationListener(nodeAgent, this, null, null);
System.out.printIn("Registered for event notifications");

catch (InstanceNotFoundException e)
{
System.out.printin(e);

catch (ConnectorException e)

{
}

System.out.printin(e);
}

public void handleNotification(Notification ntfyObj, Object handback)

{
// Each notification that the NodeAgent MBean generates will result in
// this method being called
ntfyCount++;
System,out,print]n("***");
System.out.printin("+ Notification received at " + new Date().toString());
System.out.printin("+ type = " + ntfyObj.getType());
System.out.printin("+ message = " + ntfyObj.getMessage());
System.out.printin("* source " + ntfyObj.getSource());
System.out.printin(

"% seqNum = " + Long.toString(ntfyObj.getSequenceNumber()));
System.out.printIn("+ timeStamp = " + new Date(ntfyObj.getTimeStamp()));
System.out.printin("* userData = " + ntfyObj.getUserData());

System.out,print]n("***");

}

private void countNotifications()

{
// Run until killed
try

while (true)

{
Thread.currentThread().sleep(60000);
System.out.printIn(ntfyCount + " notification have been received");
}
1
catch (InterruptedException e)

{
}

74 Administering applications and their environment

Creating a Java Management Extensions client program using the
Java Management Extensions Remote application programming
interface

This topic describes how to develop and build a Java Management Extensions (JMX) client program that
is compliant with JMX Remote application programming interface (JSR 160). After you have a working
JMX client program, you can use it to manage WebSphere Application Server or non-WebSphere
Application Server systems.

Before you begin
This task assumes a basic familiarity with JSR 160 and JMX application programming interface (API)

programming. For information on JSR 160, see|http://www.jcp.org/en/jsr/detail?id:160 For information on
the Java APIs, view the application programming interfaces documentation.

About this task

When you develop and run JMX clients that use various JMX connectors and that have security enabled,
use the following guidelines. When you follow these guidelines, you guarantee the behavior among
different implementations of JMX connectors. Any programming model that strays from these guidelines is
unsupported.

1. Create and use a single JMX client before you create and use another JMX client.
2. Create and use a JMX client on the same thread.

3. Use one of the following ways to specify a user ID and password to create a new JMX client:
» Specify a default user ID and password in the property file.
» Specify a user ID and password other than the default. After you create a JMX client with a
nondefault user ID and password, specify the nondefault user ID and password when you create
subsequent JMX clients.

Procedure
1. [Develop a JMX client program|
2. Build the JMX remote client program.

Compile the program with the javac command and provide the location of the
ibm.admin.thinclient.jar file in the classpath argument.

For example, if your ibm.admin.thinclient.jar file is in the /opt/resources/
ibm.admin.thinclient.jar path, and you want to compile the JMXRemoteClientApp.java file in the
current directory, use the following settings and commands:
CLASSPATH=/opt/resources/ibm.ws.admin.thinclient.jar:${CLASSPATH}

export CLASSPATH
${JAVA HOME}/bin/javac JMXRemoteClientApp.java

3. Run the JMX client program.

Run the JMX client program by setting up the runtime environment so that the program can find all of
the prerequisites. Many of the batch or script files in the bin directory under the installation root
perform a similar function. The following example is a batch file that runs the JMXRemoteClientApp
JMX client program:

#1/bin/sh

CONNECTORPROPS=-Dcom. ibm.CORBA.configURL=<location of sas.client.props>

JAVA_HOME=<Tocation of Java>
TAC_CLASSPATH=<location of ibm.admin.thinclient.jar>

"${JAVA HOME}/bin/java" \
-Djava.ext.dirs="${JAVA HOME}/jre/1ib/ext" \
-classpath "${TAC_CLASSPATH}" ${CONNECTORPROPS} JMXRemoteClientApp $@

(The contents of the previous batch file are split on multiple lines for publication.)

Chapter 3. Using the administrative clients 79

http://www.jcp.org/en/jsr/detail?id=160

Results
You have developed, built, and run a JMX client program that is JSR 160 compliant.

Developing a Java Management Extensions client program using Java
Management Extensions Remote application programming interface

This topic describes how to develop a Java Management Extensions (JMX) connector specification and
JMX Remote application programming interface (API) (JSR 160). The program can communicate by
Remote Method Invocation over Internet Inter-ORB Protocol (RMI-IIOP)

Before you begin

This topic assumes a basic understanding of JSR 160, JMX APIs, and managed beans (MBeans). For
more information on JSR 160, see the JSR 160: Java Management Extensions (JMX) Remote API at
http://www.jcp.org/en/jsr/detail?id=160. For more information on the JMX APIs and on MBeans, view the
application programming interfaces documentation.

About this task

You can administer your WebSphere Application Server environment through the administrative console,
the wsadmin utility, or Java Management Extensions (JMX) programming. Complete this task to develop a
JMX remote client program using the JMX remote API so that you can administer your environment
through JMX programming.

Procedure
1. Specify the JMX connector address for the server through the JMXServiceURL class.
The value of the JMX service URL is:

service:jmx:rmi://" + host + ":" + port + "/jndi/JIMXConnector"

For example, if the target server host is sales.xyz.com and the listening port is 1234, the JMX service
URL is:

service:jmx:rmi://sales.xyz.com:1234/jndi/JMXConnector
You can find the value for port in the Ports table of the console server settings page or in the
serverindex.xml file that includes the target server. If the URL does not specify a value for host, the
product uses the default value of Tocalhost. If the URL does not specify a value for port, the product
uses the default value of 2809.
When connecting to an administrative agent, add the administrative agent JMX connector port number
to the end of the URL. For example, if the administrative agent JMX connector host is sales.xyz.com
and the port is 6789, then use the following URL:
service:jmx:rmi://sales.xyz.com:6789/jndi/JIMXConnector6789

2. Set the Java Naming and Directory Interface (JNDI) provider URL property to use the administrative
name service for the product.
The JNDI provider URL property is javax.naming.Context. PROVIDER_URL. The administrative name
service is WsnAdminNameService.

3. If the client uses security, set the -Dcom.ibm.CORBA.ConfigURL and -Dcom.ibm.SSL.ConfigURL
system properties in the client Java virtual machine (JVM).

Without the -Dcom.ibm.CORBA.ConfigURL and -Dcom.ibm.SSL.ConfigURL system properties set to
valid system properties files, the client does not work properly when security is enabled. The
recommended way to run the JMX connector client is as an administrative thin client.

-Dcom. ibm.CORBA.ConfigURL=file:ppp client rootlproperties/sas.client.props
-Dcom.ibm.SSL.ConfigURL=file:japp client rootlproperties/ssl.client.props

76 Administering applications and their environment

Typically, you can copy the properties files from an installation profile directory, preferably from the

t

arget server profile directory.

4. Specify the user ID and password for the server, if security is enabled.

o

Establish the JMX connection.

6. Get the MBean server connection instance.

Results

You have established a connection to the deployment manager through an RMI connection and started the
application server through the node agent MBean.

Exa

Use

mple

the following thin client code example to create and use the JMX client.

Some statements are split on multiple lines for printing purposes.

import
import
import
import

import
import
import
import
import
import
import
public
pri
pri
pri
pri
pri
pri

pub
{

}

pri

java.io.File;
java.util.Date;
java.util.Set;
java.util.Hashtable;

javax.management.Notification;
javax.management.NotificationListener;
javax.management.ObjectName;
javax.management.MBeanServerConnection;
javax.management.remote.JMXConnector;
javax.management.remote.JMXConnectorFactory;
javax.management.remote.JMXServiceURL;

class JMXRemoteClientApp implements NotificationListener

vate MBeanServerConnection mbsc = null;
vate ObjectName nodeAgent;
vate ObjectName jvm;
vate Tong ntfyCount = 0;
vate static String userid = null;
vate static String pwd = null;
lic static void main(String[] args)
try {
JMXRemoteClientApp client = new JMXRemoteClientApp();
String host=args[0];
String port=args[1];
String nodeName =args[2];
userid =args[3];
pwd = args[4];
client.connect (host,port);

// Find a node agent MBean
client.getNodeAgentMBean (nodeName) ;

// Invoke the launch process.
client.invokeLaunchProcess("serverl");

// Register for node agent events
client.registerNotificationListener();

// Run until interrupted.
client.countNotifications();

} catch (Exception e) {
e.printStackTrace();
}

vate void connect(String host,String port) throws Exception
String jndiPath="/WsnAdminNameService#JMXConnector";

JMXServiceURL url =
new JMXServiceURL("service:jmx:iiop://"+host+"/jndi/corbaname:iiop:"+host+":"+port+jndiPath);

Hashtable h = new Hashtable();

//Specify the user ID and password for the server if security is enabled on server.

Chapter 3. Using the administrative clients

77

System.out.printin("Userid is " + userid);

System.out.printIn("Password is " + pwd);

if ((userid.length() != 0) && (pwd.length() != 0)) {
System.out.printin("adding userid and password to credentials...");
String[] credentials = new String[] {userid , pwd };
h.put("jmx.remote.credentials", credentials);

} else {
System.out.printin("No credentials provided.");

}

//Establish the JMX connection.

JMXConnector jmxc = JMXConnectorFactory.connect(url, h);
//Get the MBean server connection instance.

mbsc = jmxc.getMBeanServerConnection();

System.out.printin("Connected to DeploymentManager");

}
private void getNodeAgentMBean(String nodeName)
{
// Query for the object name of the node agent MBean on the given node
try {
String query = "WebSphere:type=NodeAgent,node=" + nodeName + ",*";
ObjectName queryName = new ObjectName(query);
Set s = mbsc.queryNames (queryName, null);
if (Is.isEmpty()) {
nodeAgent = (ObjectName)s.iterator().next();
System.out.printin("NodeAgent mbean found "+ nodeAgent.toString());
} else {
System.out.printin("Node agent MBean was not found");
System.exit(-1);
}
} catch (Exception e) {
System.out.printin(e);
System.exit(-1);
}
}

private void invokeLaunchProcess(String serverName)
{
// Use the launch process on the node agent MBean to start
// the given server.
String opName = "launchProcess";
String signature[] = { "java.lang.String"};
String params[] = { serverName};
boolean Taunched = false;
try {
Boolean b = (Boolean)mbsc.invoke(nodeAgent, opName, params, signature);
Taunched = b.booleanValue();
if (launched)
System.out.printin(serverName + " was launched");
else
System.out.printin(serverName + " was not launched");

} catch (Exception e) {
System.out.printIn("Exception invoking TaunchProcess: " + e);
}
}

private void registerNotificationListener()

// Register this object as a listener for notifications from the

// node agent MBean. Do not use a filter and do not use a handback

// object.

try {
mbsc.addNotificationListener(nodeAgent, this, null, null);
System.out.printin("Registered for event notifications");

} catch (Exception e) {
System.out.printin(e);

}

}

public void handleNotification(Notification ntfyObj, Object handback)

// Each notification that the node agent MBean generates results in
// a call to this method.

ntfyCount++;
System.out.printIn(" ;
System.out.printIn("* Notification received at " + new Date().toString());

System.out.printin("* type = " + ntfyObj.getType());
System.out.printin("* message = " + ntfyObj.getMessage());
System.out.printIn("* source = " + ntfyObj.getSource());

78 Administering applications and their environment

System.out.printin(

"+ seqNum = " + Long.toString(ntfyObj.getSequenceNumber()));
System.out.printIn(" timeStamp = " + new Date(ntfyObj.getTimeStamp()));
System.out.printin(" userData = " + ntfyObj.getUserData());

System.out.printin(" ",
}
private void countNotifications()

// Run until stopped.
try {
while (true) {
Thread.currentThread() .s1eep(60000);
System.out.printin(ntfyCount + " notification have been received");

} catch (InterruptedException e) {
}

}

Extending the WebSphere Application Server administrative system
with custom MBeans

You can extend the WebSphere Application Server administration system by supplying and registering new
Java Management Extensions (JMX) MBeans (see JMX 1.x Specification for details) in one of the
WebSphere processes.

About this task

JMX MBeans represent the management interface for a particular piece of logic. All of the managed
resources within the standard product infrastructure are represented as JMX MBeans. There are a variety
of ways in which you can create your own MBeans and register them with the JMX MBeanServer running
in any WebSphere process. For more information, see MBean Java application programming interface
(API) documentation.

Procedure
1. Create custom JMX MBeans.

You have some alternatives to select from, when creating MBeans to extend the product administrative
system. You can use any existing JMX MBean from another application. You can register any MBean
that you tested in a JMX MBean server outside of the WebSphere Application Server environment in a
product process, including standard MBeans, dynamic MBeans, open MBeans, and model MBeans.

In addition to any existing JMX MBeans, and ones that were written and tested outside of the product
environment, you can use the special distributed extensions provided by WebSphere and create a
WebSphere ExtensionMBean provider. This alternative provides better integration with all of the
distributed functions of the product administrative system. An ExtensionMBean provider implies that
you supply an XML file that contains an MBean Descriptor based on the DTD shipped with the
product. This descriptor tells the WebSphere system all of the attributes, operations, and notifications
that your MBean supports. With this information, the WebSphere system can route remote requests to
your MBean and register remote Listeners to receive your MBean event notifications.

All of the internal WebSphere MBeans follow the Model MBean pattern. Pure Java classes supply the
real logic for management functions, and the WebSphere MBeanFactory class reads the description of
these functions from the XML MBean Descriptor and creates an instance of a ModelMBean that
matches the descriptor. This ModelMBean instance is bound to your Java classes and registered with
the MBeanServer running in the same process as your classes. Your Java code now becomes callable
from any WebSphere Application Server administrative client through the ModelMBean created and
registered to represent it.

User MBeans that run on both the WebSphere Application Server distributed platforms and the
WebSphere Application Server for z/OS platform may require special coding to function properly in the
z/OS multiprocess model. On distributed platforms where each application server runs in a single Java
virtual machine (JVM), there is only one MBean server. The MBean server controls all MBeans that are
registered within that application server. On the z/OS platform, there is a control process and a

Chapter 3. Using the administrative clients 79

federation of servant processes, each with their own MBean server. The control process has its own
MBean proxy server to distribute requests among the servant processes. See the detailed discussion
of the JMX MBean multiprocess model request flow.

2. [Optionally define an explicit MBean security policy.|

If you do not define an MBean security policy, the product uses the|default security policy{
3. Register the new MBeans. There are various ways to register your MBean.

You can register your MBean with the WebSphere Application Server administrative service.

You can register your MBean with the MBeanServer in a WebSphere Application Server process. The

following list describes the available options in order of preference:

* Go through the MBeanFactory class. If you want the greatest possible integration with the
WebSphere Application Server system, then use the MBeanFactory class to manage the life cycle of
your MBean through the activateMBean and deactivateMBean methods of the MBeanFactory class.
Use these methods, by supplying a subclass of the RuntimeCollaborator abstract superclass and an
XML MBean descriptor file. Using this approach, you supply a pure Java class that implements the
management interface defined in the MBean descriptor. The MBeanFactory class creates the actual
ModelMBean and registers it with the product administrative system on your behalf.

This option is recommended for registering model MBeans.

* Use the JMXManageable and CustomService interface. You can make the process of integrating
with WebSphere administration even easier by implementing a CustomService interface that also
implements the JMXManageable interface. Using this approach, you can avoid supplying the
RuntimeCollaborator. When your CustomService interface is initialized, the WebSphere
MBeanFactory class reads your XML MBean descriptor file and creates, binds, and registers an
MBean to your CustomService interface automatically. After the shutdown method of your
CustomService is called, the product system automatically deactivates your MBean.

* Go through the AdminService interface. You can call the registerMBean() method on the
AdminService interface and the invocation is delegated to the underlying MBeanServer for the
process, after appropriate security checks. You can obtain a reference to the AdminService using
the getAdminService() method of the AdminServiceFactory class.

This option is recommended for registering standard, dynamic, and open MBeans. Implement the
UserCollaborator class to use the MBeans and to provide a consistent level of support for them
across distributed and z/OS platforms.

For the z/OS platform, an MBean registered through the registerMBean() method on the
AdminService interface is not visible from outside the server and can only be invoked from within
the servant process in which it was registered.

* Get MBeanServer instances directly. You can get a direct reference to the JMX MBeanServer
instance running in any product process, by calling the getMBeanServer() method of the
MBeanFactory class. You get a reference to the MBeanFactory class by calling the
getMBeanFactory() method of the AdminService interface.

When a custom MBean is registered directly with the MBean server, the MBean object name is
enhanced with the cell, node and process name keys by default. This registration allows the MBean
to participate in the distributed features of the administrative system. You can turn off the default
behavior by setting the com.ibm.websphere.mbeans.disableRouting custom property.

See the Installing your application serving environment PDF for more information on the
com.ibm.websphere.mbeans.disableRouting custom property.

Results

Regardless of the approach used to create and register your MBean, you must set up proper
|security permissions| for your new MBean code. The WebSphere AdminService and MBeanServer are
tightly protected using Java 2 security permissions and if you do not explicitly grant your code base
permissions, security exceptions are thrown when you attempt to invoke methods of these classes. If you
are supplying your MBean as part of your application, you can set the permissions in the was.policy file
that you supply as part of your application metadata. If you are using a CustomService interface or other

80 Administering applications and their environment

code that is not delivered as an application, you can edit the Tibrary.policy file in the node configuration,

or even the server.policy file in the properties directory for a specific installation.

Example: The SampleStateMBean MBean

MBeanDescriptor

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE MBean SYSTEM "MbeanDescriptor.dtd">

<MBean type="SampleStateMBean"
aggregationHandlerClass="com.ibm.ws390.sample.SampleStateAggregationHandler"
eventHandlerClass="com.ibm.ws390.sample.SampleStateEventHandler"
invocationHandlerClass="com.ibm.ws390.sample.SampleStateInvocationHandler"
stateObjectClass="com.ibm.ws390.sample.SampleState"
version="6.0"
platform="dynamicproxy"
description="Sample State MBean for the documentation example.">

<attribute description="The name of the MBean."
getMethod="getMBeanName" name="mbeanName" type="java.lang.String"
proxyInvokeType="unicall"/>
<attribute description="The state of the MBean." name="state"
getMethod="getState" setMethod="setState" type="java.lang.String"
proxyInvokeType="multicall" proxySetterInvokeType="multicall"/>
<operation
description="Initialize the State MBean."
impact="ACTION" name="initializeState" role="operation"
targetObjectType="objectReference" type="void" proxyInvokeType="multicall">
<signature>
<parameter description="The name of the MBean."
name="mbeanName" type="java.lang.String"/>
<parameter description="The initial state of the MBean."
name="mbeanName" type="java.lang.String"/>
</signature>
</operation>

<notification name="j2ee.state.starting" severity="6" log="false"
description="This sample state MBean is in starting state.">
<notificationType>j2ee.state.starting</notificationType>
</notification>
<notification name="j2ee.state.running" severity="6" log="false"
description="This sample state MBean is in running state.">
<notificationType>j2ee.state.running</notificationType>
</notification>
<notification name="j2ee.state.stopping" severity="6" log="false"
description="This sample state MBean is in stopping state.">
<notificationType>j2ee.state.stopping</notificationType>
</notification>
<notification name="j2ee.state.stopped" severity="6" log="false"
description="This sample state MBean is in stopped state.">
<notificationType>j2ee.state.stopped</notificationType>
</notification>
</MBean>

SampleState implementation

package com.ibm.ws390.sample;

import com.ibm.ejs.ras.Tr;

import com.ibm.ejs.ras.TraceComponent;

import java.io.Serializable;
import com.ibm.websphere.management.dynamicproxy.StateObject;

public class SampleState extends StateObject {

private static TraceComponent tc =
Tr.register(SampleState.class,"SampleState",null);

Chapter 3. Using the administrative clients

81

// Package protected STATE constants.

static final String STATE_STARTING = "j2ee.state.starting";
static final String STATE_RUNNING = "j2ee.state.running";
static final String STATE_STOPPING = "j2ee.state.stopping";
static final String STATE_STOPPED = "j2ee.state.stopped";

// Dynamicproxy State is initialized with STOPPED state.
private String state = STATE_STOPPED;

public SampleState() {
if (tc.isEntryEnabled()) Tr.entry(tc,"<init>");

// State is initialized during "state" initialization above,

// but can also be initialized here in the constructor as well.

/*

state = "WebSphere Application Server for z/0S ready for e-business";

*/

if (tc.isEntryEnabled()) Tr.exit(tc,"<init>");
1

public synchronized String getState() {
if (tc.isEntryEnabled()) Tr.entry(tc,"getState");
if (tc.isEntryEnabled()) Tr.exit(tc,"getState",state);
return state;

}

public synchronized void setState(String state) f{
if (tc.isEntryEnabled()) Tr.entry(tc,"setState",state);
this.state = state;
if (tc.isEntryEnabled()) Tr.exit(tc,"setState");

1

public synchronized String getStateObjectInfo()
return state;
1

}

SampleStateAggregationHandler implementation

package com.ibm.ws390.sample;

import com.ibm.websphere.management.dynamicproxy.AggregationHandler;
import com.ibm.websphere.management.dynamicproxy.StateObject;

import com.ibm.ejs.ras.Tr;
import com.ibm.ejs.ras.TraceComponent;

public class SampleStateAggregationHandler implements AggregationHandler {

private static TraceComponent tc =
Tr.register(SampleStateAggregationHandler.class,"SampleState",null);

[**

* Return an aggregated result from a multicall Mbean operation which

* compiles through all servant MBeans' results and returns a respective
* single return value for an invoked method.

*

* @param methodName MBean method name

* @param params MBean method parameters

* @param signatures MBean method signatures

* @param servantMBeanResults Result of each servant MBean instances

* invoked by the dynamicproxy multicast

* invocation.

* Note: this value can be "null" OR can be
* an array of "null"s in case return value

82 Administering applications and their environment

of the method is "void." Implementation
of this method MUST handle this case to
avoid a <code>NullPointerException</code>.
@param stateObject
MBean provider provided <code>StateObject</code> used by
dynamicproxy MBean in CR to manage its state. Note: this object
MAY BE null if "stateObjectClass" was not specified OR internal
error occurred during initialization of this dynamicproxy MBean.
ImpTmentation MUST properly handle "null" input.

B T R

* @return aggregated result as defined by MBean xml for specified
* MBean operation.
*/
public Object aggregateResults(String methodName,
Object[] params,
String[] signatures,
Object[] servantMBeanResults,
StateObject stateObject) {

if (tc.isEntryEnabled()) Tr.entry(tc,"aggregateResults",methodName);

// As you can see from the MBeanDescriptor of SampleStateMBean,
// it declares the following four methods:

// 1. String getMBeanName() [proxyInvokeType == unicall]
// 2. String getState() [proxyInvokeType == multicall]
// 3. void setState(String) [proxyInvokeType == multicall]
// 4. void initializeState() [proxyInvokeType == multicall]
//

// Looking at the above methods, only method that requires aggregation
// is #2 getState method which is a multicall MBean operation AND
// it returns a value that can be aggregated.
//
// In this example, we simply take each servants' getState MBean
// request result and concatenate them into one long String that
// displays each servants' state.
if (methodName.equals("getState")) {
StringBuffer stateBuf = new StringBuffer();

for (int i=0; i<servantMBeanResults.length; i++) {
stateBuf.append ("SERVANT #" + i + " state ==|" +
servantMBeanResults[i] + "[== ");
}
return stateBuf.toString();

}
// 1f we also had an example method which returns say an int,
// getNumberOfMBeans(), it can take the similar approach
// and to add each servants' getNumberOfMBeans() result together here.
/* example added for non-existent method: int getNumberOfMBeans()
else if (methodName.equals("getNumberOfMBeans")) {
int aggregatedResult = 0;

for (int i=0; i<servantMBeanResults.length; i++) {
aggregatedResult += (int) servantMBeanResults[i];
}

return aggregatedResult;
}
*/

return methodName + " is NOT handled by " + getClass().getName() + "!";

}

Best practices for standard, dynamic, and open MBeans
This topic discusses recommended guidelines for standard, dynamic, and open MBeans.

Chapter 3. Using the administrative clients

83

The underlying interface for the WebSphere Application Server administrative service is AdminService.
Remote access occurs through the AdminControl scripting object.

The product provides a special runtime collaborator that you use with standard, dynamic or open custom
MBeans to register the custom MBeans with the WebSphere Application Server administrative service. The
standard, dynamic, and open MBeans display in the administrative service as model MBeans. The
administrative service uses the capabilities available to MBeans that are registered with the administrative
service.

The MBean registration and capabilities are as follows:

Table 7. MBean registration and capabilities. Examine the registration and capabilities for an MBean type.

MBean type Registered with: Capabilities

Model, and optionally | WebSphere Application Local access is through the WebSphere Application Server
standard, dynamic, or | Server administrative administrative service or the MBean server. Remote access is
open service through the WebSphere Application Server administrative

service, and WebSphere Application Server security. Remote
access is also through z/OS system extensions.

Standard, dynamic, or | MBean server Local access is through the WebSphere Application Server
open administrative service or the MBean server on the distributed
platform. Local access is only through the MBean server.
Remote access is through the WebSphere Application Server
administrative service, the Java Management Extensions (JMX)
Remote application programming interface (API) (JSR 160)
client code, and WebSphere Application Server security.

Creating and registering standard, dynamic, and open custom MBeans
You can create standard, dynamic, and open custom MBeans and register them with the product
administrative service.

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming,
see MBean Java application programming interface (API) documentation.

Do not define new classes as parameters for your MBeans. The classes might not be available in all
processes. If you must define a new class, ensure that the class is available on all processes, including
the deployment manager, the node agents, and the application servers. If the class is not available for a
process, the ClassNotFoundException exception occurs for the new class when you attempt to access it.

About this task
Perform the following tasks to create and register a standard, dynamic, or open custom MBean.

Procedure
1. Create your particular MBean class or classes.
2. Write an MBean descriptor in the XML language for your MBean.

3. Register your MBean by inserting code that uses the WebSphere Application Server runtime
com.ibm.websphere.management.UserMBeanCollaborator collaborator class into your application code.

4. Package the class files for your MBean interface and implementation, the descriptor XML file, and your
application Java archive (JAR) file.

84 Administering applications and their environment

Results

After you successfully complete the steps, you have a standard, dynamic, or open custom MBean that is
registered and activated with the product administrative service.

Example

The following example shows how to create and register a standard MBean with the administrative
service:

SnoopMBean. java:

[**
* Use the SnoopMBean MBean, which has a standard mbean interface.
*/
public interface SnoopMBean {
public String getIdentification();
public void snoopy(String parml);
1

SnoopMBeanImpl.java:

[**
* SnoopMBeanImpl - SnoopMBean implementation
*/
public class SnoopMBeanImpl implements SnoopMBean {
public String getldentification() {
System.out.printIn(">>> getldentification() called...");
return "snoopy!";

}

public void snoopy(String parml) {
System.out.printIn(">>> snoopy(" + parml + ") called...");
1

}

Define the following MBean descriptor for your MBean in an .xml file. The getldentification method is set to
run with the unicall option and the snoopy method is set to use the multicall option. These options are
used only for z/OS platform applications. The WebSphere Application Server for z/OS options are not
applicable to the distributed platforms, but they do not need to be removed. The options are ignored on
the distributed platforms. . Some statements are split on multiple lines for printing purposes.

gotcha: If you are running in a multiple JVM environment you must include the type property in the
MBean descriptor.

SnoopMBean.xm1:

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE MBean SYSTEM "MbeanDescriptor.dtd">
<MBean type="SnoopMBean"

version="5.0"

platform="dynamicproxy"

description="Sample SnoopMBean to be initialized inside an EJB.">

<attribute name="identification" getMethod="getIdentification"
type="java.lang.String" proxyInvokeType="unicall"/>
<operation name="snoopy" role="operation" type="void" targetObjectType="objectReference"

impact="ACTION" proxyInvokeType="multicall">
<signature>

Chapter 3. Using the administrative clients 85

<parameter name="parml" description="test parameter" type="java.lang.String"/>
</signature>

</operation>

</MBean>

Assume that your MBean is used in an enterprise bean. Register your MBean in the enterprise bean
ejbCreate method and unregister it in the ejpRemove method.

//The method MBeanFactory.activateMBean() requires four parameters:

//String type: The type value that you put in this MBean's descriptor. For this example
//the string type is SnoopMBean.

//RuntimeCollaborator co: The UserMBeanCollaborator user MBean collaborator instance
//that you create

//String id: Unique name that you pick

//String descriptor: The full path to the MBean descriptor file

import com.ibm.websphere.management.UserMBeanCollaborator;
//Import other classes here.

static private ObjectName snoopyON = null;
static private Object TockObj = "this is a lock";

[**

* ejbCreate method: Register your Mbean.

*

/
public void ejbCreate() throws javax.ejb.CreateException {
synchronized (lockObj) {
System.out.printIn(">>> SnoopMBean activating for ——|“ + this + "|——");
if (snoopyON != null) {
return;

1

try {
System.out.printIn(">>> SnoopMBean activating...");

MBeanFactory mbfactory = AdminServiceFactory.getMBeanFactory();

RuntimeCollaborator snoop = new UserMBeanCollaborator(new SnoopMBeanImpl());

snoopyON = mbfactory.activateMBean("SnoopMBean", snoop, "snoopMBeanId",

"SnoopMBean.xml") ;

System.out.printIn(">>> SnoopMBean activation COMPLETED! --|" + snoopyON + "|--");
} catch (Exception e) {

System.out.printIn(">>> SnoopMBean activation FAILED:");

e.printStackTrace();

1
}
}
Jx
* ejbRemove method: Unregister your MBean.
*/

public void ejbRemove() {
synchronized (lockObj) {

System.out.printin(">>> SnoopMBean Deactivating for --|" + this + "|--");
if (snoopyON == null) {
return;
}
try {
| System.out.printin(">>> SnoopMBean Deactivating ==|" + snoopyON + "|== for --|"
+ this + "|--");

MBeanFactory mbfactory = AdminServiceFactory.getMBeanFactory();
mbfactory.deactivateMBean(snoopyON);
System.out.printin(">>> SnoopMBean Deactivation COMPLETED!");

86 Administering applications and their environment

} catch (Exception e) {
System.out.printin(">>> SnoopMBean Deactivation FAILED:");
e.printStackTrace();

}

What to do next

Compile the MBean Java files and package the resulting class files with the descriptor .xml file, into the
enterprise bean JAR file.

Setting Java 2 security permissions
You must configure Java 2 security permissions to use Java Management Extension and WebSphere
Application Server administrative methods.

Before you begin

When you enable Java 2 security, you must grant Java 2 security permissions to application-specific code
for Java Management Extensions (JMX) and WebSphere Application Server administrative privileges. With
these permissions, your application code can call WebSphere Application Server administrative methods
and JMX methods.

About this task

If you are using Java 2 security then you need to verify that your extensions and application server can
access the required resources. The following steps show how to configure access for JMX and the
application server administrative methods.

Procedure
» Use the following permission to invoke all the JMX class methods and interface methods:
permission javax.management.MBeanPermission "*", "x'";

Consult the application programming interfaces documentation for specific actions under the
MBeanPermission class.

» Use the following permission for WebSphere Application Server administrative application programming
interfaces (APls):

permission com.ibm.websphere.security.WebSphereRuntimePermission "AdminPermission";

Java Management Extensions MBean multiprocess model request flow for
WebSphere Application Server for zZ/0OS

Using the Java Management Extensions (JMX) dynamic proxy capability, applications that depend on JMX
operations can exhibit consistent behavior whether the server architecture uses a single process model or
a multiprocess model.

All the MBeans that the WebSphere Application Server runtime provides are capable of running under the
single process| model employed by WebSphere Application Server on distributed platforms, or the
multiprocess| model employed by WebSphere Application Server for z/OS. User MBean providers might
need to modify their MBeans so that they work on both the WebSphere Application Server distributed
platforms and the WebSphere Application Server for z/OS. For more information, view the application
programming interfaces documentation.

The simplified dynamic proxy model presented here discusses the two general request flows that exist in
the multiprocess model. Operation requests on an MBean can be initiated from one of two places:

» Within an application component running under the same servant process as the MBean.

Chapter 3. Using the administrative clients 87

» Outside the server through one of the JMX connectors (SOAP, Remote Method Invocation (RMI), HTTP,
and so on).

Requests that come from an application component generally follow this flow. The application component
sends its request to the servant components. The servant components redirect the request to the control
process where the dynamic proxy for the MBean runs. WebSphere Application Server automatically
generates the MBean dynamic proxy during runtime. If the request calls a method that the MBean provider
defined with a the dynamic proxy in the|contro| proces§| randomly dispatches the work, with
MVS workload management (WLM), to one|servant process] If the request calls a method that the MBean

provider defined with a|mu|tica|| optionl the dynamic proxy in the control process, in conjunction with WLM,
distributes the work to all the servant processes that have activated the MBean.

MBeans associated with application components are automatically registered with the dynamic proxy in the
control process as part of the MBean activation process when WLM starts the servant process. MBeans
that are activated in a single servant process, such as an MBean that is created and registered
dynamically by an application component, cannot participate in multicall operations. Refer to the topic
Extending the WebSphere Application Server administrative system with custom MBeans for information
on how to register an MBean.

Servant process 1
Application
COHTpanenis

Request _
redirection ., ~. |
Control process e Request
'
workload e
distrbution. Servant server
e componants
Caontrol server
companentis
2 icnbsiinin Servant server
distribution =~

components

Apphication

Servant process n components

Each servant process that completes the work optionally sends a response back to the control process. If
the MBean was defined with a unicall option, and the return type is anything but void, the control process
returns the response to the servant that made the request. The servant server components then return the
response to the application component. If the MBean was defined with a multicall option, the MBean inside
each servant process runs separately and finishes processing the request at different times. After all the
requests are processed, you might need a [result aggregation| and an [event aggregation| to properly return
a result to the application component.

88 Administering applications and their environment

Application

Servant process 1
components

Request Response

Control workload
process distribation Servant server

components

Servant

rasponsa
‘ o wark
Canirod servear
DOmpeianis

Reguest

Response Servant process n
to application

comparent

Apglicalion

Sorvant panents

FREpONSa

o work
Sarvant sarver

comporants

workload
distribution

Requests that come from a remote location outside the server generally follow this flow. The remote
location sends its request to the control process where the dynamic proxy for the MBean runs. WebSphere
Application Server automatically generates the MBean dynamic proxy during run time. The next part of the
request process behaves the same as a request that originates from an application component. If the
request calls a method that the MBean provider defined with a unicall option, the dynamic proxy in the
control process randomly dispatches the work, with MVS workload management (WLM), to one of the
servant process in the list of servant processes that have activated the MBean. If the request calls a
method that the MBean provider defined with a multicall option, the dynamic proxy in the control process,
in conjunction with WLM, distributes the work to all the servant process that have activated the MBean.

Chapter 3. Using the administrative clients 89

Servant process 1

Control process

workload
distribution

Servant sarver
components

Remote Control sarver

request

Garmpanants

Servant server

workload componenls
distribution

Application
companents

Servant process n

The flow of the response back to the remote location is similar to the response back to the application
component. Each servant process that completes the work optionally sends a response back to the control
process. If the MBean was defined with a unicall option, and the return type is anything but void, the
control process returns the response to the remote location. If the MBean was defined with a multicall
option, the MBean that runs inside each servant process runs separately and finishes processing the
request at different times. After all the requests are processed, you might need a|resu|t aggregation| and
an [event aggregation| to properly return a result to the remote location.

Servant process 1

Application
components

Contrel process

Warkload
distribution

Sensanl servar
componants

Servant
responss

Remaote

Control server
reguest

compenents

- Response
Servant

responsa

Workload
distribution

Senvant server
componemnts

Applicalion
camponents

Servant process n

Java Management Extensions dynamic proxy concepts:

a0 Administering applications and their environment

A Java Management Extensions (JMX) dynamic proxy coordinates MBean requests among multiprocess
servers. This section discusses the main terms associated with a JMX dynamic proxy.

Control process
Receives requests and distributes them to servant processes so that the application server can do
work for the requests.

Servant process
Receives work from the control process and carries out the work.

Unicall option versus the multicall option
Use the unicall option on the proxylnvocationType method when a request invokes an arbitrary servant
process or servant processes. Use the multicall option on the proxylnvocationType method when a
request goes to multiple servant processes and the servant processes return different results.

The following example shows an MBean descriptor that was developed for a single process model
(before) and modified for a multiprocess model (after).

Before

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE MBean SYSTEM "MbeanDescriptor.dtd">
<MBean type="SampleStateMBean"
version="6.0"
description="Sample State MBean for the documentation example.">

<attribute description="The name of the MBean."
getMethod="getMBeanName" name="mbeanName" type="java.lang.String"/>
<attribute description="The state of the MBean.'"name="state"
getMethod="getState" setMethod="setState" type="java.lang.String"/>
<operation
description="Initialize the State MBean."
impact="ACTION" name="initializeState" role="operation"
targetObjectType="objectReference" type="void">
<signature>
<parameter description="The name of the MBean."
name="mbeanName" type="java.lang.String"/>
<parameter description="The initial state of the MBean."
name="mbeanName" type="java.lang.String"/>
</signature>
</operation>
</MBean>

After

<?xml version="1.0" encoding="UTF-8"?7>
<IDOCTYPE MBean SYSTEM "MbeanDescriptor.dtd">
<MBean type="SampleStateMBean"
version="6.0"
platform="dynamicproxy"
description="Sample State MBean for the documentation example.">

<attribute description="The name of the MBean."
getMethod="getMBeanName" name="mbeanName" type="java.lang.String"/>
<attribute description="The state of the MBean.'"name="state"
getMethod="getState" setMethod="setState" type="java.lang.String"/>
proxyInvokeType="unicall" proxySetterInvokeType="multicall"/>
<operation
description="Initialize the State MBean."
impact="ACTION" name="initializeState" role="operation"
targetObjectType="objectReference" type="void" proxyInvokeType="multicall">
<signature>
<parameter description="The name of the MBean."
name="mbeanName" type="java.lang.String"/>
<parameter description="The initial state of the MBean."

Chapter 3. Using the administrative clients 91

name="mbeanName" type="java.lang.String"/>
</signature>
</operation>
</MBean>

Make the user MBean run in dynamic proxy mode by specifying dynamicproxy on the platform
attribute. If no platform attribute exists on the MBean descriptor, the user MBean deployed on
WebSphere Application Server for z/OS automatically uses the dynamic proxy mode.

Update the attribute XML tag or the operation XML tag, as shown in the After example, to specify the
unicall behavior or the multicall behavior in the multiprocess environment. If no proxylnvokeType
option or proxySetterlnvokeType option exists, the behavior defaults to one of the following values:

proxyInvokeType=unicall (for the getMethod)
proxyInvokeType=multicall (for the setMethod)

In the After example, the getMBeanName method and the getState method run with unicall behavior.
The setState method and the initializeState method run with multicall behavior.

Single process model
The single process application server has one server run time. The MBean generally acts on one
instance of each major run time component: one Enterprise JavaBeans (EJB) container, one web
container, one Java 2 Platform, Enterprise Edition (J2EE) connection manager, and so on. This model
assumes that each MBean invocation on the server runs in the same process and the same Java
Virtual Machine (JVM).

Multiprocess model
The multiprocess model asserts that a single server instance is a federation of Java virtual machines
(JVMs), that run in a separate operating process. The control process is responsible for such server
functions as communication endpoints, authorization, resource recovery, and workload management.
All other JVMs are worker JVMs, in which application requests run. These JVMs take direction from,
and interact only with the control process.

All inbound and outbound requests go through the control process. Client requests arrive at the control
process. The control process, with assistance from the MVS workload manager (WLM), dispatches the
work to the servant processes.

The number of servant processes is managed by WLM and varies based on demand. The demand is
measured against installation-specific performance goals, expressed as WLM policy. Each servant
process is identical and hosts the necessary application server components to enable the J2EE
application programming model. The servant processes rely on the control process for numerous
services, such as communication, security, and transaction control.

The multiprocess model imposes additional demands on the Java Management Extension (JMX)
infrastructure over the single process model. Administrative requests to a multiprocess server often
require coordination among the processes that comprise the application server. The JMX infrastructure

92 Administering applications and their environment

includes additional facilities to enable this coordination.
WebSphere Application Server for z/05

Servant process 1

[MNative componants]

e

Control process

Servant process 2

‘ Mative components

HTTPE IGF, alc.
Workload Manager
Rasource Recovary

l Mative companants]

R

WLM Queus

Servant process n

[Mative companents]

JZEE confainers
J2C conneclors
State object support for dynamic proxy MBean

com.ibm.websphere.management.dynamicproxy.StateObject class: The MBean provider extends
the StateObject abstract class. Specify the subclass of the StateObject class so that the JMX run time
can instantiate it before the dynamic proxy MBean completes its initialization. The JMX run time
attaches StateObject class to the dynamic proxy Invocation Handler interface to keep track of the
current state of the dynamic proxy before and after the MBean method runs. The JMX run time also
attaches the StateObject class to the Result Aggregation interface class as well as the Event Handler
interface class to support appropriate aggregation application.

JVM

Result aggregation handler support interface
com.ibm.websphere.management.dynamicproxy.AggregationHandler class: The result
aggregation handler support interface defines the method that an MBean provider uses to handle
result aggregation in a dynamic proxy-enabled WebSphere Application Server for z/OS MBean.
Specify the aggregationHandlerClass attribute on the MBeanDescriptor MBean XML tag. Implement
the interface for MBean methods that use the multicall proxylnvokeType option and that return a value.
The interface determines the method for which this aggregation is processed. It then properly
aggregates all servant MBean results that the servant processes pass back to the control process, and
then compiles a single result to return to the caller.

Event aggregation handler support interface
com.ibm.websphere.management.dynamicproxy.EventHandler interface class: The event
aggregation handler support interface defines the method that an MBean provider uses to handle
event aggregation in a dynamic proxy-enabled WebSphere Application Server for z/OS MBean.
Specify the eventHandlerClass attribute on the MBeanDescriptor MBean XML tag. The interface
handles all incoming servant MBean events and aggregates them to filter out duplicate events from
multiple servant MBeans. It sends one event back to the listener of the dynamic proxy MBean. The
interface adjusts the current dynamic proxy MBean state according to the MBean provider
requirements.

Invocation handler support interface
com.ibm.websphere.management.dynamicproxy.lnvocationHandler class: The invocation handler
support interface defines the prelnvoke and postinvoke methods that a WebSphere Application Server
for z/OS dynamic proxy MBean implements when it requires state management information. The

Chapter 3. Using the administrative clients 93

MBean uses the information to coordinate with the servant MBeans in cases where the multicall
invocation type is required. Specify the invocationHandlerClass attribute on the MBeanDescriptor
MBean XML tag. Use the interface for dynamic proxy MBeans that require state management before
and after invoking a method that changes its state.

User MBean
The user MBean resides in the servant process and handles requests through its dynamically created
proxy MBean, which runs inside the control process. An MBean provider can package handlers with
the user MBean so that the provider hooks in his own specialized processing for the following
situations:

* Result aggregation

» Event aggregation

* Invocation handling

+ State management of objects

Example: The SampleStatelMBean MBean:

Use this example to guide you in developing user MBeans that work for the WebSphere Application Server
on both the distributed platforms and the z/OS platform. The example uses all the special handlers to
show its dynamic proxy MBean responsibilities and capabilities. The SampleStateMBean example keeps
track of its state and generates state change events when it invokes setter methods.

MBeanDescriptor

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE MBean SYSTEM "MbeanDescriptor.dtd">

<MBean type="SampleStateMBean"
aggregationHandlerClass="com.ibm.ws390.sample.SampleStateAggregationHandler"
eventHandlerClass="com.ibm.ws390.sample.SampleStateEventHandler"
invocationHandTerClass="com.ibm.ws390.sample.SampleStateInvocationHandler"
stateObjectClass="com.ibm.ws390.sample.SampleState"
version="6.0"
platform="dynamicproxy"
description="Sample State MBean for the documentation example.">

<attribute description="The name of the MBean."
getMethod="getMBeanName" name="mbeanName" type="java.lang.String"
proxyInvokeType="unicall"/>
<attribute description="The state of the MBean." name="state"
getMethod="getState" setMethod="setState" type="java.lang.String"
proxyInvokeType="multicall" proxySetterInvokeType="multicall"/>
<operation
description="Initialize the State MBean."
impact="ACTION" name="initializeState" role="operation"
targetObjectType="objectReference" type="void" proxyInvokeType="multicall">
<signature>
<parameter description="The name of the MBean."
name="mbeanName" type="java.lang.String"/>
<parameter description="The initial state of the MBean."
name="mbeanName" type="java.lang.String"/>
</signature>
</operation>

<notification name="j2ee.state.starting" severity="6" log="false"
description="This sample state MBean is in starting state.">
<notificationType>j2ee.state.starting</notificationType>
</notification>
<notification name="j2ee.state.running" severity="6" log="false"
description="This sample state MBean is in running state.">
<notificationType>j2ee.state.running</notificationType>
</notification>
<notification name="j2ee.state.stopping" severity="6" log="false"
description="This sample state MBean is in stopping state.">

94 Administering applications and their environment

<notificationType>j2ee.state.stopping</notificationType>
</notification>
<notification name="j2ee.state.stopped" severity="6" log="false"

description="This sample state MBean is in stopped state.">

<notificationType>j2ee.state.stopped</notificationType>
</notification>

</MBean>

SampleState implementation

package com.ibm.ws390.sample;

import com.ibm.ejs.ras.Tr;

import com.ibm.ejs.ras.TraceComponent;

import java.io.Serializable;

import com.ibm.websphere.management.dynamicproxy.StateObject;

public class SampleState extends StateObject {

}

private static TraceComponent tc =
Tr.register(SampleState.class,"SampleState",null);

// Package protected STATE constants.

static final String STATE_STARTING = "j2ee.state.starting";
static final String STATE_RUNNING = "j2ee.state.running";
static final String STATE_STOPPING = "j2ee.state.stopping";
static final String STATE_STOPPED = "j2ee.state.stopped";

// Dynamicproxy State is initialized with STOPPED state.
private String state = STATE_STOPPED;

public SampleState() {
if (tc.isEntryEnabled()) Tr.entry(tc,"<init>");

// State is initialized during "state" initialization above,
// but can also be initialized here in the constructor as well.

/*

state = "WebSphere Application Server for z/0S ready for e-business";

*/

if (tc.isEntryEnabled()) Tr.exit(tc,"<init>");
1

public synchronized String getState() {
if (tc.isEntryEnabled()) Tr.entry(tc,"getState");
if (tc.isEntryEnabled()) Tr.exit(tc,"getState",state);
return state;

}

public synchronized void setState(String state) {
if (tc.isEntryEnabled()) Tr.entry(tc,"setState",state);
this.state = state;
if (tc.isEntryEnabled()) Tr.exit(tc,"setState");

1

public synchronized String getStateObjectInfo()
return state;
!

SampleStateAggregationHandler implementation
package com.ibm.ws390.sample;

import com.ibm.websphere.management.dynamicproxy.AggregationHandler;
import com.ibm.websphere.management.dynamicproxy.StateObject;

import com.ibm.ejs.ras.Tr;

Chapter 3. Using the administrative clients

95

import com.ibm.ejs.ras.TraceComponent;
public class SampleStateAggregationHandler implements AggregationHandler {

private static TraceComponent tc =
Tr.register(SampleStateAggregationHandler.class,"SampleState",null);

~
*
*

Return an aggregated result from a multicall Mbean operation which
compiles through all servant MBeans' results and returns a respective
single return value for an invoked method.

@param methodName MBean method name
@param params MBean method parameters
@param signatures MBean method signatures

@param servantMBeanResults Result of each servant MBean instances
invoked by the dynamicproxy multicast
invocation.

Note: this value can be "null" OR can be
an array of "null"s in case return value
of the method is "void." Implementation
of this method MUST handle this case to
avoid a <code>NullPointerException</code>.

@param stateObject

MBean provider provided <code>StateObject</code> used by
dynamicproxy MBean in CR to manage its state. Note: this object
MAY BE null if "stateObjectClass" was not specified OR internal
error occurred during initialization of this dynamicproxy MBean.
ImpImentation MUST properly handle "null" input.

@return aggregated result as defined by MBean xml for specified
MBean operation.

ECE R R R R N R I S R R R R

*
/
public Object aggregateResults(String methodName,
Object[] params,
String[] signatures,
Object[] servantMBeanResults,
StateObject stateObject) {

if (tc.isEntryEnabled()) Tr.entry(tc,"aggregateResults",methodName);

// As you can see from the MBeanDescriptor of SampleStateMBean,
// it declares the following four methods:

// 1. String getMBeanName () [proxyInvokeType == unicall]
// 2. String getState() [proxyInvokeType == multicall]
// 3. void setState(String) [proxyInvokeType == multicall]
// 4. void initializeState() [proxyInvokeType == multicall]
//

// Looking at the above methods, only method that requires aggregation
// is #2 getState method which is a multicall MBean operation AND
// it returns a value that can be aggregated.
/1
// In this example, we simply take each servants' getState MBean
// request result and concatenate them into one long String that
// displays each servants' state.
if (methodName.equals("getState")) {
StringBuffer stateBuf = new StringBuffer();

for (int i=0; i<servantMBeanResults.length; i++) {
stateBuf.append ("SERVANT #" + i + " state ==|"
servantMBeanResults[i] + "|==

+
||);
}
return stateBuf.toString();
}
// 1f we also had an example method which returns say an int,
// getNumberOfMBeans(), it can take the similar approach
// and to add each servants' getNumberOfMBeans() result together here.

96 Administering applications and their environment

/* example added for non-existent method: int getNumberOfMBeans()
else if (methodName.equals("getNumberOfMBeans")) {
int aggregatedResult = 0;

for (int i=0; i<servantMBeanResults.length; i++) {
aggregatedResult += (int) servantMBeanResults[i];

return aggregatedResult;

}
*/

return methodName + " is NOT handled by " + getClass().getName() + "!";

}

Administrative security
Access to the Java Management Extension (JMX) administrative subsystem requires role-based access
control when administrative security is enabled.

. A client, which can be a user or an administrative client program, can access an MBean method only if at
least one of the required roles is granted to the client. WebSphere Application Server uses the declarative
security approach to specify the security policy on the JMX MBean. This approach has the advantage of
not requiring MBean developers to add security code. Moreover, WebSphere Application Server provides a
default security policy for an MBean so in most case MBean developers do not need to specify a security
policy at all. With WebSphere Application Server, you can define explicit security policy for your MBeans if
the default security policy does not meet your specific security requirements.

Default MBean security policy
This topic discusses the default managed bean (MBean) security policy. In most cases, MBean developers
do not need to specify a security policy.

Three types of MBeans exist for the default MBean security policy:
» A configuration type MBean

* A runtime type MBean

* A deployer type MBean

An optional attribute in the MBean descriptor XML file defines the type of MBean.

The ConfigRepository MBean is an example of one of a few configuration types. In the
configRepository.xml descriptor file, the configureMBean = "true" attribute indicates that the MBean is a
configuration type.

<MBean type="ConfigRepository"
version="5.0"
platform="common"
description="Management interface for the configuration repository."
configureMBean="true">

The EJBModule MBean is an example of deployer type MBeans. In the EJBModule.xm] descriptor file, the
deployerMBean="true" attribute indicates that the MBean is a deployer type.

<MBean type="EJBModule" j2eeType="EJBModule"
version="5.0"
platform="dynamicproxy"
resourceldentifierKey="Application"
resourceType="Application"
deployerMBean="true"
description="Management interface for the EJBModule component.">

WebSphere Application Server extended role-based access control supports role inheritance. Five
administrative roles of administrator, configurator, operator, deployer, and monitor exist. The monitor role is
the least privileged administrative role. Users that are granted the monitor role can view the WebSphere

Chapter 3. Using the administrative clients 97

Application Server configuration and the runtime status, but cannot make any changes. The other
administrative roles each have their own unique set of privileges as well as the same privileges as the
monitor role.

The configurator role has permission to modify WebSphere Application Server configuration data. The
operator role has permission to change the runtime state, such as the start and stop of administrative
resources. A configurator role cannot change the runtime status and conversely an operator role cannot
change the WebSphere Application Server configuration. The administrator role includes configurator and
operator role, but has more permissions than the union of configurator role and operator role. The
administrator role can additionally change the administrative security configuration. A simple picture shows
the administrative role inheritance relationship. The deployer role is a combination of the configurator and
operator roles for application management. The deployer role has both configurator and operator
permission for applications. A diagram shows the administrative role inheritance relationship.

Administrator

Configurator Deployer Operator

Monitor

Each MBean method or operation is assigned an impact attribute with a value of either INFO or ACTION.
Here are some examples:

» A get method has an impact value of INFO and a write method has an impact value of ACTION.

* In the ConfigRepository MBean, the extract method does not change the configuration data and has an
impact value of INFO, while the modify method has an impact value of ACTION.

* In the Java virtual machine (JVM) MBean, which is an operator type of MBean, the
ggetCurrentTimelnMillis method has an impact value of ACTION.

A configuration MBean method that has an impact value of INFO requires the monitor role. A configuration
MBean method that has an impact value of ACTION requires the configurator role. A deployer MBean
method that has an impact value of INFO requires the monitor role. A deployer MBean method that has an
impact value of ACTION requires the deployer role. Because all administrative roles are monitor roles, any
administrative role can access configuration MBean methods and deployer MBean methods that have an
impact value of INFO. The administrator role is a configurator role and has access to the configuration
MBean methods that have an impact value of ACTION.

98 Administering applications and their environment

The default security policy for the configuration MBean is summarized in the following table:

Table 8. Configuration MBean method impact values and security roles. An X indicates that the MBean method
requires the role by default.

Administrator
Method impact Monitor role Operator role Configurator role | Deployer role role
INFO X X X X X
ACTION X X

The default security policy for the operation MBean is summarized in the following table:

Table 9. Operation MBean method impact values and security roles. An X indicates that the MBean method requires
the role by default.

Administrator
Method impact Monitor role Operator role Configurator role | Deployer role role
INFO X X X X X
ACTION X X

The default security policy for the deployer MBean is summarized in the following table:

Table 10. Deployer MBean method impact values and security roles. An X indicates that the MBean method
requires the role by default.

Administrator
Method impact Monitor role Operator role Configurator role | Deployer role role
INFO X X X X X
ACTION X X X

If an MBean has both the configureMBean attribute and the deployerMBean attribute set to true, the
required role for all actions is either configurator or monitor. No such MBean is presently defined in the
system.

Defining an explicit MBean security policy
You can explicitly define an MBean security policy for a particular MBean. Use this example to define an
MBean security policy.

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming,
see MBean Java application programming interface (APl) documentation.

About this task
Perform the following tasks to define an explicit security policy.

Procedure
1. Assume that you have an MBean defined by the MBean sample.xml descriptor file.

2. Specify the explicit security policy for that MBean in the sampleSecurity.xml file. The naming
convention is that you must append "Security" to the MBean descriptor file name as the name of the
MBean security descriptor file.

Chapter 3. Using the administrative clients 99

3. Place the security policy descriptor file at the same directory where the MBean security descriptor file
is so that the MBean loader can find it. This directory is the typical location for the security policy
descriptor file. If no MBean security descriptor file is present, the default MBean security policy is used.

4. Specify the MBean name of sample in the resource element resource-name field of the
sampleSecurity.xml file so that the MBean policy loader can associate the MBean security policy with
the MBean. The MBean security descriptor definition is very similar to the security policy that is defined
by the Java 2 Platform, Enterprise Edition (J2EE) deployment descriptor.

Results

You now have an explicitly defined MBean security policy that you can run with an MBean.

Example

The following example describes the MBean security descriptor file format for the sampleSecurity.xml file.

Line 2 specifies that an MBean security descriptor schema is defined by the
RolePermissionDescriptor.dtd file, which is a document type definition (DTD) in WebSphere Application
Server.

As shown on line 3, each MBean descriptor file contains a single role-permission element. The
administrative security role hierarchy is defined in the security-role elements between line 9 and line 37.
The administrative security role has an inheritance relationship.

As defined on line 14 through 21, the operator security role implies the monitor security role, which means
that a user with the operator role has all the permissions of the monitor role. As defined between line 30
and line 38, an administrator security role implies both the configurator and operator security role. Every
MBean security descriptor file typically has the same role relationship definition so that you can cut and
paste this section to your MBean security descriptor file.

One or more method-permission elements are defined after the security-role element. Each
method-permission element defines the required roles for one or more methods. Specify method
parameters to avoid method name collision in case multiple methods have the same name.

1. <?xml version="1.0" encoding="UTF-8"?>

2. <IDOCTYPE role-permission SYSTEM "RolePermissionDescriptor.dtd" >

3. <role-permission>

4. <resource>

5. <resource-name>sample</resource-name>

6. <class-name>com.ibm.ws.security.descriptor.sample</class-name>
7. <description>This is a sample for testing role permission descriptor.</description>
8. </resource>

9. <security-role>

10. <role>

11. <role-name>monitor</role-name>

12. </role>

13. </security-role>
14. <security-role>

15. <role>

16. <role-name>operator</role-name>
17. <imply>

18. <role-name>monitor</role-name>
19. </imply>

20. </role>

21. </security-role>
22. <security-role>

23. <role>

24. <role-name>configurator</role-name>
25. <imply>

26. <role-name>monitor</role-name>
27. </imply>

100 Administering applications and their environment

/role>
</security-role>
<security-role>
<role>
<role-name>administrator</role-name>
<imply>
<role-name>operator</role-name>
<role-name>configurator</role-name>
</imply>
</role>
</security-role>
<method-permission>
<description>Sample method permission table</description>
<role-name>operator</role-name>
<method>
<description>Sample operation</description>
<resource-name>sample</resource-name>
<method-name>stop</method-name>
</method>
</method-permission>
<method-permission>
<description>Sample method permission table</description>
<role-name>operator</role-name>
<method>
<description>Sample operation</description>
<resource-name>sample</resource-name>
<method-name>start</method-name>
<method-params>
<method-param>java.lang.String</method-param>
<method-param>java.lang.String</method-param>
</method-params>
</method>
</method-permission>
<method-permission>
<description>Sample method permission table</description>
<role-name>operator</role-name>
<method>
<description>Sample operation</description>
<resource-name>sample</resource-name>
<method-name>monitor</method-name>
<method-params>
</method-params>
</method>
</method-permission>
<method-permission>
<description>Sample method permission table</description>
<role-name>configurator</role-name>
<method>
<description>Sample operation</description>
<resource-name>sample</resource-name>
<method-name>setValue</method-name>
<method-params>
<method-param>java.lang.Boolean</method-param>
</method-params>
</method>
</method-permission>
<method-permission>
<description>Sample method permission table</description>
<role-name>monitor</role-name>
<method>
<description>Sample operation</description>
<resource-name>sample</resource-name>
<method-name>getValue</method-name>
</method>
</method-permission>

. </role-permission>

Chapter 3. Using the administrative clients

101

Specifying fine-grained MBean security in the MBean descriptor

To implement fine-grained administrative security, your code must identify the resource instance that the
managed bean (MBean) represents and assign the user the required role for that instance of the resource.
This topic discusses what to do to identify the resource and assign the required role. This topic also
discusses how to make an MBean method run under a different user identity so that the method can
access other resource instances. Lastly, this topic discusses how to check if an MBean method has
access to a resource instance by using programmatic interfaces.

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming,
see MBean Java application programming interface (API) documentation.

About this task

Perform the following task to ensure that an MBean or MBean method is protected. ldentify the resource
instance that the MBean or MBean method represents and assign required roles to access the MBean.
Perform this task during the development of the MBean.

Procedure

1. Determine the resource instance that the MBean represents and the required roles to invoke the
MBean methods.

Every MBean method has a default MBean security policy. When the MBean method uses the default
security policy, the resource instance that the MBean represents is assumed to be the server in which
the MBean runs. If an MBean or MBean method represents a resource instance other than the server
on which it runs, perform the following steps:

a. ldentify the resource instance that the MBean represents.

* If an MBean, such as the Server MBean, accesses and modifies the server in which the MBean
runs, do not specify a security policy to verify that the user invoking the MBean is granted
access to the server because the default security policy is in force. In most cases, you use an
MBean to access and modify the server.

» If an MBean that runs inside a server can access and modify resources that do not directly
belong to the server, check if the user invoking the MBean is granted access to the instance of
the resource before allowing the MBean method to run.

In most cases, identify the resource instance by identifying the key-value pair in the object name
of the MBean that represents the resource instance. The resourcelndentifierKey attribute defines
the key.

For example, you can use the EJBModule MBean to access an Enterprise JavaBeans (EJB)
module within an application that runs inside the server. In this case, the object name of the
EJBModule MBean contains a key-value pair. The key is Application. The value represents the
resource instance that the EJBModule MBean tries to access. The user that invokes this MBean
method is verified to make sure that access is granted to this instance of the application before
allowing the MBean method to run.

The following example shows how to describe the fine-grained administrative security for the
EJBModule type of MBean in the MBean descriptor:

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE MBean SYSTEM "MbeanDescriptor.dtd">
<MBean type="EJBModule" j2eeType="EJBModule"
version="5.0"
platform="dynamicproxy"
resourceldentifierKey="Application"
resourceType="Application"
deployerMBean="true"
description="Management interface for the EJBModule component.">

102 Administering applications and their environment

If you can determine the resource that the MBean accesses before the MBean is invoked, but
you cannot use the MBean object name to determine the resource instance that the MBean
accesses, use parameters that are passed to the MBean instead.

Identify the MBean method parameter name with a parameter value that represents the resource
instance. Mark the corresponding parameter metadata in the MBean descriptor as the resource
identifier. To mark a parameter as the resource identifier, add the resourceType attribute. The
attribute specifies the type resource that the parameter value contains. When the resourceType
attribute is present for any MBean method parameter, the parameter value determines the
resource instance that the MBean method represents.

For example, one instance of the ApplicationManager MBean runs in each server. The same
MBean can be used to start and stop all the applications in the server. The start and stop
methods of this MBean each take the application name as a parameter. They use the parameter
to determine the instance of the application that this MBean method tries to access.

The following example shows how to describe the fine-grained administrative security for this
type of MBean in the MBean descriptor:

<operation
description="Start Application"
impact="ACTION" name="startApplication" role="operation"
targetObjectType="objectReference" type="void" proxyInvokeType="spray">
<signature>
<parameter description="Application Name" resourceType="Application"

name="applicationName" type="java.lang.String"/>

</signature>

</operation>

If the resource that an MBean accesses cannot be determined until the MBean is invoked, check
if the user invoking the MBean is granted access to the instance of the resource by using
application programming interfaces (APIs).

Mark the MBean or MBean method as excluded from access checking in the MBean descriptor
by using the excludeAccessCheck attribute. When an MBean is marked as excluded from
access checking, all its methods are also excluded from access checking.

For example, the ConfigService MBean that runs in the deployment manager is used to
configure all the resources within a cell. Exclude this MBean from access checking before
invoking the MBean methods. Check that the ConfigService MBean is granted access to the
configuration resource when the MBean attempts to access the resource.

The following example shows how to describe the fine-grained administrative security for the
ConfigServices type of MBean in the MBean descriptor:

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE MBean SYSTEM "MbeanDescriptor.dtd">
<MBean
version="5.0"
platform="proxy"
collaboratorClass="com.ibm.ws390.management.proxy.ConfigServiceManager"
description="Config Service component provides service of
configuration related tasks on top of configuration repository service."
type="ConfigService"
excludeAccessCheck="true"
configureMBean="true">

Some statements are split on multiple lines for printing purposes.

The following example shows how to invoke the MBean method logic to perform authorization
checking programmatically:

// Get administration authorizer.

AdminAuthorizer aa = AdminAuthorizerFactory.getAdminAuthorizer();
// Set the role that is required for this operation.

String role = com.ibm.ws.security.util.Constants.CONFIG_ROLE;

// Set the resource name.

// cells/cellName is optional.

Chapter 3. Using the administrative clients 103

String resource = "/nodes/"+ nodeName + /servers/" + serverName;
// Check access
if (aa != null && !aa.checkAccess(resource, role))
// Disallow access.
else
// Allow access.

b. Assign required roles for the MBean and MBean methods.

The required roles are automatically assigned, based on the type of MBean and the impact of the
MBean method, as described in the topic on the default MBean security policy.

2. Specify delegation mode.

In some cases, after performing the initial access check, the MBean method might need to run under a
different user identity so that it can access other resource instances. For example the syncNode
operation in the CellSync MBean grants the user the operator role to the instance of the node being
synchronized. The syncNode operation tries to access resources under the cell scope. The user might
not have access to open files under the cell directory. The MBean must run as System after the initial
access check so that the operation completes without any access denied problems.

Set the runAs attribute to System to specify delegation mode for an MBean or MBean method. When
you set the runAs attribute for an MBean, the value applies to all MBean methods for that MBean.

The following example shows how to describe fine-grained administrative security for the CellSync type
of MBean in the MBean descriptor.

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE MBean SYSTEM "MbeanDescriptor.dtd">
<MBean type="CellSync"
version="5.0.1"
platform="common"
runAs="System"
description="Management interface for the configuration synchronization logic
performed at the central deployment manager for the cell.">
<operation
description="Initiate a synchronization request for a given node" impact="ACTION"
name="syncNode" role="operation" targetObjectType="objectReference" type="ja
va.lang.Boolean">
<signature>
<parameter resourceType="Node"
description="The name of the node"
name="nodeName" type="java.lang.String"/>
</signature>
</operation>

Results

You have determined the type of resource a given MBean method is accessing and performed the
necessary access check so that the product can allow access to the resource.

Administrative programs for multiple Java Platform, Enterprise Edition
application servers

You can develop an administrative client to manage multiple vendor application servers through existing
MBean support in the WebSphere Application Server.

Existence of MBeans for stopped components
best-practices: The WebSphere Application Server completely implements the Java Platform, Enterprise
Edition (Java EE) Management specification. However, some differences in details

between the Java EE specification and the WebSphere Application Server implementation
are important for you to understand when you access WebSphere Application Server

104 Administering applications and their environment

components. These differences are important to you when you access application
MBeans because you can use either the WebSphere Application Server programming
model or the Java EE programming model.

In the WebSphere Application Server programming model, if an MBean exists, you can assume that it is
running. If an MBean does not exist, you can assume that it is stopped. Transient states between the
started state and the stopped state are the same as the stopped state, which means that no MBean
exists.

In the Java EE programming model, the MBean always exists regardless of the state of the component.

You can determine the state of a component by querying the state attribute. However, the state attribute
only exists for MBeans that are state manageable, meaning that they implement the StateManageable
interface. State manageable MBeans have start(), startRecursive(), and stop() operations whether these
MBeans are Java EE MBeans or WebSphere Application Server MBeans. Additionally, the WebSphere
Application Server defines the stateful interface. The stateful interface means that the component has a
state and emits the Java EE.state.notifications method, but that the component cannot directly manage the
state. For example, a web module cannot stop itself. However, the application that contains the web
module can stop it.

Not all MBeans that have a state are state-manageable. Servlets, Java EE modules and enterprise beans,
for example, are all stateful, but are not state manageable. The Java EE server is not state-manageable
because no start() operation is available on a server.

The J2EEApplication MBean is an example of a state manageable MBean. When the WebSphere
Application Server starts, each application activates a J2EEApplication MBean for itself. A J2EEApplication
MBean has a Java EE type of J2EEApplication (for example, ObjectName *:*,j2eeType=J2EEApplication).
If the application starts, it also activates an Application MBean with a type of Application (for example,
:,type=Application). When the application changes state, the Application MBean is activated or
deactivated. However, the J2EEApplication MBean is always activated. You can retrieve the application
state changes by getting the state attribute.

The modules attribute on the J2EEApplication component returns an array of object names, one for every
module in the application. The Application Server activates an MBean for each of these modules only after
the Application Server starts the application. The managed enterprise bean isRegistered(ObjectName)
method returns false if the application, and therefore the module, is not running.

All of the attributes that are defined in the Java EE management specification return valid values when the
managed object stops. Other attributes and operations, for example those that are specifically defined for
the Application Server, use the com.ibm.websphere.management.exception.ObjectNotRunningException
exception if they are accessed when the object is stopped.

If you install the application while the server runs, the application installs the J2EEApplication MBean when
the installation completes. Conversely, when the application uninstalls the J2EEApplication MBean, the
application deactivates the MBean.

Mapping type properties

You can determine which MBeans have a j2eeType property and a WebSphere Application Server type
property in their ObjectName property sets by going to the additional application programming interfaces
documentation. Select the MBean interfaces subtopic, and then specific MBeans in the list. Look for type=
and j2eeType=. You can use the type property to query for any MBeans. MBeans derived from the Java
EE specification have an additional j2eeType property as part of their ObjectName property sets. You can
also use the j2eeType property to query for MBeans.

Chapter 3. Using the administrative clients 105

Optional WebSphere Application Server interfaces

The EventProvider, StateManageable, and StatisticsProvider interfaces are optional interfaces that the
Java EE Management specification defines. Which of the interfaces the product implements varies from
MBean to MBean. Go to the additional application programming interfaces documentation to see which
interfaces the product implements for a particular MBean. Select the MBean interfaces subtopic, and then
a specific MBean in the list. Find A11 Parent MBeans. The interfaces that are implemented for the MBean
follow A11 Parent MBeans. For example, the J2EEDomain MBean does not implement any of the
interfaces, while the JVM MBean implements the StatisticsProvider interface.

Deploying and managing a custom Java administrative client program
with multiple Java Platform, Enterprise Edition application servers

This section describes how to connect to a Java Platform, Enterprise Edition (Java EE) server, and how to
manage multiple vendor servers.

Before you begin

The product completely implements the Java EE Management specification, also known as JSR-77 (Java
Specification Requests 77). However, some differences in details between the Java EE specification and
the WebSphere Application Server implementation are important for you to understand when you develop
a Java administrative client program to manage multiple vendor servers. For information, see the
[Platform, Enterprise Edition (Java EE) Management Specification and the MBean Java application
programming interface (API) documentation.

About this task

When your administrative client program accesses WebSphere Application Servers exclusively, you can
use the Java APIs and WebSphere Application Server-defined MBeans to manage them. If your program
needs to access both WebSphere Application Servers and other Java EE servers, use the API defined in
the Java EE Management specification.

Procedure
1. Connect to a Java EE server.

Connect to a server by looking up the Management enterprise bean from the Java Naming and
Directory Interface (JNDI). The Management enterprise bean supplies a remote interface to the MBean
server that runs in the application server. The Management enterprise bean works almost exactly like
the WebSphere Application Server administrative client, except that it does not provide WebSphere
Application Server specific functionality. The following example shows how to look up the Management
enterprise bean.

import javax.management.j2ee.ManagementHome;
import javax.management.j2ee.Management;

Properties props = new Properties();

props.setProperty(Context.PROVIDER URL, "iiop://myhost:2809");

Context ic = new InitialContext(props);

Object obj = ic.lookup("ejb/mgmt/MEJB");

ManagementHome mejbHome = (ManagementHome)
PortableRemoteObject.narrow(obj, ManagementHome.class);

Management mejb = mejbHome.create();

The example gets an initial context to an application server by passing the host and port of the
Remote Method Invocation (RMI) connector. You must explicitly code the RMI port, in this case 2809.
The lookup method looks up the ejb/mgmt/MEJB path, which is the location of the Management
enterprise bean home. The example then creates the mejb stateless session bean, which you use in
the next step.

106 Administering applications and their environment

http://java.sun.com
http://java.sun.com

2. Manage multiple vendor application servers.

After you create the mejb stateless session bean, you can use it to manage your application servers.
Components from the application servers appear as MBeans, which the specification defines. These
MBeans all have the j2eeType property. This property is one of a set of types that the specification
defines. All of these types have a set of exposed attributes.

Use the following example to guide you in managing multiple vendor application servers. The example
uses the Java virtual machine (JVM) MBean to determine what the current heap size is for the
application server.
ObjectName jvmQuery = new ObjectName("x:j2eeType=JVM,*");
Set s = mejb.queryNames (jvmQuery, null);
ObjectName jvmMBean = (ObjectName) s.iterator().next();
boolean hasStats = ((Boolean) mejb.getAttribute(jvmMBean,
"statisticsProvider")).booleanValue();
if (hasStats) {
JVMStats stats = (JVMStats) mejb.getAttribute(jvmMBean,
"stats");
String[] statisticNames = stats.getStatisticNames();
if (Arrays.asList(statisticNames).contains("heapSize")) {
System.out.printin("Heap size: " + stats.getHeapSize());
1

}

The queryNames() method first queries the JVM MBean. The getAttribute method gets the
statisticsProvider attribute and determine if this MBean provides statistics. If the MBean does, the
example accesses the stats attribute, and then invokes the getHeapSize() method to get the heap size.

Results

The strength of this example is that the example can run on any vendor application server. It demonstrates
that an MBean can optionally implement defined interfaces, in this case the StatisticsProvider interface. If
an MBean implements the StatisticsProvider interface, you can see if an application server supports a
particular statistic, in this case the heap size. The specification defines the heap size, although this value
is optional. If the application server supports the heap size, you can display the heap size for the JVM.

Java Management Extensions V1.0 to Java Management Extensions
V1.2 migration

You might need to migrate custom MBeans that are supplied by products other than the Application Server
from Version 5 to Version 6.0 and later for full compatibility.

Each Java virtual machine (JVM) in WebSphere Application Server includes an embedded implementation
of Java Management Extensions (JMX). In Application Server, Version 5, the JVMs contain an
implementation of the JMX 1.0 specification. In Application Server, Version 6.0 and later, the JVMs contain
an implementation of the JMX 1.2 specification. The JMX 1.0 implementation used in Version 5 is the
TMX4J package that IBM Tivoli products supply. The JMX 1.2 specification used in Version 6.0 and later is
the open source mx4j package. The JMX implementation change across the releases does not affect the
behavior of the JMX MBeans in the Application Server. No Application Server administrative application
programming interfaces (APIs) are altered due to the change from the JMX V1.0 specification to the JMX
V1.2 specification.

The JMX V1.2 specification is compatible with the earlier JMX V1.0 specification. However, you might
need to migrate custom MBeans that are supplied by products other than the application server from
Version 5 to Version 6.0 and later. The primary concern for these custom MBeans is related to the values
that are used in key properties of the JMX ObjectName class for the MBean. The open source mx4j
implementation more stringently enforces property validation according to the JMX 1.2 specification. Test
the custom MBeans that you deployed in Version 5 in Version 6.0 and later, to ensure compatibility. Full
details of the JMX V1.2 specification changes from the JMX V1.0 specification are available in the JMX 1.2
specification.

Chapter 3. Using the administrative clients 107

Java Management Extensions (JMX) interoperability

Starting with Version 6.0, WebSphere Application Server implements Java Management Extensions (JMX)
Version 1.2.

Differences between Version 6.0.x, and Version 6.1 and later

The product supports communication with earlier levels of the server through the SOAP connector. The
earlier levels of the server cannot be more than two releases earlier. Version 6 and later servers can
communicate with each other through an RMI connector, with one restriction. The
javax.management.MBeanlInfo class and its subclasses do not interoperate between Version 6.1.02 and
version 6.0.2. You will receive a java.lang.lllegalArgumentException exception when attempting to send
any instance of these classes between a Version 6.1 and Version 6.0.2. This restriction affects clients that
perform the following operations.

» A wsadmin scripting client that tries to perform the following operations, for example in Jacl,:

$Help attributes MBeanObjectName
$Help operations MBeanObjectName
$Help notifications MBeanObjectName

* Any Java client that tries to call:

com.ibm.websphere.management.AdminClient.getMBeanInfo(ObjectName name);
com.ibm.websphere.management.AdminService.getMBeanInfo(ObjectName name);
javax.management.MBeanServer.getMBeanInfo(ObjectName name);

A serialization format mismatch exists between the JMX implementation in Version 6.1 and later and
Version 6.0.x releases. When a Version 6.0.x wsadmin script or a Version 6.0.x administrative client tries
to retrieve the ModelMBeanlInfo interface of a Version 6.1 and later MBean, the expected field names are
not found in the deserialized object because of the case difference between the versions. For example, the
following wsadmin function does not work when a Version 6.0.x wsadmin script connects to a Version 6.1
and later server:

$Help attributes MBeanObjectName
$Help operations MBeanObjectName
$Help all MBeanObjectName

where MBeanObjectName is a string representation of a Version 6.1 and later MBean Object.

To avoid this problem, set the jmx.serial.form Java virtual machine (JVM) custom property on the JVM
custom properties page in the administrative console. Create the custom property by specifying the name
value-pair on the Version 6.1 and later Application Server that you are connecting to from a Version 6.0.x
client. The field names are forced to lower case to be compatible with what the Version 6.0.x client
expects. The lower case field names contradict the JMX specification and compromise interoperability with
future versions. Therefore, the recommendation is that you set this property only when it is absolutely
needed in a mixed version environment.

Property name jmx.serial.form
Data type string
Value 1.200r1.2.1

To access the JVM custom properties page, click:

Servers > Server Types > WebSphere application servers > server1. Then, under Server
Infrastructure, click Java and process management > Process definition > Control > Java virtual
machine > Custom properties.

Managed object metadata

Information about a node, such as operating system platform and product features, is maintained in the
configuration repository in the form of properties. As product features are installed on a node, new property
settings are added.

108 Administering applications and their environment

WebSphere Application Server system management uses the managed object metadata properties as
follows:

» To display the node version in the administrative console
» To ensure that new configuration types or attributes are not created or set on older release nodes
» To ensure that new resource types are not created on old release nodes

» To ensure that new applications are not installed on old release nodes because the old run time cannot
support the new applications

Base properties

The following base property keys are defined for WebSphere Application Server:
com.ibm.websphere.baseProductVersion: The version of WebSphere Application Server that is installed.
com.ibm.websphere.nodeOperatingSystem: The operating system platform on which the node runs.

com.ibm.websphere.deployed.features: A list of features that extends a profile. An example of a feature
is an administrative console plug-in.

com.ibm.websphere.nodeSysplexName: The sysplex name on a z/OS operating system.

Here are examples of metadata property values. The com.ibm.websphere.deployed.features metadata
property value is split on multiple lines for printing purposes.
com.ibm.websphere.baseProductVersion=7.0.0.0

com.ibm.websphere.deployed. features=

com.ibm.ws.base 6.0.0.0,com.ibm.ws.j2ee _6.0.0.0,
com.ibm.ws.uddi_6.0.0.0,com.ibm.ws.wsgateway 6.0.0.0

com.ibm.websphere.nodeSysplexName=PLEX1
com. ibm.websphere.nodeOperatingSystem=0s390

For detailed information on metadata properties, view the ManagedObjectMetadataHelper class in the
application programming interfaces documentation.

Accessing managed object metadata properties

An administrator can query managed object metadata through the [wsadmin| tool or Application Server
APIs. They can additionally be viewed on the Node Installation properties administrative console panel.
This article provides details on the Application Server APl method.

An accessor class is used to obtain the managed object metadata properties. An accessor instance is
created through its factory. A helper class, which uses the accessor instance, makes it easy to query the
base metadata properties. These classes are all part of the com.ibm.websphere.management.metadata
package in the Application Server APl documentation. The specific names of these classes are:

» com.ibm.websphere.management.metadata.ManagedObjectMetadataHelper
» com.ibm.websphere.management.metadata.ManagedObjectMetadataAccessor
» com.ibm.websphere.management.metadata.ManagedObjectMetadataAccessorFactory

Using command-line tools

The product provides many tools that you can call from a command line.

Chapter 3. Using the administrative clients 109

About this task

There are several command-line tools that you can use to start, stop, and monitor application server
processes and nodes. These tools only work on local servers and nodes. They cannot operate on a
remote server or node. To administer a remote server, you can use the wsadmin scripting program
connected to the deployment manager for the cell in which the target server or node is configured.

The following information is common for each command:

* Unless otherwise specified, all of the application server commands are located in the
|app_server_rool/bin directory.

» Parameter values that specify a server name, a node name or a cell name are case sensitive. For

example, if you want to start the application server MyServer for the profile test, invoke startServer
MyServer -profileName test. If you specify myserver for the server name, the startServer script fails.

Use the following general steps to run a command:

Procedure
1. Open a system command prompt.
2. Determine whether to run the script from the profile or application server root directory.

Most command-line tools function relative to a particular profile. To determine if a command requires
the -profileName parameter, refer to the documentation for that specific command. If you run a
command from the [app_server _roof/bin directory and do not specify the -profileName parameter, the
default profile for the product sets profile-specific variables. To specify a different profile, use one of the
following options:
+ Navigate to the [app_server _rool/bin directory and run the following command, specifying the profile
of interest as the value for the profileName parameter:
startServer serverl -profileName AppServerProfile
* When a profile is created, the application server creates a proxy script in the profile_root/bin
directory for each script in the app_server_root/bin directory that is applicable to the type of profile

created. When a proxy script is invoked, the profile-specific variables for the script are set based on
the profile from which the script is invoked. To run the command for a specific profile, navigate to

the bin directory for the profile of interest to run the command.
3. Run the command of interest.

Results
The command runs the requested function and displays the results on the screen.

Refer to the command log file for additional information. When you use the -trace option for the command,
the additional trace data is captured in the command log file. The directory location for the log files is
under the default system log root directory, except for commands related to a specific server instance, in
which case the log directory for that server is used. You can override the default location for the command
log file using the -logfile option for the command.

What to do next

startServer command

The startServer command reads the configuration file for the specified server process and starts that
server process.

Use the startServer command to:
» Start an application server.

110 Administering applications and their environment

» Start a DMZ Secure Proxy Server for IBM WebSphere Application Server.
+ Start an administrative agent.
« Start a job manager.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

You do not have to use a user name and password with the startServer command because this command
launches a server process but does not invoke an MBean method.

gotcha: You can use the administrative console to change the Java virtual machine Classpath setting or
the environment entries settings for a server. However, before making these changes you should
understand the following consequences of making these changes:

 If you change the value of the Java virtual machine Classpath setting, then this new value
overrides the value of the Classpath parameter in the launch command that is set, by default,
in the script that is generated when the you issue the startServer -script command.

» |If you add a new environment entry on the Environment entries page or change the setting of
an existing entry, then the new and changed values appear as parameters in the script that is
generated when you issue the startServer -script command.

» If one of the environment entries you add is called PATH, then the value specified for this entry
overrides the value specified for the PATH variable that, by default, is set to WAS_PATH in the
setUpCmdLine file. If the value of the PATH variable is overridden, the following message is
sent to the file where your error messages are logged:

WSVROOOIE: Error occured during startup. com.ibm.ws.exception.RuntimeError:
java.lang.NoClassDefFoundError: com/ibm/ws/process/Win32ProcessGlue

For more information about where to run this command, see the Using command line tool topic.
Syntax

The command syntax is one of the following:

startServer server_name [options]

where server_name is the name of the application server or the DMZ Secure Proxy Server for IBM
WebSphere Application Server that you want to start.

This argument is required.

startServer <adminagent_name>

whereadminagent_name is the name of the administrative agent that you want to start.

startServer <job_manager>
where job_manager is the name of job manager that you want to start.
Parameters

The following options are available for the startServer command:

-? Prints a usage statement.

Chapter 3. Using the administrative clients 111

-help
Prints a usage statement.

-J <java_option>
Specifies options to pass through to the Java interpreter.

-logfile <fileName>
Specifies the location of the log file to which trace information is written. By default, the log file is
named startServer.log and is created in your Togs directory.

-profileName
Defines the profile of the server process in a multi-profile installation. The -profileName option is not
required for running in a single profile environment. The default for this option is the default profile.

-quiet
Suppresses the progress information that the startServer command prints in normal mode.

-replacelog
Replaces the log file instead of appending to the current log.

-recovery
Specifies that the server will start in recovery mode, perform a transactional recovery, and shut down.
The server will not accept any new transactions while it is in recovery mode. When you start the
server again, resources that were unavailable due to questionable transactions will be available.

Use this option if a server fails and you do not want to accept new transactions during the recovery
process.

transition: If you are migrating from a previous version of the product, make sure that the ENV
parameter included on the JCL procedure statement for the controller includes either the
REC=N or the REC=Y element. If the ENV parameter does not include either the REC=N
or the REC=Y element, the server will not restart in recovery mode even if you specify the
-recovery option.

If the ENV parameter includes the REC=N element, the setting is automatically changed to
REC=Y if you specify -recovery when you restart the server. The REC=N element is
automatically included on the ENV parameter if you did not migrate from a previous
version of the product. Following is an example of what your updated PROC statement
might look like:

//BBO6ACR PROC ENV=,PARMS=' ',REC=N,Z=BBO6ACRZ

-statusport <portNumber>
An optional parameter that allows an administrator to set the port number for server status callback.
The tool opens this port and waits for status callback from the server indicating that the server has
started. If the parameter is not set, an unused port is automatically allocated.

-script [<script fileName>] -background
Generates a launch script with the startServer command instead of launching the server process
directly. The launch script name is an optional argument. If you do not supply the launch script name,
the default script file name is start_server based on the server name that is passed as the first
argument to the startServer command. The -background parameter is an optional parameter that
specifies that the generated script will run in the background when you run it.

-trace
Generates trace information to the log file for debugging purposes.

-timeout <seconds>
Specifies the waiting time before server initialization times out and returns an error.

112 Administering applications and their environment

Usage scenario

The following examples demonstrate correct syntax. The information within the parentheses is a
description of the output that is created if you issue the preceding command.
startServer serverl
startServer serverl -script (produces the start_serverl.sh file)
startServer serverl -trace (produces the startserver.log file)
startServer adminagent
startServer jobmgr
startServer proxyl (for the secure proxy profile)
startServer.sh serverl -trace -username MyUserName -password MyUserPassword
-profileName MyProfileName (starts the serverl server using the

MyProfileName profile. The server runs under the user name MyUserName,
and produces trace files under the profile_root/logs directory)

stopServer command

The stopServer command reads the configuration file for the specified server process. This command
sends a Java management extensions (JMX) command to the server telling it to shut down.

The server process can be an application server, a DMZ Secure Proxy Server for IBM WebSphere
Application Server, an administrative agent server, or a job manager server

By default, the stopServer command does not return control to the command line until the server
completes the shutdown process. There is a -nowait option to return immediately, and other options to
control the behavior of the stopServer command. For more information about where to run this command,
see the Using command-line tools topic.

gotcha: If message ADMCOO74E: Connection will be closed due to unrecoverable error is displayed in
the system log file, a client might have attempted to send a user name, and password to another
server on which security is disabled. You can ignore this message because the client
automatically changes its security setting to match the security setting for the server with which

the client is trying to communicate. The connection is eventually successfully completed.
However, security is now disabled for both the administrative client and the receiving server.

Syntax

The command syntax is one of the following:

stopServer <server_name> [options]

whereserver_name is the name of the configuration directory of the application server or the DMZ Secure
Proxy Server for IBM WebSphere Application Server that you want to stop.

This argument is required.
stopServer <adminagent_name>

whereadminagent_name is the name of the administrative agent that you want to stop.
stopServer <job_manager>

where job_manager is the name of job manager that you want to stop.
Parameters

The following options are available for the stopServer command:

Chapter 3. Using the administrative clients 113

-nowait
Tells the stopServer command not to wait for successful shutdown of the server process.

-quiet
Suppresses the progress information that the stopServer command prints in normal mode.

-logfile <fileName>
Specifies the location of the log file to which trace information is written. By default, the log file is
named stopServer.log and is created in the 1ogs directory.

-profileName
Defines the profile of the server process in a multi-profile installation. The -profileName option is not
required for running in a single profile environment. The default for this option is the default profile.

-replacelog
Replaces the log file instead of appending to the current log.

-trace
Generates trace information into a file for debugging purposes. The trace output is written to the
stopServer.log file which is located in the profile_root/logs/server directory.

-timeout <seconds>
Specifies the time to wait for server shutdown before timing out and returning an error.

-statusport <portNumber>
An optional parameter that allows an administrator to set the port number for server status callback.
The tool opens this port and waits for status callback from the server just before the server has
stopped. If the parameter is not set, an unused port is automatically allocated.

-conntype <type>
Specifies the JMX connector type to use for connecting to the deployment manager. Valid types are
SOAP or Remote Method Invocation (RMI).

-port <portNumber>
Specifies the server JMX port to use explicitly, so that you can avoid reading the configuration files to
obtain the information.

-username <name>
Specifies the user name for authentication if security is enabled in the server. Acts the same as the
-user option.

-user <name>
Specifies the user name for authentication if security is enabled in the server. Acts the same as the
-username option.

-password <password>
Specifies the password for authentication if security is enabled in the server.

gotcha: If you are running in a secure environment but have not provided a user ID and password,
you receive the following error message:

ADMNOO22E: Access denied for the stop operation on Server MBean due
to insufficient or empty credentials.

To solve this problem, provide the user ID and password information.

-help
Prints a usage statement.

-? Prints a usage statement.
Usage scenario
The following examples demonstrate correct syntax:

114 Administering applications and their environment

stopServer serverl
stopServer serverl -nowait
stopServer serverl -trace (produces the stopserver.log file)

stopServer adminagent
stopServer jobmgr

stopServer proxyl (for the secure proxy profile)

startManager command

Use the startManager command to manipulate a deployment manager with scripting.

The startManager command reads the configuration file for the WebSphere Application Server, Network
Deployment manager process and constructs a launch command. Depending on the options you specify,
the startManager command launches a new Java virtual machine (JVM) API to run the manager process,
or writes the launch command data to a file.

You must run this command from the b1' n directory of a WebSphere Application Server,
Network Deployment installation.

You do not have to use a user name and password with the startManager command because this
command launches a server process but does not invoke an MBean method.

For more information about where to run this command, see Using command line tools.
Syntax

The command syntax is as follows:
startManager [options]

Parameters

The following options are available for the startManager command:

-quiet
Suppresses the progress information that the startManager command prints in normal mode.

-logfile <fileName>
Specifies the location of the log file to which trace information is written. By default, the log file is
named startServer.log and is created in your Togs directory.

-replacelog
Replaces the log file instead of appending to the current log.

-trace
Generates trace information into a file using the startManager command for debugging purposes.

-timeout <seconds>
Specifies the waiting time before deployment manager initialization times out and returns an error.

-statusport <portNumber>
An optional parameter that allows an administrator to set the port number for deployment manager
status callback. The tool opens this port and waits for status callback from the deployment manager
indicating that the deployment manager has started. If the parameter is not set, an unused port is
automatically allocated.

Chapter 3. Using the administrative clients 115

-script [<script fileName>] -background
Generates a launch script with the startManager command instead of launching the deployment
manager process directly. The launch script name is an optional argument. If you do not provide the
launch script name, the default script file name is <start_dmgr>. The -background parameter is an
optional parameter that specifies that the generated script will run in the background when you
execute it.

-help
Prints a usage statement.

-? Prints a usage statement.
Usage scenario

The following examples demonstrate correct syntax:
startManager

startManager -script (produces the start_dmgr.sh file)

startManager -trace (produces the startmanager.log file)

stopManager command

The stopManager command reads the configuration file for the WebSphere Application Server, Network
Deployment manager process.

It sends a Java Management Extensions (JMX) command to the manager telling it to shut down. By
default, the stopManager command waits for the manager to complete the shutdown process before it
returns control to the command line. There is a -nowait option to return immediately, as well as other
options to control the behavior of the stopManager command. For more information about where to run
this command, see the [Using command tools| article.

Syntax

The command syntax is as follows:

stopManager [options]
Parameters

The following options are available for the stopManager command:

-nowait
Tells the stopManager command not to wait for successful shutdown of the deployment manager
process.

-quiet
Suppresses the progress information that the stopManager command prints in normal mode.
-lTogfile <fileName>

Specifies the location of the log file to which trace information is written. By default, the log file is
named stopServer.log and is created in your Togs directory.

-replacelog
Replaces the log file instead of appending to the current log.

-trace
Generates trace information to a file for debugging purposes. The trace output is written to the
stopmanager.log file which is located in the profile_root/logs directory.

116 Administering applications and their environment

-timeout <seconds>
Specifies the waiting time for the manager to complete shutdown before timing out and returning an
error.

-statusport <portNumber>
An optional parameter that allows an administrator to set the port number for deployment manager
status callback. The tool opens this port and waits for status callback from the deployment manager
just before the deployment manager has completely stopped. If the parameter is not set, an unused
port is automatically allocated.

-conntype <type>
Specifies the Java Management Extensions (JMX) connector type to use for connecting to the
deployment manager. Valid types are SOAP or Remote Method Invocation (RMI).

-port <portNumber>
Specifies the deployment manager JMX port to use explicitly, so that you can avoid reading the
configuration files to obtain information.

-username <name>
Specifies the user name for authentication if security is enabled in the deployment manager. Acts the
same as the -user option.

-user <name>
Specifies the user name for authentication if security is enabled in the deployment manager. Acts the
same as the -username option.

-password <password>
Specifies the password for authentication if security is enabled in the deployment manager.

Note: If you are running in a secure environment but have not provided a user ID and password, you
receive the following error message:

ADMNOO22E: Access denied for the stop operation on Server MBean due
to insufficient or empty credentials.

To solve this problem, provide the user ID and password information.

-help
Prints a usage statement.

-? Prints a usage statement.
Usage scenario

The following examples demonstrate correct syntax:
stopManager

stopManager -nowait

stopManager -trace (produces the stopmanager.log file)

startNode command

The startNode command reads the configuration file for the node agent process and constructs a launch
command.

You do not have to use a user name and password with the startNode command because this command
launches a server process but does not invoke an MBean method.

For more information about where to run this command, see the [Using command line toold| article.

Chapter 3. Using the administrative clients 117

Syntax

The command syntax is as follows:
startNode [options]

Parameters

The following options are available for the startNode command:
-? Prints a usage statement.

-help
Prints a usage statement.

-logfile <fileName>
Specifies the location of the log file to which trace information is written. By default, the log file is
named startServer.log and is created in your Togs directory.

-quiet
Suppresses the progress information that the startNode command prints in normal mode.

-replacelog
Replaces the log file instead of appending to the current log.

-statusport <portNumber>
An optional parameter that allows an administrator to set the port number for node agent status
callback. The tool opens this port and waits for status callback from the node agent indicating that the
node agent has started. If the parameter is not set, an unused port is automatically allocated.

-trace
Generates trace information to the log file for debugging purposes.

-timeout <seconds>
Specifies the waiting time before node initialization times out and returns an error.

Usage scenario

The following examples demonstrate correct syntax:
startNode

startNode -trace (produces additional trace statements in the startnode.log file)

stopNode command

The stopNode command reads the configuration file for the node agent process and sends a Java
Management Extensions (JMX) command telling the node agent to shut down.

By default, the stopNode command waits for the node agent to complete shutdown before it returns
control to the command line. There is a -nowait option to return immediately, as well as other options to
control the behavior of the stopNode command. For more information about where to run this command,
see the|Using command tools topic.

If you stop the server before stopping the node agent using the stopserver -servers command, the server
will not restart when you issue a startserver command.

Syntax
The command syntax is as follows:

stopNode [options]

118 Administering applications and their environment

Parameters

The following options are available for the stopNode command:

-nowait
Tells the stopNode command not to wait for successful shutdown of the node agent process.

-quiet
Suppresses the progress information that the stopNode command prints in normal mode.

-logfile <fileName>
Specifies the location of the log file to which trace information is written. By default, the log file is
named stopServer.log and is created in the 1ogs directory of the profile for the node being stopped.

-replacelog
Replaces the log file instead of appending to the current log.

-trace
Generates trace information into a file for debugging purposes. The trace output is written to the
was_jobname-jobuser-jobnum.1og file which is located in the 1ogs directory.

-timeout <seconds>
Specifies the waiting time for the agent to shut down before timing out and returning an error.

Note: The timeout parameter is used to stop one server at a time. If you use the timeout parameter
with the stopservers parameter, the timeout parameter value is ignored.

-statusport <portNumber>
An optional parameter that allows an administrator to set the port number for node agent status
callback. The tool opens this port and waits for status callback from the node agent just before the
node agent has completely stopped. If the parameter is not set, an unused port is automatically
allocated.

-stopservers [-saveNodeState]
Stops all application servers on the node before stopping the node agent.

Use the -saveNodeState option to save the server restart state so that you can start the application
servers based on the previous state using the startNode command.

-conntype <type>
Specifies the Java Management Extensions (JMX) connector type to use for connecting to the
deployment manager. Valid types are SOAP or Remote Method Invocation (RMI).

-port <portNumber>
Specifies the node agent JMX port to use explicitly, so that you can avoid reading configuration files to
obtain the information.

-username <name>
Specifies the user name for authentication if security is enabled in the node agent. Acts the same as
the -user option.

-user <name>
Specifies the user name for authentication if security is enabled in the node agent. Acts the same as
the -username option.

-password <password>
Specifies the password for authentication if security is enabled in the node agent.

Note: If you are running in a secure environment but have not provided a user ID and password, you
receive the following error message:

ADMNOO22E: Access denied for the stop operation on Server MBean due
to insufficient or empty credentials.

Chapter 3. Using the administrative clients 119

To solve this problem, provide the user ID and password information.

-help
Prints a usage statement.

Note: When requesting help for the usage statement for the stopNode command, a reference to the
stopServer command displays. All of the options displayed for this usage statement apply to
the stopNode command.

-? Prints a usage statement.

Note: When requesting help for the usage statement for the stopNode command, a reference to the
stopServer command displays. All of the options displayed for this usage statement apply to
the stopNode command.

Usage scenario

The following examples demonstrate correct syntax:
stopNode

stopNode -nowait

stopNode -trace (produces the stopnode.log file)

serverStatus command

Use the serverStatus command to obtain the status of one or all of the servers configured on a node.
For more information about where to run this command, see the Using command line tools topic.
Syntax

The command syntax is as follows:
serverStatus <server>|-all [options]

The first argument is required. The argument is either the name of the server for which status is desired,
or the -all keyword which requests status for all servers defined on the node.

Parameters

The following options are available for the serverStatus command:

-quiet
Suppresses the progress information that the serverStatus command prints in normal mode.

-lTogfile <fileName>
Specifies the location of the log file to which trace information is written. By default, the log file is
named serverStatus.log and is created in your Togs directory.

-profileName
Defines the profile of the Application Server process in a multi-profile installation. The -profileName
option is not required for running in a single profile environment. The default for this option is the
default profile.

-replacelog
Replaces the log file instead of appending to the current log.

-trace
Generates trace information into a file for debugging purposes.

120 Administering applications and their environment

-username <name>
Specifies the user name for authentication if security is enabled. Acts the same as the -user option.

-user <name>
Specifies the user name for authentication if security is enabled. Acts the same as the -username
option.

-password <password>
Specifies the password for authentication if security is enabled.

-help
Prints a usage statement.

-? Prints a usage statement.
Usage scenario

The following examples demonstrate correct syntax:

serverStatus serverl
serverStatus -all (returns status for all defined servers)

serverStatus -trace (produces the serverStatus.log file)

addNode command

The addNode command incorporates an application server installation into a cell.

Depending on the size and location of the new node you incorporate into the cell, this command can take
a few minutes to complete.

You must have Administrator privileges to use the addNode function.

The node agent server is automatically started as part of the addNode command unless you specify the
-noagent option. If you recycle the system that hosts an application server node, and did not set up the
node agent to act as an operating system daemon, you must issue a startNode command to start the
node agent before starting any application servers.

When you run the addNode command, the command stops the running application server that it is
incorporating into a cell. You can optionally stop the application server before running the addNode
command.

When you add a node, the product might generate ports. The following items apply to port generation:

» Ports generated for the node agent are unique for all the profiles in the installation. For development
purposes, you can create multiple profiles on the same installation and add them to one or more cells
without concern for port conflicts.

* If you want to specify the ports that the node agent uses, specify the ports in a file with the file name
passed with the -portprops option. The format of the file is key=value pairs, one on each line, with the
key being the same as the port name in the serverindex.xml file.

* If you want to use a number of sequential ports, consider the -startingport option. This means that port
conflicts with other profiles are not detected.

Note: Use the -includeapps option for the addNode command to ensure that the environment starts with
the same version of the application. If any custom policy set is created on the server before you run
the addNode command, then the custom policy set is not copied to the new cell after you run the
addNode command. Therefore, when using the -installApps option, an application on the server that
uses the custom policy set fails to load the policy set after you run the addNode command. You can

Chapter 3. Using the administrative clients 121

export the custom policy set from the stand-alone server before you run the addNode command,
and import the custom policy set to the new cell after you run the addNode command.

Read the topic on using command-line tools to determine whether to run the command from the profile or
application server root directory.

Syntax

See the command syntax:

addNode dmgr_host [dmgr_port] [-conntype typel [-includeapps] [-includebuses]
[-startingport portnumber] [-portprops qualified filename]
[-nodeagentshortname name] [-nodegroupname name] [-registerservice]
[-serviceusername name] [-servicepassword password] [-coregroupname name]
[-noagent] [-statusport 1231] [-quiet] [-nowait] [-logfile filename]
[-replacelog] [-trace] [-username uid] [-password pwd]

[-Tocalusername localuid] [-localpassword localpwd] [-profileName profilename]
[-excludesecuritydomains true | false] [-asExistingNode] [-help]

The dmgr_host argument is required. All the other arguments are optional. The default port number is 8879
for the default SOAP port of the deployment manager. SOAP is the default Java Management Extensions
(JMX) connector type for the command. If you have multiple product installations or multiple profiles, the
SOAP port might be different from 8879. Examine the deployment manager SystemOut.1og file to see the
current ports in use.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.Tog ,
SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are using
HPEL, you can access all of your log and trace information using the LogViewer command-line tool
from your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

Parameters

The following options are available for the addNode command:

-conntype <type>
Specifies the JMX connector type to use for connecting to the deployment manager. SOAP is the
default Java Management Extensions (JMX) connector type for the command. Other valid types are
JSR160RMI or Remote Method Invocation (RMI).

-includeapps
By default the addNode command does not carry over applications from the stand-alone servers on
the new node to the cell. In general, install applications using the deployment manager. The
-includeapps option tells the addNode command to carry over the applications from a node. If the
application already exists in the cell, then a warning is printed and the application does not install in
the cell.

The applications are mapped to the server that you federated using the addNode command. When the
addNode command operation completes, the applications run on that server when the server is
started. Since these applications are part of the network deployment cell, you can map them to other
servers and clusters in the cell using the administrative console. Read about mapping modules to
serversin the Developing and deploying applications PDF for more information.

Do not use the -includeapps option if the node that you want to federate includes the product-supplied
applications, such as the Samples. If you do, the second node to be federated that includes these
applications is rejected because the applications exist in the cell and application merge is not
supported.

If you use the -includeapps option on a node that includes a large number of applications, then the
timeout for the administrative connector must be extended to account for the additional time required

122 Administering applications and their environment

to transfer all the applications to the deployment manager during the addNode operation and to
remotely install them into the cell. The -includeapps option is not a recommended approach unless
only a few unique applications exist on the node.

By default, during application installation, application binaries are extracted in the
|app_server_r001|/1'nsta1 TedApps/cel lName directory. After the addNode command, the cell name of the
configuration on the node that you added changes from the base cell name to the deployment
manager cell name. The application binary files are located where they were before you ran the
addNode command, for example, |app_server_rooz|/1’ nstalledApps/old cellName.

In the following example the application was installed by explicitly specifying the location for binary
files:

${APP_INSTALL_ROOT}/${CELL}

The variable ${CELL}, specifies the current cell name. Then, when the addNode command runs, the
binary files are moved to the following directory:
installedApps/currentCellName

Federating the node to a cell using the addNode command does not merge any cell-level
configuration, including virtual host information. If the virtual host and aliases for the new cell do not
match the product, you cannot access the applications running on the servers. You have to manually
add all the virtual host and host aliases to the new cell, using the administrative console running on
the deployment manager.

Note: When the -includeapps parameter is specified, an OutOfMemoryError might occur if the Java
virtual machine (JVM) heap size is too small. When this error occurs, the following error
message is issued:

ADMUOI11E: Program exiting with error: java.lang.OutOfMemoryError

This error can occur when large applications are processed, or when there is a large number of
applications in the Base Application Server.

To recover from this error and successfully federate the application server, complete the
following actions:

1. Issue the cleanupNode command on your deployment manager server. Read about the
cleanupNode command for more information about this command.

2. Increase the JVM heap size for the addNode script. When you issue the addNode
command, the JVM heap size is set to -Xms128m -Xmx512m. To increase these values,
use the -javaoption parameter. For example, you might specify the following (all on one
line):

3. Reissue the addNode command.

-includebuses
Copies the buses from the node to be federated to the cell. This parameter also attempts to copy the
service integration bus configuration of the remote node into the cell. If the destination cell already
contains a bus with the same name as any bus at the remote node, the add node fails. To prevent this
failure, you can act before using the addNode command. You can delete the bus with that name in the
destination cell, rename the bus to be added to the cell, or manually configure the bus already located
in the cell.

-startingport <portNumber>
Supports the specification of a port number to use as the base port number for all node agent and
Java Messaging Service (JMS) server ports created when the addNode command runs. With this
support you can control which ports are defined for these servers, rather than using the default port
values. The starting port number is incremented one unit to calculate the port number for every node
agent port and JMS server port configured during the addNode command.

Chapter 3. Using the administrative clients 123

If multiple node agents exist on the same physical server, then you can define the base port number
for each by using the -startingport parameter before federation, or by modifying the ports in the node
agent section of the serverindex.xml file.

-portprops <filename>
Passes the name of the file that contains key-value pairs of explicit ports that you want the new node
agent to use. For example, to set your SOAP and RMI ports to 3000 and 3001, create a file with the
following two lines and pass it as the parameter:

SOAP_CONNECTOR_ADDRESS=3000
BOOTSTRAP_ADDRESS=3001

-nodeagentshortname <name>
The shortname to use for the new node agent.

-nodegroupname <name>
The name of the node group in which to add this node. If you do not specify, the node is added to the
DefaultNodeGroup.

Registers the node agent as a Windows service.

You can optionally define a user name and password for the windows service using the
-serviceusername parameter and the -servicepassword parameter. If you define a user name, you
must give the user name Logon as a service authority for the service to run properly.

If you do not specify a user name and password, then the service runs under the local system
account.

-coregroupname <name>
The name of the core group in which to add this node. If you do not specify this option, the node is
added to the DefaultCoreGroup.

-noagent
Tells the addNode command not to launch the node agent process for the new node.

-statusport
An optional parameter that allows an administrator to set the port number for node agent status
callback. The tool opens this port and waits for status callback from the node agent indicating that the
node agent has started. If the parameter is not set, an unused port is automatically allocated.

-quiet
Suppresses the progress information that the addNode command prints in normal mode.

-nowait
Tells the addNode command not to wait for successful initialization of the launched node agent
process.

-logfile <filename>
Specifies the location of the log file to which trace information is written. By default, the log file is
addNode.Tog and is created in the logs directory of the profile for the node being added.

-replacelog
Replaces the log file instead of appending to the current log file. By default, the addNode command
appends to the existing trace file. This option causes the addNode command to overwrite the trace file.

-trace
Generates additional trace information in the log file for debugging purposes.

-user <name> or -username <name>
Specifies the user name for authentication if security is enabled. Acts the same as the -user option.
The user name that you choose must be a pre-existing user name.

-password <password>
Specifies the password for authentication if security is enabled. The password that you choose must
be one that is associated with a pre-existing user name.

124 Administering applications and their environment

-localusername <name>
Specifies the user name for authentication for existing application servers on the node that you want to
federate. This parameter is only applicable if security is enabled for the application server.

-lTocalpassword <password>
Specifies the password for authentication for existing application servers on the node that you want to
federate. The password that you choose must be one that is associated with a pre-existing user name.
This parameter is only applicable if security is enabled for the application server.

-profileName
Defines the profile of the Application Server process in a multi-profile installation. The -profileName
option is not required for running in a single profile environment. The default for this option is the
default profile. If you are adding a non-default profile to the deployment manager cell, then this
parameter is required.

-excludesecuritydomains true | false
Set the -excludesecuritydomains parameter to true if you do not want the security domains configured
at the application server node federated into the cell. When the parameter is set to true, the security
configuration of the cell is used. This parameter applies only when you have security domains
configured at the unfederated application server. By default, if there is a security domain associated
with an application server, the security domain is federated to the cell so that the server uses the
same security domain information after it is federated.

-asExistingNode
Specifies to recover an existing managed node of a deployment manager cell.

Use the -asExistingNode parameter of the addNode command to quickly recover a damaged node.
For example, if a machine failure results in a unavailable node but node information remains on the
deployment manager, you can use the addNode -asExistingNode option to recreate the unavailable
node by completing the following steps:

1. Create a new profile with the same node and profile name as the unavailable node. You can
create the profile on a different machine from the original node.

2. For the new profile, run the addNode command with the -asExistingNode option.
You can also use the -asExistingNode option of the addNode command to move a node to a product
installation on a different computer but at the same path, to move a node to a product installation on a

different operating system or with a different path, or to create cells from a template cell. See the topic
on recovering or moving nodes with the addNode -asExistingNode command.

Note: Other addNode options for node configuration are incompatible with this -asExistingNode
option. Do not use -asExistingNode with the following incompatible options: -includeapps,
-includebuses, -startingport, -portprops, -nodeagentshortname, -nodegroupname,
-registerservice, -serviceusername, -servicepassword, -coregroupname, or
-excludesecuritydomains.

-help
Prints a usage statement.

-? Prints a usage statement.
Usage scenario

The following examples demonstrate correct syntax:

addNode testhost 8879 (adds an application server to the deployment manager)
addNode deploymgr 8879 -trace (produces the addNode.log file)

addNode host25 8879 -nowait (does not wait for a node agent process)

The value 8879 is the default port.

Chapter 3. Using the administrative clients 125

Security considerations when adding an application server node to WebSphere
Application Server, Network Deployment cell

When adding a node to a cell, the newly federated node automatically inherits the user registry (Local OS,
Lightweight Directory Access Protocol (LDAP), or Custom), authentication mechanism (LTPA), and
authorization setting (WebSphere bindings or System Authorization Facility (SAF) EJBROLE profiles) of
the existing WebSphere Application Server, Network Deployment cell.

For distributed security, all servers in the cell must use the same user registry and authentication
mechanism. To recover from a user registry change, you must modify your applications so that the user
and group-to-role mappings are correct for the new user registry. See the article on assigning users and
groups to roles.

Another important consideration is the Secure Sockets Layer (SSL) public-key infrastructure. Before
running the addNode command with the deployment manager, verify that the addNode command can
communicate as an SSL client with the deployment manager. This communication requires that the
addNode truststore that is configured in the sas.client.props file contains the signer certificate of the
deployment manager personal certificate, as found in the keystore and specified in the administrative
console.

The following issues require consideration when running the addNode command with security:

* When attempting to run system management commands such as the addNode command, specify
administrative credentials to perform the operation. The addNode command accepts -username and
-password parameters to specify the user ID and password. The user ID and password that are
specified must be for an administrative user. For example, specify a user that is a member of the
console users with Administrator privileges or the administrative user ID configured in the user registry.
See the following example of the addNode command:
addNode CELL_HOST 8879 -includeapps -username user -password pass

The -includeapps parameter is optional. This option attempts to include the server applications into the
Deployment Manager. The addNode command might fail if the user registries used by the application
server and the deployment manager are not the same. To correct this failure, either make the user
registries the same or turn off security. If you change the user registries, remember to verify that the
users-to-roles and groups-to-roles mappings are correct. Read about the addNode command for more
information about the addNode syntax.

If you issue the addNode command with security enabled, you must use a user ID with authority and
specify the -user and -password options.

» Adding a secured remote node through the administrative console is not supported. You can either
disable security on the remote node before performing the operation or perform the operation from the
command prompt using the addNode script.

» Before running the addNode command, you must verify that the truststore files on the nodes
communicate with the keystore files and System Authorization Facility (SAF) keyring that is owned by
the deployment manager and vice versa. If you generate certificates for the deployment manager using
the same certificate authority as you used for the node agent process, then you are successful. The
following SSL configurations must contain keystores and truststores that can interoperate:

— System SSL repertoire that is specified in the administrative console. Click System administration >
Deployment manager > HTTP transports > sslportno > SSL.

— SSL repertoire for appropriate JMX connector if SOAP is specified. Click System administration >
Deployment manager > Administration Services > JMX Connectors > SOAPConnector >
Custom properties > sslConfig.

— SSL repertoire that is specified in NodeAgent. Click System Administration > Node agents >
NodeAgent Server > Administration Services > JMX Connectors > SOAPConnector > Custom
properties > sslConfig.

Use caution when adding a node to a deployment manager configuration that defines a different

security domain.

126 Administering applications and their environment

 If security is enabled for the Version 7 or 8 deployment manager, then in order to federate a Version 6.x
node the deployment manager cannot use the auto-generated internal server ID. The auto-generated
internal server ID is used by default when enabling security.

* When a client from a previous release tries to use the addNode command to federate to a Version 7 or
8 deployment manager, the client must first obtain signers for a successful handshake. For more
information about required changes before running the addNode command in this scenario, read about
obtaining signers from a previous release in the topic on Secure installation for client retrieval,
specifically the Obtaining signers for clients and servers from a previous release section. The user
registry can be changed by performing one of the following actions:

— On the administrative console, click Global Security. Under Available realm definitions, click
Configure > Server identity that is stored in repository. Enter the user name and password and
then click Apply.

— (The following command is split on multiple lines for printing purposes.)

AdminTask.configureAdminWIMUserRegistry (' [-autoGenerateServerld false -serverld testuser
-serverldPassword testuserpwd -primaryAdminId testuser -ignoreCase true]')

The server must be restarted for these changes to take effect.

« After running the addNode command, the application server is in a new SSL domain. It might contain
SSL configurations that point to keystore and truststore files that are not prepared to interoperate with
other servers in the same domain. Consider which servers are intercommunicating, and ensure that the
servers are trusted within your truststore files.

addNode command best practices
Use the addNode command to add a stand-alone node into a cell.

The addNode command does the following:

* Copies the base WebSphere Application Server cell configuration to a new cell structure. This new cell
structure matches the structure of deployment manager.

» Creates a new node agent definition for the node that the cell incorporates.

» Sends commands to the deployment manager to add the documents from the new node to the cell

repository.

Performs the first configuration synchronization for the new node, and verifies that this node is

synchronized with the cell.

* Launches the node agent process for the new node.

Updates the setupCmdLine.bat or setupCmdline.sh files and the wsadmin.properties file to point to the

new cell.

After federating the node, the addNode command backs up the plugin-cfg.xml file from the

[app server root|/config/cells directory to the config/backup/base/cells directory. The addNode
command regenerates a new plugin-cfg.xml file at the Deployment Manager and the nodeSync
operation copies the files to the node level.

Tips for using the addNode command:

» If you add a node to a cell, the cell name of the node you are federating must be different from the
name of the cell to which the node is federated. Otherwise, you receive the ADMUOO27E message, and
the addNode command does not add the node to the cell.

» Verify that the deployment manager and nodes are updated to the same revision level within the
WebSphere Application Server. For example, a deployment manager at level 6.0.1 will be unable to
federate with nodes at 6.0.2.

* Do not put WebSphere Application Server . jar files on the generic CLASSPATH variable (default class
path) for the overall system.

» By default, applications that are installed on the node will not copy to the cell. If you install an
application after using the addNode command, the application will install on the cell. By specifying the

Chapter 3. Using the administrative clients 127

-includeapps option, you force the addNode command to copy applications from the node to the cell.
Applications with duplicate names will not copy to the cell.

» Cell-level documents are not merged. Any changes that you make to the stand-alone cell-level
documents before using the addNode command must be repeated on the new cell. For example, virtual
hosts.

 If you receive an OutOfMemory exception while using the addNode command, you may need to
increase the heap size of the deployment manager. To increase the heap size of the deployment
manager, adjust the Maximum heap size parameter. For example, in the administrative console, go to
System administration > Deployment manager > Java and Process Management > Process
definition > Java Virtual Machine and increase the Maximum heap size value.

* In some instances it may take longer than anticipated for the deployment manager to respond to the
addNode command. The default timeout value, which determines how long the client will wait for a
server response, is appropriate in the majority of cases. However, you may require more time for the
server to respond under heavier processing conditions. For example, if you include the -includeapps
option and have a large number of applications, or the applications are very large, the default value of
180 seconds may be insufficient. To change the default timeout value, open the file
$WAS_HOME/profiles/<profile name>/properties/soap.client.props in any ASCII text editor and find
the following line (shown here with default value of 180 seconds):

com.ibm.SOAP.requestTimeout=180

If you need to change the default you can edit this line to set the timeout to a value more appropriate
for your situation (Note: setting the above value to 0 will disable the timeout check altogether). If the
timeout value is set too high you will have to wait a long time to determine if the addNode command
will successfully complete its request to the deployment manager. If the value is set too short the
deployment manager will not have sufficient time to complete the request before the addNode
command concludes that the deployment manager is not responding and will respond with an error.
Other factors that may affect server timeouts include the processing load or excessive paging on the
deployment manager and network latency. Some of these conditions may be transient.

» If you receive an addNode error message regarding bad clock syncs, make sure that the machine with
the node to be federated is in time sync with the Deployment Manager machine to which the node is to
be federated.

* If you use the addNode command from a node that was federated to an existing deployment manager,
the deployment manager will be corrupt. You will not be able to start the second deployment manager
after you stop it. This happens because the addNode command creates a dmgrProfile]/config/cells/
dmgrCell/nodeName directory in the master configuration. This is an incomplete node configuration
directory.

You will come into contact with the issue if you have a federated node and run the addNode command
again for a different deployment manager. This causes the deployment manager to be corrupted and
you will not be able to start the deployment manager afterwards because of the incomplete node
directory.

Perform one of the following solutions to resolve this issue:

— If the deployment manager is running, you can use the cleanupNode command on deployment
manager where the incomplete node resides.

— Manually delete the directory that was created on the deployment manager configuration during an
addNode command operation that was incomplete. For example:

app_server_root/profiles/dmgrProfile/config/cells/dmgrCell/]nodeName

removeNode command

The removeNode command returns a node from a WebSphere Application Server, Network Deployment
distributed administration cell to a stand-alone application server installation.

128 Administering applications and their environment

The removeNode command only removes the node-specific configuration from the cell. This command
does not uninstall any applications that were installed as the result of running an addNode command.
Such applications can subsequently deploy on additional servers in the WebSphere Application Server,
Network Deployment cell. As a consequence, an addNode command with the -includeapps option ran after
a removeNode command does not move the applications into the cell because they exist from the first
addNode command. The resulting application servers added on the node do not contain any applications.
To deal with this situation, add the node and use the deployment manager to manage the applications.
Add the applications to the servers on the node after the node is incorporated into the cell.

Running the removeNode command completes the following actions and system conditions:
» Actions
— Stops all of the running server processes in the node, including the node agent process
— Removes the node configuration documents from the cell repository by sending commands to the
deployment manager
— Copies the original application server cell configuration that existed when the node was added and
the application originally install into the active configuration
+ System Condtions
— The EAR files remain on the deployment manager.
— The installed application remains on the deployment manager.
— No changes you made after federating the node will be restored to base node.
— You have the old base node that existed before federation. After federating, you still have the original
configuration for the node, the servers, and the original applications in their original states.
If you federate again, you overwrite any updates on the deployment manager.

Remember:

» After the node is removed from the cell, it will have the applications as they were before
the node was added to the cell. Any changes you made after federating will not be
included.

* The removeNode command returns a node from a WebSphere Application Server,
Network Deployment distributed administration cell to a stand-alone application server
installation.

You must have the following privileges or authorities to use the removeNode command:
* You must have Administrator privileges to use the removeNode function.

Depending on the size and location of the new node you remove from the cell, this command can take a
few minutes to complete.

Removing a node that was federated as part of cell profile creation

An application server node that is built as part of a cell profile creation does not have an original
configuration. Therefore, the removeNode command does not restore the node to a usable base
configuration. If you use the removeNode command on a node that was created during cell profile
creation, then the command indicates that the node removal utility cannot remove the node and restore
the node to a base configuration.

To successfully remove a node that was federated as part of a cell profile creation, use the Profile
Management Tool to delete the profile for the node. After the profile for the node is deleted, use the
cleanupNode command on the deployment manager to remove the node configuration from the cell
repository. You can create a new profile using the Profile Management Tool.

Syntax

See the following removeNode command syntax:

removeNode [options]

Chapter 3. Using the administrative clients 129

All the following parameters are optional.
Parameters

The following options are available for the removeNode command:

-force
Cleans up the local node configuration regardless of whether you can reach the deployment manager
for cell repository cleanup. After using the -force parameter, you might need to use the cleanupNode
command on the deployment manager.

-logfile <fileName>
Specifies the location of the log file to which trace information is written. By default, the log file is
named removeNode.log and is created in the logs directory of the profile for the node being removed.

-password <password>
Specifies the password for authentication if security is enabled.

-quiet
Suppresses the progress information that the removeNode command prints in normal mode.

-replacelog
Replaces the log file instead of appending to the current log file.

-statusport <portNumber>
An optional parameter that allows an administrator to set the port number for server status callback.
The tool opens this port and waits for status callback from the server just before the server has
completely stopped. If the parameter is not set, an unused port is automatically allocated.

-trace
Generates trace information into a file for debugging purposes.

-user <name>
Specifies the user name for authentication if security is enabled. Acts the same as the -username
option.

-username <name>
Specifies the user name for authentication if security is enabled. Acts the same as the -user option.

-help
Prints a usage statement.

-? Prints a usage statement.
Usage scenario

The following examples demonstrate correct syntax:

removeNode -quiet

removeNode -trace (produces the removeNode.log file)

cleanupNode command
The cleanupNode command cleans up a node configuration from the cell repository.
Only use this command to clean up a node if you have a node defined in the cell configuration, but the

node no longer exists. For more information about where to run this command, see the [Using command
ools| article.

130 Administering applications and their environment

Syntax

The command syntax is as follows:
cleanupNode <node name> [deploymgr host] [deploymgr port] [options]

where the first argument is required.
Parameters

The following options are available for the cleanupNode command:
-quiet
Suppresses the progress information that the cleanupNode command prints in normal mode.

-trace
Generates trace information into a log file for debugging purposes.

syncNode command

The syncNode command forces a configuration synchronization to occur between the node and the
deployment manager for the cell in which the node is configured.

The node agent server runs a configuration synchronization service that keeps the node configuration
synchronized with the master cell configuration. If the node agent is unable to run because of a problem in
the node configuration, you can use the syncNode command to perform a synchronization when the node
agent is not running in order to force the node configuration back in sync with the cell configuration. If the
node agent is running and you want to run the syncNode command, you must first stop the node agent.

The syncNode.log file is located in the]ogs directory.

For more information about where to run this command, see the Using command tools topic.
Syntax

The command syntax is as follows:
syncNode <deploymgr host> <deploymgr port> [options]
* The <deploymgr host> argument is required.

* The <deploymgr port> is the Java Management Extensions (JMX) port number that corresponds to the
connector type on the -conntype parameter.

Parameters

The following options are available for the syncNode command:

-stopservers
Tells the syncNode command to stop all servers on the node, including the node agent, before
performing configuration synchronization with the cell.

-restart
Tells the syncNode command to launch the node agent process after configuration synchronization
completes. If the node agent is running and you want to run the syncNode command, you must first
stop the node agent.

-nowait
Tells the syncNode command not to wait for successful initialization of the launched node agent
process.

Chapter 3. Using the administrative clients 131

-quiet
Suppresses the progress information that the syneNode command prints in normal mode.
-logfile <fileName>
Specifies the location of the log file to which trace information is written. By default, the log file is
named syncNode.log and is created in the Togs directory of the profile for the node that you are
synchronizing.

-replacelog
Replaces the log file instead of appending to the current log.

-trace
Generates trace information into a file for debugging purposes.

-timeout <seconds>
Specifies the waiting time before node agent initialization times out and returns an error.

-username <name>
Specifies the user name for authentication if security is enabled. Acts the same as the -user option.

-user <name>
Specifies the user name for authentication if security is enabled. Acts the same as the -username
option.

-password <password>
Specifies the password for authentication if security is enabled.

-conntype <type>
Specifies the Java Management Extensions (JMX) connector type to use for connecting to the
deployment manager. Valid types are SOAP or Remote Method Invocation (RMI). The default type is
SOAP.

-help
Prints a usage statement.

-? Prints a usage statement.
Usage scenario

The following examples demonstrate correct syntax:
syncNode.sh testhost 8879

syncNode.sh deploymgr 8879 -trace (produces the syncNode.log file)

syncNode.sh host25 4444 -stopservers -restart
(assumes that the deployment manager JMX port is 4444)

renameNode command

A short name is assigned to a node during installation and customization. Use the renameNode command
to modify the node name of a federated server.

Launch this command from the node whose name you want to modify. When you issue this command the
following occurs:

1. Connects to the deployment manager.

2. Stops all servers.

3. Changes the node configuration on the deployment manager.
4. Synchronizes the node.

For more information about where to run this command, see the [Using command line toolg| article.

132 Administering applications and their environment

Note: You can use the renameNode command to modify managed nodes. However, you cannot use it to
modify the node name for a deployment manager node. If you need to modify the node name for a
deployment manager node, you must modify the WAS_NODE variable within the
[profile_roo deployment_manager_namelbin/setupCmdLine file. For more information, see the
documentation about renaming deployment manager nodes.

Syntax

The command syntax is as follows:

renameNode.sh dmgr_host dmgr_port node_name
[-nodeshortname name] [-trace] [-conntype type][-username uid]
[-password pwd] [-1ogfile filename] [-help]

Parameters

The following options are available for the renameNode command:

-nodeshortname <name>
The short name of the node.

-trace
Generates additional trace information in the log file for debugging purposes.

-conntype <type>
Specifies the JMX connector type to use for connecting to the deployment manager. Valid types are
SOAP or RMI, which stands for Remote Method Invocation.

-username <uid>
Specifies the user name for authentication if security is enabled. Acts the same as the -user option.
The user name that you choose must be a pre-existing user name.

-password <pwd>
Specifies the password for authentication if security is enabled. The password that you choose must
be one that is associated with a pre-existing user name.

-logfile <filename>
Specifies the location of the log file to which trace information is written. By default, the log file is
called renameNode.log and is created in the logs directory of the profile for the node being renamed.

-help
Prints a usage statement.

-? Prints a usage statement.
Usage scenario

The following examples demonstrate correct syntax:
renameNode.sh localhost 8879 newnode

registerNode command

Use the registerNode command to register a stand-alone node with an administrative agent so that the
administrative agent can manage the node.

Run the registerNode command from the bin directory of the administrative agent server to register a node
with the administrative agent. When you run the command, the stand-alone node is converted into a node
that the administrative agent manages.

The administrative agent and the node being registered must be on the same computer.

Chapter 3. Using the administrative clients 133

gotcha: Registered nodes must have the same products as the administrative agent, and the products
must be at the same version levels on the registered node and the administrative agent. This
requirement is enforced because the administrative agent must have a matching environment in
order to handle all of the administrative capabilities of the registered node. A node is not allowed
to register with an administrative agent unless that node has an identical set of products and
versions.

You can only run the command on an unfederated node. If the command is run on a federated node, the
command exits with an error.

When you run the registerNode command, the command stops all running application servers on the node.
You can optionally stop application servers on the node that you are registering before running the
registerNode command.

transition: If you were previously running on Version 7.0.0.11 or earlier, and have an administrative agent
with a managed node that has mismatched products or versions, when you when you migrate
to Version 8.0, that administrative agent will not be able to start the subsystem for any
mismatched nodes. You must update these nodes to have the same products and versions as
the administrative agents, restart the servers on the node and then restart the administrative
agent, before the administrative agent can resume managing these registered nodes

If the administrative console or the management Enterprise JavaBeans (EJB) applications of the
application server being registered are enabled, the node registration process disables them.

Syntax

The registerNode command syntax is as follows:

registerNode [options]
Parameters

The following options are available for the registerNode command:

-conntype<JSR160RMI | IPC|RMI | SOAP>
The optional connector type used to connect to the administrative agent to initiate node registration.
The default is SOAP.

Note: You should eventually switch from the RMI connector to the JSR160RMI connector because
support for the RMI connector is deprecated.

-host host_name
An optional parameter that specifies the host name of the administrative agent.

-name managed_node_name
An optional parameter that specifies the name of the managed node after the node is registered with
the administrative agent.

-nodepassword node_password
An optional parameter that specifies the password of the node that you are registering. Specify this
parameter if security is on at the node and the password is different from the administrative agent
password. Use this parameter with the -nodeusername parameter. The -nodeusername and
-nodepassword parameters are used to stop all servers on the node.

-nodeusername node_user_name
An optional parameter that specifies the user name of the node that you are registering. Specify this
parameter if security is on at the node and the user name is different from the administrative agent
user name. Use this parameter with the -nodepassword parameter. The -nodeusername and
-nodepassword parameters are used to stop all servers on the node.

134 Administering applications and their environment

-openConnectors connectors

An optional parameter that specifies a list of connectors separated by commas of connectors that the

administrative agent will open. By default, all connectors are opened.

-port port_number
An optional parameter that specifies the port number of the administrative agent connector port.

The default port number is 8878 for the default SOAP port of the administrative agent. SOAP is the

default Java Management Extensions (JMX) connector type for the command. If you have multiple
product installations or multiple profiles, the SOAP port might be different from 8878. Examine the

administrative agent SystemQut.1og file to see the current ports in use.

Note: This topic references one or more of the application server log files. Beginning in WebSphere

Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,

SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are

using HPEL, you can access all of your log and trace information using the LogViewer

command-line tool from your server profile bin directory. See the information about using HPEL

to troubleshoot applications for more information on using HPEL.

-profilePath profile path
A required parameter that specifies the path to the profile of the application server node to be
registered.

-trace
An optional parameter that provides tracing output for the registerNode command.

-portsFile ports_file

An optional parameter that specifies the path to a file that defines port settings for the newly registered

node.

During node registration, the registerNode command uses an automatically generated set of

recommended ports if you do not specify the -portsFile parameter. The recommended port values can

be different than the default port values based on the availability of the default ports.

The format of the ports_file file that you specify is the same as the portdef.props file, except that only

the following ports are used: SOAP_CONNECTOR_ADDRESS, RMI_CONNECTOR_ADDRESS,
JSR160RMI_CONNECTOR_ADDRESS, and IPC_CONNECTOR_ADDRESS.

-profileName profile name
An optional parameter that specifies the profile name of the administrative agent.

-username username
An optional parameter that specifies the user ID to log on to the administrative agent.

-password password
An optional parameter that specifies the password to log on to the administrative agent.

-help
An optional parameter that prints a usage statement.

-? An optional parameter that prints a usage statement.
Usage scenarios

The following examples demonstrate correct syntax. Commands are split on multiple lines for printing
purposes.

registerNode.sh -conntype SOAP -port 8878
-profilePath app_server_root/profiles/default

Chapter 3. Using the administrative clients

135

deregisterNode command

Use the deregisterNode command to unregister a node from an administrative agent so that you can use
the node stand-alone, register the node with another administrative agent, or federate the node with the
deployment manager.

Run the deregisterNode command from the bin directory of the administrative agent. The node must have
been previously registered with the administrative agent. When you unregister a node, the node
configuration is retained, but is marked as not registered with the administrative agent.

When you run the deregisterNode command, the command stops all running application servers on the
node. You can optionally stop application servers on the node that you are unregistering prior to running
the deregisterNode command.

If the node that you unregister had the administrative console or management Enterprise JavaBeans (EJB)
applications installed prior to registering the node, they are re-enabled.

Syntax

The deregisterNode command syntax is as follows:
deregisterNode [options]

Parameters

The following options are available for the deregisterNode command:

-conntype<JSR160RMI | IPC|RMI | SOAP>
The optional connector type used to connect to the administrative agent to initiate node deregistration.
The default is SOAP.

Note: You should eventually switch from the RMI connector to the JSR160RMI connector because
support for the RMI connector is deprecated.

-host host_name
An optional parameter that specifies the host name of the administrative agent.

-nodepassword node_password
An optional parameter that specifies the password of the node that you are unregistering. Specify this
parameter if security is on at the node and the password is different than the administrative agent
password. Use this parameter with the -nodeusername parameter. The -nodeusername and
-nodepassword parameters are used to stop all servers on the node.

-nodeusername node_user_name
An optional parameter that specifies the use name of the node that you are unregistering. Specify this
parameter if security is on at the node and the user name is different than the administrative agent
user name. Use this parameter with the -nodepassword parameter. The -nodeusername and
-nodepassword parameters are used to stop all servers on the node.

-port port_number
An optional parameter that specifies the port number of the administrative agent connector port.

The default port number is 8878 for the default SOAP port of the administrative agent. SOAP is the
default Java Management Extensions (JMX) connector type for the command. If you have multiple
product installations or multiple profiles, the SOAP port might be different than 8878. Examine the
administrative agent SystemOut.1og file to see the current ports in use.

Note: This topic references one or more of the application server log files. Beginning in WebSphere
Application Server Version 8.0 you can configure the server to use the High Performance
Extensible Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,

136 Administering applications and their environment

SystemErr.log, trace.log, and activity.log files or native z/OS logging facilities. If you are
using HPEL, you can access all of your log and trace information using the LogViewer
command-line tool from your server profile bin directory. See the information about using HPEL
to troubleshoot applications for more information on using HPEL.

-profilePath profile path
A required parameter that specifies the path to the profile of the base node to be unregistered.

-trace
An optional parameter that provides tracing output for the deregisterNode command.

-profileName profile_name
An optional parameter that specifies the profile name of the administrative agent.

-username username
An optional parameter that specifies the user ID of the node to be unregistered.

-password password
An optional parameter that specifies the password of the node to be unregistered.

-help
An optional parameter that prints a usage statement.

-? An optional parameter that prints a usage statement.
Usage scenarios

The following examples demonstrate correct syntax. Commands are split on multiple lines for printing
purposes.

deregisterNode.sh -conntype SOAP -port 8878
-profilePath app_server_root/profiles/AppSrvOl

backupConfig command

The backupConfig command is a simple utility to back up the configuration of your node to a file.

By default, all servers on the node stop before the backup is made so that partially synchronized
information is not saved. For more information about where to run this command, see Using command line
tools. If you do not have root authority, you must specify a path for the backup file in a location where you
have write permission. The backup file will be in zip format and a .zip extension is recommended.

In a UNIX or Linux environment, the backupConfig command does not save file permissions or ownership
information. The restoreConfig command uses the current umask and effective user ID (EUID) to set the
permissions and ownership when restoring a file. If it is required that the restored files have the original
permissions and ownership, use the tar command (available on all UNIX or Linux systems) to back up and
restore the configuration.

Note: This command uses the user ID and password information in the properties/
ipc.client.props file. To avoid user ID and password prompts when you use this command, add
the user ID and password information to the ipc.client.props file.

Location

Issue the command from the bin directory.

Chapter 3. Using the administrative clients 137

Syntax

The command syntax is as follows:
backupConfig.sh backup_file [options]

where backup_file specifies the file to which the backup is written. If you do not specify one, a unique
name is generated.

Parameters

The following options are available for the backupConfig command:

-nostop
Tells the backupConfig command not to stop the servers before backing up the configuration

-quiet
Suppresses the progress information that the backupConfig command prints in normal mode

-logfile file_name
Specifies the location of the log file to which trace information is written

By default, the log file is named backupConfig.log and is created in the Togs directory.

-replacelog
Replaces the log file instead of appending to the current log

-trace
Generates trace information into the log file for debugging purposes

-username user_name
Specifies the user name for authentication if security is enabled in the server; acts the same as the
-user option

-user user_name
Specifies the user name for authentication if security is enabled in the server; acts the same as the
-username option

-password password
Specifies the password for authentication if security is enabled in the server

-help
Prints a usage statement

-? Prints a usage statement
Usage

The following example creates a new file that includes the current date:
backupConfig.sh WebSphereConfig 2005-04-22.zip

The following example creates a file called myBackup.zip and does not stop any servers before beginning
the backup process:

backupConfig.sh myBackup.zip -nostop

restoreConfig command

Use the restoreConfig command to restore the configuration of your node after backing up the
configuration using the backupConfig command.

The restoreConfig command is a simple utility to restore the configuration of your node after backing up
the configuration using the backupConfig command. By default, all servers on the node stop before the

138 Administering applications and their environment

configuration restores so that a node synchronization does not occur during the restoration. If the
configuration directory already exists, it is renamed before the restoration occurs. For more information
about where to run this command, see Using command line tools.

If you directly make changes to the application files in the |app_server_roof/installedApps directory, a
process known as "hot deployment”, but do not make the same changes to the application files in the
|app_server_rooﬂ/ config directory, the changes might be overwritten if you use the restoreConfig
command.

The backupConfig command does not save file permissions or ownership information. The restoreConfig
command uses the current umask and effective user ID (EUID) to set the permissions and ownership

when restoring a file. If it is required that the restored files have the original permissions and ownership,
use the tar command (available on all UNIX or Linux systems) to back up and restore the configuration.

If you are using a logical directory for|app_server_roozi/conf1’g, the restoreConfig command will not work.

Location
Issue the command from the b1’n directory.
Syntax

The command syntax is as follows:
restoreConfig.sh backup_file [options]

where backup_file specifies the file to be restored. If you do not specify one, the command will not run.
Parameters

The following options are available for the restoreConfig command:

-help
Prints a usage statement

-location directory_name
Specifies the directory where the backup file is restored

The location defaults to the [app_server_root/config directory.

-logfile file_name
Specifies the location of the log file to which trace information is written

By default, the log file is named restoreConfig.log and is created in your 1ogs directory.

-nostop
Tells the restoreConfig command not to stop the servers before restoring the configuration

-password password
Specifies the password for authentication if security is enabled in the server

-quiet
Suppresses the progress information that the restoreConfig command prints in normal mode

-replacelog
Replaces the log file instead of appending to the current log

-trace
Generates trace information into the log file for debugging purposes

Chapter 3. Using the administrative clients 139

-username user_name
Specifies the user name for authentication if security is enabled in the server; acts the same as the
-user option

-user user_name
Specifies the user name for authentication if security is enabled in the server; acts the same as the
-username option

-? Prints a usage statement
Usage

The following example demonstrates correct syntax:
restoreConfig.sh WebSphereConfig 2006-04-22.zip

The following example restores the given file to the /tmp directory and does not stop any servers before
beginning the restoration:

restoreConfig.sh WebSphereConfig 2006-04-22.zip -location /tmp -nostop

Be aware that if you restore the configuration to a directory that is different from the directory that was
backed up when you performed the backupConfig command, you might need to manually update some of
the paths in the configuration directory.

versioninfo command

The versioninfo command generates a report that includes a list of installed fix packs and interim fixes.
Product version information

The versioniInfo tool displays important data about the product and its installed fix packs and interim fixes,
such as the build version and build date. This tool is particularly useful when working with support
personnel to determine the cause of any problem.

Product version reports

The following report-generation scripts display installed product information:
* versionInfo script

Lets you use parameters to create a version report.
+ [genVersionReport scripf

Generates the versionReport.html report file in the current working directory, which is usually the
app_server_root/bin directory.

Location of the command file

Syntax for the versioninfo command
The command syntax is:

Issue the command from the bin directory of app_server_root.

Parameters

-2 or /?
Displays command syntax.

140 Administering applications and their environment

-components
This parameter is deprecated and performs no action.

-componentDetail

This parameter is deprecated and performs no action.
-file file_name

Specifies the output file name. The report goes to standard output (stdout) by default.
-fixpacks

Adds a list of applied fixpacks to the report.

-fixpackDetail
Adds details about applied fixpacks to the report.

-format text | html
Selects the format of the report. The default is "text".

-help or /help

Displays command syntax.
-ifixes

Adds a list of applied ifixes to the report.
-ifixDetail

Adds details about applied ifixes to the report.

-Tong
Creates the long version of the report.

-maintenancePackageDetail
This option is deprecated, and it performs an action that is equivalent to -fixpackDetail plus -ifixDetail.

-maintenancePackages
This option is deprecated, and it performs an action that is equivalent to -fixpacks plus -ifixes.

-usage
Displays command syntax.

Report description
The versioninfo command reports the following information:

Installation information
Displays the following general information about the current installation:

* Report date and time - The date and time that the report was generated. The timestamp is formatted
according to the current locale.

* Product Directory - The file path to the installation root directory defined by the WAS_HOME
environment variable.

» Version Directory - The file path of the version directory of the current IBM WebSphere Application
Server - ND installation.

» DTD Directory - The file path of the DTD directory of the current IBM WebSphere Application Server - ND
installation.

* Log Directory - The file path of the Tog directory of the current IBM WebSphere Application Server - ND
installation. The fix pack and interim fix log files are in the 1og directory.

Product list information
Displays a list of installed WebSphere products:

* Product ID - The product ID of the installed product.
» Status - The status of the product, either installed or uninstalled.

Chapter 3. Using the administrative clients 141

Installed product information
This information and the other information topic descriptions are hierarchal for each installed product,
installed fix packs and interim fixes, and included APARs.

This section of the report displays the following information:
* Name - The name of the installed product.

» Version - The current version of the product. Installing or uninstalling fix packs or refresh packs modifies
this version.

* ID - The product ID of the product installed, such as BASE, BASETRIAL, ND, EXPRESS,
EXPRESSTRIAL, embeddedEXPRESS, IHS, XD, PLG, or CLIENT.

* Build Level - The build level of the installed product.

» Build Date - The build date of the installed product.

» Architecture - The architecture of the installed product.

* Installed Features - The features installed on the product.

Installed fix pack information: Displays the general fix pack information:

* Product ID - The ID of the product that this fix pack is for.

» Version - The version of this fix pack.

* Installation Manager Offering ID - The ID of offering or product installed using Installation Manager.
* Build Level - The build level of this fix pack.

* Build Date - The build date of this fix pack.

Installed interim fix information: Displays the general interim fix information:

* Interim Fix ID - The ID of this interim fix.

* Product ID - The ID of the product that this interim fix is for.

* Applicable Level - The level of the fix pack on which this interim fix is built.

* Installation Manager Offering ID - The ID of offering or product installed using Installation Manager.
» Build Level - The build level of this interim fix.

» Build Date - The build date of this interim fix.

Included APARs information: Displays the list of APARs fixed by this fix pack or interim fix.

Sample versioninfo report

When the WebSphere Application Server Network Deployment product has no interim fixes or fix packs
applied, the versionInfo script outputs information similar to the following:

Report at date and time April 7, 2010 12:19:43 PM EDT

Installation

Product Directory G:\IBM\WebSphere\AppServer_v8_nd

Version Directory G:\IBM\WebSphere\AppServer_v8_nd\properties\version

DTD Directory G:\IBM\WebSphere\AppServer_v8_nd\properties\version\dtd

Log Directory C:\Documents and Settings\A11 Users\Application Data\IBM\Installation Manager\logs

Product List

Name IBM WebSphere Application Server - ND
Version 8.0.0.0

1D ND

Build Level 8.0.0.20091024_0330

Build Date 2009-10-24 03:30:00-0400
Architecture Intel (32 bit)

142 Administering applications and their environment

Installed Features Non-English language packages for the application server runtime environment
Sample applications

genVersionReport command

The genVersionReport command uses the versioninfo command to generate the versionReport.htm]
report file in the current working directory, which is usually the bin directory. The report includes a list of
installed fix packs and interim fixes.

Product version information

The versioninfo tool displays important data about the product, such as the build version and build date.
This tool is particularly useful when working with support personnel to determine the cause of any
problem.

Product version reports

The following report-generation scripts display installed product information:
+ [“versionInfo command” on page 140

Use the versionIinfo command to specify your own report parameters when creating a customized
version report.

» genVersionReport command
Use the genVersionReport command to generate the versionReport.html report file in the current
working directory, which is usually the bin directory. The report includes the list of fix packs and interim
fixes.

Location of the command file

Syntax for the genVersionReport command
The command syntax is:

Issue the command from the bin directory of the app_server_root directory.

Report description
The versioninfo command reports the following information:

Installation information
Displays the following general information about the current installation:

* Report date and time - The date and time that the report was generated. The timestamp is formatted
according to the current locale.

» Product Directory - The file path to the installation root directory defined by the WAS_HOME
environment variable.

» Version Directory - The file path of the version directory of the current IBM WebSphere Application
Server - ND installation.

« DTD Directory - The file path of the DTD directory of the current IBM WebSphere Application Server - ND
installation.

* Log Directory - The file path of the 1og directory of the current IBM WebSphere Application Server - ND
installation. The fix pack and interim fix log files are in the directory.

Chapter 3. Using the administrative clients 143

Product list information
Displays a list of installed WebSphere products:

* Product ID - The product ID of the installed product.
» Status - The status of the product, either installed or uninstalled.

Installed product information
This information and the other information topic descriptions are hierarchal for each installed product,
installed fix packs and interim fixes, and included APARs.

This section of the report displays the following information:
* Name - The name of the installed product.

» Version - The current version of the product. Installing or uninstalling fix packs or refresh packs modifies
this version.

* ID - The product ID of the product installed, such as BASE, BASETRIAL, ND, EXPRESS,
EXPRESSTRIAL, embeddedEXPRESS, IHS, XD, PLG, or CLIENT.

» Build Level - The build level of the installed product.

» Build Date - The build date of the installed product.

» Architecture - The architecture of the installed product.

* Installed Features - The features installed on the product.

Installed fix pack information: Displays the general fix pack information:

* Product ID - The ID of the product that this fix pack is for.

» Version - The version of this fix pack.

 Installation Manager Offering ID - The ID of offering or product installed using Installation Manager.
» Build Level - The build level of this fix pack.

* Build Date - The build date of this fix pack.

Installed interim fix information: Displays the general interim fix information:

* Interim Fix ID - The ID of this interim fix.

* Product ID - The ID of the product that this interim fix is for.

» Applicable Level - The level of the fix pack on which this interim fix is built.

 Installation Manager Offering ID - The ID of offering or product installed using Installation Manager.
+ Build Level - The build level of this interim fix.

» Build Date - The build date of this interim fix.

Included APARs information: Displays the list of APARs fixed by this fix pack or interim fix.

Sample genVersionReport report

When the WebSphere Application Server Network Deployment product has no interim fixes or fix packs
applied, the genVersionReport script creates the following information in the versionReport.html report
file.

On a Windows system, the report might resemble the following example:

Report at date and time April 7, 2010 12:19:43 PM EDT

Installation

Product Directory G:\IBM\WebSphere\AppServer_v8_nd

Version Directory G:\IBM\WebSphere\AppServer_v8_nd\properties\version

DTD Directory G:\IBM\WebSphere\AppServer_v8_nd\properties\version\dtd

Log Directory C:\Documents and Settings\A11 Users\Application Data\IBM\Installation Manager\logs

144 Administering applications and their environment

Product List

Name IBM WebSphere Application Server - ND
Version 8.0.0.0

D ND

Build Level 8.0.0.20091024_0330

Build Date 2009-10-24 03:30:00-0400

Architecture Intel (32 bit)

Installed Features Non-English Tanguage packages for the application server runtime environment
Sample applications

historylnfo command

The historylnfo command generates a report that includes a history of installed or uninstalled fix packs and
interim fixes.

Product history information

The historylInfo tool displays important data about the product, such as the build version and build date.
History information for installation and removal of fix packs and interim fixes also displays in the report.
This tool is particularly useful when working with support personnel to determine the cause of any
problem.

Product history reports

The following report-generation scripts display installed product information:
* historyInfo script

Lets you use parameters to create a history report.
+ |genHistoryReport script]

Generates the historyReport.html report file in the current working directory, which is usually the bin
directory.

Location of the command file

Syntax for the historylnfo command
The command syntax is:

Issue the command from the bin directory of the app_server_root directory.

Parameters

-2 or /?
Displays command syntax.

-component component_name
This parameter is deprecated and performs no action.

-file file_name
Specifies the output file name. The report goes to standard output (stdout) by default.

-format text | html
Selects the format of the report. The default is "text".

Chapter 3. Using the administrative clients 145

-help or /help
Displays command syntax.

-maintenancePackageID ID of Installation_Manager offering
This option is deprecated and equivalent to using -offeringID.

-offeringID ID of Installation_Manager offering
Specifies the ID of the Installation Manager offering. When it is specified, the product history report
displays events for only the named offering. When it is not specified, the report displays events for all
offerings.

-usage
Displays command syntax.

Report description
The historylnfo command reports the following information:

Installation information
Displays the following general information about the current installation:

* Report date and time - The date and time that the report was generated. The timestamp is formatted
according to the current locale.

* Product Directory - The file path to the installation root directory of the product.
» Version Directory - The file path of the version directory of the current product installation.
» DTD Directory - The file path of the DTD directory of the current installation.

* Log Directory - The file path of the Tog directory of the current installation. The fix pack and interim fix
log files are in the directory.

Installation event information
Displays the list of installed fix packs and interim fixes as well as the following related information:

* Installation Manager Offering ID or Fix ID - The ID of the offering or product installed using Installation
Manager.

¢ Action - The action taken.

» Version - Either the version of the interim fix or the version of the product after the action was
performed.

* Log File Name - The file path of the log file generated during the event.

» Timestamp - The time when the action occurred. The time is stated in relation to GMT.
* Result - The result of the action. The result is either success, partial success, or failure.
* Installed Features - The features installed on the product.

Sample historylnfo report
The historyInfo script outputs the information similar to the following:

Report at date and time April 7, 2010 3:07:36 PM EDT

Installation

Product Directory G:\IBM\WebSphere\AppServer_v8 nd

Version Directory G:\IBM\WebSphere\AppServer_v8 nd\properties\version

DTD Directory G:\IBM\WebSphere\AppServer_v8 nd\properties\version\dtd

Log Directory C:\Documents and Settings\A11 Users\Application Data\IBM\Installation Manager\logs

Installation Event

Install Manager Offering ID com.ibm.websphere.ND.v80

Action install

Version 8.0.0.0

Log File Name C:\Documents and Settings\A11 Users\Application Data\IBM\Installation Manager\1ogs\20091026_1527.xmI
Timestamp 2009-10-26 17:35:27-0400

146 Administering applications and their environment

Result success
Installed Features Sample applications

Installation Event

Install Manager Offering ID com.ibm.websphere.ND.v80

Action install

Version 8.0.0.0

Log File Name C:\Documents and Settings\A11 Users\Application Data\IBM\Installation Manager\10ogs\20091027_1347.xml
Timestamp 2009-10-27 13:48:03-0400

Result success

Installed Features Sample applications

Non-English Tanguage packages for the application server runtime environment

Installation Event

Install Manager Offering ID com.ibm.websphere.ND.v80

Action update

Version 8.0.0.7

Log File Name C:\Documents and Settings\A11 Users\Application Data\IBM\Installation Manager\1ogs\20091027_1347.xml
Timestamp 2009-10-27 13:53:48-0400

Result success

Installed Features Non-English Tanguage packages for the application server runtime environment

Sample applications

Installation Event

Fix ID com.ibm.websphere.ND.v80.FP8007.fix.1

Action install

Version 8.0.0.7

Log File Name C:\Documents and Settings\A11 Users\Application Data\IBM\Installation Manager\10ogs\20091027_1347.xml
Timestamp 2009-10-27 15:09:43-0400

Result success

Installation Event

Install Manager Offering ID com.ibm.websphere.ND.v80

Action uninstall

Version 8.0.0.7

Log File Name C:\Documents and Settings\A11 Users\Application Data\IBM\Installation Manager\1ogs\20091027_1347.xml
Timestamp 2009-10-27 16:01:52-0400

Result success

Installed Features Non-English Tanguage packages for the application server runtime environment

genHistoryReport command

The genHistoryReport command generates the historyReport.html report file in the current working
directory, which is usually the bin directory. The report includes a list of installed or uninstalled fix packs
and interim fixes. The genHistoryReport script invokes the historyInfo script specifying the correct
parameters to place the information generated into an HTML file in the current directory.

Product history information

The historylInfo tool displays historical data about the product and the installation and removal of fix packs
and interim fixes for the product. This tool is particularly useful when working with support personnel to
determine the cause of any problem.

Product history reports

The following report-generation scripts display installed product information:
* [“historyInfo command” on page 145|

Lets you use parameters to create a history report.
» genHistoryReport script

Generates the historyReport.html report file in the current working directory, which is usually the bin
directory. The report includes a list of fix packs and interim fixes.

Chapter 3. Using the administrative clients 147

Location of the command file

Syntax for the genHistoryReport command
The command syntax is:

Issue the command from the bin directory of the app_server_root directory.

Report description

The historylnfo command generates the report. The genHistoryReport command calls the historylnfo
command with a set of report parameters that reports the following information:

Installation information
Installation information displays the following general information about the current installation:

* Report date and time - The date and time that the report was generated. The timestamp is formatted
according to the current locale.

» Product Directory - The file path to the installation root directory of the product.
» Version Directory - The file path of the version directory of the current product installation.
» DTD Directory - The file path of the DTD directory of the current installation.

» Log Directory - The file path of the Tog directory of the current installation. The fix pack and interim fix
log files are in the directory.

Installation event information
Installation event information displays the list of installed fix packs and interim fixes as well as the following
related information:

* Installation Manager Offering ID or Fix ID - The ID of the offering or product installed using Installation
Manager.

¢ Action - The action taken.

» Version - Either the version of the interim fix or the version of the product after the action was
performed.

* Log File Name - The file path of the log file generated during the event.

» Timestamp - The time when the action occurred. The time is stated in relation to GMT.
* Result - The result of the action. The result is either success, partial success, or failure.
» Installed Features - The features installed on the product.

Sample historylnfo report
The genHistoryReport script creates the following information in the historyReport.html report file:

Report at date and time April 7, 2010 3:07:36 PM EDT

Installation

Product Directory G:\IBM\WebSphere\AppServer_v8 nd

Version Directory G:\IBM\WebSphere\AppServer_v8 nd\properties\version

DTD Directory G:\IBM\WebSphere\AppServer_v8 nd\properties\version\dtd

Log Directory C:\Documents and Settings\A11 Users\Application Data\IBM\Installation Manager\logs

Installation Event

Install Manager Offering ID com.ibm.websphere.ND.v80

Action install

Version 8.0.0.0

Log File Name C:\Documents and Settings\A11 Users\Application Data\IBM\Installation Manager\10gs\20091026_1527.xmI
Timestamp 2009-10-26 17:35:27-0400

Result success

Installed Features Sample applications

Installation Event

148 Administering applications and their environment

Install Manager Offering ID com.ibm.websphere.ND.v80

Action install

Version 8.0.0.0

Log File Name C:\Documents and Settings\A11 Users\Application Data\IBM\Installation Manager\1ogs\20091027_1347.xml
Timestamp 2009-10-27 13:48:03-0400

Result success

Installed Features Sample applications

Non-English language packages for the application server runtime environment

Installation Event

Install Manager Offering ID com.ibm.websphere.ND.v80

Action update

Version 8.0.0.7

Log File Name C:\Documents and Settings\A11 Users\Application Data\IBM\Installation Manager\1ogs\20091027_1347.xml
Timestamp 2009-10-27 13:53:48-0400

Result success

Installed Features Non-English Tanguage packages for the application server runtime environment

Sample applications

Installation Event

Fix ID com. ibm.websphere.ND.v80.FP8007.fix.1

Action install

Version 8.0.0.7

Log File Name C:\Documents and Settings\A11 Users\Application Data\IBM\Installation Manager\10ogs\20091027_1347.xml
Timestamp 2009-10-27 15:09:43-0400

Result success

Installation Event

Install Manager Offering ID com.ibm.websphere.ND.v80

Action uninstall

Version 8.0.0.7

Log File Name C:\Documents and Settings\A11 Users\Application Data\IBM\Installation Manager\1ogs\20091027_1347.xml
Timestamp 2009-10-27 16:01:52-0400

Result success

Installed Features Non-English Tanguage packages for the application server runtime environment

managesdk command

The managesdk command provides the names of software development kits that are used by the product.

Note: Use the managesdk command to:
» List the software development kit (SDK) names that are available to a product installation.
» List the SDK names that a specified profile is currently configured to use.

» For each profile in a product installation, list the SDK names that the profile is currently
configured to use.

* Enable a profile to use a specified SDK name.

« Enable all profiles in an installation to use a specified SDK name.

* Get the SDK name that is used to configure new profiles.

* Change the default SDK name that profiles use.

» Get the SDK name that is used by scripts called from a product bin directory.

* Change the SDK name that scripts in a product bin directory use by default. The SDK name is
used when no existing profile name is specified and the default profile name is not applicable.

The command file is located in the app_server_root/bin directory, app_client _root/bin directory, and
plugins_root/bin directory.

Chapter 3. Using the administrative clients 149

Attention: If the managesdk command is used to change the SDK for a profile from a 31-bit (z/OS) or
32-bit (IBM i) SDK to a 64-bit SDK, and you are using third-party resource adapters, consider the following
information to avoid potential problems. This information does not apply to any of the built-in resource
adapters shipped with the WebSphere Application Server product, including the IBM WebSphere
Relational Resource Adapter, the IBM WebSphere MQ Resource Adapter, or the IBM SIB JMS Resource
Adapter as they have been fully tested to work with all IBM SDKs. Because resource adapters can use
non-Java libraries containing platform-specific native code, it is possible that changing the SDK from 31-bit
(z/OS) or 32-bit (IBM i) to 64-bit, or from 64-bit to 31-bit or 32-bit, might result in the resource adapter not
functioning properly. If a third-party resource adapter is installed, either stand-alone or embedded in an
enterprise application, on a server for which you intend to change the SDK, verify with the supplier of that
resource adapter that any native libraries it uses are compatible with the selected SDK.

Syntax

Use the following command syntax with the managesdk command:
managesdk -task [-parameter] [value]

The command-line tool validates that the requested task contains the required parameters and values.
Parameters are not case-sensitive. However, values are case-sensitive. You must type values with the
correct capitalization because the command-line tool does not validate the capitalization of the parameter
values. Incorrect results can occur when the parameter value is not typed correctly.

Parameters

The following -task options are available for the managesdk command:

-help
Displays detailed information about the parameters or values of each managesdk task. The following
example uses the help parameter with the managesdk command:

app_server_root/bin/managesdk.sh -help
The output from the help option describes the required and optional parameters.

-listAvailable [-verbose]
Displays a list of all SDK names available to the product installation. When the -verbose option is also
specified, a list of properties for each SDK name also is displayed. The following example uses the
-listAvailable -verbose parameters with the managesdk command:

app_server_root/bin/managesdk.sh -T1istAvailable -verbose

The output is a list of all SDK names that the product installation can use, along with a list of the
properties associated with each SDK name.

-listEnabledProfile [-profileName profile_name] [-verbose]
Displays a list of all SDK names that a specified profile, and its node and servers, is currently
configured to use. When the -verbose option is also specified, a list of properties for each SDK name
also is displayed. The following example uses the -listEnabledProfile -profileName and -verbose
parameters with the managesdk command:

app_server_root/bin/managesdk.sh -T1istEnabledProfile -profileName AppSrv02 -verbose

The output is a list of all SDK names that the specified profile can use, along with a list of the
properties associated with each SDK name.

-listEnabledProfileAll [-verbose]
Displays a list of all profiles in an installation and the SDK names that each profile, and its node and
servers, is currently configured to use. When the -verbose option is also specified, a list of properties
for each SDK name also is displayed. The following example uses the -listEnabledProfileAll and
-verbose parameters with the managesdk command:

app_server_root/bin/managesdk.sh -TistEnabledProfileAll -verbose

150 Administering applications and their environment

The output is a list of all profiles in a product installation with all SDK names that each profile can use,
along with a list of the properties associated with each SDK name.

-enableProfile [-profileName profile_name] [-sdkname sdkName] [-enableServers] [-user user_name]
[-password password_value]
Enables a profile to use a specified SDK name. The -profileName parameter specifies the profile and
the -sdkname parameter specifies the SDK name. The command enables the profile and the
node-level default SDK of the profile to use the specified SDK name. Unless the -enableServers option
is used, the command does not change server-level SDK settings. If the -enableServers option is
used, all server-level SDK settings are cleared, enabling all servers to use the node-level default SDK.

The following conditions apply when the managesdk command is run:

 If the profile is a federated node or a deployment manager node, the deployment manager must be
running when the managesdk command attempts to update the profile. When enabling the SDK for
a node, run the managesdk command from the /bin directory of the product installation to which
the node belongs or from the /bin directory of the profile that contains the node you want to
update.

* A connection to the deployment manager must exist using a supported connector protocol in the
following order of preference:
1. SOAP
2. Inter-Process Communications (IPC)
3. Remote Method Invocation (RMI)

If the SOAP protocol is enabled, the managesdk command uses the SOAP protocol. If the SOAP
protocol is not enabled but the IPC protocol is enabled, the command uses the IPC protocol. If
neither the SOAP nor the IPC protocol are enabled, then the command uses the RMI protocol.

* You must provide the administrative user name and password with the managesdk command for
each profile that contains a federated node or deployment manager node in a cell with security
enabled. If you do not specify the -user and -password parameters, the managesdk command might
fail or stop processing. The topic on configuring security with scripting provides connector protocol
specific instructions on how to save user name and password values.

* When enabling the SDK for a deployment manager, only the deployment manager server is
enabled. None of the managed nodes of the deployment manager are enabled to use the specific
SDK.

The following example uses -enableProfile, -profileName, -sdkname, and -enableServers with the
managesdk command:

app_server_root/bin/managesdk.sh -enableProfile -profileName AppSrv02 -sdkname 1.6 32 -enableServers
app_server_root/bin/managesdk.sh -enableProfile -profileName AppSrv02 -sdkname 1.6 64 -enableServers

The output is a message that indicates whether the specified profile was successfully updated and is
now enabled to use the specified SDK, or whether problems were encountered that prevented the
profile from being successfully updated.

-enableProfileAll [-sdkname sdkName] [-enableServers] [-user user_name] [-password
password_value]
Enables all profiles in an installation to use a specified SDK name. The -sdkname parameter specifies
the SDK name. The command enables all profiles and the node-level default SDK of each profile to
use the specified SDK name. Unless the -enableServers option is used, the command does not
change server-level SDK settings. If the -enableServers option is used, all server-level SDK settings
are cleared, enabling all servers to use the node-level default SDK.

The following conditions apply when the managesdk command is run:

+ If the profile is a federated node or a deployment manager node, the deployment manager must be
running when the managesdk command attempts to update the profile. When enabling the SDK for
a node, run the managesdk command from the /bin directory of the product installation to which
the node belongs or from the /bin directory of the profile that contains the node you want to
update.

Chapter 3. Using the administrative clients 151

* A connection to the deployment manager must exist using a supported connector protocol in the
following order of preference:
1. SOAP
2. Inter-Process Communications (IPC)
3. Remote Method Invocation (RMI)

If the SOAP protocol is enabled, the managesdk command uses the SOAP protocol. If the SOAP
protocol is not enabled but the IPC protocol is enabled, the command uses the IPC protocol. If
neither the SOAP nor the IPC protocol are enabled, then the command uses the RMI protocol.

* You must provide the administrative user name and password with the managesdk command for
each profile that contains a federated node or deployment manager node in a cell with security
enabled. If you do not specify the -user and -password parameters, the managesdk command might
fail or stop processing. The topic on configuring security with scripting provides connector protocol
specific instructions on how to save user name and password values.

Note: Do not use the -enableProfileAll option unless automatic prompting is disabled for SOAP,
IPC, and RMI connections to the deployment managers of cells that have any federated
node or deployment manager with security enabled. Automatic prompting causes the
managesdk command to fail or stop processing.

* When enabling the SDK for a deployment manager, only the deployment manager server is
enabled. None of the managed nodes of the deployment manager are enabled to use the specific
SDK.

The following example uses -enableProfileAll, -sdkname, and -enableServers with the managesdk
command:

app_server_root/bin/managesdk.sh -enableProfileAll -sdkname 1.6 64 -enableServers

The output is a message for each profile that indicates whether the profile was successfully updated
and is now enabled to use the specified SDK, or whether problems were encountered that prevented
the profile from being successfully updated.

-getNewProfileDefault [-verbose]
Displays the SDK name that is currently configured for all profiles that are created with the
manageprofiles command. When the -verbose option is also specified, properties information for the
single SDK name also is displayed.

The following example uses the -getNewProfileDefault -verbose parameters with the managesdk
command:
app_server_root/bin/managesdk.sh -getNewProfileDefault -verbose

After the command runs, the new profile default SDK name is displayed.

-setNewProfileDefault [-sdkname sdkName]
Changes the SDK name that is currently configured for all profiles that are created with the
manageprofiles command. The -sdkname parameter specifies the default SDK name to use. The
sdkName value must be an SDK name that is enabled for the product installation.

The following example uses the -setNewProfileDefault -sdkname parameters with the managesdk
command:
app_server_root/bin/managesdk.sh -setNewProfileDefault -sdkname 1.6_64

After the command runs, the new profile default SDK name is displayed.

-getCommandDefault [-verbose]
Displays the SDK name that script commands in the app_server _root/bin, app_client _root/bin, or
plugins_root/bin directory are enabled to use when no existing profile name is specified or when the
default profile name is used. When the -verbose option is also specified, properties information for the
single SDK name also is displayed.

152 Administering applications and their environment

The following example uses the -getCommandDefault -verbose parameters with the managesdk
command:

app_server_root/bin/managesdk.sh -getCommandDefault -verbose

-setCommandDefault [-sdkname sdkName]
Changes the SDK name that script commands in the app_server_root/bin, app_client_root/bin, or
plugins_root/bin directory are enabled to use when no existing profile name is specified or when the
default profile name is used. The -sdkname parameter specifies the SDK name to use for commands.
The sdkName value must be an SDK name that is enabled for the product installation.

The following example uses the -getCommandDefault -sdkname parameters with the managesdk
command:

app_server_root/bin/managesdk.sh -setCommandDefault -sdkname 1.6 64

The following special parameter options are available with task parameters of the managesdk command:

-debug
Use this option with any -task parameter to enable additional debugging information in the command
output.

-quiet
Use this option with any -task parameter to suppress most messages in the command output.
-sdkname
Use this option with a -set task parameter to specify an SDK name that is enabled for the product
installation; for example:
e -sdkname 1.6_31
-verbose

Use this option with any -list or -get task parameter to provide additional information, such as SDK
properties in the command output.

GenPluginCfg command

The GenPluginCfg command is used to regenerate the WebSphere web server plug-in configuration file,
plugin-cfg.xml.

For more information about where to run this command, see the [Using command toold article.

CAUTION:

Regenerating the plug-in configuration can overwrite manual configuration changes that you might
want to preserve. Before performing this task, understand its implications as described in the
Communicating with web servers topic in the Setting up the application serving environment PDF.

Note: You must delete the plugin-cfg.xml file in the conﬁg/ceHs directory before you use
this command. Otherwise, configuration changes do not persist to the plugin-cfg.xml file.

Note: You can update the global plugin-cfg.xml file using the administrative console or running the
GenPluginCfg command for all of the clusters in a cell. However, you must delete the
config/cells/plugin-cfg.xml file before you update the global plugin-cfg.xml file. If you do not
delete the config/cells/plugin-cfg.xml file, only the new properties and their values are added to
the global plugin-cfg.xml file. Any updates to existing plug-in property values are not added to the
global plugin-cfg.xml file.

Syntax

To regenerate the plug-in configuration perform one of the following:
* |ssue the following command:

Chapter 3. Using the administrative clients 153

bin/GenPluginCfg.sh

This method for regenerating the plug-in configuration creates a plugin-cfg.xml file in UTF-8 format,
which is the proper format for execution in a z/OS environment.

When the GenPluginCfg command is issued with the option -webserver.name webservrName, wsadmin
generates a plug-in configuration file for the web server. The settings in the generated configuration file are
based on the list of applications that are deployed on the web server. When this command is issued
without the option -webserver.name webservrName, the plug-in configuration file is generated based on
topology.

Parameters

The following options are available for the GenPluginCfg command:

-config.root configroot_dir
Defaults to CONFIG_ROOT. The setupCmdLine command is invoked to get this environment
variable.

-cell.name cell
Defaults to WAS_CELL. The setupCmdLine command is invoked to get this environment variable.

-node.name node
Defaults to WAS_NODE. The setupCmdLine command is invoked to get this environment variable.

-webserver.name webserverl
Required for creating plug-in configuration file for a given Web server.

-propagate yes/no
Applicable only when the webserver.name option is specified and the web server is local. Otherwise,
you must manually copy the plugin-cfg.xml file from|app_server_rool/profiles/profile_name/
config\cells\cell_name\nodes\node_name\servers\web_server_name to |plugins_roo}/config/
web_server_name in the remote web server plugins directory. The default value is no.

-propagateKeyring yes/no
Applicable only when the option webserver.name is specified and the web server is local. Defaults to
no.

-cluster.name clusterl,cluster2 | ALL
Optional list of clusters. Ignored when the option webserver.name is specified.

-server.name serverl,server2
Optional list of servers. Required for single server plug-in generation. Ignored when the option
webserver.name is specified.

-output.file.name file_name
Defaults to the configroot_dir/plugin-cfg.xmil file. Ignored when the option webserver.name is specified.

-destination.root root
Installation root of the machine configuration is used on. Ignored when the option webserver.name is
specified.

-destination.operating.system windows/unix
Operating system of the machine configuration is used on. Ignored when the option webserver.name is
specified.

-force yes
Creates a new configuration instead of attempting to merge with an exiting configuration when
command is issued for a cell-wide file generation.

-debug yes/no
Defaults to no.

154 Administering applications and their environment

-help
Prints a usage statement.

-? Prints a usage statement.
Usage scenario

To generate a plug-in configuration for all of the clusters in a cell:
GenPTuginCfg.sh -cell.name NetworkDeploymentCell

To generate a plug-in configuration for a single server:
GenPluginCfg.sh -cell.name BaseApplicationServerCell -node.name appServerNode -server.name appServerName

To generate a plug-in configuration file for a web server:
GenPluginCfg.sh -cell.name BaseApplicationServerCell -node.name webserverNode -webserver.name webserverName

EARExpander command

Use the EARExpander command to expand an enterprise archive file (EAR) into a directory to run the
application in that EAR file.

You can collapse a directory containing application files into a single EAR file. You can type EARExpander
with no arguments to learn more about its options. For more information about where to run this
command, see the topic on using command tools.

Restriction: Do not include a pound sign (#) in the name of files that are packaged within an application
archive. Due to internal processing, the application server fails to correctly deploy the
application when a pound sign is included in a file name within the application archive. When
this failure occurs, an exception might occur when the application is being processed. Also,
parts of the application might be missing after the application is deployed. To address this
issue, rename any file names within the application archive so that they do not contain a
pound sign.

Syntax

The command syntax is as follows:

EarExpander -ear earName -operationDir dirName -operation
<expand | collapse> [-expansionFlags <all|war>]

Parameters

The following options are available for the EARExpander command:

-ear
Specifies the name of the input EAR file for the expand operation or the name of the output EAR file
for the collapse operation.

-operationDir
Specifies the directory where the EAR file is expanded or specifies the directory from where files are
collapsed.

-operation <expand | collapse>
The expand value expands an EAR file into a directory structure required by the WebSphere
Application Server run time. The collapse value creates an EAR file from an expanded directory
structure.

Chapter 3. Using the administrative clients 155

-expansionFlags <all | war>
(Optional) The all value expands all files from all of the modules. The war value only expands the files

from Web archive file (WAR) modules.
Usage scenario

The following examples demonstrate correct syntax:

EARExpander.sh -ear /WebSphere/AppServer/installableApps/DefaultApplication.ear
-operationDir /MyApps -operation expand -expansionFlags war

EARExpander.sh -ear /backup/DefaultApplication.ear
-operationDir /MyAppsDefaultApplication.ear -operation collapse

Return codes

The EARExpander command has the following return codes.

Table 11. Return codes and their descriptions. The return code indicates the success of the operation.

Return code Description

-1 A syntax error exists.

0 The command ran successfully.
1 An error occurred.

2 An exception occurred.

revokeCertificate command

The revokeCertificate command uses an implementation class that is passed to communicate with a
certificate authority (CA) server to revoke a certificate. Processing this command sends a revocation
request to the CA server to mark this certificate as revoked.

Location
Issue the command from the bin directory.
Syntax

The command syntax is as follows:

(The command is split on multiple lines for printing purposes.)

revokeCertificate.sh -host<catost> -port<caPort> -username<callserName> -password<caPassword>
-revocationPassword<revocationPassword> -keystoreAlias<keystoreAlias> -alias<certificateAlias>
-pkiImplClass<customCAClient>[options]

Required Parameters

The following required parameter are used with the revokeCertifcate command:

-host caHost
Specifies the target certificate authority host to which the request is sent.

-port caPort
Specifies the target port to connect to.

-username caUserName
Specifies the user name used to gain access to the certificate authority.

156 Administering applications and their environment

-password caPassword
Specifies the password used to authenticate with the certificate authority.

-revocationPassword revocationPassword
Specifies the password that is to be set on the certificate returned by the certificate authority. The
revocation password is sent to the certificate authority during each request and is associated with
each certificate that is issued. To later revoke a certificate, the same revocation password must be
sent during a revokeCertificate request.

keyStoreAliaskeyStoreAlias
Specifies the name of the keystore that is located in the ssl.client.props file for the profile to which the
CA signed certificate is added. This file is usually the ClientDefaultKeyStore file for either a managed
or unmanaged environment.

-alias certificateAlias
Specifies The alias of the certificate request to be revoked. The certificate is stored in the keystore
specified on the request.

-pkiImp1Class custom CA Client
A class that implements the WSPKIClient interface. The implementation class handles all the
communication to the CA server. This can be a custom class or a class provided with the product.

Optional Parameters

The following options are available for the revokeCertificate command:

-revocationReasonUsage revocation reason
The reason for revoking the certificate. The default value is “unspecified”.

-customAttrs customAttrl=value;customAttr2=value;...
A semi-colon separated list of custom name=value pairs to be passed in to the custom implementation
class. This parameter provides a way to pass custom information to the implementation class. The
‘attr’ and ‘value’ pairs are converted to a hash map and passed to the implementation class.

-logfile filename
Overrides the default trace file. By default, the trace appears in the profiles/profile_name/log/
caClient.log. file.

-trace
When specified, -trace enables tracing of the trace specification necessary to debug this component.
By default, the trace appears in the profiles/profile name/log/caClient.1og file.

-replacelog

An option to cause the existing trace file to be replaced when the command is executed. -quit
-quiet

An option to suppress most messages from printing out on the console.

-help
The option to print a usage statement

-? The option to print a usage statement
Usage

The following example performs a revokeCertificate:

revokeCertificate.sh -host Tocalhost -port 1077

-username pkiuser -password webspherepki -alias certl -keyStoreAlias ClientDefau

1tKeyStore -revocationPassword webspherepki

CWPKIO403I: Trace is being logged to the following location:
C:\opt\WebSphere\AppClient\logs\caClient.log

CWPKIO461I: Revoking a CA signed certificate.

Chapter 3. Using the administrative clients 157

CWPKIO462I: CA Signed Certificate Revoked [Issued By: 0=IBM, C=US, Issued To:
CN=mycn, O=ibm, C=us, Not Before: Thu Feb 22 09:07:53 CST 2007, Not
After: Sat Feb 16 10:09:19 CST 2008] for reason: unspecified

requestCertificate command

The requestCertificate command uses an implementation class that is passed in to communicate with a
certificate authority (CA) server to request a CA signed certificate. The command then adds the certificate
to a supplied keystore.

The requestCertificate command can use a predefined certificate request that was created with the
createCertRequest command or it creates the certificate request itself. Depending on the CA server that
the command is targeted for, a completed signed request can be returned; or the CA server could accept
the request and require that a call be make at a later time to get the certificate with the queryCertificate
command.

Location
Issue the command from the b1‘n directory.
Syntax

The command syntax is as follows:

(The following command is split on multiple lines for printing purposes.)

requestCertificate.sh -host<caHost> -port<caPort> -username<calserName> -password<caPassword>
-revocationPassword<revocationPassword> -keystoreAlias<keystoreAlias>
-pkilImplClass<customCAClient>[options]

Required Parameters

The following required parameter are used with the requestCertifcate command:

-host caHost
Specifies the target certificate authority host to which the request will be sent.

-port caPort
Specifies the target port on which to connect.

-username calUserName
The user name used to gain access to the certificate authority.

-password caPassword
The password used to authenticate with the certificate authority.

-revocationPassword revocationPassword
The password that is to be set on the certificate returned by the certificate authority. The revocation
password is sent to the certificate authority during each request and is associated with each certificate
that is issued. To later revoke a certificate, the same revocation password must be sent during a
revokeCertificate request.

keyStoreAliaskeyStoreAlias
The name of the keystore that is located in the ssl.client.props file for the profile to which the CA
signed certificate is added. This will typically be the ClientDefaultKeyStore file for either a managed or
unmanaged environment.

-pkiImp1Class custom CA client
A class that implements the WSPKIClient interface. The implementation class handles all the
communication to the CA server. This could be a custom class or a class provided with the product.

158 Administering applications and their environment

Optional Parameters

The following options are available for the requestCertificate command:

-certReqPath certificate request file
A path to an existing PKCS10 certificate request saved in a BASE64 encoded file. If no request is
specified a PKCS10 certificate request will be created automatically. In that case it is required to
specify a “subjectDN” and “alias” option. By default the request will be created in the same location as
the keyStore specified in the request. This will typically be in the /profile_name/etc/ directory for either
a managed or unmanaged environment.

-subjectDN subjectDN
The distinguished name to be used for the PKCS10 certificate request. The distinguished name must
contain the CN field. This option is only required if you do not specify the —certReqPath option, or if
the —certReqgPath option points to a file that does not exist.

-alias certificateAlias
The alias used to store the PKCS10 certificate request certificate in the keyStore specified on the
request. Note that the CA signed certificate is stored under the same alias and will replace the cert
request certificate when received. This option is only required if you do not specify the —certReqPath
option, or if the —certReqPath option points to a file that does not exist.

-keySize key size
The size of the key. This option is only used valid if creating a PKCS10 certificate request in-band.
Default size is 1024. Valid values include 512, 1024, and 2048

-keyUsage
A semi-colon separated list of extended key usage strings. This option is only valid if creating a
PKCS10 certificate request in-band.

-extKeyUsage extKeyUsel;extKeyUseZ2;...
A semi-colon separated list of extended key usage strings. This option is only valid if creating a
PKCS10 certificate request in-band.

-customAttrs customAttrl=value;customAttr2=value;...
A semi-colon separated list of custom name=value pairs to be passed in to the custom implementation
class. This provides a way to pass custom information to the implementation class. The ‘attr’ and
‘value’ pairs will be converted to a hash map and passed along to the implementation class.

-retryInterval retry interval
The time period in seconds between retires of queries to the CA for a CA signed certificate.

-retryLimit retry limit
The total number of times to retry a query request to the CA.

-logfile filename
Overrides the default trace file. By default, the trace appears in the profiles/profile_name/log/
caClient.log. file.

-trace
When specified, this enables tracing of the trace specification necessary to debug this component. By
default, the trace will appear in the profiles/profile_name/log/caClient.1og file.

-replacelLog
Causes the existing trace file to be replaced when the command is executed. -quit

-quiet
Suppresses most messages from printing out on the console.

-help
Prints a usage statement

-? Prints a usage statement

Chapter 3. Using the administrative clients 159

Usage

The following example performs a requestCertificate:

requestCertificate.sh -host Tocalhost -port 1077
-username pkiuser -password webspherepki -revocationPassword webspherepki -keyS

toreAlias ClientDefaultKeyStore -certReqPath C:\opt\WebS

phere\AppClient\etc\certReq26924.req -trace

CWPKIO403I: Trace is being Togged to the following location:
C:\opt\WebSphere\AppClient\logs\caClient.Tog

CWPKIO455I: Requesting a CA signed certificate.

CWPKIO456I: CA Signed Certificate Received [Issued By: 0=IBM, C=US, Issued To:
CN=mycn, 0O=ibm, C=us, Not Before: Thu Feb 22 09:07:53 CST 2007, Not
After: Sat Feb 16 10:09:19 CST 2008]

createCertRequest command

The createCertRequest command creates a PKCS10 certificate request and stores it in a client keystore
so that it can be used to send to a certificate authority (CA) server using the requestCertificate command
line utility.

Location
Issue the command from the b1‘n directory.
Syntax

The command syntax is as follows:

createCertRequest.sh -keyStoreAlias<keystoreAlias> -subjectDN<subjectDN> -alias<certificateAlias> [options]
Required Parameters

The following required parameter are used with the createCertRequest command:

-keyStoreAlias keyStoreAlias
Specifies the name of the keystore that is located in the ssl.client.props file for the profile to which the
CA signed certificate is added. This is the name of the ClientDefaultKeyStore file for either a managed
or unmanaged environment.

-subjectDN subjectDN
Specifies the distinguished name (DN) to be used for the PKCS10 certificate request. The DN must
contain the CN, O and C fields at a minimum.

-alias certificateAlias
Specifies the alias used to store the PKCS10 certificate request certificate in the keystore specified on
the request.

Note: the CA signed certificate is stored under the same alias and replaces the cert request certificate
when received.

Optional Parameters

The following options are available for the createCertRequest command:

-keySize key size
An option that specifies the size of the key. This option is only used valid if creating a PKCS10
certificate request in-band. Valid values include 512, 1024 2048, 4096 and 8192. Thd default size is
2048.

160 Administering applications and their environment

-certValidity valid days
The time period of certificate validity. Time period is measured from current date. This option is only
valid if creating a PKCS10 certificate request in-band. Default value is 365 days.

-subjectAltNames altNamel;altName2;...
A semi-colon separated list of subject alternate names. This option is only used if creating a PKCS10
certificate request in-band.

-keyUsage keyUsel;keyUseZ;...
A semi-colon separated list of key usage strings. This option is only valid if creating a PKCS10
certificate request in-band.

-extKeyUsage extKeyUsel;extKeyUseZ2;...
A semi-colon separated list of extended key usage strings. This option is only valid if creating a
PKCS10 certificate request in-band.

-logfile filename
The logdfile that overrides the default trace file. By default, the trace appears in the
profiles/profile_name/log/caClient.log. file.

-trace
When specified, -trace enables tracing of the trace specification necessary to debug this component.
By default, the trace will appear in the profiles/profile _name/log/caClient.log file.

-replacelLog
An option to cause the existing trace file to be replaced when the command is executed.

-quiet
An option to suppress most messages from printing out on the console.

-help
The option to print a usage statement

-? The option to print a usage statement
Usage

The following example creates a PKCS10 certificate request for a client that can be used to send to a CA :

createCertRequest.sh -keyStoreAlias ClientDefaultKeyStore -subjectDN CN=mycn,o=ibm,c=us -alias certl
CWPKIO403I: Trace is being logged to the following location:
C:\opt\WebSphere\AppClient\logs\caClient.Tog
CWPKIO4221: Generating a PKCS10 certificate request
CWPKIO421I: A PKCS10 certificate was successfully created. The request
is stored in file:
C:\opt\WebSphere\AppClient\etc\certReq26924.req

queryCertificate command

The queryCertificate command uses an implementation class that is passed to communicate with a
certificate authority (CA) server and query a certificate.

The queryCertificate command checks to see if the certificate is complete. If the certificate is complete,
then the CA certificate is stored in the client keystore. If the certificate is not complete, the certificate
request remains in the keystore and the queryCertificate command can be called at some later time to
determine if the certificate is complete.

Location

Issue the command from the bin directory.

Chapter 3. Using the administrative clients 161

Syntax
The command syntax is as follows:

(The command is split on multiple lines for printing purposes.)

queryCertificate.sh -host<caHost> -port<caPort> -username<callserName> -password<caPassword>
-alias<certificateAlias> -keystoreAlias<keystoreAlias>
-pkilImplClass<customCAClient>[options]

Required Parameters

The following required parameter are used with the queryCertifcate command:

-host caHost
Specifies the target certificate authority host to which the request is sent.

-port caPort
Specifies the target port to connect to.

-username caUserName
Specifies the user name used to gain access to the certificate authority.

-password caPassword
Specifies the password used to authenticate with the certificate authority.

-alias certificateAlias
Specifies The alias of the certificate to be queried.

keyStoreAliaskeyStoreAlias
Specifies the name of the keystore that is located in the ssl.client.props file for the profile to which the
CA signed certificate is added. This name is the ClientDefaultKeyStore file for either a managed or
unmanaged environment.

-pkiImp1Class custom CA client
A class that implements the WSPKIClient interface. The implementation class handles all the
communication to the CA server. This can be a custom class or a class provided with the product.

Optional Parameters

The following options are available for the queryCertificate command:

-customAttrs customAttrl=value;customAttr2=value;...
A semi-colon separated list of custom name=value pairs to be passed in to the custom implementation
class. This parameter provides a way to pass custom information to the implementation class. The
‘attr’ and ‘value’ pairs arel be converted to a hash map and passed along to the implementation class.

-retrylInterval retry interval
The time period in seconds between retries of queries to the CA server for a CA signed certificate.

-retryLimit retry limit
The total number of times to retry a query request to the CA server.

-logfile filename
The lodfile that overrides the default trace file. By default, the trace appears in the
profiles/profile_name/log/caClient.log. file.

-trace
When specified, -trace enables tracing of the trace specification necessary to debug this component.
By default, the trace appears in the profiles/profile name/log/caClient.1og file.

-replacelog
An option to cause the existing trace file to be replaced when the command is executed.

162 Administering applications and their environment

-quiet
An option to suppress most messages from printing out on the console.

-help
The option to print a usage statement

Usage

The following example performs a queryCertificate:

queryCertificate.sh -host localhost -port 1077 -

username pkiuser -password webspherepki -alias C:\opt\WebSphere\AppClient\

etc\certReq26924.req -keyStoreAlias ClientDefaultKeyStore

CWPKIO403I: Trace is being logged to the following location:
C:\opt\WebSphere\AppClient\logs\caClient.log

CWPKIO418E: The following error occurred while querying the CA for a signed
certificate: CWPKIO463I: Action "query" not supported by this
implementation.

restoreJobManager command

The restoreJobManager command restores the job manager database from a previous backup.

To perform the restore, the following situations must exist:
* The job manager server must be stopped.
* No other process can have a lock on the job manager database.

For more information about where to run this command, see the topic on using the command-line tools.
Syntax

The command syntax is as follows:

restoreJobManager <location location name>
Parameters

The following parameter is available for the restoreJobManager command:

-location
Specifies the location of the backup database, including the database name. The parameter is
required.

Usage scenario

The following example demonstrates correct syntax:
restoreJobManager -location /temp/jmbackup/0TiS

Example: Security and the command line tools

If you want to enable WebSphere Application Server security, you need to provide the command line tools
with authentication information.

Without authentication information, the command line tools receive an AccessDenied exception when you

attempt to use them with security enabled. There are multiple ways to provide authentication data:

* Most command line tools support a -username and -password option for providing basic authentication
data. Specify the user ID and password for an administrative user. For example, you can use a member

Chapter 3. Using the administrative clients 163

of the administrative console users with operator or administrator privileges, or the administrative user
ID configured in the user registry. The following example demonstrates the stopNode command, which
specifies command line parameters:
stopNode -username adminuser -password adminpw

* You can place the authentication data in a properties file that the command line tools read. The default
file for this data is the sas.client.props file in the properties directory for the current profile.

Using MVS console commands

This topics discusses the MVS console commands that you can use to start, stop, and modify the product
nodes and servers.

Before you begin

This topic assumes a basic familiarity with MVS console commands. See the Information Center for the
z/OS product for information about how to use MVS operator commands.

About this task

You can issue commands from the MVS console yourself, or optionally use standard console automation
products to automate product operations. Products such as Netview are presented copies of messages
that are to be displayed on the MVS console. These automation products can also enter commands into
the system using a virtual MVS console as a source.

You can use the MVS console commands to start, stop, and modify the product nodes and servers.

Procedure

+ [Start the application server, the deployment manager, or the node agent)
+ [Stop the application server, the deployment manager, or the node agent)
« [Modify Application Server operations.|

+ [Monitor your Application Server through display commands |

Results

Depending on which commands you issued, you might have stopped or started the Application Server,
stopped or started the deployment manager, stopped or started the node agent, modified the Application
Server operations, or monitored your Application Server.

START command

The START command reads the configuration file for the specified server process and starts the server,
deployment manger, node agent, administrative agent, or job manager.

Depending on the options you specify, you can launch a new Java virtual machine (JVM) application
programming interface (API) to run the server process or write the launch command data to a file. You can
run this command from the MVS console of a WebSphere Application Server installation or a WebSphere
Application Server, Network Deployment installation.

The following examples demonstrate correct syntax:

START appserver_proc_name ,JOBNAME=server_short_name,
ENV=cell _short_name.node_short_name.server_short_name

START dmgr_proc_name ,JOBNAME=server_short_name,
ENV=cell_short_name .node_short_name.server_short_name

START nodeagent_proc_name ,JOBNAME=server_short_name,
ENV=cell_short_name.node_short_name.server_short_name

164 Administering applications and their environment

START administrative_agent_proc_name ,JOBNAME=server_short_name,
ENV=cell_short_name.node_short_name.server_short_name

START job_manager_proc_name ,JOBNAME=server_short_name,
ENV=cell_short_name.node_short_name.server_short_name

You must enter this command on a single line. It is split here for display purposes.

STOP command

The STOP command reads the configuration file for the specified server process and stops the server,
deployment manger, node agent, administrative agent, or job manager.

Depending on the options you specify, you can launch a new Java virtual machine (JVM) application
programming interface (API) to run the server process or write the launch command data to a file. You can
run this command from the MVS console of a WebSphere Application Server installation or a WebSphere
Application Server, Network Deployment installation.

The following examples demonstrate correct syntax:

STOP appserver_proc_name ,JOBNAME=server_short_name

STOP dmgr_proc_name ,JOBNAME=server_short_name

STOP nodeagent_proc_name ,JOBNAME=server_short_name

STOP administrative_agent_proc_name,JOBNAME=server_short_name
STOP job_manager_proc_name ,JOBNAME=server_short_name

Modify command

You can issue the modify command from the MVS console to dynamically modify product operations.

You can use the modify command to display the status of various server components and activities,
including the following components:

» Active controllers

* Trace settings

» Servants

» Sessions

» Java virtual machine (JVM) heap

* Java trace

Use the following format when entering the modify command.
f <server>, parameters

server is the short name for the server to which the modify command is directed. This argument is
required.

Some parameters are split on multiple lines for publishing purposes.
Parameters

The following parameters are valid for the modify command:

DISABLEFAILOVER, '<JNDI Name>'
Used to manually disable resource failover support for the resource identified by the supplied JNDI
name. The supplied JNDI name identifies the primary resource, and it must be surrounded by single
quotes to preserve its case.

Chapter 3. Using the administrative clients 165

ENABLEFAILOVER, '<JNDI Name>'
Used to manually enable resource failover support for the resource identified by the supplied JNDI
name. The supplied JNDI name identifies the primary resource, and it must be surrounded by single
quotes to preserve its case.

FAILOVER, '<JNDI Name>'
Used to manually route requests that are destined for the primary resource to its configured alternate
resource. The supplied JNDI name identifies the primary resource, and it must be surrounded by
single quotes to preserve its case. To failback requests to the primary resource, issue the modify
command with the parameter, FAILBACK,'<JNDI name>'.

FAILBACK, '<JNDI Name>'
Used to manually route requests to the configured primary resource that is identified by the supplied
JNDI name. The supplied JNDI name identifies the primary resource, and it must be surrounded by
single quotes to preserve its case. This command automatically enables automatic failover. If
automatic failover is not wanted after failback, issue the modify command with the parameter,
DISABLEFAILOVER,'<JNDI Name>'.

Attention: The JNDI name input is case sensitive.

CANCEL
Used to cancel the specified server.

You can specify the following options for the CANCEL parameter:

ARMRESTART
Specifies whether you are using the application response management (ARM) agent and want
ARM to restart the server after it terminates. If you do not specify the ARMRESTART option on
the CANCEL parameter, ARM does not restart the server.

HELP Specifies that you want to see the help information that describes the CANCEL syntax.

gotcha: You cannot use the CANCEL parameter to cancel a cluster from the MVS console. You must
individually cancel each of the servers that make up the cluster.

DPM, [IIOP=[nnn] | HTTP=[nnn] | HTTPS=[nnn]| MDB=[nnn]|SIP=[nnn]| SIPS=nnn]||OLA=nnn]INTERVAL=[nnn]
| dump_action={SVCDUMP | JAVACORE | HEAPDUMP | TRACEBACK | JAVATDUMP |NONE | RESET} | clear_all | reset_all]

The nnn placeholder specifies, in seconds, the length of the time interval for a specific protocol type.
The value for the nnn placeholder must be an integer 0 - 255, or reset. A value of 0 illustrates that the
protocol has no interval and that DPM is disabled for requests that use that protocol. A value of reset
illustrates that the control of the DPM interval is returned to the dpm_interval classification attribute in
the workload classification file.

The DPM INTERVAL modify command overrides the dpm_interval classification attribute. The DPM
dump_action modify command overrides the dpm_dump_action classification attribute and the
server_region_dpm_dump_action server-wide property.

Specifying RESET on the dump action deactivates the dump action for the modify command. The
settings for the dpm_dump_action classification attribute and the server_region_dpm_dump_action
server-wide property are again in effect.

A value specified on the INTERVAL parameter sets the DPM interval for all six protocols to the same
value.

The clear_all value sets the time intervals for all related request protocols to 0 and the dump action
to None.

The reset_all value resets all the DPM intervals and the dump_action parameter. Control of the
DPM intervals and the dump action is returned to the WLM classification file.

166 Administering applications and their environment

HEAPDUMP
Used to generate a JVM heap dump for the controller, and for all the servants that are associated with
that controller.

JAVACORE
Used to generate a JVM core dump for the controller, and for all the servants that are associated with
that controller.

JAVATDUMP
Used to generate a JVM-initiated TDUMP for all the servant address spaces. You can also use the
JAVA_DUMP_TDUMP_PATTERN native environment variable to specify the TDUMP data set name.

MSGROUTE, {ERRORLOG | HARDCOPY | CONSOLE | NONE}{ [=xxx] [, RESET] [, CLEAR] }
Used to dynamically alter the output location of message IDs.

The xxx placeholder is a comma delimited list of product message IDs for the application server to
route. Messages can be routed to more than one location.

The first time that you issue the command for a location and a set of messages, the message list for
the location is the message list of the first command. If the environment variable for the location has
messages defined, those messages are appended to the message list of the location. When you later
issue the command for the same location and another set of messages, the application server
appends the messages of the subsequent command to the existing list of messages.

Specifying ERRORLOG routes the messages to the error log instead of the default location.

Specifying HARDCOPY routes the messages to the SYSLOG system log, also known as hardcopy,
instead of the default location.

Specifying CONSOLE routes the messages to the MVS operator console instead of the default location.

Specifying NONE suppresses the routing of the messages. A value of NONE takes precedence over
routing of messages to the error log, the system log, or the MVS operator console.

Specifying RESET with ERRORLOG, HARDCOPY, CONSOLE or NONE means that the messages that are routed
or suppressed come form the was.env file instead of the MSGROUTE modify command.

» Specifying RESET with ERRORLOG routes messages specified on the ras_message_routing_errorlog
environment variable to the error log instead of the default location.

» Specifying RESET with HARDCOPY routes the messages specified on the
ras_message_routing_hardcopy environment variable to the SYSLOG system log instead of the
default location.

» Specifying RESET with CONSOLE routes the messages specified on the ras_message_routing_console
environment variable to the MVS operator console instead of the default location.

» Specifying RESET with NONE suppresses the routing of messages specified on the
ras_message_routing_hardcopy environment variable.

Specifying CLEAR with ERRORLOG, HARDCOPY, CONSOLE or NONE means that the messages are routed to a

default location or are no longer suppressed.

» Specifying CLEAR with ERRORLOG routes messages to the default location instead of the error log.

» Specifying CLEAR with HARDCOPY routes the messages to the default location instead of to the
SYSLOG system log.

» Specifying CLEAR with CONSOLE routes the messages to the default location instead of to the MVS
operator console.

» Specifying CLEAR with NONE cancels the suppression of messages.

RECLASSIFY[,FILE=['/path/to/file.xm1']]
Used to dynamically reload the workload classification document without having to restart the server.
The reloaded workload classification settings take effect immediately.

Chapter 3. Using the administrative clients 167

Specifying RECLASSIFY performs reclassification using the workload classification file specified on the
wim_classification_file variable.

Specifying a file name with the reclassify parameter such as RECLASSIFY,FILE="/path/to/
newfile.xml' performs reclassification using the classification file specified. The value for the
wim_classification_file variable changes to the file specified on the FILE option. Any subsequent
reclassify modify commands that use the wim_classification_file variable reload the new file specified
on the variable, not the original file.

Specifying RECLASSIFY,FILE= disables classification. The wim_classification_file variable is set to null.
Any subsequent reclassify modify commands that use the wim_classification_file variable do not affect
the server since the wim_classification_file variable has no value.

Attention: If the new workload classification file cannot be loaded, then the application server
discards the reloaded classification settings. The application server continues to run with the
classification settings in effect before the reclassify modify command being issued.

Tip: Whenever the workload classification file loads successfully, the application server issues to the
system log, SYSLOG, a message like the following message. The message is also displayed on
the operator console in response to the DISPLAY,WORK,CLINFO display command.

BB0JO129I: The /tmp/wimd.class.xml workload classification file
was loaded at 2009/07/14 19:33:35.297 (GMT)

STACKTRACE
Used to log the Java stack traceback for all Java threads in the server to the error log.

SMF,REQUEST, {ON | OFF | RESET}
Used to control the creation of SMF 120-9 records.

The SMF,REQUEST modify command overrides the SMF_request_activity_enabled classification
attribute and the server_SMF_request_activity_enabled server-wide property.

Specifying ON turns on the creation of SMF 120-9 records.
Specifying OFF turns off the creation of SMF 120-9 records.

Specifying RESET deactivates the modify command setting for the creation of SMF 120-9 records. The
settings for the SMF_request_activity_enabled classification attribute and the
server_SMF_request_activity_enabled server-wide property at the time of the reset are in effect.

SMF,REQUEST,CPU, {ON|OFF |RESET}
Used in the collection of data for the CPU Usage Breakdown Section of the SMF 120-9 record
whenever that record is created.

The SMF,REQUEST,CPU modify command overrides the SMF_request_activity_ CPU_detail
classification attribute and the server_SMF_request_activity CPU_detail server-wide property.

Specifying ON turns on the collection of the data.

Specifying OFF turns off the collection of the data. When this value is specified, records that are
created have zeros for this section in the location triplets at the top of the record.

Specifying RESET deactivates the modify command setting for the collection of the data. The settings
for the SMF_request_activity_ CPU_detail classification attribute and the
server_SMF_request_activity_CPU_detail server-wide property at the time of the reset are in effect.

SMF,REQUEST,SECURITY, {ON|OFF | RESET}
Used in the collection of data for the Security Data Section of the SMF 120-9 record whenever that
record is created.

The SMF,REQUEST,SECURITY modify command overrides the SMF_request_activity_security
classification attribute and the server_SMF_request_activity_security server-wide property.

Specifying ON turns on the collection of the data.

168 Administering applications and their environment

Specifying OFF turns off the collection of the data. When this value is specified, records that are
created have zeros for this section in the location triplets at the top of the record.

Specifying RESET deactivates the modify command setting for the collection of the data. The settings
for the SMF_request_activity_security classification attribute and the
server_SMF_request_activity_security server-wide property at the time of the reset are in effect.

SMF,REQUEST, TIMESTAMPS,, {ON| OFF | RESET}
Used in the collection of data for the Formatted Timestamps Section of the SMF 120-9 record
whenever that record is created.

The SMF,REQUEST, TIMESTAMPS modify command overrides the SMF_request_activity_timestamps
classification attribute and the server_SMF_request_activity_timestamps server-wide property.

Specifying ON turns on the collection of the data.

Specifying OFF turns off the collection of the data. When this value is specified, records that are
created have zeros for this section in the location triplets at the top of the record.

Specifying RESET deactivates the modify command setting for the collection of the data. The settings
for the SMF_request_activity_timestamps classification attribute and the
server_SMF_request_activity_timestamps server-wide property at the time of the reset are in effect.

TIMEOUT_DELAY=n
Used to dynamically alter the timeout delay option variable, control_region_timeout_delay, to n
seconds. This modify command is used with the TIMEOUTDUMPACTION modify command to set a
timeout delay that enables the specified dump action, such as JAVACORE, to complete when a
timeout occurs. The dump actions specified on the TIMEOUTDUMPACTION modify command require
a timeout delay that enables the servant to complete the dump action before the servant terminates.

After the specified dump is processed, you can reissue this command to change the value of the
control_region_timeout_delay variable back to its previous setting without recycling the server.

TIMEOUTDUMPACTION=n
Used to indicate which of the following actions is performed whenever a timeout occurs for work that
has been dispatched to a servant when the control_region_timeout_delay property is set to a non-zero
value:
» If NONE, or none is specified, no dump is taken.
» If JAVACORE or javacore is specified, a Java core dump is taken.
» |f SVCDUMP or svcdump is specified, an SVC dump is taken.
» If JAVATDUMP or javatdump is specified, a JVM-initiated TDUMP is taken.

Note: The control_region_timeout_delay property must be configured to a length of time that is long
enough for the servant to collect the JAVATDUMP before the controller terminates the
servant. The TIMEOUT_DELAY modify command can be used to dynamically change the
value of the control_region_timeout_delay property.

TIMEOUTDUMPACTIONSESSION=n
Used to indicate which of the following actions is performed whenever a timeout occurs for an HTTP,
HTTPS, SIP, or SIPS request that has been dispatched to a servant, and the corresponding recovery
property is set to SESSION:
» If NONE, or none is specified, no dump is taken.
» If JAVACORE or javacore is specified, a Java core dump is taken.
» |f SVCDUMP or svcdump is specified, an SVC dump is taken.
 |f JAVATDUMP or javatdump is specified, a JVM-initiated TDUMP is taken

Following is a list of the corresponding recovery properties:
» protocol_http_timeout_output_recovery
» protocol_https_timeout_output_recovery
» protocol_sip_timeout_output_recovery
» protocol_sips_timeout_output_recovery

Chapter 3. Using the administrative clients 169

TRACEALL=n

Used to establish a general trace level for the server.

The following values are valid trace levels. Typically, you specify a value of 1.
* 0: no tracing is performed

« 1: tracing is performed when an exception occurs

» 2: basic tracing is performed

» 3: detailed tracing for all components is performed.

gotcha: Be careful when using a level of 3 because this level of tracing might yield more data than is
practical for you to review.

TRACEBASIC=n

Used to specify the product components for which you want to turn on a basic level of tracing.

This command can override a different tracing level established by TRACEALL for those components.

gotcha: Do not change this variable unless directed to do so by IBM Support.

The following table includes the values that you can specify for this parameter. You can specify one or
more of these values for either TRACEBASIC or TRACEDETAIL:

Value Product component
0 RAS

1 Common Utilities
3 COMM

4 ORB

6 OTS

7 Shasta

9 z/OS Wrappers
A Daemon

E Security

F Externalization

J (Should be used only under the direction of IBM JRas

Support)

L Java EE

TRACEDETAIL=n

Used to specify the product components for which you want to turn on a detailed level of tracing.

This command activates the most detailed tracing for the specified product components and overrides
different settings inTRACEALL. The selected components are identified by their component IDs, which
are the same IDs as the ones listed for the TRACEBASIC parameter. Subcomponents, specified by
numbers, receive detailed traces. Other parts of the product receive tracing as specified on the
TRACEALL parameter.

gotcha: Do not change this variable unless directed to do so by IBM Support.

TRACESPECIFIC=xxyyyzzz

Used to specify tracing overrides for specific product trace points.

Trace points are specified by eight-digit, hexadecimal numbers. To specify more than one trace point,
use parentheses and separate the numbers with commas. You can also specify an environment

170 Administering applications and their environment

variable name by enclosing the name in single quotation marks. The value of the environment variable
is processed as if you had specified that value on the TRACESPECIFIC parameter.

gotcha: Do not use TRACESPECIFIC unless directed by IBM Support.

TRACE_EXCLUDE_SPECIFIC=xxyyyzzz
Used to specify product trace points to exclude.

Trace points to exclude are specified by eight-digit, hexadecimal numbers. To specify more than one
trace point, use parentheses and separate the numbers with commas. You can also specify an
environment variable name by enclosing the name in single quotation marks. The value of the
environment variable is processed as if you had specified that value on the
TRACE_EXCLUDE_SPECIFIC parameter. You can use the TRACE_EXCLUDE_SPECIFIC parameter
as a mask to turn off traces that are currently turned on. For example, use the TRACESPECIFIC
parameter to turn on tracing for a whole part of the product, and then use the
TRACE_EXCLUDE_SPECIFIC parameter to turn off one trace within that part of the product.

gotcha: Do not use TRACE_EXCLUDE_SPECIFIC parameter unless you are directed to do so by

IBM Support.
TRACEINIT
Used to reset to the initial trace settings.
TRACENONE

Used to turn off all trace settings.

TRACETOSYSPRINT={YES | NO}
Used to select whether to send the trace to SYSPRINT.

Specifying YES sends the trace to SYSPRINT, and specifying NO stops the sending of the trace to
SYSPRINT.

TRACETOTRCFILE={YES | NO}
Used to specify whether to direct the trace to the TRCFILE DD card.

Specifying YES sends the trace to the TRCFILE DD card, and specifying NO stops the sending of the
trace to the TRCFILE DD card.

TRACEJAVA
Modify the Java trace string.

The Java trace specification is used to control Java tracing and conforms to the Java trace
specification rules. *=all=enabled means to enable all types of tracing for all registered trace
components.

TRACERECORD, {ON | OFF | RESET}
Used to control the writing of trace records. The parameter is used with the classification_only_trace
attribute defined in the workload classification file.

Specifying ON causes trace records to be written based on the current trace specification. Any
classification_only_trace attributes are ignored.

Specifying OFF prevents trace records from being written.

CAUTION: Trace records based on the current trace specification or produced as part of normal
runtime processing are not written.
Specifying RESET causes trace records to be written for the current trace specification as follows:

* If no classification_only_trace attributes are defined, then trace records are written for all processing
threads. This situation is functionally equivalent to setting TRACERECORD to ON.

» If one or more classification_only_trace attributes are defined, then trace records are only written for
processing threads whose classification contains a classification_only_trace attribute of 1.

Chapter 3. Using the administrative clients 171

The default value is RESET.

HELP

Used to display a list of all the keywords that you can use with the modify command.

You can also use the HELP parameter after the CANCEL, and DISPLAY parameters to display lists of
all the keywords you can use with either of these parameters.

PAUSELISTENERS
Used to prevent work from being accepted into the server. Use this parameter to shut down the
communication listeners and purge any pending work in the work registry.

WLM_MIN_MAX=min,max
Used to dynamically modify the minimum and maximum number of servants settings
(wlm_minimumSRCount and wim_maximumSRCount). WLM dynamically adjusts the current number
of active servants to fit within the new constraints. The new settings do not necessarily take effect
immediately; WLM works toward the new minimum and maximum targets as quickly as possible,
considering factors such as resource availability and workload.

gotcha: The WLM_MIN_MAX command is ignored for a server that is configured with a single server

dynamic application environment, that is the wim_dynapplenv_single_server property is set to
1.

RESUMELISTENERS
Used to restart the communication listeners after issuing a modify command that includes the
PAUSELISTENERS parameter. This parameter allows new work to be accepted into the server.

DISPLAY
Used to display the name of the server, the system name where the server is running, and the current
code level.

You can specify the following options for this parameter:

172

SERVERS displays the name of the server at which the command is directed, the system name, and
the code level for each active server in the sysplex that is in the same cell.

SERVANTS: displays a list of the address space identifiers (ASIDs) of the servants that are attached to
the server against which you issued the display command.

TRACE displays trace information for a server controller. You can further modify this command with
one of the following options:

— SRS displays trace information for all servants, one at a time.
— ALL displays trace information for the controller and all servants one at a time.

— JAVA displays the Java trace string settings for a server controller. You can further modify this
command with one of the following options:

- SRS displays Java trace information for all servants, one at a time.
- ALL displays Java trace information for the controller and all servants one at a time.

- HELP displays a list of all the keywords that you can use with the modify display trace Java
command.

HELP displays a list of all the keywords that you can use with the modify display trace command.

JVMHEAP displays the JVM heap information for a server controller. You can further modify this
command with one of the following options:

— SRS displays the JVM heap information for all servants, one at a time.
— ALL displays the JVM heap information for the controller and all servants, one at a time.

— HELP displays a list of all the keywords that you can use with the modify display Javaheap
command.

LISTENERS displays the connection instance name, associated IP address, and listening port
number. The associated IP address can display an asterisk (*) as a wildcard.

Administering applications and their environment

CONNECTIONS displays each connection instance name and a count of the number of connections.
Each connection instance is on a separate line. You can further modify this command with one of
the following options:

— NAME='name' displays the number of associated connections for the specified connection instance
‘name'. If the connection name is located but has zero connections, the command returns a
count of zero. If the connection name is not found, the command returns an error message.

— LIST displays the remote host information for all the connections of each of the connection
instances. If a connection instance name has no connections, the command returns only the
connection instance name.

— LIST, NAME='name' displays the remote host information for all connections of a specified
connection instance 'name'.

HELP displays a list of all the keywords that you can use with the modify command.

ERRLOG displays the last 10 entries in the error log. You can further modify this option with one of the
following options:

— SRS displays the last 10 entries in the error log for all servants, one at a time.
— HELP displays a list of all the keywords you can use with the modify display error log command.
MODE displays the run bit mode.

MSGROUTE displays the list of messages for all routing locations and for messages to suppress.
Routing locations can be the error log, the system log, or the MVS operator console.

ERRORLOG displays a list of messages to route to the error log.

HARDCOPY displays a list of messages to route to the SYSLOG system log, also known as
hardcopy.

CONSOLE displays a list of messages to route to the MVS operator console.
NONE displays a list of messages to suppress.
SMF displays the status of SMF 120-9 record creation for a server.

WORK displays the work element counts for the server. You can further modify this option with one of
the following options:

— EJB displays Enterprise JavaBeans (EJB) request count information. You can modify this option
with one of the following options:

- SRS displays EJB request count information for all servants, one at a time.

- HELP displays a list of all the keywords you can use with the modify display work EJB
command.

— SERVLET displays servlet request count information. You can modify this option with one of the
following options:

- SRS displays servlet request count information for all servants, one at a time.

- HELP displays a list of all the keywords you can use with the modify display work servlet
command.

— MDB displays message-driven bean (MDB) request count information. You can further modify this
command with one of the following options:

- SRS displays MDB request count information for all servants, one at a time.

- HELP displays a list of all the keywords you can use with the modify display work MDB
command.

— SIP displays Session Initiation Protocol (SIP) request count information. You can modify this
option with one of the following options:

- SRS displays SIP request count information for all servants, one at a time.

- HELP displays a list of all the keywords you can use with the modify display work SIP
command.

— SUMMARY displays summary request count information.
- SRS displays summary request count information for all servants, one at a time.

Chapter 3. Using the administrative clients 173

- HELP displays a list of all the keywords you can use with the modify display work summary
command.

— ALL displays all request count information.

- SRS displays all request count information for all servants, one at a time.

- STATS displays all detailed statistics.

- HELP displays a list of all the keywords you can use with the modify display work all command.
— CLINFO displays work classification information.
— HELP displays a list of all the keywords you can use with the modify display work command.

— OLA displays inbound Optimized Local Adapter (OLA) requests driven by services BBOA1INV and
BBOA1SRQ. You can further modify this command with one of the following options:

- SRS displays OLA request count information for all servants, one at a time.
- HELP displays a list of all the keywords you can use with the modify display work all command.
» Fast Response Cache Accelerator (FRCA). Display FRCA cache statistics as follows:
— f <servername>,display,frca
— f <servername>,display,frca,content
— f <servername>,display,frca,stats
* ADAPTER
— STATUS
Displays the status of the optimized local adapters component.
— REGISTRATIONS
Displays a list of optimized local adapters clients connected to this server.
— DAEMONRGES
Displays a list of optimized local adapters clients connected to any server in this daemon group.
— SEARCHRGES

Displays a list of optimized local adapters clients connected to any server in this daemon group,
matching search criteria.

Example: Disabling fail over

Example 1: The following command disables fail over for the primary resource identified by
jdbc/MySampleDataSource on the server bbos001:

f bbos001,DISABLEFAILOVER, 'jdbc/MySampleDataSource'
Example: Canceling application clusters and servers with the modify command

You cannot cancel a cluster from the MVS console. Instead, you must cancel each of the servers that
make up the cluster.

Example 1: The following command cancels the bbo6acr server:
f bbobacr,cancel

Example 2: The following command cancels the bbo6acr server and instructs ARM to restart the bbo6acr
server after the terminate process completes:

f bbobacr,cancel,armrestart
Example: Establishing a general level of trace using scripting
To establish a general trace level for the server, use the following command:

f server,traceall=n

174 Administering applications and their environment

Valid trace levels are 0 (none), 1 (exception), 2 (basic), and 3 (detailed tracing). Under normal conditions
and in production, use 1 (exception).

Example: The following command turns on exception level tracing for the bbo6acr server:
f bbobacr,traceall=1

Here is a sample display:

f bbob6acr,traceall=1
BB000211I MODIFY COMMAND TRACEALL=1 COMPLETED SUCCESSFULLY

Example: Setting basic and detailed trace levels for the WebSphere z/OS
components

Use the following command:
f server,tracebasic=(n,...)

Example 1: The following command turns on a basic level of tracing for the Daemon component on server
bboé6acr.

f bbobacr,tracebasic=a

Here is a sample display:

f bbobacr, TRACEBASIC=A
BB000211I MODIFY COMMAND TRACEBASIC=A COMPLETED SUCCESSFULLY

To specify the WebSphere for z/OS components for which you want to switch on a detailed level of tracing
use the following command:

f server,tracedetail=(n,...)

Example 2: The following command turns on a detailed level of tracing for security on server bbo6acr.
f bbobacr,tracedetail=e

Here is a sample display:

f bbo6acr, TRACEDETAIL=E

BB0O00211I MODIFY COMMAND TRACEDETAIL=E COMPLETED SUCCESSFULLY
Example: Setting specific trace points using scripting

To set specific trace points, use the following command:
f server,tracespecific=n | (n,...)

Example 1: The following command turns on the specific trace point 04006001:
f bbobacr,tracespecific=04006001

Example 2: The following command turns on the specific trace points 04006001 and 04006027:
f bbo6acr,tracespecific=(04006001,04006027)

Example 3: The following command turns on the specific trace points set in the environment variable
tracepoints:

f bbobacr,tracespecific="'tracepoints'
Example: Excluding specific trace points using scripting

To exclude specific trace points, use the following command:
f server,trace_exclude_specific=n | (n,...)

Chapter 3. Using the administrative clients 175

Example: The tracespecific command turns on tracing for a whole part and then the
trace_exclude_specific turns off tracing for the point 04006031 within that part:

f bbobacr,tracespecific=04006000

f bbobacr,trace_exclude_specific=04006031
Example: Resetting to the initial trace settings using scripting

To reset to the initial trace settings use the following command:
f server,traceinit

Example: Command to turn off tracing using a command line

To turn off tracing, use the following command:

f server,tracenone
Example: Sending the trace to SYSPRINT using scripting

To send the trace to SYSPRINT use the following command:

f server,tracetosysprint=yes

To stop sending the trace to SYSPRINT, use the following command:
f server,tracetosysprint=no

Example: Canceling application clusters and servers with the modify command
This example demonstrates how to cancel application clusters and servers with the modify command.

Before you begin: You cannot cancel a cluster from the MVS console. Instead, you must cancel each of
the servers that make up the cluster.

Example 1: The following command cancels the bbo6acr server:
f bbobacr,cancel

Example 2: The following command cancels the bbo6acr server and instructs ARM to restart it after it
terminates:

f bbobacr,cancel,armrestart
Example: Getting help for the modify command
You can get syntax help for the various levels of the modify command.

Example 1: Enter the following command to display a list of all the keywords that you can use with the
modify command:

f bbobacr,help

The resulting output is like the following example:

F bbobacr,HELP

BB000178I THE COMMAND MODIFY MAY BE FOLLOWED BY ONE OF THE FOLLOWING KEYWORDS:
BB000179I CANCEL - CANCEL THIS CONTROL REGION

BB000179I TRACEALL - SET OVERALL TRACE LEVEL

BB0001791 TRACEBASIC - SET BASIC TRACE COMPONENTS

BB000179I TRACEDETAIL - SET DETAILED TRACE COMPONENTS

BB0001791 TRACESPECIFIC - SET SPECIFIC TRACE POINTS

176 Administering applications and their environment

BBO00179I TRACEINIT - RESET TO INITIAL TRACE SETTINGS

BB0001791 TRACENONE - TURN OFF ALL TRACING

BB0001791 TRACETOSYSPRINT - SEND TRACE OUTPUT TO SYSPRINT (YES/NO)
BB0001791 TRACETOTRCFILE - SEND TRACE OUTPUT TO TRCFILE DD CARD (YES/NO)
BB000179I DISPLAY - DISPLAY STATUS

BB0001791 TRACE_EXCLUDE_SPECIFIC - EXCLUDE SPECIFIC TRACE POINTS
BB0001791 TRACEJAVA - SET JAVA TRACE OPTIONS

BB0001791 TRACETOTRCFILE - SEND TRACE OUTPUT TO TRCFILE (YES/NO)
BB0001791 MDBSTATS - MDB DETAILED STATISTICS

BB0001791 PAUSELISTENERS - PAUSE THE COMMUNICATION LISTENERS
BB0001791 RESUMELISTENERS - RESUME THE COMMUNICATION LISTENERS
BB0001791 STACKTRACE - LOG JAVA THREAD STACK TRACEBACKS

BB0001791 TIMEOUTDUMPACTION - SET TIMEOUT DUMP ACTION

BB0001791 TIMEOUTDUMPACTIONSESSION - SET TIMEOUT DUMP ACTION SESSION
BB0001791 WLM_MIN _MAX - RESET WLM MIN/MAX SERVANT SETTINGS

Example 2: Enter the following command to display a list of all the keywords you can use with the modify
display command:

f bbobacr,display,help

The resulting output is similar to the following example:

F BBOS0O1,DISPLAY,HELP

BB0001781 THE COMMAND DISPLAY, MAY BE FOLLOWED BY ONE OF THE FOLLOWING
124

KEYWORDS:

BB0001791 SERVERS - DISPLAY ACTIVE CONTROL PROCESSES

BBO001791 SERVANTS - DISPLAY SERVANT PROCESSES OWNED BY THIS CONTROL 126
PROCESS

BB0001791 LISTENERS - DISPLAY LISTENERS

BB0001791 CONNECTIONS - DISPLAY CONNECTION INFORMATION

BBO0O179I TRACE - DISPLAY INFORMATION ABOUT TRACE SETTINGS

BB0001791 JVMHEAP - DISPLAY JVM HEAP STATISTICS

BB0001791 WORK - DISPLAY WORK ELEMENTS

BB0001791 ERRLOG - DISPLAY THE LAST 10 ENTRIES IN THE ERROR LOG
BB0001791 MODE - DISPLAY THE EXECUTION BITMODE

BBO0O188I END OF OUTPUT FOR COMMAND DISPLAY,HELP

Example 3: Enter the following command to display a list of all the keywords that you can use with the
modify timeoutdumpaction or modify timeoutdumpactionsession command:

f bbos001,timeoutdumpactionsession=help

The resulting output is like the following example:

BB0001781 THE COMMAND MODIFY TIMEOUTDUMPACTIONSESSION= MAY BE FOLLOWED BY
ONE OF the FOLLOWING KEYWORDS:

BB0001791 SVCDUMP - SVC DUMP

BB0001791 JAVACORE - JAVA CORE DUMP

BB0001791 NONE - NO DUMP

Example 4: Enter the following command to display a list of all the keywords that you can use with the
modify display dpm command:
f bbos001,dpm,help

The resulting output is like the following example:

SY1 BB0001781 THE COMMAND MODIFY DPM, MAY BE FOLLOWED BY ONE OF THE
FOLLOWING KEYWORDS:

BB000179I IIOP - IIOP DISPATCH PROGRESS MONITOR INTERVAL

BB000179I HTTP - HTTP DISPATCH PROGRESS MONITOR INTERVAL

BB000179I HTTPS - HTTPS DISPATCH PROGRESS MONITOR INTERVAL

BB0001791 MDB - MDB DISPATCH PROGRESS MONITOR INTERVAL

BB000179I SIP - SIP DISPATCH PROGRESS MONITOR INTERVAL

BB000179I SIPS - SIPS DISPATCH PROGRESS MONITOR INTERVAL

BB0001791 INTERVAL - ALL DISPATCH PROGRESS MONITOR INTERVALS

Chapter 3. Using the administrative clients 177

BB0001791 DUMP_ACTION - DISPATCH PROGRESS MONITOR DUMP ACTION
BB0001791 CLEAR_ALL - CLEAR ALL DISPATCH PROGRESS MONITOR SETTINGS
BB0001791 RESET_ALL - RESET ALL DISPATCH PROGRESS MONITOR SETTINGS
BB000211I MODIFY COMMAND DPM, COMPLETED SUCCESSFULLY

Example: Modifying the Java trace string
This example shows how to use a console command to modify a Java trace string.

To modify the Java trace string, use the following command:

f server, tracejava='trace specification'

Example: The following command enables all types of tracing for all registered trace components:
f bbobacr,tracejava='*=all'

Note: The quotation marks are a required part of the syntax.

Display command with examples

The display command is useful for obtaining data on a variety of processes.

Use the following display command examples to monitor how the product is functioning.

+ [‘Example: Displaying active replies” on page 179

[‘Example: Displaying active address spaces” on page 180

+ [‘Example: Displaying the status of address spaces registered for automatic restart management (ARM)|

on page 180|

[‘Example: Displaying units of work (transactions) for the Information Management System” on page 180|
[‘Example: Displaying JVM heap information” on page 181|

« [‘Example: Displaying status of a server’ on page 182

+ [‘Example: Displaying the status of SMF 120-9 and SMF 120-10 record creation” on page 182
[‘Example: Displaying the status of dispatch thread” on page 183

[‘Example: Displaying status of clusters” on page 185|

How to display servants using scripting.

To display servants, use the following command:
f server,display,servants

Example: The following command will display servants for the bbo6acr server:
f bbobacr,display,servants

Here is a sample display:
F bbobacr,DISPLAY,SERVANTS

BB000185I SERVER BBO5SR4/BBOASR4A HAS 1 SERVANT PROCESS (ASID: 0038x)
BB000188I END OF OUTPUT FOR COMMAND DISPLAY,SERVANTS

How to display trace settings and Java string trace settings with scripting.

To display the trace settings for a server instance, use the following command:

f server,display,trace

Example 1: The following command will display trace settings for the bbo6acr server:
f bbobacr,display,trace

178 Administering applications and their environment

Here is a sample display:

F bbo6acr,DISPLAY,TRACE

BB0002241 TRACE INFORMATION FOR SERVER BBO5SR4/BBOASR4A/STC00047
BB000197I LOCATION = SYSPRINT BUFFER

BB0001971 AGGREGATE TRACE LEVEL =1

BB0001971 EXCEPTION TRACING = RAS(0), Common Utilities(1l), COMM(3),
ORB(4), 0TS(6), Shasta(7), z/0S Wrappers(9), Daemon(A), Security(E),
Externalization(F), JRAS(J), J2EE(L)

BB0001971 BASIC TRACING =

BB0O001971 DETAILED TRACING =

BB000197I TRACE SPECIFIC = NONE SPECIFIED

BB0001971 TRACE EXCLUDE SPECIFIC = NONE SPECIFIED

BB000225I TRACE INFORMATION FOR SERVER BBO5SR4/BBOASR4A/STC00047 COMPLETE
BB0O00188I END OF OUTPUT FOR COMMAND DISPLAY,TRACE

To display the Java trace string settings for a server, use the following command:

f server,display,trace,java

Example 2: The following command will display Java trace settings for the bbo6acr server:

f bbobacr,display,trace,java

Here is a sample display:

F bbo6acr,DISPLAY,TRACE,JAVA

BB0001961 TRACE INFORMATION FOR SERVER BBO5SR4/BBOASR4A
BB0JOO5OI CTL(STCO0047):*=all=disabled

BB000188I END OF OUTPUT FOR COMMAND DISPLAY,TRACE,JAVA

To display the Java trace information for all servants, one at a time.
f server,display,trace,java.srs

Example 3: The following command will display Java trace settings for the bbo6acr server:
f bbobacr,display,trace,java,srs

Here is a sample display:

F bbobacr,DISPLAY,TRACE,JAVA, SRS

BB0001961 TRACE INFORMATION FOR SERVER BBO5SR4/BBOASR4A
BB0JOO5OI SR(STCO0048):*=all=disabled

BB000188I END OF OUTPUT FOR COMMAND DISPLAY,TRACE,JAVA,SRS

To display the Java trace information for the controller and all servants, one at a time.

f server,display,trace,java.all

Example 4: The following command will display Java trace settings for the controller and all servants:

f bbob6acr,display,trace,java,all

Here is a sample display:

F bbobacr,DISPLAY,TRACE,JAVA,ALL

BB0001961 TRACE INFORMATION FOR SERVER BBO5SR4/BBOASRAA
BB0JOO5OI CTL(STCO0047):*=all=disabled

BB0JOO5OI SR(STCO0048):*=all=disabled

BB000188I END OF OUTPUT FOR COMMAND DISPLAY,TRACE,JAVA,ALL

Example: Displaying active replies

Displaying active replies from the MVS console allows you to observe system activity and determine if the
system requires an operator response.

Issue the following command to display (list) all active replies:

Chapter 3. Using the administrative clients 179

dr,r
Example: Displaying active address spaces
Use the display command to display active address spaces.

For example, use the display command to determine if the location service daemon is up:

Table 12. display command descriptions. The following table describes the display command.

da,l Displays a list of all address spaces.
daa Displays a list of all active address spaces.
d a,address-space-name Displays only the address space in which you are interested. This command is

recommended over the first two because it does not yield such a lengthy list
on a production system. Of course, you need to know the name of the address
space for which you are looking.

Example: d a,bboasr1

d a,bbo* Displays a list of all active address spaces that start with BBO.

Example: Displaying the status of address spaces registered for automatic restart
management (ARM)

This example shows how to display the status of addresses registered with automatic restart management.

Perform the following steps to use automatic restart management (ARM) to display the status of ARM
registered address spaces (including the address spaces of server instances) in the WebSphere
Application Server for z/OS environment:
1. Initialize all servers.
2. Issue one or both of the following commands:
» To display all registered address spaces (including the address spaces of server instances), issue
the command:
d xcf,armstatus,detail

» To display the status of a particular server instance, use the display command and identify the job
name. For example, to display the status of the Daemon server instance (job BBODMN), issue the
following command:

d xcf,armstatus,jobname=bbodmn,detail

Example: Displaying units of work (transactions) for the Information Management
System

This example shows how to use scripting to display the units of work for the Information Management
System.

You can display units of work (transactions) for Information Management System (IMS™):

1. To display the status of a specific transaction, issue this command. The message ID is the replying
IMS ready message number.
message_id/dis tran trans-name

2. To display the status of a specific program, issue the command:
/dis prog program-name

3. To display the number of Message Processing Regions (MPRs) that are currently active, issue the
command:

/display active region

180 Administering applications and their environment

For more information about IMS commands, see the IMS/ESA® Summary of Operator Commands
manual on the [IBM Publications Center] website.

Example: Displaying JVM heap information
This example demonstrates how to display JVM heap information with scripting.

To display the JVM heap information for a server controller, use the following command:

f server,display,jvmheap

Example 1: The following command will display JVM heap information for the bbo6acr server:
f bbobacr,display,jvmheap

Here is a sample display:

F bbobacr,DISPLAY,JVMHEAP

BB000201I JVM HEAP INFORMATION FOR SERVER BBO5SR4/BBOASR4A/STC00047
BB000202I (STCOOO47) HEAP(MIDDLEWARE), COUNT(00000000), FREE STORAGE(
396FA70), TOTAL STORAGE(7FFFAQQ)

BB0002041 JVM HEAP INFORMATION FOR SERVER BBO5SR4/BBOASR4A/STC00047 COMPLETE
BB000188I END OF OUTPUT FOR COMMAND DISPLAY,JVMHEAP

To display the JVM heap information for all servants one at a time, use the following command:

f server,display,jvmheap,srs

Example 2: The following command will display JVM heap information for all servants in the bbo6acr
server:

f bbobacr,display,jvmheap,srs

Here is a sample display:

F bbo6acr,DISPLAY,JVMHEAP, SRS

+BB000201I JVM HEAP INFORMATION FOR SERVER BBO5SR4/BBOASR4A/STC00048
+BB000202I (STCO0048) HEAP(MIDDLEWARE), COUNT(00000001), FREE STORAGE (
25F4030), TOTAL STORAGE(7FFFAGO)

+BB000204I JVM HEAP INFORMATION FOR SERVER BBO5SR4/BBOASR4A/STC00048 COMPLETE
BB000188I END OF OUTPUT FOR COMMAND DISPLAY,JVMHEAP,SRS

To display the JVM heap information for the controller and all servants of a server one at a time, use the
following command:

f server,display,jvmheap,all

Example 3: The following command will display JVM heap information for the controller and all servants in
the bbo6acr server:

f bbob6acr,display,jvmheap,all

Here is a sample display:

F bbobacr,DISPLAY,JVMHEAP,ALL

BB000201I JVM HEAP INFORMATION FOR SERVER BBO5SR4/BBOASR4A/STC00047

BB0002021 (STCO0047) HEAP(MIDDLEWARE), COUNT(00000000), FREE STORAGE(

396FA70), TOTAL STORAGE(7FFFAQ0)

BB000204I JVM HEAP INFORMATION FOR SERVER BBO5SR4/BBOASRAA/STC00047 COMPLETE
+BB000201I JVM HEAP INFORMATION FOR SERVER BBO5SR4/BBOASR4A/STC00048
+BB000202I (STCO0048) HEAP(MIDDLEWARE), COUNT(00000001), FREE STORAGE (
25F4030), TOTAL STORAGE(7FFFAGO)

+BB000204I JVM HEAP INFORMATION FOR SERVER BBO5SR4/BBOASRAA/STC00048 COMPLETE
BB000188I END OF OUTPUT FOR COMMAND DISPLAY,JVMHEAP,ALL

Chapter 3. Using the administrative clients 181

http://www.ehone.ibm.com/public/applications/publications/cgibin/pbi.cgi

Example: Displaying status of a server
This example shows how to use scripting to display the status of a server.

To display the status of a server, use the following command:
f server,display

Example: The following command will display status for the bbo6acr server:
f bbobacr,display

Here is a sample display:

F bbo6acr,DISPLAY
BB0001731 SERVER BBO5SR4/BBOASR4A ACTIVE ON SY1 AT LEVEL wd5x003.
BB000188I END OF OUTPUT FOR COMMAND DISPLAY

Example: Displaying the status of SMF 120-9 and SMF 120-10 record creation

The SMF display command displays the status of SMF 120-9 and SMF 120-10 record creation and
whether the optional CPU usage, security information, or timestamp information for the record is collected.

The display,smf command also displays the following information:

* When the last SMF 120-9 record was successfully or unsuccessfully created

* When the last SMF 120-10 record was successfully or unsuccessfully created

* How many SMF records were successfully and unsuccessfully created since the server started
* The last non-zero return code from an attempt to write an SMF 120-9 record

* The last non-zero return code from an attempt to write an SMF 120-10 record

To display the status of SMF 120-9 and SMF 120-10 record creation for a server, use the following
command:

f server,display,smf

Example: The following command displays the status of SMF 120-9 and SMF 120-10 record creation for
the bbo6acr server:

f bbobacr,display,smf

Here is a sample display:

BB000344If
SMF 120-9: ON, CPU USAGE: OFF, TIMESTAMPS: OFF, SECURITY INFO: OFF
BB000345I SMF 120-9: TIME OF LAST WRITE: 2008/02/20 13:38:44.003116, SUCCESSFUL
WRITES: 2, FAILED WRITES: 0
BB000346I SMF 120-9: LAST FAILED WRITE TIME: NEVER, RC: 0
BB000389I SMF 120-10: FORCED_ON
BB000387I SMF 120-10: TIME OF LAST WRITE: 2011/06/06 19:29:03.416432,
SUCCESSFUL WRITES: 14, FAILED WRITES: 0BB000388I
BB000388I SMF 120-10: LAST FAILED WRITE TIME: NEVER, RC: 0BB000188I END OF OUTPUT FOR COMMAND DISPLAY,SMF
BB000188I END OF OUTPUT FOR COMMAND DISPLAY,SMF

Each of the SubType 9, CPU Usage, Timestamps, or Security Info sections of the message can have a
value of ON, OFF, FORCED_ON, or FORCED_OFF. The ON or OFF values for a section indicate the setting of the
corresponding server-wide custom property. If any values are FORCED_ON or FORCED OFF, then an SMF
modify command was issued. The SMF modify command overrides the SMF server-wide custom property
and the SMF request-level RAS attribute.

182 Administering applications and their environment

Example: Displaying the status of dispatch thread

This example shows how to display the status of dispatch threads. You can display the status of each
servant thread, on which there is currently a request dispatched, for all of the servants in a controller, or
you can display this thread status for a particular servant within the controller. You can also display
information about the dispatch thread for a particular request, the dispatch threads that have been
handling the same request for a specific amount of time, or the dispatch threads for requests that have
timed out.

To display the status of dispatch threads use the following command:
f server,display,threads,<parameters>

server is the short name for the server to which the this command is directed. This argument is required.

If you do not specify any parameters, all is used.

ALL
Used to display information about all of the requests that are currently dispatched in each servant that
is associated with this controller.

You can specify the following options on the DISPLAY,THREADS,ALL command. If no option is
specified, summary is used.

DETAILS
Specifies that you want to see the full details about each request.

SUMMARY
Specifies that, for each request, you only want to see the request ID, the ASID of the servant
where the request was dispatched, the time the request was dispatched, and whether the
request timed out.

Here is a sample display of the messages that are issued if you enter this command:

Example: The following command displays the summary status of all of the dispatch threads for the
BBOSO001 server:

f BB0S001,display,threads,all

The following messages display in response to this command. In this output, the requests that have a
Y in the JW column were in a Java wait state when the command was issued. Similarly, the requests
that have a Y in the TO column were considered unresponsive.

As part of its request processing, the product uses several techniques in attempts to make an
unresponsive thread responsive, and enable a request to complete. However, these attempts are not
always successful. After the product exhausts the maximum number of attempts that it can make to
get a request to complete, it notifies the controller that the request should be terminated. In the

preceding example, the requests with a Y in the RE column are the requests for which the product has

exhausted attempts to get the request to finish.

BB0OJO111I: REQUEST ASID JW TO RE DISPATCH TIME

BB0JO112I: ffffb4ld 0X0176 N N N 2008/03/24 20:03:28.212400
BB0JO112I: ffffb420 0X0176 2008/03/24 19:59:16.910228
BBOJO112I: ffffb421 0X0176 2008/03/24 19:59:14.982621
BBOJO112I: ffffb422 0X0176 2008/03/24 19:59:12.805119
BBOJO112I: ffffb423 0X0176 2008/03/24 19:59:08.936107
BBO00188I END OF OUTPUT FOR DISPLAY,THREADS,ALL

O =< =< =< =<
-
O << =< =<

Example: The following command displays the detailed status of all of the dispatch threads for the
BBOSO001 server. For this command, the ALL parameter is implied.

f BBOS001,display,threads,details

The following messages display in response to this command:

Chapter 3. Using the administrative clients 183

BBOJO106I: REQUEST fffff2a9 ASID 0X0064 TCB 0X008D0438

BB0JO119I: CONTROLLER RECEIVED REQUEST AT 2008/06/05 14:24:51.508941
BB0JO120I: CONTROLLER QUEUED REQUEST TO WLM AT 2008/06/05
14:24:51.509147

BB0JO107I: SERVANT DISPATCHED REQUEST AT 2008/06/05 14:24:51.509242
BB0OJO108I: JVM THD IS NOT HUNG: ITI INACTIVE

BB0JO110I: DETAILS FOR GIOP OQutbound: Target Operation =sayHelloTwo
BB0OJO110I: DETAILS FOR JVM INTERRUPTIBLE THREAD: Monitor ACTIVE
BBOJO106I: REQUEST fffff2a3 ASID 0X0064 TCB 0X008CB2D8

BB0JO119I: CONTROLLER RECEIVED REQUEST AT 2008/06/05 14:24:54.981645
BB0JO120I: CONTROLLER QUEUED REQUEST TO WLM AT 2008/06/05
14:24:54,982324

BB0JO1071: SERVANT DISPATCHED REQUEST AT 2008/06/05 14:24:55.522788
BB0JO108I: JVYM THD IS NOT HUNG: ITI INACTIVE

BB0OJO110I: DETAILS FOR JVM INTERRUPTIBLE THREAD: Monitor ACTIVE
BBO00188I END OF QOUTPUT FOR COMMAND DISPLAY,THREADS,DETAILS

TIMEDOUT
Used to display information about the requests that are currently considered timed out.

You can specify the following options for the DISPLAY,THREADS, TIMEDOUT command. If no option is
specified, summary is used.

DETAILS
Specifies that you want the full details about the requests that timed out.

SUMMARY
Specifies that, for each request that timed out, you only want to see the request ID, the ASID
of the servant where the request was dispatched, and the time that the request was
dispatched

Example: The following command displays a summary of the requests, that are running on the
BBOSO001 server, that are currently considered timed out.

f BB0S001,display,threads,timedout,summary

REQUEST=<value>
Used to display information about the request that has the specified ID.

You can specify the following options on the DISPLAY,THREADS,REQUEST command. If no option is
specified, details is used.

DETAILS
Specifies that you want to see the full details about this request

SUMMARY
Specifies that, for this request, you only want to see the ASID of the servant where the
specified request was dispatched, the time the request was dispatched, and whether the
request timed out.

Example: The following command displays a summary of the request FFFFF2A9. For this command,
the DETAILS option is implied.

f BBOS001,display,threads,request=FFFFF2A9

BBOJO106I: REQUEST fffff2a9 ASID 0X0064 TCB 0X008D0438

BB0JO119I: CONTROLLER RECEIVED REQUEST AT 2008/03/27 16:51:36.981645
BB0JO120I: CONTROLLER QUEUED REQUEST TO WLM AT 2008/03/27
16:51:36.982324

BB0JO1071: SERVANT DISPATCHED REQUEST AT 2008/03/27 16:51:36.987541
BB0OJO108I: JVM THD IS NOT HUNG: ITI INACTIVE

BB0OJO110I: DETAILS FOR GIOP Qutbound: Target Operation = sayHelloTwo
BB0OJO110I: DETAILS FOR JVM INTERRUPTIBLE THREAD: Monitor ACTIVE
BB0O00188I END OF QUTPUT FOR COMMAND DISPLAY,THREADS,REQUEST=FFFFF2A9

184 Administering applications and their environment

ASID=<value>
Used to display information about the request, with the specified ASID, that is currently dispatched in
the servant. The ASID must be specified as a hexidecimal value.

You can specify the following options on the DISPLAY,THREADS,ASID command. If no option is
specified, summary is used.

DETAILS
Specifies that you want to see the full details about these requests.

SUMMARY
Specifies that you only want to see the request IDs, the time that each request was
dispatched, and whether the requests timed out.

Example: The following command displays a summary of the dispatch threads for the servant that has
the ASID 0038x.

f BB0S001,display,threads,ASID=0038x
AGE=<value>
Used to display information about the requests, for which the amount of time that has elapsed since

the request was placed in dispatch is equal to or greater than the specified amount of time. Specify
the length of time in seconds.

You can specify the following options on the DISPLAY,THREADS,AGE command. If no option is
specified, summary is used.

DETAILS
Specifies that you want to see the full details about these requests.

SUMMARY
Specifies that, for each request, you only want to see the request ID, ASID where the request
was dispatched, the time the request was dispatched, and whether the request timed out.

Example: The following command displays a summary of the dispatch threads for the requests for
which the amount of time, that has elapsed since the request was placed in dispatch, is equal to or
greater than 30 seconds

f BB0S001,display,threads,age=30
Example: Displaying status of clusters
This example shows how to use scripting to display the status of clusters.

To display the status of clusters in the active controller, use the following command:
f server,display,servers

Example: The following command will display status for the bbo6acr server:
f bbobacr,display,servers

Here is a sample display:
F bbob6acr,DISPLAY,SERVERS

BB000182I SERVER ASID SYSTEM LEVEL
BB000183I CBDAEMON/DAEMONO1 31x SY1 wd5x003
BB000183I BBO5SR4 /BBOASR4A 1F6x SY1 wd5x003

BBO0O188I END OF OUTPUT FOR COMMAND DISPLAY,SERVERS

Chapter 3. Using the administrative clients 185

Example: Displaying units of work (transactions) for the Information
Management System

This example shows how to use scripting to display the units of work for the Information Management
System.

You can display units of work (transactions) for Information Management System (IMS):

1. To display the status of a specific transaction, issue this command. The message ID is the replying
IMS ready message number.

message_id/dis tran trans-name

2. To display the status of a specific program, issue the command:

/dis prog program-name

3. To display the number of Message Processing Regions (MPRs) that are currently active, issue the
command:

/display active region
For more information about IMS commands, see the IMS/ESA Summary of Operator Commands
manual on the IBM Publications Center| website.

Example: Displaying the setting for trace records

Use the following example to display the setting for trace records. The TRACERECORD parameter on the
modify command is used to control the writing of trace records.

To display the setting of the TRACERECORD parameter for a server, use the following command:
F server,DISPLAY,TRACERECORD

Example: The following command displays the setting of the TRACERECORD parameter for the bbo6acr
server:

F bbo6acrl,DISPLAY,TRACERECORD

See the following sample display:

F BBO6ACR,DISPLAY,TRACERECORD
BB0003651 THE TRACERECORD PARAMETER is ON.
BB000188I END OF OUTPUT FOR COMMAND DISPLAY,TRACERECORD

186 Administering applications and their environment

http://www.ehone.ibm.com/public/applications/publications/cgibin/pbi.cgi

Chapter 4. Using Ant to automate tasks

To support using Apache Ant with Java Platform, Enterprise Edition (Java EE) applications running on the
application server, the product provides a copy of the Ant tool and a set of Ant tasks that extend the
capabilities of Ant to include product-specific functions. Ant has become a very popular tool among Java
programmers.

About this task

Apache Ant is a Java-based build tool. In theory, it is similar to Make, but Ant is different. Instead of a
model in which it is extended with shell-based commands, Ant is extended using Java classes. Instead of
writing shell commands, XML-based configuration files are used. These files reference a target tree in
which various tasks are run. Each task is run by an object that implements a particular Task interface.

gotcha:

» Calling the WebSphere_Ant (WsAnt) scripts outside of the ws_ant launcher is not supported or
recommended.

* When you invoke the Ant tool, do not pass empty strings in place of command arguments in
ant script. The script will not work in the wsadmin environment. The <arg value> cannot be an
empty string, such as shown in the following example:
<?xml version="1.0" encoding="UTF-8"?>
<project name="proj" default="main">

<taskdef name="wsadmin" classname="com.ibm.websphere.ant.tasks.WsAdmin"/>

<target name="main">

<wsadmin,conntype="NONE" lang="jython" failonerror="true" script="&(basedir)/script.ph">
<arg value="blah" />
<arg value="" />

</wsadmin>

<!-- manaeapp action="blah" variation-number="0" -->

</target>

</project>

By combining the following tasks with those provided by Ant, you can create build scripts that compile,
package, install, and test your application on the application server:

» Install and uninstall applications

« Start and stop servers in a base configuration

* Run administrative scripts or commands

* Run the Enterprise JavaBeans (EJB) deployment tool for EJB 1.x or 2.x modules
* Run the JavaServer Pages (JSP) file precompilation tool

For more detailed information about Ant, refer to the [Apache organization website]

Procedure

» To run Ant and have it automatically see the WebSphere classes, use the ws_ant command.
The ws_ant command is provided with the Apache Ant tool.
See the app_server_root/lbin/ws_ant.batlsh file for the Apache Ant tool.

» Use Ant tasks for deployment and server operation.

The Apache Ant tasks for the product reside in the Java package: com.ibm.websphere.ant.tasks. The
API| documentation for this package contains detailed information about all of the Ant tasks that are
provided and how to use them.

See com.ibm.websphere.ant.tasks APl documentation in the Reference section of the information
center.

» Use Ant tasks for building application code.

© Copyright IBM Corp. 2011 187

http://ant.apache.org/index.html

Refer to the Rational Application Developer documentation.

» Use the Apache Struts framework to create an extensible development environment for your application,
based on published standards and proven design patterns.

Apache struts is a framework that is supported by the open source community.

IBM WebSphere Application Server provides the Apache Struts JAR file in the install_root/
optionalLibraries/Apache/Struts/1.1 directory of your product installation. If using Struts in your
application or Application Server, you need to configure a shared library that points to the Struts library
JAR file.

The Struts framework provides the invisible underpinnings every professional web application needs to
survive. The core of Struts is a flexible control layer based on standard technologies such as Java
Servlets, JavaBeans, ResourceBundles, and Extensible Markup Language (XML).

Note: Shipment of Apache Struts 1.1, 1.2.4, and 1.2.7 as optional libraries within WebSphere
Application Server is deprecated in Version 7.0.

Struts encourages application architectures based on the Model 2 approach, a variation of the classic
Model-View-Controller (MVC) design paradigm. Struts provides its own Controller component and
integrates with other technologies to provide the Model and the View. For the Model, Struts can interact
with any standard data access technology, including Enterprise Java Beans (EJB) components, and
JDBC. For the View, Struts works well with JavaServer Pages (JSP) files, XSLT, or other presentation
systems.

188 Administering applications and their environment

Chapter 5. Starting and stopping quick reference

Start and stop servers in your application serving environment, referring to this quick guide to the
administrative clients and several other tools that are provided with this product.

Procedure
» Use commands to start and stop servers.

Table 13. Commands to start and stop servers. Run a start or stop command that is appropriate for the target
server.

Quick reference: Issuing commands to start and stop servers

These examples are for starting and stopping the default profile on a server. Otherwise, you might need to specify
-profileName profile_name when invoking the command.

Deployment manager

Run the following command.

See|‘startManager command” on page 115|for details and variations

startManager

Application server

Run the following command. See [startServer command” on page 110|for details and variations

startServer server

where server is the application server that you want to start.

Stopping the servers

Use the same command as to start, except substitute stop for start. For example, to stop an application server, issue
the command:

stopServer server

To start and stop application server clusters, see [Starting clusters|

* Use administrative clients and tools.

Table 14. Opening the administrative console. Point a Web browser at the console.

Quick reference: Opening the administrative console

To open the console using the default port, enter this web address in your web browser:
http://your_fully qualified server_name:9060/ibm/console

Depending on your configuration, your web address might differ. Other factors can affect your ability to access the
console. See [‘Starting and logging off the administrative console” on page 20| for details, as needed.

You also canfuse MVS console commands| on z/OS systems.
To launch a scripting client, see [Starting the wsadmin scripting client using wsadmin scripting}
To learn about all available administrative clients, see |Using the administrative clients}
For performance monitoring, see [Monitoring performance with Tivoli Performance Viewer .

See the administrator commands that are listed in the Reference section of the information center.
* Use troubleshooting tools.

See [Choosing and using diagnosis tools and controls on z/OS|

© Copyright IBM Corp. 2011 189

190 Administering applications and their environment

Chapter 6. Backing up and recovering the application servin
environment

The product uses many operating system and application resources that you should consider adding to
your backup and recovery procedures.

About this task

WebSphere Application Server resources can be saved while the product environment is active. When
backing up database data, you may have to shut down some or all services if a snapshot cannot be

g

obtained. This would occur if there are requests which obtain locks or have open transactions against the

database being saved. In a distributed environment, you may need to consider how to get a consistent
backup across several systems. If the data on systems is not closely related to data on other systems,

you

may be able to backup each system in isolation. If you need a snapshot across systems simultaneously,

you may need to stop activity on all systems while the snapshot is taken.
How often you back up resources depends largel